WorldWideScience

Sample records for schizont specific gene

  1. A Plasmodium falciparum FcB1-schizont-EST collection providing clues to schizont specific gene structure and polymorphism

    Directory of Open Access Journals (Sweden)

    Charneau Sébastien

    2009-05-01

    Full Text Available Abstract Background The Plasmodium falciparum genome (3D7 strain published in 2002, revealed ~5,400 genes, mostly based on in silico predictions. Experimental data is therefore required for structural and functional assessments of P. falciparum genes and expression, and polymorphic data are further necessary to exploit genomic information to further qualify therapeutic target candidates. Here, we undertook a large scale analysis of a P. falciparum FcB1-schizont-EST library previously constructed by suppression subtractive hybridization (SSH to study genes expressed during merozoite morphogenesis, with the aim of: 1 obtaining an exhaustive collection of schizont specific ESTs, 2 experimentally validating or correcting P. falciparum gene models and 3 pinpointing genes displaying protein polymorphism between the FcB1 and 3D7 strains. Results A total of 22,125 clones randomly picked from the SSH library were sequenced, yielding 21,805 usable ESTs that were then clustered on the P. falciparum genome. This allowed identification of 243 protein coding genes, including 121 previously annotated as hypothetical. Statistical analysis of GO terms, when available, indicated significant enrichment in genes involved in "entry into host-cells" and "actin cytoskeleton". Although most ESTs do not span full-length gene reading frames, detailed sequence comparison of FcB1-ESTs versus 3D7 genomic sequences allowed the confirmation of exon/intron boundaries in 29 genes, the detection of new boundaries in 14 genes and identification of protein polymorphism for 21 genes. In addition, a large number of non-protein coding ESTs were identified, mainly matching with the two A-type rRNA units (on chromosomes 5 and 7 and to a lower extent, two atypical rRNA loci (on chromosomes 1 and 8, TARE subtelomeric regions (several chromosomes and the recently described telomerase RNA gene (chromosome 9. Conclusion This FcB1-schizont-EST analysis confirmed the actual expression of 243

  2. Cell cycle-dependent phosphorylation of Theileria annulata schizont surface proteins.

    Directory of Open Access Journals (Sweden)

    Olga Wiens

    Full Text Available The invasion of Theileria sporozoites into bovine leukocytes is rapidly followed by the destruction of the surrounding host cell membrane, allowing the parasite to establish its niche within the host cell cytoplasm. Theileria infection induces host cell transformation, characterised by increased host cell proliferation and invasiveness, and the activation of anti-apoptotic genes. This process is strictly dependent on the presence of a viable parasite. Several host cell kinases, including PI3-K, JNK, CK2 and Src-family kinases, are constitutively activated in Theileria-infected cells and contribute to the transformed phenotype. Although a number of host cell molecules, including IkB kinase and polo-like kinase 1 (Plk1, are recruited to the schizont surface, very little is known about the schizont molecules involved in host-parasite interactions. In this study we used immunofluorescence to detect phosphorylated threonine (p-Thr, serine (p-Ser and threonine-proline (p-Thr-Pro epitopes on the schizont during host cell cycle progression, revealing extensive schizont phosphorylation during host cell interphase. Furthermore, we established a quick protocol to isolate schizonts from infected macrophages following synchronisation in S-phase or mitosis, and used mass spectrometry to detect phosphorylated schizont proteins. In total, 65 phosphorylated Theileria proteins were detected, 15 of which are potentially secreted or expressed on the surface of the schizont and thus may be targets for host cell kinases. In particular, we describe the cell cycle-dependent phosphorylation of two T. annulata surface proteins, TaSP and p104, both of which are highly phosphorylated during host cell S-phase. TaSP and p104 are involved in mediating interactions between the parasite and the host cell cytoskeleton, which is crucial for the persistence of the parasite within the dividing host cell and the maintenance of the transformed state.

  3. Paroxysm serum from a case of Plasmodium vivax malaria inhibits the maturation of P. falciparum schizonts in vitro.

    Science.gov (United States)

    Nagao, Y; Chavalitshewinkoon-Petmitr, P; Noedl, H; Thongrungkiat, S; Krudsood, S; Sukthana, Y; Nacher, M; Wilairatana, P; Looareesuwan, S

    2003-09-01

    In concurrent infections in vivo, the blood stages of Plasmodium vivax suppress those of Plasmodium falciparum. To see if the paroxysm (i.e. the periodic febrile episode) of P. vivax infection contributes to this suppression, sera from a P. vivax-infected volunteer were added to cultures of whole blood taken from cases of P. falciparum malaria. The crude 'rate' of schizont generation from the ring forms, measured as the percentage of all asexual parasites that were schizonts after incubation for 24 h, was similar whether the cultures contained serum samples collected during paroxysms or those collected, from the same volunteer, at other times (19.1% v. 18.9%; P=0.842). After a random-effect linear regression was used to adjust for disparities between the P. falciparum isolates, however, the degree of schizont maturation, measured as the mean number of nuclei per schizont, was significantly lower for the cultures with 'paroxysm serum' than for those with 'non-paroxysm serum' (4.8 v. 5.3; P=0.002). The proportion of schizonts considered mature was also significantly lower when 'paroxysm serum' was used (3.7% v. 6.3%: P=0.03). This appears to be the first in-vitro study in which sera collected during a paroxysm of P. vivax have been shown to inhibit the maturation of P. falciparum schizonts. The role of this mechanism in intra- and inter-specific competition is discussed.

  4. A large scale Plasmodium vivax- Saimiri boliviensis trophozoite-schizont transition proteome.

    Directory of Open Access Journals (Sweden)

    D C Anderson

    Full Text Available Plasmodium vivax is a complex protozoan parasite with over 6,500 genes and stage-specific differential expression. Much of the unique biology of this pathogen remains unknown, including how it modifies and restructures the host reticulocyte. Using a recently published P. vivax reference genome, we report the proteome from two biological replicates of infected Saimiri boliviensis host reticulocytes undergoing transition from the late trophozoite to early schizont stages. Using five database search engines, we identified a total of 2000 P. vivax and 3487 S. boliviensis proteins, making this the most comprehensive P. vivax proteome to date. PlasmoDB GO-term enrichment analysis of proteins identified at least twice by a search engine highlighted core metabolic processes and molecular functions such as glycolysis, translation and protein folding, cell components such as ribosomes, proteasomes and the Golgi apparatus, and a number of vesicle and trafficking related clusters. Database for Annotation, Visualization and Integrated Discovery (DAVID v6.8 enriched functional annotation clusters of S. boliviensis proteins highlighted vesicle and trafficking-related clusters, elements of the cytoskeleton, oxidative processes and response to oxidative stress, macromolecular complexes such as the proteasome and ribosome, metabolism, translation, and cell death. Host and parasite proteins potentially involved in cell adhesion were also identified. Over 25% of the P. vivax proteins have no functional annotation; this group includes 45 VIR members of the large PIR family. A number of host and pathogen proteins contained highly oxidized or nitrated residues, extending prior trophozoite-enriched stage observations from S. boliviensis infections, and supporting the possibility of oxidative stress in relation to the disease. This proteome significantly expands the size and complexity of the known P. vivax and Saimiri host iRBC proteomes, and provides in-depth data

  5. A large scale Plasmodium vivax- Saimiri boliviensis trophozoite-schizont transition proteome

    Science.gov (United States)

    Lapp, Stacey A.; Barnwell, John W.; Galinski, Mary R.

    2017-01-01

    Plasmodium vivax is a complex protozoan parasite with over 6,500 genes and stage-specific differential expression. Much of the unique biology of this pathogen remains unknown, including how it modifies and restructures the host reticulocyte. Using a recently published P. vivax reference genome, we report the proteome from two biological replicates of infected Saimiri boliviensis host reticulocytes undergoing transition from the late trophozoite to early schizont stages. Using five database search engines, we identified a total of 2000 P. vivax and 3487 S. boliviensis proteins, making this the most comprehensive P. vivax proteome to date. PlasmoDB GO-term enrichment analysis of proteins identified at least twice by a search engine highlighted core metabolic processes and molecular functions such as glycolysis, translation and protein folding, cell components such as ribosomes, proteasomes and the Golgi apparatus, and a number of vesicle and trafficking related clusters. Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8 enriched functional annotation clusters of S. boliviensis proteins highlighted vesicle and trafficking-related clusters, elements of the cytoskeleton, oxidative processes and response to oxidative stress, macromolecular complexes such as the proteasome and ribosome, metabolism, translation, and cell death. Host and parasite proteins potentially involved in cell adhesion were also identified. Over 25% of the P. vivax proteins have no functional annotation; this group includes 45 VIR members of the large PIR family. A number of host and pathogen proteins contained highly oxidized or nitrated residues, extending prior trophozoite-enriched stage observations from S. boliviensis infections, and supporting the possibility of oxidative stress in relation to the disease. This proteome significantly expands the size and complexity of the known P. vivax and Saimiri host iRBC proteomes, and provides in-depth data that will be valuable

  6. A quantitative reverse-transcriptase PCR assay for the assessment of drug activities against intracellular Theileria annulata schizonts

    Directory of Open Access Journals (Sweden)

    Isabel Hostettler

    2014-12-01

    Full Text Available Intracellular schizonts of the apicomplexans Theileria annulata and Theileria parva immortalize bovine leucocytes thereby causing fatal immunoproliferative diseases. Buparvaquone, a hydroxynaphthoquinone related to parvaquone, is the only drug available against Theileria. The drug is only effective at the onset of infection and emerging resistance underlines the need for identifying alternative compounds. Current drug assays employ monitoring of proliferation of infected cells, with apoptosis of the infected host cell as a read-out, but it is often unclear whether active compounds directly impair the viability of the parasite or primarily induce host cell death. We here report on the development of a quantitative reverse transcriptase real time PCR method based on two Theileria genes, tasp and tap104, which are both expressed in schizonts. Upon in vitro treatment of T. annulata infected bovine monocytes with buparvaquone, TaSP and Tap104 mRNA expression levels significantly decreased in relation to host cell actin already within 4 h of drug exposure, while significant differences in host cell proliferation were detectable only after 48–72 h. TEM revealed marked alterations of the schizont ultrastructure already after 2 h of buparvaquone treatment, while the host cell remained unaffected. Expression of TaSP and Tap104 proteins showed a marked decrease only after 24 h. Therefore, the analysis of expression levels of mRNA coding for TaSP and Tap104 allows to directly measuring impairment of parasite viability. We subsequently applied this method using a series of compounds affecting different targets in other apicomplexan parasites, and show that monitoring of TaSP- and Tap104 mRNA levels constitutes a suitable tool for anti-theilerial drug development.

  7. IL-17A regulates Eimeria tenella schizont maturation and migration in avian coccidiosis.

    Science.gov (United States)

    Del Cacho, Emilio; Gallego, Margarita; Lillehoj, Hyun Soon; Quílez, Joaquín; Lillehoj, Erik P; Ramo, Ana; Sánchez-Acedo, Caridad

    2014-02-26

    Although IL17A is associated with the immunological control of various infectious diseases, its role in host response to Eimeria infections is not well understood. In an effort to better dissect the role of IL17A in host-pathogen interactions in avian coccidiosis, a neutralizing antibody (Ab) to chicken IL17A was used to counteract IL17A bioactivity in vivo. Chickens infected with Eimeria tenella and treated intravenously with IL17A Ab, exhibited reduced intracellular schizont and merozoite development, diminished lesion score, compared with untreated controls. Immunohistological evaluation of cecal lesions in the parasitized tissues indicated reduced migration and maturation of second-generation schizonts and reduced lesions in lamina propria and submucosa. In contrast, untreated and infected chickens had epithelial cells harboring second-generation schizonts, which extend into the submucosa through muscularis mucosa disruptions, maturing into second generation merozoites. Furthermore, IL17A Ab treatment was associated with increased parameters of Th1 immunity (IL2- and IFNγ- producing cells), reduced levels of reactive oxygen species (ROS), and diminished levels of serum matrix metalloproteinase-9 (MMP-9). Finally, schizonts from untreated and infected chickens expressed S100, Wiskott-Aldrich syndrome protein family member 3 (WASF3), and heat shock protein-70 (HSP70) proteins as merozoites matured, whereas the expression of these proteins was absent in IL17A Ab-treated chickens. These results provide the first evidence that the administration of an IL17A neutralizing Ab to E. tenella-infected chickens inhibits the migration of parasitized epithelial cells, markedly reduces the production of ROS and MMP-9, and decreases cecal lesions, suggesting that IL17A might be a potential therapeutic target for coccidiosis control.

  8. Therapeutic Gene Editing Safety and Specificity.

    Science.gov (United States)

    Lux, Christopher T; Scharenberg, Andrew M

    2017-10-01

    Therapeutic gene editing is significant for medical advancement. Safety is intricately linked to the specificity of the editing tools used to cut at precise genomic targets. Improvements can be achieved by thoughtful design of nucleases and repair templates, analysis of off-target editing, and careful utilization of viral vectors. Advancements in DNA repair mechanisms and development of new generations of tools improve targeting of specific sequences while minimizing risks. It is important to plot a safe course for future clinical trials. This article reviews safety and specificity for therapeutic gene editing to spur dialogue and advancement. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Clustering context-specific gene regulatory networks.

    Science.gov (United States)

    Ramesh, Archana; Trevino, Robert; VON Hoff, Daniel D; Kim, Seungchan

    2010-01-01

    Gene regulatory networks (GRNs) learned from high throughput genomic data are often hard to visualize due to the large number of nodes and edges involved, rendering them difficult to appreciate. This becomes an important issue when modular structures are inherent in the inferred networks, such as in the recently proposed context-specific GRNs.(12) In this study, we investigate the application of graph clustering techniques to discern modularity in such highly complex graphs, focusing on context-specific GRNs. Identified modules are then associated with a subset of samples and the key pathways enriched in the module. Specifically, we study the use of Markov clustering and spectral clustering on cancer datasets to yield evidence on the possible association amongst different tumor types. Two sets of gene expression profiling data were analyzed to reveal context-specificity as well as modularity in genomic regulations.

  10. Hepatocyte specific expression of human cloned genes

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, R.

    1986-01-01

    A large number of proteins are specifically synthesized in the hepatocyte. Only the adult liver expresses the complete repertoire of functions which are required at various stages during development. There is therefore a complex series of regulatory mechanisms responsible for the maintenance of the differentiated state and for the developmental and physiological variations in the pattern of gene expression. Human hepatoma cell lines HepG2 and Hep3B display a pattern of gene expression similar to adult and fetal liver, respectively; in contrast, cultured fibroblasts or HeLa cells do not express most of the liver specific genes. They have used these cell lines for transfection experiments with cloned human liver specific genes. DNA segments coding for alpha1-antitrypsin and retinol binding protein (two proteins synthesized both in fetal and adult liver) are expressed in the hepatoma cell lines HepG2 and Hep3B, but not in HeLa cells or fibroblasts. A DNA segment coding for haptoglobin (a protein synthesized only after birth) is only expressed in the hepatoma cell line HepG2 but not in Hep3B nor in non hepatic cell lines. The information for tissue specific expression is located in the 5' flanking region of all three genes. In vivo competition experiments show that these DNA segments bind to a common, apparently limiting, transacting factor. Conventional techniques (Bal deletions, site directed mutagenesis, etc.) have been used to precisely identify the DNA sequences responsible for these effects. The emerging picture is complex: they have identified multiple, separate transcriptional signals, essential for maximal promoter activation and tissue specific expression. Some of these signals show a negative effect on transcription in fibroblast cell lines.

  11. Allele-specific gene expression in carcinogenesis

    Directory of Open Access Journals (Sweden)

    O. M. Krivtsova

    2016-01-01

    Full Text Available Recent large-scale genomic studies established the occurrence of multiple DNA sequence variants in genomes of healthy individuals that differ from the reference sequence. Among these variants mostly represented by germline single nucleotide polymorphisms disease-related alleles are detected including alleles which are associated with monogenic disorders, and putative deleterious genetic variants. Apart from functional significance of a particular variant and of a gene harboring it, the penetrance of these allelic variants depends on their expression level and can be determined by preferential expression of a particular allele, or allele-specific expression. It is estimated that 20–30 % of genes present in the human genome display allelic bias in a tissue-specific manner. Allele-specific expression is defined by a range of genetic and epigenetic mechanisms including cis-regulatory polymorphisms, allele-specific binding of transcription factors, allele-specific DNA methylation and regulation through non-coding RNA.Although the data on the issue are scarce, allele-specific expression has been reported to be implicated in several hereditary disorders including benign and malignant tumors of the large intestine. Recent studies that estimate allele-specific expression incidence in tumors and identify wide range of genes displaying allelic imbalance indicate that allele-specific expression might play a significant role in carcinogenesis. Eventually, estimation of transcriptional rate of allelic variants which cause dysfunction of oncogenes and tumor suppressors may prove to be essential for rational choice of antitumor therapeutic strategy. In this review, we outline the main concepts and mechanisms of allele-specific expression and the data on allelic imbalance in tumors.

  12. [Advances in lineage-specific genes].

    Science.gov (United States)

    Zhang, Huan-ping; Yin, Tong-ming

    2015-06-01

    Lineage-specific genes (LSGs) are defined as genes found in one particular taxonomic group but have no significant sequence similarity with genes from other lineages, which compose about 10%?20% of the total genes in the genome of a focal organism. LSGs were first uncovered in the yeast genome in 1996. The development of the whole genome sequencing leads to the emergence of studies on LSGs as a hot topic in comparative genomics. LSGs have been extensively studied on microbial species, lower marine organisms, plant (such as Arabidopsis thaliana, Oryza sativa, Populus), insects, primate, etc; the biological functions of LSGs are important to clarify the evolution and adaptability of a species. In this review, we summarize the progress of LSGs studies, including LSGs identification, gene characterization, origin and evolution of LSGs, biological function, and expression analysis of LSGs. In addition, we discuss the existing problems and future directions for studies in this area. Our purpose is to provide some unique insights into the researches of LSGs.

  13. The Microtubule-Stabilizing Protein CLASP1 Associates with the Theileria annulata Schizont Surface via Its Kinetochore-Binding Domain

    Science.gov (United States)

    Huber, Sandra; Theiler, Romina; de Quervain, Daniel; Wiens, Olga; Karangenc, Tulin; Heussler, Volker; Dobbelaere, Dirk

    2017-01-01

    ABSTRACT Theileria is an apicomplexan parasite whose presence within the cytoplasm of a leukocyte induces cellular transformation and causes uncontrolled proliferation and clonal expansion of the infected cell. The intracellular schizont utilizes the host cell’s own mitotic machinery to ensure its distribution to both daughter cells by associating closely with microtubules (MTs) and incorporating itself within the central spindle. We show that CLASP1, an MT-stabilizing protein that plays important roles in regulating kinetochore-MT attachment and central spindle positioning, is sequestered at the Theileria annulata schizont surface. We used live-cell imaging and immunofluorescence in combination with MT depolymerization assays to demonstrate that CLASP1 binds to the schizont surface in an MT-independent manner throughout the cell cycle and that the recruitment of the related CLASP2 protein to the schizont is MT dependent. By transfecting Theileria-infected cells with a panel of truncation mutants, we found that the kinetochore-binding domain of CLASP1 is necessary and sufficient for parasite localization, revealing that CLASP1 interaction with the parasite occurs independently of EB1. We overexpressed the MT-binding domain of CLASP1 in parasitized cells. This exhibited a dominant negative effect on host MT stability and led to altered parasite size and morphology, emphasizing the importance of proper MT dynamics for Theileria partitioning during host cell division. Using coimmunoprecipitation, we demonstrate that CLASP1 interacts, directly or indirectly, with the schizont membrane protein p104, and we describe for the first time TA03615, a Theileria protein which localizes to the parasite surface, where it has the potential to participate in parasite-host interactions. IMPORTANCE T. annulata, the only eukaryote known to be capable of transforming another eukaryote, is a widespread parasite of veterinary importance that puts 250 million cattle at risk worldwide

  14. Recruitment of EB1, a Master Regulator of Microtubule Dynamics, to the Surface of the Theileria annulata Schizont

    KAUST Repository

    Woods, Kerry L.

    2013-05-09

    The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell\\'s astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton. 2013 Woods et al.

  15. Recruitment of EB1, a master regulator of microtubule dynamics, to the surface of the Theileria annulata schizont.

    Directory of Open Access Journals (Sweden)

    Kerry L Woods

    2013-05-01

    Full Text Available The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability. Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1, a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton.

  16. Gene therapy on demand: site specific regulation of gene therapy.

    Science.gov (United States)

    Jazwa, Agnieszka; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2013-08-10

    Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients. Introduction of the therapeutic gene to the given cells should provide the level of expression which will restore the production of therapeutic protein to normal values or will provide therapeutic efficacy despite not fully physiological expression. However, in numerous diseases the expression of therapeutic genes has to be kept at certain level for some time, and then might be required to be switched off to be activated again when worsening of the symptoms may aggravate the risk of disease relapse. In such cases the promoters which are regulated by local conditions may be more required. In this article the special emphasis is to discuss the strategies of regulation of gene expression by endogenous stimuli. Particularly, the hypoxia- or miRNA-regulated vectors offer the possibilities of tight but, at the same time, condition-dependent and cell-specific expression. Such means have been already tested in certain pathophysiological conditions. This creates the chance for the translational approaches required for development of effective treatments of so far incurable diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana

    Science.gov (United States)

    2011-01-01

    Background All sequenced genomes contain a proportion of lineage-specific genes, which exhibit no sequence similarity to any genes outside the lineage. Despite their prevalence, the origins and functions of most lineage-specific genes remain largely unknown. As more genomes are sequenced opportunities for understanding evolutionary origins and functions of lineage-specific genes are increasing. Results This study provides a comprehensive analysis of the origins of lineage-specific genes (LSGs) in Arabidopsis thaliana that are restricted to the Brassicaceae family. In this study, lineage-specific genes within the nuclear (1761 genes) and mitochondrial (28 genes) genomes are identified. The evolutionary origins of two thirds of the lineage-specific genes within the Arabidopsis thaliana genome are also identified. Almost a quarter of lineage-specific genes originate from non-lineage-specific paralogs, while the origins of ~10% of lineage-specific genes are partly derived from DNA exapted from transposable elements (twice the proportion observed for non-lineage-specific genes). Lineage-specific genes are also enriched in genes that have overlapping CDS, which is consistent with such novel genes arising from overprinting. Over half of the subset of the 958 lineage-specific genes found only in Arabidopsis thaliana have alignments to intergenic regions in Arabidopsis lyrata, consistent with either de novo origination or differential gene loss and retention, with both evolutionary scenarios explaining the lineage-specific status of these genes. A smaller number of lineage-specific genes with an incomplete open reading frame across different Arabidopsis thaliana accessions are further identified as accession-specific genes, most likely of recent origin in Arabidopsis thaliana. Putative de novo origination for two of the Arabidopsis thaliana-only genes is identified via additional sequencing across accessions of Arabidopsis thaliana and closely related sister species

  18. The indirect fluorescent antibody test based on schizont antigen for study of the sheep parasite Theileria lestoquardi.

    Science.gov (United States)

    Leemans, I; Hooshmand-Rad, P; Uggla, A

    1997-04-01

    An indirect fluorescent antibody test (IFAT), based on schizont-infected lymphoblastoid cells, was applied to study the course of antibody production in adult sheep inoculated with attenuated, in vitro grown, Theileria lestoquardi (Theileria hirci) infected cells. Bright fluorescence of the intracellular schizonts could first be demonstrated 15 days after inoculation. A 32-64-fold rise in antibody titres was recorded 1 month after infection, and substantial titres were still observed 90 days after inoculation. Fluorescence was absent with negative control sera and background staining was minimal. No serological cross-reactions were detected with sheep sera positive for Babesia motasi, Babesia ovis or Toxoplasma gondii. Results obtained did not differ when antigens prepared from three different strains of T. lestoquardi infected lymphoid cells were compared. Testing for reactivity to non-pathogenic Theileria species of sheep revealed a low degree of cross-reaction of a Theileria ovis and a Theileria separata antiserum to T. lestoquardi antigen. Cross-reactions were also observed with bovine sera positive for Theileria annulata and Theileria parva. Moreover, T. lestoquardi positive sera reacted almost equally strongly with bovine T. annulata antigen as with their homologous antigen, whereas cross-reaction with bovine T. parva antigen was less pronounced. These results indicate a close antigenic relationship between ovine T. lestoquardi and T. annulata of cattle.

  19. Identification of context-specific gene regulatory networks with GEMULA--Gene Expression Modeling Using LAsso

    NARCIS (Netherlands)

    Geeven, G.; van Kesteren, R.E.; Smit, A.B.; de Gunst, M.C.M.

    2012-01-01

    Motivation: Gene regulatory networks, in which edges between nodes describe interactions between transcriptional regulators and their target genes, determine the coordinated spatiotemporal expression of genes. Especially in higher organisms, context-specific combinatorial regulation by transcription

  20. Characterization of embryo-specific genes

    Energy Technology Data Exchange (ETDEWEB)

    Sung, R.

    1992-06-12

    The objective of the proposed research is to characterize the function and regulation of a set of embryonic genes which are expressed in the embryos, not in the plants. 22 cDNA clones were isolated from a cDNA library we constructed using mRNAS of -carrot somatic embryos. These cDNA clones identified mRNA species that are present in the somatic and zygotic embryos, but not in adult plants. The sequence of all 22cDNA clones were determined; genomic clones for three cDNA clones, DC8, DC59, and DC49 were isolated and gene sequences determined. DC8, DC49, and several other genes identified by the cDNA sequences belong to the category of late embryogenesis abundant protein genes, Lea. The function of these gens have not yet been determined, but they share common structural features, are regulated by ABA and are speculated to play a role in seed desiccation.

  1. Tissue-specific control elements of the Thy-1 gene.

    NARCIS (Netherlands)

    M. Vidal; E. Spanopoulou; R. Morris (Roger); F.G. Grosveld (Frank)

    1990-01-01

    textabstractWe have exploited the structural homology, but different patterns of expression of the murine and human Thy-1 genes to map a number of tissue-specific enhancer elements in the genes. All of these are located downstream from the site of transcriptional initiation. The human gene contains

  2. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an

  3. Histone modification profiles characterize function-specific gene regulation.

    Science.gov (United States)

    Jung, Inkyung; Kim, Dongsup

    2012-10-07

    Chromatin modification is ubiquitous in gene regulation. Despite much effort, a systematic investigation is needed to understand whether each modification has a unique property depending on the function of its associated genes. Here, we show that consideration of function-specific histone modification profiles is important for accurate prediction of gene expression levels, and is maintained across cell types. The performance improvement is thought to originate from the association between modifications and gene expression levels for each biological function. The varying relationship between histone modifications and gene expression levels can be partly explained by considering function-specific PolII recruitment mechanisms, and is supported by more accurate predictions of PolII occupancies with function-specific modification profiles. We suggest that the function-specific binding of transcription factors and chromatin regulators may explain similar gene regulatory mechanisms, such as function-specific PolII recruitment, in each functional gene set. Our study demonstrates that each histone modification has a different characteristic according to the function of its associated genes; thus, different combinations of histone modification profiles characterize function-specific gene regulation. The current analysis is available on our web server (biodb.kaist.ac.kr/impohis). Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Specific gene repression by CRISPRi system transferred through bacterial conjugation.

    Science.gov (United States)

    Ji, Weiyue; Lee, Derrick; Wong, Eric; Dadlani, Priyanka; Dinh, David; Huang, Verna; Kearns, Kendall; Teng, Sherry; Chen, Susan; Haliburton, John; Heimberg, Graham; Heineike, Benjamin; Ramasubramanian, Anusuya; Stevens, Thomas; Helmke, Kara J; Zepeda, Veronica; Qi, Lei S; Lim, Wendell A

    2014-12-19

    In microbial communities, bacterial populations are commonly controlled using indiscriminate, broad range antibiotics. There are few ways to target specific strains effectively without disrupting the entire microbiome and local environment. Here, we use conjugation, a natural DNA horizontal transfer process among bacterial species, to deliver an engineered CRISPR interference (CRISPRi) system for targeting specific genes in recipient Escherichia coli cells. We show that delivery of the CRISPRi system is successful and can specifically repress a reporter gene in recipient cells, thereby establishing a new tool for gene regulation across bacterial cells and potentially for bacterial population control.

  5. Gene specific actions of thyroid hormone receptor subtypes.

    Directory of Open Access Journals (Sweden)

    Jean Z Lin

    Full Text Available There are two homologous thyroid hormone (TH receptors (TRs α and β, which are members of the nuclear hormone receptor (NR family. While TRs regulate different processes in vivo and other highly related NRs regulate distinct gene sets, initial studies of TR action revealed near complete overlaps in their actions at the level of individual genes. Here, we assessed the extent that TRα and TRβ differ in target gene regulation by comparing effects of equal levels of stably expressed exogenous TRs +/- T(3 in two cell backgrounds (HepG2 and HeLa. We find that hundreds of genes respond to T(3 or to unliganded TRs in both cell types, but were not able to detect verifiable examples of completely TR subtype-specific gene regulation. TR actions are, however, far from identical and we detect TR subtype-specific effects on global T(3 response kinetics in HepG2 cells and many examples of TR subtype specificity at the level of individual genes, including effects on magnitude of response to TR +/- T(3, TR regulation patterns and T(3 dose response. Cycloheximide (CHX treatment confirms that at least some differential effects involve verifiable direct TR target genes. TR subtype/gene-specific effects emerge in the context of widespread variation in target gene response and we suggest that gene-selective effects on mechanism of TR action highlight differences in TR subtype function that emerge in the environment of specific genes. We propose that differential TR actions could influence physiologic and pharmacologic responses to THs and selective TR modulators (STRMs.

  6. Effective inhibition of specific gene by adenoassociated virus (AAV ...

    African Journals Online (AJOL)

    RNA-interference is the mechanism of sequence-specific, post-transcriptional gene silencing, initiated by small interfering RNA (siRNA), homologous to the gene being suppressed. Several techniques are utilized to transfer siRNA into cultured cells or animal models, while every method has advantages and disadvantages.

  7. Housekeeping and tissue-specific genes in mouse tissues

    Directory of Open Access Journals (Sweden)

    St-Amand Jonny

    2007-05-01

    Full Text Available Abstract Background This study aims to characterize the housekeeping and tissue-specific genes in 15 mouse tissues by using the serial analysis of gene expression (SAGE strategy which indicates the relative level of expression for each transcript matched to the tag. Results Here, we identified constantly expressed housekeeping genes, such as eukaryotic translation elongation factor 2, which is expressed in all tissues without significant difference in expression levels. Moreover, most of these genes were not regulated by experimental conditions such as steroid hormones, adrenalectomy and gonadectomy. In addition, we report previously postulated housekeeping genes such as peptidyl-prolyl cis-trans isomerase A, glyceraldehyde-3-phosphate dehydrogenase and beta-actin, which are expressed in all the tissues, but with significant difference in their expression levels. We have also identified genes uniquely detected in each of the 15 tissues and other tissues from public databases. Conclusion These identified housekeeping genes could represent appropriate controls for RT-PCR and northern blot when comparing the expression levels of genes in several tissues. The results reveal several tissue-specific genes highly expressed in testis and pituitary gland. Furthermore, the main function of tissue-specific genes expressed in liver, lung and bone is the cell defence, whereas several keratins involved in cell structure function are exclusively detected in skin and vagina. The results from this study can be used for example to target a tissue for agent delivering by using the promoter of tissue-specific genes. Moreover, this study could be used as basis for further researches on physiology and pathology of these tissues.

  8. Gene program-specific regulation of PGC-1{alpha} activity

    DEFF Research Database (Denmark)

    Schmidt, Søren F; Mandrup, Susanne

    2011-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1 α (PGC-1α) activation coordinates induction of the hepatic fasting response through coactivation of numerous transcription factors and gene programs. In the June 15, 2011, issue of Genes & Development, Lustig and colleagues (pp....... 1232-1244) demonstrated that phosphorylation of PGC-1α by the p70 ribosomal protein S6 kinase 1 (S6K1) specifically interfered with the interaction between PGC-1α and HNF4α in liver and blocked the coactivation of the gluconeogenic target genes. This demonstrates how independent fine-tuning of gene...

  9. In silico cloning of novel endothelial-specific genes.

    Science.gov (United States)

    Huminiecki, L; Bicknell, R

    2000-11-01

    The endothelium plays a pivotal role in many physiological and pathological processes and is known to be an exceptionally active transcriptional site. To advance our understanding of endothelial cell biology and to elucidate potential pharmaceutical targets, we developed a new database screening approach to permit identification of novel endothelial-specific genes. The UniGene gene index was screened using high stringency BLAST against a pool of endothelial expressed sequence tags (ESTs) and a pool of nonendothelial ESTs constructed from cell-type-specific dbEST libraries. UniGene clusters with matches in the endothelial pool and no matches in the nonendothelial pool were selected. The UniGene/EST approach was then combined with serial analysis of gene expression (SAGE) library subtraction and reverse transcription polymerase chain reaction to further examine interesting clusters. Four novel genes were identified and labeled: endothelial cell-specific molecules (ECSM) 1-3 and magic roundabout (similar to the axon guidance protein roundabout). In summary, we present a powerful novel approach for comparative expression analysis combining two datamining strategies followed by experimental verification.

  10. Ranking differentially expressed genes from Affymetrix gene expression data: methods with reproducibility, sensitivity, and specificity

    OpenAIRE

    Shimizu Kentaro; Nakai Yuji; Kadota Koji

    2009-01-01

    Abstract Background To identify differentially expressed genes (DEGs) from microarray data, users of the Affymetrix GeneChip system need to select both a preprocessing algorithm to obtain expression-level measurements and a way of ranking genes to obtain the most plausible candidates. We recently recommended suitable combinations of a preprocessing algorithm and gene ranking method that can be used to identify DEGs with a higher level of sensitivity and specificity. However, in addition to th...

  11. Gene Therapy for Pancreatic Cancer: Specificity, Issues and Hopes

    Directory of Open Access Journals (Sweden)

    Marie Rouanet

    2017-06-01

    Full Text Available A recent death projection has placed pancreatic ductal adenocarcinoma as the second cause of death by cancer in 2030. The prognosis for pancreatic cancer is very poor and there is a great need for new treatments that can change this poor outcome. Developments of therapeutic innovations in combination with conventional chemotherapy are needed urgently. Among innovative treatments the gene therapy offers a promising avenue. The present review gives an overview of the general strategy of gene therapy as well as the limitations and stakes of the different experimental in vivo models, expression vectors (synthetic and viral, molecular tools (interference RNA, genome editing and therapeutic genes (tumor suppressor genes, antiangiogenic and pro-apoptotic genes, suicide genes. The latest developments in pancreatic carcinoma gene therapy are described including gene-based tumor cell sensitization to chemotherapy, vaccination and adoptive immunotherapy (chimeric antigen receptor T-cells strategy. Nowadays, there is a specific development of oncolytic virus therapies including oncolytic adenoviruses, herpes virus, parvovirus or reovirus. A summary of all published and on-going phase-1 trials is given. Most of them associate gene therapy and chemotherapy or radiochemotherapy. The first results are encouraging for most of the trials but remain to be confirmed in phase 2 trials.

  12. Discover Gene Specific Local Co-Regulations from Time-Course Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    2008-01-01

    Full Text Available Discovering gene co-regulatory relationships is one of most important research in DNA microarray data analysis. The problem of gene specific co-regulation discovery is to, for a particular gene of interest (called target gene, identify the condition subsets where strong gene co-regulations of the target gene are observed and its co-regulated genes in these condition subsets. The co-regulations are local in the sense that they occur in some subsets of full experimental conditions. The study on this problem can contribute to better understanding and characterizing the target gene during the biological activity involved. In this paper, we propose an innovative method for finding gene specific co-regulations using genetic algorithm (GA. A sliding window is used to delimit the allowed length of conditions in which gene co-regulations occur and an ad hoc GA, called the progressive GA, is performed in each window position to find those condition subsets having high fitness. It is called progressive because the initial population for the GA in a window position inherits the top-ranked individuals obtained in its preceding window position, enabling the GA to achieve a better accuracy than the non-progressive algorithm. kNN Lookup Table is utilized to substantially speed up fitness evaluation in the GA. Experimental results with a real-life gene expression data demonstrate the efficiency and effectiveness of our technique in discovering gene specific co-regulations.

  13. Injury, inflammation and the emergence of human specific genes

    Science.gov (United States)

    2016-07-12

    BIOMEDICAL HYPOTHESIS Injury, inflammation and the emergence of human-specific genes Andrew Baird, PhD; Todd Costantini, MD; Raul Coimbra, MD, PhD...medium, provided the original work is properly cited and is not used for commercial purposes. ABSTRACT In light of the central role of inflammation in...the biology of injury, namely infection, inflammation , and tissue repair and regene- ration. These genes include well-known anti-infection and human

  14. Global Identification of Genes Specific for Rice Meiosis.

    Science.gov (United States)

    Zhang, Bingwei; Xu, Meng; Bian, Shiquan; Hou, Lili; Tang, Ding; Li, Yafei; Gu, Minghong; Cheng, Zhukuan; Yu, Hengxiu

    2015-01-01

    The leptotene-zygotene transition is a major step in meiotic progression during which pairing between homologous chromosomes is initiated and double strand breaks occur. OsAM1, a homologue of maize AM1 and Arabidopsis SWI1, encodes a protein with a coiled-coil domain in its central region that is required for the leptotene-zygotene transition during rice meiosis. To gain more insight into the role of OsAM1 in rice meiosis and identify additional meiosis-specific genes, we characterized the transcriptomes of young panicles of Osam1 mutant and wild-type rice plants using RNA-Seq combined with bioinformatic and statistical analyses. As a result, a total of 25,750 and 28,455 genes were expressed in young panicles of wild-type and Osam1 mutant plants, respectively, and 4,400 differentially expressed genes (DEGs; log2 Ratio ≥ 1, FDR ≤ 0.05) were identified. Of these DEGs, four known rice meiosis-specific genes were detected, and 22 new putative meiosis-related genes were found by mapping these DEGs to reference biological pathways in the KEGG database. We identified eight additional well-conserved OsAM1-responsive rice meiotic genes by comparing our RNA-Seq data with known meiotic genes in Arabidopsis and fission yeast.

  15. Gene-regulatory interactions in embryonic stem cells represent cell-type specific gene regulatory programs.

    Science.gov (United States)

    Ha, Misook; Hong, Soondo

    2017-10-13

    Pluripotency, the ability of embryonic stem cells to differentiate into specialized cell types, is determined by ESC-specific gene regulators such as transcription factors and chromatin modification factors. It is not well understood how ESCs are poised for differentiation, however, and methods are needed for prognosis of the molecular changes in the differentiation of ESCs into specific organs. We describe a new approach to infer cell-type specific gene regulatory programs based on gene regulatory interactions in ESCs. Our method infers the molecular logic of gene regulatory mechanisms by mapping the position-specific combinatory patterns of numerous regulators in ESCs into cell-type specific gene regulations. We validate the proposed approach by recapitulating the RNA-seq and microarray data of neuronal progenitor cells, adult liver cells, and ESCs from the integrated patterns of diverse gene regulators in ESCs. We find that the collective functions of diverse gene regulators in ESCs represent distinct gene regulatory programs in specialized cell types. Our new approach expands our understanding of the differential gene regulatory information in developments encoded in regulatory networks of ESCs. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Cell-specific DNA methylation patterns of retina-specific genes.

    Directory of Open Access Journals (Sweden)

    Shannath L Merbs

    Full Text Available Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO, retinal binding protein 3 (RBP3, IRBP cone opsin, short-wave-sensitive (OPN1SW, cone opsin, middle-wave-sensitive (OPN1MW, and cone opsin, long-wave-sensitive (OPN1LW was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl -/- mouse and Opn1sw in rods. These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA

  17. Endoglin is a novel endothelial cell specification gene.

    Science.gov (United States)

    Banerjee, Saswati; Dhara, Sujoy K; Bacanamwo, Methode

    2012-01-01

    Endothelial cells (EC) are important in vasculogenesis and organogenesis during development and in the pathogenesis of cancer and cardiovascular diseases. However, few EC specification factors are known and primary EC production remains inefficient. Based on recent studies implicating endoglin (Eng) in early vascular development and angiogenesis, we hypothesized that Eng may be an EC specification gene. Mouse embryonic stem cells (ESC) were treated with recombinant Eng or a plasmid expressing the Eng ORF, and differentiated in the presence or absence of bone morphogenic protein 4 (BMP4). Expression of the mesoderm and EC marker genes, the known mediators of EC specification and their downstream targets was monitored by quantitative PCR, western blot, immunocytochemistry, and flow cytometry. Functionality of the differentiated EC was assessed by in vitro angiogenesis assay and the induction of Icam1 expression in response to TNF-α treatment. Both recombinant Eng and forced Eng expression increased the number of functional EC expressing the EC marker genes VE-cadherin, vWF, and Tie2, and enhanced the effect of BMP4. The Eng-induced EC differentiation was independent of known mediators of EC specification such as Indian Hedgehog (IHH) and BMP4 or of BMP4/Smad1/5/8 signaling. These studies suggest that Eng is a novel EC specification gene. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Delivery of hypoxia and glioma dual-specific suicide gene using dexamethasone conjugated polyethylenimine for glioblastoma-specific gene therapy.

    Science.gov (United States)

    Kim, Hyun Ah; Park, Jin Hyeong; Yi, Na; Lee, Minhyung

    2014-03-03

    Gene therapy has been considered a promising approach for glioblastoma therapy. To avoid side effects and increase the specificity of gene expression, gene expression should be tightly regulated. In this study, glioma and hypoxia dual-specific plasmids (pEpo-NI2-SV-Luc and pEpo-NI2-SV-HSVtk) were developed by combining the erythropoietin (Epo) enhancer and nestin intron 2 (NI2). In the in vitro studies, pEpo-NI2-SV-Luc showed higher gene expression under hypoxia than normoxia in a glioblastoma-specific manner. The MTT and caspase assays demonstrated that pEpo-NI2-SV-HSVtk specifically induced caspase activity and cell death in hypoxic glioblastoma cells. For in vivo evaluation, subcutaneous and intracranial glioblastoma models were established. Dexamethasone-conjugated-polyethylenimine (PEI-Dexa) was used as a gene carrier, since PEI-Dexa efficiently delivers plasmid to glioblastoma cells and also has an antitumor effect due to the effect of dexamethasone. In the in vivo study in the subcutaneous and intracranial glioblastoma models, the tumor size was reduced more effectively in the pEpo-NI2-SV-HSVtk group than in the control and pSV-HSVtk groups. In addition, higher levels of HSVtk gene expression and TUNEL-positive cells were observed in the pEpo-NI2-SV-HSVtk group compared with the control and pSV-HSVtk groups, suggesting that pEpo-NI2-SV-HSVtk increased the therapeutic efficacy in hypoxic glioblastoma. Therefore, pEpo-NI2-SV-HSVtk/PEI-Dexa complex may be useful for glioblastoma-specific gene therapy.

  19. Comparative studies on surface phenotypes of Theileria lestoquardi and T. annulata schizont-infected cells.

    Science.gov (United States)

    Leemans, I; Fossum, C; Johannisson, A; Hooshmand-Rad, P

    2001-09-01

    Phenotypes of sheep cell lines infected with Theileria lestoquardi or T. annulata were studied by flow cytometric analysis, following immunolabelling with a panel of monoclonal antibodies reacting to leukocyte differentiation antigens. Cell surface phenotypes of Theileria-infected sheep cell lines derived ex vivo and in vitro were compared, both with each other and with cell lines from cattle undergoing acute T. annulata infection. Besides the non-lineage specific markers CD45, MHC class I and MHC class II, myeloid lineage-associated antigens and B cell-specific markers were expressed in all five different types of line, suggesting that both T. lestoquardi and T. annulata had infected the same cell types in sheep as T. annulata in cattle, notably monocytes/macrophages and B cells. Lineage-specific markers were generally expressed at low frequency and intensity; any differences between the five types of cell lines were quantitative, rather than qualitative. Thus, relative rather than absolute differences in cell preference of sporozoites of T. lestoquardi and T. annulata may contribute to the differences observed in previous studies in the course of the infection of sheep with each of these two parasites and in the infection of cattle with T. annulata.

  20. Gene recovery microdissection (GRM) a process for producing chromosome region-specific libraries of expressed genes

    Energy Technology Data Exchange (ETDEWEB)

    Christian, A T; Coleman, M A; Tucker, J D

    2001-02-08

    Gene Recovery Microdissection (GRM) is a unique and cost-effective process for producing chromosome region-specific libraries of expressed genes. It accelerates the pace, reduces the cost, and extends the capabilities of functional genomic research, the means by which scientists will put to life-saving, life-enhancing use their knowledge of any plant or animal genome.

  1. Gene Specific DNA Sensors for Diagnosis of Pathogenic Infections.

    Science.gov (United States)

    Datta, Manali; Desai, Dignya; Kumar, Ashok

    2017-06-01

    Gene specific DNA based sensors have potential applications for rapid and real time monitoring of hybridization signal with the target nucleic acid of pathogens. Different types of DNA based sensors and their applications have been studied for rapid and accurate detection of pathogens causing human diseases. These sensors are based on surface plasmon resonance, quantum-dots, molecular beacons, piezoelectric and electrochemical etc. Curbing epidemics at an early stage is one of the massive challenges in healthcare systems. Timely detection of the causative organism may provide a solution to restrain mortality caused by the disease. With the advent of interdisciplinary sciences, bioelectronics has emerged as an effective alternative for disease diagnostics. Gene specific DNA sensors present themselves as cost-effective, sensitive and specific platforms for detection of disease causing pathogens. The mini review explores different transducer based sensors and their potential in diagnosis of acute and chronic diseases.

  2. Gene isoform specificity through enhancer-associated antisense transcription.

    Directory of Open Access Journals (Sweden)

    Courtney S Onodera

    Full Text Available Enhancers and antisense RNAs play key roles in transcriptional regulation through differing mechanisms. Recent studies have demonstrated that enhancers are often associated with non-coding RNAs (ncRNAs, yet the functional role of these enhancer:ncRNA associations is unclear. Using RNA-Sequencing to interrogate the transcriptomes of undifferentiated mouse embryonic stem cells (mESCs and their derived neural precursor cells (NPs, we identified two novel enhancer-associated antisense transcripts that appear to control isoform-specific expression of their overlapping protein-coding genes. In each case, an enhancer internal to a protein-coding gene drives an antisense RNA in mESCs but not in NPs. Expression of the antisense RNA is correlated with expression of a shorter isoform of the associated sense gene that is not present when the antisense RNA is not expressed. We demonstrate that expression of the antisense transcripts as well as expression of the short sense isoforms correlates with enhancer activity at these two loci. Further, overexpression and knockdown experiments suggest the antisense transcripts regulate expression of their associated sense genes via cis-acting mechanisms. Interestingly, the protein-coding genes involved in these two examples, Zmynd8 and Brd1, share many functional domains, yet their antisense ncRNAs show no homology to each other and are not present in non-murine mammalian lineages, such as the primate lineage. The lack of homology in the antisense ncRNAs indicates they have evolved independently of each other and suggests that this mode of lineage-specific transcriptional regulation may be more widespread in other cell types and organisms. Our findings present a new view of enhancer action wherein enhancers may direct isoform-specific expression of genes through ncRNA intermediates.

  3. A gene regulatory network armature for T-lymphocyte specification

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Elizabeth-sharon [Los Alamos National Laboratory

    2008-01-01

    Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.

  4. Laminin Mediates Tissue-specific Gene Expression in Mammary Epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Streuli, Charles H; Schmidhauser, Christian; Bailey, Nina; Yurchenco, Peter; Skubitz, Amy P. N.; Roskelley, Calvin; Bissell, Mina J

    1995-04-01

    Tissue-specific gene expression in mammary epithelium is dependent on the extracellular matrix as well as hormones. There is good evidence that the basement membrane provides signals for regulating beta-casein expression, and that integrins are involved in this process. Here, we demonstrate that in the presence of lactogenic hormones, laminin can direct expression of the beta-casein gene. Mouse mammary epithelial cells plated on gels of native laminin or laminin-entactin undergo functional differentiation. On tissue culture plastic, mammary cells respond to soluble basement membrane or purified laminin, but not other extracellular matrix components, by synthesizing beta-casein. In mammary cells transfected with chloramphenicol acetyl transferase reporter constructs, laminin activates transcription from the beta-casein promoter through a specific enhancer element. The inductive effect of laminin on casein expression was specifically blocked by the E3 fragment of the carboxy terminal region of the alpha 1 chain of laminin, by antisera raised against the E3 fragment, and by a peptide corresponding to a sequence within this region. Our results demonstrate that laminin can direct tissue-specific gene expression in epithelial cells through its globular domain.

  5. Replication timing-related and gene body-specific methylation of active human genes.

    Science.gov (United States)

    Aran, Dvir; Toperoff, Gidon; Rosenberg, Michael; Hellman, Asaf

    2011-02-15

    Understanding how the epigenetic blueprint of the genome shapes human phenotypes requires systematic evaluation of the complex interplay between gene activity and the different layers of the epigenome. Utilizing microarray-based techniques, we explored the relationships between DNA methylation, DNA replication timing and gene expression levels across a variety of human tissues and cell lines. The analyses revealed unequal methylation levels among early- and late-replicating fractions of the genome: late-replicating DNA was hypomethylated compared with early-replicating DNA. Moreover, late-replicating regions were gradually demethylated with cell divisions, whereas the methylation of early-replicating regions was better maintained. As active genes concentrate at early-replicating regions, they are overall hypermethylated relative to inactive genes. Accordingly, we show that the previously reported positive correlation between gene-body methylation (methylation of the transcribed portion of genes) and gene expression is restricted to proliferative tissues and cell lines, whereas in tissues containing few proliferating cells, active and inactive genes have similar methylation levels. We further show that active gene bodies are hypermethylated not only compared with inactive gene bodies, but also compared with their flanking sequences. This specific hypermethylation of the active gene bodies is severely disrupted in cells of an immunodeficiency, centromeric region instability, facial anomalies (ICF) syndrome patient bearing mutated DNA methyltransferase 3B (DNMT3B). Our data show that a high methylation level is preferentially maintained in active gene bodies through independent cellular processes. Rather than serving as a distinctive mark between active and inactive genes, gene-body methylation appears to serve a vital, currently unknown function in active genes.

  6. Detection of Imprinted Genes by Single-Cell Allele-Specific Gene Expression.

    Science.gov (United States)

    Santoni, Federico A; Stamoulis, Georgios; Garieri, Marco; Falconnet, Emilie; Ribaux, Pascale; Borel, Christelle; Antonarakis, Stylianos E

    2017-03-02

    Genomic imprinting results in parental-specific gene expression. Imprinted genes are involved in the etiology of rare syndromes and have been associated with common diseases such as diabetes and cancer. Standard RNA bulk cell sequencing applied to whole-tissue samples has been used to detect imprinted genes in human and mouse models. However, lowly expressed genes cannot be detected by using RNA bulk approaches. Here, we report an original and robust method that combines single-cell RNA-seq and whole-genome sequencing into an optimized statistical framework to analyze genomic imprinting in specific cell types and in different individuals. Using samples from the probands of 2 family trios and 3 unrelated individuals, 1,084 individual primary fibroblasts were RNA sequenced and more than 700,000 informative heterozygous single-nucleotide variations (SNVs) were genotyped. The allele-specific coverage per gene of each SNV in each single cell was used to fit a beta-binomial distribution to model the likelihood of a gene being expressed from one and the same allele. Genes presenting a significant aggregate allelic ratio (between 0.9 and 1) were retained to identify of the allelic parent of origin. Our approach allowed us to validate the imprinting status of all of the known imprinted genes expressed in fibroblasts and the discovery of nine putative imprinted genes, thereby demonstrating the advantages of single-cell over bulk RNA-seq to identify imprinted genes. The proposed single-cell methodology is a powerful tool for establishing a cell type-specific map of genomic imprinting. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Nucleotide substitutions revealing specific functions of Polycomb group genes.

    Science.gov (United States)

    Bajusz, Izabella; Sipos, László; Pirity, Melinda K

    2015-04-01

    POLYCOMB group (PCG) proteins belong to the family of epigenetic regulators of genes playing important roles in differentiation and development. Mutants of PcG genes were isolated first in the fruit fly, Drosophila melanogaster, resulting in spectacular segmental transformations due to the ectopic expression of homeotic genes. Homologs of Drosophila PcG genes were also identified in plants and in vertebrates and subsequent experiments revealed the general role of PCG proteins in the maintenance of the repressed state of chromatin through cell divisions. The past decades of gene targeting experiments have allowed us to make significant strides towards understanding how the network of PCG proteins influences multiple aspects of cellular fate determination during development. Being involved in the transmission of specific expression profiles of different cell lineages, PCG proteins were found to control wide spectra of unrelated epigenetic processes in vertebrates, such as stem cell plasticity and renewal, genomic imprinting and inactivation of X-chromosome. PCG proteins also affect regulation of metabolic genes being important for switching programs between pluripotency and differentiation. Insight into the precise roles of PCG proteins in normal physiological processes has emerged from studies employing cell culture-based systems and genetically modified animals. Here we summarize the findings obtained from PcG mutant fruit flies and mice generated to date with a focus on PRC1 and PRC2 members altered by nucleotide substitutions resulting in specific alleles. We also include a compilation of lessons learned from these models about the in vivo functions of this complex protein family. With multiple knockout lines, sophisticated approaches to study the consequences of peculiar missense point mutations, and insights from complementary gain-of-function systems in hand, we are now in a unique position to significantly advance our understanding of the molecular basis of

  8. Repressor-mediated tissue-specific gene expression in plants

    Science.gov (United States)

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  9. Mutant-specific gene programs in the zebrafish

    OpenAIRE

    Weber, Gerhard J.; Choe, Sung E; Dooley, Kimberly A.; Paffett-Lugassy, Noëlle N.; Zhou, Yi; Zon, Leonard I.

    2005-01-01

    Hematopoiesis involves the production of stem cells, followed by the orchestrated differentiation of the blood lineages. Genetic screens in zebrafish have identified mutants with defects that disrupt specific stages of hematopoiesis and vasculogenesis, including the cloche, spadetail (tbx16), moonshine (tif1g), bloodless, and vlad tepes (gata1) mutants. To better characterize the blood program, gene expression profiling was carried out in these mutants and in scl-morphants (scl mo). Distinct ...

  10. Nano-vectors for efficient liver specific gene transfer

    OpenAIRE

    Atul Pathak; Vyas, Suresh P.; Gupta, Kailash C.

    2008-01-01

    Atul Pathak1, Suresh P Vyas2, Kailash C Gupta11Nucleic Acids Research Laboratory, Institute of Genomics and Integrative Biology, Delhi  University Campus, Delhi, India 2Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, (M.P.), IndiaAbstract: Recent progress in nanotechnology has triggered the site specific drug/gene delivery research and gained wide acknowledgment in contemporary DNA therapeutics. Amongst various organs, liver plays a crucial role in v...

  11. Phylogenetics of Lophotrochozoan bHLH Genes and the Evolution of Lineage-Specific Gene Duplicates.

    Science.gov (United States)

    Bao, Yongbo; Xu, Fei; Shimeld, Sebastian M

    2017-04-01

    The gain and loss of genes encoding transcription factors is of importance to understanding the evolution of gene regulatory complexity. The basic helix-loop-helix (bHLH) genes encode a large superfamily of transcription factors. We systematically classify the bHLH genes from five mollusc, two annelid and one brachiopod genomes, tracing the pattern of bHLH gene evolution across these poorly studied Phyla. In total, 56-88 bHLH genes were identified in each genome, with most identifiable as members of previously described bilaterian families, or of new families we define. Of such families only one, Mesp, appears lost by all these species. Additional duplications have also played a role in the evolution of the bHLH gene repertoire, with many new lophotrochozoan-, mollusc-, bivalve-, or gastropod-specific genes defined. Using a combination of transcriptome mining, RT-PCR, and in situ hybridization we compared the expression of several of these novel genes in tissues and embryos of the molluscs Crassostrea gigas and Patella vulgata, finding both conserved expression and evidence for neofunctionalization. We also map the positions of the genes across these genomes, identifying numerous gene linkages. Some reflect recent paralog divergence by tandem duplication, others are remnants of ancient tandem duplications dating to the lophotrochozoan or bilaterian common ancestors. These data are built into a model of the evolution of bHLH genes in molluscs, showing formidable evolutionary stasis at the family level but considerable within-family diversification by tandem gene duplication. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Variations in CCL3L gene cluster sequence and non-specific gene copy numbers

    Directory of Open Access Journals (Sweden)

    Edberg Jeffrey C

    2010-03-01

    Full Text Available Abstract Background Copy number variations (CNVs of the gene CC chemokine ligand 3-like1 (CCL3L1 have been implicated in HIV-1 susceptibility, but the association has been inconsistent. CCL3L1 shares homology with a cluster of genes localized to chromosome 17q12, namely CCL3, CCL3L2, and, CCL3L3. These genes are involved in host defense and inflammatory processes. Several CNV assays have been developed for the CCL3L1 gene. Findings Through pairwise and multiple alignments of these genes, we have shown that the homology between these genes ranges from 50% to 99% in complete gene sequences and from 70-100% in the exonic regions, with CCL3L1 and CCL3L3 being identical. By use of MEGA 4 and BioEdit, we aligned sense primers, anti-sense primers, and probes used in several previously described assays against pre-multiple alignments of all four chemokine genes. Each set of probes and primers aligned and matched with overlapping sequences in at least two of the four genes, indicating that previously utilized RT-PCR based CNV assays are not specific for only CCL3L1. The four available assays measured median copies of 2 and 3-4 in European and African American, respectively. The concordance between the assays ranged from 0.44-0.83 suggesting individual discordant calls and inconsistencies with the assays from the expected gene coverage from the known sequence. Conclusions This indicates that some of the inconsistencies in the association studies could be due to assays that provide heterogenous results. Sequence information to determine CNV of the three genes separately would allow to test whether their association with the pathogenesis of a human disease or phenotype is affected by an individual gene or by a combination of these genes.

  13. Gene specific modifications unravel ethanol and acetaldehyde actions

    Directory of Open Access Journals (Sweden)

    YEDY eISRAEL

    2013-07-01

    Full Text Available Ethanol is metabolized into acetaldehyde mainly by the action of alcohol dehydrogenase in the liver, while mainly by the action of catalase in the brain. Aldehyde dehydrogenase-2 metabolizes acetaldehyde into acetate in both organs. Gene specific modifications reviewed here show that an increased liver generation of acetaldehyde (by transduction of a gene coding for a high-activity liver alcohol dehydrogenase ADH1*B2 leads to increased blood acetaldehyde levels and aversion to ethanol in animals. Similarly aversive is an increased acetaldehyde level resulting from the inhibition of liver aldehyde dehydrogenase-2 (ALDH2 synthesis (by an antisense coding gene against aldh2 mRNA. The situation is diametrically different when acetaldehyde is generated in the brain. When the brain ventral tegmental area (VTA is endowed with an increased ability to generate acetaldehyde (by transfection of liver rADH the reinforcing effects of ethanol are increased, while a highly specific inhibition of catalase synthesis (by transduction of a shRNA anti catalase mRNA virtually abolishes the reinforcing effects of ethanol as seen by a complete abolition of ethanol intake in rats bred for generations as high ethanol drinkers. Data shows two divergent effects of increases in acetaldehyde generation: aversive in the periphery but reinforcing in the brain.

  14. Cloning of embryonal stem cell-specific genes: characterization of the transcriptionally controlled gene esg-1.

    Science.gov (United States)

    Bierbaum, P; MacLean-Hunter, S; Ehlert, F; Möröy, T; Müller, R

    1994-01-01

    We have isolated, by differential library screening, eight cDNAs representing genes that are specifically expressed in the embryonal stem cell line IMT-11, when compared to the parietal endoderm-like cell line PYS-2 or to NIH3T3 fibroblasts. One of these genes, embryonal stem cell gene 1 (esg-1), was analyzed in detail. esg-1 mRNA is found at high levels in both IMT-11 and F9 embryonal carcinoma cells and disappears during the differentiation of the stem cells. Furthermore, expression of the gene was found to be extremely low in, or absent from, oocytes and fertilized eggs, but it is strongly induced at the 2-cell stage, reaching maximum levels at the 4-cell stage. In contrast, esg-1 expression is detectable neither in midgestation embryos nor in neonatal tissues. These results strongly suggest that esg-1 is expressed specifically or at least predominantly in embryonal stem cells. Antibodies directed against a glutathione S-transferase-esg-1 fusion product detect a protein of M(r) approximately 14,000 in F9 embryonal carcinoma cells, but not in differentiated cells. Apart from the esg-1 gene, which contains two introns, there are at least seven esg-1-related pseudogenes in the mouse genome that differ from the esg-1 gene by the presence of multiple point mutations, by the lack of intervening sequences, and/or by the presence of a polyadenylated stretch at the 3' end. The esg-1 gene is under stringent transcriptional control in differentiating and differentiated cells, as shown by both nuclear run-on assays and the transient F9 stem cell-specific expression of constructs consisting of esg-1 upstream sequences fused to a luciferase reporter gene.

  15. The prolactin gene: a paradigm of tissue-specific gene regulation with complex temporal transcription dynamics.

    Science.gov (United States)

    Featherstone, K; White, M R H; Davis, J R E

    2012-07-01

    Transcription of numerous mammalian genes is highly pulsatile, with bursts of expression occurring with variable duration and frequency. The presence of this stochastic or 'noisy' expression pattern has been relatively unexplored in tissue systems. The prolactin gene provides a model of tissue-specific gene regulation resulting in pulsatile transcription dynamics in both cell lines and endocrine tissues. In most cell culture models, prolactin transcription appears to be highly variable between cells, with differences in transcription pulse duration and frequency. This apparently stochastic transcription is constrained by a transcriptional refractory period, which may be related to cycles of chromatin remodelling. We propose that prolactin transcription dynamics result from the summation of oscillatory cellular inputs and by regulation through chromatin remodelling cycles. Observations of transcription dynamics in cells within pituitary tissue show reduced transcriptional heterogeneity and can be grouped into a small number of distinct patterns. Thus, it appears that the tissue environment is able to reduce transcriptional noise to enable coordinated tissue responses to environmental change. We review the current knowledge on the complex tissue-specific regulation of the prolactin gene in pituitary and extra-pituitary sites, highlighting differences between humans and rodent experimental animal models. Within this context, we describe the transcription dynamics of prolactin gene expression and how this may relate to specific processes occurring within the cell. © 2012 The Authors. Journal of Neuroendocrinology © 2012 Blackwell Publishing Ltd.

  16. Expression Patterns of Glucose Transporter-1 Gene and Thyroid Specific Genes in Human Papillary Thyroid Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungeun; Chung, Junekey; Min Haesook and others

    2014-06-15

    The expression of glucose transporter-1 (Glut-1) gene and those of major thyroid-specific genes were examined in papillary carcinoma tissues, and the expressions of these genes were compared with cancer differentiation grades. Twenty-four human papillary carcinoma tissues were included in this study. The expressions of Glut-1- and thyroid-specific genes [sodium/iodide symporter (NIS), thyroid peroxidase, thyroglobulin, TSH receptor and pendrin] were analyzed by RT-PCR. Expression levels were expressed as ratios versus the expression of beta-actin. Pathologic differentiation of papillary carcinoma was classified into a relatively well-differentiated group (n=13) and relatively less differentiated group (n=11). Glut-1 gene expression was significantly higher in the less differentiated group (0.66±0.04) than in the well-differentiated group (0.59±0.07). The expression levels of the NIS, PD and TG genes were significantly higher in the well-differentiated group (NIS: 0.67±0.20, PD: 0.65±0.21, TG: 0.74±0.16) than in the less differentiated group (NIS: 0.36±0.05, PD: 0.49±0.08, TG: 0.60±0.11), respectively. A significant negative correlation was found between Glut-1 and NIS expression, and positive correlations were found between NIS and TG, and between NIS and PD. The NIS, PD and TG genes were highly expressed in well-differentiated thyroid carcinomas, whereas the Glut-1 gene was highly expressed in less differentiated thyroid carcinomas. These findings provide a molecular rationale for the management of papillary carcinoma, especially in the selection of FDG PET or radioiodine whole-body scan and I-131-based therapy.

  17. A hierarchy of ECM-mediated signalling tissue-specific gene expression regulates tissue-specific gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Roskelley, Calvin D; Srebrow, Anabella; Bissell, Mina J

    1995-10-07

    A dynamic and reciprocal flow of information between cells and the extracellular matrix contributes significantly to the regulation of form and function in developing systems. Signals generated by the extracellular matrix do not act in isolation. Instead, they are processed within the context of global signalling hierarchies whose constituent inputs and outputs are constantly modulated by all the factors present in the cell's surrounding microenvironment. This is particularly evident in the mammary gland, where the construction and subsequent destruction of such a hierarchy regulates changes in tissue-specific gene expression, morphogenesis and apoptosis during each developmental cycle of pregnancy, lactation and involution.

  18. Specific expression of bioluminescence reporter gene in cardiomyocyte regulated by tissue specific promoter

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vu Hong; Tae, Seong Ho; Le, Nguyen Uyen Chi; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    As the human heart is not capable of regenerating the great numbers of cardiac cells that are lost after myocardial infarction, impaired cardiac function is the inevitable result of ischemic disease. Recently, human embryonic stem cells (hESCs) have gained popularity as a potentially ideal cell candidate for tissue regeneration. In particular, hESCs are capable of cardiac lineage-specific differentiation and confer improvement of cardiac function following transplantation into animal models. Although such data are encouraging, the specific strategy for in vivo and non-invasive detection of differentiated cardiac lineage is still limited. Therefore, in the present study, we established the gene construction in which the optical reporter gene Firefly luciferase was controlled by Myosin Heavy Chain promoter for specific expressing in heart cells. The vector consisting of - MHC promoter and a firefly luciferase coding sequence flanked by full-length bovine growth hormone (BGH) 3'-polyadenylation sequence based on pcDNA3.1- vector backbone. To test the specific transcription of this promoter in g of MHC-Fluc or CMV-Flue (for control) plasmid DNA in myocardial tissue, 20 phosphate-buffered saline was directly injected into mouse myocardium through a midline sternotomy and liver. After 1 week of injection, MHC-Fluc expression was detected from heart region which was observed under cooled CCD camera of in vivo imaging system but not from liver. In control group injected with CMV-Flue, the bioluminescence was detected from all these organs. The expression of Flue under control of Myosin Heavy Chain promoter may become a suitable optical reporter gene for stem cell-derived cardiac lineage differentiation study.

  19. The SLEEPER genes: a transposase-derived angiosperm-specific gene family.

    Science.gov (United States)

    Knip, Marijn; de Pater, Sylvia; Hooykaas, Paul J J

    2012-10-16

    DAYSLEEPER encodes a domesticated transposase from the hAT-superfamily, which is essential for development in Arabidopsis thaliana. Little is known about the presence of DAYSLEEPER orthologs in other species, or how and when it was domesticated. We studied the presence of DAYSLEEPER orthologs in plants and propose a model for the domestication of the ancestral DAYSLEEPER gene in angiosperms. Using specific BLAST searches in genomic and EST libraries, we found that DAYSLEEPER-like genes (hereafter called SLEEPER genes) are unique to angiosperms. Basal angiosperms as well as grasses (Poaceae) and dicotyledonous plants possess such putative orthologous genes, but SLEEPER-family genes were not found in gymnosperms, mosses and algae. Most species contain more than one SLEEPER gene. All SLEEPERs contain a C2H2 type BED-zinc finger domain and a hATC dimerization domain. We designated 3 motifs, partly overlapping the BED-zinc finger and dimerization domain, which are hallmark features in the SLEEPER family. Although SLEEPER genes are structurally conserved between species, constructs with SLEEPER genes from grapevine and rice did not complement the daysleeper phenotype in Arabidopsis, when expressed under control of the DAYSLEEPER promoter. However these constructs did cause a dominant phenotype when expressed in Arabidopsis. Rice plant lines with an insertion in the RICESLEEPER1 or 2 locus displayed phenotypic abnormalities, indicating that these genes are functional and important for normal development in rice. We suggest a model in which we hypothesize that an ancestral hAT transposase was retrocopied and stably integrated in the genome during early angiosperm evolution. Evidence is also presented for more recent retroposition events of SLEEPER genes, such as an event in the rice genome, which gave rise to the RICESLEEPER1 and 2 genes. We propose the ancestral SLEEPER gene was formed after a process of retro-transposition during the evolution of the first angiosperms

  20. The SLEEPER genes: a transposase-derived angiosperm-specific gene family

    Directory of Open Access Journals (Sweden)

    Knip Marijn

    2012-10-01

    Full Text Available Abstract Background DAYSLEEPER encodes a domesticated transposase from the hAT-superfamily, which is essential for development in Arabidopsis thaliana. Little is known about the presence of DAYSLEEPER orthologs in other species, or how and when it was domesticated. We studied the presence of DAYSLEEPER orthologs in plants and propose a model for the domestication of the ancestral DAYSLEEPER gene in angiosperms. Results Using specific BLAST searches in genomic and EST libraries, we found that DAYSLEEPER-like genes (hereafter called SLEEPER genes are unique to angiosperms. Basal angiosperms as well as grasses (Poaceae and dicotyledonous plants possess such putative orthologous genes, but SLEEPER-family genes were not found in gymnosperms, mosses and algae. Most species contain more than one SLEEPER gene. All SLEEPERs contain a C2H2 type BED-zinc finger domain and a hATC dimerization domain. We designated 3 motifs, partly overlapping the BED-zinc finger and dimerization domain, which are hallmark features in the SLEEPER family. Although SLEEPER genes are structurally conserved between species, constructs with SLEEPER genes from grapevine and rice did not complement the daysleeper phenotype in Arabidopsis, when expressed under control of the DAYSLEEPER promoter. However these constructs did cause a dominant phenotype when expressed in Arabidopsis. Rice plant lines with an insertion in the RICESLEEPER1 or 2 locus displayed phenotypic abnormalities, indicating that these genes are functional and important for normal development in rice. We suggest a model in which we hypothesize that an ancestral hAT transposase was retrocopied and stably integrated in the genome during early angiosperm evolution. Evidence is also presented for more recent retroposition events of SLEEPER genes, such as an event in the rice genome, which gave rise to the RICESLEEPER1 and 2 genes. Conclusions We propose the ancestral SLEEPER gene was formed after a process of retro

  1. Gene-specific function prediction for non-synonymous mutations in monogenic diabetes genes.

    Directory of Open Access Journals (Sweden)

    Quan Li

    Full Text Available The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset diabetes of the young (MODY molecular diagnosis. However, whether a new mutation causes MODY can be questionable. A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of this study is to compare the performance of different bioinformatics methods in the functional prediction of nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated, but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be able to increase the performance of in silico prediction of disease-causing mutations.

  2. Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA

    National Research Council Canada - National Science Library

    Svitashev, Sergei; Young, Joshua K; Schwartz, Christine; Gao, Huirong; Falco, S Carl; Cigan, A Mark

    2015-01-01

    Targeted mutagenesis, editing of endogenous maize (Zea mays) genes, and site-specific insertion of a trait gene using clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas...

  3. Cloning, expression, and regulation of tissue-specific genes in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Korochkin, L.I. [Institute of Gene Biology, Moscow (Russian Federation)

    1995-08-01

    The family of esterase genes was studied in various Drosophilia species. These genes are classified as tissue-specific and housekeeping ones. The expression of tissue-specific esterases in the male reproductive system of Drosophilia species from the virilis and melanogaster groups was thoroughly examined. Modifier genes controlling activity level, time of synthesis, and distribution in cells of the tissue-specific esterase isozyme from the ejaculatory bulb were revealed. The structural gene coding of this enzyme was isolated, cloned, and sequenced. This gene was shown to be similar in different Drosophilia species; the transcriptional level of tissue specificity of this gene was determined. The possibility of transformating the tissue-specific gene into a housekeeping one was demonstrated. In different Drosophilia species, this gene can be expressed in different parts of the reproductive system. In transgenic males carrying the gene of another species, the foreign gene is expressed as in the donor. 68 refs., 11 figs.

  4. Exploring the potential relevance of human-specific genes to complex disease

    Directory of Open Access Journals (Sweden)

    Cooper David N

    2011-01-01

    Full Text Available Abstract Although human disease genes generally tend to be evolutionarily more ancient than non-disease genes, complex disease genes appear to be represented more frequently than Mendelian disease genes among genes of more recent evolutionary origin. It is therefore proposed that the analysis of human-specific genes might provide new insights into the genetics of complex disease. Cross-comparison with the Human Gene Mutation Database (http://www.hgmd.org revealed a number of examples of disease-causing and disease-associated mutations in putatively human-specific genes. A sizeable proportion of these were missense polymorphisms associated with complex disease. Since both human-specific genes and genes associated with complex disease have often experienced particularly rapid rates of evolutionary change, either due to weaker purifying selection or positive selection, it is proposed that a significant number of human-specific genes may play a role in complex disease.

  5. Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications.

    Directory of Open Access Journals (Sweden)

    Philippe Ganot

    2011-07-01

    Full Text Available Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion, which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones or aposymbiotic (also called bleached A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm. A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i a key vitamin K-dependant process involved in the dinoflagellate-cnidarian recognition; ii two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both

  6. Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications.

    Science.gov (United States)

    Ganot, Philippe; Moya, Aurélie; Magnone, Virginie; Allemand, Denis; Furla, Paola; Sabourault, Cécile

    2011-07-01

    Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K-dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the

  7. Identification of single- and multiple-class specific signature genes from gene expression profiles by group marker index.

    Directory of Open Access Journals (Sweden)

    Yu-Shuen Tsai

    Full Text Available Informative genes from microarray data can be used to construct prediction model and investigate biological mechanisms. Differentially expressed genes, the main targets of most gene selection methods, can be classified as single- and multiple-class specific signature genes. Here, we present a novel gene selection algorithm based on a Group Marker Index (GMI, which is intuitive, of low-computational complexity, and efficient in identification of both types of genes. Most gene selection methods identify only single-class specific signature genes and cannot identify multiple-class specific signature genes easily. Our algorithm can detect de novo certain conditions of multiple-class specificity of a gene and makes use of a novel non-parametric indicator to assess the discrimination ability between classes. Our method is effective even when the sample size is small as well as when the class sizes are significantly different. To compare the effectiveness and robustness we formulate an intuitive template-based method and use four well-known datasets. We demonstrate that our algorithm outperforms the template-based method in difficult cases with unbalanced distribution. Moreover, the multiple-class specific genes are good biomarkers and play important roles in biological pathways. Our literature survey supports that the proposed method identifies unique multiple-class specific marker genes (not reported earlier to be related to cancer in the Central Nervous System data. It also discovers unique biomarkers indicating the intrinsic difference between subtypes of lung cancer. We also associate the pathway information with the multiple-class specific signature genes and cross-reference to published studies. We find that the identified genes participate in the pathways directly involved in cancer development in leukemia data. Our method gives a promising way to find genes that can involve in pathways of multiple diseases and hence opens up the possibility of

  8. Cell-Specific Promoters Enable Lipid-Based Nanoparticles to Deliver Genes to Specific Cells of the Retina In Vivo.

    Science.gov (United States)

    Wang, Yuhong; Rajala, Ammaji; Cao, Binrui; Ranjo-Bishop, Michelle; Agbaga, Martin-Paul; Mao, Chuanbin; Rajala, Raju V S

    2016-01-01

    Non-viral vectors, such as lipid-based nanoparticles (liposome-protamine-DNA complex [LPD]), could be used to deliver a functional gene to the retina to correct visual function and treat blindness. However, one of the limitations of LPD is the lack of cell specificity, as the retina is composed of seven types of cells. If the same gene is expressed in multiple cell types or is absent from one desired cell type, LPD-mediated gene delivery to every cell may have off-target effects. To circumvent this problem, we have tested LPD-mediated gene delivery using various generalized, modified, and retinal cell-specific promoters. We achieved retinal pigment epithelium cell specificity with vitelliform macular dystrophy (VMD2), rod cell specificity with mouse rhodopsin, cone cell specificity with red/green opsin, and ganglion cell specificity with thymocyte antigen promoters. Here we show for the first time that cell-specific promoters enable lipid-based nanoparticles to deliver genes to specific cells of the retina in vivo. This work will inspire investigators in the field of lipid nanotechnology to couple cell-specific promoters to drive expression in a cell- and tissue-specific manner.

  9. Exposure to Hycanthone alters chromatin structure around specific gene functions and specific repeats in Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    David eRoquis

    2014-07-01

    Full Text Available Schistosoma mansoni is a parasitic plathyhelminth responsible for intestinal schistosomiasis (or bilharziasis, a disease affecting 67 million people worldwide and causing an important economic burden. The schistosomicides hycanthone, and its later proxy oxamniquine, were widely used for treatments in endemic areas during the 20th century. Recently, the mechanism of action, as well as the genetic origin of a stably and Mendelian inherited resistance for both drugs was elucidated in two strains. However, several observations suggested early on that alternative mechanisms might exist, by which resistance could be induced for these two drugs in sensitive lines of schistosomes. This induced resistance appeared rapidly, within the first generation, but was metastable (not stably inherited. Epigenetic inheritance could explain such a phenomenon and we therefore re-analyzed the historical data with our current knowledge of epigenetics. In addition, we performed new experiments such as ChIP-seq on hycanthone treated worms. We found distinct chromatin structure changes between sensitive worms and induced resistant worms from the same strain. No specific pathway was discovered, but genes in which chromatin structure modification were observed are mostly associated with transport and catabolism, which makes sense in the context of the elimination of the drug. Specific differences were observed in the repetitive compartment of the genome. We finally describe what types of experiments are needed to understand the complexity of heritability that can be based on genetic and/or epigenetic mechanisms for drug resistance in schistosomes.

  10. Locus-specific ribosomal RNA gene silencing in nucleolar dominance.

    Directory of Open Access Journals (Sweden)

    Michelle S Lewis

    2007-08-01

    Full Text Available The silencing of one parental set of rRNA genes in a genetic hybrid is an epigenetic phenomenon known as nucleolar dominance. We showed previously that silencing is restricted to the nucleolus organizer regions (NORs, the loci where rRNA genes are tandemly arrayed, and does not spread to or from neighboring protein-coding genes. One hypothesis is that nucleolar dominance is the net result of hundreds of silencing events acting one rRNA gene at a time. A prediction of this hypothesis is that rRNA gene silencing should occur independent of chromosomal location. An alternative hypothesis is that the regulatory unit in nucleolar dominance is the NOR, rather than each individual rRNA gene, in which case NOR localization may be essential for rRNA gene silencing. To test these alternative hypotheses, we examined the fates of rRNA transgenes integrated at ectopic locations. The transgenes were accurately transcribed in all independent transgenic Arabidopsis thaliana lines tested, indicating that NOR localization is not required for rRNA gene expression. Upon crossing the transgenic A. thaliana lines as ovule parents with A. lyrata to form F1 hybrids, a new system for the study of nucleolar dominance, the endogenous rRNA genes located within the A. thaliana NORs are silenced. However, rRNA transgenes escaped silencing in multiple independent hybrids. Collectively, our data suggest that rRNA gene activation can occur in a gene-autonomous fashion, independent of chromosomal location, whereas rRNA gene silencing in nucleolar dominance is locus-dependent.

  11. Genome-scale analysis of positional clustering of mouse testis-specific genes

    Directory of Open Access Journals (Sweden)

    Lee Bernett TK

    2005-01-01

    Full Text Available Abstract Background Genes are not randomly distributed on a chromosome as they were thought even after removal of tandem repeats. The positional clustering of co-expressed genes is known in prokaryotes and recently reported in several eukaryotic organisms such as Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. In order to further investigate the mode of tissue-specific gene clustering in higher eukaryotes, we have performed a genome-scale analysis of positional clustering of the mouse testis-specific genes. Results Our computational analysis shows that a large proportion of testis-specific genes are clustered in groups of 2 to 5 genes in the mouse genome. The number of clusters is much higher than expected by chance even after removal of tandem repeats. Conclusion Our result suggests that testis-specific genes tend to cluster on the mouse chromosomes. This provides another piece of evidence for the hypothesis that clusters of tissue-specific genes do exist.

  12. Tissue Non-Specific Genes and Pathways Associated with Diabetes: An Expression Meta-Analysis.

    Science.gov (United States)

    Mei, Hao; Li, Lianna; Liu, Shijian; Jiang, Fan; Griswold, Michael; Mosley, Thomas

    2017-01-21

    We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH genes were significant over diabetes studies, while IRS1 and MPST genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues.

  13. Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes

    Directory of Open Access Journals (Sweden)

    May Gregory D

    2010-12-01

    Full Text Available Abstract Background Meiosis is a critical process in the reproduction and life cycle of flowering plants in which homologous chromosomes pair, synapse, recombine and segregate. Understanding meiosis will not only advance our knowledge of the mechanisms of genetic recombination, but also has substantial applications in crop improvement. Despite the tremendous progress in the past decade in other model organisms (e.g., Saccharomyces cerevisiae and Drosophila melanogaster, the global identification of meiotic genes in flowering plants has remained a challenge due to the lack of efficient methods to collect pure meiocytes for analyzing the temporal and spatial gene expression patterns during meiosis, and for the sensitive identification and quantitation of novel genes. Results A high-throughput approach to identify meiosis-specific genes by combining isolated meiocytes, RNA-Seq, bioinformatic and statistical analysis pipelines was developed. By analyzing the studied genes that have a meiosis function, a pipeline for identifying meiosis-specific genes has been defined. More than 1,000 genes that are specifically or preferentially expressed in meiocytes have been identified as candidate meiosis-specific genes. A group of 55 genes that have mitochondrial genome origins and a significant number of transposable element (TE genes (1,036 were also found to have up-regulated expression levels in meiocytes. Conclusion These findings advance our understanding of meiotic genes, gene expression and regulation, especially the transcript profiles of MGI genes and TE genes, and provide a framework for functional analysis of genes in meiosis.

  14. A comprehensive functional analysis of tissue specificity of human gene expression

    National Research Council Canada - National Science Library

    Dezso, Zoltán; Nikolsky, Yuri; Sviridov, Evgeny; Shi, Weiwei; Serebriyskaya, Tatiana; Dosymbekov, Damir; Bugrim, Andrej; Rakhmatulin, Eugene; Brennan, Richard J; Guryanov, Alexey; Li, Kelly; Blake, Julie; Samaha, Raymond R; Nikolskaya, Tatiana

    2008-01-01

    In recent years, the maturation of microarray technology has allowed the genome-wide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed ('housekeeping') genes...

  15. IDENTIFICATION OF SPECIFIC MUTATIONS IN HUMAN RAS GENE

    OpenAIRE

    Mohammed Qumani Ahmed et al

    2012-01-01

    Cancer is a group of disease characterized by unregulated cell growth and spread of cells from site of origin to other sites in body. Two main genetic changes lead to cancer they are inactivation of tumour suppressor gene and activation of proto-oncogene. Ras gene is a proto-oncogene, when this gene activated it stimulates signalling pathway and that causes unregulated proliferation of cells. Ras family is a group of three precursors H-Ras, K-Ras and N-Ras. It was analyzed that more than 30% ...

  16. Gene-Specific Demethylation as Targeted Therapy in MDS

    Science.gov (United States)

    2017-07-01

    mechanism for Tumor Suppressor Genes silencing during MDS evolution to AML, but the causes leading to aberrant DNA methylation remain elusive. This proposal...of the cases. Aberrant DNA methylation is considered a dominant mechanism for Tumor Suppressor Genes silencing during MDS evolution to AML, but the...or other non-periodical, one-time publications. Other publications, conference papers and presentations..  Website(s) or other Internet site(s

  17. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    Directory of Open Access Journals (Sweden)

    Sirjana Devi Shrestha

    Full Text Available The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076 with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains.

  18. Symbiont modulates expression of specific gene categories in Angomonas deanei

    Directory of Open Access Journals (Sweden)

    Luciana Loureiro Penha

    Full Text Available Trypanosomatids are parasites that cause disease in humans, animals, and plants. Most are non-pathogenic and some harbor a symbiotic bacterium. Endosymbiosis is part of the evolutionary process of vital cell functions such as respiration and photosynthesis. Angomonas deanei is an example of a symbiont-containing trypanosomatid. In this paper, we sought to investigate how symbionts influence host cells by characterising and comparing the transcriptomes of the symbiont-containing A. deanei (wild type and the symbiont-free aposymbiotic strains. The comparison revealed that the presence of the symbiont modulates several differentially expressed genes. Empirical analysis of differential gene expression showed that 216 of the 7625 modulated genes were significantly changed. Finally, gene set enrichment analysis revealed that the largest categories of genes that downregulated in the absence of the symbiont were those involved in oxidation-reduction process, ATP hydrolysis coupled proton transport and glycolysis. In contrast, among the upregulated gene categories were those involved in proteolysis, microtubule-based movement, and cellular metabolic process. Our results provide valuable information for dissecting the mechanism of endosymbiosis in A. deanei.

  19. Community specificity: life and afterlife effects of genes.

    Science.gov (United States)

    Whitham, Thomas G; Gehring, Catherine A; Lamit, Louis J; Wojtowicz, Todd; Evans, Luke M; Keith, Arthur R; Smith, David Solance

    2012-05-01

    Community-level genetic specificity results when individual genotypes or populations of the same species support different communities. Our review of the literature shows that genetic specificity exhibits both life and afterlife effects; it is a widespread phenomenon occurring in diverse taxonomic groups, aquatic to terrestrial ecosystems, and species-poor to species-rich systems. Such specificity affects species interactions, evolution, ecosystem processes and leads to community feedbacks on the performance of the individuals expressing the traits. Thus, genetic specificity by communities appears to be fundamentally important, suggesting that specificity is a major driver of the biodiversity and stability of the world's ecosystems. Copyright © 2012. Published by Elsevier Ltd.

  20. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous...

  1. Temporal specification and bilaterality of human neocortical topographic gene expression.

    Science.gov (United States)

    Pletikos, Mihovil; Sousa, André M M; Sedmak, Goran; Meyer, Kyle A; Zhu, Ying; Cheng, Feng; Li, Mingfeng; Kawasawa, Yuka Imamura; Sestan, Nenad

    2014-01-22

    Transcriptional events involved in the development of human cerebral neocortex are poorly understood. Here, we analyzed the temporal dynamics and laterality of gene expression in human and macaque monkey neocortex. We found that interareal differences exhibit a temporal hourglass pattern, dividing the human neocortical development into three major phases. The first phase, corresponding to prenatal development, is characterized by the highest number of differential expressed genes among areas and gradient-like expression patterns, including those that are different between human and macaque. The second, preadolescent phase, is characterized by lesser interareal expression differences and by an increased synchronization of areal transcriptomes. During the third phase, from adolescence onward, differential expression among areas increases again driven predominantly by a subset of areas, without obvious gradient-like patterns. Analyses of left-right gene expression revealed population-level global symmetry throughout the fetal and postnatal time span. Thus, human neocortical topographic gene expression is temporally specified and globally symmetric. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Consistent and contrasting properties of lineage-specific genes in the apicomplexan parasites Plasmodium and Theileria

    Directory of Open Access Journals (Sweden)

    Kissinger Jessica C

    2008-04-01

    Full Text Available Abstract Background Lineage-specific genes, the genes that are restricted to a limited subset of related organisms, may be important in adaptation. In parasitic organisms, lineage-specific gene products are possible targets for vaccine development or therapeutics when these genes are absent from the host genome. Results In this study, we utilized comparative approaches based on a phylogenetic framework to characterize lineage-specific genes in the parasitic protozoan phylum Apicomplexa. Genes from species in two major apicomplexan genera, Plasmodium and Theileria, were categorized into six levels of lineage specificity based on a nine-species phylogeny. In both genera, lineage-specific genes tend to have a higher level of sequence divergence among sister species. In addition, species-specific genes possess a strong codon usage bias compared to other genes in the genome. We found that a large number of genus- or species-specific genes are putative surface antigens that may be involved in host-parasite interactions. Interestingly, the two parasite lineages exhibit several notable differences. In Plasmodium, the (G + C content at the third codon position increases with lineage specificity while Theileria shows the opposite trend. Surface antigens in Plasmodium are species-specific and mainly located in sub-telomeric regions. In contrast, surface antigens in Theileria are conserved at the genus level and distributed across the entire lengths of chromosomes. Conclusion Our results provide further support for the model that gene duplication followed by rapid divergence is a major mechanism for generating lineage-specific genes. The result that many lineage-specific genes are putative surface antigens supports the hypothesis that lineage-specific genes could be important in parasite adaptation. The contrasting properties between the lineage-specific genes in two major apicomplexan genera indicate that the mechanisms of generating lineage-specific genes

  3. An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis.

    Directory of Open Access Journals (Sweden)

    Shikha Vashisht

    Full Text Available Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.

  4. Gene × gene interaction in shared etiology of autism and specific language impairment.

    Science.gov (United States)

    Bartlett, Christopher W; Flax, Judy F; Fermano, Zena; Hare, Abby; Hou, Liping; Petrill, Stephen A; Buyske, Steven; Brzustowicz, Linda M

    2012-10-15

    To examine the relationship between autism spectrum disorders (ASD) and specific language impairment (SLI), family studies typically take a comparative approach where families with one disease are examined for traits of the other disease. In contrast, the present report is the first study with both disorders required to be present in each family to provide a more direct test of the hypothesis of shared genetic etiology. We behaviorally assessed 51 families including at least one person with ASD and at least one person with SLI (without ASD). Pedigree members were tested with 22 standardized measures of language and intelligence. Because these extended families include a nonshared environmental contrast, we calculated heritability, not just familiality, for each measure twice: 1) baseline heritability analysis, compared with; 2) heritability estimates after statistically removing ASD subjects from pedigrees. Significant increases in heritability on four supra-linguistic measures (including Pragmatic Judgment) and a composite language score but not on any other measures were observed when removing ASD subjects from the analysis, indicating differential genetic effects that are unique to ASD. Nongenetic explanations such as effects of ASD severity or measurement error or low score variability in ASD subjects were systematically ruled out, leaving the hypothesis of nonadditive genetics effects as the potential source of the heritability change caused by ASD. Although the data suggest genetic risk factors common to both SLI and ASD, there are effects that seem unique to ASD, possibly caused by nonadditive gene-gene interactions of shared risk loci. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite.

    Directory of Open Access Journals (Sweden)

    Yuki Mitaka

    Full Text Available The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq, we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects.

  6. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite.

    Science.gov (United States)

    Mitaka, Yuki; Kobayashi, Kazuya; Mikheyev, Alexander; Tin, Mandy M Y; Watanabe, Yutaka; Matsuura, Kenji

    2016-01-01

    The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects.

  7. Epigenetic repression of male gametophyte-specific genes in the Arabidopsis sporophyte

    DEFF Research Database (Denmark)

    Hoffmann, Robert D; Palmgren, Michael Broberg

    2013-01-01

    -regulated in the sporophyte has yet to be established. In this study, we have performed a bioinformatics analysis of publicly available genome-wide epigenetics data of several sporophytic tissues. By combining this analysis with DNase I footprinting data, we assessed means by which the repression of pollen-specific genes...... in the Arabidopsis sporophyte is conferred. Our findings show that, in seedlings, the majority of pollen-specific genes are associated with histone-3 marked by mono- or trimethylation of Lys-27 (H3K27me1/H3K27me3), both of which are repressive markers for gene expression in the sporophyte. Analysis of DNase...... footprint profiles of pollen-specific genes in the sporophyte displayed closed chromatin proximal to the start codon. We describe a model of two-staged gene regulation in which a lack of nucleosome-free regions in promoters and histone modifications in open reading frames repress pollen-specific genes...

  8. Tissue-specific splicing factor gene expression signatures

    NARCIS (Netherlands)

    Grosso, Ana Rita; Gomes, Anita Q.; Barbosa-Morais, Nuno L.; Caldeira, Sandra; Thorne, Natalie P.; Grech, Godfrey; von Lindern, Marieke; Carmo-Fonseca, Maria

    2008-01-01

    The alternative splicing code that controls and coordinates the transcriptome in complex multicellular organisms remains poorly understood. It has long been argued that regulation of alternative splicing relies on combinatorial interactions between multiple proteins, and that tissue-specific

  9. Fusion gene microarray reveals cancer type-specificity among fusion genes.

    Science.gov (United States)

    Løvf, Marthe; Thomassen, Gard O S; Bakken, Anne Cathrine; Celestino, Ricardo; Fioretos, Thoas; Lind, Guro E; Lothe, Ragnhild A; Skotheim, Rolf I

    2011-05-01

    Detection of fusion genes for diagnostic purposes and as a guide to treatment is well-established in hematological malignancies, and the prevalence of fusion genes in epithelial cancers is also increasingly appreciated. To study whether established fusion genes are present within additional cancer types, we have used an updated version of our fusion gene microarray in a systematic survey of reported fusion genes in multiple cancer types. We assembled a comprehensive database of published fusion genes, including those reported only in individual studies and samples, and fusion genes resulting from deep sequencing of cancer genomes and transcriptomes. From the total set of 548 fusion genes, we designed 599,839 oligonucleotides, targeting both chimeric transcript junctions as well as sequences internal to each of the fusion gene partners. We investigated the presence of fusion genes in a series of 67 cell lines representing 15 different cancer types. Data from ten leukemia cell lines with known fusion gene status were used to develop an automated scoring algorithm, and in five cell lines the correct fusion gene was the top scoring hit, and one came second. Two additional fusion genes, BCAS4-BCAS3 in the MCF-7 breast cancer cell line and CCDC6-RET in the TPC-1 thyroid cancer cell line were validated as true positive fusion transcripts. However, these fusion genes were not new to these cancer types, and none of 548 fusion genes were identified from a novel cancer type. We therefore find it unlikely that the assayed fusion genes are commonly present across multiple cancer types. 2011 Wiley-Liss, Inc.

  10. Gender-specific gene expression in post-mortem human brain: localization to sex chromosomes.

    Science.gov (United States)

    Vawter, Marquis P; Evans, Simon; Choudary, Prabhakara; Tomita, Hiroaki; Meador-Woodruff, Jim; Molnar, Margherita; Li, Jun; Lopez, Juan F; Myers, Rick; Cox, David; Watson, Stanley J; Akil, Huda; Jones, Edward G; Bunney, William E

    2004-02-01

    Gender differences in brain development and in the prevalence of neuropsychiatric disorders such as depression have been reported. Gender differences in human brain might be related to patterns of gene expression. Microarray technology is one useful method for investigation of gene expression in brain. We investigated gene expression, cell types, and regional expression patterns of differentially expressed sex chromosome genes in brain. We profiled gene expression in male and female dorsolateral prefrontal cortex, anterior cingulate cortex, and cerebellum using the Affymetrix oligonucleotide microarray platform. Differentially expressed genes between males and females on the Y chromosome (DBY, SMCY, UTY, RPS4Y, and USP9Y) and X chromosome (XIST) were confirmed using real-time PCR measurements. In situ hybridization confirmed the differential expression of gender-specific genes and neuronal expression of XIST, RPS4Y, SMCY, and UTY in three brain regions examined. The XIST gene, which silences gene expression on regions of the X chromosome, is expressed in a subset of neurons. Since a subset of neurons express gender-specific genes, neural subpopulations may exhibit a subtle sexual dimorphism at the level of differences in gene regulation and function. The distinctive pattern of neuronal expression of XIST, RPS4Y, SMCY, and UTY and other sex chromosome genes in neuronal subpopulations may possibly contribute to gender differences in prevalence noted for some neuropsychiatric disorders. Studies of the protein expression of these sex-chromosome-linked genes in brain tissue are required to address the functional consequences of the observed gene expression differences.

  11. Organ specific gene expression in the regenerating tail of Macrostomum lignano.

    OpenAIRE

    Lengerer, B; Wunderer, J; Pjeta, R; Carta, G; Kao, D; Aboobaker, AA; Beisel, C; Berezikov, E; Salvenmoser, W; Ladurner, P

    2017-01-01

    Temporal and spatial characterization of gene expression is a prerequisite for the understanding of cell-, tissue-, and organ-differentiation. In a multifaceted approach to investigate gene expression in the tail plate of the free-living marine flatworm Macrostomum lignano, we performed a posterior-region-specific in situ hybridization screen, RNA sequencing (RNA-seq) of regenerating animals, and functional analyses of selected tail-specific genes. The in situ screen revealed transcripts expr...

  12. Allele specific expression in worker reproduction genes in the bumblebee Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Harindra E. Amarasinghe

    2015-07-01

    Full Text Available Methylation has previously been associated with allele specific expression in ants. Recently, we found methylation is important in worker reproduction in the bumblebee Bombus terrestris. Here we searched for allele specific expression in twelve genes associated with worker reproduction in bees. We found allele specific expression in Ecdysone 20 monooxygenase and IMP-L2-like. Although we were unable to confirm a genetic or epigenetic cause for this allele specific expression, the expression patterns of the two genes match those predicted for imprinted genes.

  13. Allele specific expression in worker reproduction genes in the bumblebee Bombus terrestris.

    Science.gov (United States)

    Amarasinghe, Harindra E; Toghill, Bradley J; Nathanael, Despina; Mallon, Eamonn B

    2015-01-01

    Methylation has previously been associated with allele specific expression in ants. Recently, we found methylation is important in worker reproduction in the bumblebee Bombus terrestris. Here we searched for allele specific expression in twelve genes associated with worker reproduction in bees. We found allele specific expression in Ecdysone 20 monooxygenase and IMP-L2-like. Although we were unable to confirm a genetic or epigenetic cause for this allele specific expression, the expression patterns of the two genes match those predicted for imprinted genes.

  14. Description of electrophoretic loci and tissue specific gene ...

    African Journals Online (AJOL)

    1994-02-09

    Feb 9, 1994 ... The expression of one locus (L-Idh-I) was restricted to endodermal tissue, specifically to liver, and no locus was expressed exclusively in tissues of ectodermal ori- gin. Of the remaining 39 loci, 23 were expressed in one or more tissues derived from each germ layer. The products of. 13 loci were found in ...

  15. Identification of the minimal melanocyte-specific promoter in the melanocortin receptor 1 gene

    Directory of Open Access Journals (Sweden)

    Natali Pier

    2008-11-01

    Full Text Available Abstract Background The understanding of cutaneous pigmentation biology is relevant from the biologic and clinical point of view. The binding of α-melanocortin and its specific receptor, on the plasma membrane of melanin synthesising cells, plays a crucial role in melanins biosynthesis. Furthermore, loss of MC1R function is associated with an increased incidence of melanoma and non-melanoma skin cancer. The expression of the α-melanocortin receptor gene is highly controlled but, at the present, region responsible for tissue-specific activity of the gene promoter has not been identified. Methods We have cloned the genomic sequences upstream the human MC1R coding gene. A DNA fragment of 5 kilobases upstream the human MC1R encoding sequence was placed in front of a reporter gene and several deletion mutants of such fragment have been prepared. These constructs have been tested for the ability to drive the melanocyte-specific gene expression of the reporter gene using transfection experiments in melanocyte and non-melanocyte cell lines. From these experiments we identified a DNA fragment with the ability to drive the gene transcription in a tissue-specific way and we used this small DNA fragment in DNA-protein interaction assays. Results We show that the 150 base pairs upstream the MC1R gene initiation codon are able to drive the melanocyte-specific gene transcription. Furthermore, we provide experimental evidences suggesting that on such minimal melanocyte-specific gene promoter can assemble tissue-specific complexes. Conclusion The present results strongly imply that the transcriptional regulation of the melanocyte-specific MC1R gene requires an internal promoter located in the 150 base pairs upstream the initiation codon.

  16. A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes

    DEFF Research Database (Denmark)

    Hansen, Kasper Lage; Hansen, Niclas Tue; Karlberg, Erik, Olof, Linnart

    2008-01-01

    to be overexpressed in the normal tissues where defects cause pathology. In contrast, cancer genes and complexes were not overexpressed in the tissues from which the tumors emanate. We specifically identified a complex involved in XY sex reversal that is testis-specific and down-regulated in ovaries. We also...

  17. Genes associated with genotype-specific DNA methylation in squamous cell carcinoma as candidate drug targets

    Science.gov (United States)

    2014-01-01

    Background Aberrant DNA methylation is often associated with cancers. Thus, screening genes with cancer-associated aberrant DNA methylation is a useful method to identify candidate cancer-causing genes. Aberrant DNA methylation is also genotype dependent. Thus, the selection of genes with genotype-specific aberrant DNA methylation in cancers is potentially important for tailor-made medicine. The selected genes are important candidate drug targets. Results The recently proposed principal component analysis based selection of genes with aberrant DNA methylation was applied to genotype and DNA methylation patterns in squamous cell carcinoma measured using single nucleotide polymorphism (SNP) arrays. SNPs that are frequently found in cancers are usually highly methylated, and the genes that were selected using this method were reported previously to be related to cancers. Thus, genes with genotype-specific DNA methylation patterns will be good therapeutic candidates. The tertiary structures of the proteins encoded by the selected genes were successfully inferred using two profile-based protein structure servers, FAMS and Phyre2. Candidate drugs for three of these proteins, tyrosine kinase receptor (ALK), EGLN3 protein, and NUAK family SNF1-like kinase 1 (NUAK1), were identified by ChooseLD. Conclusions We detected genes with genotype-specific DNA methylation in squamous cell carcinoma that are candidate drug targets. Using in silico drug discovery, we successfully identified several candidate drugs for the ALK, EGLN3 and NUAK1 genes that displayed genotype-specific DNA methylation. PMID:24565165

  18. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  19. Mining tissue specificity, gene connectivity and disease association to reveal a set of genes that modify the action of disease causing genes

    Directory of Open Access Journals (Sweden)

    Reverter Antonio

    2008-09-01

    Full Text Available Abstract Background The tissue specificity of gene expression has been linked to a number of significant outcomes including level of expression, and differential rates of polymorphism, evolution and disease association. Recent studies have also shown the importance of exploring differential gene connectivity and sequence conservation in the identification of disease-associated genes. However, no study relates gene interactions with tissue specificity and disease association. Methods We adopted an a priori approach making as few assumptions as possible to analyse the interplay among gene-gene interactions with tissue specificity and its subsequent likelihood of association with disease. We mined three large datasets comprising expression data drawn from massively parallel signature sequencing across 32 tissues, describing a set of 55,606 true positive interactions for 7,197 genes, and microarray expression results generated during the profiling of systemic inflammation, from which 126,543 interactions among 7,090 genes were reported. Results Amongst the myriad of complex relationships identified between expression, disease, connectivity and tissue specificity, some interesting patterns emerged. These include elevated rates of expression and network connectivity in housekeeping and disease-associated tissue-specific genes. We found that disease-associated genes are more likely to show tissue specific expression and most frequently interact with other disease genes. Using the thresholds defined in these observations, we develop a guilt-by-association algorithm and discover a group of 112 non-disease annotated genes that predominantly interact with disease-associated genes, impacting on disease outcomes. Conclusion We conclude that parameters such as tissue specificity and network connectivity can be used in combination to identify a group of genes, not previously confirmed as disease causing, that are involved in interactions with disease causing

  20. Multilineage differentiation of porcine bone marrow stromal cells associated with specific gene expression pattern

    DEFF Research Database (Denmark)

    Zou, Lijin; Zou, Xuenong; Chen, Li

    2008-01-01

    genes. However, it is not fully clear whether multilineage differentiation (osteogenesis, chondrogenesis, and adipogenesis) of BMSC is associated with a specific gene expression pattern. In the present study, we investigated the gene expression pattern of representative transcription factors and marker...... differentiation was induced in cell pellet culture by expression of sox9, type 2 collagen, and aggrecan. Cbfa1 and PPARγ2 were inhibited in chondrogenic medium. These results indicate that the differentiation potential of BMSC to a particular mesenchymal lineage relies upon specific gene expression pattern...

  1. A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus.

    Science.gov (United States)

    O'Shea, S F; Chaure, P T; Halsall, J R; Olesnicky, N S; Leibbrandt, A; Connerton, I F; Casselton, L A

    1998-01-01

    Pheromone signaling plays an essential role in the mating and sexual development of mushroom fungi. Multiallelic genes encoding the peptide pheromones and their cognate 7-transmembrane helix (7-TM) receptors are sequestered in the B mating type locus. Here we describe the isolation of the B6 mating type locus of Coprinus cinereus. DNA sequencing and transformation analysis identified nine genes encoding three 7-TM receptors and six peptide pheromone precursors embedded within 17 kb of mating type-specific sequence. The arrangement of the nine genes suggests that there may be three functionally independent subfamilies of genes each comprising two pheromone genes and one receptor gene. None of the nine B6 genes showed detectable homology to corresponding B gene sequences in the genomic DNA from a B3 strain, and each of the B6 genes independently alter B mating specificity when introduced into a B3 host strain. However, only genes in two of the B6 groups were able to activate B-regulated development in a B42 host. Southern blot analysis showed that these genes failed to cross-hybridize to corresponding genes in the B42 host, whereas the three genes of the third subfamily, which could not activate development in the B42 host, did cross-hybridize. We conclude that cross-hybridization identifies the same alleles of a particular subfamily of genes in different B loci and that B6 and B42 share alleles of one subfamily. There are an estimated 79 B mating specificities: we suggest that it is the different allele combinations of gene subfamilies that generate these large numbers. PMID:9539426

  2. Repeated Evolution of Testis-Specific New Genes: The Case of Telomere-Capping Genes in Drosophila

    Directory of Open Access Journals (Sweden)

    Raphaëlle Dubruille

    2012-01-01

    Full Text Available Comparative genome analysis has allowed the identification of various mechanisms involved in gene birth. However, understanding the evolutionary forces driving new gene origination still represents a major challenge. In particular, an intriguing and not yet fully understood trend has emerged from the study of new genes: many of them show a testis-specific expression pattern, which has remained poorly understood. Here we review the case of such a new gene, which involves a telomere-capping gene family in Drosophila. hiphop and its testis-specific paralog K81 are critical for the protection of chromosome ends in somatic cells and male gametes, respectively. Two independent functional studies recently proposed that these genes evolved under a reproductive-subfunctionalization regime. The 2011 release of new Drosophila genome sequences from the melanogaster group of species allowed us to deepen our phylogenetic analysis of the hiphop/K81 family. This work reveals an unsuspected dynamic of gene birth and death within the group, with recurrent duplication events through retroposition mechanisms. Finally, we discuss the plausibility of different evolutionary scenarios that could explain the diversification of this gene family.

  3. Development of Plant Gene Vectors for Tissue-Specific Expression Using GFP as a Reporter Gene

    Science.gov (United States)

    Jackson, Jacquelyn; Egnin, Marceline; Xue, Qi-Han; Prakash, C. S.

    1997-01-01

    Reporter genes are widely employed in plant molecular biology research to analyze gene expression and to identify promoters. Gus (UidA) is currently the most popular reporter gene but its detection requires a destructive assay. The use of jellyfish green fluorescent protein (GFP) gene from Aequorea Victoria holds promise for noninvasive detection of in vivo gene expression. To study how various plant promoters are expressed in sweet potato (Ipomoea batatas), we are transcriptionally fusing the intron-modified (mGFP) or synthetic (modified for codon-usage) GFP coding regions to these promoters: double cauliflower mosaic virus 35S (CaMV 35S) with AMV translational enhancer, ubiquitin7-intron-ubiquitin coding region (ubi7-intron-UQ) and sporaminA. A few of these vectors have been constructed and introduced into E. coli DH5a and Agrobacterium tumefaciens EHA105. Transient expression studies are underway using protoplast-electroporation and particle bombardment of leaf tissues.

  4. Evolutionary constraints shape caste-specific gene expression across 15 ant species.

    Science.gov (United States)

    Morandin, Claire; Mikheyev, Alexander S; Pedersen, Jes Søe; Helanterä, Heikki

    2017-05-01

    Development of polymorphic phenotypes from similar genomes requires gene expression differences. However, little is known about how morph-specific gene expression patterns vary on a broad phylogenetic scale. We hypothesize that evolution of morph-specific gene expression, and consequently morph-specific phenotypic evolution, may be constrained by gene essentiality and the amount of pleiotropic constraints. Here, we use comparative transcriptomics of queen and worker morphs, that is, castes, from 15 ant species to understand the constraints of morph-biased gene expression. In particular, we investigate how measures of evolutionary constraints at the sequence level (expression level, connectivity, and number of gene ontology [GO] terms) correlate with morph-biased expression. Our results show that genes indeed vary in their potential to become morph-biased. The existence of genes that are constrained in becoming caste-biased potentially limits the evolutionary decoupling of the caste phenotypes, that is, it might result in "caste load" occasioning from antagonistic fitness variation, similarly to sexually antagonistic fitness variation between males and females. On the other hand, we suggest that genes under low constraints are released from antagonistic variation and thus more likely to be co-opted for morph specific use. Overall, our results suggest that the factors that affect sequence evolutionary rates and evolution of plastic expression may largely overlap. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  5. A novel gene family controls species-specific morphological traits in Hydra.

    Directory of Open Access Journals (Sweden)

    Konstantin Khalturin

    2008-11-01

    Full Text Available Understanding the molecular events that underlie the evolution of morphological diversity is a major challenge in biology. Here, to identify genes whose expression correlates with species-specific morphologies, we compared transcriptomes of two closely related Hydra species. We find that species-specific differences in tentacle formation correlate with expression of a taxonomically restricted gene encoding a small secreted protein. We show that gain of function induces changes in morphology that mirror the phenotypic differences observed between species. These results suggest that "novel" genes may be involved in the generation of species-specific morphological traits.

  6. SCALE: modeling allele-specific gene expression by single-cell RNA sequencing.

    Science.gov (United States)

    Jiang, Yuchao; Zhang, Nancy R; Li, Mingyao

    2017-04-26

    Allele-specific expression is traditionally studied by bulk RNA sequencing, which measures average expression across cells. Single-cell RNA sequencing allows the comparison of expression distribution between the two alleles of a diploid organism and the characterization of allele-specific bursting. Here, we propose SCALE to analyze genome-wide allele-specific bursting, with adjustment of technical variability. SCALE detects genes exhibiting allelic differences in bursting parameters and genes whose alleles burst non-independently. We apply SCALE to mouse blastocyst and human fibroblast cells and find that cis control in gene expression overwhelmingly manifests as differences in burst frequency.

  7. Gene specific damage and repair after treatment of cells with UV and chemotherapeutical agents

    Energy Technology Data Exchange (ETDEWEB)

    Bohr, V.A. (Division of Cancer Treatment, National Cancer Institute, NIH, Bethesda, MD (USA))

    1991-01-01

    The authors have previously demonstrated preferential DNA repair of active genes in mammalian cells. The methodology involves the use of a specific endonuclease or other more direct approaches to create nicks at sites of damage followed by quantitative Southern analysis and probing for specific genes. Initially, they used pyrimidine dimer specific endonuclease to detect pyrimidine dimers after UV irradiation. They now also use the bacterial enzyme ABC excinuclease to examine the DNA damage and repair of a number of adducts other than pyrimidine dimers in specific genes. They can detect gene specific alkylation damage by creating nicks via depurination and alkaline hydrolysis. In our assay for preferential repair, they compare the efficiency of repair in the DHFR gene to that in the 3{prime} flanking, non-coding region to the gene. In CHO cells, UV induced pyrimidine dimers are efficiently repaired from the active DHFR gene, but not from the inactive region. They have demonstrated that the 6-4 photoproducts are also preferentially repaired and that they are removed faster from the regions studied than pyrimidine dimers. Using similar approaches, they find that DNA adducts and crosslinks caused by cisplatinum are preferentially repaired in the active gene compared to the inactive regions and to the inactive c-fos oncogene. Also, nitrogen mustard and methylnitrosurea damage is preferentially repaired whereas dimethylsulphate damage is not. NAAAF adducts do not appear to be preferentially repaired in this system. 32 refs.

  8. Lineage-Specific Evolutionary Histories and Regulation of Major Starch Metabolism Genes during Banana Ripening

    Science.gov (United States)

    Jourda, Cyril; Cardi, Céline; Gibert, Olivier; Giraldo Toro, Andrès; Ricci, Julien; Mbéguié-A-Mbéguié, Didier; Yahiaoui, Nabila

    2016-01-01

    Starch is the most widespread and abundant storage carbohydrate in plants. It is also a major feature of cultivated bananas as it accumulates to large amounts during banana fruit development before almost complete conversion to soluble sugars during ripening. Little is known about the structure of major gene families involved in banana starch metabolism and their evolution compared to other species. To identify genes involved in banana starch metabolism and investigate their evolutionary history, we analyzed six gene families playing a crucial role in plant starch biosynthesis and degradation: the ADP-glucose pyrophosphorylases (AGPases), starch synthases (SS), starch branching enzymes (SBE), debranching enzymes (DBE), α-amylases (AMY) and β-amylases (BAM). Using comparative genomics and phylogenetic approaches, these genes were classified into families and sub-families and orthology relationships with functional genes in Eudicots and in grasses were identified. In addition to known ancestral duplications shaping starch metabolism gene families, independent evolution in banana and grasses also occurred through lineage-specific whole genome duplications for specific sub-families of AGPase, SS, SBE, and BAM genes; and through gene-scale duplications for AMY genes. In particular, banana lineage duplications yielded a set of AGPase, SBE and BAM genes that were highly or specifically expressed in banana fruits. Gene expression analysis highlighted a complex transcriptional reprogramming of starch metabolism genes during ripening of banana fruits. A differential regulation of expression between banana gene duplicates was identified for SBE and BAM genes, suggesting that part of starch metabolism regulation in the fruit evolved in the banana lineage. PMID:27994606

  9. Lineage-specific Evolutionary Histories and Regulation of Major Starch Metabolism Genes during Banana Ripening

    Directory of Open Access Journals (Sweden)

    Cyril Jourda

    2016-12-01

    Full Text Available Starch is the most widespread and abundant storage carbohydrate in plants. It is also a major feature of cultivated bananas as it accumulates to large amounts during banana fruit development before almost complete conversion to soluble sugars during ripening. Little is known about the structure of major gene families involved in banana starch metabolism and their evolution compared to other species. To identify genes involved in banana starch metabolism and investigate their evolutionary history, we analyzed six gene families playing a crucial role in plant starch biosynthesis and degradation: the ADP-glucose pyrophosphorylases (AGPases, starch synthases (SS, starch branching enzymes (SBE, debranching enzymes (DBE, -amylases (AMY and -amylases (BAM. Using comparative genomics and phylogenetic approaches, these genes were classified into families and sub-families and orthology relationships with functional genes in Eudicots and in grasses were identified. In addition to known ancestral duplications shaping starch metabolism gene families, independent evolution in banana and grasses also occurred through lineage-specific whole genome duplications for specific sub-families of AGPases, SS, SBE and BAM genes; and through gene-scale duplications for AMY genes. In particular, banana lineage duplications yielded a set of AGPases, SBE and BAM genes that were highly or specifically expressed in banana fruits. Gene expression analysis highlighted a complex transcriptional reprogramming of starch metabolism genes during ripening of banana fruits. A differential regulation of expression between banana gene duplicates was identified for SBE and BAM genes, suggesting that part of starch metabolism regulation in the fruit evolved in the banana lineage

  10. Lineage-Specific Evolutionary Histories and Regulation of Major Starch Metabolism Genes during Banana Ripening.

    Science.gov (United States)

    Jourda, Cyril; Cardi, Céline; Gibert, Olivier; Giraldo Toro, Andrès; Ricci, Julien; Mbéguié-A-Mbéguié, Didier; Yahiaoui, Nabila

    2016-01-01

    Starch is the most widespread and abundant storage carbohydrate in plants. It is also a major feature of cultivated bananas as it accumulates to large amounts during banana fruit development before almost complete conversion to soluble sugars during ripening. Little is known about the structure of major gene families involved in banana starch metabolism and their evolution compared to other species. To identify genes involved in banana starch metabolism and investigate their evolutionary history, we analyzed six gene families playing a crucial role in plant starch biosynthesis and degradation: the ADP-glucose pyrophosphorylases (AGPases), starch synthases (SS), starch branching enzymes (SBE), debranching enzymes (DBE), α-amylases (AMY) and β-amylases (BAM). Using comparative genomics and phylogenetic approaches, these genes were classified into families and sub-families and orthology relationships with functional genes in Eudicots and in grasses were identified. In addition to known ancestral duplications shaping starch metabolism gene families, independent evolution in banana and grasses also occurred through lineage-specific whole genome duplications for specific sub-families of AGPase, SS, SBE, and BAM genes; and through gene-scale duplications for AMY genes. In particular, banana lineage duplications yielded a set of AGPase, SBE and BAM genes that were highly or specifically expressed in banana fruits. Gene expression analysis highlighted a complex transcriptional reprogramming of starch metabolism genes during ripening of banana fruits. A differential regulation of expression between banana gene duplicates was identified for SBE and BAM genes, suggesting that part of starch metabolism regulation in the fruit evolved in the banana lineage.

  11. Identification of anther-specific/predominant genes regulated by gibberellin during development of lily anthers.

    Science.gov (United States)

    Hsu, Yi-Feng; Tzeng, Jhih-Deng; Liu, Ming-Che; Yei, Fung-Ling; Chung, Mei-Chu; Wang, Co-Shine

    2008-01-01

    We successfully identify anther-specific/predominant genes induced by gibberellin (GA) at the microspore stage of lily (Lilium longiflorum) anthers. We used a suppression-subtractive hybridization strategy to identify 22 individual cDNAs followed by a reverse RNA dot plot to determine their specificities at the microspore stage. Of the 22 genes, 12 are clearly anther-specific and three are anther-predominant. Sequence analysis revealed that five anther-specific/predominant genes are novel. The transcripts of anther-specific/predominant genes were differentially detected at the microspore development phase; some began accumulating in level as early as the occurrence of meiosis. When uniconazole, an inhibitor of GA biosynthesis was applied in young lily plants we found that all of the anther-specific/predominant genes, with the exception of LLA-139, were up-regulated by GAs in the anther while only some were responsive to the exogenous addition of 100 microM GA3. In situ hybridization with antisense riboprobes of selected genes in the anther showed a strong signal localized to the tapetal layer. The different actions of GA on gene expression in anthers are discussed.

  12. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy

    Science.gov (United States)

    2005-11-01

    rceiviing no knob valuecd rt I0",ý (I󈨋 C)o antrbodv blocks. Ad15-rt1 acne transfer (71 arrtibody was incubated with Ad5-mI1 or AcISLuc I at 100s .p/cc...deficient U118 MG cell line. Conversely, Ad5Lucl-CK1 dog kidney and SKOV3. ipl ovarian cancer cells with the gene delivery in U118 MG cells was about 100...Although the Ad5 fiber-knob Lucl-CKI gene transfer in only SKOV3. ipl cells but not competitively inhibited Ad5Lucl-mediated gene transfer completely

  13. Robust Cardiomyocyte-Specific Gene Expression Following Systemic Injection of AAV: In Vivo Gene Delivery Follows a Poisson Distribution

    Science.gov (United States)

    Prasad, Konkal-Matt R.; Xu, Yaqin; Yang, Zequan; Acton, Scott T.; French, Brent A

    2010-01-01

    Newly-isolated serotypes of AAV readily cross the endothelial barrier to provide efficient transgene delivery throughout the body. However, tissue-specific expression is preferred in most experimental studies and gene therapy protocols. Previous efforts to restrict gene expression to the myocardium often relied on direct injection into heart muscle or intracoronary perfusion. Here, we report an AAV vector system employing the cardiac troponin T promoter (cTnT). Using luciferase and eGFP, the efficiency and specificity of cardiac reporter gene expression using AAV serotype capsids: AAV-1, 2, 6, 8 or 9 were tested after systemic administration to 1 week old mice. Luciferase assays showed that the cTnT promoter worked in combination with each of the AAV serotype capsids to provide cardiomyocyte-specific gene expression, but AAV-9 followed closely by AAV-8 was the most efficient. AAV9-mediated gene expression from the cTnT promoter was 640-fold greater in the heart compared to the next highest tissue (liver). eGFP fluorescence indicated a transduction efficiency of 96% using AAV-9 at a dose of only 3.15×1010 viral particles per mouse. Moreover, the intensity of cardiomyocyte eGFP fluorescence measured on a cell-by-cell basis revealed that AAV-mediated gene expression in the heart can be modeled as a Poisson distribution; requiring an average of nearly two vector genomes per cell to attain an 85% transduction efficiency. PMID:20703310

  14. Identification of rhizome-specific genes by genome-wide differential expression Analysis in Oryza longistaminata

    Directory of Open Access Journals (Sweden)

    Li Qiong

    2011-01-01

    Full Text Available Abstract Background Rhizomatousness is a key component of perenniality of many grasses that contribute to competitiveness and invasiveness of many noxious grass weeds, but can potentially be used to develop perennial cereal crops for sustainable farmers in hilly areas of tropical Asia. Oryza longistaminata, a perennial wild rice with strong rhizomes, has been used as the model species for genetic and molecular dissection of rhizome development and in breeding efforts to transfer rhizome-related traits into annual rice species. In this study, an effort was taken to get insights into the genes and molecular mechanisms underlying the rhizomatous trait in O. longistaminata by comparative analysis of the genome-wide tissue-specific gene expression patterns of five different tissues of O. longistaminata using the Affymetrix GeneChip Rice Genome Array. Results A total of 2,566 tissue-specific genes were identified in five different tissues of O. longistaminata, including 58 and 61 unique genes that were specifically expressed in the rhizome tips (RT and internodes (RI, respectively. In addition, 162 genes were up-regulated and 261 genes were down-regulated in RT compared to the shoot tips. Six distinct cis-regulatory elements (CGACG, GCCGCC, GAGAC, AACGG, CATGCA, and TAAAG were found to be significantly more abundant in the promoter regions of genes differentially expressed in RT than in the promoter regions of genes uniformly expressed in all other tissues. Many of the RT and/or RI specifically or differentially expressed genes were located in the QTL regions associated with rhizome expression, rhizome abundance and rhizome growth-related traits in O. longistaminata and thus are good candidate genes for these QTLs. Conclusion The initiation and development of the rhizomatous trait in O. longistaminata are controlled by very complex gene networks involving several plant hormones and regulatory genes, different members of gene families showing tissue

  15. Papain-like cysteine proteases in Carica papaya: lineage-specific gene duplication and expansion.

    Science.gov (United States)

    Liu, Juan; Sharma, Anupma; Niewiara, Marie Jamille; Singh, Ratnesh; Ming, Ray; Yu, Qingyi

    2018-01-06

    Papain-like cysteine proteases (PLCPs), a large group of cysteine proteases structurally related to papain, play important roles in plant development, senescence, and defense responses. Papain, the first cysteine protease whose structure was determined by X-ray crystallography, plays a crucial role in protecting papaya from herbivorous insects. Except the four major PLCPs purified and characterized in papaya latex, the rest of the PLCPs in papaya genome are largely unknown. We identified 33 PLCP genes in papaya genome. Phylogenetic analysis clearly separated plant PLCP genes into nine subfamilies. PLCP genes are not equally distributed among the nine subfamilies and the number of PLCPs in each subfamily does not increase or decrease proportionally among the seven selected plant species. Papaya showed clear lineage-specific gene expansion in the subfamily III. Interestingly, all four major PLCPs purified from papaya latex, including papain, chymopapain, glycyl endopeptidase and caricain, were grouped into the lineage-specific expansion branch in the subfamily III. Mapping PLCP genes on chromosomes of five plant species revealed that lineage-specific expansions of PLCP genes were mostly derived from tandem duplications. We estimated divergence time of papaya PLCP genes of subfamily III. The major duplication events leading to lineage-specific expansion of papaya PLCP genes in subfamily III were estimated at 48 MYA, 34 MYA, and 16 MYA. The gene expression patterns of the papaya PLCP genes in different tissues were assessed by transcriptome sequencing and qRT-PCR. Most of the papaya PLCP genes of subfamily III expressed at high levels in leaf and green fruit tissues. Tandem duplications played the dominant role in affecting copy number of PLCPs in plants. Significant variations in size of the PLCP subfamilies among species may reflect genetic adaptation of plant species to different environments. The lineage-specific expansion of papaya PLCPs of subfamily III might

  16. Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation.

    Science.gov (United States)

    Zabidi, Muhammad A; Arnold, Cosmas D; Schernhuber, Katharina; Pagani, Michaela; Rath, Martina; Frank, Olga; Stark, Alexander

    2015-02-26

    Gene transcription in animals involves the assembly of RNA polymerase II at core promoters and its cell-type-specific activation by enhancers that can be located more distally. However, how ubiquitous expression of housekeeping genes is achieved has been less clear. In particular, it is unknown whether ubiquitously active enhancers exist and how developmental and housekeeping gene regulation is separated. An attractive hypothesis is that different core promoters might exhibit an intrinsic specificity to certain enhancers. This is conceivable, as various core promoter sequence elements are differentially distributed between genes of different functions, including elements that are predominantly found at either developmentally regulated or at housekeeping genes. Here we show that thousands of enhancers in Drosophila melanogaster S2 and ovarian somatic cells (OSCs) exhibit a marked specificity to one of two core promoters--one derived from a ubiquitously expressed ribosomal protein gene and another from a developmentally regulated transcription factor--and confirm the existence of these two classes for five additional core promoters from genes with diverse functions. Housekeeping enhancers are active across the two cell types, while developmental enhancers exhibit strong cell-type specificity. Both enhancer classes differ in their genomic distribution, the functions of neighbouring genes, and the core promoter elements of these neighbouring genes. In addition, we identify two transcription factors--Dref and Trl--that bind and activate housekeeping versus developmental enhancers, respectively. Our results provide evidence for a sequence-encoded enhancer-core-promoter specificity that separates developmental and housekeeping gene regulatory programs for thousands of enhancers and their target genes across the entire genome.

  17. A comprehensive functional analysis of tissue specificity of human gene expression

    Directory of Open Access Journals (Sweden)

    Guryanov Alexey

    2008-11-01

    Full Text Available Abstract Background In recent years, the maturation of microarray technology has allowed the genome-wide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed ('housekeeping' genes. We have performed a functional and topological analysis of housekeeping and tissue-specific networks to identify universally necessary biological processes, and those unique to or characteristic of particular tissues. Results We measured whole genome expression in 31 human tissues, identifying 2374 housekeeping genes expressed in all tissues, and genes uniquely expressed in each tissue. Comprehensive functional analysis showed that the housekeeping set is substantially larger than previously thought, and is enriched with vital processes such as oxidative phosphorylation, ubiquitin-dependent proteolysis, translation and energy metabolism. Network topology of the housekeeping network was characterized by higher connectivity and shorter paths between the proteins than the global network. Ontology enrichment scoring and network topology of tissue-specific genes were consistent with each tissue's function and expression patterns clustered together in accordance with tissue origin. Tissue-specific genes were twice as likely as housekeeping genes to be drug targets, allowing the identification of tissue 'signature networks' that will facilitate the discovery of new therapeutic targets and biomarkers of tissue-targeted diseases. Conclusion A comprehensive functional analysis of housekeeping and tissue-specific genes showed that the biological function of housekeeping and tissue-specific genes was consistent with tissue origin. Network analysis revealed that tissue-specific networks have distinct network properties related to each tissue's function. Tissue 'signature networks' promise to be a rich source of targets and biomarkers for disease treatment and diagnosis.

  18. Cohort-specific imputation of gene expression improves prediction of warfarin dose for African Americans.

    Science.gov (United States)

    Gottlieb, Assaf; Daneshjou, Roxana; DeGorter, Marianne; Bourgeois, Stephane; Svensson, Peter J; Wadelius, Mia; Deloukas, Panos; Montgomery, Stephen B; Altman, Russ B

    2017-11-24

    Genome-wide association studies are useful for discovering genotype-phenotype associations but are limited because they require large cohorts to identify a signal, which can be population-specific. Mapping genetic variation to genes improves power and allows the effects of both protein-coding variation as well as variation in expression to be combined into "gene level" effects. Previous work has shown that warfarin dose can be predicted using information from genetic variation that affects protein-coding regions. Here, we introduce a method that improves dose prediction by integrating tissue-specific gene expression. In particular, we use drug pathways and expression quantitative trait loci knowledge to impute gene expression-on the assumption that differential expression of key pathway genes may impact dose requirement. We focus on 116 genes from the pharmacokinetic and pharmacodynamic pathways of warfarin within training and validation sets comprising both European and African-descent individuals. We build gene-tissue signatures associated with warfarin dose in a cohort-specific manner and identify a signature of 11 gene-tissue pairs that significantly augments the International Warfarin Pharmacogenetics Consortium dosage-prediction algorithm in both populations. Our results demonstrate that imputed expression can improve dose prediction and bridge population-specific compositions. MATLAB code is available at https://github.com/assafgo/warfarin-cohort.

  19. NAC genes: Time-specific regulators of hormonal signaling in Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Kjærsgaard, Trine; Petersen, Klaus

    2010-01-01

    Environmental stresses on both animals and plants impose massive transcriptional perturbations. Successful adaptations to such stresses are being orchestrated by both activating and repressing effects of transcription factors on specific target genes. We have recently published a systematic...... genes upon stimuli with seven phytohormones. Our analysis could be a first indication of NAC-centered transcriptional networks, which coordinate timely hormonal signaling in plants....

  20. Cohort-specific imputation of gene expression improves prediction of warfarin dose for African Americans

    Directory of Open Access Journals (Sweden)

    Assaf Gottlieb

    2017-11-01

    Full Text Available Abstract Background Genome-wide association studies are useful for discovering genotype–phenotype associations but are limited because they require large cohorts to identify a signal, which can be population-specific. Mapping genetic variation to genes improves power and allows the effects of both protein-coding variation as well as variation in expression to be combined into “gene level” effects. Methods Previous work has shown that warfarin dose can be predicted using information from genetic variation that affects protein-coding regions. Here, we introduce a method that improves dose prediction by integrating tissue-specific gene expression. In particular, we use drug pathways and expression quantitative trait loci knowledge to impute gene expression—on the assumption that differential expression of key pathway genes may impact dose requirement. We focus on 116 genes from the pharmacokinetic and pharmacodynamic pathways of warfarin within training and validation sets comprising both European and African-descent individuals. Results We build gene-tissue signatures associated with warfarin dose in a cohort-specific manner and identify a signature of 11 gene-tissue pairs that significantly augments the International Warfarin Pharmacogenetics Consortium dosage-prediction algorithm in both populations. Conclusions Our results demonstrate that imputed expression can improve dose prediction and bridge population-specific compositions. MATLAB code is available at https://github.com/assafgo/warfarin-cohort

  1. Male-and female-specific variants of doublesex gene products have ...

    Indian Academy of Sciences (India)

    specific variants of doublesex gene products have different roles to play towards regulation of Sex combs reduced expression and sex comb morphogenesis in Drosophila. Thangjam Ranjita Devi B V Shyamala. Brief communication Volume 38 ...

  2. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection

    National Research Council Canada - National Science Library

    Wenhui Hu; Rafal Kaminski; Fan Yang; Yonggang Zhang; Laura Cosentino; Fang Li; Biao Luo; David Alvarez-Carbonell; Yoelvis Garcia-Mesa; Jonathan Karn; Xianming Mo; Kamel Khalili

    2014-01-01

    .... We identified highly specific targets within the HIV-1 LTR U3 region that were efficiently edited by Cas9/gRNA, inactivating viral gene expression and replication in latently infected microglial...

  3. Partitioning the human transcriptome using HKera, a novel classifier of housekeeping and tissue-specific genes.

    Directory of Open Access Journals (Sweden)

    Austin W T Chiang

    Full Text Available High-throughput transcriptomic experiments have made it possible to classify genes that are ubiquitously expressed as housekeeping (HK genes and those expressed only in selective tissues as tissue-specific (TS genes. Although partitioning a transcriptome into HK and TS genes is conceptually problematic owing to the lack of precise definitions and gene expression profile criteria for the two, information whether a gene is an HK or a TS gene can provide an initial clue to its cellular and/or functional role. Consequently, the development of new and novel HK (TS classification methods has been a topic of considerable interest in post-genomics research. Here, we report such a development. Our method, called HKera, differs from the others by utilizing a novel property of HK genes that we have previously uncovered, namely that the ranking order of their expression levels, as opposed to the expression levels themselves, tends to be preserved from one tissue to another. Evaluated against multiple benchmark sets of human HK genes, including one recently derived from second generation sequencing data, HKera was shown to perform significantly better than five other classifiers that use different methodologies. An enrichment analysis of pathway and gene ontology annotations showed that HKera-predicted HK and TS genes have distinct functional roles and, together, cover most of the ontology categories. These results show that HKera is a good transcriptome partitioner that can be used to search for, and obtain useful expression and functional information for, novel HK (TS genes.

  4. Partitioning the Human Transcriptome Using HKera, a Novel Classifier of Housekeeping and Tissue-Specific Genes

    Science.gov (United States)

    Hwang, Ming-Jing

    2013-01-01

    High-throughput transcriptomic experiments have made it possible to classify genes that are ubiquitously expressed as housekeeping (HK) genes and those expressed only in selective tissues as tissue-specific (TS) genes. Although partitioning a transcriptome into HK and TS genes is conceptually problematic owing to the lack of precise definitions and gene expression profile criteria for the two, information whether a gene is an HK or a TS gene can provide an initial clue to its cellular and/or functional role. Consequently, the development of new and novel HK (TS) classification methods has been a topic of considerable interest in post-genomics research. Here, we report such a development. Our method, called HKera, differs from the others by utilizing a novel property of HK genes that we have previously uncovered, namely that the ranking order of their expression levels, as opposed to the expression levels themselves, tends to be preserved from one tissue to another. Evaluated against multiple benchmark sets of human HK genes, including one recently derived from second generation sequencing data, HKera was shown to perform significantly better than five other classifiers that use different methodologies. An enrichment analysis of pathway and gene ontology annotations showed that HKera-predicted HK and TS genes have distinct functional roles and, together, cover most of the ontology categories. These results show that HKera is a good transcriptome partitioner that can be used to search for, and obtain useful expression and functional information for, novel HK (TS) genes. PMID:24376628

  5. Partitioning the human transcriptome using HKera, a novel classifier of housekeeping and tissue-specific genes.

    Science.gov (United States)

    Chiang, Austin W T; Shaw, Grace T W; Hwang, Ming-Jing

    2013-01-01

    High-throughput transcriptomic experiments have made it possible to classify genes that are ubiquitously expressed as housekeeping (HK) genes and those expressed only in selective tissues as tissue-specific (TS) genes. Although partitioning a transcriptome into HK and TS genes is conceptually problematic owing to the lack of precise definitions and gene expression profile criteria for the two, information whether a gene is an HK or a TS gene can provide an initial clue to its cellular and/or functional role. Consequently, the development of new and novel HK (TS) classification methods has been a topic of considerable interest in post-genomics research. Here, we report such a development. Our method, called HKera, differs from the others by utilizing a novel property of HK genes that we have previously uncovered, namely that the ranking order of their expression levels, as opposed to the expression levels themselves, tends to be preserved from one tissue to another. Evaluated against multiple benchmark sets of human HK genes, including one recently derived from second generation sequencing data, HKera was shown to perform significantly better than five other classifiers that use different methodologies. An enrichment analysis of pathway and gene ontology annotations showed that HKera-predicted HK and TS genes have distinct functional roles and, together, cover most of the ontology categories. These results show that HKera is a good transcriptome partitioner that can be used to search for, and obtain useful expression and functional information for, novel HK (TS) genes.

  6. Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9.

    Science.gov (United States)

    Bai, Meizhu; Liang, Dan; Wang, Yinghua; Li, Qing; Wu, Yuxuan; Li, Jinsong

    2016-05-20

    Tissue-specific knockout technology enables the analysis of the gene function in specific tissues in adult mammals. However, conventional strategy for producing tissue-specific knockout mice is a time- and labor-consuming process, restricting rapid study of the gene function in vivo. CRISPR-Cas9 system from bacteria is a simple and efficient gene-editing technique, which has enabled rapid generation of gene knockout lines in mouse by direct injection of CRISPR-Cas9 into zygotes. Here, we demonstrate CRISPR-Cas9-mediated spermatogenic cell-specific disruption of Scp3 gene in testes in one step. We first generated transgenic mice by pronuclear injection of a plasmid containing Hspa2 promoter driving Cas9 expression and showed Cas9 specific expression in spermatogenic cells. We then produced transgenic mice carrying Hspa2 promoter driven Cas9 and constitutive expressed sgRNA targeting Scp3 gene. Male founders were infertile due to developmental arrest of spermatogenic cells while female founders could produce progeny normally. Consistently, male progeny from female founders were infertile and females could transmit the transgenes to the next generation. Our study establishes a CRISPR-Cas9-based one-step strategy to analyze the gene function in adult tissues by a temporal-spatial pattern. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  7. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR.

    OpenAIRE

    D'Souza, T M; Boominathan, K; Reddy, C A

    1996-01-01

    Degenerate primers corresponding to the consensus sequences of the copper-binding regions in the N-terminal domains of known basidiomycete laccases were used to isolate laccase gene-specific sequences from strains representing nine genera of wood rot fungi. All except three gave the expected PCR product of about 200 bp. Computer searches of the databases identified the sequence of each of the PCR products analyzed as a laccase gene sequence, suggesting the specificity of the primers. PCR prod...

  8. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    Science.gov (United States)

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies.

  9. Identification of a novel Gig2 gene family specific to non-amniote vertebrates.

    Directory of Open Access Journals (Sweden)

    Yi-Bing Zhang

    Full Text Available Gig2 (grass carp reovirus (GCRV-induced gene 2 is first identified as a novel fish interferon (IFN-stimulated gene (ISG. Overexpression of a zebrafish Gig2 gene can protect cultured fish cells from virus infection. In the present study, we identify a novel gene family that is comprised of genes homologous to the previously characterized Gig2. EST/GSS search and in silico cloning identify 190 Gig2 homologous genes in 51 vertebrate species ranged from lampreys to amphibians. Further large-scale search of vertebrate and invertebrate genome databases indicate that Gig2 gene family is specific to non-amniotes including lampreys, sharks/rays, ray-finned fishes and amphibians. Phylogenetic analysis and synteny analysis reveal lineage-specific expansion of Gig2 gene family and also provide valuable evidence for the fish-specific genome duplication (FSGD hypothesis. Although Gig2 family proteins exhibit no significant sequence similarity to any known proteins, a typical Gig2 protein appears to consist of two conserved parts: an N-terminus that bears very low homology to the catalytic domains of poly(ADP-ribose polymerases (PARPs, and a novel C-terminal domain that is unique to this gene family. Expression profiling of zebrafish Gig2 family genes shows that some duplicate pairs have diverged in function via acquisition of novel spatial and/or temporal expression under stresses. The specificity of this gene family to non-amniotes might contribute to a large extent to distinct physiology in non-amniote vertebrates.

  10. The Specifics and Non-Specifics of using Small Interfering RNAs for Targeting of Viral Genes in a Fish Model

    DEFF Research Database (Denmark)

    Schyth, Brian Dall

    2007-01-01

    A novel in vivo-model composed of small juvenile rainbow trout and a fish-pathogenic virus is suggested to analyze delivery and antiviral effect of formulated siRNAs. This model was used for testing delivery of intraperitoneally injected siRNAs formulated in polycationic liposomes. These......RNAs was used and protection correlated with up-regulation of an interferon-related gene in the liver indicating a systemic interferon response. The results show the validity of the fish model for testing delivery and non-specific effects of siRNAs in a high throughput vertebrate model. The purchase...... of chemically synthesized siRNAs is expensive why the use of in vitro transcribed siRNAs was initially tested in fish cell culture. Transfection with three different in vitro transcribed siRNAs specific to the viral glycoprotein gene of the target-virus efficiently inhibited viral multiplication in infected...

  11. Molecular subtyping of primary prostate cancer reveals specific and shared target genes of different ETS rearrangements.

    Science.gov (United States)

    Paulo, Paula; Ribeiro, Franclim R; Santos, Joana; Mesquita, Diana; Almeida, Mafalda; Barros-Silva, João D; Itkonen, Harri; Henrique, Rui; Jerónimo, Carmen; Sveen, Anita; Mills, Ian G; Skotheim, Rolf I; Lothe, Ragnhild A; Teixeira, Manuel R

    2012-07-01

    This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa), namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1) and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2) was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B) was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.

  12. Molecular Subtyping of Primary Prostate Cancer Reveals Specific and Shared Target Genes of Different ETS Rearrangements

    Directory of Open Access Journals (Sweden)

    Paula Paulo

    2012-07-01

    Full Text Available This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa, namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1 and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2 was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.

  13. Identification and functional characterization of glioma-specific promoters and their application in suicide gene therapy.

    Science.gov (United States)

    Yawata, Toshio; Maeda, Yusuke; Okiku, Makiko; Ishida, Eri; Ikenaka, Kazuhiro; Shimizu, Keiji

    2011-09-01

    Suicide gene therapy has been shown to be effective in inducing tumor regression. In this study, a human brain tumor-specific promoter was identified and used to develop transcriptionally targeted gene therapy. We searched for genes with brain tumor-specific expression. By in silico and reverse-transcription polymerase chain reaction screening, MAGE-A3 and SSX4 were found to be expressed in a tumor-specific manner. SSX4 gene promoter activity was high in human brain tumor cells but not in normal human astrocyte cells, whereas the MAGE-A3 promoter showed activity in both tumor and normal cells. A retrovirus vector carrying a suicide gene, the herpes simplex virus thymidine kinase gene controlled by the SSX4 promoter, was constructed to evaluate the efficacy of the promoter in tumor-specific gene therapy. Glioma and human telomerase catalytic subunit-immortalized fibroblast BJ-5ta cell lines transduced with retrovirus vectors were assayed for killing activity by ganciclovir. Glioma cell lines were effectively killed by ganciclovir in a concentration-dependent manner, whereas BJ-5ta cells were not. By contrast, MAGE-A3 promoter failed to induce cytotoxicity in a brain tumor-specific manner. In addition, mouse glioma RSV-M cells transduced with retrovirus vector also showed suppressed tumor formation activity in syngeneic mice in response to ganciclovir administration. Therefore, the SSX4 promoter is a candidate for brain tumor-specific gene therapy and supports the efficacy and safety of suicide gene therapy for malignant brain tumors.

  14. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    LENUS (Irish Health Repository)

    McKeown, Peter C

    2011-08-12

    Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination). We identified these MEGs by developing a bioinformatics tool (GenFrag) which can directly determine the identities of transcript-derived fragments from (i) their size and (ii) which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1 seeds was

  15. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    Directory of Open Access Journals (Sweden)

    Wennblom Trevor J

    2011-08-01

    Full Text Available Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination. We identified these MEGs by developing a bioinformatics tool (GenFrag which can directly determine the identities of transcript-derived fragments from (i their size and (ii which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1

  16. In search of essentiality: Mollicute-specific genes shared by twelve genomes

    Directory of Open Access Journals (Sweden)

    Rangel Celso Souza

    2007-01-01

    Full Text Available Mollicutes are cell wall-less bacteria with a genome characterized by its small size. Chromosomal rearrangements help these organisms evade host immune surveillance and hence cause disease. Our goal was to determine genes shared by Mollicutes genomes using the bidirectional best hit methodology. The twelve studied Mollicutes share 210 genes, most of which (> 60% fall into the following COG categories: translation, ribosomal structure and biogenesis; DNA replication, recombination and repair; nucleotide transport and metabolism and energy production and conversion. Thirty Mollicute-specific genes were identified, 22 of them previously described as essential genes in Mycoplasma genitalium.

  17. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    Science.gov (United States)

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (pentropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. High-Throughput Screening to Identify Regulators of Meiosis-Specific Gene Expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kassir, Yona

    2017-01-01

    Meiosis and gamete formation are processes that are essential for sexual reproduction in all eukaryotic organisms. Multiple intracellular and extracellular signals feed into pathways that converge on transcription factors that induce the expression of meiosis-specific genes. Once triggered the meiosis-specific gene expression program proceeds in a cascade that drives progress through the events of meiosis and gamete formation. Meiosis-specific gene expression is tightly controlled by a balance of positive and negative regulatory factors that respond to a plethora of signaling pathways. The budding yeast Saccharomyces cerevisiae has proven to be an outstanding model for the dissection of gametogenesis owing to the sophisticated genetic manipulations that can be performed with the cells. It is possible to use a variety selection and screening methods to identify genes and their functions. High-throughput screening technology has been developed to allow an array of all viable yeast gene deletion mutants to be screened for phenotypes and for regulators of gene expression. This chapter describes a protocol that has been used to screen a library of homozygous diploid yeast deletion strains to identify regulators of the meiosis-specific IME1 gene.

  19. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm-specific lineage

    Science.gov (United States)

    2012-01-01

    Background Phenylalanine ammonia lyase (PAL) is a key enzyme of the phenylpropanoid pathway that catalyzes the deamination of phenylalanine to trans-cinnamic acid, a precursor for the lignin and flavonoid biosynthetic pathways. To date, PAL genes have been less extensively studied in gymnosperms than in angiosperms. Our interest in PAL genes stems from their potential role in the defense responses of Pinus taeda, especially with respect to lignification and production of low molecular weight phenolic compounds under various biotic and abiotic stimuli. In contrast to all angiosperms for which reference genome sequences are available, P. taeda has previously been characterized as having only a single PAL gene. Our objective was to re-evaluate this finding, assess the evolutionary history of PAL genes across major angiosperm and gymnosperm lineages, and characterize PAL gene expression patterns in Pinus taeda. Methods We compiled a large set of PAL genes from the largest transcript dataset available for P. taeda and other conifers. The transcript assemblies for P. taeda were validated through sequencing of PCR products amplified using gene-specific primers based on the putative PAL gene assemblies. Verified PAL gene sequences were aligned and a gene tree was estimated. The resulting gene tree was reconciled with a known species tree and the time points for gene duplication events were inferred relative to the divergence of major plant lineages. Results In contrast to angiosperms, gymnosperms have retained a diverse set of PAL genes distributed among three major clades that arose from gene duplication events predating the divergence of these two seed plant lineages. Whereas multiple PAL genes have been identified in sequenced angiosperm genomes, all characterized angiosperm PAL genes form a single clade in the gene PAL tree, suggesting they are derived from a single gene in an ancestral angiosperm genome. The five distinct PAL genes detected and verified in P. taeda

  20. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm-specific lineage.

    Science.gov (United States)

    Bagal, Ujwal R; Leebens-Mack, James H; Lorenz, W Walter; Dean, Jeffrey F D

    2012-06-11

    Phenylalanine ammonia lyase (PAL) is a key enzyme of the phenylpropanoid pathway that catalyzes the deamination of phenylalanine to trans-cinnamic acid, a precursor for the lignin and flavonoid biosynthetic pathways. To date, PAL genes have been less extensively studied in gymnosperms than in angiosperms. Our interest in PAL genes stems from their potential role in the defense responses of Pinus taeda, especially with respect to lignification and production of low molecular weight phenolic compounds under various biotic and abiotic stimuli. In contrast to all angiosperms for which reference genome sequences are available, P. taeda has previously been characterized as having only a single PAL gene. Our objective was to re-evaluate this finding, assess the evolutionary history of PAL genes across major angiosperm and gymnosperm lineages, and characterize PAL gene expression patterns in Pinus taeda. We compiled a large set of PAL genes from the largest transcript dataset available for P. taeda and other conifers. The transcript assemblies for P. taeda were validated through sequencing of PCR products amplified using gene-specific primers based on the putative PAL gene assemblies. Verified PAL gene sequences were aligned and a gene tree was estimated. The resulting gene tree was reconciled with a known species tree and the time points for gene duplication events were inferred relative to the divergence of major plant lineages. In contrast to angiosperms, gymnosperms have retained a diverse set of PAL genes distributed among three major clades that arose from gene duplication events predating the divergence of these two seed plant lineages. Whereas multiple PAL genes have been identified in sequenced angiosperm genomes, all characterized angiosperm PAL genes form a single clade in the gene PAL tree, suggesting they are derived from a single gene in an ancestral angiosperm genome. The five distinct PAL genes detected and verified in P. taeda were derived from a

  1. HIT'nDRIVE: patient-specific multidriver gene prioritization for precision oncology.

    Science.gov (United States)

    Shrestha, Raunak; Hodzic, Ermin; Sauerwald, Thomas; Dao, Phuong; Wang, Kendric; Yeung, Jake; Anderson, Shawn; Vandin, Fabio; Haffari, Gholamreza; Collins, Colin C; Sahinalp, S Cenk

    2017-09-01

    Prioritizing molecular alterations that act as drivers of cancer remains a crucial bottleneck in therapeutic development. Here we introduce HIT'nDRIVE, a computational method that integrates genomic and transcriptomic data to identify a set of patient-specific, sequence-altered genes, with sufficient collective influence over dysregulated transcripts. HIT'nDRIVE aims to solve the "random walk facility location" (RWFL) problem in a gene (or protein) interaction network, which differs from the standard facility location problem by its use of an alternative distance measure: "multihitting time," the expected length of the shortest random walk from any one of the set of sequence-altered genes to an expression-altered target gene. When applied to 2200 tumors from four major cancer types, HIT'nDRIVE revealed many potentially clinically actionable driver genes. We also demonstrated that it is possible to perform accurate phenotype prediction for tumor samples by only using HIT'nDRIVE-seeded driver gene modules from gene interaction networks. In addition, we identified a number of breast cancer subtype-specific driver modules that are associated with patients' survival outcome. Furthermore, HIT'nDRIVE, when applied to a large panel of pan-cancer cell lines, accurately predicted drug efficacy using the driver genes and their seeded gene modules. Overall, HIT'nDRIVE may help clinicians contextualize massive multiomics data in therapeutic decision making, enabling widespread implementation of precision oncology. © 2017 Shrestha et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Downstream of identity genes: muscle-type-specific regulation of the fusion process.

    Science.gov (United States)

    Bataillé, Laetitia; Delon, Isabelle; Da Ponte, Jean Philippe; Brown, Nicholas H; Jagla, Krzysztof

    2010-08-17

    In all metazoan organisms, the diversification of cell types involves determination of cell fates and subsequent execution of specific differentiation programs. During Drosophila myogenesis, identity genes specify the fates of founder myoblasts, from which derive all individual larval muscles. Here, to understand how cell fate information residing within founders is translated during differentiation, we focus on three identity genes, eve, lb, and slou, and how they control the size of individual muscles by regulating the number of fusion events. They achieve this by setting expression levels of Mp20, Pax, and mspo, three genes that regulate actin dynamics and cell adhesion and, as we show here, modulate the fusion process in a muscle-specific manner. Thus, these data show how the identity information implemented by transcription factors is translated via target genes into cell-type-specific programs of differentiation. 2010 Elsevier Inc. All rights reserved.

  3. Rodent-specific alternative exons are more frequent in rapidly evolving genes and in paralogs

    Directory of Open Access Journals (Sweden)

    Mironov Andrey A

    2009-06-01

    Full Text Available Abstract Background Alternative splicing is an important mechanism for generating functional and evolutionary diversity of proteins in eukaryotes. Here, we studied the frequency and functionality of recently gained, rodent-specific alternative exons. Results We projected the data about alternative splicing of mouse genes to the rat, human, and dog genomes, and identified exons conserved in the rat genome, but missing in more distant genomes. We estimated the frequency of rodent-specific exons while controlling for possible residual conservation of spurious exons. The frequency of rodent-specific exons is higher among predominantly skipped exons and exons disrupting the reading frame. Separation of all genes by the rate of sequence evolution and by gene families has demonstrated that rodent-specific cassette exons are more frequent in rapidly evolving genes and in rodent-specific paralogs. Conclusion Thus we demonstrated that recently gained exons tend to occur in fast-evolving genes, and their inclusion rate tends to be lower than that of older exons. This agrees with the theory that gain of alternative exons is one of the major mechanisms of gene evolution.

  4. Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    2012-09-01

    Full Text Available Tinkering with pre-existing genes has long been known as a major way to create new genes. Recently, however, motherless protein-coding genes have been found to have emerged de novo from ancestral non-coding DNAs. How these genes originated is not well addressed to date. Here we identified 24 hominoid-specific de novo protein-coding genes with precise origination timing in vertebrate phylogeny. Strand-specific RNA-Seq analyses were performed in five rhesus macaque tissues (liver, prefrontal cortex, skeletal muscle, adipose, and testis, which were then integrated with public transcriptome data from human, chimpanzee, and rhesus macaque. On the basis of comparing the RNA expression profiles in the three species, we found that most of the hominoid-specific de novo protein-coding genes encoded polyadenylated non-coding RNAs in rhesus macaque or chimpanzee with a similar transcript structure and correlated tissue expression profile. According to the rule of parsimony, the majority of these hominoid-specific de novo protein-coding genes appear to have acquired a regulated transcript structure and expression profile before acquiring coding potential. Interestingly, although the expression profile was largely correlated, the coding genes in human often showed higher transcriptional abundance than their non-coding counterparts in rhesus macaque. The major findings we report in this manuscript are robust and insensitive to the parameters used in the identification and analysis of de novo genes. Our results suggest that at least a portion of long non-coding RNAs, especially those with active and regulated transcription, may serve as a birth pool for protein-coding genes, which are then further optimized at the transcriptional level.

  5. The mammary gland-specific marsupial ELP and eutherian CTI share a common ancestral gene

    Directory of Open Access Journals (Sweden)

    Pharo Elizabeth A

    2012-06-01

    Full Text Available Abstract Background The marsupial early lactation protein (ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation (Phase 2A. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine colostrum trypsin inhibitor (CTI protein. Although ELP and CTI both have a single bovine pancreatic trypsin inhibitor (BPTI-Kunitz domain and are secreted only during the early lactation phases, their evolutionary history is yet to be investigated. Results Tammar ELP was isolated from a genomic library and the fat-tailed dunnart and Southern koala ELP genes cloned from genomic DNA. The tammar ELP gene was expressed only in the mammary gland during late pregnancy (Phase 1 and early lactation (Phase 2A. The opossum and fat-tailed dunnart ELP and cow CTI transcripts were cloned from RNA isolated from the mammary gland and dog CTI from cells in colostrum. The putative mature ELP and CTI peptides shared 44.6%-62.2% similarity. In silico analyses identified the ELP and CTI genes in the other species examined and provided compelling evidence that they evolved from a common ancestral gene. In addition, whilst the eutherian CTI gene was conserved in the Laurasiatherian orders Carnivora and Cetartiodactyla, it had become a pseudogene in others. These data suggest that bovine CTI may be the ancestral gene of the Artiodactyla-specific, rapidly evolving chromosome 13 pancreatic trypsin inhibitor (PTI, spleen trypsin inhibitor (STI and the five placenta-specific trophoblast Kunitz domain protein (TKDP1-5 genes. Conclusions Marsupial ELP and eutherian CTI evolved from an ancestral therian mammal gene before the divergence of marsupials and eutherians between 130 and 160 million years ago. The retention of the ELP gene in marsupials suggests that this early lactation-specific milk protein may have an important role in the immunologically naïve young of these species.

  6. Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis.

    Science.gov (United States)

    Liu, Ning; Avramova, Zoya

    2016-01-01

    Plant genes that provide a different response to a similar dehydration stress illustrate the concept of transcriptional 'dehydration stress memory'. Pre-exposing a plant to a biotic stress or a stress-signaling hormone may increase transcription from response genes in a future stress, a phenomenon known as 'gene priming'. Although known that primed transcription is preceded by accumulation of H3K4me3 marks at primed genes, what mechanism provides for their appearance before the transcription was unclear. How augmented transcription is achieved, whether/how the two memory phenomena are connected at the transcriptional level, and whether similar molecular and/or epigenetic mechanisms regulate them are fundamental questions about the molecular mechanisms regulating gene expression. Although the stress hormone jasmonic acid (JA) was unable to induce transcription of tested dehydration stress response genes, it strongly potentiated transcription from specific ABA-dependent 'memory' genes. We elucidate the molecular mechanism causing their priming, demonstrate that stalled RNA polymerase II and H3K4me3 accumulate as epigenetic marks at the JA-primed ABA-dependent genes before actual transcription, and describe how these events occur mechanistically. The transcription factor MYC2 binds to the genes in response to both dehydration stress and to JA and determines the specificity of the priming. The MEDIATOR subunit MED25 links JA-priming with dehydration stress response pathways at the transcriptional level. Possible biological relevance of primed enhanced transcription from the specific memory genes is discussed. The biotic stress hormone JA potentiated transcription from a specific subset of ABA-response genes, revealing a novel aspect of the JA- and ABA-signaling pathways' interactions. H3K4me3 functions as an epigenetic mark at JA-primed dehydration stress response genes before transcription. We emphasize that histone and epigenetic marks are not synonymous and argue

  7. Specific genetic modifications of domestic animals by gene targeting and animal cloning

    Science.gov (United States)

    Wang, Bin; Zhou, Jiangfeng

    2003-01-01

    The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined. PMID:14614774

  8. A New Strategy to Identify and Annotate Human RPE-Specific Gene Expression

    Science.gov (United States)

    Booij, Judith C.; ten Brink, Jacoline B.; Swagemakers, Sigrid M. A.; Verkerk, Annemieke J. M. H.; Essing, Anke H. W.; van der Spek, Peter J.; Bergen, Arthur A. B.

    2010-01-01

    Background To identify and functionally annotate cell type-specific gene expression in the human retinal pigment epithelium (RPE), a key tissue involved in age-related macular degeneration and retinitis pigmentosa. Methodology RPE, photoreceptor and choroidal cells were isolated from selected freshly frozen healthy human donor eyes using laser microdissection. RNA isolation, amplification and hybridization to 44 k microarrays was carried out according to Agilent specifications. Bioinformatics was carried out using Rosetta Resolver, David and Ingenuity software. Principal Findings Our previous 22 k analysis of the RPE transcriptome showed that the RPE has high levels of protein synthesis, strong energy demands, is exposed to high levels of oxidative stress and a variable degree of inflammation. We currently use a complementary new strategy aimed at the identification and functional annotation of RPE-specific expressed transcripts. This strategy takes advantage of the multilayered cellular structure of the retina and overcomes a number of limitations of previous studies. In triplicate, we compared the transcriptomes of RPE, photoreceptor and choroidal cells and we deduced RPE specific expression. We identified at least 114 entries with RPE-specific gene expression. Thirty-nine of these 114 genes also show high expression in the RPE, comparison with the literature showed that 85% of these 39 were previously identified to be expressed in the RPE. In the group of 114 RPE specific genes there was an overrepresentation of genes involved in (membrane) transport, vision and ophthalmic disease. More fundamentally, we found RPE-specific involvement in the RAR-activation, retinol metabolism and GABA receptor signaling pathways. Conclusions In this study we provide a further specification and understanding of the RPE transcriptome by identifying and analyzing genes that are specifically expressed in the RPE. PMID:20479888

  9. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    NARCIS (Netherlands)

    Coccoris, Miriam

    2009-01-01

    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  10. Conservation and sex-specific splicing of the doublesex gene in the ...

    Indian Academy of Sciences (India)

    Genetic control of sex determination in insects has been best characterized in Drosophila melanogaster, where the master gene Sxl codes for RNA that is sex specifically spliced to produce a functional protein only in females. SXL regulates the sex-specific splicing of transformer (tra) RNA which, in turn, regulates the ...

  11. Characterization of yhcN, a new forespore-specific gene of Bacillus subtilis

    NARCIS (Netherlands)

    Bagyan, I.; Noback, M.A; Bron, S; Paidhungat, M.; Setlow, P.

    1998-01-01

    A new Bacillus subtilis sporulation-specific gene, yhcN, has been identified, the expression of which is dependent on the forespore-specific sigma factor sigma(G) and to a much lesser extent on sigma(F). A translational yhcN-lacZ fusion is expressed at a very high level in the forespore, and the

  12. Regulation of hepatocyte-specific gene expression in cultures of human embryonic hepatocytes

    NARCIS (Netherlands)

    van Roon, M. A.; Zonneveld, D.; de Boer, P. A.; Moorman, A. F.; Charles, R.; Lamers, W. H.

    1990-01-01

    The aim of this study was to see whether the rat embryo can serve as a model system for hepatocyte-specific gene expression in the human embryo. Carbamoylphosphate synthetase was used as a hepatocyte-specific marker molecule. Despite the earlier developmental appearance of this enzyme in human than

  13. Rapid identification of rice blast resistance gene by specific length amplified fragment sequencing

    Directory of Open Access Journals (Sweden)

    Shen Chen

    2016-05-01

    Full Text Available Excavation of resistance genes is one of the most effective and environment-friendly measures to control the devastating rice disease caused by Magnaporthe oryzae. Many resistance genes have been mapped and characterized in the last century. Nevertheless, only a few of the total resistance genes could be really applied in the rice breeding program. Huazhan (HZ is a new native rice restorer line developed in China and widely used in hybrid rice in recent years. HZ and its crossed combinations usually show a broad spectrum of resistance against rice blast in different rice ecosystems in China. Dissection of the genetic background of HZ is very useful for its further application. In this study, a combined method based on bulked segregation analysis (BSA and specific length amplified fragment sequencing (SLAF-seq was used to identify blast resistance gene(s in HZ. A total of 56,187 SLAFs labels were captured and 9051 polymorphic SLAFs markers were analysed and procured in this study. One trait associated with candidate resistance genes region on chromosome 12 overlapping 10.2–17.6 Mb has been identified, in which 10 NBS-LRR (nucleotide-binding site-leucine-rich repeat coding genes were used as resistance gene candidates. Our result indicated that SLAF-seq with BSA is a rapid and effective method for initial identification of blast resistance genes. The identification of resistance gene in HZ will improve its molecular breeding and resistance variety application.

  14. Tissue-Specificity of Gene Expression Diverges Slowly between Orthologs, and Rapidly between Paralogs.

    Directory of Open Access Journals (Sweden)

    Nadezda Kryuchkova-Mostacci

    2016-12-01

    Full Text Available The ortholog conjecture implies that functional similarity between orthologous genes is higher than between paralogs. It has been supported using levels of expression and Gene Ontology term analysis, although the evidence was rather weak and there were also conflicting reports. In this study on 12 species we provide strong evidence of high conservation in tissue-specificity between orthologs, in contrast to low conservation between within-species paralogs. This allows us to shed a new light on the evolution of gene expression patterns. While there have been several studies of the correlation of expression between species, little is known about the evolution of tissue-specificity itself. Ortholog tissue-specificity is strongly conserved between all tetrapod species, with the lowest Pearson correlation between mouse and frog at r = 0.66. Tissue-specificity correlation decreases strongly with divergence time. Paralogs in human show much lower conservation, even for recent Primate-specific paralogs. When both paralogs from ancient whole genome duplication tissue-specific paralogs are tissue-specific, it is often to different tissues, while other tissue-specific paralogs are mostly specific to the same tissue. The same patterns are observed using human or mouse as focal species, and are robust to choices of datasets and of thresholds. Our results support the following model of evolution: in the absence of duplication, tissue-specificity evolves slowly, and tissue-specific genes do not change their main tissue of expression; after small-scale duplication the less expressed paralog loses the ancestral specificity, leading to an immediate difference between paralogs; over time, both paralogs become more broadly expressed, but remain poorly correlated. Finally, there is a small number of paralog pairs which stay tissue-specific with the same main tissue of expression, for at least 300 million years.

  15. Engineered cytotoxic T lymphocytes with AFP-specific TCR gene for adoptive immunotherapy in hepatocellular carcinoma.

    Science.gov (United States)

    Sun, Longhao; Guo, Hao; Jiang, Ruoyu; Lu, Li; Liu, Tong; He, Xianghui

    2016-01-01

    Alpha-fetoprotein (AFP) is overexpressed in hepatocellular carcinoma (HCC) and could serve as a tumor-associated antigen (TAA) and potential target for adoptive immunotherapy. However, low frequency and severe functional impairment of AFP-specific T cells in vivo hamper adoptive infusion. TAA-specific T cell receptor (TCR) gene transfer could be an efficient and reliable alternation to generate AFP-specific cytotoxic T lymphocytes (CTLs). Autologous dendritic cells (DC) pulsed with AFP158-166 peptides were used to stimulate AFP-specific CTLs. TCR α/β chain genes of AFP-specific CTLs were cloned and linked by 2A peptide to form full-length TCR coding sequence synthesized into a lentiviral vector. Nonspecific activated T cells were engineered by lentivirus infection. Transgenetic CTLs were evaluated for transfection efficiency, expression of AFP158-166-specific TCR, interferon (IFN)-γ secretion, and specific cytotoxicity toward AFP+ HCC cells in vitro and in vivo. Flow cytometry revealed the AFP158-166-MHC-Pentamer positive transgenetic CTLs was 9.86 %. The number of IFN-γ secretion T cells and the specific cytotoxicity toward HpeG2 in vitro and in tumor-bearing NOD/SCID mice were significantly raised in transgenetic CTLs than that of AFP158-166-specific CTLs obtained by peptide-pulsed DCs or control group. TCR gene transfer is a promising strategy to generate AFP158-166-specific CTLs for the treatment of HCC.

  16. Retinal Diseases Caused by Mutations in Genes Not Specifically Associated with the Clinical Diagnosis.

    Directory of Open Access Journals (Sweden)

    Xia Wang

    Full Text Available When seeking a confirmed molecular diagnosis in the research setting, patients with one descriptive diagnosis of retinal disease could carry pathogenic variants in genes not specifically associated with that description. However, this event has not been evaluated systematically in clinical diagnostic laboratories that validate fully all target genes to minimize false negatives/positives.We performed targeted next-generation sequencing analysis on 207 ocular disease-related genes for 42 patients whose DNA had been tested negative for disease-specific panels of genes known to be associated with retinitis pigmentosa, Leber congenital amaurosis, or exudative vitreoretinopathy.Pathogenic variants, including single nucleotide variations and copy number variations, were identified in 9 patients, including 6 with variants in syndromic retinal disease genes and 3 whose molecular diagnosis could not be distinguished easily from their submitted clinical diagnosis, accounting for 21% (9/42 of the unsolved cases.Our study underscores the clinical and genetic heterogeneity of retinal disorders and provides valuable reference to estimate the fraction of clinical samples whose retinal disorders could be explained by genes not specifically associated with the corresponding clinical diagnosis. Our data suggest that sequencing a larger set of retinal disorder related genes can increase the molecular diagnostic yield, especially for clinically hard-to-distinguish cases.

  17. Chilli leaf curl virus-based vector for phloem-specific silencing of endogenous genes and overexpression of foreign genes.

    Science.gov (United States)

    Kushwaha, Nirbhay Kumar; Chakraborty, Supriya

    2017-03-01

    Geminiviruses are the largest and most devastating group of plant viruses which contain ssDNA as a genetic material. Geminivirus-derived virus-induced gene silencing (VIGS) vectors have emerged as an efficient and simple tool to study functional genomics in various plants. However, previously developed VIGS vectors have certain limitations, owing to their inability to be used in tissue-specific functional study. In the present study, we developed a Chilli leaf curl virus (ChiLCV)-based VIGS vector for its tissue-specific utilization by replacing the coat protein gene (open reading frame (ORF) AV1) with the gene of interest for phytoene desaturase (PDS) of Nicotiana benthamiana. Functional validation of ChiLCV-based VIGS in N. benthamiana resulted in systemic silencing of PDS exclusively in the phloem region of inoculated plants. Furthermore, expression of enhanced green fluorescence protein (EGFP) using the same ChiLCV vector was verified in the phloem region of the inoculated plants. Our results also suggested that, during the early phase of infection, ChiLCV was associated with the phloem region, but at later stage of pathogenesis, it can spread into the adjoining non-vascular tissues. Taken together, the newly developed ChiLCV-based vector provides an efficient and versatile tool, which can be exploited to unveil the unknown functions of several phloem-specific genes.

  18. Microarray analysis of female- and larval-specific gene expression in the horn fly (Diptera: Muscidae).

    Science.gov (United States)

    Guerrero, Felix D; Dowd, Scot E; Sun, Yan; Saldivar, Leonel; Wiley, Graham B; Macmil, Simone L; Najar, Fares; Roe, Bruce A; Foil, Lane D

    2009-03-01

    The horn fly, Haematobia irritans L., is an obligate blood-feeding parasite of cattle, and control of this pest is a continuing problem because the fly is becoming resistant to pesticides. Dominant conditional lethal gene systems are being studied as population control technologies against agricultural pests. One of the components of these systems is a female-specific gene promoter that drives expression of a lethality-inducing gene. To identify candidate genes to supply this promoter, microarrays were designed from a horn fly expressed sequence tag (EST) database and probed to identify female-specific and larval-specific gene expression. Analysis of dye swap experiments found 432 and 417 transcripts whose expression levels were higher or lower in adult female flies, respectively, compared with adult male flies. Additionally, 419 and 871 transcripts were identified whose expression levels were higher or lower in first-instar larvae compared with adult flies, respectively. Three transcripts were expressed more highly in adult females flies compared with adult males and also higher in the first-instar larval lifestage compared with adult flies. One of these transcripts, a putative nanos ortholog, has a high female-to-male expression ratio, a moderate expression level in first-instar larvae, and has been well characterized in Drosophila. melanogaster (Meigen). In conclusion, we used microarray technology, verified by reverse transcriptase-polymerase chain reaction and massively parallel pyrosequencing, to study life stage- and sex-specific gene expression in the horn fly and identified three gene candidates for detailed evaluation as a gene promoter source for the development of a female-specific conditional lethality system.

  19. DFI-seq identification of environment-specific gene expression in uropathogenic Escherichia coli.

    Science.gov (United States)

    Madelung, Michelle; Kronborg, Tina; Doktor, Thomas Koed; Struve, Carsten; Krogfelt, Karen Angeliki; Møller-Jensen, Jakob

    2017-04-24

    During infection of the urinary tract, uropathogenic Escherichia coli (UPEC) are exposed to different environments, such as human urine and the intracellular environments of bladder epithelial cells. Each environment elicits a distinct bacterial environment-specific transcriptional response. We combined differential fluorescence induction (DFI) with next-generation sequencing, collectively termed DFI-seq, to identify differentially expressed genes in UPEC strain UTI89 during growth in human urine and bladder cells. DFI-seq eliminates the need for iterative cell sorting of the bacterial library and yields a genome-wide view of gene expression. By analysing the gene expression of UPEC in human urine we found that genes involved in amino acid biosynthesis were upregulated. Deletion mutants lacking genes involved in arginine biosynthesis were outcompeted by the wild type during growth in human urine and inhibited in their ability to invade or proliferate in the J82 bladder epithelial cell line. Furthermore, DFI-seq was used to identify genes involved in invasion of J82 bladder epithelial cells. 56 genes were identified to be differentially expressed of which almost 60% encoded hypothetical proteins. One such gene UTI89_C5139, displayed increased adhesion and invasion of J82 cells when deleted from UPEC strain UTI89. We demonstrate the usefulness of DFI-seq for identification of genes required for optimal growth of UPEC in human urine, as well as potential virulence genes upregulated during infection of bladder cell culture. DFI-seq holds potential for the study of bacterial gene expression in live-animal infection systems. By linking fitness genes, such as those genes involved in amino acid biosynthesis, to virulence, this study contributes to our understanding of UPEC pathophysiology.

  20. Modelling epigenetic regulation of gene expression in 12 human cell types reveals combinatorial patterns of cell-type-specific genes.

    Science.gov (United States)

    Lu, Yiming; Qu, Wubin; Min, Bo; Liu, Zheyan; Chen, Changsheng; Zhang, Chenggang

    2014-06-01

    The maintenance of the diverse cell types in a multicellular organism is one of the fundamental mysteries of biology. Modelling the dynamic regulatory relationships between the histone modifications and the gene expression across the diverse cell types is essential for the authors to understand the mechanisms of the epigenetic regulation. Here, the authors thoroughly assessed the histone modification enrichment profiles at the promoters and constructed quantitative models between the histone modification abundances and the gene expression in 12 human cell types. The author's results showed that the histone modifications at the promoters exhibited remarkably cell-type-dependent variability in the cell-type-specific (CTS) genes. They demonstrated that the variable profiles of the modifications are highly predictive for the dynamic changes of the gene expression across all the cell types. Their findings revealed the close relationship between the combinatorial patterns of the histone modifications and the CTS gene expression. They anticipate that the findings and the methods they used in this study could provide useful information for the future studies of the regulatory roles of the histone modifications in the CTS genes.

  1. Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles.

    Science.gov (United States)

    Luo, Ying-Li; Xu, Cong-Fei; Li, Hong-Jun; Cao, Zhi-Ting; Liu, Jing; Wang, Ji-Long; Du, Xiao-Jiao; Yang, Xian-Zhu; Gu, Zhen; Wang, Jun

    2018-01-09

    The CRISPR/Cas9 gene editing technology holds promise for the treatment of multiple diseases. However, the inability to perform specific gene editing in targeted tissues and cells, which may cause off-target effects, is one of the critical bottlenecks for therapeutic application of CRISPR/Cas9. Herein, macrophage-specific promoter-driven Cas9 expression plasmids (pM458 and pM330) were constructed and encapsulated in cationic lipid-assisted PEG-b-PLGA nanoparticles (CLAN). The obtained nanoparticles encapsulating the CRISPR/Cas9 plasmids were able to specifically express Cas9 in macrophages as well as their precursor monocytes both in vitro and in vivo. More importantly, after further encoding a guide RNA targeting Ntn1 (sgNtn1) into the plasmid, the resultant CLANpM330/sgNtn1 successfully disrupted the Ntn1 gene in macrophages and their precursor monocytes in vivo, which reduced expression of netrin-1 (encoded by Ntn1) and subsequently improved type 2 diabetes (T2D) symptoms. Meanwhile, the Ntn1 gene was not disrupted in other cells due to specific expression of Cas9 by the CD68 promoter. This strategy provides alternative avenues for specific in vivo gene editing with the CRISPR/Cas9 system.

  2. Control of target gene specificity during metamorphosis by the steroid response gene E93.

    Science.gov (United States)

    Mou, Xiaochun; Duncan, Dianne M; Baehrecke, Eric H; Duncan, Ian

    2012-02-21

    Hormonal control of sexual maturation is a common feature in animal development. A particularly dramatic example is the metamorphosis of insects, in which pulses of the steroid hormone ecdysone drive the wholesale transformation of the larva into an adult. The mechanisms responsible for this transformation are not well understood. Work in Drosophila indicates that the larval and adult forms are patterned by the same underlying sets of developmental regulators, but it is not understood how the same regulators pattern two distinct forms. Recent studies indicate that this ability is facilitated by a global change in the responsiveness of target genes during metamorphosis. Here we show that this shift is controlled in part by the ecdysone-induced transcription factor E93. Although long considered a dedicated regulator of larval cell death, we find that E93 is expressed widely in adult cells at the pupal stage and is required for many patterning processes at this time. To understand the role of E93 in adult patterning, we focused on a simple E93-dependent process, the induction of the Dll gene within bract cells of the pupal leg by EGF receptor signaling. In this system, we show that E93 functions to cause Dll to become responsive to EGF receptor signaling. We demonstrate that E93 is both necessary and sufficient for directing this switch. E93 likely controls the responsiveness of many other target genes because it is required broadly for patterning during metamorphosis. The wide conservation of E93 orthologs suggests that similar mechanisms control life-cycle transitions in other organisms, including vertebrates.

  3. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.

    Science.gov (United States)

    Kawahara, Atsuo; Hisano, Yu; Ota, Satoshi; Taimatsu, Kiyohito

    2016-05-13

    The zebrafish (Danio rerio) is an ideal vertebrate model to investigate the developmental molecular mechanism of organogenesis and regeneration. Recent innovation in genome editing technologies, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system, have allowed researchers to generate diverse genomic modifications in whole animals and in cultured cells. The CRISPR/Cas9 and TALEN techniques frequently induce DNA double-strand breaks (DSBs) at the targeted gene, resulting in frameshift-mediated gene disruption. As a useful application of genome editing technology, several groups have recently reported efficient site-specific integration of exogenous genes into targeted genomic loci. In this review, we provide an overview of TALEN- and CRISPR/Cas9-mediated site-specific integration of exogenous genes in zebrafish.

  4. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish

    Directory of Open Access Journals (Sweden)

    Atsuo Kawahara

    2016-05-01

    Full Text Available The zebrafish (Danio rerio is an ideal vertebrate model to investigate the developmental molecular mechanism of organogenesis and regeneration. Recent innovation in genome editing technologies, such as zinc finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs and the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR associated protein 9 (Cas9 system, have allowed researchers to generate diverse genomic modifications in whole animals and in cultured cells. The CRISPR/Cas9 and TALEN techniques frequently induce DNA double-strand breaks (DSBs at the targeted gene, resulting in frameshift-mediated gene disruption. As a useful application of genome editing technology, several groups have recently reported efficient site-specific integration of exogenous genes into targeted genomic loci. In this review, we provide an overview of TALEN- and CRISPR/Cas9-mediated site-specific integration of exogenous genes in zebrafish.

  5. Reprogramming LCLs to iPSCs Results in Recovery of Donor-Specific Gene Expression Signature.

    Directory of Open Access Journals (Sweden)

    Samantha M Thomas

    2015-05-01

    Full Text Available Renewable in vitro cell cultures, such as lymphoblastoid cell lines (LCLs, have facilitated studies that contributed to our understanding of genetic influence on human traits. However, the degree to which cell lines faithfully maintain differences in donor-specific phenotypes is still debated. We have previously reported that standard cell line maintenance practice results in a loss of donor-specific gene expression signatures in LCLs. An alternative to the LCL model is the induced pluripotent stem cell (iPSC system, which carries the potential to model tissue-specific physiology through the use of differentiation protocols. Still, existing LCL banks represent an important source of starting material for iPSC generation, and it is possible that the disruptions in gene regulation associated with long-term LCL maintenance could persist through the reprogramming process. To address this concern, we studied the effect of reprogramming mature LCL cultures from six unrelated donors to iPSCs on the ensuing gene expression patterns within and between individuals. We show that the reprogramming process results in a recovery of donor-specific gene regulatory signatures, increasing the number of genes with a detectable donor effect by an order of magnitude. The proportion of variation in gene expression statistically attributed to donor increases from 6.9% in LCLs to 24.5% in iPSCs (P < 10-15. Since environmental contributions are unlikely to be a source of individual variation in our system of highly passaged cultured cell lines, our observations suggest that the effect of genotype on gene regulation is more pronounced in iPSCs than in LCLs. Our findings indicate that iPSCs can be a powerful model system for studies of phenotypic variation across individuals in general, and the genetic association with variation in gene regulation in particular. We further conclude that LCLs are an appropriate starting material for iPSC generation.

  6. Signaling pathway impact analysis by incorporating the importance and specificity of genes (SPIA-IS).

    Science.gov (United States)

    Fang, Hongyuan; Li, Xianbin; Zan, Xiangzhen; Shen, Liangzhong; Ma, Runnian; Liu, Wenbin

    2017-12-01

    rlying biology of differentially expressed genes and proteins. Although various approaches have been proposed to identify cancer-related pathways, most of them only partially consider the influence of those differentially expressed genes, such as the gene numbers, their perturbation in the signaling transduction, and the interaction between genes. Signaling-pathway impact analysis (SPIA) provides a convenient framework which considers both the classical enrichment analysis and the actual perturbation on a given pathway. In this study, we extended previous proposed SPIA by incorporating the importance and specificity of genes (SPIA-IS). We applied this approach to six datasets for colorectal cancer, lung cancer, and pancreatic cancer. Results from these datasets showed that the proposed SPIA-IS could effectively improve the performance of the original SPIA in identifying cancer-related pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Context-specific infinite mixtures for clustering gene expression profiles across diverse microarray dataset

    Science.gov (United States)

    Liu, X.; Sivaganesan, S.; Yeung, K.Y.; Guo, J.; Bumgarner, R.E.; Mario, Medvedovic

    2006-01-01

    Motivation Identifying groups of co-regulated genes by monitoring their expression over various experimental conditions is complicated by the fact that such co-regulation is condition-specific. Ignoring the context-specific nature of co-regulation significantly reduces the ability of clustering procedures to detect co-expressed genes due to additional “noise” introduced by non-informative measurements. Results We have developed a novel Bayesian hierarchical model and corresponding computational algorithms for clustering gene expression profiles across diverse experimental conditions and studies that accounts for context-specificity of gene expression patterns. The model is based on the Bayesian infinite mixtures framework and does not require a priori specification of the number of clusters. We demonstrate that explicit modeling of context-specificity results in increased accuracy of the cluster analysis by examining the specificity and sensitivity of clusters in microarray data. We also demonstrate that probabilities of co-expression derived from the posterior distribution of clusterings are valid estimates of statistical significance of created clusters. Availability The open-source package gimm is available at http://eh3.uc.edu/gimm. Contact Mario.Medvedovic@uc.edu Supplementary information http://eh3.uc.edu/gimm/csimm PMID:16709591

  8. Development of gene transfer for induction of antigen-specific tolerance

    Directory of Open Access Journals (Sweden)

    Brandon K Sack

    2014-01-01

    Full Text Available Gene replacement therapies, like organ and cell transplantation, are likely to introduce neoantigens that elicit rejection via humoral and/or effector T-cell immune responses. Nonetheless, thanks to an ever-growing body of preclinical studies; it is now well accepted that gene transfer protocols can be specifically designed and optimized for induction of antigen-specific immune tolerance. One approach is to specifically express a gene in a tissue with a tolerogenic microenvironment such as the liver or thymus. Another strategy is to transfer a particular gene into hematopoietic stem cells or immunological precursor cells thus educating the immune system to recognize the therapeutic protein as “self.” In addition, expression of the therapeutic protein in protolerogenic antigen-presenting cells such as immature dendritic cells and B cells has proven to be promising. All three approaches have successfully prevented unwanted immune responses in preclinical studies aimed at the treatment of inherited protein deficiencies, e.g., lysosomal storage disorders and hemophilia, and of type 1 diabetes and multiple sclerosis. In this review, we focus on current gene transfer protocols that induce tolerance, including gene delivery vehicles and target tissues, and discuss successes and obstacles in different disease models.

  9. Concordance of gene expression in human protein complexes reveals tissue specificity and pathology

    DEFF Research Database (Denmark)

    Börnigen, Daniela; Pers, Tune Hannes; Thorrez, Lieven

    2013-01-01

    Disease-causing variants in human genes usually lead to phenotypes specific to only a few tissues. Here, we present a method for predicting tissue specificity based on quantitative deregulation of protein complexes. The underlying assumption is that the degree of coordinated expression among...... proteins in a complex within a given tissue may pinpoint tissues that will be affected by a mutation in the complex and coordinated expression may reveal the complex to be active in the tissue. We identified known disease genes and their protein complex partners in a high-quality human interactome. Each...... susceptibility gene's tissue involvement was ranked based on coordinated expression with its interaction partners in a non-disease global map of human tissue-specific expression. The approach demonstrated high overall area under the curve (0.78) and was very successfully benchmarked against a random model...

  10. Gene expression profiling in autoimmune diseases: chronic inflammation or disease specific patterns?

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo

    2007-01-01

    ) patients and healthy individuals were specific for the arthritic process or likewise altered in other chronic inflammatory diseases such as chronic autoimmune thyroiditis (Hashimoto's thyroiditis, HT) and inflammatory bowel disease (IBD). Using qPCR for 18 RA-discriminative genes, there were no significant...... differences in peripheral blood mononuclear cell (MNC) gene expression patterns between 15 newly diagnosed HT patients and 15 matched healthy controls. However, the MNC expression levels of five genes were significantly upregulated in 25 IBD patients, compared to 18 matched healthy controls (CD14, FACL2, FCN1...

  11. In vitro and in vivo silencing of plasmodial dhs and eIf-5a genes in a putative, non-canonical RNAi-related pathway.

    Science.gov (United States)

    Schwentke, Andreas; Krepstakies, Marcel; Mueller, Ann-Kristin; Hammerschmidt-Kamper, Christiane; Motaal, Basma A; Bernhard, Tina; Hauber, Joachim; Kaiser, Annette

    2012-06-13

    Deoxyhypusine synthase (DHS) catalyzes the first step in hypusine biosynthesis of eukaryotic initiation factor 5A (eIF-5A) in Plasmodium falciparum. Target evaluation of parasitic DHS has recently been performed with CNI-1493, a novel selective pro-inflammatory cytokine inhibitor used in clinical phase II for the treatment of Crohn's disease. CNI-1493 prevented infected mice from experimental cerebral malaria by decreasing the levels in hypusinated eIF-5A and serum TNF, implicating a link between cytokine signaling and the hypusine pathway.Therefore we addressed the question whether either DHS itself or eIF-5A is required for the outcome of severe malaria. In a first set of experiments we performed an in vitro knockdown of the plasmodial eIF-5A and DHS proteins by RNA interference (RNAi) in 293 T cells. Secondly, transfection of siRNA constructs into murine Plasmodium schizonts was performed which, in turn, were used for infection. 293 T cells treated with plasmodial DHS- and eIF-5A specific siRNAs or control siRNAs were analyzed by RT-PCR to determine endogenous dhs -and eIF-5A mRNA levels. The expressed DHS-shRNA and EIF-5A-shRNA clearly downregulated the corresponding transcript in these cells. Interestingly, mice infected with transgenic schizonts expressing either the eIF-5A or dhs shRNA showed an elevated parasitemia within the first two days post infection which then decreased intermittently. These results were obtained without drug selection. Blood samples, which were taken from the infected mice at day 5 post infection with either the expressed EIF-5A-shRNA or the DHS-shRNA were analyzed by RT-PCR and Western blot techniques, demonstrating the absence of either the hypusinated form of eIF-5A or DHS. Infection of NMRI mice with schizonts from the lethal P. berghei ANKA wildtype strain transgenic for plasmodial eIF-5A-specific shRNA or DHS-specific shRNA resulted in low parasitemia 2-9 days post infection before animals succumbed to hyperparasitemia similar

  12. In vitro and in vivo silencing of plasmodial dhs and eIf-5a genes in a putative, non-canonical RNAi-related pathway

    Directory of Open Access Journals (Sweden)

    Schwentke Andreas

    2012-06-01

    Full Text Available Abstract Background Deoxyhypusine synthase (DHS catalyzes the first step in hypusine biosynthesis of eukaryotic initiation factor 5A (eIF-5A in Plasmodium falciparum. Target evaluation of parasitic DHS has recently been performed with CNI-1493, a novel selective pro-inflammatory cytokine inhibitor used in clinical phase II for the treatment of Crohn's disease. CNI-1493 prevented infected mice from experimental cerebral malaria by decreasing the levels in hypusinated eIF-5A and serum TNF, implicating a link between cytokine signaling and the hypusine pathway. Therefore we addressed the question whether either DHS itself or eIF-5A is required for the outcome of severe malaria. In a first set of experiments we performed an in vitro knockdown of the plasmodial eIF-5A and DHS proteins by RNA interference (RNAi in 293 T cells. Secondly, transfection of siRNA constructs into murine Plasmodium schizonts was performed which, in turn, were used for infection. Results 293 T cells treated with plasmodial DHS- and eIF-5A specific siRNAs or control siRNAs were analyzed by RT-PCR to determine endogenous dhs -and eIF-5A mRNA levels. The expressed DHS-shRNA and EIF-5A-shRNA clearly downregulated the corresponding transcript in these cells. Interestingly, mice infected with transgenic schizonts expressing either the eIF-5A or dhs shRNA showed an elevated parasitemia within the first two days post infection which then decreased intermittently. These results were obtained without drug selection. Blood samples, which were taken from the infected mice at day 5 post infection with either the expressed EIF-5A-shRNA or the DHS-shRNA were analyzed by RT-PCR and Western blot techniques, demonstrating the absence of either the hypusinated form of eIF-5A or DHS. Conclusions Infection of NMRI mice with schizonts from the lethal P. berghei ANKA wildtype strain transgenic for plasmodial eIF-5A-specific shRNA or DHS-specific shRNA resulted in low parasitemia 2–9

  13. [Site-specific integration of heterologous gene into Bacillus thuringiensis chromosome and its expression].

    Science.gov (United States)

    Liu, Ping; Xia, Liqiu; Hu, Shengbiao; Yan, Li; Ding, Xuezhi; Zhang, Youming; Yu, Ziniu

    2008-05-01

    To efficiently construct resistance gene-free Bacillius thuringiensis engineered strain that can stably express heterologous gene. We amplified the trigger factor gene located in chromosome of XBU001 strain as homologous arms and constructed an integrative plasmid pKTF12 on the basis of plasmid pKSV7, a temperature sensitive plasmid. We also constructed a recombinant strain KCTF12 containing cry1Ac gene in its chromosome via the integrative plasmid pKTF12. Site-specific integration of cry1Ac into XBU001 chromosome did not affect its normal growth. The cry1Ac gene could stably express and form bipyramid crystals in KCTF12. When compared with HTX42 harboring a high-copy number plasmid, the recombinant strain KCTF12 has the merit of advanced sporulation and an increase in spore number. The Site-specific integration proved to be a good approach to construct resistance gene-free Bacillius thuringiensis engineered strain that can stably express the heterologous gene.

  14. [Construction of the female subtractive cDNA library and screening of the specific expressing genes].

    Science.gov (United States)

    Wang, Yan-hai; Peng, Hong-juan; Chen, Xiao-guang; Shen, Shu-man

    2006-02-28

    To screen the Schistosoma japonicum female specific expressing genes. S. japonicum adult worms were collected from the rabbits' vein after six-week infection by affusing method. The adult worms were stabilized by RNA-later liquid, the male and female worms were carefully separated with nipper. The high quality total RNA was extracted and mRNA was obtained after purification. Double stranded cDNAs were synthesized after reverse transcription. Female subtractive (female as tester, male as driver) and male subtractive (male as tester, female as driver) cDNA libraries were constructed. The differentially expressed genes were further screened by dot-blot hybridization. The clones were selected and sequenced, which showed apparently higher signals when hybridizing with the female subtracting male probes, than those signals when hybridizing with the male subtracting female probes. The homology of these sequences was searched with BLAST program. The semi-quantitative PCR was applied to test the differential gene expression in female and male adult worms. Female subtracting male and male subtracting female cDNA libraries were constructed with SSH technique. After dot-blot hybridization, 50 clones were tested to be the potential female differentially expressed genes and were sequenced. 42 expressing sequence tags (ESTs) were received. After bioinformatics analysis, 17 fragments (about 40.5%) showed high identity with the S. japonicum egg-shell protein genes, 17 sequences (about 40.5%) were highly homologous to unknown S. japonicum genes and partly homologous to female specific 800 protein. 8 fragments (about 19.0%) showed high identity with other S. japonicum unknown genes. The fragments in clones of 577, 579, 668, 695, 720, and 708 were tested by RT-PCR to be the differentially expressed genes in female adult worms using S. japonicum actin gene as the internal standard. These fragments were highly homologous to S. japonicum egg shell protein gene AY222885, AY222895, AB

  15. Bacillus cereus-type polyhydroxyalkanoate biosynthetic gene cluster contains R-specific enoyl-CoA hydratase gene.

    Science.gov (United States)

    Kihara, Takahiro; Hiroe, Ayaka; Ishii-Hyakutake, Manami; Mizuno, Kouhei; Tsuge, Takeharu

    2017-08-01

    Bacillus cereus and Bacillus megaterium both accumulate polyhydroxyalkanoate (PHA) but their PHA biosynthetic gene (pha) clusters that code for proteins involved in PHA biosynthesis are different. Namely, a gene encoding MaoC-like protein exists in the B. cereus-type pha cluster but not in the B. megaterium-type pha cluster. MaoC-like protein has an R-specific enoyl-CoA hydratase (R-hydratase) activity and is referred to as PhaJ when involved in PHA metabolism. In this study, the pha cluster of B. cereus YB-4 was characterized in terms of PhaJ's function. In an in vitro assay, PhaJ from B. cereus YB-4 (PhaJYB4) exhibited hydration activity toward crotonyl-CoA. In an in vivo assay using Escherichia coli as a host for PHA accumulation, the recombinant strain expressing PhaJYB4 and PHA synthase led to increased PHA accumulation, suggesting that PhaJYB4 functioned as a monomer supplier. The monomer composition of the accumulated PHA reflected the substrate specificity of PhaJYB4, which appeared to prefer short chain-length substrates. The pha cluster from B. cereus YB-4 functioned to accumulate PHA in E. coli; however, it did not function when the phaJYB4 gene was deleted. The B. cereus-type pha cluster represents a new example of a pha cluster that contains the gene encoding PhaJ.

  16. Gene expression of chicken gonads is sex- and side-specific.

    Science.gov (United States)

    Scheider, Jessica; Afonso-Grunz, Fabian; Hoffmeier, Klaus; Horres, Ralf; Groher, Florian; Rycak, Lukas; Oehlmann, Jörg; Winter, Peter

    2014-01-01

    In chicken, the left and right female gonads undergo a completely different program during development. To learn more about the molecular factors underlying side-specific development and to identify potential sex- and side-specific genes in developing gonads, we separately performed next-generation sequencing-based deepSuperSAGE transcription profiling from left and right, female and male gonads of 19-day-old chicken embryos. A total of 836 transcript variants were significantly differentially expressed (p < 10(-5)) between combined male and female gonads. Left-right comparison revealed 1,056 and 822 differentially (p < 10(-5)) expressed transcript variants for male and female gonads, respectively, of which 72 are side-specific in both sexes. At least some of these may represent key players for lateral development in birds. Additionally, several genes with laterally differential expression in the ovaries seem to determine female gonads for growth or regression, whereas right-left differences in testes are mostly limited to the differentially expressed genes present in both sexes. With a few exceptions, side-specific genes are not located on the sex chromosomes. The large differences in lateral gene expression in the ovaries in almost all metabolic pathways suggest that the regressing right gonad might have undergone a change of function during evolution. © 2014 S. Karger AG, Basel.

  17. GETPrime: a gene- or transcript-specific primer database for quantitative real-time PCR

    Science.gov (United States)

    Gubelmann, Carine; Gattiker, Alexandre; Massouras, Andreas; Hens, Korneel; David, Fabrice; Decouttere, Frederik; Rougemont, Jacques; Deplancke, Bart

    2011-01-01

    The vast majority of genes in humans and other organisms undergo alternative splicing, yet the biological function of splice variants is still very poorly understood in large part because of the lack of simple tools that can map the expression profiles and patterns of these variants with high sensitivity. High-throughput quantitative real-time polymerase chain reaction (qPCR) is an ideal technique to accurately quantify nucleic acid sequences including splice variants. However, currently available primer design programs do not distinguish between splice variants and also differ substantially in overall quality, functionality or throughput mode. Here, we present GETPrime, a primer database supported by a novel platform that uniquely combines and automates several features critical for optimal qPCR primer design. These include the consideration of all gene splice variants to enable either gene-specific (covering the majority of splice variants) or transcript-specific (covering one splice variant) expression profiling, primer specificity validation, automated best primer pair selection according to strict criteria and graphical visualization of the latter primer pairs within their genomic context. GETPrime primers have been extensively validated experimentally, demonstrating high transcript specificity in complex samples. Thus, the free-access, user-friendly GETPrime database allows fast primer retrieval and visualization for genes or groups of genes of most common model organisms, and is available at http://updepla1srv1.epfl.ch/getprime/. Database URL: http://deplanckelab.epfl.ch. PMID:21917859

  18. Adaptive NetworkProfiler for Identifying Cancer Characteristic-Specific Gene Regulatory Networks.

    Science.gov (United States)

    Park, Heewon; Shimamura, Teppei; Imoto, Seiya; Miyano, Satoru

    2017-10-20

    There is currently much discussion about sample (patient)-specific gene regulatory network identification, since the efficiently constructed sample-specific gene networks lead to effective personalized cancer therapy. Although statistical approaches have been proposed for inferring gene regulatory networks, the methods cannot reveal sample-specific characteristics because the existing methods, such as an L1-type regularization, provide averaged results for all samples. Thus, we cannot reveal sample-specific characteristics in transcriptional regulatory networks. To settle on this issue, the NetworkProfiler was proposed based on the kernel-based L1-type regularization. The NetworkProfiler imposes a weight on each sample based on the Gaussian kernal function for controlling effect of samples on modeling a target sample, where the amount of weight depends on similarity of cancer characteristics between samples. The method, however, cannot perform gene regulatory network identification well for a target sample in a sparse region (i.e., for a target sample, there are only a few samples having a similar characteristic of the target sample, where the characteristic is considered as a modulator in sample-specific gene network construction), since a constant bandwidth in the Gaussian kernel function cannot effectively group samples for modeling a target sample in sparse region. The cancer characteristics, such as an anti-cancer drug sensitivity, are usually nonuniformly distributed, and thus modeling for samples in a sparse region is also a crucial issue. We propose a novel kernel-based L1-type regularization method based on a modified k-nearest neighbor (KNN)-Gaussian kernel function, called an adaptive NetworkProfiler. By using the modified KNN-Gaussian kernel function, our method provides robust results against the distribution of modulators, and properly groups samples according to a cancer characteristic for sample-specific analysis. Furthermore, we propose a sample-specific

  19. Substrate-specific gene expression in Batrachochytrium dendrobatidis, the chytrid pathogen of amphibians.

    Directory of Open Access Journals (Sweden)

    Erica Bree Rosenblum

    Full Text Available Determining the mechanisms of host-pathogen interaction is critical for understanding and mitigating infectious disease. Mechanisms of fungal pathogenicity are of particular interest given the recent outbreaks of fungal diseases in wildlife populations. Our study focuses on Batrachochytrium dendrobatidis (Bd, the chytrid pathogen responsible for amphibian declines around the world. Previous studies have hypothesized a role for several specific families of secreted proteases as pathogenicity factors in Bd, but the expression of these genes has only been evaluated in laboratory growth conditions. Here we conduct a genome-wide study of Bd gene expression under two different nutrient conditions. We compare Bd gene expression profiles in standard laboratory growth media and in pulverized host tissue (i.e., frog skin. A large proportion of genes in the Bd genome show increased expression when grown in host tissue, indicating the importance of studying pathogens on host substrate. A number of gene classes show particularly high levels of expression in host tissue, including three families of secreted proteases (metallo-, serine- and aspartyl-proteases, adhesion genes, lipase-3 encoding genes, and a group of phylogenetically unusual crinkler-like effectors. We discuss the roles of these different genes as putative pathogenicity factors and discuss what they can teach us about Bd's metabolic targets, host invasion, and pathogenesis.

  20. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo

    Science.gov (United States)

    Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar; hide

    2002-01-01

    We present the current form of a provisional DNA sequence-based regulatory gene network that explains in outline how endomesodermal specification in the sea urchin embryo is controlled. The model of the network is in a continuous process of revision and growth as new genes are added and new experimental results become available; see http://www.its.caltech.edu/mirsky/endomeso.htm (End-mes Gene Network Update) for the latest version. The network contains over 40 genes at present, many newly uncovered in the course of this work, and most encoding DNA-binding transcriptional regulatory factors. The architecture of the network was approached initially by construction of a logic model that integrated the extensive experimental evidence now available on endomesoderm specification. The internal linkages between genes in the network have been determined functionally, by measurement of the effects of regulatory perturbations on the expression of all relevant genes in the network. Five kinds of perturbation have been applied: (1) use of morpholino antisense oligonucleotides targeted to many of the key regulatory genes in the network; (2) transformation of other regulatory factors into dominant repressors by construction of Engrailed repressor domain fusions; (3) ectopic expression of given regulatory factors, from genetic expression constructs and from injected mRNAs; (4) blockade of the beta-catenin/Tcf pathway by introduction of mRNA encoding the intracellular domain of cadherin; and (5) blockade of the Notch signaling pathway by introduction of mRNA encoding the extracellular domain of the Notch receptor. The network model predicts the cis-regulatory inputs that link each gene into the network. Therefore, its architecture is testable by cis-regulatory analysis. Strongylocentrotus purpuratus and Lytechinus variegatus genomic BAC recombinants that include a large number of the genes in the network have been sequenced and annotated. Tests of the cis-regulatory predictions of

  1. Elevated transcription factor specificity protein 1 in autistic brains alters the expression of autism candidate genes.

    Science.gov (United States)

    Thanseem, Ismail; Anitha, Ayyappan; Nakamura, Kazuhiko; Suda, Shiro; Iwata, Keiko; Matsuzaki, Hideo; Ohtsubo, Masafumi; Ueki, Takatoshi; Katayama, Taiichi; Iwata, Yasuhide; Suzuki, Katsuaki; Minoshima, Shinsei; Mori, Norio

    2012-03-01

    Profound changes in gene expression can result from abnormalities in the concentrations of sequence-specific transcription factors like specificity protein 1 (Sp1). Specificity protein 1 binding sites have been reported in the promoter regions of several genes implicated in autism. We hypothesize that dysfunction of Sp1 could affect the expression of multiple autism candidate genes, contributing to the heterogeneity of autism. We assessed any alterations in the expression of Sp1 and that of autism candidate genes in the postmortem brain (anterior cingulate gyrus [ACG], motor cortex, and thalamus) of autism patients (n = 8) compared with healthy control subjects (n = 13). Alterations in the expression of candidate genes upon Sp1/DNA binding inhibition with mithramycin and Sp1 silencing by RNAi were studied in SK-N-SH neuronal cells. We observed elevated expression of Sp1 in ACG of autism patients (p = .010). We also observed altered expression of several autism candidate genes. GABRB3, RELN, and HTR2A showed reduced expression, whereas CD38, ITGB3, MAOA, MECP2, OXTR, and PTEN showed elevated expression in autism. In SK-N-SH cells, OXTR, PTEN, and RELN showed reduced expression upon Sp1/DNA binding inhibition and Sp1 silencing. The RNA integrity number was not available for any of the samples. Transcription factor Sp1 is dysfunctional in the ACG of autistic brain. Consequently, the expression of potential autism candidate genes regulated by Sp1, especially OXTR and PTEN, could be affected. The diverse downstream pathways mediated by the Sp1-regulated genes, along with the environmental and intracellular signal-related regulation of Sp1, could explain the complex phenotypes associated with autism.

  2. Recruitment of C. elegans dosage compensation proteins for gene-specific versus chromosome-wide repression.

    Science.gov (United States)

    Yonker, Stephanie A; Meyer, Barbara J

    2003-12-01

    In C. elegans, an X-chromosome-wide regulatory process compensates for the difference in X-linked gene dose between males (XO) and hermaphrodites (XX) by equalizing levels of X-chromosome transcripts between the sexes. To achieve dosage compensation, a large protein complex is targeted to the X chromosomes of hermaphrodites to reduce their expression by half. This repression complex is also targeted to a single autosomal gene, her-1. By silencing this male-specific gene, the complex induces hermaphrodite sexual development. Our analysis of the atypical dosage compensation gene dpy-21 revealed the first molecular differences in the complex that achieves gene-specific versus chromosome-wide repression. dpy-21 mutations, shown here to be null, cause elevated X-linked gene expression in XX animals, but unlike mutations in other dosage compensation genes, they do not cause extensive XX-specific lethality or disrupt the stability or targeting of the dosage compensation complex to X. Nonetheless, DPY-21 is a member of the dosage compensation complex and localizes to X chromosomes in a hermaphrodite-specific manner. However, DPY-21 is the first member of the dosage compensation complex that does not also associate with her-1. In addition to a difference in the composition of the complex at her-1 versus X, we also found differences in the targeting of the complex to these sites. Within the complex, SDC-2 plays the lead role in recognizing X-chromosome targets, while SDC-3 plays the lead in recognizing her-1 targets.

  3. CRISPR/Cas9 Promotes Functional Study of Testis Specific X-Linked Gene In Vivo.

    Directory of Open Access Journals (Sweden)

    Minyan Li

    Full Text Available Mammalian spermatogenesis is a highly regulated multistage process of sperm generation. It is hard to uncover the real function of a testis specific gene in vitro since the in vitro model is not yet mature. With the development of the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 system, we can now rapidly generate knockout mouse models of testis specific genes to study the process of spermatogenesis in vivo. SYCP3-like X-linked 2 (SLX2 is a germ cell specific component, which contains a Cor1 domain and belongs to the XLR (X-linked, lymphocyte regulated family. Previous studies suggested that SLX2 might play an important role in mouse spermatogenesis based on its subcellular localization and interacting proteins. However, the function of SLX2 in vivo is still elusive. Here, to investigate the functions of SLX2 in spermatogenesis, we disrupted the Slx2 gene by using the CRISPR/Cas9 system. Since Slx2 is a testis specific X-linked gene, we obtained knockout male mice in the first generation and accelerated the study process. Compared with wild-type mice, Slx2 knockout mice have normal testis and epididymis. Histological observation of testes sections showed that Slx2 knockout affected none of the three main stages of spermatogenesis: mitosis, meiosis and spermiogenesis. In addition, we further confirmed that disruption of Slx2 did not affect the number of spermatogonial stem cells, meiosis progression or XY body formation by immunofluorescence analysis. As spermatogenesis was normal in Slx2 knockout mice, these mice were fertile. Taken together, we showed that Slx2 itself is not an essential gene for mouse spermatogenesis and CRISPR/Cas9 technique could speed up the functional study of testis specific X-linked gene in vivo.

  4. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  5. Identification of specific gene sequences conserved in contemporary epidemic strains of Salmonella enterica.

    Science.gov (United States)

    Kang, Min-Su; Besser, Thomas E; Hancock, Dale D; Porwollik, Steffen; McClelland, Michael; Call, Douglas R

    2006-11-01

    Genetic elements specific to recent and contemporary epidemic strains of Salmonella enterica were identified using comparative genomic analysis. Two epidemic multidrug-resistant (MDR) strains, MDR Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) and cephalosporin-resistant MDR Salmonella enterica serovar Newport, and an epidemic pansusceptible strain, Salmonella serovar Typhimurium DT160, were subjected to Salmonella gene microarray and suppression subtractive hybridization analyses. Their genome contents were compared with those of coexisting sporadic strains matched by serotype, geographic and temporal distribution, and host species origin. These paired comparisons revealed that epidemic strains of S. enterica had specific genes and gene regions that were shared by isolates of the same subtype. Most of these gene sequences are related to mobile genetic elements, including phages, plasmids, and plasmid-like and transposable elements, and some genes may encode proteins conferring growth or survival advantages. The emergence of epidemic MDR strains may therefore be associated with the presence of fitness-associated genetic factors in addition to their antimicrobial resistance genes.

  6. Candida albicans Biofilms: a Developmental State Associated With Specific and Stable Gene Expression Patterns

    Science.gov (United States)

    García-Sánchez, Susana; Aubert, Sylvie; Iraqui, Ismaïl; Janbon, Guilhem; Ghigo, Jean-Marc; d'Enfert, Christophe

    2004-01-01

    Like many bacteria, yeast species can form biofilms on several surfaces. Candida albicans colonizes the surfaces of catheters, prostheses, and epithelia, forming biofilms that are extremely resistant to antifungal drugs. We have used transcript profiling to investigate the specific properties of C. albicans biofilms. Biofilm and planktonic cultures produced under different conditions of nutrient flow, aerobiosis, or glucose concentration were compared by overall gene expression correlation. Correlation was much higher between biofilms than planktonic populations irrespective of the growth conditions, indicating that biofilm populations formed in different environments display very similar and specific transcript profiles. A first cluster of 325 differentially expressed genes was identified. In agreement with the overrepresentation of amino acid biosynthesis genes in this cluster, Gcn4p, a regulator of amino acid metabolism, was shown to be required for normal biofilm growth. To identify biofilm-related genes that are independent of mycelial development, we studied the transcriptome of biofilms produced by a wild-type, hypha-producing strain and a cph1/cph1 efg1/efg1 strain defective for hypha production. This analysis identified a cluster of 317 genes expressed independently of hypha formation, whereas 86 genes were dependent on mycelial development. Both sets revealed the activation of the sulfur-amino acid biosynthesis pathway as a feature of C. albicans biofilms. PMID:15075282

  7. A novel flatworm-specific gene implicated in reproduction in Macrostomum lignano.

    Science.gov (United States)

    Grudniewska, Magda; Mouton, Stijn; Grelling, Margriet; Wolters, Anouk H G; Kuipers, Jeroen; Giepmans, Ben N G; Berezikov, Eugene

    2018-02-16

    Free-living flatworms, such as the planarian Schmidtea mediterranea, are extensively used as model organisms to study stem cells and regeneration. The majority of flatworm studies so far focused on broadly conserved genes. However, investigating what makes these animals different is equally informative for understanding its biology and might have biomedical value. We re-analyzed the neoblast and germline transcriptional signatures of the flatworm M. lignano using an improved transcriptome assembly and show that germline-enriched genes have a high fraction of flatworm-specific genes. We further identified the Mlig-sperm1 gene as a member of a novel gene family conserved only in free-living flatworms and essential for producing healthy spermatozoa. In addition, we established a whole-animal electron microscopy atlas (nanotomy) to visualize the ultrastructure of the testes in wild type worms, but also as a reference platform for different ultrastructural studies in M. lignano. This work demonstrates that investigation of flatworm-specific genes is crucial for understanding flatworm biology and establishes a basis for such future research in M. lignano.

  8. The Lineage-Specific Evolution of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation

    OpenAIRE

    Finn, Roderick Nigel; Chauvigné, François; Hlidberg, Jón Baldur; Cutler, Christopher P.; Cerdà, Joan

    2014-01-01

    A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate wa...

  9. Gene set analysis for self-contained tests: complex null and specific alternative hypotheses.

    Science.gov (United States)

    Rahmatallah, Y; Emmert-Streib, F; Glazko, G

    2012-12-01

    The analysis of differentially expressed gene sets became a routine in the analyses of gene expression data. There is a multitude of tests available, ranging from aggregation tests that summarize gene-level statistics for a gene set to true multivariate tests, accounting for intergene correlations. Most of them detect complex departures from the null hypothesis but when the null hypothesis is rejected, the specific alternative leading to the rejection is not easily identifiable. In this article we compare the power and Type I error rates of minimum-spanning tree (MST)-based non-parametric multivariate tests with several multivariate and aggregation tests, which are frequently used for pathway analyses. In our simulation study, we demonstrate that MST-based tests have power that is for many settings comparable with the power of conventional approaches, but outperform them in specific regions of the parameter space corresponding to biologically relevant configurations. Further, we find for simulated and for gene expression data that MST-based tests discriminate well against shift and scale alternatives. As a general result, we suggest a two-step practical analysis strategy that may increase the interpretability of experimental data: first, apply the most powerful multivariate test to find the subset of pathways for which the null hypothesis is rejected and second, apply MST-based tests to these pathways to select those that support specific alternative hypotheses. gvglazko@uams.edu or yrahmatallah@uams.edu Supplementary data are available at Bioinformatics online.

  10. Molecular Detection of Dirofilaria immitis Specific Gene from Infected Dog Blood Sample Using Polymerase Chain Reaction

    Science.gov (United States)

    OH, In Young; KIM, Kyung Tae; SUNG, Ho Joong

    2017-01-01

    Background: Dirofilaria immitis, a filarial nematode, is the most important parasite-affecting dogs, causing cardiopulmonary dirofilariasis. Current diagnostic tools for detecting D. immitis include morphological assays, antigen detection, and X-ray. Herein, we developed a method for the molecular detection of D. immitis in blood using polymerase chain reaction (PCR). Methods: The study was conducted at Eulji University, Republic of Korea in 2016. To detect D. immitis-specific gene regions, we aligned the cytochrome c oxidase subunit I (COI) genes of seven filarial nematodes and designed primers targeting the unique region. We used dog glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-targeted primers as the internal control. We conducted PCR-amplified genomic DNA from canine blood samples. The products were confirmed by sequencing. Results: Gene alignment revealed a D. immitis COI-specific gene region, and the activity of designed primers was confirmed by PCR and sequencing. Plasmid DNA made from the PCR products was a positive control. The limit of detection for our method was 50 copies. The D. immitis COI and dog GAPDH genes could be discriminated from blood samples simultaneously. Conclusion: This study provides a method for highly specific and sensitive molecular diagnosis of D. immitis used as a diagnostic and therapeutic tool from the early stage of infection. PMID:28979354

  11. Molecular Detection of Dirofilaria immitis Specific Gene from Infected Dog Blood Sample Using Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    In Young OH

    2017-09-01

    Full Text Available Background: Dirofilaria immitis, a filarial nematode, is the most important parasite-affecting dogs, causing cardiopulmonary dirofilariasis. Current diagnostic tools for detecting D. immitis include morphological assays, antigen detection, and X-ray. Herein, we developed a method for the molecular detection of D. immitis in blood using polymerase chain reaction (PCR.Methods: The study was conducted at Eulji University, Republic of Korea in 2016. To detect D. immitis-specific gene regions, we aligned the cytochrome c oxidase subunit I (COI genes of seven filarial nematodes and designed primers targeting the unique region. We used dog glyceraldehyde-3-phosphate dehydrogenase (GAPDH-targeted primers as the internal control. We conducted PCR-amplified genomic DNA from canine blood samples. The products were confirmed by sequencing.Results: Gene alignment revealed a D. immitis COI-specific gene region, and the activity of designed primers was confirmed by PCR and sequencing. Plasmid DNA made from the PCR products was a positive control. The limit of detection for our method was 50 copies. The D. immitis COI and dog GAPDH genes could be discriminated from blood samples simultaneously.Conclusion: This study provides a method for highly specific and sensitive molecular diagnosis of D. immitis used as a diagnostic and therapeutic tool from the early stage of infection.

  12. Molecular Detection of Dirofilaria immitis Specific Gene from Infected Dog Blood Sample Using Polymerase Chain Reaction.

    Science.gov (United States)

    Oh, In Young; Kim, Kyung Tae; Sung, Ho Joong

    2017-01-01

    Dirofilaria immitis, a filarial nematode, is the most important parasite-affecting dogs, causing cardiopulmonary dirofilariasis. Current diagnostic tools for detecting D. immitis include morphological assays, antigen detection, and X-ray. Herein, we developed a method for the molecular detection of D. immitis in blood using polymerase chain reaction (PCR). The study was conducted at Eulji University, Republic of Korea in 2016. To detect D. immitis-specific gene regions, we aligned the cytochrome c oxidase subunit I (COI) genes of seven filarial nematodes and designed primers targeting the unique region. We used dog glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-targeted primers as the internal control. We conducted PCR-amplified genomic DNA from canine blood samples. The products were confirmed by sequencing. Gene alignment revealed a D. immitis COI-specific gene region, and the activity of designed primers was confirmed by PCR and sequencing. Plasmid DNA made from the PCR products was a positive control. The limit of detection for our method was 50 copies. The D. immitis COI and dog GAPDH genes could be discriminated from blood samples simultaneously. This study provides a method for highly specific and sensitive molecular diagnosis of D. immitis used as a diagnostic and therapeutic tool from the early stage of infection.

  13. Targeted expression of suicide gene by tissue-specific promoter and microRNA regulation for cancer gene therapy.

    Science.gov (United States)

    Danda, Ravikanth; Krishnan, Gopinath; Ganapathy, Kalaivani; Krishnan, Uma Maheswari; Vikas, Khetan; Elchuri, Sailaja; Chatterjee, Nivedita; Krishnakumar, Subramanian

    2013-01-01

    In order to realise the full potential of cancer suicide gene therapy that allows the precise expression of suicide gene in cancer cells, we used a tissue specific Epithelial cell adhesion molecule (EpCAM) promoter (EGP-2) that directs transgene Herpes simplex virus-thymidine kinase (HSV-TK) expression preferentially in EpCAM over expressing cancer cells. EpCAM levels are considerably higher in retinoblastoma (RB), a childhood eye cancer with limited expression in normal cells. Use of miRNA regulation, adjacent to the use of the tissue-specific promoter, would provide the second layer of control to the transgene expression only in the tumor cells while sparing the normal cells. To test this hypothesis we cloned let-7b miRNA targets in the 3'UTR region of HSV-TK suicide gene driven by EpCAM promoter because let-7 family miRNAs, including let-7b, were found to be down regulated in the RB tumors and cell lines. We used EpCAM over expressing and let-7 down regulated RB cell lines Y79, WERI-Rb1 (EpCAM (+ve)/let-7b(down-regulated)), EpCAM down regulated, let-7 over expressing normal retinal Müller glial cell line MIO-M1(EpCAM (-ve)/let-7b(up-regulated)), and EpCAM up regulated, let-7b up-regulated normal thyroid cell line N-Thy-Ori-3.1(EpCAM (+ve)/let-7b(up-regulated)) in the study. The cell proliferation was measured by MTT assay, apoptosis was measured by probing cleaved Caspase3, EpCAM and TK expression were quantified by Western blot. Our results showed that the EGP2-promoter HSV-TK (EGP2-TK) construct with 2 or 4 copies of let-7b miRNA targets expressed TK gene only in Y79, WERI-Rb-1, while the TK gene did not express in MIO-M1. In summary, we have developed a tissue-specific, miRNA-regulated dual control vector, which selectively expresses the suicide gene in EpCAM over expressing cells.

  14. Targeted expression of suicide gene by tissue-specific promoter and microRNA regulation for cancer gene therapy.

    Directory of Open Access Journals (Sweden)

    Ravikanth Danda

    Full Text Available In order to realise the full potential of cancer suicide gene therapy that allows the precise expression of suicide gene in cancer cells, we used a tissue specific Epithelial cell adhesion molecule (EpCAM promoter (EGP-2 that directs transgene Herpes simplex virus-thymidine kinase (HSV-TK expression preferentially in EpCAM over expressing cancer cells. EpCAM levels are considerably higher in retinoblastoma (RB, a childhood eye cancer with limited expression in normal cells. Use of miRNA regulation, adjacent to the use of the tissue-specific promoter, would provide the second layer of control to the transgene expression only in the tumor cells while sparing the normal cells. To test this hypothesis we cloned let-7b miRNA targets in the 3'UTR region of HSV-TK suicide gene driven by EpCAM promoter because let-7 family miRNAs, including let-7b, were found to be down regulated in the RB tumors and cell lines. We used EpCAM over expressing and let-7 down regulated RB cell lines Y79, WERI-Rb1 (EpCAM (+ve/let-7b(down-regulated, EpCAM down regulated, let-7 over expressing normal retinal Müller glial cell line MIO-M1(EpCAM (-ve/let-7b(up-regulated, and EpCAM up regulated, let-7b up-regulated normal thyroid cell line N-Thy-Ori-3.1(EpCAM (+ve/let-7b(up-regulated in the study. The cell proliferation was measured by MTT assay, apoptosis was measured by probing cleaved Caspase3, EpCAM and TK expression were quantified by Western blot. Our results showed that the EGP2-promoter HSV-TK (EGP2-TK construct with 2 or 4 copies of let-7b miRNA targets expressed TK gene only in Y79, WERI-Rb-1, while the TK gene did not express in MIO-M1. In summary, we have developed a tissue-specific, miRNA-regulated dual control vector, which selectively expresses the suicide gene in EpCAM over expressing cells.

  15. Multiple loci with different cancer specificities within the 8q24 gene desert

    DEFF Research Database (Denmark)

    Ghoussaini, M.; Song, H.; Koessler, T.

    2008-01-01

    this gene desert were specifically associated with risks of different cancers. One block was solely associated with risk of breast cancer, three others were associated solely with the risk of prostate cancer, and a fifth was associated with the risk of prostate, colorectal, and ovarian cancer...

  16. R gene-controlled host specificity in the legume-rhizobia symbiosis

    Science.gov (United States)

    Leguminous plants can enter into root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. An intriguing but still poorly understood property of the symbiosis is its host specificity, which is controlled at multiple levels involving both rhizobial and host genes. Here we report the...

  17. Identification of genes required for neural-specific glycosylation using functional genomics.

    Directory of Open Access Journals (Sweden)

    Miki Yamamoto-Hino

    2010-12-01

    Full Text Available Glycosylation plays crucial regulatory roles in various biological processes such as development, immunity, and neural functions. For example, α1,3-fucosylation, the addition of a fucose moiety abundant in Drosophila neural cells, is essential for neural development, function, and behavior. However, it remains largely unknown how neural-specific α1,3-fucosylation is regulated. In the present study, we searched for genes involved in the glycosylation of a neural-specific protein using a Drosophila RNAi library. We obtained 109 genes affecting glycosylation that clustered into nine functional groups. Among them, members of the RNA regulation group were enriched by a secondary screen that identified genes specifically regulating α1,3-fucosylation. Further analyses revealed that an RNA-binding protein, second mitotic wave missing (Swm, upregulates expression of the neural-specific glycosyltransferase FucTA and facilitates its mRNA export from the nucleus. This first large-scale genetic screen for glycosylation-related genes has revealed novel regulation of fucTA mRNA in neural cells.

  18. Analysis of sequence variation underlying tissue-specific transcription factor binding and gene expression.

    Science.gov (United States)

    Lower, Karen M; De Gobbi, Marco; Hughes, Jim R; Derry, Christopher J; Ayyub, Helena; Sloane-Stanley, Jacqueline A; Vernimmen, Douglas; Garrick, David; Gibbons, Richard J; Higgs, Douglas R

    2013-08-01

    Although mutations causing monogenic disorders most frequently lie within the affected gene, sequence variation in complex disorders is more commonly found in noncoding regions. Furthermore, recent genome- wide studies have shown that common DNA sequence variants in noncoding regions are associated with "normal" variation in gene expression resulting in cell-specific and/or allele-specific differences. The mechanism by which such sequence variation causes changes in gene expression is largely unknown. We have addressed this by studying natural variation in the binding of key transcription factors (TFs) in the well-defined, purified cell system of erythropoiesis. We have shown that common polymorphisms frequently directly perturb the binding sites of key TFs, and detailed analysis shows how this causes considerable (~10-fold) changes in expression from a single allele in a tissue-specific manner. We also show how a SNP, located at some distance from the recognized TF binding site, may affect the recruitment of a large multiprotein complex and alter the associated chromatin modification of the variant regulatory element. This study illustrates the principles by which common sequence variation may cause changes in tissue-specific gene expression, and suggests that such variation may underlie an individual's propensity to develop complex human genetic diseases. © 2013 WILEY PERIODICALS, INC.

  19. A new strategy to identify and annotate human RPE-specific gene expression

    NARCIS (Netherlands)

    J.C. Booij (Judith); J.B. ten Brink (Jacoline); S.M.A. Swagemakers (Sigrid); J.H.M. Verkerk (Annemieke); A.H.W. Essing (Anke); P.J. van der Spek (Peter); A.A.B. Bergen (Arthur)

    2010-01-01

    textabstractBackground: To identify and functionally annotate cell type-specific gene expression in the human retinal pigment epithelium (RPE), a key tissue involved in age-related macular degeneration and retinitis pigmentosa. Methodology: RPE, photoreceptor and choroidal cells were isolated from

  20. A clade-specific Arabidopsis gene connects primary metabolism and senescence

    Science.gov (United States)

    Plants have to deal with environmental insults as they cannot move to escape from stressful conditions. To do so, they have evolved novel components that respond to the changing environments. A primary example is Qua Quine Starch (QQS, AT3G30720), an Arabidopsis thaliana-specific (orphan) gene that ...

  1. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.

    Directory of Open Access Journals (Sweden)

    Nelle Lambert

    2011-03-01

    Full Text Available The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.

  2. Antioxidant Defense Enzyme Genes and Asthma Susceptibility: Gender-Specific Effects and Heterogeneity in Gene-Gene Interactions between Pathogenetic Variants of the Disease

    Science.gov (United States)

    Polonikov, Alexey V.; Ivanov, Vladimir P.; Bogomazov, Alexey D.; Freidin, Maxim B.; Illig, Thomas; Solodilova, Maria A.

    2014-01-01

    Oxidative stress resulting from an increased amount of reactive oxygen species and an imbalance between oxidants and antioxidants plays an important role in the pathogenesis of asthma. The present study tested the hypothesis that genetic susceptibility to allergic and nonallergic variants of asthma is determined by complex interactions between genes encoding antioxidant defense enzymes (ADE). We carried out a comprehensive analysis of the associations between adult asthma and 46 single nucleotide polymorphisms of 34 ADE genes and 12 other candidate genes of asthma in Russian population using set association analysis and multifactor dimensionality reduction approaches. We found for the first time epistatic interactions between ADE genes underlying asthma susceptibility and the genetic heterogeneity between allergic and nonallergic variants of the disease. We identified GSR (glutathione reductase) and PON2 (paraoxonase 2) as novel candidate genes for asthma susceptibility. We observed gender-specific effects of ADE genes on the risk of asthma. The results of the study demonstrate complexity and diversity of interactions between genes involved in oxidative stress underlying susceptibility to allergic and nonallergic asthma. PMID:24895604

  3. Antioxidant Defense Enzyme Genes and Asthma Susceptibility: Gender-Specific Effects and Heterogeneity in Gene-Gene Interactions between Pathogenetic Variants of the Disease

    Directory of Open Access Journals (Sweden)

    Alexey V. Polonikov

    2014-01-01

    Full Text Available Oxidative stress resulting from an increased amount of reactive oxygen species and an imbalance between oxidants and antioxidants plays an important role in the pathogenesis of asthma. The present study tested the hypothesis that genetic susceptibility to allergic and nonallergic variants of asthma is determined by complex interactions between genes encoding antioxidant defense enzymes (ADE. We carried out a comprehensive analysis of the associations between adult asthma and 46 single nucleotide polymorphisms of 34 ADE genes and 12 other candidate genes of asthma in Russian population using set association analysis and multifactor dimensionality reduction approaches. We found for the first time epistatic interactions between ADE genes underlying asthma susceptibility and the genetic heterogeneity between allergic and nonallergic variants of the disease. We identified GSR (glutathione reductase and PON2 (paraoxonase 2 as novel candidate genes for asthma susceptibility. We observed gender-specific effects of ADE genes on the risk of asthma. The results of the study demonstrate complexity and diversity of interactions between genes involved in oxidative stress underlying susceptibility to allergic and nonallergic asthma.

  4. Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana.

    Science.gov (United States)

    Tasma, I Made; Brendel, Volker; Whitham, Steven A; Bhattacharyya, Madan K

    2008-07-01

    Phosphoinositide-specific phospholipase C cleaves the substrate phosphatidylinositol 4,5-bisphosphate and generates inositol 1,4,5-trisphosphate and 1,2-diacylglycerol, both of which are second messengers in the phosphoinositide signal transduction pathways operative in animal cells. Five PI-PLC isoforms, beta, gamma, delta, epsilon and zeta, have been identified in mammals. Plant PI-PLCs are structurally close to the mammalian PI-PLC-zeta isoform. The Arabidopsis genome contains nine AtPLC genes. Expression patterns of all nine genes in different organs and in response to various environmental stimuli were studied by applying a quantitative RT-PCR approach. Multiple members of the gene family were differentially expressed in Arabidopsis organs, suggesting putative roles for this enzyme in plant development, including tissue and organ differentiation. This study also shows that a majority of the AtPLC genes are induced in response to various environmental stimuli, including cold, salt, nutrients Murashige-Skoog salts, dehydration, and the plant hormone abscisic acid. Results of this and previous studies strongly suggest that transcriptional activation of the PI-PLC gene family is important for adapting plants to stress environments. Expression patterns and phylogenetic relationships indicates that AtPLC gene members probably evolved through multiple rounds of gene duplication events, with AtPLC4 and AtPLC5 and AtPLC8 and AtPLC9 being duplicated in tandem in recent times.

  5. Molecular evolution constraints in the floral organ specification gene regulatory network module across 18 angiosperm genomes.

    Science.gov (United States)

    Davila-Velderrain, Jose; Servin-Marquez, Andres; Alvarez-Buylla, Elena R

    2014-03-01

    The gene regulatory network of floral organ cell fate specification of Arabidopsis thaliana is a robust developmental regulatory module. Although such finding was proposed to explain the overall conservation of floral organ types and organization among angiosperms, it has not been confirmed that the network components are conserved at the molecular level among flowering plants. Using the genomic data that have accumulated, we address the conservation of the genes involved in this network and the forces that have shaped its evolution during the divergence of angiosperms. We recovered the network gene homologs for 18 species of flowering plants spanning nine families. We found that all the genes are highly conserved with no evidence of positive selection. We studied the sequence conservation features of the genes in the context of their known biological function and the strength of the purifying selection acting upon them in relation to their placement within the network. Our results suggest an association between protein length and sequence conservation, evolutionary rates, and functional category. On the other hand, we found no significant correlation between the strength of purifying selection and gene placement. Our results confirm that the studied robust developmental regulatory module has been subjected to strong functional constraints. However, unlike previous studies, our results do not support the notion that network topology plays a major role in constraining evolutionary rates. We speculate that the dynamical functional role of genes within the network and not just its connectivity could play an important role in constraining evolution.

  6. Selection and Evaluation of Tissue Specific Reference Genes in Lucilia sericata during an Immune Challenge.

    Science.gov (United States)

    Baumann, Andre; Lehmann, Rüdiger; Beckert, Annika; Vilcinskas, Andreas; Franta, Zdeněk

    2015-01-01

    The larvae of the common green bottle fly Lucilia sericata (Diptera: Calliphoridae) have been used for centuries to promote wound healing, but the molecular basis of their antimicrobial, debridement and healing functions remains largely unknown. The analysis of differential gene expression in specific larval tissues before and after immune challenge could be used to identify key molecular factors, but the most sensitive and reproducible method qRT-PCR requires validated reference genes. We therefore selected 10 candidate reference genes encoding products from different functional classes (18S rRNA, 28S rRNA, actin, β-tubulin, RPS3, RPLP0, EF1α, PKA, GAPDH and GST1). Two widely applied algorithms (GeNorm and Normfinder) were used to analyze reference gene candidates in different larval tissues associated with secretion, digestion, and antimicrobial activity (midgut, hindgut, salivary glands, crop and fat body). The Gram-negative bacterium Pseudomonas aeruginosa was then used to boost the larval immune system and the stability of reference gene expression was tested in comparison to three immune genes (lucimycin, defensin-1 and attacin-2), which target different pathogen classes. We observed no differential expression of the antifungal peptide lucimycin, whereas the representative targeting Gram-positive bacteria (defensin-1) was upregulated in salivary glands, crop, nerve ganglion and reached its maximum in fat body (up to 300-fold). The strongest upregulation in all immune challenged tissues (over 50,000-fold induction in the fat body) was monitored for attacin-2, the representative targeting Gram-negative bacteria. Here we identified and validated a set of reference genes that allows the accurate normalization of gene expression in specific tissues of L. sericata after immune challenge.

  7. Selection and Evaluation of Tissue Specific Reference Genes in Lucilia sericata during an Immune Challenge.

    Directory of Open Access Journals (Sweden)

    Andre Baumann

    Full Text Available The larvae of the common green bottle fly Lucilia sericata (Diptera: Calliphoridae have been used for centuries to promote wound healing, but the molecular basis of their antimicrobial, debridement and healing functions remains largely unknown. The analysis of differential gene expression in specific larval tissues before and after immune challenge could be used to identify key molecular factors, but the most sensitive and reproducible method qRT-PCR requires validated reference genes. We therefore selected 10 candidate reference genes encoding products from different functional classes (18S rRNA, 28S rRNA, actin, β-tubulin, RPS3, RPLP0, EF1α, PKA, GAPDH and GST1. Two widely applied algorithms (GeNorm and Normfinder were used to analyze reference gene candidates in different larval tissues associated with secretion, digestion, and antimicrobial activity (midgut, hindgut, salivary glands, crop and fat body. The Gram-negative bacterium Pseudomonas aeruginosa was then used to boost the larval immune system and the stability of reference gene expression was tested in comparison to three immune genes (lucimycin, defensin-1 and attacin-2, which target different pathogen classes. We observed no differential expression of the antifungal peptide lucimycin, whereas the representative targeting Gram-positive bacteria (defensin-1 was upregulated in salivary glands, crop, nerve ganglion and reached its maximum in fat body (up to 300-fold. The strongest upregulation in all immune challenged tissues (over 50,000-fold induction in the fat body was monitored for attacin-2, the representative targeting Gram-negative bacteria. Here we identified and validated a set of reference genes that allows the accurate normalization of gene expression in specific tissues of L. sericata after immune challenge.

  8. The Caenorhabditis globin gene family reveals extensive nematode-specific radiation and diversification

    Directory of Open Access Journals (Sweden)

    Vinogradov Serge N

    2008-10-01

    Full Text Available Abstract Background Globin isoforms with variant properties and functions have been found in the pseudocoel, body wall and cuticle of various nematode species and even in the eyespots of the insect-parasite Mermis nigrescens. In fact, much higher levels of complexity exist, as shown by recent whole genome analysis studies. In silico analysis of the genome of Caenorhabditis elegans revealed an unexpectedly high number of globin genes featuring a remarkable diversity in gene structure, amino acid sequence and expression profiles. Results In the present study we have analyzed whole genomic data from C. briggsae, C. remanei, Pristionchus pacificus and Brugia malayi and EST data from several other nematode species to study the evolutionary history of the nematode globin gene family. We find a high level of conservation of the C. elegans globin complement, with even distantly related nematodes harboring orthologs to many Caenorhabditis globins. Bayesian phylogenetic analysis resolves all nematode globins into two distinct globin classes. Analysis of the globin intron-exon structures suggests extensive loss of ancestral introns and gain of new positions in deep nematode ancestors, and mainly loss in the Caenorhabditis lineage. We also show that the Caenorhabditis globin genes are expressed in distinct, mostly non-overlapping, sets of cells and that they are all under strong purifying selection. Conclusion Our results enable reconstruction of the evolutionary history of the globin gene family in the nematode phylum. A duplication of an ancestral globin gene occurred before the divergence of the Platyhelminthes and the Nematoda and one of the duplicated genes radiated further in the nematode phylum before the split of the Spirurina and Rhabditina and was followed by further radiation in the lineage leading to Caenorhabditis. The resulting globin genes were subject to processes of subfunctionalization and diversification leading to cell-specific

  9. Pericentromeric genes for non-specific X-linked mental retardation (MRX)

    Energy Technology Data Exchange (ETDEWEB)

    Gedeon, A. [Univ. of Adelaide (Australia); Kerr, B.; Mulley, J.; Turner, G. [Prince of Wales Children`s Hospital, Randwick (Australia)

    1994-07-15

    Extensive linkage analysis in three families with non-specific X-linked mental retardation (MRX) have localized the gene in each family to the pericentromeric region of the chromosome. The MRX17 gene is localized with a peak lod of 2.41 ({theta} = 0.0) with the trinucleotide repeat polymorphism at the androgen receptor (AR) gene locus. The gene lies in the interval between the markers DSX255 and DXS990, as defined by recombinants. The MRX18 gene maps to the interval between the markers DXS538 and DXS1126, with a peak lod score of 2.01 ({theta} = 0.0) at the PFC gene locus. In the third family (Family E) with insufficient informative meioses for assignment of an MRX acronym, the maximum lod score is 1.8 at a recombination fraction of zero for several marker loci between DXS207 and DXS426. Exclusions from the regions of marker loci spanning Xq support the localization of the MRX gene in Family E to the pericentromeric region. Localizations of these and other MRX genes have determined that MRX2 and MRX19 map to distal Xp, MRX3, and MRX6 map to distal Xq, whilst the majority cluster in the pericentromeric region. In addition, we confirm that there are at least two distinct MRX genes near the centromere as delineated by the non-overlapping regional localizations of MRX17 and MRX18. Determination of these non-overlapping localizations is currently the only means of classifying non-syndromal forms of mental retardation and determining the minimum number of MRX loci. 27 refs., 14 figs., 5 tabs.

  10. An Arabidopsis tissue-specific RNAi method for studying genes essential to mitosis.

    Directory of Open Access Journals (Sweden)

    Brunilís Burgos-Rivera

    Full Text Available A large fraction of the genes in plants can be considered essential in the sense that when absent the plant fails to develop past the first few cell divisions. The fact that angiosperms pass through a haploid gametophyte stage can make it challenging to propagate such mutants even in the heterozygous condition. Here we describe a tissue-specific RNAi method that allows us to visualize cell division phenotypes in petals, which are large dispensable organs. Portions of the APETALA (AP3 and PISTILLATA (PI promoters confer early petal-specific expression. We show that when either promoter is used to drive the expression of a beta-glucuronidase (GUS RNAi transgene in plants uniformly expressing GUS, GUS expression is knocked down specifically in petals. We further tested the system by targeting the essential kinetochore protein CENPC and two different components of the Spindle Assembly Checkpoint (MAD2 and BUBR1. Plant lines expressing petal-specific RNAi hairpins targeting these genes exhibited an array of petal phenotypes. Cytological analyses of the affected flower buds confirmed that CENPC knockdown causes cell cycle arrest but provided no evidence that either MAD2 or BUBR1 are required for mitosis (although both genes are required for petal growth by this assay. A key benefit of the petal-specific RNAi method is that the phenotypes are not expressed in the lineages leading to germ cells, and the phenotypes are faithfully transmitted for at least four generations despite their pronounced effects on growth.

  11. Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing.

    Directory of Open Access Journals (Sweden)

    Maria Gutierrez-Arcelus

    2015-01-01

    Full Text Available Understanding how genetic variation affects distinct cellular phenotypes, such as gene expression levels, alternative splicing and DNA methylation levels, is essential for better understanding of complex diseases and traits. Furthermore, how inter-individual variation of DNA methylation is associated to gene expression is just starting to be studied. In this study, we use the GenCord cohort of 204 newborn Europeans' lymphoblastoid cell lines, T-cells and fibroblasts derived from umbilical cords. The samples were previously genotyped for 2.5 million SNPs, mRNA-sequenced, and assayed for methylation levels in 482,421 CpG sites. We observe that methylation sites associated to expression levels are enriched in enhancers, gene bodies and CpG island shores. We show that while the correlation between DNA methylation and gene expression can be positive or negative, it is very consistent across cell-types. However, this epigenetic association to gene expression appears more tissue-specific than the genetic effects on gene expression or DNA methylation (observed in both sharing estimations based on P-values and effect size correlations between cell-types. This predominance of genetic effects can also be reflected by the observation that allele specific expression differences between individuals dominate over tissue-specific effects. Additionally, we discover genetic effects on alternative splicing and interestingly, a large amount of DNA methylation correlating to alternative splicing, both in a tissue-specific manner. The locations of the SNPs and methylation sites involved in these associations highlight the participation of promoter proximal and distant regulatory regions on alternative splicing. Overall, our results provide high-resolution analyses showing how genome sequence variation has a broad effect on cellular phenotypes across cell-types, whereas epigenetic factors provide a secondary layer of variation that is more tissue-specific. Furthermore

  12. A Matter of Taste: Lineage-Specific Loss of Function of Taste Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Marco Antinucci

    2017-11-01

    Full Text Available Vertebrates can perceive at least five different taste qualities, each of which is thought to have a specific role in the evolution of different species. The avoidance of potentially poisonous foods, which are generally bitter or sour tasting, and the search for more nutritious ones, those with high-fat and high-sugar content, are two of the most well-known examples. The study of taste genes encoding receptors that recognize ligands triggering taste sensations has helped to reconstruct several evolutionary adaptations to dietary changes. In addition, an increasing number of studies have focused on pseudogenes, genomic DNA sequences that have traditionally been considered defunct relatives of functional genes mostly because of the presence of deleterious mutations interrupting their open reading frames. The study of taste receptor pseudogenes has helped to shed light on how the evolutionary history of taste in vertebrates has been the result of a succession of gene gain and loss processes. This dynamic role in evolution has been explained by the “less-is-more” hypothesis, suggesting gene loss as a mechanism of evolutionary change in response to a dietary shift. This mini-review aims at depicting the major lineage-specific loss of function of taste receptor genes in vertebrates, stressing their evolutionary importance and recapitulating signatures of natural selection and their correlations with food habits.

  13. General and Specific Genetic Polymorphism of Cytokines-Related Gene in AITD

    Directory of Open Access Journals (Sweden)

    Chen Xiaoheng

    2017-01-01

    Full Text Available Autoimmune thyroid disease (AITD shows the highest incidence among organ-specific autoimmune diseases and is the most common thyroid disease in humans, including Graves’ disease (GD and Hashimoto’s thyroiditis (HT. The susceptibility to autoimmune diseases is affected by increased autoantibody levels, susceptibility gene polymorphisms, environmental factors, and psychological factors, but the pathogenesis remains unclear. Various cytokines and related genes encoding them play important roles in the development and progression of AITD. CD152, an expression product of the CTLA-4 gene, downregulates T cell activation. The A/A genotype polymorphism in the CT60 locus may reduce the production of thyroid autoantibodies. The C1858T polymorphism of the PTNP22 gene reduces the expression of its encoded LYP, which increases the risk of GD and HT. GD is an organ-specific autoimmune disease involving increased secretion of thyroid hormone, whereas HT may be associated with the destruction of thyroid gland tissue and hypothyroidism. These two diseases exhibit similar pathogenesis but opposite trends in the clinical manifestations. In this review, we focus on the structure and function of these cytokines and related genes in AITD, as well as the association of polymorphisms with susceptibility to GD and HT, and attempt to describe their differences in pathogenesis and clinical manifestations.

  14. A highly sensitive and specific system for large-scale gene expression profiling

    Directory of Open Access Journals (Sweden)

    Wang Hui-Yun

    2008-01-01

    Full Text Available Abstract Background Rapid progress in the field of gene expression-based molecular network integration has generated strong demand on enhancing the sensitivity and data accuracy of experimental systems. To meet the need, a high-throughput gene profiling system of high specificity and sensitivity has been developed. Results By using specially designed primers, the new system amplifies sequences in neighboring exons separated by big introns so that mRNA sequences may be effectively discriminated from other highly related sequences including their genes, unprocessed transcripts, pseudogenes and pseudogene transcripts. Probes used for microarray detection consist of sequences in the two neighboring exons amplified by the primers. In conjunction with a newly developed high-throughput multiplex amplification system and highly simplified experimental procedures, the system can be used to analyze >1,000 mRNA species in a single assay. It may also be used for gene expression profiling of very few (n = 100 or single cells. Highly reproducible results were obtained from duplicate samples with the same number of cells, and from those with a small number (100 and a large number (10,000 of cells. The specificity of the system was demonstrated by comparing results from a breast cancer cell line, MCF-7, and an ovarian cancer cell line, NCI/ADR-RES, and by using genomic DNA as starting material. Conclusion Our approach may greatly facilitate the analysis of combinatorial expression of known genes in many important applications, especially when the amount of RNA is limited.

  15. Reconstructing context-specific gene regulatory network and identifying modules and network rewiring through data integration.

    Science.gov (United States)

    Ma, Tianle; Zhang, Aidong

    2017-07-15

    Reconstructing context-specific transcriptional regulatory network is crucial for deciphering principles of regulatory mechanisms underlying various conditions. Recently studies that reconstructed transcriptional networks have focused on individual organisms or cell types and relied on data repositories of context-free regulatory relationships. Here we present a comprehensive framework to systematically derive putative regulator-target pairs in any given context by integrating context-specific transcriptional profiling and public data repositories of gene regulatory networks. Moreover, our framework can identify core regulatory modules and signature genes underlying global regulatory circuitry, and detect network rewiring and core rewired modules in different contexts by considering gene modules and edge (gene interaction) modules collaboratively. We applied our methods to analyzing Autism RNA-seq experiment data and produced biologically meaningful results. In particular, all 11 hub genes in a predicted rewired autistic regulatory subnetwork have been linked to autism based on literature review. The predicted rewired autistic regulatory network may shed some new insight into disease mechanism. Published by Elsevier Inc.

  16. A Matter of Taste: Lineage-Specific Loss of Function of Taste Receptor Genes in Vertebrates

    Science.gov (United States)

    Antinucci, Marco; Risso, Davide

    2017-01-01

    Vertebrates can perceive at least five different taste qualities, each of which is thought to have a specific role in the evolution of different species. The avoidance of potentially poisonous foods, which are generally bitter or sour tasting, and the search for more nutritious ones, those with high-fat and high-sugar content, are two of the most well-known examples. The study of taste genes encoding receptors that recognize ligands triggering taste sensations has helped to reconstruct several evolutionary adaptations to dietary changes. In addition, an increasing number of studies have focused on pseudogenes, genomic DNA sequences that have traditionally been considered defunct relatives of functional genes mostly because of the presence of deleterious mutations interrupting their open reading frames. The study of taste receptor pseudogenes has helped to shed light on how the evolutionary history of taste in vertebrates has been the result of a succession of gene gain and loss processes. This dynamic role in evolution has been explained by the “less-is-more” hypothesis, suggesting gene loss as a mechanism of evolutionary change in response to a dietary shift. This mini-review aims at depicting the major lineage-specific loss of function of taste receptor genes in vertebrates, stressing their evolutionary importance and recapitulating signatures of natural selection and their correlations with food habits. PMID:29234667

  17. Medicago truncatula gene responses specific to arbuscular mycorrhiza interactions with different species and genera of Glomeromycota.

    Science.gov (United States)

    Massoumou, M; van Tuinen, D; Chatagnier, O; Arnould, C; Brechenmacher, L; Sanchez, L; Selim, S; Gianinazzi, S; Gianinazzi-Pearson, V

    2007-05-01

    Plant genes exhibiting common responses to different arbuscular mycorrhizal (AM) fungi and not induced under other biological conditions have been sought for to identify specific markers for monitoring the AM symbiosis. A subset of 14 candidate Medicago truncatula genes was identified as being potentially mycorrhiza responsive in previous cDNA microarray analyses and exclusive to cDNA libraries derived from mycorrhizal root tissues. Transcriptional activity of the selected plant genes was compared during root interactions with seven AM fungi belonging to different species of Glomus, Acaulospora, Gigaspora, or Scutellospora, and under widely different biological conditions (mycorrhiza, phosphate fertilization, pathogenic/beneficial microbe interactions, incompatible plant genotype). Ten of the M. truncatula genes were commonly induced by all the tested AM fungal species, and all were activated by at least two fungi. Most of the plant genes were transcribed uniquely in mycorrhizal roots, and several were already active at the appressorium stage of fungal development. Novel data provide evidence that common recognition responses to phylogenetically different Glomeromycota exist in plants during events that are unique to mycorrhiza interactions. They indicate that plants should possess a mycorrhiza-specific genetic program which is comodulated by a broad spectrum of AM fungi.

  18. Organ specific gene expression in the regenerating tail of Macrostomum lignano.

    Science.gov (United States)

    Lengerer, Birgit; Wunderer, Julia; Pjeta, Robert; Carta, Giada; Kao, Damian; Aboobaker, Aziz; Beisel, Christian; Berezikov, Eugene; Salvenmoser, Willi; Ladurner, Peter

    2018-01-15

    Temporal and spatial characterization of gene expression is a prerequisite for the understanding of cell-, tissue-, and organ-differentiation. In a multifaceted approach to investigate gene expression in the tail plate of the free-living marine flatworm Macrostomum lignano, we performed a posterior-region-specific in situ hybridization screen, RNA sequencing (RNA-seq) of regenerating animals, and functional analyses of selected tail-specific genes. The in situ screen revealed transcripts expressed in the antrum, cement glands, adhesive organs, prostate glands, rhabdite glands, and other tissues. Next we used RNA-seq to characterize temporal expression in the regenerating tail plate revealing a time restricted onset of both adhesive organs and copulatory apparatus regeneration. In addition, we identified three novel previously unannotated genes solely expressed in the regenerating stylet. RNA interference showed that these genes are required for the formation of not only the stylet but the whole male copulatory apparatus. RNAi treated animals lacked the stylet, vesicula granulorum, seminal vesicle, false seminal vesicle, and prostate glands, while the other tissues of the tail plate, such as adhesive organs regenerated normally. In summary, our findings provide a large resource of expression data during homeostasis and regeneration of the morphologically complex tail regeneration and pave the way for a better understanding of organogenesis in M. lignano. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. General and Specific Genetic Polymorphism of Cytokines-Related Gene in AITD

    Science.gov (United States)

    Yizhou, Mei; Bei, He; Huilong, Li; Xin, Wang; Rui, Hu; Lu, Li

    2017-01-01

    Autoimmune thyroid disease (AITD) shows the highest incidence among organ-specific autoimmune diseases and is the most common thyroid disease in humans, including Graves' disease (GD) and Hashimoto's thyroiditis (HT). The susceptibility to autoimmune diseases is affected by increased autoantibody levels, susceptibility gene polymorphisms, environmental factors, and psychological factors, but the pathogenesis remains unclear. Various cytokines and related genes encoding them play important roles in the development and progression of AITD. CD152, an expression product of the CTLA-4 gene, downregulates T cell activation. The A/A genotype polymorphism in the CT60 locus may reduce the production of thyroid autoantibodies. The C1858T polymorphism of the PTNP22 gene reduces the expression of its encoded LYP, which increases the risk of GD and HT. GD is an organ-specific autoimmune disease involving increased secretion of thyroid hormone, whereas HT may be associated with the destruction of thyroid gland tissue and hypothyroidism. These two diseases exhibit similar pathogenesis but opposite trends in the clinical manifestations. In this review, we focus on the structure and function of these cytokines and related genes in AITD, as well as the association of polymorphisms with susceptibility to GD and HT, and attempt to describe their differences in pathogenesis and clinical manifestations. PMID:28133421

  20. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9

    Science.gov (United States)

    Carroll, Kelli J.; Makarewich, Catherine A.; McAnally, John; Anderson, Douglas M.; Zentilin, Lorena; Liu, Ning; Giacca, Mauro; Bassel-Duby, Rhonda; Olson, Eric N.

    2016-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart. PMID:26719419

  1. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9.

    Science.gov (United States)

    Carroll, Kelli J; Makarewich, Catherine A; McAnally, John; Anderson, Douglas M; Zentilin, Lorena; Liu, Ning; Giacca, Mauro; Bassel-Duby, Rhonda; Olson, Eric N

    2016-01-12

    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart.

  2. Isolation of specific neurons from C. elegans larvae for gene expression profiling.

    Directory of Open Access Journals (Sweden)

    W Clay Spencer

    Full Text Available The simple and well-described structure of the C. elegans nervous system offers an unprecedented opportunity to identify the genetic programs that define the connectivity and function of individual neurons and their circuits. A correspondingly precise gene expression map of C. elegans neurons would facilitate the application of genetic methods toward this goal. Here we describe a powerful new approach, SeqCeL (RNA-Seq of C. elegans cells for producing gene expression profiles of specific larval C. elegans neurons.We have exploited available GFP reporter lines for FACS isolation of specific larval C. elegans neurons for RNA-Seq analysis. Our analysis showed that diverse classes of neurons are accessible to this approach. To demonstrate the applicability of this strategy to rare neuron types, we generated RNA-Seq profiles of the NSM serotonergic neurons that occur as a single bilateral pair of cells in the C. elegans pharynx. These data detected >1,000 NSM enriched transcripts, including the majority of previously known NSM-expressed genes.This work offers a simple and robust protocol for expression profiling studies of post-embryonic C. elegans neurons and thus provides an important new method for identifying candidate genes for key roles in neuron-specific development and function.

  3. Interspecies variation reveals a conserved repressor of alpha-specific genes in Saccharomyces yeasts.

    Science.gov (United States)

    Zill, Oliver A; Rine, Jasper

    2008-06-15

    The mating-type determination circuit in Saccharomyces yeast serves as a classic paradigm for the genetic control of cell type in all eukaryotes. Using comparative genetics, we discovered a central and conserved, yet previously undetected, component of this genetic circuit: active repression of alpha-specific genes in a cells. Upon inactivation of the SUM1 gene in Saccharomyces bayanus, a close relative of Saccharomyces cerevisiae, a cells acquired mating characteristics of alpha cells and displayed autocrine activation of their mating response pathway. Sum1 protein bound to the promoters of alpha-specific genes, repressing their transcription. In contrast to the standard model, alpha1 was important but not required for alpha-specific gene activation and mating of alpha cells in the absence of Sum1. Neither Sum1 protein expression, nor its association with target promoters was mating-type-regulated. Thus, the alpha1/Mcm1 coactivators did not overcome repression by occluding Sum1 binding to DNA. Surprisingly, the mating-type regulatory function of Sum1 was conserved in S. cerevisiae. We suggest that a comprehensive understanding of some genetic pathways may be best attained through the expanded phenotypic space provided by study of those pathways in multiple related organisms.

  4. Differential myocardial gene delivery by recombinant serotype-specific adeno-associated viral vectors.

    Science.gov (United States)

    Du, Lingling; Kido, Masakuni; Lee, Darwin V; Rabinowitz, Joseph E; Samulski, R Jude; Jamieson, Stuart W; Weitzman, Matthew D; Thistlethwaite, Patricia A

    2004-09-01

    Recombinant cross-packaging of adeno-associated virus (AAV) genome of one serotype into other AAV serotypes has the potential to optimize tissue-specific gene transduction and expression in the heart. To evaluate the role of AAV1 to 5 virion shells on AAV2 transgene transduction, we constructed hybrid vectors in which each serotype capsid coding domain was cloned into a common vector backbone containing AAV2 replication genes. Constructs were tested for expression in: (1) adult murine heart in vivo using direct injection of virus, (2) neonatal and adult murine ventricular cardiomyocytes in vitro, and (3) adult human ventricular cardiomyocytes in vitro, using green fluorescent protein (GFP) as the measurable transgene. Serotype 1 virus demonstrated the highest transduction efficiency in adult murine cardiomyocytes both in vitro and in vivo, while serotype 2 virus had the greater transduction efficiency in neonatal cardiomyocytes in vitro. Prolonged in vivo myocardial GFP expression was observed for up to 12 months using serotype 1 and 2 vectors only. In human cardiomyocytes, serotype 1 vector was superior in transduction efficiency, followed by types 2, 5, 4, and 3. These data establish a hierarchy for efficient serotype-specific vector transduction in myocardial tissue. AAV1 serotype packaging results in more efficient transduction of genes in the murine and human adult heart, compared to other AAV serotypes. Our results suggest that adult human cardiac gene therapy may be enhanced by the use of serotype 1-specific AAV vectors.

  5. A Neuron-Specific Gene Therapy Relieves Motor Deficits in Pompe Disease Mice.

    Science.gov (United States)

    Lee, Ni-Chung; Hwu, Wuh-Liang; Muramatsu, Shin-Ichi; Falk, Darin J; Byrne, Barry J; Cheng, Chia-Hao; Shih, Nien-Chu; Chang, Kai-Ling; Tsai, Li-Kai; Chien, Yin-Hsiu

    2017-09-11

    In Pompe disease, deficient lysosomal acid α-glucosidase (GAA) activity causes glycogen accumulation in the muscles, which leads to weakness, cardiomyopathy, and respiratory failure. Although glycogen accumulation also occurs in the nervous system, the burden of neurological deficits in Pompe disease remains obscure. In this study, a neuron-specific gene therapy was administered to Pompe mice through intracerebroventricular injection of a viral vector carrying a neuron-specific promoter. The results revealed that gene therapy increased GAA activity and decreased glycogen content in the brain and spinal cord but not in the muscles of Pompe mice. Gene therapy only slightly increased the muscle strength of Pompe mice but substantially improved their performance on the rotarod, a test measuring motor coordination. Gene therapy also decreased astrogliosis and increased myelination in the brain and spinal cord of Pompe mice. Therefore, a neuron-specific treatment improved the motor coordination of Pompe mice by lowering glycogen accumulation, decreasing astrogliosis, and increasing myelination. These findings indicate that neurological deficits are responsible for a significant burden in Pompe disease.

  6. The transcriptome of the avian malaria parasite Plasmodium ashfordi displays host-specific gene expression.

    Science.gov (United States)

    Videvall, Elin; Cornwallis, Charlie K; Ahrén, Dag; Palinauskas, Vaidas; Valkiūnas, Gediminas; Hellgren, Olof

    2017-06-01

    Malaria parasites (Plasmodium spp.) include some of the world's most widespread and virulent pathogens. Our knowledge of the molecular mechanisms these parasites use to invade and exploit their hosts other than in mice and primates is, however, extremely limited. It is therefore imperative to characterize transcriptome-wide gene expression from nonmodel malaria parasites and how this varies across individual hosts. Here, we used high-throughput Illumina RNA sequencing on blood from wild-caught Eurasian siskins experimentally infected with a clonal strain of the avian malaria parasite Plasmodium ashfordi (lineage GRW2). Using a bioinformatic multistep approach to filter out host transcripts, we successfully assembled the blood-stage transcriptome of P. ashfordi. A total of 11 954 expressed transcripts were identified, and 7860 were annotated with protein information. We quantified gene expression levels of all parasite transcripts across three hosts during two infection stages - peak and decreasing parasitemia. Interestingly, parasites from the same host displayed remarkably similar expression profiles during different infection stages, but showed large differences across hosts, indicating that P. ashfordi may adjust its gene expression to specific host individuals. We further show that the majority of transcripts are most similar to the human parasite Plasmodium falciparum, and a large number of red blood cell invasion genes were discovered, suggesting evolutionary conserved invasion strategies between mammalian and avian Plasmodium. The transcriptome of P. ashfordi and its host-specific gene expression advances our understanding of Plasmodium plasticity and is a valuable resource as it allows for further studies analysing gene evolution and comparisons of parasite gene expression. © 2017 John Wiley & Sons Ltd.

  7. Evolution of the globin gene family in deuterostomes: lineage-specific patterns of diversification and attrition.

    Science.gov (United States)

    Hoffmann, Federico G; Opazo, Juan C; Hoogewijs, David; Hankeln, Thomas; Ebner, Bettina; Vinogradov, Serge N; Bailly, Xavier; Storz, Jay F

    2012-07-01

    In the Metazoa, globin proteins display an underlying unity in tertiary structure that belies an extraordinary diversity in primary structures, biochemical properties, and physiological functions. Phylogenetic reconstructions can reveal which of these functions represent novel, lineage-specific innovations, and which represent ancestral functions that are shared with homologous globin proteins in other eukaryotes and even prokaryotes. To date, our understanding of globin diversity in deuterostomes has been hindered by a dearth of genomic sequence data from the Ambulacraria (echinoderms + hemichordates), the sister group of chordates, and the phylum Xenacoelomorpha, which includes xenoturbellids, acoelomorphs, and nemertodermatids. Here, we report the results of a phylogenetic and comparative genomic analysis of the globin gene repertoire of deuterostomes. We first characterized the globin genes of the acorn worm, Saccoglossus kowalevskii, a representative of the phylum Hemichordata. We then integrated genomic sequence data from the acorn worm into a comprehensive analysis of conserved synteny and phylogenetic relationships among globin genes from representatives of the eight lineages that comprise the superphylum Deuterostomia. The primary aims were 1) to unravel the evolutionary history of the globin gene superfamily in deuterostomes and 2) to use the estimated phylogeny to gain insights into the functional evolution of deuterostome globins. Results of our analyses indicate that the deuterostome common ancestor possessed a repertoire of at least four distinct globin paralogs and that different subsets of these ancestral genes have been retained in each of the descendant organismal lineages. In each major deuterostome group, a different subset of ancestral precursor genes underwent lineage-specific expansions of functional diversity through repeated rounds of gene duplication and divergence. By integrating results of the phylogenetic analysis with available

  8. Dual-specificity anti-sigma factor reinforces control of cell-type specific gene expression in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Mónica Serrano

    2015-04-01

    Full Text Available Gene expression during spore development in Bacillus subtilis is controlled by cell type-specific RNA polymerase sigma factors. σFand σE control early stages of development in the forespore and the mother cell, respectively. When, at an intermediate stage in development, the mother cell engulfs the forespore, σF is replaced by σG and σE is replaced by σK. The anti-sigma factor CsfB is produced under the control of σF and binds to and inhibits the auto-regulatory σG, but not σF. A position in region 2.1, occupied by an asparagine in σG and by a glutamate in οF, is sufficient for CsfB discrimination of the two sigmas, and allows it to delay the early to late switch in forespore gene expression. We now show that following engulfment completion, csfB is switched on in the mother cell under the control of σK and that CsfB binds to and inhibits σE but not σK, possibly to facilitate the switch from early to late gene expression. We show that a position in region 2.3 occupied by a conserved asparagine in σE and by a conserved glutamate in σK suffices for discrimination by CsfB. We also show that CsfB prevents activation of σG in the mother cell and the premature σG-dependent activation of σK. Thus, CsfB establishes negative feedback loops that curtail the activity of σE and prevent the ectopic activation of σG in the mother cell. The capacity of CsfB to directly block σE activity may also explain how CsfB plays a role as one of the several mechanisms that prevent σE activation in the forespore. Thus the capacity of CsfB to differentiate between the highly similar σF/σG and σE/σK pairs allows it to rinforce the cell-type specificity of these sigma factors and the transition from early to late development in B. subtilis, and possibly in all sporeformers that encode a CsfB orthologue.

  9. An insecticidal N-acetylglucosamine-specific lectin gene from Griffonia simplicifolia (Leguminosae).

    Science.gov (United States)

    Zhu, K; Huesing, J E; Shade, R E; Bressan, R A; Hasegawa, P M; Murdock, L L

    1996-01-01

    Griffonia simplicifolia II, an N-acetylglucosamine-specific legume lectin, has insecticidal activity when fed to the cowpea weevil, Callosobruchus maculatus (F.). A cDNA clone encoding G. simplicifolia II was isolated from a leaf cDNA library, sequenced, and expressed in a bacterial expression system. The recombinant protein exhibited N-acetylglucosamine-binding and insecticidal activity against cowpea weevil, indicating that glycosylation and multimeric structure are not required for these properties. These results support the hypothesis that genes of the legume lectin gene family encode proteins that function in plant defense against herbivores.

  10. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  11. Establishment of Methylation-Specific PCR for the Mouse p53 Gene

    Directory of Open Access Journals (Sweden)

    Ryuji Okazaki

    2011-01-01

    Full Text Available Methylation-specific PCR (MSP of the mouse p53 gene has not yet been reported. We searched the CpG islands, sequenced the bisulfited DNA, and designed PCR primers for methylation and unmethylation sites. DNA from a young mouse produced a strong PCR product with the unmethylated primer and a weaker band with the methylated primer. DNA from an old mouse produced bands of similar intensities with both primers. In radiation-induced tumors, DNA from an old mouse yielded similar bands with both types of primers. We suggest that MSP is a valuable technique for the epigenetic study of the mouse p53 gene.

  12. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens

    Directory of Open Access Journals (Sweden)

    Tian eZhang

    2014-05-01

    Full Text Available Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter metallireducens can anaerobically oxidize benzene to carbon dioxide with Fe(III as the sole electron acceptor and that phenol is an intermediate in benzene oxidation. In an attempt to identify enzymes that might be involved in the conversion of benzene to phenol, whole-genome gene transcript abundance was compared in cells metabolizing benzene and cells metabolizing phenol. Eleven genes had significantly higher transcript abundance in benzene-metabolizing cells. Five of these genes had annotations suggesting that they did not encode proteins that could be involved in benzene metabolism and were not further studied. Strains were constructed in which one of the remaining six genes was deleted. The strain in which the monocistronic gene Gmet 0232 was deleted metabolized phenol, but not benzene. Transcript abundance of the adjacent monocistronic gene, Gmet 0231, predicted to encode a zinc-containing oxidoreductase, was elevated in cells metabolizing benzene, although not at a statistically significant level. However, deleting Gmet 0231 also yielded a strain that could metabolize phenol, but not benzene. Although homologs of Gmet 0231 and Gmet 0232 are found in microorganisms not known to anaerobically metabolize benzene, the adjacent localization of these genes is unique to G. metallireducens. The discovery of genes that are specifically required for the metabolism of benzene, but not phenol in G. metallireducens is an important step in potentially identifying the mechanisms for anaerobic benzene activation.

  13. Sex-Specificity of Mineralocorticoid Target Gene Expression during Renal Development, and Long-Term Consequences

    Directory of Open Access Journals (Sweden)

    Laurence Dumeige

    2017-02-01

    Full Text Available Sex differences have been identified in various biological processes, including hypertension. The mineralocorticoid signaling pathway is an important contributor to early arterial hypertension, however its sex-specific expression has been scarcely studied, particularly with respect to the kidney. Basal systolic blood pressure (SBP and heart rate (HR were measured in adult male and female mice. Renal gene expression studies of major players of mineralocorticoid signaling were performed at different developmental stages in male and female mice using reverse transcription quantitative PCR (RT-qPCR, and were compared to those of the same genes in the lung, another mineralocorticoid epithelial target tissue that regulates ion exchange and electrolyte balance. The role of sex hormones in the regulation of these genes was also investigated in differentiated KC3AC1 renal cells. Additionally, renal expression of the 11 β-hydroxysteroid dehydrogenase type 2 (11βHSD2 protein, a regulator of mineralocorticoid specificity, was measured by immunoblotting and its activity was indirectly assessed in the plasma using liquid-chromatography coupled to mass spectrometry in tandem (LC-MSMS method. SBP and HR were found to be significantly lower in females compared to males. This was accompanied by a sex- and tissue-specific expression profile throughout renal development of the mineralocorticoid target genes serum and glucocorticoid-regulated kinase 1 (Sgk1 and glucocorticoid-induced leucine zipper protein (Gilz, together with Hsd11b2, Finally, the implication of sex hormones in this sex-specific expression profile was demonstrated in vitro, most notably for Gilz mRNA expression. We demonstrate a tissue-specific, sex-dependent and developmentally-regulated pattern of expression of the mineralocorticoid pathway that could have important implications in physiology and pathology.

  14. Cell-Type-Specific Epigenetic Editing at the Fosb Gene Controls Susceptibility to Social Defeat Stress.

    Science.gov (United States)

    Hamilton, Peter J; Burek, Dominika J; Lombroso, Sonia I; Neve, Rachael L; Robison, Alfred J; Nestler, Eric J; Heller, Elizabeth A

    2018-01-01

    Chronic social defeat stress regulates the expression of Fosb in the nucleus accumbens (NAc) to promote the cell-type-specific accumulation of ΔFosB in the two medium spiny neuron (MSN) subtypes in this region. ΔFosB is selectively induced in D1-MSNs in the NAc of resilient mice, and in D2-MSNs of susceptible mice. However, little is known about the consequences of such selective induction, particularly in D2-MSNs. This study examined how cell-type-specific control of the endogenous Fosb gene in NAc regulates susceptibility to social defeat stress. Histone post-translational modifications (HPTMs) were targeted specifically to Fosb using engineered zinc-finger proteins (ZFPs). Fosb-ZFPs were fused to either the transcriptional repressor, G9a, which promotes histone methylation or the transcriptional activator, p65, which promotes histone acetylation. These ZFPs were expressed in D1- vs D2-MSNs using Cre-dependent viral expression in the NAc of mice transgenic for Cre recombinase in these MSN subtypes. We found that stress susceptibility is oppositely regulated by the specific cell type and HPTM targeted. We report that Fosb-targeted histone acetylation in D2-MSNs or histone methylation in D1-MSNs promotes a stress-susceptible, depressive-like phenotype, while histone methylation in D2-MSNs or histone acetylation in D1-MSNs increases resilience to social stress as quantified by social interaction behavior and sucrose preference. This work presents the first demonstration of cell- and gene-specific targeting of histone modifications, which model naturally occurring transcriptional phenomena that control social defeat stress behavior. This epigenetic-editing approach, which recapitulates physiological changes in gene expression, reveals clear differences in the social defeat phenotype induced by Fosb gene manipulation in MSN subtypes.

  15. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice

    Science.gov (United States)

    Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.

    2003-01-01

    Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.

  16. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  17. Identification of novel tissue-specific genes by analysis of microarray databases: a human and mouse model.

    Directory of Open Access Journals (Sweden)

    Yan Song

    Full Text Available Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI's Gene Expression Omnibus (GEO public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1 in the liver, PRUNE2 (prune homolog 2 in the heart, and ACVR1C (activin A receptor, type IC in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved.

  18. Identification of novel tissue-specific genes by analysis of microarray databases: a human and mouse model.

    Science.gov (United States)

    Song, Yan; Ahn, Jinsoo; Suh, Yeunsu; Davis, Michael E; Lee, Kichoon

    2013-01-01

    Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI's Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved.

  19. Simultaneous live imaging of the transcription and nuclear position of specific genes

    Science.gov (United States)

    Ochiai, Hiroshi; Sugawara, Takeshi; Yamamoto, Takashi

    2015-01-01

    The relationship between genome organization and gene expression has recently been established. However, the relationships between spatial organization, dynamics, and transcriptional regulation of the genome remain unknown. In this study, we developed a live-imaging method for simultaneous measurements of the transcriptional activity and nuclear position of endogenous genes, which we termed the ‘Real-time Observation of Localization and EXpression (ROLEX)’ system. We demonstrated that ROLEX is highly specific and does not affect the expression level of the target gene. ROLEX enabled detection of sub-genome-wide mobility changes that depended on the state of Nanog transactivation in embryonic stem cells. We believe that the ROLEX system will become a powerful tool for exploring the relationship between transcription and nuclear dynamics in living cells. PMID:26092696

  20. A molecular link between gene-specific and chromosome-wide transcriptional repression.

    Science.gov (United States)

    Chu, Diana S; Dawes, Heather E; Lieb, Jason D; Chan, Raymond C; Kuo, Annie F; Meyer, Barbara J

    2002-04-01

    Gene-specific and chromosome-wide mechanisms of transcriptional regulation control development in multicellular organisms. SDC-2, the determinant of hermaphrodite fate in Caenorhabditis elegans, is a paradigm for both modes of regulation. SDC-2 represses transcription of X chromosomes to achieve dosage compensation, and it also represses the male sex-determination gene her-1 to elicit hermaphrodite differentiation. We show here that SDC-2 recruits the entire dosage compensation complex to her-1, directing this X-chromosome repression machinery to silence an individual, autosomal gene. Functional dissection of her-1 in vivo revealed DNA recognition elements required for SDC-2 binding, recruitment of the dosage compensation complex, and transcriptional repression. Elements within her-1 differed in location, sequence, and strength of repression, implying that the dosage compensation complex may regulate transcription along the X chromosome using diverse recognition elements that play distinct roles in repression.

  1. The impact of endurance exercise on global and AMPK gene-specific DNA methylation

    Energy Technology Data Exchange (ETDEWEB)

    King-Himmelreich, Tanya S.; Schramm, Stefanie; Wolters, Miriam C.; Schmetzer, Julia; Möser, Christine V.; Knothe, Claudia [pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main (Germany); Resch, Eduard [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group for Translational Medicine & Pharmacology (TMP), 60596, Frankfurt/Main (Germany); Peil, Johannes [Sports Clinic, Bad Nauheim, MCI GmbH, In der Aue 30-32, 61231, Bad Nauheim (Germany); Geisslinger, Gerd [pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main (Germany); Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group for Translational Medicine & Pharmacology (TMP), 60596, Frankfurt/Main (Germany); Niederberger, Ellen, E-mail: e.niederberger@em.uni-frankfurt.de [pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main (Germany)

    2016-05-27

    Alterations in gene expression as a consequence of physical exercise are frequently described. The mechanism of these regulations might depend on epigenetic changes in global or gene-specific DNA methylation levels. The AMP-activated protein kinase (AMPK) plays a key role in maintenance of energy homeostasis and is activated by increases in the AMP/ATP ratio as occurring in skeletal muscles after sporting activity. To analyze whether exercise has an impact on the methylation status of the AMPK promoter, we determined the AMPK methylation status in human blood samples from patients before and after sporting activity in the context of rehabilitation as well as in skeletal muscles of trained and untrained mice. Further, we examined long interspersed nuclear element 1 (LINE-1) as indicator of global DNA methylation changes. Our results revealed that light sporting activity in mice and humans does not alter global DNA methylation but has an effect on methylation of specific CpG sites in the AMPKα2 gene. These regulations were associated with a reduced AMPKα2 mRNA and protein expression in muscle tissue, pointing at a contribution of the methylation status to AMPK expression. Taken together, these results suggest that exercise influences AMPKα2 gene methylation in human blood and eminently in the skeletal muscle of mice and therefore might repress AMPKα2 gene expression. -- Highlights: •AMPK gene methylation increases after moderate endurance exercise in humans and mice. •AMPKα mRNA and protein decrease after moderate endurance exercise in mice. •Global DNA methylation is not affected under the same conditions.

  2. The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation.

    Science.gov (United States)

    Finn, Roderick Nigel; Chauvigné, François; Hlidberg, Jón Baldur; Cutler, Christopher P; Cerdà, Joan

    2014-01-01

    A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation.

  3. The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation.

    Directory of Open Access Journals (Sweden)

    Roderick Nigel Finn

    Full Text Available A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16. The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation.

  4. Tracing the pathway between mutation and phenotype in osteogenesis imperfecta: Isolation of mineralization-specific genes

    Energy Technology Data Exchange (ETDEWEB)

    Culbert, A.A.; Wallis, G.A.; Kadler, K.E. [Univ. of Manchester (United Kingdom)

    1996-05-03

    The brittleness of bone in people with lethal (type II) osteogenesis imperfecta, a heritable disorder caused by mutations in the type I collagen genes, arises from the deposition of abnormal collagen in the bone matrix. The inability of the abnormal collagen to participate in mineralization may be caused by its failure to interact with other bone proteins. Here, we have designed a strategy to isolate the genes important for mineralization of collagen during bone formation. Cells isolated from 16-day embryonic chick calvaria and seeded post-confluence in culture deposited a mineralized matrix over a period of 2 weeks. Chick skin fibroblasts seeded and cultured under the same conditions did not mineralize. Using RT-PCR, we prepared short cDNAs ({approximately}300 bp) corresponding to the 3{prime} ends of mRNA from fibroblasts and separately from the mineralizing calvarial cells. Subtractive cDNA hybridization generated a pool of cDNAs that were specific to mineralizing calvarial cells but not to fibroblasts. Screening of 100,000 plaques of a chick bone ZAP Express cDNA library with this pool of mineralizing-specific cDNAs identified ten clones which comprised full-length cDNAs for the bone proteins osteopontin (eight of the ten positives), bone sialoprotein II (one of the ten positives), and cystatin (one of the ten positives). cDNAs for type I collagen, fibronectin, alkaline phosphatase, house-keeping genes, and other genes expressed in fibroblasts were not identified in this preliminary screen. The pool of short cDNAs is likely to comprise cDNAs for further bone-specific genes and will be used to screen the entire bone cDNA library of 4.2 million clones. 30 refs., 4 figs.

  5. A Hh-driven gene network controls specification, pattern and size of the Drosophila simple eyes.

    Science.gov (United States)

    Aguilar-Hidalgo, Daniel; Domínguez-Cejudo, María A; Amore, Gabriele; Brockmann, Anette; Lemos, María C; Córdoba, Antonio; Casares, Fernando

    2013-01-01

    During development, extracellular signaling molecules interact with intracellular gene networks to control the specification, pattern and size of organs. One such signaling molecule is Hedgehog (Hh). Hh is known to act as a morphogen, instructing different fates depending on the distance to its source. However, how Hh, when signaling across a cell field, impacts organ-specific transcriptional networks is still poorly understood. Here, we investigate this issue during the development of the Drosophila ocellar complex. The development of this sensory structure, which is composed of three simple eyes (or ocelli) located at the vertices of a triangular patch of cuticle on the dorsal head, depends on Hh signaling and on the definition of three domains: two areas of eya and so expression--the prospective anterior and posterior ocelli--and the intervening interocellar domain. Our results highlight the role of the homeodomain transcription factor engrailed (en) both as a target and as a transcriptional repressor of hh signaling in the prospective interocellar region. Furthermore, we identify a requirement for the Notch pathway in the establishment of en maintenance in a Hh-independent manner. Therefore, hh signals transiently during the specification of the interocellar domain, with en being required here for hh signaling attenuation. Computational analysis further suggests that this network design confers robustness to signaling noise and constrains phenotypic variation. In summary, using genetics and modeling we have expanded the ocellar gene network to explain how the interaction between the Hh gradient and this gene network results in the generation of stable mutually exclusive gene expression domains. In addition, we discuss some general implications our model may have in some Hh-driven gene networks.

  6. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. (Cincinnati College of Medicine, OH (USA))

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  7. Rhodopsin gene copies in Japanese eel originated in a teleost-specific genome duplication.

    Science.gov (United States)

    Nakamura, Yoji; Yasuike, Motoshige; Mekuchi, Miyuki; Iwasaki, Yuki; Ojima, Nobuhiko; Fujiwara, Atushi; Chow, Seinen; Saitoh, Kenji

    2017-01-01

    teleosts, and have remained till the present in eels with distinct functional roles. Our result indicates, for the first time, that teleost-specific genome duplication may have contributed to a gene innovation involved in eel-specific migratory life cycle.

  8. Response of cyprid specific genes to natural settlement cues in the barnacle Balanus (=Amphibalanus) amphitrite

    KAUST Repository

    Li, Honglei

    2010-06-01

    Quantitative real-time PCR was used to further our understanding of the molecular processes involved in the attachment and metamorphosis of larval barnacles. We report the effects of natural settlement cues (microbial biofilms and conspecific settlement-inducing factor) on the expression profiles of six barnacle cyprid specific (bcs) genes in cyprids of the barnacle Balanus (=Amphibalanus) amphitrite Darwin. Genes bcs-1 to bcs-5 all showed marked decreases in their expression between initial cyprid attachment and the completion of metamorphosis, whereas bcs-6 showed significant up-regulation. Generally, settlement cues exerted no significant effect on the decreasing trend of bcs-1 to bcs-5 expression during attachment and metamorphosis. However, the expression of bcs-6 increased prior to cyprid attachment in response to both settlement cues. This elevated expression of bcs-6 gene indicates the importance and key regulatory role of this specific gene to larval attachment and metamorphosis in this barnacle species. © 2010 Elsevier B.V. All rights reserved.

  9. Using Merkel cell polyomavirus specific TCR gene therapy for treatment of Merkel cellcarcinoma

    DEFF Research Database (Denmark)

    Lyngaa, Rikke Birgitte; Pedersen, Natasja Wulff; Linnemann, C.

    2016-01-01

    T cell receptor gene-therapy has entered the clinic and shown potential for successful cancer treatment. However, the clinical evaluation has also highlighted the need for selection of truly cancerspecific targets. Merkel cell carcinoma (MCC) is a highly aggressive skin cancer associated with Mer......T cell receptor gene-therapy has entered the clinic and shown potential for successful cancer treatment. However, the clinical evaluation has also highlighted the need for selection of truly cancerspecific targets. Merkel cell carcinoma (MCC) is a highly aggressive skin cancer associated...... further substantiated the relevance of the identified epitopes. The viralepitopes represents specific targets and should be ideal for TCR-gene therapy approaches. We have isolated and sequenced MCPyV oncogenic protein specific T cell receptors and are currently testing in vitro transduction systems...... with the purpose of introducing the TCRs into human PBMC, injecting them into immune deficient NOG mice carrying HLA matched MCPyV positive tumor to investigate the tumor rejection capacity of these gene-modified T cells. ...

  10. Specific amplification of iron receptor genes in Xylella fastidiosa strains from different hosts

    Directory of Open Access Journals (Sweden)

    Flávia Teresa Hansen Pacheco

    2006-01-01

    Full Text Available Bacterial production of siderophores may involve specific genes related to nonribosomal peptide and polyketide biosynthesis, which have not been fully identified in the genome of Xylella fastidiosa strain 9a5c. However, a search for siderophore-related genes in strain 9a5c indicated five membrane receptors, including siderophore, ferrichrome-iron and hemin receptors. All these biomolecules are thought to be associated with iron transport and utilization. Eighty isolates obtained from citrus orchards containing trees that developed citrus variegated chlorosis (CVC were screened for siderophore production. The results demonstrated that only 10 of the isolates did not produce siderophores. Additional strains obtained from coffee, almond, mulberry, elm, ragweed, periwinkle and grape also infected by X. fastidiosa were also shown by the chromeazurol bioassay to produce siderophores. In order to correlate siderophore production with the presence of siderophore-related genes, a polymerase chain reaction (PCR was developed using specific primers for the catechol-type ferric enterobactin receptor (pfeA and the hydroxamate-type ferrisiderophore receptor (fiuA genes of strain 9a5c. The PCR results confirmed our hypothesis by demonstrating that amplification products were detected in all strains except for those isolates that did not produce siderophores.

  11. MultiSite Gateway-Compatible Cell Type-Specific Gene-Inducible System for Plants.

    Science.gov (United States)

    Siligato, Riccardo; Wang, Xin; Yadav, Shri Ram; Lehesranta, Satu; Ma, Guojie; Ursache, Robertas; Sevilem, Iris; Zhang, Jing; Gorte, Maartje; Prasad, Kalika; Wrzaczek, Michael; Heidstra, Renze; Murphy, Angus; Scheres, Ben; Mähönen, Ari Pekka

    2016-02-01

    A powerful method to study gene function is expression or overexpression in an inducible, cell type-specific system followed by observation of consequent phenotypic changes and visualization of linked reporters in the target tissue. Multiple inducible gene overexpression systems have been developed for plants, but very few of these combine plant selection markers, control of expression domains, access to multiple promoters and protein fusion reporters, chemical induction, and high-throughput cloning capabilities. Here, we introduce a MultiSite Gateway-compatible inducible system for Arabidopsis (Arabidopsis thaliana) plants that provides the capability to generate such constructs in a single cloning step. The system is based on the tightly controlled, estrogen-inducible XVE system. We demonstrate that the transformants generated with this system exhibit the expected cell type-specific expression, similar to what is observed with constitutively expressed native promoters. With this new system, cloning of inducible constructs is no longer limited to a few special cases but can be used as a standard approach when gene function is studied. In addition, we present a set of entry clones consisting of histochemical and fluorescent reporter variants designed for gene and promoter expression studies. © 2016 American Society of Plant Biologists. All Rights Reserved.

  12. Inv A gene specific PCR for detection of Salmonella from broilers

    Directory of Open Access Journals (Sweden)

    Thenmozhi Velayutham

    Full Text Available Poultry meat has been identified as one of the principal foodborne source of Salmonella. In this preliminary study the prevalence of Salmonella spp. contamination of broiler carcasses, were determined. Sixty samples were collected from poultry carcasses from the commercial broiler slaughtering facility in Namakkal, Tamil Nadu. The presence of Salmonella spp in collected samples was assessed by performing the pre-enrichment and enrichment culture, followed by PCR assay. The primers were selected from the invA gene specific for the detection of Salmonella spp. In this study 8.3% of poultry carcasses were found to be contaminated with Salmonella spp. In order to provide a more accurate profile of the prevalence of Salmonella spp in broiler carcasses, it is pertinent to use inv A gene specific PCR method that could be considered as an appropriate alternative to conventional culture method. [Vet. World 2011; 4(12.000: 562-564

  13. Identification of Specific Gene Sequences Conserved in Contemporary Epidemic Strains of Salmonella enterica▿ †

    OpenAIRE

    Kang, Min-Su; Besser, Thomas E.; Hancock, Dale D.; Porwollik, Steffen; McClelland, Michael; Call, Douglas R.

    2006-01-01

    Genetic elements specific to recent and contemporary epidemic strains of Salmonella enterica were identified using comparative genomic analysis. Two epidemic multidrug-resistant (MDR) strains, MDR Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) and cephalosporin-resistant MDR Salmonella enterica serovar Newport, and an epidemic pansusceptible strain, Salmonella serovar Typhimurium DT160, were subjected to Salmonella gene microarray and suppression subtractive hybridi...

  14. Increased gene delivery efficiency and specificity of a lipid-based nanosystem incorporating a glycolipid.

    Science.gov (United States)

    Magalhães, Mariana; Farinha, Dina; Pedroso de Lima, Maria Conceição; Faneca, Henrique

    2014-01-01

    Hepatocellular carcinoma (HCC) is the third most common cause of death related to cancer diseases worldwide. The current treatment options have many limitations and reduced success rates. In this regard, advances in gene therapy have shown promising results in novel therapeutic strategies. However, the success of gene therapy depends on the efficient and specific delivery of genetic material into target cells. In this regard, the main goal of this work was to develop a new lipid-based nanosystem formulation containing the lipid lactosyl-PE for specific and efficient gene delivery into HCC cells. The obtained results showed that incorporation of 15% of lactosyl-PE into liposomes induces a strong potentiation of lipoplex biological activity in HepG2 cells, not only in terms of transgene expression levels but also in terms of percentage of transfected cells. In the presence of galactose, which competes with lactosyl-PE for the binding to the asialoglycoprotein receptor (ASGP-R), a significant reduction in biological activity was observed, showing that the potentiation of transfection induced by the presence of lactosyl-PE could be due to its specific interaction with ASGP-R, which is overexpressed in HCC. In addition, it was found that the incorporation of lactosyl-PE in the nanosystems promotes an increase in their cell binding and uptake. Regarding the physicochemical properties of lipoplexes, the presence of lactosyl-PE resulted in a significant increase in DNA protection and in a substantial decrease in their mean diameter and zeta potential, conferring them suitable characteristics for in vivo application. Overall, the results obtained in this study suggest that the potentiation of the biological activity induced by the presence of lactosyl-PE is due to its specific binding to the ASGP-R, showing that this novel formulation could constitute a new gene delivery nanosystem for application in therapeutic strategies in HCC.

  15. Cloning and expression analysis of a new anther-specific gene ...

    Indian Academy of Sciences (India)

    In contrast to this observation, expression of CaMF4 was not detected in any organs of the male sterile line. Further analysis revealed that CaMF4 was expressed particularly in anthers of the fertile line. Our results suggest that CaMF4 is an anther-specific gene and might be indispensable for anther or pollen development in ...

  16. Identification of Genes Involved in Pseudomonas aeruginosa Biofilm-Specific Resistance to Antibiotics

    OpenAIRE

    Zhang, Li; Fritsch, Meredith; Hammond, Lisa; Landreville, Ryan; Slatculescu, Cristina; Colavita, Antonio; Mah, Thien-Fah

    2013-01-01

    Pseudomonas aeruginosa is a key opportunistic pathogen characterized by its biofilm formation ability and high-level multiple antibiotic resistance. By screening a library of random transposon insertion mutants with an increased biofilm-specifc antibiotic susceptibility, we previously identified 3 genes or operons of P. aeruginosa UCBPP-PA14 (ndvB, PA1875-1877 and tssC1) that do not affect biofilm formation but are involved in biofilm-specific antibiotic resistance. In this study, we demonstr...

  17. Novel Genes Involved in Controlling Specification of Drosophila FMRFamide Neuropeptide Cells.

    Science.gov (United States)

    Bivik, Caroline; Bahrampour, Shahrzad; Ulvklo, Carina; Nilsson, Patrik; Angel, Anna; Fransson, Fredrik; Lundin, Erika; Renhorn, Jakob; Thor, Stefan

    2015-08-01

    The expression of neuropeptides is often extremely restricted in the nervous system, making them powerful markers for addressing cell specification . In the developing Drosophila ventral nerve cord, only six cells, the Ap4 neurons, of some 10,000 neurons, express the neuropeptide FMRFamide (FMRFa). Each Ap4/FMRFa neuron is the last-born cell generated by an identifiable and well-studied progenitor cell, neuroblast 5-6 (NB5-6T). The restricted expression of FMRFa and the wealth of information regarding its gene regulation and Ap4 neuron specification makes FMRFa a valuable readout for addressing many aspects of neural development, i.e., spatial and temporal patterning cues, cell cycle control, cell specification, axon transport, and retrograde signaling. To this end, we have conducted a forward genetic screen utilizing an Ap4-specific FMRFa-eGFP transgenic reporter as our readout. A total of 9781 EMS-mutated chromosomes were screened for perturbations in FMRFa-eGFP expression, and 611 mutants were identified. Seventy-nine of the strongest mutants were mapped down to the affected gene by deficiency mapping or whole-genome sequencing. We isolated novel alleles for previously known FMRFa regulators, confirming the validity of the screen. In addition, we identified novel essential genes, including several with previously undefined functions in neural development. Our identification of genes affecting most major steps required for successful terminal differentiation of Ap4 neurons provides a comprehensive view of the genetic flow controlling the generation of highly unique neuronal cell types in the developing nervous system. Copyright © 2015 by the Genetics Society of America.

  18. Transcriptome analysis reveals strain-specific and conserved stemness genes in Schmidtea mediterranea.

    Directory of Open Access Journals (Sweden)

    Alissa M Resch

    Full Text Available The planarian Schmidtea mediterranea is a powerful model organism for studying stem cell biology due to its extraordinary regenerative ability mediated by neoblasts, a population of adult somatic stem cells. Elucidation of the S. mediterranea transcriptome and the dynamics of transcript expression will increase our understanding of the gene regulatory programs that regulate stem cell function and differentiation. Here, we have used RNA-Seq to characterize the S. mediterranea transcriptome in sexual and asexual animals and in purified neoblast and differentiated cell populations. Our analysis identified many uncharacterized genes, transcripts, and alternatively spliced isoforms that are differentially expressed in a strain or cell type-specific manner. Transcriptome profiling of purified neoblasts and differentiated cells identified neoblast-enriched transcripts, many of which likely play important roles in regeneration and stem cell function. Strikingly, many of the neoblast-enriched genes are orthologs of genes whose expression is enriched in human embryonic stem cells, suggesting that a core set of genes that regulate stem cell function are conserved across metazoan species.

  19. Cell-type-specific gene expression patterns in the knee cartilage in an osteoarthritis rat model.

    Science.gov (United States)

    Korostynski, Michal; Malek, Natalia; Piechota, Marcin; Starowicz, Katarzyna

    2018-01-01

    Osteoarthritis (OA) is a chronic degenerative disease that leads to joint failure, pain, and disability. Gene regulation is implicated as a driver of the imbalance between the expression of catabolic and anabolic factors that eventually leads to the degeneration of osteoarthritic cartilage. In our model, knee-joint OA was induced in male Wistar rats by intra-articular sodium monoiodoacetate (MIA) injections. Whole-genome microarrays were used to analyse the alterations in gene expression during the time-course of OA development (at 2, 14, and 28 days post-injection) in rat knee joints. The identified co-expressed groups of genes were analysed for enriched regulatory mechanisms, functional classes, and cell-type-specific expression. This analysis revealed 272 regulated transcripts (ANOVA FDR  2). Functionally, the five major gene expression patterns (A-E) were connected to PPAR signalling and adipogenesis (in cluster A), WNT signalling (in cluster B), endochondral ossification (in cluster C), matrix metalloproteinases and the ACE/RAGE pathway (in cluster D), and the Toll-like receptor, and IL-1 signalling pathways (in cluster E). Moreover, the dynamic profiles of these transcriptional changes were assigned to cellular compartments of the knee joint. Classifying the molecular processes associated with the development of cartilage degeneration provides novel insight into the OA disease process. Our study identified groups of co-regulated genes that share functional relationships and that may play an important role in the early and intermediate stages of OA.

  20. Sex-specific transcriptional regulation of the C. elegans sex-determining gene her-1.

    Science.gov (United States)

    Trent, C; Purnell, B; Gavinski, S; Hageman, J; Chamblin, C; Wood, W B

    1991-03-01

    Expression of the sex-determining gene her-1 is required in C. elegans for the normal male development of XO animals. Abnormal expression in XX animals, which normally develop as hermaphrodites, results in aberrant male development. We have isolated a molecular clone of the her-1 gene and have identified two transcripts that are present in XO animals at all stages of development: an abundant 0.8 kb transcript and a less abundant 1.2 kb transcript. In preparations of XX animals, the 0.8 kb transcript was observed only at very low levels in embryos or L1 larvae and the 1.2 kb transcript was not detected. Two gain-of-function her-1 mutations result in high levels of the 1.2 and 0.8 kb transcripts in XX animals. The levels of these transcripts are also elevated in XX animals carrying a loss-of-function mutation in either sdc-1 or sdc-2, consistent with the proposed roles of these genes as negative regulators of her-1. These results demonstrate that expression of the her-1 gene in males and hermaphrodites is controlled at the level of transcript synthesis or accumulation. This mode of regulation contrasts with that found for the Drosophila sex-determining genes, whose sex-specific expression is controlled by differential splicing in males and females.

  1. Transcriptome analysis reveals strain-specific and conserved stemness genes in Schmidtea mediterranea.

    Science.gov (United States)

    Resch, Alissa M; Palakodeti, Dasaradhi; Lu, Yi-Chien; Horowitz, Michael; Graveley, Brenton R

    2012-01-01

    The planarian Schmidtea mediterranea is a powerful model organism for studying stem cell biology due to its extraordinary regenerative ability mediated by neoblasts, a population of adult somatic stem cells. Elucidation of the S. mediterranea transcriptome and the dynamics of transcript expression will increase our understanding of the gene regulatory programs that regulate stem cell function and differentiation. Here, we have used RNA-Seq to characterize the S. mediterranea transcriptome in sexual and asexual animals and in purified neoblast and differentiated cell populations. Our analysis identified many uncharacterized genes, transcripts, and alternatively spliced isoforms that are differentially expressed in a strain or cell type-specific manner. Transcriptome profiling of purified neoblasts and differentiated cells identified neoblast-enriched transcripts, many of which likely play important roles in regeneration and stem cell function. Strikingly, many of the neoblast-enriched genes are orthologs of genes whose expression is enriched in human embryonic stem cells, suggesting that a core set of genes that regulate stem cell function are conserved across metazoan species.

  2. Phylogeny of Symbiotic Genes and the Symbiotic Properties of Rhizobia Specific to Astragalus glycyphyllos L.

    Science.gov (United States)

    Gnat, Sebastian; Małek, Wanda; Oleńska, Ewa; Wdowiak-Wróbel, Sylwia; Kalita, Michał; Łotocka, Barbara; Wójcik, Magdalena

    2015-01-01

    The phylogeny of symbiotic genes of Astragalus glycyphyllos L. (liquorice milkvetch) nodule isolates was studied by comparative sequence analysis of nodA, nodC, nodH and nifH loci. In all these genes phylograms, liquorice milkvetch rhizobia (closely related to bacteria of three species, i.e. Mesorhizobium amorphae, Mesorhizobium septentrionale and Mesorhizobium ciceri) formed one clearly separate cluster suggesting the horizontal transfer of symbiotic genes from a single ancestor to the bacteria being studied. The high sequence similarity of the symbiotic genes of A. glycyphyllos rhizobia (99-100% in the case of nodAC and nifH genes, and 98-99% in the case of nodH one) points to the relatively recent (in evolutionary scale) lateral transfer of these genes. In the nodACH and nifH phylograms, A. glycyphyllos nodule isolates were grouped together with the genus Mesorhizobium species in one monophyletic clade, close to M. ciceri, Mesorhizobium opportunistum and Mesorhizobium australicum symbiovar biserrulae bacteria, which correlates with the close relationship of these rhizobia host plants. Plant tests revealed the narrow host range of A. glycyphyllos rhizobia. They formed effective symbiotic interactions with their native host (A. glycyphyllos) and Amorpha fruticosa but not with 11 other fabacean species. The nodules induced on A. glycyphyllos roots were indeterminate with apical, persistent meristem, an age gradient of nodule tissues and cortical vascular bundles. To reflect the symbiosis-adaptive phenotype of rhizobia, specific for A. glycyphyllos, we propose for these bacteria the new symbiovar "glycyphyllae", based on nodA and nodC genes sequences.

  3. Herpesvirus late gene expression: a viral-specific Pre-Initiation Complex is key

    Directory of Open Access Journals (Sweden)

    Henri eGruffat

    2016-06-01

    Full Text Available During their productive cycle, herpesviruses exhibit a strictly regulated temporal cascade of gene expression that can be divided into three general stages: immediate-early (IE, early (E and late (L. This expression program is the result of a complex interplay between viral and cellular factors at both the transcriptional and post-transcriptional levels, as well as structural differences within the promoter architecture for each of the three gene classes. Since the cellular enzyme RNA polymerase II (RNAP-II is responsible for the transcription of herpesvirus genes, most viral promoters contain DNA motifs that are common with those of cellular genes, although promoter complexity decreases from immediate-early to late genes. Immediate-early and early promoters contain numerous cellular and viral cis-regulating sequences upstream of a TATA box, whereas late promoters differ significantly in that they lack cis-acting sequences upstream of the Transcription Start Site (TSS. Moreover, in the case of the β- and γ-herpesviruses, a TATT box motif is frequently found in the position where the consensus TATA box of eukaryotic promoters usually localizes. The mechanisms of transcriptional regulation of the late viral gene promoters appear to be different between α-herpesviruses and the two other herpesvirus subfamilies ( and . In this review, we will compare the mechanisms of late gene transcriptional regulation between HSV-1, for which the viral IE transcription factors - especially ICP4 - play an essential role, and the two other subfamilies of herpesviruses, with a particular emphasis on EBV, which has recently been found to code for its own specific TATT-binding protein.

  4. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Crew, Jennifer R.; Falzari, Kanakeshwari [Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 (United States); DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu [Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 (United States)

    2010-04-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  5. A novel method for the determination of basal gene expression of tissue-specific promoters: an analysis of prostate-specific promoters.

    NARCIS (Netherlands)

    Poel, H.G. van der; McCadden, J.; Verhaegh, G.W.C.T.; Kruszewski, M.; Ferrer, F.; Schalken, J.A.; Carducci, M.; Rodriguez, R.

    2001-01-01

    Because the toxicity of suicide gene therapeutics is directly related to basal promoter activity, we developed an assay to test for promoter "leakiness" using a diphtheria toxin mutant. Sequences of 15 prostate-specific gene promoter constructs were cloned in an expression plasmid (pBK; Stratagene,

  6. Antigen-Specific Gene Therapy after Immunisation Reduces the Severity of Collagen-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Tove Eneljung

    2013-01-01

    Full Text Available Reestablishment of tolerance induction in rheumatoid arthritis (RA would be an optimal treatment with few, if any, side effects. However, to develop such a treatment further insights in the immunological mechanisms governing tolerance are needed. We have developed a model of antigen-specific tolerance in collagen type II (CII induced arthritis (CIA using lentivirus-based gene therapy. The immunodominant epitope of CII was inserted into a lentivirus vector to achieve expression on the MHC class II molecule and the lentiviral particles were subsequently intravenously injected at different time points during CIA. Injection of lentiviral particles in early phases of CIA, that is, at day 7 or day 26 after CII immunisation, partially prevented development of arthritis, decreased the serum levels of CII-specific IgG antibodies, and enhanced the suppressive function of CII-specific T regulatory cells. When lentiviral particles were injected during manifest arthritis, that is, at day 31 after CII immunisation, the severity of arthritis progression was ameliorated, the levels of CII-specific IgG antibodies decreased and the proportion of T regulatory cells increased. Thus, antigen-specific gene therapy is effective when administered throughout the inflammatory course of arthritis and offers a good model for investigation of the basic mechanisms during tolerance in CIA.

  7. Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available Pseudomonas aeruginosa is a key opportunistic pathogen characterized by its biofilm formation ability and high-level multiple antibiotic resistance. By screening a library of random transposon insertion mutants with an increased biofilm-specifc antibiotic susceptibility, we previously identified 3 genes or operons of P. aeruginosa UCBPP-PA14 (ndvB, PA1875-1877 and tssC1 that do not affect biofilm formation but are involved in biofilm-specific antibiotic resistance. In this study, we demonstrate that PA0756-0757 (encoding a putative two-component regulatory system, PA2070 and PA5033 (encoding hypothetical proteins of unknown function display increased expression in biofilm cells and also have a role in biofilm-specific antibiotic resistance. Furthermore, deletion of each of PA0756, PA2070 and PA5033 resulted in a significant reduction of lethality in Caenorhabditis elegans, indicating a role for these genes in both biofilm-specific antibiotic resistance and persistence in vivo. Together, these data suggest that these genes are potential targets for antimicrobial agents.

  8. Adaptable gene-specific dye bias correction for two-channel DNA microarrays.

    Science.gov (United States)

    Margaritis, Thanasis; Lijnzaad, Philip; van Leenen, Dik; Bouwmeester, Diane; Kemmeren, Patrick; van Hooff, Sander R; Holstege, Frank C P

    2009-01-01

    DNA microarray technology is a powerful tool for monitoring gene expression or for finding the location of DNA-bound proteins. DNA microarrays can suffer from gene-specific dye bias (GSDB), causing some probes to be affected more by the dye than by the sample. This results in large measurement errors, which vary considerably for different probes and also across different hybridizations. GSDB is not corrected by conventional normalization and has been difficult to address systematically because of its variance. We show that GSDB is influenced by label incorporation efficiency, explaining the variation of GSDB across different hybridizations. A correction method (Gene- And Slide-Specific Correction, GASSCO) is presented, whereby sequence-specific corrections are modulated by the overall bias of individual hybridizations. GASSCO outperforms earlier methods and works well on a variety of publically available datasets covering a range of platforms, organisms and applications, including ChIP on chip. A sequence-based model is also presented, which predicts which probes will suffer most from GSDB, useful for microarray probe design and correction of individual hybridizations. Software implementing the method is publicly available.

  9. An investigation of NFXL1, a gene implicated in a study of specific language impairment.

    Science.gov (United States)

    Nudel, Ron

    2016-01-01

    A recent study identified NFXL1 as a candidate gene for specific language impairment. The protein encoded by this gene is predicted to be a transcription factor based on domain similarities with NFX1, a repressor of HLA class II genes, which have themselves been implicated in specific language impairment. However, there is very little literature on the function of NFXL1. This report describes a study of NFXL1 expression in several human tissues and an investigation of differential expression in several specific brain regions through quantitative PCR as well as a study of the protein's sub-cellular localization in HEK cells and SH-SY5Y cells through immunofluorescence. The NFXL1 transcript was found in all investigated tissues. In the brain, a high level of NFXL1 expression was found in the cerebellum. An analysis of the sub-cellular localization of the protein showed a cytoplasmic pattern in the investigated cells. The NFXL1 transcript was present in samples from different tissues; in the brain, a high expression level was found in a region implicated in some language-related pathologies. NFXL1 did not show nuclear localization, suggesting that, if it regulates transcription, certain conditions may be required for it to translocate to the nucleus.

  10. Tissue-Specific Venom Composition and Differential Gene Expression in Sea Anemones.

    Science.gov (United States)

    Macrander, Jason; Broe, Michael; Daly, Marymegan

    2016-08-25

    Cnidarians represent one of the few groups of venomous animals that lack a centralized venom transmission system. Instead, they are equipped with stinging capsules collectively known as nematocysts. Nematocysts vary in abundance and type across different tissues; however, the venom composition in most species remains unknown. Depending on the tissue type, the venom composition in sea anemones may be vital for predation, defense, or digestion. Using a tissue-specific RNA-seq approach, we characterize the venom assemblage in the tentacles, mesenterial filaments, and column for three species of sea anemone (Anemonia sulcata, Heteractis crispa, and Megalactis griffithsi). These taxa vary with regard to inferred venom potency, symbiont abundance, and nematocyst diversity. We show that there is significant variation in abundance of toxin-like genes across tissues and species. Although the cumulative toxin abundance for the column was consistently the lowest, contributions to the overall toxin assemblage varied considerably among tissues for different toxin types. Our gene ontology (GO) analyses also show sharp contrasts between conserved GO groups emerging from whole transcriptome analysis and tissue-specific expression among GO groups in our differential expression analysis. This study provides a framework for future characterization of tissue-specific venom and other functionally important genes in this lineage of simple bodied animals. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. TOPAZ1, a novel germ cell-specific expressed gene conserved during evolution across vertebrates.

    Directory of Open Access Journals (Sweden)

    Adrienne Baillet

    Full Text Available BACKGROUND: We had previously reported that the Suppression Subtractive Hybridization (SSH approach was relevant for the isolation of new mammalian genes involved in oogenesis and early follicle development. Some of these transcripts might be potential new oocyte and granulosa cell markers. We have now characterized one of them, named TOPAZ1 for the Testis and Ovary-specific PAZ domain gene. PRINCIPAL FINDINGS: Sheep and mouse TOPAZ1 mRNA have 4,803 bp and 4,962 bp open reading frames (20 exons, respectively, and encode putative TOPAZ1 proteins containing 1,600 and 1653 amino acids. They possess PAZ and CCCH domains. In sheep, TOPAZ1 mRNA is preferentially expressed in females during fetal life with a peak during prophase I of meiosis, and in males during adulthood. In the mouse, Topaz1 is a germ cell-specific gene. TOPAZ1 protein is highly conserved in vertebrates and specifically expressed in mouse and sheep gonads. It is localized in the cytoplasm of germ cells from the sheep fetal ovary and mouse adult testis. CONCLUSIONS: We have identified a novel PAZ-domain protein that is abundantly expressed in the gonads during germ cell meiosis. The expression pattern of TOPAZ1, and its high degree of conservation, suggests that it may play an important role in germ cell development. Further characterization of TOPAZ1 may elucidate the mechanisms involved in gametogenesis, and particularly in the RNA silencing process in the germ line.

  12. In silico analysis of stomach lineage specific gene set expression pattern in gastric cancer.

    Science.gov (United States)

    Pandi, Narayanan Sathiya; Suganya, Sivagurunathan; Rajendran, Suriliyandi

    2013-10-04

    Stomach lineage specific gene products act as a protective barrier in the normal stomach and their expression maintains the normal physiological processes, cellular integrity and morphology of the gastric wall. However, the regulation of stomach lineage specific genes in gastric cancer (GC) is far less clear. In the present study, we sought to investigate the role and regulation of stomach lineage specific gene set (SLSGS) in GC. SLSGS was identified by comparing the mRNA expression profiles of normal stomach tissue with other organ tissue. The obtained SLSGS was found to be under expressed in gastric tumors. Functional annotation analysis revealed that the SLSGS was enriched for digestive function and gastric epithelial maintenance. Employing a single sample prediction method across GC mRNA expression profiles identified the under expression of SLSGS in proliferative type and invasive type gastric tumors compared to the metabolic type gastric tumors. Integrative pathway activation prediction analysis revealed a close association between estrogen-α signaling and SLSGS expression pattern in GC. Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. In conclusion, our results highlight that estrogen mediated regulation of SLSGS in gastric tumor is a molecular predictor of metabolic type GC and prognostic factor in GC. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A tissue-specific role for intraflagellar transport genes during craniofacial development.

    Directory of Open Access Journals (Sweden)

    Elizabeth N Schock

    Full Text Available Primary cilia are nearly ubiquitous, cellular projections that function to transduce molecular signals during development. Loss of functional primary cilia has a particularly profound effect on the developing craniofacial complex, causing several anomalies including craniosynostosis, micrognathia, midfacial dysplasia, cleft lip/palate and oral/dental defects. Development of the craniofacial complex is an intricate process that requires interactions between several different tissues including neural crest cells, neuroectoderm and surface ectoderm. To understand the tissue-specific requirements for primary cilia during craniofacial development we conditionally deleted three separate intraflagellar transport genes, Kif3a, Ift88 and Ttc21b with three distinct drivers, Wnt1-Cre, Crect and AP2-Cre which drive recombination in neural crest, surface ectoderm alone, and neural crest, surface ectoderm and neuroectoderm, respectively. We found that tissue-specific conditional loss of ciliary genes with different functions produces profoundly different facial phenotypes. Furthermore, analysis of basic cellular behaviors in these mutants suggests that loss of primary cilia in a distinct tissue has unique effects on development of adjacent tissues. Together, these data suggest specific spatiotemporal roles for intraflagellar transport genes and the primary cilium during craniofacial development.

  14. Tissue-Specific Venom Composition and Differential Gene Expression in Sea Anemones

    Science.gov (United States)

    Macrander, Jason; Broe, Michael; Daly, Marymegan

    2016-01-01

    Cnidarians represent one of the few groups of venomous animals that lack a centralized venom transmission system. Instead, they are equipped with stinging capsules collectively known as nematocysts. Nematocysts vary in abundance and type across different tissues; however, the venom composition in most species remains unknown. Depending on the tissue type, the venom composition in sea anemones may be vital for predation, defense, or digestion. Using a tissue-specific RNA-seq approach, we characterize the venom assemblage in the tentacles, mesenterial filaments, and column for three species of sea anemone (Anemonia sulcata, Heteractis crispa, and Megalactis griffithsi). These taxa vary with regard to inferred venom potency, symbiont abundance, and nematocyst diversity. We show that there is significant variation in abundance of toxin-like genes across tissues and species. Although the cumulative toxin abundance for the column was consistently the lowest, contributions to the overall toxin assemblage varied considerably among tissues for different toxin types. Our gene ontology (GO) analyses also show sharp contrasts between conserved GO groups emerging from whole transcriptome analysis and tissue-specific expression among GO groups in our differential expression analysis. This study provides a framework for future characterization of tissue-specific venom and other functionally important genes in this lineage of simple bodied animals. PMID:27389690

  15. DNA-binding specificities of plant transcription factors and their potential to define target genes.

    Science.gov (United States)

    Franco-Zorrilla, José M; López-Vidriero, Irene; Carrasco, José L; Godoy, Marta; Vera, Pablo; Solano, Roberto

    2014-02-11

    Transcription factors (TFs) regulate gene expression through binding to cis-regulatory specific sequences in the promoters of their target genes. In contrast to the genetic code, the transcriptional regulatory code is far from being deciphered and is determined by sequence specificity of TFs, combinatorial cooperation between TFs and chromatin competence. Here we addressed one of these determinants by characterizing the target sequence specificity of 63 plant TFs representing 25 families, using protein-binding microarrays. Remarkably, almost half of these TFs recognized secondary motifs, which in some cases were completely unrelated to the primary element. Analyses of coregulated genes and transcriptomic data from TFs mutants showed the functional significance of over 80% of all identified sequences and of at least one target sequence per TF. Moreover, combining the target sequence information with coexpression analysis we could predict the function of a TF as activator or repressor through a particular DNA sequence. Our data support the correlation between cis-regulatory elements and the sequence determined in vitro using the protein-binding microarray and provides a framework to explore regulatory networks in plants.

  16. Prostate-Specific Antigen Modulates the Expression of Genes Involved in Prostate Tumor Growth

    Directory of Open Access Journals (Sweden)

    B. Bindukumar

    2005-03-01

    Full Text Available Prostate-specific antigen (PSA is a serine protease that is widely used as a surrogate marker in the early diagnosis and management of prostate cancer. The physiological relevance of tissue PSA levels and their role in prostate tumor growth and metastasis are not known. Free-PSA (f-PSA was purified to homogeneity from human seminal plasma by column chromatography, eliminating hk2 and all known PSA complexes and retaining its protease activity. Confluent monolayers of prostate cancer cell lines, PC-3M and LNCaP, were treated with f-PSA in a series of in vitro experiments to determine the changes in expression of various genes that are known to regulate tumor growth and metastasis. Gene array, quantitative polymerase chain reaction (QPCR, enzyme-linked immunosorbent assay (ELISA results show significant changes in the expression of various cancer-related genes in PC-3M and LNCaP cells treated with f-PSA. In a gene array analysis of PC-3M cells treated with 10 4tM f-PSA, 136 genes were upregulated and 137 genes were downregulated. In LNCaP cells treated with an identical concentration of f-PSA, a total of 793 genes was regulated. QPCR analysis reveals that the genes for urokinase-type plasminogen activator (uPA, VEGF, Pim-1 oncogene, known to promote tumor growth, were significantly downregulated, whereas IFN-γ, known to be a tumor-suppressor gene, was significantly upregulated in f-PSA-treated PC-3M cells. The effect of f-PSA on VEGF and IFN-γ gene expression and on protein release in PC-3M cells was distinctly dose-dependent. In vivo studies showed a significant reduction (P = .03 in tumor load when fPSA was administered in the tumor vicinity of PC-3M tumor-bearing BALB/c nude mice. Our data support the hypothesis that f-PSA plays a significant role in prostate tumor growth by regulating various proangiogenic and antiangiogenic growth factors.

  17. Brain region-specific altered expression and association of mitochondria-related genes in autism

    Directory of Open Access Journals (Sweden)

    Anitha Ayyappan

    2012-11-01

    Full Text Available Abstract Background Mitochondrial dysfunction (MtD has been observed in approximately five percent of children with autism spectrum disorders (ASD. MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA. Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. Methods For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG, motor cortex (MC and thalamus (THL from autism patients (n=8 and controls (n=10 were obtained from the Autism Tissue Program (Princeton, NJ, USA. Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Results Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2, neurofilament, light polypeptide (NEFL and solute carrier family 25, member 27 (SLC25A27 showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066 and SLC25A27 (P = 0.046; Z-score 1.990 showed genetic association with autism in Caucasian and Japanese samples, respectively. The

  18. Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement.

    Science.gov (United States)

    Sun, Yongwei; Li, Jingying; Xia, Lanqin

    2016-01-01

    Genome editing technologies enable precise modifications of DNA sequences in vivo and offer a great promise for harnessing plant genes in crop improvement. The precise manipulation of plant genomes relies on the induction of DNA double-strand breaks by sequence-specific nucleases (SSNs) to initiate DNA repair reactions that are based on either non-homologous end joining (NHEJ) or homology-directed repair (HDR). While complete knock-outs and loss-of-function mutations generated by NHEJ are very valuable in defining gene functions, their applications in crop improvement are somewhat limited because many agriculturally important traits are conferred by random point mutations or indels at specific loci in either the genes' encoding or promoter regions. Therefore, genome modification through SSNs-mediated HDR for gene targeting (GT) that enables either gene replacement or knock-in will provide an unprecedented ability to facilitate plant breeding by allowing introduction of precise point mutations and new gene functions, or integration of foreign genes at specific and desired "safe" harbor in a predefined manner. The emergence of three programmable SSNs, such as zinc finger nucleases, transcriptional activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems has revolutionized genome modification in plants in a more controlled manner. However, while targeted mutagenesis is becoming routine in plants, the potential of GT technology has not been well realized for traits improvement in crops, mainly due to the fact that NHEJ predominates DNA repair process in somatic cells and competes with the HDR pathway, and thus HDR-mediated GT is a relative rare event in plants. Here, we review recent research findings mainly focusing on development and applications of precise GT in plants using three SSNs systems described above, and the potential mechanisms underlying HDR events in plant

  19. Hypoxia/hepatoma dual specific suicide gene expression plasmid delivery using bio-reducible polymer for hepatocellular carcinoma therapy.

    Science.gov (United States)

    Kim, Hyun Ah; Nam, Kihoon; Lee, Minhyung; Kim, Sung Wan

    2013-10-10

    Gene therapy is suggested as a promising alternative strategy of hepatocellular carcinoma (HCC, also called hepatoma) therapy. To achieve a successful and safe gene therapy, tight regulation of gene expression is required to minimize side-effects in normal tissues. In this study, we developed a novel hypoxia and hepatoma dual specific gene expression vector. The constructed vectors were transfected into various cell lines using bio-reducible polymer, PAM-ABP. First, pAFPS-Luc or pAFPL-Luc vector was constructed with the alpha-fectoprotein (AFP) promoter and enhancer for hepatoma tissue specific gene expression. Then, pEpo-AFPL-Luc was constructed by insertion of the erythropoietin (Epo) enhancer for hypoxic cancer specific gene expression. In vitro transfection assay showed that pEpo-AFPL-Luc transfected hepatoma cell increased gene expression under hypoxic condition. To confirm the therapeutic effect of dual specific vector, herpes simplex virus thymidine kinase (HSV-TK) gene was introduced for cancer cell killing. The pEpo-AFPL-TK was transfected into hepatoma cell lines in the presence of ganciclovir (GCV) pro-drug. Caspase-3/7, MTT and TUNEL assays elucidated that pEpo-AFPL-TK transfected cells showed significant increasing of death rate in hypoxic hepatoma cells compared to controls. Therefore, the hypoxia/hepatoma dual specific gene expression vector with the Epo enhancer and AFP promoter may be useful for hepatoma specific gene therapy. © 2013.

  20. Novel strong tissue specific promoter for gene expression in human germ cells

    Directory of Open Access Journals (Sweden)

    Kuzmin Denis

    2010-08-01

    Full Text Available Abstract Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102, where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter. To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1, whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293. In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X. The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12, and an important role - in the rest two cell lines.

  1. Chronic social isolation is associated with metabolic gene expression changes specific to mammary adipose tissue.

    Science.gov (United States)

    Volden, Paul A; Wonder, Erin L; Skor, Maxwell N; Carmean, Christopher M; Patel, Feenalie N; Ye, Honggang; Kocherginsky, Masha; McClintock, Martha K; Brady, Matthew J; Conzen, Suzanne D

    2013-07-01

    Chronic social isolation is linked to increased mammary tumor growth in rodent models of breast cancer. In the C3(1)/SV40 T-antigen FVB/N (TAg) mouse model of "triple-negative" breast cancer, the heightened stress response elicited by social isolation has been associated with increased expression of metabolic genes in the mammary gland before invasive tumors develop (i.e., during the in situ carcinoma stage). To further understand the mechanisms underlying how accelerated mammary tumor growth is associated with social isolation, we separated the mammary gland adipose tissue from adjacent ductal epithelial cells and analyzed individual cell types for changes in metabolic gene expression. Specifically, increased expression of the key metabolic genes Acaca, Hk2, and Acly was found in the adipocyte, rather than the epithelial fraction. Surprisingly, metabolic gene expression was not significantly increased in visceral adipose depots of socially isolated female mice. As expected, increased metabolic gene expression in the mammary adipocytes of socially isolated mice coincided with increased glucose metabolism, lipid synthesis, and leptin secretion from this adipose depot. Furthermore, application of media that had been cultured with isolated mouse mammary adipose tissue (conditioned media) resulted in increased proliferation of mammary cancer cells relative to group-housed-conditioned media. These results suggest that exposure to a chronic stressor (social isolation) results in specific metabolic reprogramming in mammary gland adipocytes that in turn contributes to increased proliferation of adjacent preinvasive malignant epithelial cells. Metabolites and/or tumor growth-promoting proteins secreted from adipose tissue could identify biomarkers and/or targets for preventive intervention in breast cancer. ©2013 AACR.

  2. Gene expression analysis distinguishes tissue specific and gender related functions among adult Ascaris suum tissues

    Science.gov (United States)

    Wang, Zhengyuan; Gao, Xin; Martin, John; Yin, Yong; Abubucker, Sahar; Rash, Amy C.; Li, Ben-Wen; Nash, Bill; Hallsworth-Pepin, Kym; Jasmer, Douglas P.; Mitreva, Makedonka

    2013-01-01

    Over a billion people are infected by Ascaris spp. intestinal parasites. To clarify functional differences among tissues of adult A. suum, we compared gene expression by various tissues of these worms by expression microarray methods.. The A. suum genome was sequenced and assembled to allow generation of microarray elements. Expression of over 40,000 60-mer elements was investigated in a variety of tissues from both male and female adult worms. Nearly 50 percent of the elements for which signal was detected exhibited differential expression among different tissues. The unique profile of transcripts identified for each tissue clarified functional distinctions among tissues, such as chitin binding in the ovary and peptidase activity in the intestines. Interestingly, hundreds of gender-specific elements were characterized in multiple non-reproductive tissues of female or male worms, with most prominence of gender differences in intestinal tissue. A. suum genes from the same family were frequently expressed differently among tissues. Transcript abundance for genes specific to A. suum, by comparison to Caenorhabditis elegans, varied to a greater extent among tissues than for genes conserved between A. suum and C. elegans. Analysis using C. elegans protein interaction data identified functional modules conserved between these two nematodes, resulting in identification of functional predictions of essential subnetworks of protein interactions and how these networks may vary among nematode tissues. A notable finding was very high module similarity between adult reproductive tissues and intestine. Our results provide the most comprehensive assessment of gene expression among tissues of a parasitic nematode to date. PMID:23572074

  3. Chronic social isolation is associated with metabolic gene expression changes specific to mammary adipose tissue

    Science.gov (United States)

    Volden, Paul A.; Wonder, Erin L.; Skor, Maxwell N.; Carmean, Christopher M.; Patel, Feenalie N.; Ye, Honggang; Kocherginsky, Masha; McClintock, Martha K.; Brady, Matthew J.; Conzen, Suzanne D.

    2013-01-01

    Chronic social isolation is linked to increased mammary tumor growth in rodent models of breast cancer. In the C3(1)/SV40 T-antigen FVB/N (TAg) mouse model of “triple-negative” breast cancer, the heightened stress response elicited by social isolation has been associated with increased expression of metabolic genes in the mammary gland before invasive tumors develop (i.e. during the in situ carcinoma stage). To further understand the mechanisms underlying how accelerated mammary tumor growth is associated with social isolation, we separated the mammary gland adipose tissue from adjacent ductal epithelial cells and analyzed individual cell types for changes in metabolic gene expression. Specifically, increased expression of the key metabolic genes Acaca, Hk2 and Acly was found in the adipocyte, rather than the epithelial fraction. Surprisingly, metabolic gene expression was not significantly increased in visceral adipose depots of socially isolated female mice. As expected, increased metabolic gene expression in the mammary adipocytes of socially isolated mice coincided with increased glucose metabolism, lipid synthesis, and leptin secretion from this adipose depot. Furthermore, application of media that had been cultured with isolated mouse mammary adipose tissue (conditioned media) resulted in increased proliferation of mammary cancer cells relative to group-housed conditioned media. These results suggest that exposure to a chronic stressor (social isolation) results in specific metabolic reprogramming in mammary gland adipocytes that in turn contributes to increased proliferation of adjacent pre-invasive malignant epithelial cells. Metabolites and/or tumor growth-promoting proteins secreted from adipose tissue could identify biomarkers and/or targets for preventive intervention in breast cancer. PMID:23780289

  4. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  5. The expression of pregnancy-specific {beta}1-glycoprotein genes in Meckel-Gruber syndrome fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shao-Ming; Cham, Wai-Yee [Georgetown Univ. Medical Center, Washington, DC (United States)

    1994-09-01

    Meckel-Gruber syndrome (MS) is an autosomal recessive disorder with multiple congenital malformations. The only available prenatal diagnostic marker for this disorder is the amniotic fluid level of pregnancy-specific {beta}1-glycoprotein (PSG). PSG is a family of proteins which are expressed at high levels during pregnancy. Increasing maternal serum PSG levels correlate with the progression of pregnancy and can be used as indicators for pregnancy outcome and fetal well-being. The amniotic fluid PSG level is about one-tenth of that of the maternal serum level in normal pregnancy, but are elevated in all cases of MS examined so far. On the other hand, the maternal serum PSG level and third trimester placental PSG content are normal in most cases of MS. This study aims at comparing the expression of PSG in fibroblasts derived from a fetus afflicted with MS. Total cellular RNA was extracted from two MS cultured fibroblast lines (M3206 and GM7817) and four age- and sex-matched control fibroblast lines obtained from the Human Genetic Mutant Cell Repository, Camden, NJ. The expression of eight PSG genes namely, PSG1, PSG2, PSG3, PSG4, PSG5, PSG6, PSG9 and PSG11, were examined with reverse transcription-polymerase chain reaction (RT-PCR). All PSG transcripts present in the cell were first amplified using universal primers in a 28-cycle PCR. Specific PSG gene products were then amplified with PSG gene-specific primers. Results showed that there is no significant difference in PSG expression between control and disease fibroblasts. In both cases, the most abundant transcript was the type II transcript of PSG5 followed by the type I transcripts of PSG1 and PG4. PSG9, PSG11 and PSG 3 were expressed at very low levels or not expressed at all in MS as well as in normal control fibroblasts. These results showed that PSG gene expression was not altered in MS fibroblasts.

  6. Tumor-specific suicide gene therapy for hepatocellular carcinoma by transcriptionally targeted retroviral replicating vectors.

    Science.gov (United States)

    Lai, Y-H; Lin, C-C; Chen, S-H; Tai, C-K

    2015-02-01

    Replicating virus vectors are attractive tools for anticancer gene therapy, but the potential for adverse events due to uncontrolled spread of the vectors has been a major concern. To design a tumor-specific retroviral replicating vector (RRV), we replaced the U3 region of the RRV ACE-GFP with a regulatory sequence consisting of the hepatitis B virus enhancer II (EII) and human α-fetoprotein (AFP) core promoter to produce ACE-GFP-EIIAFP, a hepatocellular carcinoma (HCC)-targeting RRV. Similar to ACE-GFP, ACE-GFP-EIIAFP exhibited robust green fluorescent protein (GFP) expression in HCC cells and, most importantly, it exhibited HCC-specific replication and did not replicate in non-HCC tumor cells or normal liver cells. We sequenced the promoter region of ACE-GFP-EIIAFP collected from serial infection cycles to examine the genomic stability of the vector during its replicative spread, and found that the vector could retain the hybrid promoter in the genome for at least six infection cycles. In vitro studies revealed that ACE-CD-EIIAFP and ACE-PNP-EIIAFP, which express the yeast cytosine deaminase and Escherichia coli purine nucleoside phosphorylase, respectively, exert a highly potent cytotoxic effect on HCC cells in the presence of their respective prodrugs. In vivo, ACE-CD-EIIAFP-mediated suicide gene therapy efficiently suppressed HCC tumor growth and no detectable RRV signal was observed in extratumoral tissues. These results suggest that the tumor-specific, suicide-gene-encoding RRV may fulfill the promise of retroviral gene therapy for cancer.

  7. A Plasmodium Whole-Genome Synteny Map: Indels and Synteny Breakpoints as Foci for Species-Specific Genes.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available Whole-genome comparisons are highly informative regarding genome evolution and can reveal the conservation of genome organization and gene content, gene regulatory elements, and presence of species-specific genes. Initial comparative genome analyses of the human malaria parasite Plasmodium falciparum and rodent malaria parasites (RMPs revealed a core set of 4,500 Plasmodium orthologs located in the highly syntenic central regions of the chromosomes that sharply defined the boundaries of the variable subtelomeric regions. We used composite RMP contigs, based on partial DNA sequences of three RMPs, to generate a whole-genome synteny map of P. falciparum and the RMPs. The core regions of the 14 chromosomes of P. falciparum and the RMPs are organized in 36 synteny blocks, representing groups of genes that have been stably inherited since these malaria species diverged, but whose relative organization has altered as a result of a predicted minimum of 15 recombination events. P. falciparum-specific genes and gene families are found in the variable subtelomeric regions (575 genes, at synteny breakpoints (42 genes, and as intrasyntenic indels (126 genes. Of the 168 non-subtelomeric P. falciparum genes, including two newly discovered gene families, 68% are predicted to be exported to the surface of the blood stage parasite or infected erythrocyte. Chromosomal rearrangements are implicated in the generation and dispersal of P. falciparum-specific gene families, including one encoding receptor-associated protein kinases. The data show that both synteny breakpoints and intrasyntenic indels can be foci for species-specific genes with a predicted role in host-parasite interactions and suggest that, besides rearrangements in the subtelomeric regions, chromosomal rearrangements may also be involved in the generation of species-specific gene families. A majority of these genes are expressed in blood stages, suggesting that the vertebrate host exerts a greater

  8. A Plasmodium whole-genome synteny map: indels and synteny breakpoints as foci for species-specific genes.

    Directory of Open Access Journals (Sweden)

    Taco W A Kooij

    2005-12-01

    Full Text Available Whole-genome comparisons are highly informative regarding genome evolution and can reveal the conservation of genome organization and gene content, gene regulatory elements, and presence of species-specific genes. Initial comparative genome analyses of the human malaria parasite Plasmodium falciparum and rodent malaria parasites (RMPs revealed a core set of 4,500 Plasmodium orthologs located in the highly syntenic central regions of the chromosomes that sharply defined the boundaries of the variable subtelomeric regions. We used composite RMP contigs, based on partial DNA sequences of three RMPs, to generate a whole-genome synteny map of P. falciparum and the RMPs. The core regions of the 14 chromosomes of P. falciparum and the RMPs are organized in 36 synteny blocks, representing groups of genes that have been stably inherited since these malaria species diverged, but whose relative organization has altered as a result of a predicted minimum of 15 recombination events. P. falciparum-specific genes and gene families are found in the variable subtelomeric regions (575 genes, at synteny breakpoints (42 genes, and as intrasyntenic indels (126 genes. Of the 168 non-subtelomeric P. falciparum genes, including two newly discovered gene families, 68% are predicted to be exported to the surface of the blood stage parasite or infected erythrocyte. Chromosomal rearrangements are implicated in the generation and dispersal of P. falciparum-specific gene families, including one encoding receptor-associated protein kinases. The data show that both synteny breakpoints and intrasyntenic indels can be foci for species-specific genes with a predicted role in host-parasite interactions and suggest that, besides rearrangements in the subtelomeric regions, chromosomal rearrangements may also be involved in the generation of species-specific gene families. A majority of these genes are expressed in blood stages, suggesting that the vertebrate host exerts a greater

  9. Genome-Wide and Gene-Specific Epigenomic Platforms for Hepatocellular Carcinoma Biomarker Development Trials

    Science.gov (United States)

    Michailidi, Christina; Jaffe, Andrew; Ili-Gangas, Carmen; Brebi-Mieville, Priscilla; Perez, Jimena; Kim, Myoung Sook; Zhong, Xiaoli; Yang, Quiang; Valle, Blanca; Meltzer, Stephen J.; Torbenson, Michael; Esteller, Manel; Sidransky, David; Guerrero-Preston, Rafael

    2014-01-01

    The majority of the epigenomic reports in hepatocellular carcinoma have focused on identifying novel differentially methylated drivers or passengers of the oncogenic process. Few reports have considered the technologies in place for clinical translation of newly identified biomarkers. The aim of this study was to identify epigenomic technologies that need only a small number of samples to discriminate HCC from non-HCC tissue, a basic requirement for biomarker development trials. To assess that potential, we used quantitative Methylation Specific PCR, oligonucleotide tiling arrays, and Methylation BeadChip assays. Concurrent global DNA hypomethylation, gene-specific hypermethylation, and chromatin alterations were observed as a hallmark of HCC. A global loss of promoter methylation was observed in HCC with the Illumina BeadChip assays and the Nimblegen oligonucleotide arrays. HCC samples had lower median methylation peak scores and a reduced number of significant promoter-wide methylated probes. Promoter hypermethylation of RASSF1A, SSBP2, and B4GALT1 quantified by qMSP had a sensitivity ranging from 38% to 52%, a specificity of 100%, and an AUC from 0.58 to 0.75. A panel combining these genes with HCC risk factors had a sensitivity of 87%, a specificity of 100%, and an AUC of 0.91. PMID:24829571

  10. Specific and efficient gene delivery mediated by an asialofetuin-associated nanosystem.

    Science.gov (United States)

    Farinha, Dina; Pedroso de Lima, Maria C; Faneca, Henrique

    2014-10-01

    Gene therapy is considered a promising approach for the treatment of hepatocellular carcinoma (HCC). In this regard, the main goal of this work was to develop a specific and efficient gene delivery nanosystem to HCC based on 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine:cholesterol cationic liposomes and asialofetuin (ASF), a specific ligand to the asialoglycoprotein receptor (ASGP-R) that is overexpressed in HCC. Our results show that association of ASF to lipoplexes promotes a substantial increase in their biological activity in HCC cells, not only in vitro, but also in an animal model. The transfection activity obtained with this novel nanosystem (ASF-lipoplexes) was much higher than that observed with a highly efficient commercial formulation. On the other hand, the presence of high concentrations of galactose substantially reduced the cell uptake and biological activity of the ASF-lipoplexes. These results, together with those obtained in the presence of inhibitors of endocytosis, show that the potentiation induced by the association of ASF to lipoplexes is due to its specific interaction with the ASGP-R. The physicochemical properties of the generated nanosystem also reinforce this observation. Overall, our results demonstrate for the first time that the novel ASF-lipoplexes present a noticeable ability to specifically and efficiently deliver genetic material into HCC cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A dual-specificity isoform of the protein kinase inhibitor PKI produced by alternate gene splicing.

    Science.gov (United States)

    Kumar, Priyadarsini; Walsh, Donal A

    2002-03-15

    We have previously shown that the protein kinase inhibitor beta (PKIbeta) form of the cAMP-dependent protein kinase inhibitor exists in multiple isoforms, some of which are specific inhibitors of the cAMP-dependent protein kinase, whereas others also inhibit the cGMP-dependent enzyme [Kumar, Van Patten and Walsh (1997), J. Biol. Chem. 272, 20011-20020]. We have now demonstrated that the switch from a cAMP-dependent protein kinase (PKA)-specific inhibitor to one with dual specificity arises as a consequence of alternate gene splicing. We have confirmed using bacterially produced pure protein that a single inhibitor species has dual specificity for both PKA and cGMP-dependent protein kinase (PKG), inhibiting each with very high and closely similar inhibitory potencies. The gene splicing converted a protein with 70 amino acids into one of 109 amino acids, and did not change the inhibitory potency to PKA, but changed it from a protein that had no detectable PKG inhibitory activity to one that now inhibited PKG in the nanomolar range.

  12. Tissue specific haemoglobin gene expression suggests adaptation to local marine conditions in North Sea flounder (Platichthys flesus L.)

    DEFF Research Database (Denmark)

    Larsen, P.F.; Eg Nielsen, Einar; Hansen, M.M.

    2013-01-01

    of the haemoglobin alpha and beta subunit genes was studied in reciprocally transplanted European flounder Platichthys flesus from the highly saline North Sea and the brackish Baltic Sea. Clear differences in expression patterns of haemoglobin alpha and beta subunit genes were found among different types of tissue....... Finally, for kidney tissue a stress response was observed in one population, with gene up-regulation when North Sea flounders were transplanted to low salinity. This study underlines the importance of tissue specific gene expression and the significance of gene expression for evolution of local adaptation...... in high gene flow marine fishes. © 2013 The Genetics Society of Korea...

  13. Helicobacter pylori evolution: lineage- specific adaptations in homologs of eukaryotic Sel1-like genes.

    Directory of Open Access Journals (Sweden)

    Masako Ogura

    2007-08-01

    Full Text Available Geographic partitioning is postulated to foster divergence of Helicobacter pylori populations as an adaptive response to local differences in predominant host physiology. H. pylori's ability to establish persistent infection despite host inflammatory responses likely involves active management of host defenses using bacterial proteins that may themselves be targets for adaptive evolution. Sequenced H. pylori genomes encode a family of eight or nine secreted proteins containing repeat motifs that are characteristic of the eukaryotic Sel1 regulatory protein, whereas the related Campylobacter and Wolinella genomes each contain only one or two such "Sel1-like repeat" (SLR genes ("slr genes". Signatures of positive selection (ratio of nonsynonymous to synonymous mutations, dN/dS = omega > 1 were evident in the evolutionary history of H. pylori slr gene family expansion. Sequence analysis of six of these slr genes (hp0160, hp0211, hp0235, hp0519, hp0628, and hp1117 from representative East Asian, European, and African H. pylori strains revealed that all but hp0628 had undergone positive selection, with different amino acids often selected in different regions. Most striking was a divergence of Japanese and Korean alleles of hp0519, with Japanese alleles having undergone particularly strong positive selection (omegaJ > 25, whereas alleles of other genes from these populations were intermingled. Homology-based structural modeling localized most residues under positive selection to SLR protein surfaces. Rapid evolution of certain slr genes in specific H. pylori lineages suggests a model of adaptive change driven by selection for fine-tuning of host responses, and facilitated by geographic isolation. Characterization of such local adaptations should help elucidate how H. pylori manages persistent infection, and potentially lead to interventions tailored to diverse human populations.

  14. Differential expression and methylation of brain developmental genes define location-specific subsets of pilocytic astrocytoma.

    Science.gov (United States)

    Lambert, Sally R; Witt, Hendrik; Hovestadt, Volker; Zucknick, Manuela; Kool, Marcel; Pearson, Danita M; Korshunov, Andrey; Ryzhova, Marina; Ichimura, Koichi; Jabado, Nada; Fontebasso, Adam M; Lichter, Peter; Pfister, Stefan M; Collins, V Peter; Jones, David T W

    2013-08-01

    Pilocytic astrocytomas (PAs) are the most common brain tumors in pediatric patients and can cause significant morbidity, including chronic neurological deficiencies. They are characterized by activating alterations in the mitogen-activated protein kinase pathway, but little else is known about their development. To map the global DNA methylation profiles of these tumors, we analyzed 62 PAs and 7 normal cerebellum samples using Illumina 450K microarrays. These data revealed two subgroups of PA that separate according to tumor location (infratentorial versus supratentorial), and identified key neural developmental genes that are differentially methylated between the two groups, including NR2E1 and EN2. Integration with transcriptome microarray data highlighted significant expression differences, which were unexpectedly associated with a strong positive correlation between methylation and expression. Differentially methylated probes were often identified within the gene body and/or regions up- or downstream of the gene, rather than at the transcription start site. We also identified a large number of differentially methylated genes between cerebellar PAs and normal cerebellum, which were again enriched for developmental genes. In addition, we found a significant association between differentially methylated genes and SUZ12 binding sites, indicating potential disruption of the polycomb repressor complex 2 (PRC2). Taken together, these data suggest that PA from different locations in the brain may arise from region-specific cells of origin, and highlight the potential disruption of key developmental regulators during tumorigenesis. These findings have implications for future basic research and clinical trials, as therapeutic targets and drug sensitivity may differ according to tumor location.

  15. Structural similarity between the lepidoptera- and diptera-specific insecticidal endotoxin genes of Bacillus thuringiensis subsp. "kurstaki" and "israelensis".

    OpenAIRE

    Thorne, L; Garduno, F; Thompson, T; Decker, D.; Zounes, M; Wild, M.; Walfield, A M; Pollock, T J

    1986-01-01

    A gene from Bacillus thuringiensis subsp. "israelensis" was cloned from the large plasmids of this subspecies and was shown to code for a mosquitocidal polypeptide. The gene could be expressed in either Escherichia coli, Bacillus subtilis, or B. thuringiensis subsp. "israelensis" to produce the larvicidal activity. Similarly, a Lepidoptera-specific toxin gene from B. thuringiensis subsp. "kurstaki" was also cloned and expressed in E. coli and B. subtilis. Both cloned genes were sequenced and ...

  16. Precise genome modification via sequence-specific nucleases-mediated gene targeting for crop improvement

    Directory of Open Access Journals (Sweden)

    Yongwei Sun

    2016-12-01

    Full Text Available Genome editing technologies enable precise modifications of DNA sequences in vivo and offer a great promise for harnessing plant genes in crop improvement. The precise manipulation of plant genomes relies on the induction of DNA double-strand breaks (DSBs by sequence-specific nucleases (SSNs to initiate DNA repair reactions that are based on either non-homologous end joining (NHEJ or homology-directed repair (HDR. While complete knock-outs and loss-of-function mutations generated by NHEJ are very valuable in defining gene functions, their applications in crop improvement are somewhat limited because many agriculturally important traits are conferred by random point mutations or indels at specific loci in either the genes’ encoding or promoter regions. Therefore, genome modification through SSNs-mediated HDR for gene targeting (GT that enables either gene replacement or knock-in will provide an unprecedented ability to facilitate plant breeding by allowing introduction of precise point mutations and new gene functions, or integration of foreign genes at specific and desired ‘safe’ harbor in a predefined manner. The emergence of three programmable SSNs such as zinc finger nucleases (ZFNs, transcriptional activator-like effector nucleases (TALENs, and the clustered regularly interspaced short palindromic repeat (CRISPR/CRISPR-associated protein 9 (Cas9 systems has revolutionized genome modification in plants in a more controlled manner. However, while targeted mutagenesis is becoming routine in plants, the potential of GT technology has not been well realized for traits improvement in crops, mainly due to the fact that NHEJ predominates DNA repair process in somatic cells and competes with the HDR pathway, and thus HDR-mediated GT is a relative rare event in plants. Here, we review recent research findings mainly focusing on development and applications of precise GT in plants using three SSNs systems described above, and the potential

  17. Lim homeobox genes in the Ctenophore Mnemiopsis leidyi: the evolution of neural cell type specification

    Directory of Open Access Journals (Sweden)

    Simmons David K

    2012-01-01

    Full Text Available Abstract Background Nervous systems are thought to be important to the evolutionary success and diversification of metazoans, yet little is known about the origin of simple nervous systems at the base of the animal tree. Recent data suggest that ctenophores, a group of macroscopic pelagic marine invertebrates, are the most ancient group of animals that possess a definitive nervous system consisting of a distributed nerve net and an apical statocyst. This study reports on details of the evolution of the neural cell type specifying transcription factor family of LIM homeobox containing genes (Lhx, which have highly conserved functions in neural specification in bilaterian animals. Results Using next generation sequencing, the first draft of the genome of the ctenophore Mnemiopsis leidyi has been generated. The Lhx genes in all animals are represented by seven subfamilies (Lhx1/5, Lhx3/4, Lmx, Islet, Lhx2/9, Lhx6/8, and LMO of which four were found to be represented in the ctenophore lineage (Lhx1/5, Lhx3/4, Lmx, and Islet. Interestingly, the ctenophore Lhx gene complement is more similar to the sponge complement (sponges do not possess neurons than to either the cnidarian-bilaterian or placozoan Lhx complements. Using whole mount in situ hybridization, the Lhx gene expression patterns were examined and found to be expressed around the blastopore and in cells that give rise to the apical organ and putative neural sensory cells. Conclusion This research gives us a first look at neural cell type specification in the ctenophore M. leidyi. Within M. leidyi, Lhx genes are expressed in overlapping domains within proposed neural cellular and sensory cell territories. These data suggest that Lhx genes likely played a conserved role in the patterning of sensory cells in the ancestor of sponges and ctenophores, and may provide a link to the expression of Lhx orthologs in sponge larval photoreceptive cells. Lhx genes were later co-opted into patterning more

  18. Identification, characterization and metagenome analysis of oocyte-specific genes organized in clusters in the mouse genome

    Directory of Open Access Journals (Sweden)

    Vaiman Daniel

    2005-05-01

    Full Text Available Abstract Background Genes specifically expressed in the oocyte play key roles in oogenesis, ovarian folliculogenesis, fertilization and/or early embryonic development. In an attempt to identify novel oocyte-specific genes in the mouse, we have used an in silico subtraction methodology, and we have focused our attention on genes that are organized in genomic clusters. Results In the present work, five clusters have been studied: a cluster of thirteen genes characterized by an F-box domain localized on chromosome 9, a cluster of six genes related to T-cell leukaemia/lymphoma protein 1 (Tcl1 on chromosome 12, a cluster composed of a SPErm-associated glutamate (E-Rich (Speer protein expressed in the oocyte in the vicinity of four unknown genes specifically expressed in the testis on chromosome 14, a cluster composed of the oocyte secreted protein-1 (Oosp-1 gene and two Oosp-related genes on chromosome 19, all three being characterized by a partial N-terminal zona pellucida-like domain, and another small cluster of two genes on chromosome 19 as well, composed of a TWIK-Related spinal cord K+ channel encoding-gene, and an unknown gene predicted in silico to be testis-specific. The specificity of expression was confirmed by RT-PCR and in situ hybridization for eight and five of them, respectively. Finally, we showed by comparing all of the isolated and clustered oocyte-specific genes identified so far in the mouse genome, that the oocyte-specific clusters are significantly closer to telomeres than isolated oocyte-specific genes are. Conclusion We have studied five clusters of genes specifically expressed in female, some of them being also expressed in male germ-cells. Moreover, contrarily to non-clustered oocyte-specific genes, those that are organized in clusters tend to map near chromosome ends, suggesting that this specific near-telomere position of oocyte-clusters in rodents could constitute an evolutionary advantage. Understanding the biological

  19. MECP2 isoform-specific vectors with regulated expression for Rett syndrome gene therapy.

    Directory of Open Access Journals (Sweden)

    Mojgan Rastegar

    Full Text Available BACKGROUND: Rett Syndrome (RTT is an Autism Spectrum Disorder and the leading cause of mental retardation in females. RTT is caused by mutations in the Methyl CpG-Binding Protein-2 (MECP2 gene and has no treatment. Our objective is to develop viral vectors for MECP2 gene transfer into Neural Stem Cells (NSC and neurons suitable for gene therapy of Rett Syndrome. METHODOLOGY/PRINCIPAL FINDINGS: We generated self-inactivating (SIN retroviral vectors with the ubiquitous EF1alpha promoter avoiding known silencer elements to escape stem-cell-specific viral silencing. High efficiency NSC infection resulted in long-term EGFP expression in transduced NSC and after differentiation into neurons. Infection with Myc-tagged MECP2-isoform-specific (E1 and E2 vectors directed MeCP2 to heterochromatin of transduced NSC and neurons. In contrast, vectors with an internal mouse Mecp2 promoter (MeP directed restricted expression only in neurons and glia and not NSC, recapitulating the endogenous expression pattern required to avoid detrimental consequences of MECP2 ectopic expression. In differentiated NSC from adult heterozygous Mecp2(tm1.1Bird+/- female mice, 48% of neurons expressed endogenous MeCP2 due to random inactivation of the X-linked Mecp2 gene. Retroviral MECP2 transduction with EF1alpha and MeP vectors rescued expression in 95-100% of neurons resulting in increased dendrite branching function in vitro. Insulated MECP2 isoform-specific lentiviral vectors show long-term expression in NSC and their differentiated neuronal progeny, and directly infect dissociated murine cortical neurons with high efficiency. CONCLUSIONS/SIGNIFICANCE: MeP vectors recapitulate the endogenous expression pattern of MeCP2 in neurons and glia. They have utility to study MeCP2 isoform-specific functions in vitro, and are effective gene therapy vectors for rescuing dendritic maturation of neurons in an ex vivo model of RTT.

  20. Specific gene expression profiles and chromosomal abnormalities are associated with infant disseminated neuroblastoma

    Directory of Open Access Journals (Sweden)

    Kushner Brian

    2009-02-01

    Full Text Available Abstract Background Neuroblastoma (NB tumours have the highest incidence of spontaneous remission, especially among the stage 4s NB subgroup affecting infants. Clinical distinction of stage 4s from lethal stage 4 can be difficult, but critical for therapeutic decisions. The aim of this study was to investigate chromosomal alterations and differential gene expression amongst infant disseminated NB subgroups. Methods Thirty-five NB tumours from patients diagnosed at Results All stage 4s patients underwent spontaneous remission, only 48% stage 4 patients survived despite combined modality therapy. Stage 4 tumours were 90% near-diploid/tetraploid, 44% MYCN amplified, 77% had 1p LOH (50% 1p36, 23% 11q and/or 14q LOH (27% and 47% had 17q gain. Stage 4s were 90% near-triploid, none MYCN amplified and LOH was restricted to 11q. Initial comparison analyses between stage 4s and 4 P P = 0.0054, 91% with higher expression in stage 4. Less definite expression profiles were observed between stage 4s and 4 P P = 0.005 was maintained. Distinct gene expression profiles but no significant association with specific chromosomal region localization was observed between stage 4s and stage 4 Conclusion Specific chromosomal aberrations are associated with distinct gene expression profiles which characterize spontaneously regressing or aggressive infant NB, providing the biological basis for the distinct clinical behaviour.

  1. The Identification of Senescence-Specific Genes during the Induction of Senescence in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Steven R. Schwarze

    2005-09-01

    Full Text Available Classic mechanisms of tumor response to chemotherapy include apoptosis, mitotic catastrophe. Recent studies have suggested that cellular senescence, a terminal proliferation arrest seen in vitro, may be invoked during the exposure of cancer cells to chemotherapeutic agents. To identify markers associated specifically with the cellular senescence phenotype, we utilized expression data from cDNA microarray experiments identifying transcripts whose expression levels increased as human prostate epithelial cells progressed to senescence. When screened against other growth-inhibitory conditions, including quiescence, apoptosis, many of these transcripts were also upregulated, indicating that similar pathways occur between apoptosis, senescence. A senescent-like phenotype was then induced in several prostate cancer cell lines using 5-aza-2′-deoxycytidine, doxorubicin, or Docetaxel. Treatment with these agents resulted in a significant increase in the induction of senescence-specific genes when compared to nonsenescent conditions. The performance of the panel was improved with fluorescence-activated cell sorting using PKH26 to isolate nonproliferating, viable, drug-treated populations, indicating that a heterogeneous response occurs with chemotherapy. We have defined an RNA-based gene panel that characterizes the senescent phenotype induced in cancer cells by drug treatment. These data also indicate that a panel of genes, rather than one marker, needs to be utilized to identify senescence.

  2. Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus.

    Science.gov (United States)

    Orban, Tihamer; Kis, Janos; Szereday, Laszlo; Engelmann, Peter; Farkas, Klara; Jalahej, Heyam; Treszl, Andras

    2007-06-01

    Type 1 diabetes mellitus (T1DM) in humans is characterized by the T-cell-dependent destruction of the insulin producing pancreatic beta cells; however, the precise pathogenesis of the disease, especially the initiation of pathologic immune response, is still largely unknown. We hypothesized that the function of human CD4+ T cells is altered in T1DM and analyzed unstimulated human peripheral blood CD4+ T-cell gene expression. We used a novel three-way comparison of DNA microarray data of CD4+ T cells isolated from patients with new onset T1DM, patients with long-term Type 2 diabetes (T2DM), and from healthy control subjects in order to eliminate any possible influence of glucose homeostasis on our findings. We analyzed the T1DM specific gene-expression changes and their functional relevance to T1DM autoimmunity. Our genetic and functional data show that T1DM CD4+ T cells are down-regulated specifically affecting key immune functions and cell cycle. Histone deacetylase gene expression, a key regulator of epigenetic modification is also reduced. The CD4+ T cells showed impaired function, including an abnormal immune response, which may be a key element that leads to the breakdown of self-tolerance.

  3. Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing

    Science.gov (United States)

    Mok, Hyejung; Lee, Soo Hyeon; Park, Ji Won; Park, Tae Gwan

    2010-03-01

    Small interfering RNA (siRNA) with 19-21 base pairs has been recently recognized as a new therapeutic agent for effectively silencing a specific gene on a post-transcription level. For siRNA therapeutics, safe and efficient delivery issues are significant hurdles to clinical applications. Here we present a new class of biologically active siRNA structure based on chemically self-crosslinked and multimerized siRNA through cleavable disulphide linkages. The multimerized siRNA can produce more stable and compact polyelectrolyte complexes with less cytotoxic cationic carriers than naked siRNA because of substantially increased charge densities and the presence of flexible chemical linkers in the backbone. The cleavable and multimerized siRNA shows greatly enhanced gene-silencing efficiencies in vitro and in vivo through a target-messenger-RNA-specific RNA interference processing without significantly eliciting immune induction. This study demonstrates that the multimerized siRNA structure complexed with selected cationic condensing agents can serve as potential gene-silencing therapeutics for treating various diseases.

  4. Identification of ecotype-specific marker genes for categorization of beer-spoiling Lactobacillus brevis.

    Science.gov (United States)

    Behr, Jürgen; Geissler, Andreas J; Preissler, Patrick; Ehrenreich, Armin; Angelov, Angel; Vogel, Rudi F

    2015-10-01

    The tolerance to hop compounds, which is mainly associated with inhibition of bacterial growth in beer, is a multi-factorial trait. Any approaches to predict the physiological differences between beer-spoiling and non-spoiling strains on the basis of a single marker gene are limited. We identified ecotype-specific genes related to the ability to grow in Pilsner beer via comparative genome sequencing. The genome sequences of four different strains of Lactobacillus brevis were compared, including newly established genomes of two highly hop tolerant beer isolates, one strain isolated from faeces and one published genome of a silage isolate. Gene fragments exclusively occurring in beer-spoiling strains as well as sequences only occurring in non-spoiling strains were identified. Comparative genomic arrays were established and hybridized with a set of L. brevis strains, which are characterized by their ability to spoil beer. As result, a set of 33 and 4 oligonucleotide probes could be established specifically detecting beer-spoilers and non-spoilers, respectively. The detection of more than one of these marker sequences according to a genetic barcode enables scoring of L. brevis for their beer-spoiling potential and can thus assist in risk evaluation in brewing industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Habenular commissure formation in zebrafish is regulated by the pineal gland specific gene unc119c

    Science.gov (United States)

    Toyama, Reiko; Kim, Mi Ha; Rebbert, Martha L.; Gonzales, John; Burgess, Harold; Dawid, Igor B.

    2013-01-01

    Background The zebrafish pineal gland (epiphysis) is a site of melatonin production, contains photoreceptor cells, and functions as a circadian clock pacemaker. Since it is located on the surface of the forebrain, it is accessible for manipulation and therefore is a useful model system to analyze pineal gland function and development. We previously analyzed the pineal transcriptome during development and showed that many genes exhibit a highly dynamic expression pattern in the pineal gland. Results Among genes preferentially expressed in the zebrafish pineal gland, we identified a tissue-specific form of the unc119 gene family, unc119c, which is highly preferentially expressed in the pineal gland during day and night at all stages examined from embryo to adult. When expression of unc119c was inhibited, the formation of the habenular commissure (HC) was specifically compromised. The Unc119c interacting factors Arl3l1 and Arl3l2 as well as Wnt4a also proved indispensible for HC formation. Conclusions We suggest that Unc119c, together with Arl3l1/2, plays an important role in modulating Wnt4a production and secretion during HC formation in the forebrain of the zebrafish embryo. PMID:23749482

  6. Dynamic changes in epigenetic marks and gene expression during porcine epiblast specification.

    Science.gov (United States)

    Gao, Yu; Hyttel, Poul; Hall, Vanessa Jane

    2011-08-01

    Given the difficulties in establishing bona fide porcine embryonic stem cells, we considered it would be interesting to investigate histone modifications, X chromosome inactivation (XCI), deacetylation, DNA methylation, and gene expression around the time of inner cell mass (ICM) and epiblast formation in sexed embryos. We found that the porcine epiblast expressed lower levels of NANOG and C-MYC, of which, we speculate may be one indication for the difficulties in obtaining embryonic stem cells (ESCs) from the porcine embryonic epiblast. Our research revealed distinct expression of lineage-specific-, early gastrulation-, and pluripotency-associated genes between the E10 epiblast and trophectoderm and between sexes. We determined that H3K27me3 was hypermethylated in the E6 embryo and hypomethylated in the E10 epiblast. Interestingly, we also observed exclusive localization of H3K4me3 in the E6 ICM, which may be a key marker for early lineage segregation in the pig. We also observed that the methyltransferases of H3K4me3, H3K27me3 and H3K9me3 and the DNA methyltransferases differed between male and female E10 embryos, and between tissues. We consider that epigenetic mechanisms, which are modified by specific enzymes, may be important for both early lineage segregation events and XCI, and these may further effect the levels of downstream-targeted gene expression in the different sexes.

  7. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes.

    Science.gov (United States)

    Soto-Feliciano, Yadira M; Bartlebaugh, Jordan M E; Liu, Yunpeng; Sánchez-Rivera, Francisco J; Bhutkar, Arjun; Weintraub, Abraham S; Buenrostro, Jason D; Cheng, Christine S; Regev, Aviv; Jacks, Tyler E; Young, Richard A; Hemann, Michael T

    2017-05-15

    Developmental and lineage plasticity have been observed in numerous malignancies and have been correlated with tumor progression and drug resistance. However, little is known about the molecular mechanisms that enable such plasticity to occur. Here, we describe the function of the plant homeodomain finger protein 6 (PHF6) in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. We show that loss of Phf6 in B-cell leukemia results in systematic changes in gene expression via alteration of the chromatin landscape at the transcriptional start sites of B-cell- and T-cell-specific factors. Additionally, Phf6KO cells show significant down-regulation of genes involved in the development and function of normal B cells, show up-regulation of genes involved in T-cell signaling, and give rise to mixed-lineage lymphoma in vivo. Engagement of divergent transcriptional programs results in phenotypic plasticity that leads to altered disease presentation in vivo, tolerance of aberrant oncogenic signaling, and differential sensitivity to frontline and targeted therapies. These findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition. © 2017 Soto-Feliciano et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Cell-Type-Specific Gene Programs of the Normal Human Nephron Define Kidney Cancer Subtypes.

    Science.gov (United States)

    Lindgren, David; Eriksson, Pontus; Krawczyk, Krzysztof; Nilsson, Helén; Hansson, Jennifer; Veerla, Srinivas; Sjölund, Jonas; Höglund, Mattias; Johansson, Martin E; Axelson, Håkan

    2017-08-08

    Comprehensive transcriptome studies of cancers often rely on corresponding normal tissue samples to serve as a transcriptional reference. In this study, we performed in-depth analyses of normal kidney tissue transcriptomes from the TCGA and demonstrate that the histological variability in cellularity, inherent in the kidney architecture, lead to considerable transcriptional differences between samples. This should be considered when comparing expression profiles of normal and cancerous kidney tissues. We exploited these differences to define renal-cell-specific gene signatures and used these as a framework to analyze renal cell carcinoma (RCC) ontogeny. Chromophobe RCCs express FOXI1-driven genes that define collecting duct intercalated cells, whereas HNF-regulated genes, specific for proximal tubule cells, are an integral part of clear cell and papillary RCC transcriptomes. These networks may be used as a framework for understanding the interplay between genomic changes in RCC subtypes and the lineage-defining regulatory machinery of their non-neoplastic counterparts. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Host-specific induction of Escherichia coli fitness genes during human urinary tract infection.

    Science.gov (United States)

    Subashchandrabose, Sargurunathan; Hazen, Tracy H; Brumbaugh, Ariel R; Himpsl, Stephanie D; Smith, Sara N; Ernst, Robert D; Rasko, David A; Mobley, Harry L T

    2014-12-23

    Uropathogenic Escherichia coli (UPEC) is the predominant etiological agent of uncomplicated urinary tract infection (UTI), manifested by inflammation of the urinary bladder, in humans and is a major global public health concern. Molecular pathogenesis of UPEC has been primarily examined using murine models of UTI. Translational research to develop novel therapeutics against this major pathogen, which is becoming increasingly antibiotic resistant, requires a thorough understanding of mechanisms involved in pathogenesis during human UTIs. Total RNA-sequencing (RNA-seq) and comparative transcriptional analysis of UTI samples to the UPEC isolates cultured in human urine and laboratory medium were used to identify novel fitness genes that were specifically expressed during human infection. Evidence for UPEC genes involved in ion transport, including copper efflux, nickel and potassium import systems, as key fitness factors in uropathogenesis were generated using an experimental model of UTI. Translational application of this study was investigated by targeting Cus, a bacterial copper efflux system. Copper supplementation in drinking water reduces E. coli colonization in the urinary bladder of mice. Additionally, our results suggest that anaerobic processes in UPEC are involved in promoting fitness during UTI in humans. In summary, RNA-seq was used to establish the transcriptional signature in UPEC during naturally occurring, community acquired UTI in women and multiple novel fitness genes used by UPEC during human infection were identified. The repertoire of UPEC genes involved in UTI presented here will facilitate further translational studies to develop innovative strategies against UTI caused by UPEC.

  10. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors.

    Science.gov (United States)

    Kemmeren, Patrick; Sameith, Katrin; van de Pasch, Loes A L; Benschop, Joris J; Lenstra, Tineke L; Margaritis, Thanasis; O'Duibhir, Eoghan; Apweiler, Eva; van Wageningen, Sake; Ko, Cheuk W; van Heesch, Sebastiaan; Kashani, Mehdi M; Ampatziadis-Michailidis, Giannis; Brok, Mariel O; Brabers, Nathalie A C H; Miles, Anthony J; Bouwmeester, Diane; van Hooff, Sander R; van Bakel, Harm; Sluiters, Erik; Bakker, Linda V; Snel, Berend; Lijnzaad, Philip; van Leenen, Dik; Groot Koerkamp, Marian J A; Holstege, Frank C P

    2014-04-24

    To understand regulatory systems, it would be useful to uniformly determine how different components contribute to the expression of all other genes. We therefore monitored mRNA expression genome-wide, for individual deletions of one-quarter of yeast genes, focusing on (putative) regulators. The resulting genetic perturbation signatures reflect many different properties. These include the architecture of protein complexes and pathways, identification of expression changes compatible with viability, and the varying responsiveness to genetic perturbation. The data are assembled into a genetic perturbation network that shows different connectivities for different classes of regulators. Four feed-forward loop (FFL) types are overrepresented, including incoherent type 2 FFLs that likely represent feedback. Systematic transcription factor classification shows a surprisingly high abundance of gene-specific repressors, suggesting that yeast chromatin is not as generally restrictive to transcription as is often assumed. The data set is useful for studying individual genes and for discovering properties of an entire regulatory system. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Tissue-specific expression of a soybean hypersensitive-induced response (HIR) protein gene promoter.

    Science.gov (United States)

    Koellhoffer, Jessica P; Xing, Aiqiu; Moon, Bryan P; Li, Zhongsen

    2015-02-01

    A Glycine max gene encoding a putative protein similar to hypersensitive-induced response proteins (HIR) was identified as a gene with preferred expressions in flowers and developing seeds by whole transcriptome gene expression profiling. Its promoter gm-hir1 was cloned and revealed to strongly express a fluorescence reporter gene primarily in integuments, anther tapetum, and seed coat with unique tissue-specificity. Expression in the inner integument was apparent prior to pollination, while expression in the outer integument started to develop from the micropylar end outward as the embryo matured. A 5'-deletion study showed that the promoter can be truncated to 600 bp long relative to the translation start site without affecting expression. A positive regulatory element was identified between 600 and 481 bp that controls expression in the inner integument, with no noticeable effect on expression in the outer integument or tapetum. Additionally, removal of the 5'UTR intron had no effect on levels or location of gm-hir1 expression while truncation to 370 bp resulted in a complete loss of expression suggesting that elements controlling both the outer integument and tapetum expression are located within the 481-370 bp region.

  12. A fish-specific transposable element shapes the repertoire of p53 target genes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Lucia Micale

    Full Text Available Transposable elements, as major components of most eukaryotic organisms' genomes, define their structural organization and plasticity. They supply host genomes with functional elements, for example, binding sites of the pleiotropic master transcription factor p53 were identified in LINE1, Alu and LTR repeats in the human genome. Similarly, in this report we reveal the role of zebrafish (Danio rerio EnSpmN6_DR non-autonomous DNA transposon in shaping the repertoire of the p53 target genes. The multiple copies of EnSpmN6_DR and their embedded p53 responsive elements drive in several instances p53-dependent transcriptional modulation of the adjacent gene, whose human orthologs were frequently previously annotated as p53 targets. These transposons define predominantly a set of target genes whose human orthologs contribute to neuronal morphogenesis, axonogenesis, synaptic transmission and the regulation of programmed cell death. Consistent with these biological functions the orthologs of the EnSpmN6_DR-colonized loci are enriched for genes expressed in the amygdala, the hippocampus and the brain cortex. Our data pinpoint a remarkable example of convergent evolution: the exaptation of lineage-specific transposons to shape p53-regulated neuronal morphogenesis-related pathways in both a hominid and a teleost fish.

  13. High Prevalence of Virulence Genes in Specific Genotypes of Atypical Enteropathogenic Escherichia coli.

    Science.gov (United States)

    Xu, Yanmei; Bai, Xiangning; Jin, Yujuan; Hu, Bin; Wang, Hong; Sun, Hui; Fan, Ruyue; Fu, Shanshan; Xiong, Yanwen

    2017-01-01

    Atypical enteropathogenic Escherichia coli (aEPEC) strains are emerging enteropathogens that have been detected worldwide. A collection of 228 aEPEC strains (121 from diarrheal patients, 27 from healthy carriers, 47 from animals and 33 from raw meats) were investigated for serotypes, virulence gene profiles and phylogenetic relationships. Sixty-six O serogroups were identified. Serogroup O51 was the most prevalent, followed by O119, O26 and O76. For the 20 virulence genes detected, statistically significant differences were observed in the overall prevalence of efa1 (lifA), nleB, nleE, set/ent, paa, and ehxA genes among strains from diarrheal patients, healthy carriers, animals and raw meats, respectively. Strains from diarrheal patients had significantly higher levels of efa1 (lifA) (29.8 vs. 0%, P = 0.0002), nleB (41.3 vs. 7.4%, P = 0.0004), nleE (43.8 vs. 7.4%, P = 0.0002) and set/ent (41.3 vs. 7.4%, P = 0.0004) genes than strains obtained from healthy carriers. The paa gene was identified more often in isolates from raw meats (63.6 vs. 14.8%, P < 0.0001), animals (42.6 vs. 14.8%, P < 0.0122), and diarrheal patients (36.4 vs. 14.8%, P < 0.0225) than in strains obtained from healthy carriers. The ehxA gene was detected more frequently in strains from raw meats than in strains from diarrheal patients (27.3 vs. 2.5%, P = 0.0000) and healthy carriers (27.3 vs. 7.4%, P = 0.0474). The phylogenetic marker, yjaA, was more frequently observed in strains among healthy carriers than in diarrheal patient strains. Among the 228 aEPEC strains, 79 sequence types (STs) were identified. The prominent STs, which comprised strains carrying the four OI-122 genes and lpfA, were ST40, ST328, and ST29. Overall, the results indicate that aEPEC strains isolated in China are highly heterogeneous. aEPEC strains that are potentially more pathogenic appear to be related to specific STs or clonal complexes and serotypes. The high prevalence of diarrhea-associated genes in animal or raw meat

  14. Gene-specific correlation of RNA and protein levels in human cells and tissues

    DEFF Research Database (Denmark)

    Edfors, Fredrik; Danielsson, Frida; Hallström, Björn M.

    2016-01-01

    to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP......An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring...... copies per mRNA molecule for others. In conclusion, our data suggest that transcriptome analysis can be used as a tool to predict the protein copy numbers per cell, thus forming an attractive link between the field of genomics and proteomics....

  15. Optimization of the HA-1-specific T-cell receptor for gene therapy of hematologic malignancies

    Science.gov (United States)

    van Loenen, Marleen M.; de Boer, Renate; Hagedoorn, Renate S.; van Egmond, Esther H.M.; Falkenburg, J.H. Frederik; Heemskerk, Mirjam H.M.

    2011-01-01

    To broaden the applicability of adoptive T-cell therapy for the treatment of hematologic malignancies, we aim to start a clinical trial using HA-1-TCR transferred virus-specific T cells. TCRs directed against the minor histocompatibility antigen (MiHA) HA-1 are good candidates for TCR gene transfer to treat hematologic malignancies because of the hematopoiesis-restricted expression and favorable frequency of HA-1. For optimal anti-leukemic reactivity, high cell-surface expression of the introduced TCR is important. Previously, however, we have demonstrated that gene transferred HA-1-TCRs are poorly expressed at the cell-surface. In this study several strategies were explored to improve expression of transferred HA-1-TCRs. PMID:21109688

  16. Genetic Approaches to Study Meiosis and Meiosis-Specific Gene Expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kassir, Yona; Stuart, David T

    2017-01-01

    The budding yeast Saccharomyces cerevisiae has a long history as a model organism for studies of meiosis and the cell cycle. The popularity of this yeast as a model is in large part due to the variety of genetic and cytological approaches that can be effectively performed with the cells. Cultures of the cells can be induced to synchronously progress through meiosis and sporulation allowing large-scale gene expression and biochemical studies to be performed. Additionally, the spore tetrads resulting from meiosis make it possible to characterize the haploid products of meiosis allowing investigation of meiotic recombination and chromosome segregation. Here we describe genetic methods for analysis progression of S. cerevisiae through meiosis and sporulation with an emphasis on strategies for the genetic analysis of regulators of meiosis-specific genes.

  17. Characterization and chromosomal localization of the cornea-specific murine keratin gene Krt1.12.

    Science.gov (United States)

    Liu, C Y; Zhu, G; Converse, R; Kao, C W; Nakamura, H; Tseng, S C; Mui, M M; Seyer, J; Justice, M J; Stech, M E

    1994-10-07

    Keratins are a group of water-insoluble proteins constituting paired acidic and basic keratin molecules that form 10-nm intermediate filaments in epithelial cells. Expression of the K3/K12 keratin pair characterizes the cornea-type differentiation. However, the mechanism that regulates this cornea-specific K12 expression remains unknown. To provide a better understanding of the cornea-specific expression, we have cloned the K12 cDNA (Liu, C.-Y., Zhu, G., Westerhausen-Larson, A., Converse, R., Kao, C. W.-C., Sun, T.-T., and Kao, W. W.-Y. (1993) Curr. Eye Res. 12, 963-974). In present studies, the murine K12 keratin gene (Krt1.12) was isolated and characterized. The murine Krt1.12 gene spans 6,567 base pairs of genomic DNA, and the mRNA encoding K12 keratin is distributed into eight exons. Chromosome mapping reveals that murine Krt1.12 is located within the Krt1 complex of mouse chromosome 11. In addition to the production of authentic K12 mRNA, the Krt1.12 gene gives rise to several alternate poly(A)+ RNAs by the use of alternative splicing in intron 2, an alternative promoter in intron 1, and/or both. Sequence analysis indicates that the transcripts derived from alternative splicing and/or the alternative promoter do not have a long open reading frame for keratin or keratin-like molecules. It is not known whether these alternate K12 poly(A)+ RNAs have any biological functions, e.g. regulation of K12 gene expression.

  18. Tissue-Specific Immune Gene Expression in the Migratory Locust, Locusta Migratoria

    Directory of Open Access Journals (Sweden)

    Tamara Pulpitel

    2015-04-01

    Full Text Available The ability of hosts to respond to infection involves several complex immune recognition pathways. Broadly conserved pathogen-associated molecular patterns (PAMPs allow individuals to target a range of invading microbes. Recently, studies on insect innate immunity have found evidence that a single pathogen can activate different immune pathways across species. In this study, expression changes in immune genes encoding peptidoglycan-recognition protein SA (PGRP-SA, gram-negative binding protein 1 (GNBP1 and prophenoloxidase (ProPO were investigated in Locusta migratoria, following an immune challenge using injected lipopolysaccharide (LPS solution from Escherichia coli. Since immune activation might also be tissue-specific, gene expression levels were followed across a range of tissue types. For PGRP-SA, expression increased in response to LPS within all seven of the tissue-types assayed and differed significantly between tissues. Expression of GNBP1 similarly varied across tissue types, yet showed no clear expression difference between LPS-injected and uninfected locusts. Increases in ProPO expression in response to LPS, however, could only be detected in the gut sections. This study has revealed tissue-specific immune response to add a new level of complexity to insect immune studies. In addition to variation in recognition pathways identified in previous works, tissue-specificity should be carefully considered in similar works.

  19. Evaluation of a hybrid approach using UBLAST and BLASTX for metagenomic sequences annotation of specific functional genes.

    Directory of Open Access Journals (Sweden)

    Ying Yang

    Full Text Available The fast development of next generation sequencing (NGS has dramatically increased the application of metagenomics in various aspects. Functional annotation is a major step in the metagenomics studies. Fast annotation of functional genes has been a challenge because of the deluge of NGS data and expanding databases. A hybrid annotation pipeline proposed previously for taxonomic assignments was evaluated in this study for metagenomic sequences annotation of specific functional genes, such as antibiotic resistance genes, arsenic resistance genes and key genes in nitrogen metabolism. The hybrid approach using UBLAST and BLASTX is 44-177 times faster than direct BLASTX in the annotation using the small protein database for the specific functional genes, with the cost of missing a small portion (<1.8% of target sequences compared with direct BLASTX hits. Different from direct BLASTX, the time required for specific functional genes annotation using the hybrid annotation pipeline depends on the abundance for the target genes. Thus this hybrid annotation pipeline is more suitable in specific functional genes annotation than in comprehensive functional genes annotation.

  20. Lineage-specific evolution of the vertebrate Otopetrin gene family revealed by comparative genomic analyses

    Directory of Open Access Journals (Sweden)

    Ryan Joseph F

    2011-01-01

    Full Text Available Abstract Background Mutations in the Otopetrin 1 gene (Otop1 in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence- and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH subtype 1G (Ush1g, both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes. Results We established that OTOP1 is the boundary gene of an inversion polymorphism on human chromosome 4p16 that originated in the common human-chimpanzee lineage more than 6 million years ago. Other lineage-specific evolutionary events included a three-fold expansion of the Otop genes in Xenopus tropicalis and of Ush1g in teleostei fish. The tight physical linkage between Otop2 and Ush1g is conserved in all vertebrates. To further understand the functional organization of the Ushg1-Otop2 locus, we deduced a putative map of binding sites for CCCTC-binding factor (CTCF, a mammalian insulator transcription factor, from genome-wide chromatin immunoprecipitation-sequencing (ChIP-seq data in mouse and human embryonic stem (ES cells combined with detection of CTCF-binding motifs. Conclusions The results presented here clarify the evolutionary history of the vertebrate Otop and Ush1g families, and establish a framework for studying the possible interaction(s of Ush1g and Otop in developmental pathways.

  1. Responsiveness of genes to manipulation of transcription factors in ES cells is associated with histone modifications and tissue specificity

    Science.gov (United States)

    2011-01-01

    Background In addition to determining static states of gene expression (high vs. low), it is important to characterize their dynamic status. For example, genes with H3K27me3 chromatin marks are not only suppressed but also poised for activation. However, the responsiveness of genes to perturbations has never been studied systematically. To distinguish gene responses to specific factors from responsiveness in general, it is necessary to analyze gene expression profiles of cells responding to a large variety of disturbances, and such databases did not exist before. Results We estimated the responsiveness of all genes in mouse ES cells using our recently published database on expression change after controlled induction of 53 transcription factors (TFs) and other genes. Responsive genes (N = 4746), which were readily upregulated or downregulated depending on the kind of perturbation, mostly have regulatory functions and a propensity to become tissue-specific upon differentiation. Tissue-specific expression was evaluated on the basis of published (GNF) and our new data for 15 organs and tissues. Non-responsive genes (N = 9562), which did not change their expression much following any perturbation, were enriched in housekeeping functions. We found that TF-responsiveness in ES cells is the best predictor known for tissue-specificity in gene expression. Among genes with CpG islands, high responsiveness is associated with H3K27me3 chromatin marks, and low responsiveness is associated with H3K36me3 chromatin, stronger tri-methylation of H3K4, binding of E2F1, and GABP binding motifs in promoters. Conclusions We thus propose the responsiveness of expression to perturbations as a new way to define the dynamic status of genes, which brings new insights into mechanisms of regulation of gene expression and tissue specificity. PMID:21306619

  2. Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome.

    Directory of Open Access Journals (Sweden)

    Ani Qu

    demonstrated that mobile DNA elements are a major functional component of cecal microbiomes, thus contributing to horizontal gene transfer and functional microbiome evolution. Moreover, the metavirulomes of these microbiomes appear to associate by host environment. These data have implications for defining core and variable microbiome content in a host species. Furthermore, this suggests that the evolution of host specific metavirulomes is a contributing factor in disease resistance to zoonotic pathogens.

  3. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    Directory of Open Access Journals (Sweden)

    Hettne Kristina M

    2013-01-01

    Full Text Available Abstract Background Availability of chemical response-specific lists of genes (gene sets for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM, and that these can be used with gene set analysis (GSA methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. Methods We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human and 588 (mouse gene sets from the Comparative Toxicogenomics Database (CTD. We tested for significant differential expression (SDE (false discovery rate -corrected p-values Results Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other chemicals. Conclusions Gene set analysis with next-gen TM-derived chemical response-specific gene sets is a scalable method for identifying similarities in gene responses to other chemicals, from which one may infer potential mode of action and/or toxic effect.

  4. Host specific differences alter the requirement for certain Salmonella genes during swine colonization.

    Science.gov (United States)

    Bearson, Bradley L; Bearson, Shawn M D

    2011-06-02

    The pathogenic potential of Salmonella is determined during the complex interaction between pathogen and host, requiring optimal regulation of multiple bacterial genetic systems within variable in vivo environments. The mouse model of systemic disease has been an extremely productive model to investigate the pathogenesis of Salmonella enterica serovar Typhimurium (S. Typhimurium). Although the mouse model is a widely used paradigm for studying the pathogenesis of systemic disease caused by Salmonella, investigations concerning food safety interventions should employ natural hosts to examine gastrointestinal colonization by Salmonella. Recent research has demonstrated specific differences in the attenuation of certain S. Typhimurium mutants in mice compared to swine. This variation in pathogenesis between the mouse model and pigs for the S. Typhimurium mutants is presumably dependent upon either the requirements for specific gene products during systemic disease (mouse) versus gastrointestinal colonization (pig) or host specific differences. In addition, host specific diversity in Salmonella colonization of swine has also been described in comparison to other food-producing animals, including cattle and chickens. Differences in Salmonella colonization and pathogenesis across diverse animal species highlight the importance of species-specific studies of gastrointestinal colonization for the development of Salmonella interventions to enhance pork safety. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Tissue-restricted expression of Nrf2 and its target genes in zebrafish with gene-specific variations in the induction profiles.

    Directory of Open Access Journals (Sweden)

    Hitomi Nakajima

    Full Text Available The Keap1-Nrf2 system serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than one hundred cytoprotective proteins, including antioxidants and phase 2 detoxifying enzymes. Since induction profiles of Nrf2 target genes have been studied exclusively in cultured cells, and not in animal models, their tissue-specificity has not been well characterized. In this paper, we examined and compared the tissue-specific expression of several Nrf2 target genes in zebrafish larvae by whole-mount in situ hybridization (WISH. Seven zebrafish genes (gstp1, mgst3b, prdx1, frrs1c, fthl, gclc and hmox1a suitable for WISH analysis were selected from candidates for Nrf2 targets identified by microarray analysis. Tissue-restricted induction was observed in the nose, gill, and/or liver for all seven genes in response to Nrf2-activating compounds, diethylmaleate (DEM and sulforaphane. The Nrf2 gene itself was dominantly expressed in these three tissues, implying that tissue-restricted induction of Nrf2 target genes is defined by tissue-specific expression of Nrf2. Interestingly, the induction of frrs1c and gclc in liver and nose, respectively, was quite low and that of hmox1a was restricted in the liver. These results indicate the existence of gene-specific variations in the tissue specificity, which can be controlled by factors other than Nrf2.

  6. Delivery and Specificity of CRISPR-Cas9 Genome Editing Technologies for Human Gene Therapy.

    Science.gov (United States)

    Gori, Jennifer L; Hsu, Patrick D; Maeder, Morgan L; Shen, Shen; Welstead, G Grant; Bumcrot, David

    2015-07-01

    Genome editing using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated 9 (Cas9) technology is revolutionizing the study of gene function and likely will give rise to an entire new class of therapeutics for a wide range of diseases. Achieving this goal requires not only characterization of the technology for efficacy and specificity but also optimization of its delivery to the target cells for each disease indication. In this review we survey the various methods by which the CRISPR-Cas9 components have been delivered to cells and highlight some of the more clinically relevant approaches. Additionally, we discuss the methods available for assessing the specificity of Cas9 editing; an important safety consideration for development of the technology.

  7. Testis-Specific Histone Variant H3t Gene Is Essential for Entry into Spermatogenesis

    Directory of Open Access Journals (Sweden)

    Jun Ueda

    2017-01-01

    Full Text Available Cellular differentiation is associated with dynamic chromatin remodeling in establishing a cell-type-specific epigenomic landscape. Here, we find that mouse testis-specific and replication-dependent histone H3 variant H3t is essential for very early stages of spermatogenesis. H3t gene deficiency leads to azoospermia because of the loss of haploid germ cells. When differentiating spermatogonia emerge in normal spermatogenesis, H3t appears and replaces the canonical H3 proteins. Structural and biochemical analyses reveal that H3t-containing nucleosomes are more flexible than the canonical nucleosomes. Thus, by incorporating H3t into the genome during spermatogonial differentiation, male germ cells are able to enter meiosis and beyond.

  8. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M

    1998-01-01

    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin...... to increase prolactin gene expression but potentiates the effects of epidermal growth factor and cAMP on prolactin promoter activity. RPTPalpha was the only protein-tyrosine phosphatase tested that did this. Thus, the effect of RPTPalpha on prolactin-chloramphenicol acetyltransferase (CAT) promoter activity...... is specific by two criteria. A number of potential RPTPalpha targets were ruled out by finding (a) that they are not affected or (b) that they are not on the pathway to insulin-increased prolactin-CAT activity. The negative effect of RPTPalpha on insulin activation of the prolactin promoter is not due...

  9. Feature Specific Quantile Normalization Enables Cross-Platform Classification of Molecular Subtypes using Gene Expression Data.

    Science.gov (United States)

    Franks, Jennifer M; Cai, Guoshuai; Whitfield, Michael L

    2018-01-17

    Molecular subtypes of cancers and autoimmune disease, defined by transcriptomic profiling, have provided insight into disease pathogenesis, molecular heterogeneity, and therapeutic responses. However, technical biases inherent to different gene expression profiling platforms present a unique problem when analyzing data generated from different studies. Currently, there is a lack of effective methods designed to eliminate platform-based bias. We present a method to normalize and classify RNA-seq data using machine learning classifiers trained on DNA microarray data and molecular subtypes in two datasets: breast invasive carcinoma (BRCA) and colorectal cancer (CRC). Multiple analyses show that feature specific quantile normalization (FSQN) successfully removes platform-based bias from RNA-seq data, regardless of feature scaling or machine learning algorithm. We achieve up to 98% accuracy for BRCA data and 97% accuracy for CRC data in assigning molecular subtypes to RNA-seq data normalized using FSQN and a support vector machine trained exclusively on DNA microarray data. We find that maximum accuracy was achieved when normalizing RNA-seq datasets that contain at least 25 samples. FSQN allows comparison of RNA-seq data to existing DNA microarray datasets. Using these techniques, we can successfully leverage information from existing gene expression data in new analyses despite different platforms used for gene expression profiling. FSQN has been submitted as an R package to CRAN. All code used for this study is available on Github (https://github.com/jenniferfranks/FSQN). Michael.L.Whitfield@dartmouth.edu. Supplementary data are available at Bioinformatics online.

  10. Disease-Specific Target Gene Expression Profiling of Molecular Imaging Probes: Database Development and Clinical Validation

    Directory of Open Access Journals (Sweden)

    Lawrence Wing-Chi Chan

    2014-08-01

    Full Text Available Molecular imaging probes can target abnormal gene expression patterns in patients and allow early diagnosis of disease. For selecting a suitable imaging probe, the current Molecular Imaging and Contrast Agent Database (MICAD provides descriptive and qualitative information on imaging probe characteristics and properties. However, MICAD does not support linkage with the expression profiles of target genes. The proposed Disease-specific Imaging Probe Profiling (DIPP database quantitatively archives and presents the gene expression profiles of targets across different diseases, anatomic regions, and subcellular locations, providing an objective reference for selecting imaging probes. The DIPP database was validated with a clinical positron emission tomography (PET study on lung cancer and an in vitro study on neuroendocrine cancer. The retrieved records show that choline kinase beta and glucose transporters were positively and significantly associated with lung cancer among the targets of 11C-choline and [18F]fluoro-2- deoxy-2-D-glucose (FDG, respectively. Their significant overexpressions corresponded to the findings that the uptake rate of FDG increased with tumor size but that of 11C-choline remained constant. Validated with the in vitro study, the expression profiles of disease-associated targets can indicate the eligibility of patients for clinical trials of the treatment probe. A Web search tool of the DIPP database is available at http://www.polyu.edu.hk/bmi/dipp/.

  11. Development of Non-Viral, Trophoblast-Specific Gene Delivery for Placental Therapy.

    Directory of Open Access Journals (Sweden)

    Noura Abd Ellah

    Full Text Available Low birth weight is associated with both short term problems and the fetal programming of adult onset diseases, including an increased risk of obesity, diabetes and cardiovascular disease. Placental insufficiency leading to intrauterine growth restriction (IUGR contributes to the prevalence of diseases with developmental origins. Currently there are no therapies for IUGR or placental insufficiency. To address this and move towards development of an in utero therapy, we employ a nanostructure delivery system complexed with the IGF-1 gene to treat the placenta. IGF-1 is a growth factor critical to achieving appropriate placental and fetal growth. Delivery of genes to a model of human trophoblast and mouse placenta was achieved using a diblock copolymer (pHPMA-b-pDMAEMA complexed to hIGF-1 plasmid DNA under the control of trophoblast-specific promoters (Cyp19a or PLAC1. Transfection efficiency of pEGFP-C1-containing nanocarriers in BeWo cells and non-trophoblast cells was visually assessed via fluorescence microscopy. In vivo transfection and functionality was assessed by direct placental-injection into a mouse model of IUGR. Complexes formed using pHPMA-b-pDMAEMA and CYP19a-923 or PLAC1-modified plasmids induce trophoblast-selective transgene expression in vitro, and placental injection of PLAC1-hIGF-1 produces measurable RNA expression and alleviates IUGR in our mouse model, consequently representing innovative building blocks towards human placental gene therapies.

  12. Regulating expressin of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, R N; Dai, Shunhong

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  13. Comparative analysis of stage specific gene regulation of apicomplexan parasites: Plasmodium falciparum and Toxoplasma gondii.

    Science.gov (United States)

    Gopalakrishnan, Anusha M; López-Estraño, Carlos

    2010-08-01

    Apicomplexans comprise some of the most life threatening parasites infecting human and livestock and includes Plasmodium and Toxoplasma, the causative agents of malaria and toxoplasmosis respectively, in humans as well as Neospora caninum (abortion in livestock, neosporosis in dogs), Cryptosporidium (Diarrheal cryptosporidiosis and opportunistic infections in AIDS patients) and Eimeria (poultry coccidiosis). These parasites are characterized by a complex life cycle usually alternating between sexual and asexual cycles in different hosts. The need to adapt to different host environments demands a tight regulation of gene expression during parasite development. Therefore, the understanding of parasite biology will facilitate the control of the infection and the disease. In this review we emphasize the progress made so far in gene regulation in two medically important parasites, namely Plasmodium falciparum and Toxoplasma gondii, as well as other less known apicomplexan. The genome of both Plasmodium and Toxoplasma has been sequenced and since then there has been a significant progress in understanding the molecular mechanisms that control stage specific gene expression in the two parasites. In addition, the information gained in each of the parasite can be used in studying mechanisms that are still elusive in the other apicomplexans that are not readily available. Additionally, they can serve as model system for other disease causing Apicomplexan parasites.

  14. The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension.

    LENUS (Irish Health Repository)

    Martin, Ronny

    2011-04-01

    The extension of germ tubes into elongated hyphae by Candida albicans is essential for damage of host cells. The C. albicans-specific gene EED1 plays a crucial role in this extension and maintenance of filamentous growth. eed1Δ cells failed to extend germ tubes into long filaments and switched back to yeast growth after 3 h of incubation during growth on plastic surfaces. Expression of EED1 is regulated by the transcription factor Efg1 and ectopic overexpression of EED1 restored filamentation in efg1Δ. Transcriptional profiling of eed1Δ during infection of oral tissue revealed down-regulation of hyphal associated genes including UME6, encoding another key transcriptional factor. Ectopic overexpression of EED1 or UME6 rescued filamentation and damage potential in eed1Δ. Transcriptional profiling during overexpression of UME6 identified subsets of genes regulated by Eed1 or Ume6. These data suggest that Eed1 and Ume6 act in a pathway regulating maintenance of hyphal growth thereby repressing hyphal-to-yeast transition and permitting dissemination of C. albicans within epithelial tissues.

  15. Comparison of Two Mouse Ameloblast-like Cell Lines for Enamel-specific Gene Expression

    Directory of Open Access Journals (Sweden)

    Juni eSarkar

    2014-07-01

    Full Text Available Ameloblasts are ectoderm-derived cells that produce an extracellular enamel matrix that mineralizes to form enamel. The development and use of immortalized cell lines, with a stable phenotype, is an important contribution to biological studies as it allows for the investigation of molecular activities without the continuous need for animals. In this study we compare the expression profiles of enamel-specific genes in two mouse derived ameloblast-like cell lines: LS8 and ALC cells. Quantitative PCR analysis indicates that, relative to each other, LS8 cells express greater mRNA levels for genes that define secretory-stage activities (Amelx, Ambn, Enam and Mmp20, while ALC express greater mRNA levels for genes that define maturation-stage activities (Odam and Klk4. Western blot analyses show that Amelx, Ambn and Odam proteins are detectable in ALC, but not LS8 cells. Unstimulated ALC cells form calcified nodules, while LS8 cells do not. These data provide greater insight as to the suitability of both cell lines to contribute to biological studies on enamel formation and biomineralization, and highlight some of the strengths and weaknesses when relying on enamel epithelial organ-derived cell lines to study molecular activities of amelogenesis.

  16. Characterization of the male-specific lethal 3 gene in the oriental river prawn, Macrobrachium nipponense.

    Science.gov (United States)

    Zhang, Y P; Sun, S M; Fu, H T; Ge, X P; Qiao, H; Zhang, W Y; Xiong, Y W; Jiang, S F; Gong, Y S; Jin, S B

    2015-04-10

    In this study, male-specific lethal 3 homolog (Mnmsl3) was cloned and characterized from the freshwater prawn Macrobrachium nipponense (Crustacea: Decapoda: Palaemonidae) by rapid amplification of cDNA ends. The deduced amino acid sequences of Mnmsl3 showed high-sequence homology to the insect Msl3 and contained a conserved chromatin organization modifier domain and an MORF4-related gene domain. Real-time quantitative reverse transcription-polymerase chain reaction showed that the Mnmsl3 gene was expressed in all the investigated tissues, with the highest level of expression in the testis. The expression level of Mnmsl3 between males and females was different in the gonad (testis or ovary), abdominal ganglion, and heart. The results revealed that the Mnmsl3 gene might play roles in regulating chromatin and in dosage compensation of M. nipponense. Real-time quantitative reverse transcription-polymerase chain reaction also revealed that Mnmsl3 mRNA expression was significantly increased in both 5 and 20 days post-larvae after metamorphosis, suggesting that Mnmsl3 plays complex and important roles in the early embryonic development and sex differentiation of M. nipponense.

  17. Regulating expression of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  18. Cell-specific expression of plant nutrient transporter genes in orchid mycorrhizae.

    Science.gov (United States)

    Fochi, Valeria; Falla, Nicole; Girlanda, Mariangela; Perotto, Silvia; Balestrini, Raffaella

    2017-10-01

    Orchid mycorrhizal protocorms and roots are heterogeneous structures composed of different plant cell-types, where cells colonized by intracellular fungal coils (the pelotons) are close to non-colonized plant cells. Moreover, the fungal coils undergo rapid turnover inside the colonized cells, so that plant cells containing coils at different developmental stages can be observed in the same tissue section. Here, we have investigated by laser microdissection (LMD) the localization of specific plant gene transcripts in different cell-type populations collected from mycorrhizal protocorms and roots of the Mediterranean orchid Serapias vomeracea colonized by Tulasnella calospora. RNAs extracted from the different cell-type populations have been used to study plant gene expression, focusing on genes potentially involved in N uptake and transport and previously identified as up-regulated in symbiotic protocorms. Results clearly showed that some plant N transporters are differentially expressed in cells containing fungal coils at different developmental stages, as well as in non-colonized cells, and allowed the identification of new functional markers associated to coil-containing cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Fast track antibody V-gene rescue, recombinant expression in plants and characterization of a PfMSP4-specific antibody.

    Science.gov (United States)

    Kapelski, Stephanie; Boes, Alexander; Spiegel, Holger; de Almeida, Melanie; Klockenbring, Torsten; Reimann, Andreas; Fischer, Rainer; Barth, Stefan; Fendel, Rolf

    2015-02-05

    Monoclonal antibodies (mAbs) are essential tools in biological research, diagnosis and therapy, and are conventionally produced in murine hybridoma cell lines. Professional applications of mAbs depend on the steady supply of material. Because hybridoma cultures can stop producing the antibody or even die, preservation of the unique epitope specificity of mAbs by rescue of the sequences encoding the antibody variable domains (V regions) is important. The availability of these sequences enables not only the recombinant expression of the original antibody for further applications, but opens the road for antibody engineering towards innovative diagnostic or therapeutic applications. A time- and cost-efficient production system enabling the detailed analysis of the antibodies is an essential requirement in this context. Sequences were rescued from three hybridoma cell lines, subjected to sequence analysis, subcloned into binary expression vectors and recombinantly expressed as chimeric mAb (constant regions of human IgG1:k1) in Nicotiana benthamiana plants. The properties of the recombinant and the murine mAbs were compared using competition enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) spectroscopy. The recognition of native PfMSP4 by the recombinant mAb was analysed by immunofluorescence staining of Pf 3D7A schizonts and by western blot analysis of merozoite extract. The rescued sequences of all three hybridoma cell lines were identical. The recombinant mAb was successfully expressed as IgG in plants at moderate levels (45 mg/kg fresh leaf weight). Preservation of the original epitope was demonstrated in a competition ELISA, using recombinant mAb and the three murine mAbs. EGF_PfMSP4-specific affinities were determined by SPR spectroscopy to 8 nM and 10 nM for the murine or recombinant mAb, respectively. Binding to parasite PfMSP4 was confirmed in an immunofluorescence assay showing a characteristic staining pattern and by western blot

  20. ColoGuideEx: a robust gene classifier specific for stage II colorectal cancer prognosis.

    Science.gov (United States)

    Agesen, Trude H; Sveen, Anita; Merok, Marianne A; Lind, Guro E; Nesbakken, Arild; Skotheim, Rolf I; Lothe, Ragnhild A

    2012-11-01

    Several clinical factors have an impact on prognosis in stage II colorectal cancer (CRC), but as yet they are inadequate for risk assessment. The present study aimed to develop a gene expression classifier for improved risk stratification of patients with stage II CRC. 315 CRC samples were included in the study. Gene expression measurements from 207 CRC samples (stage I-IV) from two independent Norwegian clinical series were obtained using Affymetrix exon-level microarrays. Differentially expressed genes between stage I and stage IV samples from the test series were identified and used as input for L1 (lasso) penalised Cox proportional hazards analyses of patients with stage II CRC from the same series. A second validation was performed in 108 stage II CRC samples from other populations (USA and Australia). An optimal 13-gene expression classifier (PIGR, CXCL13, MMP3, TUBA1B, SESN1, AZGP1, KLK6, EPHA7, SEMA3A, DSC3, CXCL10, ENPP3, BNIP3) for prediction of relapse among patients with stage II CRC was developed using a consecutive Norwegian test series from patients treated according to current standard protocols (n=44, p<0.001, HR=18.2), and its predictive value was successfully validated for patients with stage II CRC in a second Norwegian CRC series collected two decades previously (n=52, p=0.02, HR=3.6). Further validation of the classifier was obtained in a recent external dataset of patients with stage II CRC from other populations (n=108, p=0.001, HR=6.5). Multivariate Cox regression analyses, including all three sample series and various clinicopathological variables, confirmed the independent prognostic value of the classifier (p≤0.004). The classifier was shown to be specific to stage II CRC and does not provide prognostic stratification of patients with stage III CRC. This study presents the development and validation of a 13-gene expression classifier, ColoGuideEx, for prognosis prediction specific to patients with stage II CRC. The robustness was shown

  1. Evolutionary expansion and divergence in a large family of primate-specific zinc finger transcription factor genes

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, A T; Huntley, S; Tran-Gyamfi, M; Baggott, D; Gordon, L; Stubbs, L

    2005-09-28

    Although most genes are conserved as one-to-one orthologs in different mammalian orders, certain gene families have evolved to comprise different numbers and types of protein-coding genes through independent series of gene duplications, divergence and gene loss in each evolutionary lineage. One such family encodes KRAB-zinc finger (KRAB-ZNF) genes, which are likely to function as transcriptional repressors. One KRAB-ZNF subfamily, the ZNF91 clade, has expanded specifically in primates to comprise more than 110 loci in the human genome, yielding large gene clusters in human chromosomes 19 and 7 and smaller clusters or isolated copies at other chromosomal locations. Although phylogenetic analysis indicates that many of these genes arose before the split between old world monkeys and new world monkeys, the ZNF91 subfamily has continued to expand and diversify throughout the evolution of apes and humans. The paralogous loci are distinguished by sequence divergence within their zinc finger arrays indicating a selection for proteins with different DNA binding specificities. RT-PCR and in situ hybridization data show that some of these ZNF genes can have tissue-specific expression patterns, however many KRAB-ZNFs that are near-ubiquitous could also be playing very specific roles in halting target pathways in all tissues except for a few, where the target is released by the absence of its repressor. The number of variant KRAB-ZNF proteins is increased not only because of the large number of loci, but also because many loci can produce multiple splice variants, which because of the modular structure of these genes may have separate and perhaps even conflicting regulatory roles. The lineage-specific duplication and rapid divergence of this family of transcription factor genes suggests a role in determining species-specific biological differences and the evolution of novel primate traits.

  2. Age-Related Gene Expression in the Frontal Cortex Suggests Synaptic Function Changes in Specific Inhibitory Neuron Subtypes

    Directory of Open Access Journals (Sweden)

    Leon French

    2017-05-01

    Full Text Available Genome-wide expression profiling of the human brain has revealed genes that are differentially expressed across the lifespan. Characterizing these genes adds to our understanding of both normal functions and pathological conditions. Additionally, the specific cell-types that contribute to the motor, sensory and cognitive declines during aging are unclear. Here we test if age-related genes show higher expression in specific neural cell types. Our study leverages data from two sources of murine single-cell expression data and two sources of age-associations from large gene expression studies of postmortem human brain. We used nonparametric gene set analysis to test for age-related enrichment of genes associated with specific cell-types; we also restricted our analyses to specific gene ontology groups. Our analyses focused on a primary pair of single-cell expression data from the mouse visual cortex and age-related human post-mortem gene expression information from the orbitofrontal cortex. Additional pairings that used data from the hippocampus, prefrontal cortex, somatosensory cortex and blood were used to validate and test specificity of our findings. We found robust age-related up-regulation of genes that are highly expressed in oligodendrocytes and astrocytes, while genes highly expressed in layer 2/3 glutamatergic neurons were down-regulated across age. Genes not specific to any neural cell type were also down-regulated, possibly due to the bulk tissue source of the age-related genes. A gene ontology-driven dissection of the cell-type enriched genes highlighted the strong down-regulation of genes involved in synaptic transmission and cell-cell signaling in the Somatostatin (Sst neuron subtype that expresses the cyclin dependent kinase 6 (Cdk6 and in the vasoactive intestinal peptide (Vip neuron subtype expressing myosin binding protein C, slow type (Mybpc1. These findings provide new insights into cell specific susceptibility to normal aging

  3. Expression of uncharacterized male germ cell-specific genes and discovery of novel sperm-tail proteins in mice.

    Science.gov (United States)

    Kwon, Jun Tae; Ham, Sera; Jeon, Suyeon; Kim, Youil; Oh, Seungmin; Cho, Chunghee

    2017-01-01

    The identification and characterization of germ cell-specific genes are essential if we hope to comprehensively understand the mechanisms of spermatogenesis and fertilization. Here, we searched the mouse UniGene databases and identified 13 novel genes as being putatively testis-specific or -predominant. Our in silico and in vitro analyses revealed that the expressions of these genes are testis- and germ cell-specific, and that they are regulated in a stage-specific manner during spermatogenesis. We generated antibodies against the proteins encoded by seven of the genes to facilitate their characterization in male germ cells. Immunoblotting and immunofluorescence analyses revealed that one of these proteins was expressed only in testicular germ cells, three were expressed in both testicular germ cells and testicular sperm, and the remaining three were expressed in sperm of the testicular stages and in mature sperm from the epididymis. Further analysis of the latter three proteins showed that they were all associated with cytoskeletal structures in the sperm flagellum. Among them, MORN5, which is predicted to contain three MORN motifs, is conserved between mouse and human sperm. In conclusion, we herein identify 13 authentic genes with male germ cell-specific expression, and provide comprehensive information about these genes and their encoded products. Our finding will facilitate future investigations into the functional roles of these novel genes in spermatogenesis and sperm functions.

  4. Phytoalexin detoxification genes and gene products: Implication for the evolution of host specific traits for pathogenicity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    VanEtten, H.

    1997-06-01

    The overall objectives of this research were to determine which differences among PDA genes were associated with different levels of virulence on pea and to clone and characterize a MAK gene. The authors also proposed to characterize the pisatin detoxifying system in pea pathogens in addition to N. haematococca to assess whether pathogens of a common host had evolved similar pathogenicity genes.

  5. A compendium of human genes regulating feeding behavior and body weight, its functional characterization and identification of GWAS genes involved in brain-specific PPI network.

    Science.gov (United States)

    Ignatieva, Elena V; Afonnikov, Dmitry A; Saik, Olga V; Rogaev, Evgeny I; Kolchanov, Nikolay A

    2016-12-22

    Obesity is heritable. It predisposes to many diseases. The objectives of this study were to create a compendium of genes relevant to feeding behavior (FB) and/or body weight (BW) regulation; to construct and to analyze networks formed by associations between genes/proteins; and to identify the most significant genes, biological processes/pathways, and tissues/organs involved in BW regulation. The compendium of genes controlling FB or BW includes 578 human genes. Candidate genes were identified from various sources, including previously published original research and review articles, GWAS meta-analyses, and OMIM (Online Mendelian Inheritance in Man). All genes were ranked according to knowledge about their biological role in body weight regulation and classified according to expression patterns or functional characteristics. Substantial and overrepresented numbers of genes from the compendium encoded cell surface receptors, signaling molecules (hormones, neuropeptides, cytokines), transcription factors, signal transduction proteins, cilium and BBSome components, and lipid binding proteins or were present in the brain-specific list of tissue-enriched genes identified with TSEA tool. We identified 27 pathways from KEGG, REACTOME and BIOCARTA whose genes were overrepresented in the compendium. Networks formed by physical interactions or homological relationships between proteins or interactions between proteins involved in biochemical/signaling pathways were reconstructed and analyzed. Subnetworks and clusters identified by the MCODE tool included genes/proteins associated with cilium morphogenesis, signal transduction proteins (particularly, G protein-coupled receptors, kinases or proteins involved in response to insulin stimulus) and transcription regulation (particularly nuclear receptors). We ranked GWAS genes according to the number of neighbors in three networks and revealed 22 GWAS genes involved in the brain-specific PPI network. On the base of the most

  6. Thyroid-Specific Genes Expression Uncovered Age-Related Differences in Pediatric Thyroid Carcinomas

    Directory of Open Access Journals (Sweden)

    Maria Isabel Cunha Vieira Cordioli

    2016-01-01

    Full Text Available Despite a more advanced stage of disease at presentation, a better response to radioiodine (RAI therapy and a reduced overall mortality have been reported in pediatric differentiated thyroid cancer (DTC in comparison to adult DTC. Few studies suggested that the better response to RAI therapy in pediatric patients might be associated with an increased expression of NIS. However, a marked heterogeneity within the pediatric group has been recognized. Children (<10 years old usually present a more aggressive disease than adolescents (≥10–18 years old. By analyzing the expression of thyroid-specific genes in 38 sporadic pediatric tumors, we show that the expression of NIS, PDS, and TSHR was lower in children than adolescents (P<0.05. A linear regression confirmed the association between NIS expression and age. Most significantly, NIS was expressed at similar levels in DTC from children and adults, whereas PDS and TSHR expression was even lower in DTC from children, compared to adolescents and adults. Our data suggest that biological behaviors of DTC in adolescents might differ from those in children and adults. Therefore, the premise that the expression of thyroid-specific genes is higher in tumors from pediatric patients than in adults is not entirely true and might be too oversimplified.

  7. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR.

    Science.gov (United States)

    D'Souza, T M; Boominathan, K; Reddy, C A

    1996-10-01

    Degenerate primers corresponding to the consensus sequences of the copper-binding regions in the N-terminal domains of known basidiomycete laccases were used to isolate laccase gene-specific sequences from strains representing nine genera of wood rot fungi. All except three gave the expected PCR product of about 200 bp. Computer searches of the databases identified the sequence of each of the PCR products analyzed as a laccase gene sequence, suggesting the specificity of the primers. PCR products of the white rot fungi Ganoderma lucidum, Phlebia brevispora, and Trametes versicolor showed 65 to 74% nucleotide sequence similarity to each other; the similarity in deduced amino acid sequences was 83 to 91%. The PCR products of Lentinula edodes and Lentinus tigrinus, on the other hand, showed relatively low nucleotide and amino acid similarities (58 to 64 and 62 to 81%, respectively); however, these similarities were still much higher than when compared with the corresponding regions in the laccases of the ascomycete fungi Aspergillus nidulans and Neurospora crassa. A few of the white rot fungi, as well as Gloeophyllum trabeum, a brown rot fungus, gave a 144-bp PCR fragment which had a nucleotide sequence similarity of 60 to 71%. Demonstration of laccase activity in G. trabeum and several other brown rot fungi was of particular interest because these organisms were not previously shown to produce laccases.

  8. Screening of Genes Specifically Expressed in Males of Fenneropenaeus chinensis and Their Potential as Sex Markers

    Directory of Open Access Journals (Sweden)

    Shihao Li

    2013-01-01

    Full Text Available The androgenic gland (AG, playing an important role in sex differentiation of male crustacean, is a target candidate to understand the mechanism of male development and to mine male-specific sex markers. An SSH library (designated as male reproduction-related tissues—SSH library, MRT-SSH library for short was constructed using cDNA from tissues located at the basal part of the 5th pereiopods, including AG and part of spermatophore sac, as tester, and the cDNA from the basal part of the 4th pereiopods of these male shrimp as driver. 402 ESTs from the SSH library were sequenced and assembled into 48 contigs and 104 singlets. Twelve contigs and 14 singlets were identified as known genes. The proteins encoded by the identified genes were categorized, according to their proposed functions, into neuropeptide hormone and hormone transporter, RNA posttranscriptional regulation, translation, cell growth and death, metabolism, genetic information processing, signal transduction/transport, or immunity-related proteins. Eleven highly expressed contigs in the SSH library were selected for validation of the MRT-SSH library and screening sex markers of shrimp. One contig, specifically expressed in male shrimp, had a potential to be developed as a transcriptomic sex marker in shrimp.

  9. In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides.

    Science.gov (United States)

    Southwell, Amber L; Skotte, Niels H; Kordasiewicz, Holly B; Østergaard, Michael E; Watt, Andrew T; Carroll, Jeffrey B; Doty, Crystal N; Villanueva, Erika B; Petoukhov, Eugenia; Vaid, Kuljeet; Xie, Yuanyun; Freier, Susan M; Swayze, Eric E; Seth, Punit P; Bennett, Clarence Frank; Hayden, Michael R

    2014-12-01

    Huntington disease (HD) is a dominant, genetic neurodegenerative disease characterized by progressive loss of voluntary motor control, psychiatric disturbance, and cognitive decline, for which there is currently no disease-modifying therapy. HD is caused by the expansion of a CAG tract in the huntingtin (HTT) gene. The mutant HTT protein (muHTT) acquires toxic functions, and there is significant evidence that muHTT lowering would be therapeutically efficacious. However, the wild-type HTT protein (wtHTT) serves vital functions, making allele-specific muHTT lowering strategies potentially safer than nonselective strategies. CAG tract expansion is associated with single nucleotide polymorphisms (SNPs) that can be targeted by gene silencing reagents such as antisense oligonucleotides (ASOs) to accomplish allele-specific muHTT lowering. Here we evaluate ASOs targeted to HD-associated SNPs in acute in vivo studies including screening, distribution, duration of action and dosing, using a humanized mouse model of HD, Hu97/18, that is heterozygous for the targeted SNPs. We have identified four well-tolerated lead ASOs that potently and selectively silence muHTT at a broad range of doses throughout the central nervous system for 16 weeks or more after a single intracerebroventricular (ICV) injection. With further validation, these ASOs could provide a therapeutic option for individuals afflicted with HD.

  10. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR

    Energy Technology Data Exchange (ETDEWEB)

    D`Souza, T.M.; Boominathan, K.; Reddy, C.A. [Michigan State Univ., East Lansing, MI (United States)

    1996-10-01

    Degenerate primers corresponding to the consensus sequences of the copper-binding regions in the N-terminal domains of known basidiomycete laccases were used to isolate laccase gene-specific sequences from strains representing nine genera of wood rot fungi. All except three gave the expected PCR product of about 200 bp. Computer searches of the databases identified the sequences of each of the PCR product of about 200 bp. Computer searches of the databases identified the sequence of each of the PCR products analyzed as a laccase gene sequence, suggesting the specificity of the primers. PCR products of the white rot fungi Ganoderma lucidum, Phlebia brevispora, and Trametes versicolor showed 65 to 74% nucleotide sequence similarity to each other; the similarity in deduced amino acid sequences was 83 to 91%. The PCR products of Lentinula edodes and Lentinus tigrinus, on the other hand, showed relatively low nucleotide and amino acid similarities (58 to 64 and 62 to 81%, respectively); however, these similarities were still much higher than when compared with the corresponding regions in the laccases of the ascomycete fungi Aspergillus nidulans and Neurospora crassa. A few of the white rot fungi, as well as Gloeophyllum trabeum, a brown rot fungus, gave a 144-bp PCR fragment which had a nucleotide sequence similarity of 60 to 71%. Demonstration of laccase activity in G. trabeum and several other brown rot fungi was of particular interest because these organisms were not previously shown to produce laccases. 36 refs., 6 figs., 2 tabs.

  11. Primary cutaneous T-cell lymphomas do not show specific NAV3 gene deletion or translocation.

    Science.gov (United States)

    Marty, Marion; Prochazkova, Martina; Laharanne, Elodie; Chevret, Edith; Longy, Michel; Jouary, Thomas; Vergier, Béatrice; Beylot-Barry, Marie; Merlio, Jean-Philippe; Philippe, Merlio Jean

    2008-10-01

    The mapping of a balanced t(12;18)(q21;q21.2) translocation in a Sézary syndrome (SS) case led Karenko et al. to identify NAV3 gene (12q21-22) deletion by interphase fluorescence in situ hybridization (FISH) in 15/21 patients with mycosis fungoides (MF) or SS. To determine whether the NAV3 deletion is the result of a specific gene breakpoint, we used FISH with dual-color split or break-apart bacterial artificial chromosome (BAC) probes covering the NAV3 locus. A total of 31 samples (18 skin, 11 blood, 1 lymph node, and 1 spleen) from 24 patients with advanced MF/SS (18 with large-cell transformation) were studied. Chromosome 12 imbalances were analyzed by comparative genomic hybridization (CGH) array with a 3K BAC probes in 24 samples from 22 patients. Both normal FISH and CGH array patterns were observed in 22 samples from 18 patients. In 6 patients, abnormal patterns were observed with an abnormal number of chromosome 12 set in 5 of them. Chromosome 12 structural abnormalities were seen in four of these six patients. An imbalanced FISH pattern between NAV3 and pericentromeric control probes was seen in three patients in accordance with CGH array data (one with a pericentromeric deletion and two with a large 12q deletion including NAV3). No NAV3 specific breakpoint or partial deletion was detected.

  12. Gene expression patterns in the black blowfly (Phormia regina) as revealed by two-dimensional electrophoresis of proteins. I. Developmental stage-specific and sex-specific differences

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, H.H. (The University of Chicago Pritzker School of Medicine, Il (United States)); Joslyn, D.J. (Rutgers University at Camden, NJ (United States))

    1991-12-01

    The black blowfly, Phormia regina, has been implicated in human myiasis and as a contact vector of viral and bacterial diseases present in carrion to which female flies are attracted for egg deposition. Inbred strains of P. regina are an excellent model system for studying gene expression in the developmental stages of such holometabolous dipteran parasites. However, information regarding gene and protein expression patterns in regina is limited. The authors used ISO-DALT high-resolution, two-dimensional electrophoresis with solver staining to establish fundamental protein maps for examination of the stage-specific gene expression patterns in the 615 most abundant proteins of the eggs, first- and third-instar larvae, pupae, and male and female adults. They also used a differential extraction technique to identify the major cuticular proteins of the adults. The results show 48 clearly identifiable stage-specific and sex-specific proteins.

  13. Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Guangming Wu

    2011-07-01

    Full Text Available Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH⁻/⁻ mice as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH⁻/⁻-induced pluripotent stem cells (iPS cells as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH⁻/⁻ iPS cell lines, we aggregated FAH⁻/⁻-iPS cells with tetraploid embryos and obtained entirely FAH⁻/⁻-iPS cell-derived mice that were viable and exhibited the phenotype of the founding FAH⁻/⁻ mice. Then, we transduced FAH cDNA into the FAH⁻/⁻-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell-derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl-1,3-cyclohexanedione. Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models.

  14. Gene expression patterns specific to the regenerating limb of the Mexican axolotl

    Directory of Open Access Journals (Sweden)

    James R. Monaghan

    2012-07-01

    Salamander limb regeneration is dependent upon tissue interactions that are local to the amputation site. Communication among limb epidermis, peripheral nerves, and mesenchyme coordinate cell migration, cell proliferation, and tissue patterning to generate a blastema, which will form missing limb structures. An outstanding question is how cross-talk between these tissues gives rise to the regeneration blastema. To identify genes associated with epidermis-nerve-mesenchymal interactions during limb regeneration, we examined histological and transcriptional changes during the first week following injury in the wound epidermis and subjacent cells between three injury types; 1 a flank wound on the side of the animal that will not regenerate a limb, 2 a denervated limb that will not regenerate a limb, and 3 an innervated limb that will regenerate a limb. Early, histological and transcriptional changes were similar between the injury types, presumably because a common wound-healing program is employed across anatomical locations. However, some transcripts were enriched in limbs compared to the flank and are associated with vertebrate limb development. Many of these genes were activated before blastema outgrowth and expressed in specific tissue types including the epidermis, peripheral nerve, and mesenchyme. We also identified a relatively small group of transcripts that were more highly expressed in innervated limbs versus denervated limbs. These transcripts encode for proteins involved in myelination of peripheral nerves, epidermal cell function, and proliferation of mesenchymal cells. Overall, our study identifies limb-specific and nerve-dependent genes that are upstream of regenerative growth, and thus promising candidates for the regulation of blastema formation.

  15. Distinct roles of Candida albicans-specific genes in host-pathogen interactions.

    Science.gov (United States)

    Wilson, Duncan; Mayer, François L; Miramón, Pedro; Citiulo, Francesco; Slesiona, Silvia; Jacobsen, Ilse D; Hube, Bernhard

    2014-08-01

    Human fungal pathogens are distributed throughout their kingdom, suggesting that pathogenic potential evolved independently. Candida albicans is the most virulent member of the CUG clade of yeasts and a common cause of both superficial and invasive infections. We therefore hypothesized that C. albicans possesses distinct pathogenicity mechanisms. In silico genome subtraction and comparative transcriptional analysis identified a total of 65 C. albicans-specific genes (ASGs) expressed during infection. Phenotypic characterization of six ASG-null mutants demonstrated that these genes are dispensable for in vitro growth but play defined roles in host-pathogen interactions. Based on these analyses, we investigated two ASGs in greater detail. An orf19.6688Δ mutant was found to be fully virulent in a mouse model of disseminated candidiasis and to induce higher levels of the proinflammatory cytokine interleukin-1β (IL-1β) following incubation with murine macrophages. A pga16Δ mutant, on the other hand, exhibited attenuated virulence. Moreover, we provide evidence that secondary filamentation events (multiple hyphae emerging from a mother cell and hyphal branching) contribute to pathogenicity: PGA16 deletion did not influence primary hypha formation or extension following contact with epithelial cells; however, multiple hyphae and hyphal branching were strongly reduced. Significantly, these hyphae failed to damage host cells as effectively as the multiple hypha structures formed by wild-type C. albicans cells. Together, our data show that species-specific genes of a eukaryotic pathogen can play important roles in pathogenicity. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Evaluation of biofilm-specific antimicrobial resistance genes in Pseudomonas aeruginosa isolates in Farabi Hospital.

    Science.gov (United States)

    Saffari, Mahmood; Karami, Shabnam; Firoozeh, Farzaneh; Sehat, Mojtaba

    2017-07-01

    Biofilm produced from Pseudomonas aeruginosa is the cause of infection induced by contact lenses, trauma and post-surgery infection. The aim of this study was to evaluate biofilm formation and the presence of the genes ndvB and tssC1 in ocular infection isolates of P. aeruginosa. A total of 92 P. aeruginosa strains were collected from patients with ocular infection referred to Farabi Hospital between March 2014 and July 2015. Antibiotic susceptibility patterns were evaluated by the agar disc-diffusion method according to CLSI guidelines. PCR assays were used to detect ndvB and tssC1, genes associated with resistance in biofilm-producing P. aeruginosa isolates. Biofilm formation ability was examined by crystal violet microtitre plate assay. During the period of study, 92 P. aeruginosa were isolated from ocular infections including keratitis (n=84) and endophthalmitis (n=8). The highest resistance rates were seen against colistin (57.6 %) and gentamicin (50 %) and the lowest resistance rates were seen against imipenem (3.3 %), aztreonam (4.3 %), piperacillin-tazobactam (4.3 %), ceftazidime (4.3 %) and ciprofloxacin (5.4 %). Biofilm production ability was found in 100 % of the isolates. PCR assays showed that of the 92 P. aeruginosa isolates, 96.7 and 90.2 % harboured the genes ndvB and tssC1, respectively. Our results showed a considerable ability of biofilm production, as well as the occurrence of biofilm-specific antimicrobial resistance genes (ndvB and tssC1), in P. aeruginosa isolates from ocular infections in Farabi Hospital.

  17. Specificity Protein 1 Regulates Gene Expression Related to Fatty Acid Metabolism in Goat Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jiangjiang Zhu

    2015-01-01

    Full Text Available Specificity protein 1 (SP1 is a ubiquitous transcription factor that plays an important role in controlling gene expression. Although important in mediating the function of various hormones, the role of SP1 in regulating milk fat formation remains unknown. To investigate the sequence and expression information, as well as its role in modulating lipid metabolism, we cloned SP1 gene from mammary gland of Xinong Saanen dairy goat. The full-length cDNA of the SP1 gene is 4376 bp including 103 bp of 5'UTR, 2358 bp of ORF (HM_236311 and 1915 bp of 3'UTR, which is predicted to encode a 786 amino acids polypeptide. Phylogenetic tree analysis showed that goat SP1 has the closest relationship with sheep, followed by bovines (bos taurus, odobenus and ceratotherium, pig, primates (pongo, gorilla, macaca and papio and murine (rattus and mus, while the furthest relationship was with canis and otolemur. Expression was predominant in the lungs, small intestine, muscle, spleen, mammary gland and subcutaneous fat. There were no significant expression level differences between the mammary gland tissues collected at lactation and dry-off period. Overexpression of SP1 in goat mammary epithelial cells (GMECs led to higher mRNA expression level of peroxisome proliferator-activated receptor-γ (PPARγ and lower liver X receptor α (LXRα mRNA level, both of which were crucial in regulating fatty acid metabolism, and correspondingly altered the expression of their downstream genes in GMECs. These results were further enhanced by the silencing of SP1. These findings suggest that SP1 may play an important role in fatty acid metabolism.

  18. Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. METHODS AND FINDINGS: We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. CONCLUSIONS: The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis

  19. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers.

    Directory of Open Access Journals (Sweden)

    Jen-Tsan Chi

    2006-03-01

    Full Text Available Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases.We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use.The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis in breast and ovarian cancer.

  20. Genome-wide identification of pistil-specific genes expressed during fruit set initiation in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Ezura, Kentaro; Ji-Seong, Kim; Mori, Kazuki; Suzuki, Yutaka; Kuhara, Satoru; Ariizumi, Tohru; Ezura, Hiroshi

    2017-01-01

    Fruit set involves the developmental transition of an unfertilized quiescent ovary in the pistil into a fruit. While fruit set is known to involve the activation of signals (including various plant hormones) in the ovary, many biological aspects of this process remain elusive. To further expand our understanding of this process, we identified genes that are specifically expressed in tomato (Solanum lycopersicum L.) pistils during fruit set through comprehensive RNA-seq-based transcriptome analysis using 17 different tissues including pistils at six different developmental stages. First, we identified 532 candidate genes that are preferentially expressed in the pistil based on their tissue-specific expression profiles. Next, we compared our RNA-seq data with publically available transcriptome data, further refining the candidate genes that are specifically expressed within the pistil. As a result, 108 pistil-specific genes were identified, including several transcription factor genes that function in reproductive development. We also identified genes encoding hormone-like peptides with a secretion signal and cysteine-rich residues that are conserved among some Solanaceae species, suggesting that peptide hormones may function as signaling molecules during fruit set initiation. This study provides important information about pistil-specific genes, which may play specific roles in regulating pistil development in relation to fruit set.

  1. Sensitive and specific detection of Xanthomonas campestris pv. vesicatoria by PCR using pathovar-specific primers based on rhs family gene sequences.

    Science.gov (United States)

    Park, Dong Suk; Shim, Jae Kyung; Kim, Jung Sun; Lim, Chun Keun; Shrestha, Rosemary; Hahn, Jang Ho; Kim, Hong Gi

    2009-01-01

    The present study describes PCR assay to detect bacterial spot caused by Xanthomonas campestris pv. vesicatoria in pepper and tomato. One set of PCR primer was developed to amplify gene required for an rhs family gene homologous to rhsA, cell envelope biogenesis, outer membrane. Only a PCR product of a 517bp was produced in PCR reaction with the Xanthomonas campestris pv. vesicatoria (XCVF/XCVR) primer set. A specific, and highly sensitive and rapid PCR assay for the detection of X. campestris pv. vesicatoria was achieved. The protocol can be used as a reliable diagnostic tool for specific detection of X. campestris pv. vesicatoria in pepper or tomato.

  2. Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans.

    Science.gov (United States)

    Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc

    2016-09-01

    Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal's sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function. Copyright © 2016 by the Genetics Society of America.

  3. Negative spatial regulation of the lineage specific CyIIIa actin gene in the sea urchin embryo

    OpenAIRE

    Hough-Evans, Barbara R.; Franks, Roberta R.; Zeller, Robert W.; Roy J. Britten; Davidson, Eric H.

    1990-01-01

    The CyIIIa·CAT fusion gene was injected into Strongylocentrotus purpuratus eggs, together with excess ligated competitor sequences representing subregions of the CyIIIa regulatory domain. In this construct, the chloramphenicol acetyltransferase (CAT) reporter gene is placed under the control of the 2300 nucleotide upstream regulatory domain of the lineage-specific CyIIIa cytoskeletal actin gene. CAT mRNA was detected by in situ hybridization in serial sections of pluteus stage embryos derived...

  4. Tissue Restricted Splice Junctions Originate Not Only from Tissue-Specific Gene Loci, but Gene Loci with a Broad Pattern of Expression.

    Directory of Open Access Journals (Sweden)

    Matthew S Hestand

    Full Text Available Cellular mechanisms that achieve protein diversity in eukaryotes are multifaceted, including transcriptional components such as RNA splicing. Through alternative splicing, a single protein-coding gene can generate multiple mRNA transcripts and protein isoforms, some of which are tissue-specific. We have conducted qualitative and quantitative analyses of the Bodymap 2.0 messenger RNA-sequencing data from 16 human tissue samples and identified 209,363 splice junctions. Of these, 22,231 (10.6% were not previously annotated and 21,650 (10.3% were expressed in a tissue-restricted pattern. Tissue-restricted alternative splicing was found to be widespread, with approximately 65% of expressed multi-exon genes containing at least one tissue-specific splice junction. Interestingly, we observed many tissue-specific splice junctions not only in genes expressed in one or a few tissues, but also from gene loci with a broad pattern of expression.

  5. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization

    Science.gov (United States)

    Cavaillé, Jérôme; Buiting, Karin; Kiefmann, Martin; Lalande, Marc; Brannan, Camilynn I.; Horsthemke, Bernhard; Bachellerie, Jean-Pierre; Brosius, Jürgen; Hüttenhofer, Alexander

    2000-01-01

    We have identified three C/D-box small nucleolar RNAs (snoRNAs) and one H/ACA-box snoRNA in mouse and human. In mice, all four snoRNAs (MBII-13, MBII-52, MBII-85, and MBI-36) are exclusively expressed in the brain, unlike all other known snoRNAs. Two of the human RNA orthologues (HBII-52 and HBI-36) share this expression pattern, and the remainder, HBII-13 and HBII-85, are prevalently expressed in that tissue. In mice and humans, the brain-specific H/ACA box snoRNA (MBI-36 and HBI-36, respectively) is intron-encoded in the brain-specific serotonin 2C receptor gene. The three human C/D box snoRNAs map to chromosome 15q11–q13, within a region implicated in the Prader–Willi syndrome (PWS), which is a neurogenetic disease resulting from a deficiency of paternal gene expression. Unlike other C/D box snoRNAs, two snoRNAs, HBII-52 and HBII-85, are encoded in a tandemly repeated array of 47 or 24 units, respectively. In mouse the homologue of HBII-52 is processed from intronic portions of the tandem repeats. Interestingly, these snoRNAs were absent from the cortex of a patient with PWS and from a PWS mouse model, demonstrating their paternal imprinting status and pointing to their potential role in the etiology of PWS. Despite displaying hallmarks of the two families of ubiquitous snoRNAs that guide 2′-O-ribose methylation and pseudouridylation of rRNA, respectively, they lack any telltale rRNA complementarity. Instead, brain-specific C/D box snoRNA HBII-52 has an 18-nt phylogenetically conserved complementarity to a critical segment of serotonin 2C receptor mRNA, pointing to a potential role in the processing of this mRNA. PMID:11106375

  6. Imaging Mass Spectrometry Reveals Highly Specific Interactions between Actinomycetes To Activate Specialized Metabolic Gene Clusters

    Science.gov (United States)

    Hopwood, David A.

    2013-01-01

    ABSTRACT The genomes of actinomycetes contain numerous gene clusters potentially able to encode the production of many antibiotics and other specialized metabolites that are not expressed during growth under typical laboratory conditions. Undoubtedly, this reflects the soil habitat of these organisms, which is highly complex physically, chemically, and biotically; the majority of the compounds that make up the specialized metabolome are therefore adaptive only under specific conditions. While there have been numerous previous reports of “waking up” the “sleeping” gene clusters, many involving genetic interventions or nutritional challenges, the role of competing microorganisms has been comparatively little studied. Now, Traxler et al. [M. F. Traxler, J. D. Watrous, T. Alexandrov, P. C. Dorrestein, and R. Kolter, mBio 4(4):e00459-13, 2013, doi:10.1128/mBio.00459-13] have used the recently described technique of microscale imaging mass spectrometry to analyze in detail the stimulation of specialized metabolite production by the model actinomycete Streptomyces coelicolor A3(2) by growth in proximity to other actinomycetes. The striking finding from these experiments was that growth of S. coelicolor close to each of the five other actinomycetes studied caused it to produce many specialized metabolites that were not made when it was grown in isolation and that the majority of the compounds were interaction specific, i.e., they occurred only in one of the five pairwise combinations, emphasizing the highly specific nature of the interactions. These observations contribute substantially to the increasing awareness of communication between microorganisms in complex natural communities, as well as auguring well for the discovery of useful specialized metabolites based on microbial interactions. PMID:24003180

  7. The map-1 gene family in root-knot nematodes, Meloidogyne spp.: a set of taxonomically restricted genes specific to clonal species.

    Directory of Open Access Journals (Sweden)

    Iva Tomalova

    Full Text Available Taxonomically restricted genes (TRGs, i.e., genes that are restricted to a limited subset of phylogenetically related organisms, may be important in adaptation. In parasitic organisms, TRG-encoded proteins are possible determinants of the specificity of host-parasite interactions. In the root-knot nematode (RKN Meloidogyne incognita, the map-1 gene family encodes expansin-like proteins that are secreted into plant tissues during parasitism, thought to act as effectors to promote successful root infection. MAP-1 proteins exhibit a modular architecture, with variable number and arrangement of 58 and 13-aa domains in their central part. Here, we address the evolutionary origins of this gene family using a combination of bioinformatics and molecular biology approaches. Map-1 genes were solely identified in one single member of the phylum Nematoda, i.e., the genus Meloidogyne, and not detected in any other nematode, thus indicating that the map-1 gene family is indeed a TRG family. A phylogenetic analysis of the distribution of map-1 genes in RKNs further showed that these genes are specifically present in species that reproduce by mitotic parthenogenesis, with the exception of M. floridensis, and could not be detected in RKNs reproducing by either meiotic parthenogenesis or amphimixis. These results highlight the divergence between mitotic and meiotic RKN species as a critical transition in the evolutionary history of these parasites. Analysis of the sequence conservation and organization of repeated domains in map-1 genes suggests that gene duplication(s together with domain loss/duplication have contributed to the evolution of the map-1 family, and that some strong selection mechanism may be acting upon these genes to maintain their functional role(s in the specificity of the plant-RKN interactions.

  8. The map-1 Gene Family in Root-Knot Nematodes, Meloidogyne spp.: A Set of Taxonomically Restricted Genes Specific to Clonal Species

    Science.gov (United States)

    Tomalova, Iva; Iachia, Cathy; Mulet, Karine; Castagnone-Sereno, Philippe

    2012-01-01

    Taxonomically restricted genes (TRGs), i.e., genes that are restricted to a limited subset of phylogenetically related organisms, may be important in adaptation. In parasitic organisms, TRG-encoded proteins are possible determinants of the specificity of host-parasite interactions. In the root-knot nematode (RKN) Meloidogyne incognita, the map-1 gene family encodes expansin-like proteins that are secreted into plant tissues during parasitism, thought to act as effectors to promote successful root infection. MAP-1 proteins exhibit a modular architecture, with variable number and arrangement of 58 and 13-aa domains in their central part. Here, we address the evolutionary origins of this gene family using a combination of bioinformatics and molecular biology approaches. Map-1 genes were solely identified in one single member of the phylum Nematoda, i.e., the genus Meloidogyne, and not detected in any other nematode, thus indicating that the map-1 gene family is indeed a TRG family. A phylogenetic analysis of the distribution of map-1 genes in RKNs further showed that these genes are specifically present in species that reproduce by mitotic parthenogenesis, with the exception of M. floridensis, and could not be detected in RKNs reproducing by either meiotic parthenogenesis or amphimixis. These results highlight the divergence between mitotic and meiotic RKN species as a critical transition in the evolutionary history of these parasites. Analysis of the sequence conservation and organization of repeated domains in map-1 genes suggests that gene duplication(s) together with domain loss/duplication have contributed to the evolution of the map-1 family, and that some strong selection mechanism may be acting upon these genes to maintain their functional role(s) in the specificity of the plant-RKN interactions. PMID:22719916

  9. A Novel Method for Gene-Specific Enhancement of Protein Translation by Targeting 5'UTRs of Selected Tumor Suppressors.

    Science.gov (United States)

    Master, Adam; Wójcicka, Anna; Giżewska, Kamilla; Popławski, Piotr; Williams, Graham R; Nauman, Alicja

    2016-01-01

    Translational control is a mechanism of protein synthesis regulation emerging as an important target for new therapeutics. Naturally occurring microRNAs and synthetic small inhibitory RNAs (siRNAs) are the most recognized regulatory molecules acting via RNA interference. Surprisingly, recent studies have shown that interfering RNAs may also activate gene transcription via the newly discovered phenomenon of small RNA-induced gene activation (RNAa). Thus far, the small activating RNAs (saRNAs) have only been demonstrated as promoter-specific transcriptional activators. We demonstrate that oligonucleotide-based trans-acting factors can also specifically enhance gene expression at the level of protein translation by acting at sequence-specific targets within the messenger RNA 5'-untranslated region (5'UTR). We designed a set of short synthetic oligonucleotides (dGoligos), specifically targeting alternatively spliced 5'UTRs in transcripts expressed from the THRB and CDKN2A suppressor genes. The in vitro translation efficiency of reporter constructs containing alternative TRβ1 5'UTRs was increased by up to more than 55-fold following exposure to specific dGoligos. Moreover, we found that the most folded 5'UTR has higher translational regulatory potential when compared to the weakly folded TRβ1 variant. This suggests such a strategy may be especially applied to enhance translation from relatively inactive transcripts containing long 5'UTRs of complex structure. This report represents the first method for gene-specific translation enhancement using selective trans-acting factors designed to target specific 5'UTR cis-acting elements. This simple strategy may be developed further to complement other available methods for gene expression regulation including gene silencing. The dGoligo-mediated translation-enhancing approach has the potential to be transferred to increase the translation efficiency of any suitable target gene and may have future application in gene therapy

  10. Three subfamilies of pheromone and receptor genes generate multiple B mating specificities in the mushroom Coprinus cinereus.

    Science.gov (United States)

    Halsall, J R; Milner, M J; Casselton, L A

    2000-01-01

    The B mating type locus of the basidiomycete Coprinus cinereus encodes a large family of lipopeptide pheromones and their seven transmembrane domain receptors. Here we show that the B42 locus, like the previously described B6 locus, derives its unique specificity from nine multiallelic genes that are organized into three subgroups each comprising a receptor and two pheromone genes. We show that the three genes within each group are kept together as a functional unit by being embedded in an allele-specific DNA sequence. Using a combination of sequence analysis, Southern blotting, and DNA-mediated transformation with cloned genes, we demonstrate that different B loci may share alleles of one or two groups of genes. This is consistent with the prediction that the three subgroups of genes are functionally redundant and that it is the different combinations of their alleles that generate the multiple B mating specificities found in nature. The B42 locus was found to contain an additional gene, mfs1, that encodes a putative multidrug transporter belonging to the major facilitator family. In strains with other B mating specificities, this gene, whose functional significance was not established, lies in a region of shared homology flanking the B locus. PMID:10757757

  11. Maternal obesity programs increased leptin gene expression in rat male offspring via epigenetic modifications in a depot-specific manner

    Directory of Open Access Journals (Sweden)

    Simon Lecoutre

    2017-08-01

    Conclusions: Consistent with the DOHaD hypothesis, persistent epigenetic remodeling occurs at regulatory regions especially within intergenic sequences, linked to higher leptin gene expression in adult HF offspring in a depot-specific manner.

  12. A general method to derive robust organ-specific gene expression-based differentiation indices: application to thyroid cancer diagnostic

    National Research Council Canada - National Science Library

    Tomás, G; Tarabichi, M; Gacquer, D; Hébrant, A; Dom, G; Dumont, J E; Keutgen, X; Fahey, 3rd, T J; Maenhaut, C; Detours, V

    2012-01-01

    .... Hence, a quantitative assessment of differentiation would be most useful. We propose an unbiased method to derive organ-specific differentiation indices from gene expression data and demonstrate its usefulness in thyroid cancer diagnosis...

  13. Specific identification of Western Atlantic Ocean scombrids using mitochondrial DNA cytochrome c oxidase subunit I (COI) gene region sequences

    National Research Council Canada - National Science Library

    Paine, Melissa A; McDowell, Jan R; Graves, John E

    2007-01-01

    .... The mitochondrial cytochrome c oxidase subunit I (COI) gene region was evaluated as a molecular marker for the specific identification of the 17 members of the family Scombridae common to the western Atlantic Ocean...

  14. Amplification of tlh gene in other Vibrionaceae specie by specie-specific multiplex PCR of Vibrio parahaemolyticus

    National Research Council Canada - National Science Library

    Romina Yáñez; Roberto Bastías; Gastón Higuera; Oscar Salgado; Pantelis Katharios; Jaime Romero; Romilio Espejo; Katherine García

    2015-01-01

    Background: The surveillance of Vibrio parahaemolyticus in the Chilean coast has been mainly performed by multiplex PCR amplification of three different hemolysin genes, which are specie-specific virulence factors...

  15. Gene expression profiling of puberty-associated genes reveals abundant tissue and sex-specific changes across postnatal development.

    Science.gov (United States)

    Hou, Huayun; Uusküla-Reimand, Liis; Makarem, Maisam; Corre, Christina; Saleh, Shems; Metcalf, Ariane; Goldenberg, Anna; Palmert, Mark R; Wilson, Michael D

    2017-09-15

    The timing of human puberty is highly variable, sexually dimorphic, and associated with adverse health outcomes. Over 20 genes carrying rare mutations have been identified in known pubertal disorders, many of which encode critical components of the hypothalamic-pituitary-gonadal (HPG) axis. Recent genome-wide association studies (GWAS) have identified more than 100 candidate genes at loci associated with age at menarche or voice breaking in males. We know little about the spatial, temporal or postnatal expression patterns of the majority of these puberty-associated genes. Using a high-throughput and sensitive microfluidic quantitative PCR strategy, we profiled the gene expression patterns of the mouse orthologs of 178 puberty-associated genes in male and female mouse HPG axis tissues, the pineal gland, and the liver at five postnatal ages spanning the pubertal transition. The most dynamic gene expression changes were observed prior to puberty in all tissues. We detected known and novel tissue-enhanced gene expression patterns, with the hypothalamus expressing the largest number of the puberty-associated genes. Notably, over 40 puberty-associated genes in the pituitary gland showed sex-biased gene expression, most of which occurred peri-puberty. These sex-biased genes included the orthologs of candidate genes at GWAS loci that show sex-discordant effects on pubertal timing. Our findings provide new insight into the expression of puberty-associated genes and support the possibility that the pituitary plays a role in determining sex differences in the timing of puberty. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Mutational activation of niche-specific genes provides insight into regulatory networks and bacterial function in a complex environment

    OpenAIRE

    Giddens, Stephen R.; Robert W Jackson; Moon, Christina D.; Jacobs, Michael A.; Zhang, Xue-Xian; Gehrig, Stefanie M; Rainey, Paul B

    2007-01-01

    The genome of the plant-colonizing bacterium Pseudomonas fluorescens SBW25 harbors a subset of genes that are expressed specifically on plant surfaces. The function of these genes is central to the ecological success of SBW25, but their study poses significant challenges because no phenotype is discernable in vitro. Here, we describe a genetic strategy with general utility that combines suppressor analysis with IVET (SPyVET) and provides a means of identifying regulators of niche-specific gen...

  17. Inhibition of phosphoinositide-specific phospholipase C results in the induction of pathogenesis-related genes in soybean.

    Science.gov (United States)

    Chou, W-M; Shigaki, T; Dammann, C; Liu, Y-Q; Bhattacharyya, M K

    2004-11-01

    The inositol 1,4,5-trisphosphate (IP3) content is decreased in soybean cells following infection with Pseudomonas syringae pv. glycinea (Psg). In this investigation, a differential display approach was applied to isolate soybean genes that are transcriptionally up-regulated by the inhibition of phosphoinositide-specific phospholipase C (PI-PLC) activity and to study if the transcription of those genes is altered following Psg infection. Four genes, transcriptionally activated following treatment with the PI-PLC-specific inhibitor U-73122, were cloned. Three of the four genes were induced following infection with Psg. The transcripts of a hydrolase homologue (GmHy) were induced in the incompatible but not compatible soybean-Psg interaction. The transcripts of a putative ascorbate oxidase gene (GmAO) were induced in both compatible and incompatible interactions. GmHy and GmAO may represent new classes of pathogenesis-related genes. In addition to these two novel genes, homologues of PR-10 and polygalacturonase inhibitor protein (GmPR10 and GmPGIP, respectively) were identified. These two genes have previously been reported as pathogenesis-related. Transcripts of GmPR-10, but not GmPGIP, were induced in both compatible and incompatible soybean-Psg interactions. Induction of these genes, except for GmPGIP, following inhibition of PI-PLC by either the U-73122 treatment or bacterial infection suggests that PI-PLC may negatively regulate the expression of defence genes.

  18. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Silvia Dal Santo

    Full Text Available BACKGROUND: Expansins are proteins that loosen plant cell walls in a pH-dependent manner, probably by increasing the relative movement among polymers thus causing irreversible expansion. The expansin superfamily (EXP comprises four distinct families: expansin A (EXPA, expansin B (EXPB, expansin-like A (EXLA and expansin-like B (EXLB. There is experimental evidence that EXPA and EXPB proteins are required for cell expansion and developmental processes involving cell wall modification, whereas the exact functions of EXLA and EXLB remain unclear. The complete grapevine (Vitis vinifera genome sequence has allowed the characterization of many gene families, but an exhaustive genome-wide analysis of expansin gene expression has not been attempted thus far. METHODOLOGY/PRINCIPAL FINDINGS: We identified 29 EXP superfamily genes in the grapevine genome, representing all four EXP families. Members of the same EXP family shared the same exon-intron structure, and phylogenetic analysis confirmed a closer relationship between EXP genes from woody species, i.e. grapevine and poplar (Populus trichocarpa, compared to those from Arabidopsis thaliana and rice (Oryza sativa. We also identified grapevine-specific duplication events involving the EXLB family. Global gene expression analysis confirmed a strong correlation among EXP genes expressed in mature and green/vegetative samples, respectively, as reported for other gene families in the recently-published grapevine gene expression atlas. We also observed the specific co-expression of EXLB genes in woody organs, and the involvement of certain grapevine EXP genes in berry development and post-harvest withering. CONCLUSION: Our comprehensive analysis of the grapevine EXP superfamily confirmed and extended current knowledge about the structural and functional characteristics of this gene family, and also identified properties that are currently unique to grapevine expansin genes. Our data provide a model for the

  19. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics.

    Science.gov (United States)

    Dal Santo, Silvia; Vannozzi, Alessandro; Tornielli, Giovanni Battista; Fasoli, Marianna; Venturini, Luca; Pezzotti, Mario; Zenoni, Sara

    2013-01-01

    Expansins are proteins that loosen plant cell walls in a pH-dependent manner, probably by increasing the relative movement among polymers thus causing irreversible expansion. The expansin superfamily (EXP) comprises four distinct families: expansin A (EXPA), expansin B (EXPB), expansin-like A (EXLA) and expansin-like B (EXLB). There is experimental evidence that EXPA and EXPB proteins are required for cell expansion and developmental processes involving cell wall modification, whereas the exact functions of EXLA and EXLB remain unclear. The complete grapevine (Vitis vinifera) genome sequence has allowed the characterization of many gene families, but an exhaustive genome-wide analysis of expansin gene expression has not been attempted thus far. We identified 29 EXP superfamily genes in the grapevine genome, representing all four EXP families. Members of the same EXP family shared the same exon-intron structure, and phylogenetic analysis confirmed a closer relationship between EXP genes from woody species, i.e. grapevine and poplar (Populus trichocarpa), compared to those from Arabidopsis thaliana and rice (Oryza sativa). We also identified grapevine-specific duplication events involving the EXLB family. Global gene expression analysis confirmed a strong correlation among EXP genes expressed in mature and green/vegetative samples, respectively, as reported for other gene families in the recently-published grapevine gene expression atlas. We also observed the specific co-expression of EXLB genes in woody organs, and the involvement of certain grapevine EXP genes in berry development and post-harvest withering. Our comprehensive analysis of the grapevine EXP superfamily confirmed and extended current knowledge about the structural and functional characteristics of this gene family, and also identified properties that are currently unique to grapevine expansin genes. Our data provide a model for the functional characterization of grapevine gene families by combining

  20. Development of Patient-specific AAV Vectors After Neutralizing Antibody Selection for Enhanced Muscle Gene Transfer.

    Science.gov (United States)

    Li, Chengwen; Wu, Shuqing; Albright, Blake; Hirsch, Matthew; Li, Wuping; Tseng, Yu-Shan; Agbandje-McKenna, Mavis; McPhee, Scott; Asokan, Aravind; Samulski, R Jude

    2016-02-01

    A major hindrance in gene therapy trials with adeno-associated virus (AAV) vectors is the presence of neutralizing antibodies (NAbs) that inhibit AAV transduction. In this study, we used directed evolution techniques in vitro and in mouse muscle to select novel NAb escape AAV chimeric capsid mutants in the presence of individual patient serum. AAV mutants isolated in vitro escaped broad patient-specific NAb activity but had poor transduction ability in vivo. AAV mutants isolated in vivo had enhanced NAb evasion from cognate serum and had high muscle transduction ability. More importantly, structural modeling identified a 100 amino acid motif from AAV6 in variable region (VR) III that confers this enhanced muscle tropism. In addition, a predominantly AAV8 capsid beta barrel template with a specific preference for AAV1/AAV9 in VR VII located at threefold symmetry axis facilitates NAb escape. Our data strongly support that chimeric AAV capsids composed of modular and nonoverlapping domains from various serotypes are capable of evading patient-specific NAbs and have enhanced muscle transduction.

  1. The DAL10 gene from Norway spruce (Picea abies) belongs to a potentially gymnosperm-specific subclass of MADS-box genes and is specifically active in seed cones and pollen cones.

    Science.gov (United States)

    Carlsbecker, Annelie; Sundström, Jens; Tandre, Karolina; Englund, Marie; Kvarnheden, Anders; Johanson, Urban; Engström, Peter

    2003-01-01

    Transcription factors encoded by different members of the MADS-box gene family have evolved central roles in the regulation of reproductive organ development in the flowering plants, the angiosperms. Development of the stamens and carpels, the pollen- and seed-bearing organs, involves the B- and C-organ-identity MADS-box genes. B- and C-type gene orthologs with activities specifically in developing pollen- and seed-bearing organs are also present in the distantly related gymnosperms: the conifers and the gnetophytes. We now report on the characterization of DAL10, a novel MADS-box gene from the conifer Norway spruce, which unlike the B- and C-type conifer genes shows no distinct orthology relationship to any angiosperm gene or clade in phylogenetic analyses. Like the B- and C-type genes, it is active specifically in developing pollen cones and seed cones. In situ RNA localization experiments show DAL10 to be expressed in the cone axis, which carry the microsporophylls of the young pollen cone. In contrast, in the seed cone it is expressed both in the cone axis and in the bracts, which subtend the ovuliferous scales. Expression data and the phenotype of transgenic Arabidopsis plants expressing DAL10 suggest that the gene may act upstream to or in concert with the B- and C-type genes in the establishment of reproductive identity of developing cones.

  2. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  3. Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta.

    Directory of Open Access Journals (Sweden)

    Anne Gabory

    Full Text Available Males and females responses to gestational overnutrition set the stage for subsequent sex-specific differences in adult onset non communicable diseases. Placenta, as a widely recognized programming agent, contibutes to the underlying processes. According to our previous findings, a high-fat diet during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes. We further investigated the impact of diet and sex on placental histology, transcriptomic and epigenetic signatures in mice. Both basal gene expression and response to maternal high-fat diet were sexually dimorphic in whole placentas. Numerous genes showed sexually dimorphic expression, but only 11 genes regardless of the diet. In line with the key role of genes belonging to the sex chromosomes, 3 of these genes were Y-specific and 3 were X-specific. Amongst all the genes that were differentially expressed under a high-fat diet, only 16 genes were consistently affected in both males and females. The differences were not only quantitative but remarkably qualitative. The biological functions and networks of genes dysregulated differed markedly between the sexes. Seven genes of the epigenetic machinery were dysregulated, due to effects of diet, sex or both, including the Y- and X-linked histone demethylase paralogues Kdm5c and Kdm5d, which could mark differently male and female epigenomes. The DNA methyltransferase cofactor Dnmt3l gene expression was affected, reminiscent of our previous observation of changes in global DNA methylation. Overall, this striking sexual dimorphism of programming trajectories impose a considerable revision of the current dietary interventions protocols.

  4. Induction of hematopoietic microchimerism by gene-modified BMT elicits antigen-specific B and T cell unresponsiveness toward gene therapy products

    Directory of Open Access Journals (Sweden)

    Jérémie Martinet

    2016-09-01

    Full Text Available Background: Gene therapy is a promising treatment option for hemophilia and other protein deficiencies. However, immune responses against the transgene product represent an obstacle to safe and effective gene therapy, urging for the implementation of tolerization strategies. Induction of a hematopoietic chimerism via bone marrow transplantation (BMT is a potent means for inducing immunological tolerance in solid organ transplantation. Objectives: We reasoned here that the same viral vector could be used firstly to transduce BM cells for inducing chimerism-associated transgene-specific immune tolerance and, secondly, for correcting protein deficiencies by vector-mediated systemic production of the deficient coagulation factor.Methods: Evaluation of strategies to induce B and T cell tolerance was performed using ex vivo gene transfer with lentiviral vectors encoding coagulation factor IX (FIX or the SIINFEKL epitope of ovalbumin. Following induction of microchimerism via BMT, animals were challenged with in vivo gene transfer with lentiviral vectors.Results: The experimental approach prevented humoral immune response against FIX, resulting in persistence of therapeutic levels of circulating FIX after lentiviral-mediated gene transfer in vivo. In an ovalbumin model, we also demonstrated that this approach effectively tolerized the CD8+ T cell compartment in an antigen-specific manner.Conclusions: These results provide the proof-of-concept that inducing a microchimerism by gene-modified BMT is a powerful tool to provide transgene-specific B and T cell tolerance in a gene therapy setting.

  5. Ketamine and Imipramine Reverse Transcriptional Signatures of Susceptibility and Induce Resilience-Specific Gene Expression Profiles.

    Science.gov (United States)

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Vialou, Vincent; Heller, Elizabeth A; Yieh, Lynn; LaBonté, Benoit; Peña, Catherine J; Shen, Li; Wittenberg, Gayle M; Nestler, Eric J

    2017-02-15

    Examining transcriptional regulation by antidepressants in key neural circuits implicated in depression and understanding the relation to transcriptional mechanisms of susceptibility and natural resilience may help in the search for new therapeutic agents. Given the heterogeneity of treatment response in human populations, examining both treatment response and nonresponse is critical. We compared the effects of a conventional monoamine-based tricyclic antidepressant, imipramine, and a rapidly acting, non-monoamine-based antidepressant, ketamine, in mice subjected to chronic social defeat stress, a validated depression model, and used RNA sequencing to analyze transcriptional profiles associated with susceptibility, resilience, and antidepressant response and nonresponse in the prefrontal cortex (PFC), nucleus accumbens, hippocampus, and amygdala. We identified similar numbers of responders and nonresponders after ketamine or imipramine treatment. Ketamine induced more expression changes in the hippocampus; imipramine induced more expression changes in the nucleus accumbens and amygdala. Transcriptional profiles in treatment responders were most similar in the PFC. Nonresponse reflected both the lack of response-associated gene expression changes and unique gene regulation. In responders, both drugs reversed susceptibility-associated transcriptional changes and induced resilience-associated transcription in the PFC. We generated a uniquely large resource of gene expression data in four interconnected limbic brain regions implicated in depression and its treatment with imipramine or ketamine. Our analyses highlight the PFC as a key site of common transcriptional regulation by antidepressant drugs and in both reversing susceptibility- and inducing resilience-associated molecular adaptations. In addition, we found region-specific effects of each drug, suggesting both common and unique effects of imipramine versus ketamine. Copyright © 2016 Society of Biological

  6. Nidogen-1 regulates laminin-1-dependent mammary-specific gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Pujuguet, Philippe; Simian, Marina; Liaw, Jane; Timpl, Rupert; Werb, Zena; Bissell, Mina J..

    2000-02-01

    Nidogen-1 (entactin) acts as a bridge between the extracellular matrix molecules laminin-1 and type IV collagen, and thus participates in the assembly of basement membranes. To investigate the role of nidogen-1 in regulating cell-type-specific gene expression in mammary epithelium, we designed a culture microecosystem in which each component, including epithelial cells, mesenchymal cells, lactogenic hormones and extracellular matrix, could be controlled. We found that primary and established mesenchymal and myoepithelial cells synthesized and secreted nidogen-1, whereas expression was absent in primary and established epithelial cells. In an epithelial cell line containing mesenchymal cells, nidogen-1 was produced by the mesenchymal cells but deposited between the epithelial cells. In this mixed culture, mammary epithelial cells express b-casein in the presence of lactogenic hormones. Addition of either laminin-1 plus nidogen-1, or laminin-1 alone to mammary epithelial cells induced b- casein production. We asked whether recombinant nidogen-1 alone could signal directly for b-casein. Nidogen-1 did not induce b-casein synthesis in epithelial cells, but it augmented the inductive capacity of laminin-1. These data suggest that nidogen-1 can cooperate with laminin-1 to regulate b-casein expression. Addition of full length nidogen-1 to the mixed cultures had no effect on b-casein gene expression; however, a nidogen-1 fragment containing the laminin-1 binding domain, but lacking the type IV collagen-binding domain, had a dominant negative effect on b-casein expression. These data point to a physiological role for nidogen-1 in the basement membrane-induced gene expression by epithelial cells.

  7. The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Beaudoin, Trevor; Zhang, Li; Hinz, Aaron J; Parr, Christopher J; Mah, Thien-Fah

    2012-06-01

    Bacteria growing in biofilms are responsible for a large number of persistent infections and are often more resistant to antibiotics than are free-floating bacteria. In a previous study, we identified a Pseudomonas aeruginosa gene, ndvB, which is important for the formation of periplasmic glucans. We established that these glucans function in biofilm-specific antibiotic resistance by sequestering antibiotic molecules away from their cellular targets. In this study, we investigate another function of ndvB in biofilm-specific antibiotic resistance. DNA microarray analysis identified 24 genes that were responsive to the presence of ndvB. A subset of 20 genes, including 8 ethanol oxidation genes (ercS', erbR, exaA, exaB, eraR, pqqB, pqqC, and pqqE), was highly expressed in wild-type biofilm cells but not in ΔndvB biofilms, while 4 genes displayed the reciprocal expression pattern. Using quantitative real-time PCR, we confirmed the ndvB-dependent expression of the ethanol oxidation genes and additionally demonstrated that these genes were more highly expressed in biofilms than in planktonic cultures. Expression of erbR in ΔndvB biofilms was restored after the treatment of the biofilm with periplasmic extracts derived from wild-type biofilm cells. Inactivation of ethanol oxidation genes increased the sensitivity of biofilms to tobramycin. Together, these results reveal that ndvB affects the expression of multiple genes in biofilms and that ethanol oxidation genes are linked to biofilm-specific antibiotic resistance.

  8. A novel CpG island set identifies tissue-specific methylation at developmental gene loci.

    Directory of Open Access Journals (Sweden)

    Robert Illingworth

    2008-01-01

    Full Text Available CpG islands (CGIs are dense clusters of CpG sequences that punctuate the CpG-deficient human genome and associate with many gene promoters. As CGIs also differ from bulk chromosomal DNA by their frequent lack of cytosine methylation, we devised a CGI enrichment method based on nonmethylated CpG affinity chromatography. The resulting library was sequenced to define a novel human blood CGI set that includes many that are not detected by current algorithms. Approximately half of CGIs were associated with annotated gene transcription start sites, the remainder being intra- or intergenic. Using an array representing over 17,000 CGIs, we established that 6%-8% of CGIs are methylated in genomic DNA of human blood, brain, muscle, and spleen. Inter- and intragenic CGIs are preferentially susceptible to methylation. CGIs showing tissue-specific methylation were overrepresented at numerous genetic loci that are essential for development, including HOX and PAX family members. The findings enable a comprehensive analysis of the roles played by CGI methylation in normal and diseased human tissues.

  9. Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner.

    Science.gov (United States)

    Binder, Natalie K; Beard, Sally A; Kaitu'u-Lino, Tu'uhevaha J; Tong, Stephen; Hannan, Natalie J; Gardner, David K

    2015-05-01

    Fetal growth restriction (FGR) is a major obstetric complication stemming from poor placental development. We have previously demonstrated that paternal obesity in mice is associated with impaired embryo development and significantly reduced fetal and placental weights. We hypothesised that the FGR observed in our rodent model of paternal diet-induced obesity is associated with alterations in metabolic, cell signalling and stress pathways. Male C57BL/6 mice were fed either a normal or high-fat diet for 10 weeks before sperm collection for IVF and subsequent embryo transfer. On embryonic day 14, placentas were collected and RNA extracted from both male and female placentas to assess mRNA expression of 24 target genes using custom RT-qPCR arrays. Peroxisome proliferator-activated receptor alpha (Ppara) and caspase-12 (Casp12) expression were significantly altered in male placentas from obese fathers compared with normal (Pobese fathers compared with normal (Pobesity is associated with changes in gene expression and methylation status of extraembryonic tissue in a sex-specific manner. These findings reinforce the negative consequences of paternal obesity before conception, and emphasise the need for more lifestyle advice for prospective fathers. © 2015 Society for Reproduction and Fertility.

  10. Combining Evidence, Specificity, and Proximity towards the Normalization of Gene Ontology Terms in Text

    Directory of Open Access Journals (Sweden)

    D. Rebholz-Schuhmann

    2008-04-01

    Full Text Available Structured information provided by manual annotation of proteins with Gene Ontology concepts represents a high-quality reliable data source for the research community. However, a limited scope of proteins is annotated due to the amount of human resources required to fully annotate each individual gene product from the literature. We introduce a novel method for automatic identification of GO terms in natural language text. The method takes into consideration several features: (1 the evidence for a GO term given by the words occurring in text, (2 the proximity between the words, and (3 the specificity of the GO terms based on their information content. The method has been evaluated on the BioCreAtIvE corpus and has been compared to current state of the art methods. The precision reached 0.34 at a recall of 0.34 for the identified terms at rank 1. In our analysis, we observe that the identification of GO terms in the “cellular component” subbranch of GO is more accurate than for terms from the other two subbranches. This observation is explained by the average number of words forming the terminology over the different subbranches.

  11. Combining Evidence, Specificity, and Proximity towards the Normalization of Gene Ontology Terms in Text

    Directory of Open Access Journals (Sweden)

    Gaudan S

    2008-01-01

    Full Text Available Structured information provided by manual annotation of proteins with Gene Ontology concepts represents a high-quality reliable data source for the research community. However, a limited scope of proteins is annotated due to the amount of human resources required to fully annotate each individual gene product from the literature. We introduce a novel method for automatic identification of GO terms in natural language text. The method takes into consideration several features: (1 the evidence for a GO term given by the words occurring in text, (2 the proximity between the words, and (3 the specificity of the GO terms based on their information content. The method has been evaluated on the BioCreAtIvE corpus and has been compared to current state of the art methods. The precision reached 0.34 at a recall of 0.34 for the identified terms at rank 1. In our analysis, we observe that the identification of GO terms in the _cellular component_ subbranch of GO is more accurate than for terms from the other two subbranches. This observation is explained by the average number of words forming the terminology over the different subbranches.

  12. Evolutionarily conserved role for SoxC genes in neural crest specification and neuronal differentiation.

    Science.gov (United States)

    Uy, Benjamin R; Simoes-Costa, Marcos; Koo, Daniel E S; Sauka-Spengler, Tatjana; Bronner, Marianne E

    2015-01-15

    Members of the Sox family of transcription factors play a variety of critical developmental roles in both vertebrates and invertebrates. Whereas SoxBs and SoxEs are involved in neural and neural crest development, respectively, far less is known about members of the SoxC subfamily. To address this from an evolutionary perspective, we compare expression and function of SoxC genes in neural crest cells and their derivatives in lamprey (Petromyzon marinus), a basal vertebrate, to frog (Xenopus laevis). Analysis of transcript distribution reveals conservation of lamprey and X. laevis SoxC expression in premigratory neural crest, branchial arches, and cranial ganglia. Moreover, morpholino-mediated loss-of-function of selected SoxC family members demonstrates essential roles in aspects of neural crest development in both organisms. The results suggest important and conserved functions of SoxC genes during vertebrate evolution and a particularly critical, previously unrecognized role in early neural crest specification. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Targeted disruption of the spermatid-specific gene Spata31 causes male infertility.

    Science.gov (United States)

    Wu, Yuan-Yi; Yang, Yong; Xu, Yong-De; Yu, Hua-Liang

    2015-06-01

    Spata31, a novel testis-specific gene, was first isolated from the testis of a vitamin A-deficient rat model. To gain insight into its physiological function, Spata31-targeted knockout mice were generated by homologous recombination. Spata31-deficient (Spata31(flox/flox) ; Vasa-Cre) male mice exhibited low sperm count and premature shedding of germ cells into the lumen, ultimately causing azoospermia and male sterility. Mechanistically, the Spata31 deficiency resulted in reduced expression of the adhesion protein nectin-3 and cytoskeletal protein β-actin at the apical ectoplasmic specialization. Our findings demonstrate that the disruptions to the SPATA31 ortholog could be linked to human male infertility. © 2015 Wiley Periodicals, Inc.

  14. Site-specific protein O-glycosylation modulates proprotein processing - Deciphering specific functions of the large polypeptide GalNAc-transferase gene family

    DEFF Research Database (Denmark)

    Schjoldager, Katrine Ter-Borch Gram; Clausen, Henrik

    2012-01-01

    and considerable redundancy. Recently we have begun to uncover human diseases associated with deficiencies in GalNAc-T genes (GALNTs). Thus deficiencies in individual GALNTs produce cell and protein specific effects and subtle distinct phenotypes such as hyperphosphatemia with hyperostosis (GALNT3...

  15. Rapid birth-death evolution specific to xenobiotic cytochrome P450 genes in vertebrates.

    Directory of Open Access Journals (Sweden)

    James H Thomas

    2007-05-01

    Full Text Available Genes vary greatly in their long-term phylogenetic stability and there exists no general explanation for these differences. The cytochrome P450 (CYP450 gene superfamily is well suited to investigating this problem because it is large and well studied, and it includes both stable and unstable genes. CYP450 genes encode oxidase enzymes that function in metabolism of endogenous small molecules and in detoxification of xenobiotic compounds. Both types of enzymes have been intensively studied. My analysis of ten nearly complete vertebrate genomes indicates that each genome contains 50-80 CYP450 genes, which are about evenly divided between phylogenetically stable and unstable genes. The stable genes are characterized by few or no gene duplications or losses in species ranging from bony fish to mammals, whereas unstable genes are characterized by frequent gene duplications and losses (birth-death evolution even among closely related species. All of the CYP450 genes that encode enzymes with known endogenous substrates are phylogenetically stable. In contrast, most of the unstable genes encode enzymes that function as xenobiotic detoxifiers. Nearly all unstable CYP450 genes in the mouse and human genomes reside in a few dense gene clusters, forming unstable gene islands that arose by recurrent local gene duplication. Evidence for positive selection in amino acid sequence is restricted to these unstable CYP450 genes, and sites of selection are associated with substrate-binding regions in the protein structure. These results can be explained by a general model in which phylogenetically stable genes have core functions in development and physiology, whereas unstable genes have accessory functions associated with unstable environmental interactions such as toxin and pathogen exposure. Unstable gene islands in vertebrates share some functional properties with bacterial genomic islands, though they arise by local gene duplication rather than horizontal gene

  16. Hox genes require homothorax and extradenticle for body wall identity specification but not for appendage identity specification during metamorphosis of Tribolium castaneum.

    Science.gov (United States)

    Smith, Frank W; Jockusch, Elizabeth L

    2014-11-01

    The establishment of segment identity is a key developmental process that allows for divergence along the anteroposterior body axis in arthropods. In Drosophila, the identity of a segment is determined by the complement of Hox genes it expresses. In many contexts, Hox transcription factors require the protein products of extradenticle (exd) and homothorax (hth) as cofactors to perform their identity specification functions. In holometabolous insects, segment identity may be specified twice, during embryogenesis and metamorphosis. To glean insight into the relationship between embryonic and metamorphic segmental identity specification, we have compared these processes in the flour beetle Tribolium castaneum, which develops ventral appendages during embryogenesis that later metamorphose into adult appendages with distinct morphologies. At metamorphosis, comparisons of RNAi phenotypes indicate that Hox genes function jointly with Tc-hth and Tc-exd to specify several region-specific aspects of the adult body wall. On the other hand, Hox genes specify appendage identities along the anteroposterior axis independently of Tc-hth/Tc-exd and Tc-hth/Tc-exd specify proximal vs. distal identity within appendages independently of Hox genes during this stage. During embryogenesis, Tc-hth and Tc-exd play a broad role in the segmentation process and are required for specification of body wall identities in the thorax; however, contrasting with results from other species, we did not obtain homeotic transformations of embryonic appendages in response to Tc-hth or Tc-exd RNAi. In general, the homeotic effects of interference with the function of Hox genes and Tc-hth/Tc-exd during metamorphosis did not match predictions based on embryonic roles of these genes. Comparing metamorphic patterning in T. castaneum to embryonic and post-embryonic development in hemimetabolous insects suggests that holometabolous metamorphosis combines patterning processes of both late embryogenesis and

  17. Linking site-specific loss of histone acetylation to repression of gene expression by the mycotoxin ochratoxin A.

    Science.gov (United States)

    Limbeck, Elisabeth; Vanselow, Jens T; Hofmann, Julian; Schlosser, Andreas; Mally, Angela

    2017-11-02

    Ochratoxin A (OTA) is a potent renal carcinogen but its mechanism has not been fully resolved. In vitro and in vivo gene expression studies consistently revealed down-regulation of gene expression as the predominant transcriptional response to OTA. Based on the importance of specific histone acetylation marks in regulating gene transcription and our recent finding that OTA inhibits histone acetyltransferases (HATs), leading to loss of acetylation of histones and non-histone proteins, we hypothesized that OTA-mediated repression of gene expression may be causally linked to HAT inhibition and loss of histone acetylation. In this study, we used a novel mass spectrometry approach employing chemical 13C-acetylation of unmodified lysine residues for quantification of post-translational acetylation sites to identify site-specific alterations in histone acetylation in human kidney epithelial cells (HK-2) exposed to OTA. These results showed OTA-mediated hypoacetylation at almost all lysine residues of core histones, including loss of acetylation at H3K9 and H3K14, which are hallmarks of gene activation. ChIP-qPCR used to establish a possible link between H3K9 or H3K14 hypoacetylation and OTA-mediated down-regulation of selected genes (AMIGO2, CLASP2, CTNND1) confirmed OTA-mediated H3K9 hypoacetylation at promoter regions of these genes. Integrated analysis of OTA-mediated genome-wide changes in H3K9 acetylation identified by ChIP-Seq with published gene expression data further demonstrated that among OTA-responsive genes almost 80% of hypoacetylated genes were down-regulated, thus confirming an association between H3K9 acetylation status and gene expression of these genes. However, only 7% of OTA repressed genes showed loss of H3K9 acetylation within promoter regions. Interestingly, however, GO analysis and functional enrichment of down-regulated genes showing loss of H3K9 acetylation at their respective promoter regions revealed enrichment of genes involved in the

  18. EPS: an empirical Bayes approach to integrating pleiotropy and tissue-specific information for prioritizing risk genes.

    Science.gov (United States)

    Liu, Jin; Wan, Xiang; Ma, Shuangge; Yang, Can

    2016-06-15

    Researchers worldwide have generated a huge volume of genomic data, including thousands of genome-wide association studies (GWAS) and massive amounts of gene expression data from different tissues. How to perform a joint analysis of these data to gain new biological insights has become a critical step in understanding the etiology of complex diseases. Due to the polygenic architecture of complex diseases, the identification of risk genes remains challenging. Motivated by the shared risk genes found in complex diseases and tissue-specific gene expression patterns, we propose as an Empirical Bayes approach to integrating Pleiotropy and Tissue-Specific information (EPS) for prioritizing risk genes. As demonstrated by extensive simulation studies, EPS greatly improves the power of identification for disease-risk genes. EPS enables rigorous hypothesis testing of pleiotropy and tissue-specific risk gene expression patterns. All of the model parameters can be adaptively estimated from the developed expectation-maximization (EM) algorithm. We applied EPS to the bipolar disorder and schizophrenia GWAS from the Psychiatric Genomics Consortium, along with the gene expression data for multiple tissues from the Genotype-Tissue Expression project. The results of the real data analysis demonstrate many advantages of EPS. The EPS software is available on https://sites.google.com/site/liujin810822 CONTACT: eeyang@hkbu.edu.hk Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Use of pan-genome analysis for the identification of lineage-specific genes of Helicobacter pylori.

    Science.gov (United States)

    van Vliet, Arnoud H M

    2017-01-01

    The human bacterial pathogen Helicobacter pylori has a highly variable genome, with significant allelic and sequence diversity between isolates and even within well-characterised strains, hampering comparative genomics of H. pylori In this study, pan-genome analysis has been used to identify lineage-specific genes of H. pylori A total of 346 H. pylori genomes spanning the hpAfrica1, hpAfrica2, hpAsia2, hpEurope, hspAmerind and hspEAsia multilocus sequence typing (MLST) lineages were searched for genes specifically overrepresented or underrepresented in MLST lineages or associated with the cag pathogenicity island. The only genes overrepresented in cag-positive genomes were the cag pathogenicity island genes themselves. In contrast, a total of 125 genes were either overrepresented or underrepresented in one or more MLST lineages. Of these 125 genes, alcohol/aldehyde-reducing enzymes linked with acid resistance and production of toxic aldehydes were found to be overrepresented in African lineages. Conversely, the FecA2 ferric citrate receptor was missing from hspAmerind genomes, but present in all other lineages. This work shows the applicability of pan-genome analysis for identification of lineage-specific genes of H. pylori, facilitating further investigation to allow linkage of differential distribution of genes with disease outcome or virulence of H. pylori. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Identification of lung adenocarcinoma specific dysregulated genes with diagnostic and prognostic value across 27 TCGA cancer types.

    Science.gov (United States)

    Shang, Jun; Song, Qian; Yang, Zuyi; Li, Dongyao; Chen, Wenjie; Luo, Lei; Wang, Yongkun; Yang, Jingcheng; Li, Shikang

    2017-10-20

    As the most common histologic subtype of lung cancer, lung adenocarcinoma (LUAD) contributes to a majority of cancer-related deaths worldwide annually. In order to find specific biomarkers of LUAD that are able to distinguish LUAD from other types of cancer so as to improve the early diagnostic and prognostic power in LUAD, we analyzed 10098 tumor tissue samples across 27 TCGA cancer types and identified 112 specific expressed genes in LUAD. Meantime, 8240 LUAD dysregulated genes in tumor and normal samples were identified. Combining with the results of specific expressed genes and dysregulated genes in LUAD, we found there were 70 specific dysregulated genes in LUAD (LUAD-SDGs). Then ROC curve revealed six LUAD-SDGs that may be of strong diagnostic value to predict the existence of cancer (area under curve[AUC] > 95%). Kaplan-Meier survival analysis was performed to identify 6 LUAD-SDGs associated with patients' prognosis (P-values SDGs were independent prognostic factors. Then, we used the six overall survival (OS)-related LUAD-SDGs constructing a six-gene signature. Multivariate Cox regression analysis suggested that the six-gene signature was an independent prognostic factor of other clinical variables (hazard ratio [HR] = 1.5098, 95%CI = 1.2996-1.7538, P SDGs for LUAD diagnosis and prognosis. Our results may provide efficient biomarkers to clinical diagnostic and prognostic evaluation in LUAD.

  1. Anterior Hox Genes Interact with Components of the Neural Crest Specification Network to Induce Neural Crest Fates

    Science.gov (United States)

    Gouti, Mina; Briscoe, James; Gavalas, Anthony

    2011-01-01

    Hox genes play a central role in neural crest (NC) patterning particularly in the cranial region of the body. Despite evidence that simultaneous loss of Hoxa1 and Hoxb1 function resulted in NC specification defects, the role of Hox genes in NC specification has remained unclear due to extended genetic redundancy among Hox genes. To circumvent this problem, we expressed anterior Hox genes in the trunk neural tube of the developing chick embryo. This demonstrated that anterior Hox genes play a central role in NC cell specification by rapidly inducing the key transcription factors Snail2 and Msx1/2 and a neural progenitor to NC cell fate switch characterized by cell adhesion changes and an epithelial-to-mesenchymal transition (EMT). Cells delaminated from dorsal and medial neural tube levels and generated ectopic neurons, glia progenitors, and melanocytes. The mobilization of the NC genetic cascade was dependent upon bone morphogenetic protein signaling and optimal levels of Notch signaling. Therefore, anterior Hox patterning genes participate in NC specification and EMT by interacting with NC-inducing signaling pathways and regulating the expression of key genes involved in these processes. Stem Cells 2011;29:858–870 PMID:21433221

  2. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup

    DEFF Research Database (Denmark)

    Yu, Xiao-Jing; Zheng, Hong-Kun; Wang, Jun

    2006-01-01

    Comparative genetic analysis between human and chimpanzee may detect genetic divergences responsible for human-specific characteristics. Previous studies have identified a series of genes that potentially underwent Darwinian positive selection during human evolution. However, without a closely...... related species as outgroup, it is difficult to identify human-lineage-specific changes, which is critical in delineating the biological uniqueness of humans. In this study, we conducted phylogeny-based analyses of 2633 human brain-expressed genes using rhesus macaque as the outgroup. We identified 47...... candidate genes showing strong evidence of positive selection in the human lineage. Genes with maximal expression in the brain showed a higher evolutionary rate in human than in chimpanzee. We observed that many immune-defense-related genes were under strong positive selection, and this trend was more...

  3. Identification of Nine Pathotype-Specific Genes Conferring Resistance to Fusiform Rust in Loblolly Pine (Pinus taeda L.

    Directory of Open Access Journals (Sweden)

    Henry V. Amerson

    2015-08-01

    Full Text Available Nearly two decades of research on the host-pathogen interaction in fusiform rust of loblolly pine is detailed. Results clearly indicate that pathotype-specific genes in the host interacting with pathogen avirulence cause resistance as defined by the non-gall phenotype under favorable environmental conditions for disease development. In particular, nine fusiform rust resistance genes (Fr genes are described here including the specific methods to determine each and their localization on the reference genetic map of loblolly pine. Understanding how these and other apparent Fr genes in loblolly pine and other rust-susceptible pines impact resistance screening, parental and progeny selection, and family and clonal deployment is an important area in forest genetics research and operational tree breeding. The documentation of these Fr genes is a key piece of information towards gaining that understanding and ultimately improving breeding and deployment strategies.

  4. Investigation of Neuronal Cell Type-Specific Gene Expression of Ca2+/Calmodulin-dependent Protein Kinase II.

    Directory of Open Access Journals (Sweden)

    Mima Kazuko

    2002-01-01

    Full Text Available The promoter activity of the rat Ca2+/calmodulin-dependent protein kinase II gene was analyzed using the luciferase reporter gene in neuronal and non-neuronal cell lines. Neuronal cell type-specific promoter activity was found in the 5'-flanking region of &agr; and &bgr; isoform genes of the kinase. Silencer elements were also found further upstream of promoter regions. A brain-specific protein bound to the DNA sequence of the 5'-flanking region of the gene was found by gel mobility shift analysis in the nuclear extract of the rat brain, including the cerebellum, forebrain, and brainstem, but not in that of non-neuronal tissues, including liver, kidney and spleen. The luciferase expression system and gel shift analysis can be used as an additional and better index by which to monitor gene expression in most cell types.

  5. Distinct functions of two olfactory marker protein genes derived from teleost-specific whole genome duplication.

    Science.gov (United States)

    Suzuki, Hikoyu; Nikaido, Masato; Hagino-Yamagishi, Kimiko; Okada, Norihiro

    2015-11-10

    Whole genome duplications (WGDs) have been proposed to have made a significant impact on vertebrate evolution. Two rounds of WGD (1R and 2R) occurred in the common ancestor of Gnathostomata and Cyclostomata, followed by the third-round WGD (3R) in a common ancestor of all modern teleosts. The 3R-derived paralogs are good models for understanding the evolution of genes after WGD, which have the potential to facilitate phenotypic diversification. However, the recent studies of 3R-derived paralogs tend to be based on in silico analyses. Here we analyzed the paralogs encoding teleost olfactory marker protein (OMP), which was shown to be specifically expressed in mature olfactory sensory neurons and is expected to be involved in olfactory transduction. Our genome database search identified two OMPs (OMP1 and OMP2) in teleosts, whereas only one was present in other vertebrates. Phylogenetic and synteny analyses suggested that OMP1 and 2 were derived from 3R. Both OMPs showed distinct expression patterns in zebrafish; OMP1 was expressed in the deep layer of the olfactory epithelium (OE), which is consistent with previous studies of mice and zebrafish, whereas OMP2 was sporadically expressed in the superficial layer. Interestingly, OMP2 was expressed in a very restricted region of the retina as well as in the OE. In addition, the analysis of transcriptome data of spotted gar, a non-teleost fish, revealed that single OMP gene was expressed in the eyes. We found distinct expression patterns of zebrafish OMP1 and 2 at the tissue and cellular level. These differences in expression patterns may be explained by subfunctionalization as the model of molecular evolution. Namely, single OMP gene was speculated to be originally expressed in the OE and the eyes in the common ancestor of all Osteichthyes (bony fish including tetrapods). Then, two OMP gene paralogs derived from 3R-WGD reduced and specialized the expression patterns. This study provides a good example for analyzing a

  6. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes.

    Science.gov (United States)

    Parmar, Manoj B; Wright, Jonathan M

    2013-11-01

    A whole-genome duplication (WGD) early in the teleost fish lineage makes fish ideal organisms to study the fate of duplicated genes and underlying evolutionary trajectories that have led to the retention of ohnologous gene duplicates in fish genomes. Here, we compare the genomic organization and tissue-specific transcription of the ohnologous fabp7 and fabp10 genes in medaka, three-spined stickleback, and spotted green pufferfish to the well-studied duplicated fabp7 and fabp10 genes of zebrafish. Teleost fabp7 and fabp10 genes contain four exons interrupted by three introns. Polypeptide sequences of Fabp7 and Fabp10 show the highest sequence identity and similarity with their orthologs from vertebrates. Orthology was evident as the ohnologous Fabp7 and Fabp10 polypeptides of teleost fishes each formed distinct clades and clustered together with their orthologs from other vertebrates in a phylogenetic tree. Furthermore, ohnologous teleost fabp7 and fabp10 genes exhibit conserved gene synteny with human FABP7 and chicken FABP10, respectively, which provides compelling evidence that the duplicated fabp7 and fabp10 genes of teleost fishes most likely arose from the well-documented WGD. The tissue-specific distribution of fabp7a, fabp7b, fabp10a, and fabp10b transcripts provides evidence of diverged spatial transcriptional regulation between ohnologous gene duplicates of fabp7 and fabp10 in teleost fishes.

  7. B-cell subpopulations from normal human secondary lymphoid tissues with specific gene expression profiles and phenotypes

    DEFF Research Database (Denmark)

    Johnsen, Hans Erik; Schmitz, Alexander; Perez Andres, Martin

    In order to improve insights into the B-cell biology and thereby B-cell myelomagenesis we have established a MSCNET standard for multiparametric flow cytometry (MFC) and cell sorting (FACS) for subsequent genetic analysis. The material analysed was fresh tonsils, blood and bone marrow. The method...... and single gene expression analysis (qRT-PCR) for transcription factors as well as global gene expression profiling (GEP; GeneChip Human Exon 1.0 ST Array). For example for tonsils, based on the immunophenotypic presentation (including CD3/44/CXCR4 in the panel), B-cell subsets were identified and sorted......-cell subpopulations identified have distinct gene expression profiles reflecting their functions but also revealing genes with subpopulation specific exon splicing. In conclusion a combination of surface markers expressed antigens and gene expression analysis of B cell subsets confirm a strong methodology to be used...

  8. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI

    DEFF Research Database (Denmark)

    Wang, Weijing; Jiang, Wenjie; Hou, Lin

    2017-01-01

    .04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport, intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very...... and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. RESULTS: In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs......-low-density lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion molecules pathways were significantly enriched within KEGG database. Several hub...

  9. Modeling the asymmetric evolution of a mouse and rat-specific microRNA gene cluster intron 10 of the Sfmbt2 gene.

    Science.gov (United States)

    Lehnert, Stefan; Kapitonov, Vladimir; Thilakarathne, Pushpike J; Schuit, Frans C

    2011-05-23

    The total number of miRNA genes in a genome, expression of which is responsible for the miRNA repertoire of an organism, is not precisely known. Moreover, the question of how new miRNA genes arise during evolution is incompletely understood. Recent data in humans and opossum indicate that retrotranspons of the class of short interspersed nuclear elements have contributed to the growth of microRNA gene clusters. We studied a large miRNA gene cluster in intron 10 of the mouse Sfmbt2 gene using bioinformatic tools. Mice and rats are unique to harbor a 55-65 Kb DNA sequence in intron 10 of the Sfmbt2 gene. This intronic region is rich in regularly repeated B1 retrotransposons together with inverted self-complementary CA/TG microsatellites. The smallest repeats unit, called MSHORT1 in the mouse, was duplicated 9 times in a tandem head-to-tail array to form 2.5 Kb MLONG1 units. The center of the mouse miRNA gene cluster consists of 13 copies of MLONG1. BLAST analysis of MSHORT1 in the mouse shows that the repeat unit is unique for intron 10 of the Sfmbt2 gene and suggest a dual phase model for growth of the miRNA gene cluster:arrangement [corrected] of 10 MSHORT1 units into MLONG1 and further duplication of 13 head-to-tail MLONG1 units in the center of the miRNA gene cluster. Rats have a similar arrangement [corrected] of repeat units in intron 10 of the Sfmbt2 gene. The discrepancy between 65 miRNA genes in the mouse cluster as compared to only 1 miRNA gene in the corresponding rat repeat cluster is ascribed to sequence differences between MSHORT1 and RSHORT1 that result in lateral-shifted, less-stable miRNA precursor hairpins for RSHORT1. Our data provides new evidence for the emerging concept that lineage-specific retroposons have played an important role in the birth of new miRNA genes during evolution. The large difference in the number of miRNA genes in two closely related species (65 versus 1, mice versus rats) indicates that this species-specific evolution can be

  10. Sequence signatures involved in targeting the male-specific lethal complex to X-chromosomal genes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Philip Philge

    2012-03-01

    Full Text Available Abstract Background In Drosophila melanogaster, the dosage-compensation system that equalizes X-linked gene expression between males and females, thereby assuring that an appropriate balance is maintained between the expression of genes on the X chromosome(s and the autosomes, is at least partially mediated by the Male-Specific Lethal (MSL complex. This complex binds to genes with a preference for exons on the male X chromosome with a 3' bias, and it targets most expressed genes on the X chromosome. However, a number of genes are expressed but not targeted by the complex. High affinity sites seem to be responsible for initial recruitment of the complex to the X chromosome, but the targeting to and within individual genes is poorly understood. Results We have extensively examined X chromosome sequence variation within five types of gene features (promoters, 5' UTRs, coding sequences, introns, 3' UTRs and intergenic sequences, and assessed its potential involvement in dosage compensation. Presented results show that: the X chromosome has a distinct sequence composition within its gene features; some of the detected variation correlates with genes targeted by the MSL-complex; the insulator protein BEAF-32 preferentially binds upstream of MSL-bound genes; BEAF-32 and MOF co-localizes in promoters; and that bound genes have a distinct sequence composition that shows a 3' bias within coding sequence. Conclusions Although, many strongly bound genes are close to a high affinity site neither our promoter motif nor our coding sequence signatures show any correlation to HAS. Based on the results presented here, we believe that there are sequences in the promoters and coding sequences of targeted genes that have the potential to direct the secondary spreading of the MSL-complex to nearby genes.

  11. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Field, K.G.; Gordon, D.; Wright, T. [Oregon State Univ., Corvallis, OR (United States)] [and others

    1997-01-01

    Small-subunit (SSU) ribosomal DNA (rDNA) gene clusters are phylogenetically related sets of SSU rRNA genes, commonly encountered in genes amplified from natural populations. Genetic variability in gene clusters could result form artifacts (polymerase error or PCR chimera formation), microevolution (variation among rrn copies within strains), or macroevolution (genetic divergence correlated with long-term evolutionary divergence). To better understand gene clusters, this study assessed genetic diversity and distribution of a single environmental SSU rDNA gene cluster, the SAR11 cluster. SAR11 cluster genes, from an uncultured group of the {alpha} subclass of the class Proteobacteria, have been recovered from coastal and midoceanic waters of the North Atlantic and Pacific. We cloned and bidirectionally sequenced 23 new SAR11 cluster 16S rRNA genes, from 80 and 250 m im the Sargasso Sea and from surface coastal waters of the Atlantic and Pacific, and analyzed them with previously published sequences. Two SAR11 genes were obviously PCR chimeras, but the biological (nonchimeric) origins of most subgroups within the cluster were confirmed by independent recovery from separate gene libraries. Using group-specific oligonucleotide probes, we analyzed depth profiles of nucleic acids, targeting both amplified rDNAs and bulk RNAs. Two subgroups within the SAR11 cluster showed different highly depth-specific distributions. We conclude that some of the genetic diversity within the SAR11 gene cluster represents macroevolutionary divergence correlated with niche specialization. Furthermore, we demonstrate the utility for marine microbial ecology of oligonucleotide probes based on gene sequences amplified from natural populations and show that a detailed knowledge of sequence variability may be needed to effectively design these probes. 48 refs., 7 figs., 3 tabs.

  12. Differential Expression of Genes Associated with the Progression of Renal Disease in the Kidneys of Liver-Specific Glucokinase Gene Knockout Mice

    Directory of Open Access Journals (Sweden)

    Gang Niu

    2013-03-01

    Full Text Available Liver glucokinase (GCK deficient mice possess mild renal complications associated with diabetes. To investigate the progression of kidney disease and identify candidate genes involved in the pathogenesis of renal damage, we examined changes in tissue structure and gene expression in the kidneys of liver-specific GCK knockout (gckw/− mice and age-matched normal wild-type control (gckw/w mice as they aged. Suppression subtractive hybridization (SSH was used to identify candidate genes that showed a pattern of differential expression between kidneys of gckw/− and gckw/w mice at 60 weeks of age. Differential expression of the candidate genes was examined by real-time qPCR in liver-specific gckw/− and gckw/w mice at 16, 26, 40, 60, and 85 weeks of age. Among the candidate genes, only glutathione peroxidase-3 (GPX3 was confirmed to show differential expression by qPCR in the 60-week old mice, however two others genes, MALAT1 and KEG, showed significant changes at other ages. This study shows that liver-specific glucokinase deficient mice display changes in kidney morphology by 40 weeks of age, and that renal complication may be correlated with a reduction in GPX3 levels. Since decreased GPX3 mRNA expression was observed at 26 weeks, which is younger than the age when pathological changes can be seen in kidney biopsies, GPX3 may serve as an early marker for kidney damage.

  13. A sequence-specific core promoter-binding transcription factor recruits TRF2 to coordinately transcribe ribosomal protein genes.

    Science.gov (United States)

    Baumann, Douglas G; Gilmour, David S

    2017-10-13

    Ribosomal protein (RP) genes must be coordinately expressed for proper assembly of the ribosome yet the mechanisms that control expression of RP genes in metazoans are poorly understood. Recently, TATA-binding protein-related factor 2 (TRF2) rather than the TATA-binding protein (TBP) was found to function in transcription of RP genes in Drosophila. Unlike TBP, TRF2 lacks sequence-specific DNA binding activity, so the mechanism by which TRF2 is recruited to promoters is unclear. We show that the transcription factor M1BP, which associates with the core promoter region, activates transcription of RP genes. Moreover, M1BP directly interacts with TRF2 to recruit it to the RP gene promoter. High resolution ChIP-exo was used to analyze in vivo the association of M1BP, TRF2 and TFIID subunit, TAF1. Despite recent work suggesting that TFIID does not associate with RP genes in Drosophila, we find that TAF1 is present at RP gene promoters and that its interaction might also be directed by M1BP. Although M1BP associates with thousands of genes, its colocalization with TRF2 is largely restricted to RP genes, suggesting that this combination is key to coordinately regulating transcription of the majority of RP genes in Drosophila. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Neuropeptide S receptor gene: fear-specific modulations of prefrontal activation.

    Science.gov (United States)

    Tupak, Sara V; Reif, Andreas; Pauli, Paul; Dresler, Thomas; Herrmann, Martin J; Domschke, Katharina; Jochum, Clara; Haas, Elisabeth; Baumann, Christian; Weber, Heike; Fallgatter, Andreas J; Deckert, Jürgen; Ehlis, Ann-Christine

    2013-02-01

    Since central administration of neuropeptide S (NPS) has been shown to exert anxiolytic effects on rodent behavior in a number of studies, genetic variants of its cognate G-protein coupled receptor (NPSR1) became the focus of several recent human studies on anxiety and anxiety disorders. The T allele of rs324981, which goes along with enhanced receptor function, was associated with panic disorder, increased anxiety sensitivity in healthy subjects, attenuated prefrontal brain activation and elevated amygdala responses to fear-relevant stimuli. To investigate whether prefrontal attenuations in rs324981 T allele carriers are specific to fear-relevant stimulus content and cannot be attributed to a generally higher interference of emotional stimuli, 92 subjects performed a combined cognitive and emotional Stroop task while oxygenation changes in the prefrontal cortex were recorded using functional near-infrared spectroscopy. Results showed a specific NPSR1 gene activation modulation in response to fear-relevant word stimuli. Only A-homozygotes displayed an emotional Stroop effect in terms of increased activation to fear-relevant stimuli in medial and dorsolateral prefrontal cortex. Specifically, activation in the fear-relevant condition was higher in A-homozygotes as compared to T allele carriers while no group differences were found during neutral, congruent or highly interfering incongruent color word presentation. The current results are in line with earlier imaging genetic studies and suggest a potential protective function of the NPSR1 rs324981 A/A genotype against pathologically enhanced anxiety that might be explained by stronger reflective prefrontal regulation over the subcortical fear response. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Gcse, a novel germ-cell-specific gene, is differentially expressed during meiosis and gametogenesis.

    Science.gov (United States)

    Huang, Shih-Ling; Chou, Tz-Chong; Lin, Ting-Hui; Tsai, Ming-Shiun; Wang, Sue-Hong

    2013-10-01

    Gametogenesis is a complex process wherein germ cells develop from primordial diploid cells into haploid gametes. To understand the mechanisms controlling gametogenesis, we identified a novel germ-cell-specific gene, Gcse. Gcse produces two major transcripts that are 1589 bp (Gcse-l) and 906 bp (Gcse-s) in length. Northern blotting and reverse transcription-polymerase chain reaction (RT-PCR) analyses of multiple tissues reveal that Gcse-l is expressed in both adult testes and ovaries, but Gcse-s is expressed only in adult testes. During female gonad development, Gcse-l is expressed from embryonic day 13.5 to adulthood, specifically in oocytes, and maintained in ovulated and fertilized eggs. However, Gcse-s signals were detected only in ovulated oocytes and fertilized eggs but not in adult ovary. During male gonad development, strong Gcse-l signals were detected in late pachytene spermatocytes and round spermatids. However, Gcse-s transcripts exist only in round spermatids. Furthermore, the expression of GCSE-L proteins and their subcellular localizations within cells are stage specific. GCSE-L is detected in the nucleus of late pachytene spermatocytes. During meiosis, GCSE-L is translocated to acrosome regions in spermatids and maintained in the acrosome of spermatozoa. GCSE-L colocalizes with acrosin and lectin peanut agglutinin in the Golgi apparatus. However, GCSE-S proteins are expressed only in the nucleus of spermatids. From these results, we suggest that GCSE proteins play roles in meiosis and may be involved in acrosome biogenesis during spermiogenesis.

  16. A gene network that coordinates preplacodal competence and neural crest specification in zebrafish.

    Science.gov (United States)

    Bhat, Neha; Kwon, Hye-Joo; Riley, Bruce B

    2013-01-01

    Preplacodal ectoderm (PPE) and neural crest (NC) are specified at the interface of neural and nonneural ectoderm and together contribute to the peripheral nervous system in all vertebrates. Bmp activates early steps for both fates during late blastula stage. Low Bmp activates expression of transcription factors Tfap2a and Tfap2c in the lateral neural plate, thereby specifying neural crest fate. Elevated Bmp establishes preplacodal competence throughout the ventral ectoderm by coinducing Tfap2a, Tfap2c, Foxi1 and Gata3. PPE specification occurs later at the end of gastrulation and requires complete attenuation of Bmp, yet expression of PPE competence factors continues well past gastrulation. Here we show that competence factors positively regulate each other's expression during gastrulation, forming a self-sustaining network that operates independently of Bmp. Misexpression of Tfap2a in embryos blocked for Bmp from late blastula stage can restore development of both PPE and NC. However, Tfap2a alone is not sufficient to activate any other competence factors nor does it rescue individual placodes. On the other hand, misexpression of any two competence factors in Bmp-blocked embryos can activate the entire transcription factor network and support the development of NC, PPE and some individual placodes. We also show that while these factors are partially redundant with respect to PPE specification, they later provide non-redundant functions needed for development of specific placodes. Thus, we have identified a gene regulatory network that coordinates development of NC, PPE and individual placodes in zebrafish. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Renal Anemia Model Mouse Established by Transgenic Rescue with an Erythropoietin Gene Lacking Kidney-Specific Regulatory Elements

    Science.gov (United States)

    Hirano, Ikuo; Suzuki, Norio; Yamazaki, Shun; Sekine, Hiroki; Minegishi, Naoko

    2016-01-01

    ABSTRACT The erythropoietin (Epo) gene is under tissue-specific inducible regulation. Because the kidney is the primary EPO-producing tissue in adults, impaired EPO production in chronic kidney disorders results in serious renal anemia. The Epo gene contains a liver-specific enhancer in the 3′ region, but the kidney-specific enhancer for gene expression in renal EPO-producing (REP) cells remains elusive. Here, we examined a conserved upstream element for renal Epo regulation (CURE) region that spans 17.4 kb to 3.6 kb upstream of the Epo gene and harbors several phylogenetically conserved elements. We prepared various Epo gene-reporter constructs utilizing a bacterial artificial chromosome and generated a number of transgenic-mouse lines. We observed that deletion of the CURE region (δCURE) abrogated Epo gene expression in REP cells. Although transgenic expression of the δCURE construct rescued Epo-deficient mice from embryonic lethality, the rescued mice had severe EPO-dependent anemia. These mouse lines serve as an elaborate model for the search for erythroid stimulatory activity and are referred to as AnRED (anemic model with renal EPO deficiency) mice. We also dissected the CURE region by exploiting a minigene harboring four phylogenetically conserved elements in reporter transgenic-mouse analyses. Our analyses revealed that Epo gene regulation in REP cells is a complex process that utilizes multiple regulatory influences. PMID:27920250

  18. Molecular characterization and evolution of a gene family encoding both female- and male-specific reproductive proteins in Drosophila.

    Science.gov (United States)

    Sirot, Laura K; Findlay, Geoffrey D; Sitnik, Jessica L; Frasheri, Dorina; Avila, Frank W; Wolfner, Mariana F

    2014-06-01

    Gene duplication is an important mechanism for the evolution of new reproductive proteins. However, in most cases, each resulting paralog continues to function within the same sex. To investigate the possibility that seminal fluid proteins arise through duplicates of female reproductive genes that become "co-opted" by males, we screened female reproductive genes in Drosophila melanogaster for cases of duplication in which one of the resulting paralogs produces a protein in males that is transferred to females during mating. We identified a set of three tandemly duplicated genes that encode secreted serine-type endopeptidase homologs, two of which are expressed primarily in the female reproductive tract (RT), whereas the third is expressed specifically in the male RT and encodes a seminal fluid protein. Evolutionary and gene expression analyses across Drosophila species suggest that this family arose from a single-copy gene that was female-specific; after duplication, one paralog evolved male-specific expression. Functional tests of knockdowns of each gene in D. melanogaster show that one female-expressed gene is essential for full fecundity, and both female-expressed genes contribute singly or in combination to a female's propensity to remate. In contrast, knockdown of the male-expressed paralog had no significant effect on female fecundity or remating. These data are consistent with a model in which members of this gene family exert effects on females by acting on a common, female-expressed target. After duplication and male co-option of one paralog, the evolution of the interacting proteins could have resulted in differential strengths or effects of each paralog. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. CRISPR/Cas9-loxP-Mediated Gene Editing as a Novel Site-Specific Genetic Manipulation Tool.

    Science.gov (United States)

    Yang, Fayu; Liu, Changbao; Chen, Ding; Tu, Mengjun; Xie, Haihua; Sun, Huihui; Ge, Xianglian; Tang, Lianchao; Li, Jin; Zheng, Jiayong; Song, Zongming; Qu, Jia; Gu, Feng

    2017-06-16

    Cre-loxP, as one of the site-specific genetic manipulation tools, offers a method to study the spatial and temporal regulation of gene expression/inactivation in order to decipher gene function. CRISPR/Cas9-mediated targeted genome engineering technologies are sparking a new revolution in biological research. Whether the traditional site-specific genetic manipulation tool and CRISPR/Cas9 could be combined to create a novel genetic tool for highly specific gene editing is not clear. Here, we successfully generated a CRISPR/Cas9-loxP system to perform gene editing in human cells, providing the proof of principle that these two technologies can be used together for the first time. We also showed that distinct non-homologous end-joining (NHEJ) patterns from CRISPR/Cas9-mediated gene editing of the targeting sequence locates at the level of plasmids (episomal) and chromosomes. Specially, the CRISPR/Cas9-mediated NHEJ pattern in the nuclear genome favors deletions (64%-68% at the human AAVS1 locus versus 4%-28% plasmid DNA). CRISPR/Cas9-loxP, a novel site-specific genetic manipulation tool, offers a platform for the dissection of gene function and molecular insights into DNA-repair pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Lung epithelial cells have virus-specific and shared gene expression responses to infection by diverse respiratory viruses.

    Science.gov (United States)

    VanLeuven, James T; Ridenhour, Benjamin J; Gonzalez, Andres J; Miller, Craig R; Miura, Tanya A

    2017-01-01

    The severity of respiratory viral infections is partially determined by the cellular response mounted by infected lung epithelial cells. Disease prevention and treatment is dependent on our understanding of the shared and unique responses elicited by diverse viruses, yet few studies compare host responses to viruses from different families while controlling other experimental parameters. Murine models are commonly used to study the pathogenesis of respiratory viral infections, and in vitro studies using murine cells provide mechanistic insight into the pathogenesis observed in vivo. We used microarray analysis to compare changes in gene expression of murine lung epithelial cells infected individually by three respiratory viruses causing mild (rhinovirus, RV1B), moderate (coronavirus, MHV-1), and severe (influenza A virus, PR8) disease in mice. RV1B infection caused numerous gene expression changes, but the differential effect peaked at 12 hours post-infection. PR8 altered an intermediate number of genes whose expression continued to change through 24 hours. MHV-1 had comparatively few effects on host gene expression. The viruses elicited highly overlapping responses in antiviral genes, though MHV-1 induced a lower type I interferon response than the other two viruses. Signature genes were identified for each virus and included host defense genes for PR8, tissue remodeling genes for RV1B, and transcription factors for MHV-1. Our comparative approach identified universal and specific transcriptional signatures of virus infection that can be used to distinguish shared and virus-specific mechanisms of pathogenesis in the respiratory tract.

  1. Spontaneous Pancreatitis Caused by Tissue-Specific Gene Ablation of Hhex in MiceSummary

    Directory of Open Access Journals (Sweden)

    Mark J. Ferreira

    2015-09-01

    Full Text Available Background & Aims: Perturbations in pancreatic ductal bicarbonate secretion cause chronic pancreatitis. The physiologic mechanism of ductal secretion is known, but its transcriptional control is not. We determine the role of the transcription factor hematopoietically expressed homeobox protein (Hhex in ductal secretion and pancreatitis. Methods: We derived mice with pancreas-specific, Cre-mediated Hhex gene ablation to determine the requirement of Hhex in the pancreatic duct in early life and in adult stages. Histologic and immunostaining analyses were used to detect the presence of pathology. Pancreatic primary ductal cells were isolated to discover differentially expressed transcripts upon acute Hhex ablation on a cell autonomous level. Results: Hhex protein was detected throughout the embryonic and adult ductal trees. Ablation of Hhex in pancreatic progenitors resulted in postnatal ductal ectasia associated with acinar-to-ductal metaplasia, a progressive phenotype that ultimately resulted in chronic pancreatitis. Hhex ablation in adult mice, however, did not cause any detectable pathology. Ductal ectasia in young mice did not result from perturbation of expression of Hnf6, Hnf1β, or the primary cilia genes. RNA-seq analysis of Hhex-ablated pancreatic primary ductal cells showed mRNA levels of the G-protein coupled receptor natriuretic peptide receptor 3 (Npr3, implicated in paracrine signaling, up-regulated by 4.70-fold. Conclusions: Although Hhex is dispensable for ductal cell function in the adult, ablation of Hhex in pancreatic progenitors results in pancreatitis. Our data highlight the critical role of Hhex in maintaining ductal homeostasis in early life and support ductal hypersecretion as a novel etiology of pediatric chronic pancreatitis. Keywords: Npr3, Pancreatic Ducts, Primary Cilia

  2. Effects of alien and intraspecies cytoplasms on manifestation of nuclear genes for wheat resistance to brown rust: II. Specificity of cytoplasm influence on different Lr genes

    Energy Technology Data Exchange (ETDEWEB)

    Voluevich, E.A.; Buloichik, A.A.; Palilova, A.N. [Institute of Genetics and Cytology, Minsk (Belarus)

    1995-04-01

    Specificity of expression of the major nuclear genes Lr to two brown rust clones in hybrids with the same maternal cytoplasm was analyzed. It was evaluated by a resistant: susceptible ratio in the F{sub 2}. Reciprocal hybrids were obtained from the cross between the progeny of homozygous susceptible plants of the cultivar Penjamo 62 and its alloplasmatic lines carrying cytoplasms of Triticum dicoccoides var. fulvovillosum, Aegilops squarrosa var. typical, Agropyron trichophorum, and isogenic lines of the cultivar Thatcher (Th) with the Lr1, Lr9, Lr15, and Lr19 genes. It was shown that the effect of the Lr1 gene in the cytoplasm of cultivar Thatcher and in eu-, and alloplasmatic forms of Penjamo 62 was less expressed than that of other Lr genes. Cytoplasm of the alloplasmatic line (dicoccoides)-Penjamo 62 was the only exception: in the F{sub 2}, hybrids with Th (Lr1) had a higher yield of resistant forms than those with Th (Lr15). In the hybrid combinations studied, expression and/or transmission of the Lr19 gene was more significant than that of other genes. This gene had no advantages over Lr15 and Lr19 only in cytoplasm of the alloplasmatic line (squarrosa)-Penjamo 62. In certain hybrid cytoplasms, the display of the Lr1, Lr15, and Lr19 genes, in contrast to Lr9, varied with the virulence of the pathogen clones. 15 refs., 5 tabs.

  3. A meta-analysis based method for prioritizing candidate genes involved in a pre-specific function

    Directory of Open Access Journals (Sweden)

    Jingjing Zhai

    2016-12-01

    Full Text Available The identification of genes associated with a given biological function in plants remains a challenge, although network-based gene prioritization algorithms have been developed for Arabidopsis thaliana and many non-model plant species. Nevertheless, these network-based gene prioritization algorithms have encountered several problems; one in particular is that of unsatisfactory prediction accuracy due to limited network coverage, varying link quality, and/or uncertain network connectivity. Thus a model that integrates complementary biological data may be expected to increase the prediction accuracy of gene prioritization. Towards this goal, we developed a novel gene prioritization method named RafSee, to rank candidate genes using a random forest algorithm that integrates sequence, evolutionary, and epigenetic features of plants. Subsequently, we proposed an integrative approach named RAP (Rank Aggregation-based data fusion for gene Prioritization, in which an order statistics-based meta-analysis was used to aggregate the rank of the network-based gene prioritization method and RafSee, for accurately prioritizing candidate genes involved in a pre-specific biological function. Finally, we showcased the utility of RAP by prioritizing 380 flowering-time genes in Arabidopsis. The ‘leave-one-out’ cross-validation experiment showed that RafSee could work as a complement to a current state-of-art network-based gene prioritization system (AraNet v2. Moreover, RAP ranked 53.68% (204/380 flowering-time genes higher than AraNet v2, resulting in an 39.46% improvement in term of the first quartile rank. Further evaluations also showed that RAP was effective in prioritizing genes-related to different abiotic stresses. To enhance the usability of RAP for Arabidopsis and non-model plant species, an R package implementing the method is freely available at http://bioinfo.nwafu.edu.cn/software.

  4. Location-specific epigenetic regulation of the metallothionein 3 gene in esophageal adenocarcinomas.

    Directory of Open Access Journals (Sweden)

    Dunfa Peng

    Full Text Available Metallothionein 3 (MT3 maintains intracellular metal homeostasis and protects against reactive oxygen species (ROS-induced DNA damage. In this study, we investigated the epigenetic alterations and gene expression of the MT3 gene in esophageal adenocarcinomas (EACs.Using quantitative bisulfite pyrosequencing, we detected unique DNA methylation profiles in the MT3 promoter region. The CpG nucleotides from -372 to -306 from the transcription start site (TSS were highly methylated in tumor (n = 64 and normal samples (n = 51, whereas CpG nucleotides closest to the TSS (-4 and +3 remained unmethylated in all normal and most tumor samples. Conversely, CpG nucleotides in two regions (from -139 to -49 and +296 to +344 were significantly hypermethylated in EACs as compared to normal samples [FDR3.0]. The DNA methylation levels from -127 to -8 CpG sites showed the strongest correlation with MT3 gene expression (r = -0.4, P<0.0001. Moreover, the DNA hypermethylation from -127 to -8 CpG sites significantly correlated with advanced tumor stages and lymph node metastasis (P = 0.005 and P = 0.0313, respectively. The ChIP analysis demonstrated a more repressive histone modification (H3K9me2 and less active histone modifications (H3K4me2, H3K9ace in OE33 cells than in FLO-1 cells; concordant with the presence of higher DNA methylation levels and silencing of MT3 expression in OE33 as compared to FLO-1 cells. Treatment of OE33 cells with 5-Aza-deoxycitidine restored MT3 expression with demethylation of its promoter region and reversal of the histone modifications towards active histone marks.In summary, EACs are characterized by frequent epigenetic silencing of MT3. The choice of specific regions in the CpG island is a critical step in determining the functional role and prognostic value of DNA methylation in cancer cells.

  5. A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo

    Science.gov (United States)

    Su, Yi-Hsien; Li, Enhu; Geiss, Gary K.; Longabaugh, William J. R.; Krämer, Alexander; Davidson, Eric H.

    2009-01-01

    The current gene regulatory network (GRN) for the sea urchin embryo pertains to pregastrular specification functions in the endomesodermal territories. Here we extend gene regulatory network analysis to the adjacent oral and aboral ectoderm territories over the same period. A large fraction of the regulatory genes predicted by the sea urchin genome project and shown in ancillary studies to be expressed in either oral or aboral ectoderm by 24h are included, though universally expressed and pan-ectodermal regulatory genes are in general not. The loci of expression of these genes have been determined by whole mount in situ hybridization. We have carried out a global perturbation analysis in which expression of each gene was interrupted by introduction of morpholino antisense oligonucleotide, and the effects on all other genes were measured quantitatively, both by QPCR and by a new instrumental technology (NanoString Technologies nCounter Analysis System). At its current stage the network model, built in BioTapestry, includes 22 genes encoding transcription factors, 4 genes encoding known signaling ligands, and 3 genes that are yet unknown but are predicted to perform specific roles. Evidence emerged from the analysis pointing to distinctive subcircuit features observed earlier in other parts of the GRN, including a double negative transcriptional regulatory gate, and dynamic state lockdowns by feedback interactions. While much of the regulatory apparatus is downstream of Nodal signaling, as expected from previous observations, there are also cohorts of independently activated oral and aboral ectoderm regulatory genes, and we predict yet unidentified signaling interactions between oral and aboral territories. PMID:19268450

  6. Leucine Differentially Regulates Gene-Specific Translation in Mouse Skeletal Muscle.

    Science.gov (United States)

    Drummond, Micah J; Reidy, Paul T; Baird, Lisa M; Dalley, Brian K; Howard, Michael T

    2017-09-01

    Background: Amino acids, especially leucine, are particularly effective in promoting protein synthesis. Leucine is known to increase the rate of protein synthesis in skeletal muscle through the mechanistic target of rapamycin complex 1-dependent, as well as -independent, signaling pathways. However, the overall translation program is poorly defined, and it is unknown how the activation of these pathways differentially controls the translation of specific mRNAs.Objective: Ribosome profiling and RNA sequencing were used to precisely define the translational program activated by an acute oral dose of leucine.Methods: Adult male C57BL/6 mice were deprived of food overnight before the delivery of an acute dose of l-leucine (9.4 mg) (n = 6) or vehicle (n = 5) and tissues collected 30 min later. Ribosome footprints and total RNA were isolated and subjected to deep sequencing. Changes in gene-specific mRNA abundance and ribosome occupancy were determined between the leucine-treated and control groups by aligning sequence reads to Reference Sequence database mRNAs and applying statistical features of the Bioconductor package edgeR.Results: Our data revealed mRNA features that confer translational control of skeletal muscle mRNAs in response to an acute dose of leucine. The subset of skeletal muscle mRNAs that are activated consists largely of terminal oligopyrimidine mRNAs (false discovery rate: translation had 5' untranslated regions with increased length. Only the small nuclear RNAs, which are required for ribosome biogenesis, were significantly altered in RNA abundance. The inferred functional translational program activated by dietary leucine includes increased protein synthesis capacity and energy metabolism, upregulation of sarcomere-binding proteins, modulation of circadian rhythm, and suppression of select immune components.Conclusions: These results clarify the translation program acutely stimulated by leucine in mouse skeletal muscle and establish new

  7. Analysis of cell-type-specific gene expression during mouse spermatogenesis

    DEFF Research Database (Denmark)

    Almstrup, Kristian;