Present status of coupled-channels calculations for heavy-ion subbarrier fusion reactions
Directory of Open Access Journals (Sweden)
Hagino K.
2016-01-01
Full Text Available The coupled-channels method has been a standard tool in analyzing heavy-ion fusion reactions at energies around the Coulomb barrier. We investigate three simplifications usually adopted in the coupledchannels calculations. These are i the exclusion of non-collective excitations, ii the assumption of coordinate independent coupling strengths, and iii the harmonic oscillator approximation for multiphonon excitations. In connection to the last point, we propose a novel microscopic method based on the beyond-mean-field approach in order to take into account the anharmonic effects of collective vibrations.
Four-body continuum-discretized coupled-channels calculations applied to {sup 6}He reactions
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Gallardo, M. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Arias, J.M.; Gomez-Camacho, J.M.; Moro, A.M. [Universidad de Sevilla (Spain). Dept. de Fisica Atomica, Molecular y Nuclear; Thompson, I.J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical Science Directorate; Tostevin, J.A. [University of Surrey, Guildford (United Kingdom). Dept. of Physics
2010-07-01
Full text. The scattering of a weakly bound three-body system by a target is discussed. The continuum-discretized coupled-channels (CDCC) framework, recently extended to four-body reactions (three-body projectile plus target), is used for the scattering calculations. Two different methods are used to discretized the three-body continuum of the projectile. In the first case, we make use of a Pseudo-State (PS) method in which the states of the projectile are represented by the eigenstates of its internal Hamiltonian in a truncated basis of square-integrable functions. In particular, we use the transformed harmonic oscillator (THO) method, in which the PS basis is obtained by applying a local scale transformation to the Harmonic Oscillator basis. In the second case, we applied the binning procedure that has just been extended to three-body projectiles. This discretization method requires to calculate first the true continuum of the projectile and then this continuum is discretized making bins or packages of energy. This has been the method used for many years in standard three-body (two-body projectile plus target) CDCC calculations. Its extension to three-body projectiles uses the eigenchannel expansion of the three-body S-matrix. We applied this formalism to several reactions induced by the Borromean nucleus {sup 6}He at different energies, namely {sup 6}He+{sup 9}Be at 16.2 MeV, {sup 6}He+{sup 64}Zn at 13.6 MeV, {sup 6}He+{sup 120}Sn at 17.4 MeV, and {sup 6}He+{sup 208}Pb at 22 MeV. Four-body CDCC calculations for elastic and breakup observables are presented for these reactions comparing both discretization methods, THO and binning. The effect of the mass of the target, which is clearly related to the influence of Coulomb couplings, is investigated. The elastic cross sections are also compared to existing experimental data. (author)
Multi-reaction-channel fitting calculations in a coupled-channel ...
Indian Academy of Sciences (India)
2015-11-27
Nov 27, 2015 ... To describe photo- and meson-induced reactions on the nucleon, one is faced with a rather extensive coupled-channel problem. Ignoring the effects of channel coupling, as one would do in describing a certain reaction at the tree level, invariably creates a large inconsistency between the different reactions ...
Coupled channel Faddeev calculations of a K-bar N{pi} quasibound state
Energy Technology Data Exchange (ETDEWEB)
Gal, A., E-mail: avragal@vms.huji.ac.il [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Garcilazo, H., E-mail: humberto@esfm.ipn.mx [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, Edificio 9, 07738 Mexico D.F. (Mexico)
2011-08-01
The K-bar N{pi} system is studied using separable interactions fitted to data available on the s-wave K-bar N-{pi}Y subsystem and the p-wave {pi}N, {pi}Y, {pi}{pi} and {pi}K-bar subsystems. Three-body K-bar N{pi}-{pi}Y{pi} coupled channel Faddeev equations with relativistic kinematics are solved in search for poles in the complex energy plane. A K-bar N{pi} quasibound pole with quantum numbers I(J{sup P})=1(3/2{sup -}) is found near and below the K-bar N{pi} threshold, its precise location depending sensitively on the poorly known shape of the p-wave {pi}Y interaction. This K-bar N{pi} quasibound state suggests the existence of a D{sub 13{Sigma}} resonance with width about 60 MeV near threshold (M{approx}1570 MeV), excluding meson absorption contributions.
Energy Technology Data Exchange (ETDEWEB)
Escher, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-04-11
Calculations for total cross sections and compound-nucleus (CN) formation cross sections for americium isotopes are described, for use in the 2017 NA-22 evaluation effort. The code ECIS 2006 was used in conjunction with Frank Dietrich's wrapper `runtemplate'.
de Diego, R.; Crespo, R.; Moro, A. M.
2017-04-01
Background: Core-excitation effects in the scattering of two-body halo nuclei have been investigated in previous works. In particular, these effects have been found to affect in a significant way the breakup cross sections of neutron-halo nuclei with a deformed core. To account for these effects, appropriate extensions of the continuum-discretized coupled-channels (CDCC) method have been recently proposed. Purpose: We aim to extend these studies to the case of breakup reactions measured under complete kinematics or semi-inclusive reactions in which only the angular or energy distribution of one of the outgoing fragments is measured. Method: We use the standard CDCC method as well as its extended version with core excitations, assuming a pseudostate basis for describing the projectile states. Two- and three-body observables are computed by projecting the discrete two-body breakup amplitudes, obtained within these reaction frameworks, onto two-body scattering states with definite relative momentum of the outgoing fragments and a definite state of the core nucleus. Results: Our working example is the one-neutron halo 11Be. Breakup reactions on protons and 64Zn targets are studied at 63.7 MeV/nucleon and 28.7 MeV, respectively. These energies, for which experimental data exist, and the targets provide two different scenarios where the angular and energy distributions of the fragments are computed. The importance of core dynamical effects is also compared for both cases. Conclusions: The presented method provides a tool to compute double and triple differential cross sections for outgoing fragments following the breakup of a two-body projectile and might be useful to analyze breakup reactions with other deformed weakly bound nuclei, for which core excitations are expected to play a role. We have found that, while dynamical core excitations are important for the proton target at intermediate energies, they are very small for the Zn target at energies around the Coulomb
Isovector coupling channel and central properties of the charge ...
Indian Academy of Sciences (India)
Abstract. The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both ...
Isovector coupling channel and central properties of the charge ...
Indian Academy of Sciences (India)
The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central ...
2001-01-01
The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.
Schematic driven silicon photonics design
Chrostowski, Lukas; Lu, Zeqin; Flückiger, Jonas; Pond, James; Klein, Jackson; Wang, Xu; Li, Sarah; Tai, Wei; Hsu, En Yao; Kim, Chan; Ferguson, John; Cone, Chris
2016-03-01
Electronic circuit designers commonly start their design process with a schematic, namely an abstract representation of the physical circuit. In integrated photonics on the other hand, it is very common for the design to begin at the physical component level. In order to build large integrated photonic systems, it is crucial to design using a schematic-driven approach. This includes simulations based on schematics, schematic-driven layout, layout versus schematic verification, and post-layout simulations. This paper describes such a design framework implemented using Mentor Graphics and Lumerical Solutions design tools. In addition, we describe challenges in silicon photonics related to manufacturing, and how these can be taken into account in simulations and how these impact circuit performance.
Separable coupled-channels momentum space potentials for nuclear reactions
Hlophe, Linda; Eremenko, Vasily; Elster, Charlotte; Nunes, Filomena; Deltuva, Arbanas; Escher, Jutta; Thompson, Ian; Torus Collaboration
2015-10-01
Many nuclei are deformed and their properties may be described using a rotational model. This involves defining a deformed surface of the nucleus and constructing the nuclear interaction as a function of distance to the surface. The resulting potential has non-zero matrix elements between different rotational states which are characterized by the nuclear spin-parity Iπ, leading to channel couplings. Our goal is to utilize these coupled-channels potentials in momentum space Faddeev calculations which take into account core excitations. For this purpose their separable representation in momentum space is necessary. We accomplish this by employing the separable representation scheme developed by Ernst, Shakin, and Thaler (EST). Since the potentials are complex, the multichannel EST scheme is generalized to non-Hermitian potentials. In the case of proton-nucleus interactions the EST scheme is further extended to include charged particles. The multichannel EST scheme is applied to scattering off 10Be and 12C. For 10Be only couplings to the first excited state (Iπ =2+) were included while for 12C the first two excited states (Iπ =2+ ,4+) were taken into account. Research for this project was supported in part by the US Department of Energy, Office of Science of Nuclear Physics contact.
Magnetogama: an open schematic magnetometer
Wahyudi; Khakhim, Nurul; Kuntoro, Tri; Mardiatno, Djati; Rakhman, Afif; Setyo Handaru, Anas; Akhmad Mufaqih, Adien; Marwan Irnaka, Theodosius
2017-09-01
Magnetogama is an open schematic hand-assembled fluxgate magnetometer. Compared to another magnetometer, Magnetogama has more benefit concerning its price and its ease of use. Practically Magnetogama can be utilized either in land or attached to an unmanned aerial vehicle (UAV). Magnetogama was designed to give open access to a cheap and accurate alternative to magnetometer sensor. Therefore it can be used as a standard design which is directly applicable to the low-budget company or education purposes. Schematic, code and several verification tests were presented in this article ensuring its reproducibility. Magnetogama has been tested with two kind of tests: a comparison with two nearest observatories at Learmonth (LRM) and Kakadu (KDU) and the response of magnetic substance.
Kant's Schematism and the Foundations of Mathematics
DEFF Research Database (Denmark)
Jørgensen, Klaus Frovin
The theory of schematism was initiated by I. Kant, who, however, was never precise with respect to what he understood under this theory. I give---based on the theoretical works of Kant---an interpretation of the most important aspects of Kant's theory of schematism. In doing this I show how...... schematism can form a point of departure for a reinterpretation of Kant's theory of knowledge. This can be done by letting the concept of schema be the central concept. I show how strange passages in, say, the first Critique are in fact understandable, when one takes schematism serious. Likewise, I show how...... we---on the background of schematism---get a characterization of Kant's concept of 'object'. This takes me to an analysis of the ontology and epistemology of mathematics. Kant understood himself as a philosopher in contact with science. It was science which he wanted to provide a foundation for. I...
Effect of the isovector coupling channel on the macroscopic part of ...
Indian Academy of Sciences (India)
The effect of isovector coupling channel on the macroscopic part of the nuclear binding energy is studied using the relativistic density-dependent Thomas–Fermi approach. The dependency of this effect on the number of neutrons and protons is also studied. The isovector coupling channel leads to increased nuclear binding ...
P -wave coupled channel effects in electron-positron annihilation
Du, Meng-Lin; Meißner, Ulf-G.; Wang, Qian
2016-11-01
P -wave coupled channel effects arising from the D D ¯, D D¯ *+c .c . , and D*D¯* thresholds in e+e- annihilations are systematically studied. We provide an exploratory study by solving the Lippmann-Schwinger equation with short-ranged contact potentials obtained in the heavy quark limit. These contact potentials can be extracted from the P -wave interactions in the e+e- annihilations, and then be employed to investigate possible isosinglet P -wave hadronic molecules. In particular, such an investigation may provide information about exotic candidates with quantum numbers JPC=1-+ . In the mass region of the D D ¯, D D¯ *+c .c . , and D*D¯* thresholds, there are two quark model bare states, i.e. the ψ (3770 ) and ψ (4040 ), which are assigned as (13D1) and (31S1) states, respectively. By an overall fit of the cross sections of e+e-→D D ¯, D D¯ *+c .c . , D*D¯*, we determine the physical coupling constants to each channel and extract the pole positions of the ψ (3770 ) and ψ (4040 ). The deviation of the ratios from that in the heavy quark spin symmetry (HQSS) limit reflects the HQSS breaking effect due to the mass splitting between the D and the D*. Besides the two poles, we also find a pole a few MeV above the D D¯ *+c .c . threshold which can be related to the so-called G (3900 ) observed earlier by BABAR and Belle. This scenario can be further scrutinized by measuring the angular distribution in the D*D¯* channel with high luminosity experiments.
Microscopic coupled-channel study of molecular resonances in {sup 12}Be
Energy Technology Data Exchange (ETDEWEB)
Ito, Makoto; Kato, Kiyoshi [Hokkaido Univ., Graduate School of Science, Division of Physics, Sapporo (Japan); Sakuragi, Yukinori [Osaka City Univ. (Japan). Dept. of Physics; Hiyama, Emiko [High Energy Accelerator Research Organization, Institute for Particle and Nuclear Studies, Tsukuba, Ibaraki (Japan); Kamimura, Masayasu [Kyushu Univ., Fukuoka (Japan). Dept. of Physics
2001-09-01
Molecular resonances recently observed in the {sup 12}Be{yields}{sup 6}He + {sup 6}He breakup-reaction experiment are studied by the microscopic coupled-channel (CC) calculation of the {sup 6}He +{sup 6}He system, in which excitations of interacting {sup 6}He nuclei are taken into account by the microscopic internal wave functions of {sup 6}He and realistic nucleon-nucleon interactions. The CC calculation predicts several molecular-rotational bands in the energy range of the observed resonances and the energies and spins of the calculated resonances well agree with the experimental data. The results of the CC calculation strongly suggest that the observed resonance states with spins larger than 6h may be interpreted in terms of 'the excited-weak-coupling states', in which one or both interacting {sup 6}He nuclei are excited and they are weakly coupled to each other. The effect of the coupling to the {sup 4}He + {sup 8}He channel, in which the resonance states were also observed in the breakup reaction of {sup 12}Be, is also discussed. (author)
A Relativistic Coupled-Channel Formalism for the Pion Form Factor
Directory of Open Access Journals (Sweden)
Klink W.H.
2010-04-01
Full Text Available The electromagnetic form factor of a confined quark-antiquark pair is calculated within the framework of point-form relativistic quantum mechanics. The dynamics of the exchanged photon is explicitly taken into account by treating the electromagnetic scattering of an electron by a meson as a relativistic two-channel problem for a Bakamjian-Thomas type mass operator. This approach guarantees Poincare invariance. Using a Feshbach reduction the coupled-channel problem can be converted into a one-channel problem for the elastic electron-meson channel. By comparing the one-photon-exchange optical potential at the constituent and hadronic levels, we are able to unambiguously identify the electromagnetic meson form factor. Violations of cluster-separability properties, which are inherent in the Bakamjian-Thomas approach, become negligible for su?ciently large invariant mass of the electron-meson system. In the limit of an in?nitely large invariant mass, an equivalence with form-factor calculations done in front-form relativistic quantum mechanics is established analytically.
Estimating Total Fusion Cross Sections by Using a Coupled-Channel Method
Energy Technology Data Exchange (ETDEWEB)
Choi, Ki-Seok; Cheoun, Myung-Ki [Soongsil University, Seoul (Korea, Republic of); Kim, K. S. [Korea Aerospace University, Koyang (Korea, Republic of); Kim, T. H.; So, W. Y. [Kangwon National University at Dogye, Samcheok (Korea, Republic of)
2017-01-15
We calculate the total fusion cross sections for the {sup 6}He + {sup 209}Bi, {sup 6}Li + {sup 209}Bi,{sup 9}Be + {sup 208}Pb, {sup 10}Be + {sup 209}Bi, and {sup 11}Li + {sup 208}Pb systems by using a coupled-channel (CC) method and compare the results with the experimental data. In the CC approach for the total fusion cross sections, we exploit a globally determined Wood-Saxon potential with Aky¨uz-Winther parameters and couplings of the ground state to the low-lying excited states in the projectile and the target nuclei. The total fusion cross sections obtained with the CC are compared with those obtained without the CC couplings. The latter approach is tantamount to a one-dimensional barrier penetration model. Finally, our approach is applied to understand new data for the {sup 11}Li+{sup 208}Pb system. Possible ambiguities inherent in those approaches are discussed in detail for further applications to the fusion system of halo and/or neutron-rich nuclei.
A GIS Tool for simulating Nitrogen transport along schematic Network
Tavakoly, A. A.; Maidment, D. R.; Yang, Z.; Whiteaker, T.; David, C. H.; Johnson, S.
2012-12-01
An automated method called the Arc Hydro Schematic Processor has been developed for water process computation on schematic networks formed from the NHDPlus and similar GIS river networks. The sechemtaic network represents the hydrologic feature on the ground and is a network of links and nodes. SchemaNodes show hydrologic features, such as catchments or stream junctions. SchemaLinks prescripe the connections between nodes. The schematic processor uses the schematic network to pass informatin through a watershed and move water or pollutants dwonstream. In addition, the schematic processor has a capability to use additional programming applied to the passed and/or received values and manipulating data trough network. This paper describes how the schemtic processor can be used to simulate nitrogen transport and transformation on river networks. For this purpose the nitrogen loads is estimated on the NHDPlus river network using the Schematic Processor coupled with the river routing model for the Texas Gulf Coast Hydrologic Region.
Effect of the isovector coupling channel on the macroscopic part of ...
Indian Academy of Sciences (India)
United States of America, the SPIRAL2 at GANIL/France, and the GSI Facility FAIR in. Germany, which produce new data for neutron-rich nuclei. In this work, the effect of isovector coupling channel of the nucleon–nucleon inter- action on the macroscopic part of the binding energy is studied, and the dependency of this effect ...
s-wave charmed baryon resonances from a coupled-channel approach with heavy quark symmetry
Garcia-Recio, C.; Magas, V. K.; Mizutani, T.; Nieves, J.; Ramos, A.; Salcedo, L. L.; Tolos, L.
We study charmed baryon resonances that are generated dynamically within a unitary meson-baryon coupled-channel model that treats the heavy pseudoscalar and vector mesons on equal footing as required by heavy-quark symmetry. It is an extension of recent SU(4) models with t-channel vector-meson
Wang, S. M.; Michel, N.; Nazarewicz, W.; Xu, F. R.
2017-10-01
Background: Weakly bound and unbound nuclear states appearing around particle thresholds are prototypical open quantum systems. Theories of such states must take into account configuration mixing effects in the presence of strong coupling to the particle continuum space. Purpose: To describe structure and decays of three-body systems, we developed a Gamow coupled-channel (GCC) approach in Jacobi coordinates by employing the complex-momentum formalism. We benchmarked the complex-energy Gamow shell model (GSM) against the new framework. Methods: The GCC formalism is expressed in Jacobi coordinates, so that the center-of-mass motion is automatically eliminated. To solve the coupled-channel equations, we use hyperspherical harmonics to describe the angular wave functions while the radial wave functions are expanded in the Berggren ensemble, which includes bound, scattering, and Gamow states. Results: We show that the GCC method is both accurate and robust. Its results for energies, decay widths, and nucleon-nucleon angular correlations are in good agreement with the GSM results. Conclusions: We have demonstrated that a three-body GSM formalism explicitly constructed in the cluster-orbital shell model coordinates provides results similar to those with a GCC framework expressed in Jacobi coordinates, provided that a large configuration space is employed. Our calculations for A =6 systems and 26O show that nucleon-nucleon angular correlations are sensitive to the valence-neutron interaction. The new GCC technique has many attractive features when applied to bound and unbound states of three-body systems: it is precise, is efficient, and can be extended by introducing a microscopic model of the core.
Photo-Ionization of Noble Gases: A Demonstration of Hybrid Coupled Channels Approach
Directory of Open Access Journals (Sweden)
Vinay Pramod Majety
2015-01-01
Full Text Available We present here an application of the recently developed hybrid coupled channels approach to study photo-ionization of noble gas atoms: Neon and Argon. We first compute multi-photon ionization rates and cross-sections for these inert gas atoms with our approach and compare them with reliable data available from R-matrix Floquet theory. The good agreement between coupled channels and R-matrix Floquet theory show that our method treats multi-electron systems on par with the well established R-matrix theory. We then apply the time dependent surface flux (tSURFF method with our approach to compute total and angle resolved photo-electron spectra from Argon with linearly and circularly polarized 12 nm wavelength laser fields, a typical wavelength available from Free Electron Lasers (FELs.
Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region
Energy Technology Data Exchange (ETDEWEB)
T.-S. H. Lee; A. Matsuyama; T. Sato
2006-11-15
A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*) in the meson production reactions induced by pions and photons. Our objective is to extract the N* parameters and to investigate the meson production reaction mechanisms for mapping out the quark-gluon substructure of N* from the data. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.
The Schematic Structure of Computer Science Research Articles.
Posteguillo, Santiago
1999-01-01
Presents a linguistic description of the schematic organization of 40 journal articles from three academic journals in computing research. Results indicate the introduction-methods-results-discussion research reporting pattern can not be applied to computer science articles, with the central part (methods- results) departing most from the…
Schematic Harder–Narasimhan stratification for families of principal ...
Indian Academy of Sciences (India)
As a consequence, all principal bundles of a fixed Harder–Narasimhan type form an Artin stack. We also show the existence of a schematic Harder–Narasimhan stratification for flat families of pure sheaves of -modules (in the sense of Simpson) in arbitrary dimensions and in mixed characteristic, generalizing the result for ...
Energy Technology Data Exchange (ETDEWEB)
Beck, C. [Institut Pluridisciplinaire Hubert Curien, UMR 7178, IN2P3-CNRS et Universite Louis Pasteur (Strasbourg I), 23 rue du Loess - BP28, F-67037 Strasbourg Cedex 2 (France); Keeley, N. [DSM/DAPNIA/SPhN CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Diaz-Torres, A. [Department of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200 (Australia)
2007-03-15
The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for {sup 6,7}Li+{sup 59}Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with {sup 6}Li (as compared to {sup 7}Li) indicates the significant role of breakup for weakly bound projectiles. A study of {sup 4,6}He induced fusion reactions with a three-body CDCC method for the {sup 6}He halo nucleus is presented. The relative importance of breakup and bound-state structure effects on total fusion is discussed. (authors)
Color symmetrical superconductivity in a schematic nuclear quark model
DEFF Research Database (Denmark)
Bohr, Henrik; Providencia, C.; da Providencia, J.
2010-01-01
In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle......In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi...... charge is automatically insured. We stress that the present note is concerned with the description of quark matter in terms of effective models, such as the NJL model, which are solely expressed in terms of fermion operators, so that in them the gluonic gauge fields are not present....
Energy Technology Data Exchange (ETDEWEB)
N. Suzuki, T. Sato, T.-S. H. Lee
2010-10-01
We explain the application of a recently developed analytic continuation method to extract the electromagnetic transition form factors for the nucleon resonances ($N^*$) within a dynamical coupled-channel model of meson-baryon reactions.Illustrative results of the obtained $N^*\\rightarrow \\gamma N$ transition form factors, defined at the resonance pole positions on the complex energy plane, for the well isolated $P_{33}$ and $D_{13}$, and the complicated $P_{11}$ resonances are presented. A formula has been developed to give an unified representation of the effects due to the first two $P_{11}$ poles, which are near the $\\pi\\Delta$ threshold, but are on different Riemann sheets. We also find that a simple formula, with its parameters determined in the Laurent expansions of $\\pi N \\rightarrow \\pi N$ and $\\gamma N \\rightarrow\\pi N$ amplitudes, can reproduce to a very large extent the exact solutions of the considered model at energies near the real parts of the extracted resonance positions. We indicate the differences between our results and those extracted from the approaches using the Breit-Wigner parametrization of resonant amplitudes to fit the data.
Schematic Harder–Narasimhan stratification for families of principal ...
Indian Academy of Sciences (India)
(Math. Sci.) Vol. 124, No. 3, August 2014, pp. 315–332. c Indian Academy of Sciences. Schematic Harder–Narasimhan stratification for families of principal bundles and -modules ... E-mail: sgurjar@math.tifr.res.in; nitsure@math.tifr.res.in ... Our main result is that for any family E over X/S, each such level set |S|τ (E) admits.
The Green Studio Handbook: Environmental Strategies for Schematic Design
Directory of Open Access Journals (Sweden)
Alison G. Kwok
2012-11-01
Full Text Available In design studio projects we often see schemes with inspired, yet unvalidated, gestural sketches related to wishful green strategies. Yellow and blue magic arrows represent hypotheses about the behavior of daylight and/or air flow in and about buildings. This paper provides an overview of The Green Studio Handbook, recently published as a resource for designers seeking clear guidelines for integrating green design strategies into the conceptual and schematic phases of design. The book contains a discussion of the integration of green strategies and how building form, orientation, and spatial layout are critical to the proper performance of certain green strategies; 40 green design strategies in six broad topic areas, each providing acatalog of information for common strategies that must be implemented at the schematic design phase; and nine case studies that show how various green strategies work together in a finished building. This paper provides excerpts of several design strategies and one case study and suggests a variety of ways that the book may be used.Keywords: green design, case studies, education, schematic design
40 CFR 86.309-79 - Sampling and analytical system; schematic drawing.
2010-07-01
...; schematic drawing. 86.309-79 Section 86.309-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Procedures § 86.309-79 Sampling and analytical system; schematic drawing. (a) Any variation from the... only with prior approval by the Administrator. (b) Schematic drawing. (1) An example of a sampling and...
Coupled-channel analysis for 20.4 MeV energy of p-64 Zn inelastic ...
Indian Academy of Sciences (India)
In this study, a coupled-channel (CC) analysis of the elastic and the inelastic scattering of 20.4 MeV polarized protons from a 64Zn target leading to the deformed 2+, 3 − , 2 2 + states was performed. The CC potential parameters and the deformation parameters of the excited states corresponding to the best ﬁt to the ...
Contents and Graphics in Line : When is it Beneficial to Schematize Pictures in Expository Prose?
Westerbeek, H.G.W.; van Amelsvoort, M.A.A.; Maes, Alfons; Swerts, M.G.J.; Tabbers, Huib; de Koning, Bjorn; van Amelsvoort, Marije; van der Meij, Jan; Jacobson, Neil; de Vries, Erica
2014-01-01
Learners generally benefit from representational pictures that are added to expository text. But what determines whether it is better to design such pictures as schematized drawings or as detailed photographs? In some studies learning outcomes are positively affected by schematized pictures, but in
16 CFR Figure 3 to Subpart A of... - Flooring Radiant Tester Schematic Side Elevation
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flooring Radiant Tester Schematic Side Elevation 3 Figure 3 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 3 Figure 3 to Subpart A of Part 1209—Flooring Radiant Tester Schematic Side...
Directory of Open Access Journals (Sweden)
Veselin Jovović
2013-07-01
Full Text Available Schematic representation of extended sprint speed curves was carried out on the basis of analysis of achieved results of four sprinter girls at 400 metres distance. Kinematic analysis was carried out for top three young Montenegrian athletes ,who are the members of AC ’JEDINSTVO’ from Bijelo Polje, Their results are currently the best, or among the best results in Montenegro and they are very similar to the results Kolet Beson (France achieved when she won the Olympic Games in Mexico in 1968. The speed curve is calculated by measurng the starting time on every 50m, from the start of the race to its finish. By calculating certain parametres the fundamental kinematic elements were established. : speed motion, crossed path and time. According to these kinetic elements, the speed diagram for all four sprinters was gained. Characteristic oscilations of the speed curve reveal the basic signs of quality of running and abilities to dispose their strength on the path. Also, this diagram indicates to some methodical oversight and mistakes made during the training and advancement in running technicques. These information are really valuable because they can serve a lot in some future training and preparation of the young sprinters.
Just-in-time, Schematic Supportive Information Presentation During Cognitive Skill Acquisition.
Kester, Liesbeth; Lehnen, Chris; Van Gerven, Pascal; Kirschner, Paul A.
2008-01-01
Kester, L., Lehnen, C., Van Gerven, P.W. M., & Kirschner, P. A. (2006). Just-in-time, Schematic Supportive Information Presentation During Cognitive Skill Acquisition. Computers in Human Behavior, 22, 93-112 .
When is a Face a Face? Schematic Faces, Emotion, Attention and the N170
Directory of Open Access Journals (Sweden)
Frances A. Maratos
2015-09-01
Full Text Available Emotional facial expressions provide important non-verbal cues as to the imminent behavioural intentions of a second party. Hence, within emotion science the processing of faces (emotional or otherwise has been at the forefront of research. Notably, however, such research has led to a number of debates including the ecological validity of utilising schematic faces in emotion research, and the face-selectively of N170. In order to investigate these issues, we explored the extent to which N170 is modulated by schematic faces, emotional expression and/or selective attention. Eighteen participants completed a three-stimulus oddball paradigm with two scrambled faces as the target and standard stimuli (counter-balanced across participants, and schematic angry, happy and neutral faces as the oddball stimuli. Results revealed that the magnitude of the N170 associated with the target stimulus was: (i significantly greater than that elicited by the standard stimulus, (ii comparable with the N170 elicited by the neutral and happy schematic face stimuli, and (iii significantly reduced compared to the N170 elicited by the angry schematic face stimulus. These findings extend current literature by demonstrating N170 can be modulated by events other than those associated with structural face encoding; i.e. here, the act of labelling a stimulus a ‘target’ to attend to modulated the N170 response. Additionally, the observation that schematic faces demonstrate similar N170 responses to those recorded for real faces and, akin to real faces, angry schematic faces demonstrated heightened N170 responses, suggests caution should be taken before disregarding schematic facial stimuli in emotion processing research per se.
Directory of Open Access Journals (Sweden)
Kamiński Robert
2017-01-01
Full Text Available The low energy (below 2 GeV πη channel interaction amplitude becomes an object of interest mainly because of the search for exotic mesons in just beginning to collect data detector GlueX in JLab. Finding and interpretation of expected weak signals from these states require a comparison with a very accurate amplitude containing standard (qq̄ states i.e. a0(980 and a0(1450. The main problem in the determination of such amplitude is a total absence of data about the phases and inelasticities in the elastic and inelastic region. In addition, it is necessary to take into account the next two coupled higher channels - KK̄ and πη′. Presented here amplitude is based on separable potential model (working very well for the scalar-isoscalar ππ interactions with only 9 free parameters. To determine such 3-coupled channel amplitude, the following information has been taken into account: experimental branching ratios and positions of both a0 resonances, theoretical couplings, scattering length from ChPT and value of squared radius of the πη form factor. Phase shifts, inelasticities and cross sections in all single and crossed channels are presented.
Energy Technology Data Exchange (ETDEWEB)
Morrison, M.A.
1976-08-01
A theory of electron-molecule scattering based on the fixed-nuclei approximation in a body-fixed reference frame is formulated and applied to e-CO/sub 2/ collisions in the energy range from 0.07 to 10.0 eV. The procedure used is a single-center coupled-channel method which incorporates a highly accurate static interaction potential, an approximate local exchange potential, and an induced polarization potential. Coupled equations are solved by a modification of the integral equations algorithm; several partial waves are required in the region of space near the nuclei, and a transformation procedure is developed to handle the consequent numerical problems. The potential energy is converged by separating electronic and nuclear contributions in a Legendre-polynomial expansion and including a large number of the latter. Formulas are derived for total elastic, differential, momentum transfer, and rotational excitation cross sections. The Born and asymptotic decoupling approximations are derived and discussed in the context of comparison with the coupled-channel cross sections. Both are found to be unsatisfactory in the energy range under consideration. An extensive discussion of the technical aspects of calculations for electron collisions with highly nonspherical targets is presented, including detailed convergence studies and a discussion of various numerical difficulties. The application to e-CO/sub 2/ scattering produces converged results in good agreement with observed cross sections. Various aspects of the physics of this collision are discussed, including the 3.8 eV shape resonance, which is found to possess both p and f character, and the anomalously large low-energy momentum transfer cross sections, which are found to be due to ..sigma../sub g/ symmetry. Comparison with static and static-exchange approximations are made.
Impact of Schematic Designs on the Cognition of Underground Tube Maps
Liu, Zheng; Li, Zhilin
2016-06-01
Schematic maps have been popularly employed to represent transport networks, particularly underground tube lines (or metro lines), since its adoption by the Official London Underground in early 1930s. Such maps employ straightened lines along horizontal, vertical and diagonal directions. Recently, some researchers started to argue that the distortion in such a schematization may cause big distortion and some new designs are proposed. This project aims to make a comparative analysis of such a schematic design with a new design proposed by Mark Noad in 2011, which makes use of lines along 30º and 60º directions instead of the 45º direction. Tasks have been designed for evaluating the effect of schematic designs on route planning by travellers. The participant was asked to choose the route s/he would take among two or three possible route options and then read the name of the selected transfer station. Eye-tracking technique has been employed to track the map recognition process. Total travel time is used as criterion for effectiveness; completion time and mental work cost are used for efficiency evaluation. It has been found that (1) the design of map style has significant impact on users' travel decision making, especially map distance and transfer station symbol designs, and (2) the design style of a schematic map will have great impact on the effectiveness and efficiency of map recognition.
Directory of Open Access Journals (Sweden)
Matthias eEhrlich
2013-10-01
Full Text Available One of the major outcomes of neuroscientific research are models of Neural Network Structures. Descriptions of these models usually consist of a non-standardized mixture of text, figures, and other means of visual information communication in print media. However, as neuroscience is an interdisciplinary domain by nature, a standardized way of consistently representing models of Neural Network Structures is required. While generic descriptions of such models in textual form have recently been developed, a formalized way of schematically expressing them does not exist to date. Hence, in this paper we present Neural Schematics as a concept inspired by similar approaches from other disciplines for a generic two dimensional representation of said structures. After introducing Neural Network Structures in general, a set of current visualizations of models of Neural Network Structures is reviewed and analyzed for what information they convey and how their elements are rendered. This analysis then allows for the definition of general items and symbols to consistently represent these models as Neural Schematics on a two dimensional plane. We will illustrate the possibilities an agreed upon standard can yield on sampled diagrams transformed into Neural Schematics and an example application for the design and modeling of large-scale Neural Network Structures.
Bouhuys, AL; Geerts, E; Mersch, PPA; Jenner, JA
1996-01-01
Deficits ill the decoding of facial emotional expressions may play a role in the persistence of depression. In a prospective longitudinal study, 33 depressed outpatients (30 major depression, 2 dysthymia, and 1 cyclothymic disorder) judged schematic faces with respect to the emotions they expressed
Recognition of Schematic Facial Displays of Emotion in Parents of Children with Autism
Palermo, Mark T.; Pasqualetti, Patrizio; Barbati, Giulia; Intelligente, Fabio; Rossini, Paolo Maria
2006-01-01
Performance on an emotional labeling task in response to schematic facial patterns representing five basic emotions without the concurrent presentation of a verbal category was investigated in 40 parents of children with autism and 40 matched controls. "Autism fathers" performed worse than "autism mothers," who performed worse than controls in…
Campus Plan and Schematic Architectural Solutions, Maui Community College, Kahului, Maui, Hawaii.
Leod, John W.
This campus plan for the conversion and expansion of the existing Maui Technical School into a two-year community college in Kahului, Maui, Hawaii describes the site, educational facilities, and services needed. Schematic drawings in terms of floor plan and front view are given for all major buildings. Preliminary estimated costs for the community…
Lach, P
2003-01-01
For weak decays B sup 0 sub d -> pi pi and K K-bar the effects of SU(3) breaking in coupled-channel final-state interaction effects are discussed in a Regge framework. It is shown that SU(3) breaking in the inelastic final-state transitions dramatically affects the phases of the isospin I = 0, 1, 2 amplitudes in the B sup 0 sub d decays. The effect of the singlet penguin diagram on these phases is studied. Furthermore, on the example of the B sup 0 sub d -> pi pi decays, the dependence of CP asymmetries on the size of penguin amplitude is analyzed.
Wright, Kristyn; Kelley, Elizabeth; Poulin-Dubois, Diane
2014-10-01
Research investigating biological motion perception in children with ASD has revealed conflicting findings concerning whether impairments in biological motion perception exist. The current study investigated how children with high-functioning ASD (HF-ASD) performed on two tasks of biological motion identification: a novel schematic motion identification task and a point-light biological motion identification task. Twenty-two HFASD children were matched with 21 TD children on gender, non-verbal mental, and chronological, age (M years = 6.72). On both tasks, HF-ASD children performed with similar accuracy as TD children. Across groups, children performed better on animate than on inanimate trials of both tasks. These findings suggest that HF-ASD children's identification of both realistic and schematic biological motion identification is unimpaired.
Some Problems in Elaboration of Equivalent Electrical Schematics of Linear Mechanical Systems
Directory of Open Access Journals (Sweden)
A. Ducko
1993-11-01
Full Text Available The solution of different acoustical signal processing problems in electroacustic transducers are usually based on the method of electromechanical analogies. Finding of equivalent electrical schematics of mechanical systems as a planar graphs has some limitations in first analogy, (force - voltage, velocity -current. Systematic analysis and general conclusions about solvability of this problem are made on the basis of Kuratowski's Theorem. Some examples of solution are included.
Babiloni, Claudio; Vecchio, Fabrizio; Buffo, Paola; Buttiglione, Maura; Cibelli, Giuseppe; Rossini, Paolo Maria
2010-10-01
Is conscious perception of emotional face expression related to enhanced cortical responses? Electroencephalographic data (112 channels) were recorded in 15 normal adults during the presentation of cue stimuli with neutral, happy or sad schematic faces (duration: "threshold time" inducing about 50% of correct recognitions), masking stimuli (2 s), and go stimuli with happy or sad schematic faces (0.5 s). The subjects clicked left (right) mouse button in response to go stimuli with happy (sad) faces. After the response, they said "seen" or "not seen" with reference to previous cue stimulus. Electroencephalographic data formed visual event-related potentials (ERPs). Cortical sources of ERPs were estimated by LORETA software. Reaction time to go stimuli was generally shorter during "seen" than "not seen" trials, possibly due to covert attention and awareness. The cue stimuli evoked four ERP components (posterior N100, N170, P200, and P300), which had similar peak latency in the "not seen" and "seen" ERPs. Only N170 amplitude showed differences in amplitude in the "seen" versus "not seen" ERPs. Compared to the "not seen" ERPs, the "seen" ones showed prefrontal, premotor, and posterior parietal sources of N170 higher in amplitude with the sad cue stimuli and lower in amplitude with the neutral and happy cue stimuli. These results suggest that nonconscious and conscious processing of schematic emotional facial expressions shares a similar temporal evolution of cortical activity, and conscious processing induces an early enhancement of bilateral cortical activity for the schematic sad facial expressions (N170). © 2010 Wiley-Liss, Inc.
vMMN for schematic faces: automatic detection of change in emotional expression
Directory of Open Access Journals (Sweden)
Kairi eKreegipuu
2013-10-01
Full Text Available Our brain is able to automatically detect changes in sensory stimulation, including in vision. A large variety of changes of features in stimulation elicit a deviance-reflecting ERP component known as the mismatch negativity (MMN. The present study has three main goals: (1 to register vMMN using a rapidly presented stream of schematic faces (neutral, happy, angry; adapted from Öhman et al., 2001; (2 to compare elicited vMMNs to angry and happy schematic faces in two different paradigms, in a traditional oddball design with frequent standard and rare target and deviant stimuli (12.5% each and in an version of an optimal multi-feature paradigm with several deviant stimuli (altogether 37.5% in the stimulus block; (3 to compare vMMNs to subjective ratings of valence, arousal and attention capture for happy and angry schematic faces, i.e., to estimate the effect of affective value of stimuli on their automatic detection. Eleven observers (19-32 years, 6 women took part in both experiments, an oddball and optimum paradigm. Stimuli were rapidly presented schematic faces and an object with face-features that served as the target stimulus to be detected by a button-press. Results show that a vMMN-type response at posterior sites was equally elicited in both experiments. Post-experimental reports confirmed that the angry face attracted more automatic attention than the happy face but the difference did not emerge directly at the ERP level. Thus, when interested in studying change detection in facial expressions we encourage the use of the optimum (multi-feature design in order to save time and other experimental resources.
Updating schematic emotional facial expressions in working memory: Response bias and sensitivity.
Tamm, Gerly; Kreegipuu, Kairi; Harro, Jaanus; Cowan, Nelson
2017-01-01
It is unclear if positive, negative, or neutral emotional expressions have an advantage in short-term recognition. Moreover, it is unclear from previous studies of working memory for emotional faces whether effects of emotions comprise response bias or sensitivity. The aim of this study was to compare how schematic emotional expressions (sad, angry, scheming, happy, and neutral) are discriminated and recognized in an updating task (2-back recognition) in a representative sample of birth cohort of young adults. Schematic facial expressions allow control of identity processing, which is separate from expression processing, and have been used extensively in attention research but not much, until now, in working memory research. We found that expressions with a U-curved mouth (i.e., upwardly curved), namely happy and scheming expressions, favoured a bias towards recognition (i.e., towards indicating that the probe and the stimulus in working memory are the same). Other effects of emotional expression were considerably smaller (1-2% of the variance explained)) compared to a large proportion of variance that was explained by the physical similarity of items being compared. We suggest that the nature of the stimuli plays a role in this. The present application of signal detection methodology with emotional, schematic faces in a working memory procedure requiring fast comparisons helps to resolve important contradictions that have emerged in the emotional perception literature. Copyright © 2016 Elsevier B.V. All rights reserved.
Pakou, A.; Cappuzzello, F.; Keeley, N.; Acosta, L.; Agodi, C.; Aslanoglou, X.; Calabrese, S.; Carbone, D.; Cavallaro, M.; Foti, A.; Marquínez-Durán, G.; Martel, I.; Mazzocco, M.; Parascandolo, C.; Pierroutsakou, D.; Rusek, K.; Sgouros, O.; Soukeras, V.; Strano, E.; Zagatto, V. A. B.; Zerva, K.
2017-09-01
The complete set of open channels for the 7Li+p system, namely elastic scattering, inelastic scattering, breakup, the 7Li+p →7Be+n charge exchange reaction, and the 7Li+p →4He+4He reaction, was measured in the same experiment in inverse kinematics at an energy of 5.44 MeV/u. Data were also obtained for the charge exchange reaction at energies of 5.0 and 3.57 MeV/u. The elastic and inelastic scattering and breakup data were reported previously and are reviewed here and, together with the new data for the other two reactions, are discussed coherently within the same continuum-discretized coupled-channels model framework.
Chuluunbaatar, O.; Gusev, A. A.; Abrashkevich, A. G.; Amaya-Tapia, A.; Kaschiev, M. S.; Larsen, S. Y.; Vinitsky, S. I.
2007-10-01
A FORTRAN 77 program is presented which calculates energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on the finite interval with homogeneous boundary conditions of the third type. The resulting system of radial equations which contains the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite-element method. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials. Program summaryProgram title: KANTBP Catalogue identifier: ADZH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4224 No. of bytes in distributed program, including test data, etc.: 31 232 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: depends on (a) the number of differential equations; (b) the number and order of finite-elements; (c) the number of hyperradial points; and (d) the number of eigensolutions required. Test run requires 30 MB Classification: 2.1, 2.4 External routines: GAULEG and GAUSSJ [W.H. Press, B.F. Flanery, S.A. Teukolsky, W.T. Vetterley, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986] Nature of problem: In the hyperspherical adiabatic
Energy Technology Data Exchange (ETDEWEB)
He, Guangliang.
1992-05-15
The Cloudy Quark Bag Model is extended from S-wave to P- and D-wave. The parameters of the model are determined by K{sup {minus}}p scattering cross section data, K{sup {minus}}p {yields}{Sigma}{pi}{pi}{pi} production data, K{sup {minus}}p threshold branching ratio data, and K{sup {minus}}p {yields}{Lambda}{pi}{pi}{pi} production data. The resonance structure of the {Lambda}(1405), {Sigma}(1385), and {Lambda}(1520) are studied in the model. The shift and width of kaonic hydrogen are calculated using the model.
Energy Technology Data Exchange (ETDEWEB)
He, Guangliang [Oregon State Univ., Corvallis, OR (United States)
1992-05-15
The Cloudy Quark Bag Model is extended from S-wave to P- and D-wave. The parameters of the model are determined by K^{-}p scattering cross section data, K^{-}p →Σπππ production data, K^{-}p threshold branching ratio data, and K^{-}p →Λπππ production data. The resonance structure of the Λ(1405), Σ(1385), and Λ(1520) are studied in the model. The shift and width of kaonic hydrogen are calculated using the model.
Spider phobics more easily see a spider in morphed schematic pictures
Directory of Open Access Journals (Sweden)
Partchev Ivailo
2007-11-01
Full Text Available Abstract Background Individuals with social phobia are more likely to misinterpret ambiguous social situations as more threatening, i.e. they show an interpretive bias. This study investigated whether such a bias also exists in specific phobia. Methods Individuals with spider phobia or social phobia, spider aficionados and non-phobic controls saw morphed stimuli that gradually transformed from a schematic picture of a flower into a schematic picture of a spider by shifting the outlines of the petals until they turned into spider legs. Participants' task was to decide whether each stimulus was more similar to a spider, a flower or to neither object while EEG was recorded. Results An interpretive bias was found in spider phobia on a behavioral level: with the first opening of the petals of the flower anchor, spider phobics rated the stimuli as more unpleasant and arousing than the control groups and showed an elevated latent trait to classify a stimulus as a spider and a response-time advantage for spider-like stimuli. No cortical correlates on the level of ERPs of this interpretive bias could be identified. However, consistent with previous studies, social and spider phobic persons exhibited generally enhanced visual P1 amplitudes indicative of hypervigilance in phobia. Conclusion Results suggest an interpretive bias and generalization of phobia-specific responses in specific phobia. Similar effects have been observed in other anxiety disorders, such as social phobia and posttraumatic stress disorder.
The Effect of Schematic Knowledge on Iranian EFL Learner’s Reading Comprehension
Directory of Open Access Journals (Sweden)
Omid Ostad
2015-11-01
Full Text Available A large number of variables influence the way a learner comprehends a reading passage, one of which is prior knowledge. This study examines this variable to discover its effect on the reading comprehension ability of Iranian EFL learners. The data was elicited from sixty-eight intermediate level students who were studying English as a foreign language in a private language institute in Rasht, a city in the north of Iran. After an English Proficiency test, they were divided in two groups, an experimental group and a control one. A pre-test was administered to both groups. Consequently, the experimental group received the treatment. Finally, a post-test was administered to both groups in order to find out the differences between two groups. The experimental group outperformed the control group. It was concluded that schematic knowledge has a noticeable significance on improving the reading comprehension skill of Iranian EFL Learners. Therefore, the activation of schematic knowledge prior to the reading process can be a useful method in teaching reading comprehension in language classes.
A schematic model for molecular affinity and binding with Ising variables.
Thalmann, F
2010-04-01
After discussing the relevance of statistical physics in molecular recognition processes, we present a schematic model for ligand-receptor association based on an Ising chain. We discuss the possible behaviors of the affinity when the stiffness of the ligand increases. We also consider the case of flexible receptors. A variety of interesting behaviors is obtained, including some affinity modulation upon bond hardening or softening. The affinity of a ligand for its receptor is shown to depend on the details of its rigidity profile, and we question the possibility of encoding information in the rigidities as well as in the shape. An exhaustive study of the selectivity of patterns with length n glasses is mentioned in the conclusion.
Schematic paintings and territories in the Late Prehistory of inner Tagus basin
Directory of Open Access Journals (Sweden)
M.ª Ángeles LANCHARRO GUTIÉRREZ
2017-12-01
Full Text Available The traditional map of Postpaleolithic Art in the Iberian Peninsula left out a significant part of its inner territories. Their presumed lack of population justified the absence of research projects in the region. However, fieldwork done in the last few years in Neolithic, Megalithic and Chalcolithic settings within this area has suggested demographic abundance and an entirely unknown symbology. An analysis of their near visibility, their prominent position, and their overlapping with areas inhabited from the Neolithic to the late Bronze Age, reveals for the first time the continuing settlement of all the inner ranges and valleys of these territories. Common symbols in classical schematic art play a leading role in the area’s panels. In addition, the oldest figures point to the existence of long graphic sequences.
Mingaleev, S.; Richter, A.; Sokolov, E.; Savitzki, S.; Polatynski, A.; Farina, J.; Koltchanov, I.
2017-02-01
We present our versatile simulation framework for the schematic-driven and layout-aware design of photonic integrated circuits (PICs) realizing a fast and user-friendly design flow for large-scale PICs comprising passive and active building blocks (BBs). We show how the seamless interaction of circuit simulation with photonic layout design tools allows to specify and utilize directly physical locations and orientations of BBs of standardized process design kits (PDKs). We demonstrate how to combine graphical schematic capture and automated waveguide routing, and discuss by means of typical design applications how an optimized design flow can speed-up the virtual prototyping of complex PICs and optoelectronic applications.
Kruzins, A; Nikolayeva, O; Tamanis, M; Ferber, R; Pazyuk, E A; Stolyarov, A V
2009-01-01
The laser induced fluorescence (LIF) spectra A1Sigma ~ b3Pi --> X1Sigma+ of KCs dimer were recorded in near infrared region by Fourier Transform Spectrometer with a resolution of 0.03 cm-1. Overall more than 200 LIF spectra were rotationally assigned to 39K133Cs and 41K133Cs isotopomers yielding with the uncertainty of 0.003-0.01 cm-1 more than 3400 rovibronic term values of the strongly mixed singlet A1Sigma+ and triplet b3Pi states. Experimental data massive starts from the lowest vibrational level v_A=0 of the singlet and nonuniformly cover the energy range from 10040 to 13250 cm-1 with rotational quantum numbers J from 7 to 225. Besides of the dominating regular A1Sigma+ ~ b3P Omega=0 interactions the weak and local heterogenous A1S+ ~ b3P Omega=1 perturbations have been discovered and analyzed. Coupled-channel deperturbation analysis of the experimental 39K133Cs e-parity termvalues of the A1S+ ~ b3P complex was accomplished in the framework of the phenomenological 4 x 4 Hamiltonian accounting implicitly ...
Directory of Open Access Journals (Sweden)
Maria Isabel Suero
2011-10-01
Full Text Available This study compared the educational effects of computer simulations developed in a hyper-realistic virtual environment with the educational effects of either traditional schematic simulations or a traditional optics laboratory. The virtual environment was constructed on the basis of Java applets complemented with a photorealistic visual output. This new virtual environment concept, which we call hyper-realistic, transcends basic schematic simulation; it provides the user with a more realistic perception of a physical phenomenon being simulated. We compared the learning achievements of three equivalent, homogeneous groups of undergraduates—an experimental group who used only the hyper-realistic virtual laboratory, a first control group who used a schematic simulation, and a second control group who used the traditional laboratory. The three groups received the same theoretical preparation and carried out equivalent practicals in their respective learning environments. The topic chosen for the experiment was optical aberrations. An analysis of variance applied to the data of the study demonstrated a statistically significant difference (p value <0.05 between the three groups. The learning achievements attained by the group using the hyper-realistic virtual environment were 6.1 percentage points higher than those for the group using the traditional schematic simulations and 9.5 percentage points higher than those for the group using the traditional laboratory.
16 CFR Figure 4 to Subpart A of... - Flooring Radiant Panel Tester Schematic Low Flux End, Elevation
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flooring Radiant Panel Tester Schematic Low Flux End, Elevation 4 Figure 4 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY... Standard Pt. 1209, Subpt. A, Fig. 4 Figure 4 to Subpart A of Part 1209—Flooring Radiant Panel Tester...
Kyriakidou-Christofidou, Athina
2016-01-01
The present mixed-methods quasi-experimental study (embedding a case study and a mixed factorial within-between ANOVA test), conducted in a private English school in Limassol, Cyprus, investigated how the use of the schematic learning aids (researcher-made color-coded flash-cards and grids) influence year-2 children's ability to read, write and…
Anilmis, J V; Stewart, C S; Roddy, S; Hassanali, N; Muccio, F; Browning, S; Bracegirdle, K; Corrigall, R; Laurens, K R; Hirsch, C; Kuipers, E; Maddox, L; Jolley, S
2015-11-01
Cognitive models of adult psychosis propose that negative schematic beliefs (NSBs) mediate the established association between victimisation and psychotic symptoms. In childhood, unusual, or psychotic-like, experiences are associated with bullying (a common form of victimisation) and NSBs. This study tests the mediating role of NSBs in the relationship between bullying and distressing unusual experiences (UEDs) in childhood. Ninety-four 8-14 year olds referred to community Child and Adolescent Mental Health Services completed self-report assessments of UEDs, bullying, and NSBs about the self (NS) and others (NO). Both NS and NO were associated with bullying (NS: r=.40, Pbullying and UEDs (NS: z=3.15, P=.002; NO: z=2.35, P=.019). Children's NSBs may mediate the adverse psychological impact of victimisation, and are appropriate treatment targets for young people with UEDs. Early educational intervention to reduce negative appraisals of the self and others may increase resilience to future adverse experiences and reduce later mental health risk. Crown Copyright © 2015. Published by Elsevier Masson SAS. All rights reserved.
Resilience as positive coping appraisals: Testing the schematic appraisals model of suicide (SAMS).
Johnson, J; Gooding, P A; Wood, A M; Tarrier, N
2010-03-01
The Schematic Appraisals Model of Suicide (SAMS) suggests that positive self-appraisals may be important for buffering suicidal thoughts and behaviours, potentially providing a key source of resilience. The current study aimed to explore whether positive self-appraisals buffered individuals from suicidality in the face of stressful life events. 78 participants who reported experiencing some degree of suicidality were recruited from a student population. They completed a battery of questionnaires including measures of suicidality, stressful life events and positive self-appraisals. Positive self-appraisals moderated the association between stressful life events and suicidality. For those reporting moderate or high levels of positive self-appraisals, raised incidence of stressful life events did not lead to increases in suicidality. These results support the SAMS framework, and suggest that positive self-appraisals may confer resilience to suicide. Positive self-appraisals may be a promising avenue for further resilience research, and an important area to target for suicide interventions. 2009 Elsevier Ltd. All rights reserved.
Glycoblocks: a schematic three-dimensional representation for glycans and their interactions.
McNicholas, Stuart; Agirre, Jon
2017-02-01
The close-range interactions provided by covalently linked glycans are essential for the correct folding of glycoproteins and also play a pivotal role in recognition processes. Being able to visualise protein-glycan and glycan-glycan contacts in a clear way is thus of great importance for the understanding of these biological processes. In structural terms, glycosylation sugars glue the protein together via hydrogen bonds, whereas non-covalently bound glycans frequently harness additional stacking interactions. Finding an unobscured molecular view of these multipartite scenarios is usually far from trivial; in addition to the need to show the interacting protein residues, glycans may contain many branched sugars, each composed of more than ten non-H atoms and offering more than three potential bonding partners. With structural glycoscience finally gaining popularity and steadily increasing the deposition rate of three-dimensional structures of glycoproteins, the need for a clear way of depicting these interactions is more pressing than ever. Here a schematic representation, named Glycoblocks, is introduced which combines a simplified bonding-network depiction (covering hydrogen bonds and stacking interactions) with the familiar two-dimensional glycan notation used by the glycobiology community, brought into three dimensions by the CCP4 molecular graphics project (CCP4mg).
BARR, ASHLEY B.; LEI, MAN-KIT; STEWART, ERIC
2014-01-01
Simons and Burt’s (2011) social schematic theory (SST) of crime posits that adverse social factors are associated with offending because they promote a set of social schemas (i.e., a criminogenic knowledge structure) that elevates the probability of situational definitions favorable to crime. This study extends the SST model by incorporating the role of contexts for action. Furthermore, the study advances tests of the SST by incorporating a measure of criminogenic situational definitions to assess whether such definitions mediate the effects of schemas and contexts on crime. Structural equation models using 10 years of panel data from 582 African American youth provided strong support for the expanded theory. The results suggest that childhood and adolescent social adversity fosters a criminogenic knowledge structure as well as selection into criminogenic activity spaces and risky activities, all of which increase the likelihood of offending largely through situational definitions. Additionally, evidence shows that the criminogenic knowledge structure interacts with settings to amplify the likelihood of situational definitions favorable to crime. PMID:26392633
Jones, Samuel H.; Duff, Melissa C.; Tranel, Daniel
2014-01-01
Schematic memory, or contextual knowledge derived from experience (Bartlett, 1932), benefits memory function by enhancing retention and speeding learning of related information (Bransford and Johnson, 1972; Tse et al., 2007). However, schematic memory can also promote memory errors, producing false memories. One demonstration is the “false memory effect” of the Deese–Roediger–McDermott (DRM) paradigm (Roediger and McDermott, 1995): studying words that fit a common schema (e.g., cold, blizzard, winter) often produces memory for a nonstudied word (e.g., snow). We propose that frontal lobe regions that contribute to complex decision-making processes by weighting various alternatives, such as ventromedial prefrontal cortex (vmPFC), may also contribute to memory processes by weighting the influence of schematic knowledge. We investigated the role of human vmPFC in false memory by combining a neuropsychological approach with the DRM task. Patients with vmPFC lesions (n = 7) and healthy comparison participants (n = 14) studied word lists that excluded a common associate (the critical item). Recall and recognition tests revealed expected high levels of false recall and recognition of critical items by healthy participants. In contrast, vmPFC patients showed consistently reduced false recall, with significantly fewer intrusions of critical items. False recognition was also marginally reduced among vmPFC patients. Our findings suggest that vmPFC increases the influence of schematically congruent memories, a contribution that may be related to the role of the vmPFC in decision making. These novel neuropsychological results highlight a role for the vmPFC as part of a memory network including the medial temporal lobes and hippocampus (Andrews-Hanna et al., 2010). PMID:24872571
Warren, David E; Jones, Samuel H; Duff, Melissa C; Tranel, Daniel
2014-05-28
Schematic memory, or contextual knowledge derived from experience (Bartlett, 1932), benefits memory function by enhancing retention and speeding learning of related information (Bransford and Johnson, 1972; Tse et al., 2007). However, schematic memory can also promote memory errors, producing false memories. One demonstration is the "false memory effect" of the Deese-Roediger-McDermott (DRM) paradigm (Roediger and McDermott, 1995): studying words that fit a common schema (e.g., cold, blizzard, winter) often produces memory for a nonstudied word (e.g., snow). We propose that frontal lobe regions that contribute to complex decision-making processes by weighting various alternatives, such as ventromedial prefrontal cortex (vmPFC), may also contribute to memory processes by weighting the influence of schematic knowledge. We investigated the role of human vmPFC in false memory by combining a neuropsychological approach with the DRM task. Patients with vmPFC lesions (n = 7) and healthy comparison participants (n = 14) studied word lists that excluded a common associate (the critical item). Recall and recognition tests revealed expected high levels of false recall and recognition of critical items by healthy participants. In contrast, vmPFC patients showed consistently reduced false recall, with significantly fewer intrusions of critical items. False recognition was also marginally reduced among vmPFC patients. Our findings suggest that vmPFC increases the influence of schematically congruent memories, a contribution that may be related to the role of the vmPFC in decision making. These novel neuropsychological results highlight a role for the vmPFC as part of a memory network including the medial temporal lobes and hippocampus (Andrews-Hanna et al., 2010). Copyright © 2014 the authors 0270-6474/14/347677-06$15.00/0.
Wilansky-Traynor, Pamela; Lobel, Thalma E
2008-08-01
The present study examined the differential effect of an adult observer's presence on the sex-typed play behavior of gender schematic and aschematic preschoolers. A total of 116 Israeli preschoolers (M age = 64.9 months) participated in the study. Children were classified as either gender schematic or aschematic based upon responses to a computerized measure of different sex stereotype components. Children's play behavior with gender typical and atypical, attractive and unattractive, toys was videotaped. An observer was present for half the children's play and absent for the other half's play. Observation status affected the aschematic, but not the schematic, children's play with gender typical toys. For example, observed aschematic boys spent a greater percent of time playing with the unattractive masculine toys compared to unobserved aschematic boys. This difference was not apparent for schematic boys. Additionally, a difference found for schematic boys was not apparent in schematic girls, i.e., when unobserved, schematic boys tended to spend a greater percent of time playing with the unattractive masculine toy than aschematic boys. Further, some differences were found for unattractive, and not attractive, toys. For instance, observed aschematic boys spent a greater percent of time playing with the unattractive masculine toy than did the unobserved aschematic boys. This gap was not found for the attractive masculine toy. Results are discussed with reference to the accessibility and complexity of gender schemas.
Holub, Shayla C; Haney, Ann M; Roelse, Holly
2012-04-01
This study investigated differences in dietary intake, weight status, food preoccupation, and attributions about healthy eating lapses between individuals classified as healthy eater self-schematics and nonschematics. The study also assessed whether the separate dimensions of the self-schema construct (self-description as a healthy eater and perceived importance of being a healthy eater to self-image) are related to these health outcomes. College students (N=125; 82% female) completed questionnaires assessing healthy eater self-schema status, dietary intake, weight status, food preoccupation, and lapse attributions. Results revealed that females who were classified as healthy eater self-schematics ate more fruits and vegetables, ate less junk food and had lower BMIs than nonschematics. Healthy eater self-schematics also engaged in more positive thoughts and fewer negative thoughts about food, made less stable attributions about lapses in healthy eating and endorsed more personal control over lapses. When the two dimensions of the self-schema were examined separately, self-description appeared to be more related to these outcomes than perceived importance. Copyright © 2011 Elsevier Ltd. All rights reserved.
Rousseau, Ann; Gamble, Hilary; Eggermont, Steven
2017-10-01
Individuals who are more strongly invested in their appearance, appearance schematics, have a tendency to engage in appearance-related comparison. Appearance schematicity consists of two components. The self-evaluative component concerns the degree to which appearance is central to self-worth, referred to as dysfunctional appearance beliefs. Motivational salience refers to the engagement in behaviors designed to enhance appearance, such as body surveillance. Based on a three-wave panel survey of 973 Flemish preadolescents (Mage = 11.15, SD = 1.13) we found that the motivational and self-evaluative components had a different impact on media internalization. For preadolescents who engaged in more body surveillance, watching television resulted in more media internalization. For preadolescents who had fewer dysfunctional appearance beliefs, watching television resulted in more media internalization. These findings suggest that appearance schematicity is an important susceptibility variable in the relationship between TV-exposure and media internalization, and emphasize the importance of investigating individual dispositions beyond gender differences. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Schematic representations of local environmental space guide goal-directed navigation.
Marchette, Steven A; Ryan, Jack; Epstein, Russell A
2017-01-01
To successfully navigate to a target, it is useful to be able to define its location at multiple levels of specificity. For example, the location of a favorite coffee mug can be described in terms of which room it is in, or in terms of where it is within the room. An appealing hypothesis is that these levels of description are retrieved from memory by accessing the same representation at progressively finer levels of granularity-first remembering the general location of an object and then "zooming in." Here we provide evidence for an alternative view, in which navigational behavior is guided by independent representations at multiple spatial scales. Subjects learned the locations of objects that were positioned within four visually distinct but geometrically similar buildings, which were in turn positioned within a broader virtual park. They were then tested on their knowledge of object location by asking them to navigate to the remembered location of each object. We examined errors during the test phase for confusions among geometrically analogous locations in different buildings-that is, navigating to the right location in the wrong building. We observed that subjects frequently made these confusions, which are analogous to remembering a passage's location on the page of a book but not remembering the page that the passage is on. This suggests that subjects were recalling the object's local location without recalling its global location. Further manipulations across seven experiments indicated that geometric confusions were observed even between buildings that were not metrically identical as long as geometrical equivalence could be defined. However, removing the walls so that the larger environment was no longer divided into subspaces abolished these errors. Taken together, our results suggest that human spatial memory contains two separable representations of "where" an object can be found: (i) a schematic map of where an object lies with respect to local
Babcock Redux: An Amendment of Babcock's Schematic of the Sun's Magnetic Cycle
Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.
2017-08-01
We amend Babcock's original scenario for the global dynamo process that sustains the Sun's 22-year magnetic cycle. The amended scenario fits post-Babcock observed features of the magnetic activity cycle and convection zone, and is based on ideas of Spruit & Roberts (1983, Nature, 304, 401) about magnetic flux tubes in the convection zone. A sequence of four schematic cartoons lays out the proposed evolution of the global configuration of the magnetic field above, in, and at the bottom of the convection zone through sunspot Cycle 23 and into Cycle 24. Three key elements of the amended scenario are: (1) as the net following-polarity magnetic field from the sunspot-region Ω-loop fields of an ongoing sunspot cycle is swept poleward to cancel and replace the opposite-polarity polar-cap field from the previous sunspot cycle, it remains connected to the ongoing sunspot cycle's toroidal source-field band at the bottom of the convection zone; (2) topological pumping by the convection zone's free convection keeps the horizontal extent of the poleward-migrating following-polarity field pushed to the bottom, forcing it to gradually cancel and replace old horizontal field below it that connects the ongoing-cycle source-field band to the previous-cycle polar-cap field; (3) in each polar hemisphere, by continually shearing the poloidal component of the settling new horizontal field, the latitudinal differential rotation low in the convection zone generates the next-cycle source-field band poleward of the ongoing-cycle band. The amended scenario is a more-plausible version of Babcock's scenario, and its viability can be explored by appropriate kinematic flux-transport solar-dynamo simulations. A paper giving a full description of our dynamo scenario is posted on arXiv (http://arxiv.org/abs/1606.05371).This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Targeted Research and Technology Program and the Hinode
Babcock Redux: An Amendment of Babcock's Schematic of the Sun's Magnetic Cycle
Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.
2016-10-01
We amend Babcock's original scenario for the global dynamo process that sustains the Sun's 22-year magnetic cycle. The amended scenario fits post-Babcock observed features of the magnetic activity cycle and convection zone, and is based on ideas of Spruit & Roberts (1983) about magnetic flux tubes in the convection zone. A sequence of four schematic cartoons lays out the proposed evolution of the global configuration of the magnetic field above, in, and at the bottom of the convection zone through sunspot Cycle 23 and into Cycle 24. Three key elements of the amended scenario are: (1) as the net following-polarity magnetic field from the sunspot-region -loop fields of an ongoing sunspot cycle is swept poleward to cancel and replace the opposite-polarity polar-cap field from the previous sunspot cycle, it remains connected to the ongoing sunspot cycle's toroidal source-field band at the bottom of the convection zone; (2) topological pumping by the convection zone's free convection keeps the horizontal extent of the poleward-migrating following-polarity field pushed to the bottom, forcing it to gradually cancel and replace old horizontal field below it that connects the ongoing-cycle source-field band to the previous-cycle polar-cap field; (3) in each polar hemisphere, by continually shearing the poloidal component of the settling new horizontal field, the latitudinal differential rotation low in the convection zone generates the next-cycle source-field band poleward of the ongoing-cycle band. The amended scenario is a more-plausible version of Babcock's scenario, and its viability can be explored by appropriate kinematic flux-transport solar-dynamo simulations. A paper of the above title and authors, giving a full description of the solar dynamo scenario of this abstract, is available at http://arxiv.org/abs/1606.05371. This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Targeted Research and
Directory of Open Access Journals (Sweden)
Musial Frauke
2006-09-01
Full Text Available Abstract Background Previous studies revealed increased parietal late positive potentials (LPPs in response to spider pictures in spider phobic individuals. This study searched for basic features of fear-relevant stimuli by investigating whether schematic spider images are sufficient to evoke differential behavioral as well as differential early and late ERP responses in spider phobic, social phobic (as a clinical control group, and non-phobic control participants. Methods Behavioral and electrophysiological correlates of the processing of schematic spider and flower images were investigated while participants performed a color (emotional Stroop and an object identification task. Stimuli were schematic pictures of spiders and flowers matched with respect to constituting visual elements. Results Consistent with previous studies using photographic spider pictures, spider phobic persons showed enhanced LPPs when identifying schematic spiders compared to schematic flowers. In addition, spider phobic individuals showed generally faster responses than the control groups. This effect was interpreted as evidence for an increased general behavioral hypervigilance in this anxiety disorder group. Furthermore, both phobic groups showed enhanced P100 amplitudes compared to controls, which was interpreted as evidence for an increased (cortical hypervigilance for incoming stimuli in phobic patients in general. Finally, all groups showed faster identification of and larger N170 amplitudes in response to schematic spider than flower pictures. This may reflect either a general advantage for fear-relevant compared to neutral stimuli, or might be due to a higher level of expertise in processing schematic spiders as compared to the more artificially looking flower stimuli. Conclusion Results suggest that schematic spiders are sufficient to prompt differential responses in spider-fearful and spider-non-fearful persons in late ERP components. Early ERP components, on
Crundall, David; Crundall, Elizabeth; Burnett, Gary; Shalloe, Sally; Sharples, Sarah
2011-08-01
Map information for drivers is usually presented in an allocentric-topographic form (as with printed maps) or in an egocentric-schematic form (as with road signs). The advent of new variable message boards on UK motorways raises the possibility of presenting road maps to reflect congestion ahead. Should these maps be allocentric-topographic or egocentric-schematic? This was assessed in an eye tracking study, with participants viewing maps of a motorway network in order to identify whether any congestion was relevant to their intended route. The schematic-egocentric maps were responded to most accurately with shorter fixation durations suggesting easier processing. In particular, the driver's entrance and intended exit from the map were attended to more in the allocentric maps. Individual differences in mental rotation ability also seem to contribute to poor performance on allocentric maps. The results favour schematic-egocentric maps for roadside congestion information, but also provide theoretical insights into map-rotation and individual differences. Statement of Relevance: This study informs designers and policy makers about optimum representations of traffic congestion on roadside variable message signs and, furthermore, demonstrates that individual differences contribute to problems with processing certain sign types. Schematic-egocentric representations of a motorway network produced the best results, as noted in behavioural and eye movement measures.
Structure of Eigenstates and Local Spectral Density of States A Three-Orbital Schematic Shell Model
Wang, W; Casati, G; Wang, Wen-ge
1998-01-01
The average shape of the Spectral Local Density of States (LDOS) and eigenfunctions (EFs) has been studied numerically for a conservative dynamical model (three-orbital Lipkin-Meshkov-Glick model) which can exhibit strong chaos in the classical limit. The attention is paid to the comparison of the shape of LDOS with that known for random matrix models, as well as to the shape of the EFs, for different values of the perturbation strength. The classical counterparts of the LDOS has also been studied and found in a remarkable agreement with the quantum calculations. Finally, by making use of a generalization of Brillouin- Wigner perturbation expansion, the form of long tails of LDOS and EFs is given analytically and confirmed numerically.
Oblique (off-axis) astigmatism of the reduced schematic eye with elliptical refracting surface.
Wang, Y Z; Thibos, L N
1997-07-01
The oblique (off-axis) astigmatism of the Indiana Eye, an aspheric reduced-eye model of ocular chromatic aberration and spherical aberration, is computed across the visual field by using Coddington's equations for nonspherical surfaces of revolution. Our results show that the amount of astigmatism varies significantly with the shape of the refracting surface and with the axial location of the pupil. For a pupil located 1.91 mm from the apex of the refracting surface (as originally specified for the model), the calculated Sturm's interval was larger than that reported in the literature. However, by moving the model's pupil 0.84 mm axially away from the apex toward the nodal point, a close match was achieved between Sturm's interval of the model eye and published data from human eyes for eccentricities up to 60 degrees. These results demonstrate that the aspheric reduced-eye model is capable of simultaneously accounting for the chromatic, spherical, and oblique astigmatic aberrations typically found in human eyes.
Al-Balushi, Sulaiman M.; Coll, Richard Kevin
2013-01-01
The current study compared different learners' static and dynamic mental images of unseen scientific species and processes in relation to their spatial ability. Learners were classified into verbal, visual and schematic. Dynamic images were classified into: appearing/disappearing, linear-movement, and rotation. Two types of scientific entities and…
National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...
Cruess, Richard L; Cruess, Sylvia R; Boudreau, J Donald; Snell, Linda; Steinert, Yvonne
2015-06-01
Recent calls to focus on identity formation in medicine propose that educators establish as a goal of medical education the support and guidance of students and residents as they develop their professional identity. Those entering medical school arrive with a personal identity formed since birth. As they proceed through the educational continuum, they successively develop the identity of a medical student, a resident, and a physician. Each individual's journey from layperson to skilled professional is unique and is affected by "who they are" at the beginning and "who they wish to become."Identity formation is a dynamic process achieved through socialization; it results in individuals joining the medical community of practice. Multiple factors within and outside of the educational system affect the formation of an individual's professional identity. Each learner reacts to different factors in her or his own fashion, with the anticipated outcome being the emergence of a professional identity. However, the inherent logic in the related processes of professional identity formation and socialization may be obscured by their complexity and the large number of factors involved.Drawing on the identity formation and socialization literature, as well as experience gained in teaching professionalism, the authors developed schematic representations of these processes. They adapted them to the medical context to guide educators as they initiate educational interventions, which aim to explicitly support professional identity formation and the ultimate goal of medical education-to ensure that medical students and residents come to "think, act, and feel like a physician."
Grimm, Maximilian; Zimniak, Tomasz; Kahraman, Abdullah; Herzog, Franz
2015-07-01
The identification of crosslinks by mass spectrometry has recently been established as an integral part of the hybrid structural analysis of protein complexes and networks. The crosslinking analysis determines distance restraints between two covalently linked amino acids which are typically summarized in a table format that precludes the immediate and comprehensive interpretation of the topological data. xVis displays crosslinks in clear schematic representations in form of a circular, bar or network diagram. The interactive graphs indicate the linkage sites and identification scores, depict the spatial proximity of structurally and functionally annotated protein regions and the evolutionary conservation of amino acids and facilitate clustering of proteins into subcomplexes according to the crosslink density. Furthermore, xVis offers two options for the qualitative assessment of the crosslink identifications by filtering crosslinks according to identification scores or false discovery rates and by displaying the corresponding fragment ion spectrum of each crosslink for the manual validation of the mass spectrometric data. Our web server provides an easy-to-use tool for the fast topological and functional interpretation of distance information on protein complex architectures and for the evaluation of crosslink fragment ion spectra. xVis is available under a Creative Commons Attribution-ShareAlike 4.0 International license at http://xvis.genzentrum.lmu.de/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Energy Technology Data Exchange (ETDEWEB)
Kloet, W.M. [Rutgers - the State Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy; Loiseau, B. [Institut de Physique Nucleaire, 91 - Orsay (France). Div. de Physique Theorique
1995-11-01
A simple {pi}{pi}, KK, and {rho}{rho}({omega}{omega}) fully coupled channel model is proposed to predict the isoscalar S-wave phase shifts and inelasticities for {pi}{pi} scattering in the 1.0 to 2.0 GeV region. The S-matrix is required to exhibit poles corresponding to the established isoscalar J{sup {pi}}=0{sup +} resonances f{sub 0}(975), f{sub 0}(1400), and f{sub 0}(1710). A dominant feature of the experimental {pi}{pi} inelasticity is the clear opening of the KK channel near 1 GeV, and the opening of another channel in the 1.4-1.5 GeV region. The success of our model in predicting this observed dramatic energy dependence indicates that the effect of multipion channels is adequately described by the {pi}{pi} coupling to the KK channel, the {rho}{rho}(4{pi}) and {omega}{omega}(6{pi}) channels. (orig.)
The ππ S-wave in the 1 to 2 GeV region from a ππ,bar K K and ρρ(ωω) coupled channel model
Kloet, W. M.; Loiseau, B.
1995-06-01
A simple ππ,bar K K, and ρρ(ωω) fully coupled channel model is proposed to predict the isoscalar S-wave phase shifts and inelasticities for ππ scattering in the 1.0 to 2.0 GeV region. The S- matrix is required to exhibit poles corresponding to the established isoscalar J π=0+ resonances f 0(975), f 0(1400), and f 0(1710). A dominant feature of the experimental ππ inelasticity is the clear opening of thebar K K channel near 1 GeV, and the opening of another channel in the 1.4 1.5 GeV region. The success of our model in predicting this observed dramatic energy dependence indicates that the effect of multipion channels is adequately described by the ππ coupling to thebar K K channel, the ρρ(4π) and ωω(6π) channels.
Energy Technology Data Exchange (ETDEWEB)
Kowalczyk, P., E-mail: Pawel.Kowalczyk@fuw.edu.pl [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Jastrzebski, W.; Szczepkowski, J. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Pazyuk, E. A.; Stolyarov, A. V., E-mail: avstol@phys.chem.msu.ru [Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991 (Russian Federation)
2015-06-21
We have carried out the direct deperturbation analysis of about 780 rovibronic term values of the strongly spin-orbit (SO) coupled A{sup 1}Σ{sup +} and b{sup 3}Π states of the {sup 7}Li{sup 133}Cs molecule recorded by polarization labelling spectroscopy technique. The explicit A{sup 1}Σ{sup +} ∼ b{sup 3}Π{sub Ω=0,1,2} coupled-channels treatment allowed us to reproduce 95% experimental term values with a standard deviation of 0.05 cm{sup −1} which is close to the accuracy of the present experiment. The initial potential energy curves (PECs) of the mutually perturbed states and SO matrix elements were ab initio evaluated in the basis of the spin-averaged wave functions. The empirically refined PECs and SO functions, along with the theoretical transition dipole moments, were used to predict energy and radiative properties of the A ∼ b complex for low J levels of both {sup 7}Li{sup 133}Cs and {sup 6}Li{sup 133}Cs isotopologues. The reasonable candidates for the stimulated Raman transitions between initial Feshbach resonance states, the mixed levels of the A ∼ b complex, and absolute ground X{sup 1}Σ{sup +} (v = 0 and J = 0) state were identified.
Schematic Window Methodology Project
National Aeronautics and Space Administration — Using a set of accurate analytic Variation of Parameters (VOP) equations for orbit propagation, and a method for defining and ‘mixing-and-matching’...
Casey, Michael A
2017-01-01
Underlying the experience of listening to music are parallel streams of auditory, categorical, and schematic qualia, whose representations and cortical organization remain largely unresolved. We collected high-field (7T) fMRI data in a music listening task, and analyzed the data using multivariate decoding and stimulus-encoding models. Twenty subjects participated in the experiment, which measured BOLD responses evoked by naturalistic listening to twenty-five music clips from five genres. Our first analysis applied machine classification to the multivoxel patterns that were evoked in temporal cortex. Results yielded above-chance levels for both stimulus identification and genre classification-cross-validated by holding out data from multiple of the stimuli during model training and then testing decoding performance on the held-out data. Genre model misclassifications were significantly correlated with those in a corresponding behavioral music categorization task, supporting the hypothesis that geometric properties of multivoxel pattern spaces underlie observed musical behavior. A second analysis employed a spherical searchlight regression analysis which predicted multivoxel pattern responses to music features representing melody and harmony across a large area of cortex. The resulting prediction-accuracy maps yielded significant clusters in the temporal, frontal, parietal, and occipital lobes, as well as in the parahippocampal gyrus and the cerebellum. These maps provide evidence in support of our hypothesis that geometric properties of music cognition are neurally encoded as multivoxel representational spaces. The maps also reveal a cortical topography that differentially encodes categorical and absolute-pitch information in distributed and overlapping networks, with smaller specialized regions that encode tonal music information in relative-pitch representations.
Directory of Open Access Journals (Sweden)
Michael A. Casey
2017-07-01
Full Text Available Underlying the experience of listening to music are parallel streams of auditory, categorical, and schematic qualia, whose representations and cortical organization remain largely unresolved. We collected high-field (7T fMRI data in a music listening task, and analyzed the data using multivariate decoding and stimulus-encoding models. Twenty subjects participated in the experiment, which measured BOLD responses evoked by naturalistic listening to twenty-five music clips from five genres. Our first analysis applied machine classification to the multivoxel patterns that were evoked in temporal cortex. Results yielded above-chance levels for both stimulus identification and genre classification–cross-validated by holding out data from multiple of the stimuli during model training and then testing decoding performance on the held-out data. Genre model misclassifications were significantly correlated with those in a corresponding behavioral music categorization task, supporting the hypothesis that geometric properties of multivoxel pattern spaces underlie observed musical behavior. A second analysis employed a spherical searchlight regression analysis which predicted multivoxel pattern responses to music features representing melody and harmony across a large area of cortex. The resulting prediction-accuracy maps yielded significant clusters in the temporal, frontal, parietal, and occipital lobes, as well as in the parahippocampal gyrus and the cerebellum. These maps provide evidence in support of our hypothesis that geometric properties of music cognition are neurally encoded as multivoxel representational spaces. The maps also reveal a cortical topography that differentially encodes categorical and absolute-pitch information in distributed and overlapping networks, with smaller specialized regions that encode tonal music information in relative-pitch representations.
Ganapathi, Gani B.; Seshan, P. K.; Ferrall, Joseph; Rohatgi, Naresh
1992-01-01
An extension is proposed for the NASA Space Exploration Initiative's Generic Modular Flow Schematics for physical/chemical life support systems which involves the addition of biological processes. The new system architecture includes plant, microbial, and animal habitat, as well as the human habitat subsystem. Major Feedstock Production and Food Preparation and Packaging components have also been incorporated. Inedible plant, aquaculture, microbial, and animal solids are processed for recycling.
SRD 166 MEMS Calculator (Web, free access) This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.
1994-01-01
MathSoft Plus 5.0 is a calculation software package for electrical engineers and computer scientists who need advanced math functionality. It incorporates SmartMath, an expert system that determines a strategy for solving difficult mathematical problems. SmartMath was the result of the integration into Mathcad of CLIPS, a NASA-developed shell for creating expert systems. By using CLIPS, MathSoft, Inc. was able to save the time and money involved in writing the original program.
McCarty, George
1982-01-01
How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...
DEFF Research Database (Denmark)
Petersen, Kurt Erling
1986-01-01
Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety...... and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic...... approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...
A method for calculating proton-nucleus elastic cross-sections
Tripathi, R K; Cucinotta, F A
2002-01-01
Recently [Nucl. Instr. and Meth. B 145 (1998) 277; Extraction of in-medium nucleon-nucleon amplitude from experiment, NASA-TP, 1998], we developed a method of extracting nucleon-nucleon (N-N) cross-sections in the medium directly from experiment. The in-medium N-N cross-sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the NASA Langley Research Center. We investigated [Proton-nucleus total cross-sections in coupled-channel approach, NASA/TP, 2000; Nucl. Instr. and Meth. B 173-174 (2001) 391] the ratio of real to imaginary part of the two body scattering amplitude in the medium. These ratios are used in combination with the in-medium N-N cross-sections to calculate proton-nucleus elastic cross-sections. The agreement is excellent with the available experimental data. These cross-sections are needed for the radiation risk assessment of space missions.
Energy Technology Data Exchange (ETDEWEB)
Stefanini, A.M.; Corradi, L.; Ackermann, D.; Facco, A.; Gramegna, F.; Moreno, H.; Mueller, L.; Napoli, D.R.; Prete, G.F.; Spolaore, P. (Ist. Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro); Beghini, S.; Fabris, D.; Montagnoli, G.; Nebbia, G.; Ruiz, J.A.; Segato, G.F.; Signorini, C.; Viesti, G. (Padua Univ. (Italy). Dipt. di Fisica Ist. Nazionale di Fisica Nucleare, Padua (Italy))
1992-10-19
Fusion cross sections and mean angular momenta have been measured for [sup 64]Ni + [sup 92,96]Zr around the Coulomb barrier. The results are presented and systematically compared with the predictions of a schematic coupled-channel model, demonstrating the need of more refined calculations including higher-order coupling effects, and/or other degrees of freedom, beyond the usual inelastic and quasi-elastic transfer channels. (orig.).
Assessing the adequacy of the bare optical potential in near-barrier fusion calculation
Energy Technology Data Exchange (ETDEWEB)
Canto, L.F. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, CP 68528, Rio de Janeiro (Brazil); Gomes, P.R.S.; Lubian, J. [Universidade Federal Fluminense, Instituto de Fisica, Niteroi, R.J. (Brazil); Hussein, M.S. [Universidade de Sao Paulo, Instituto de Estudos Avancados, C. P. 72012, Sao Paulo-SP (Brazil); Universidade de Sao Paulo, Instituto de Fisica, C. P. 66318, Sao Paulo (Brazil); Lotti, P. [INFN, Padova (Italy)
2014-05-15
We critically examine the differences among the different bare nuclear interactions used in near-barrier heavy-ion fusion analysis and coupled-channels calculations, and discuss the possibility of extracting the barrier parameters of the bare potential from above-barrier data. We show that the choice of the bare potential may be critical for the analysis of the fusion cross sections. Although this may seem trivial, several recent papers use different bare potentials and reach different conclusions, especially when weakly bound systems are considered and possible relatively small fusion cross section enhancements or suppressions are found. We show also that the barrier parameters taken from above-barrier data may be very wrong. (orig.)
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...
... NIAAA College Materials Supporting Research Special Features CollegeAIM College Administrators Parents & Students Home > Special Features > Calculators > Alcohol Calorie Calculator Weekly Total 0 Calories Alcohol Calorie ...
Energy Technology Data Exchange (ETDEWEB)
Struble, G.L.; Haight, R.C.
1981-03-01
Topics covered include: studies of (n, charged particle) reactions with 14 to 15 MeV neutrons; photoneutron cross sections for /sup 15/N; neutron radiative capture; Lane-model analysis of (p,p) and (n,n) scattering on the even tin isotopes; neutron scattering cross sections for /sup 181/Ta, /sup 197/Au, /sup 209/Bi, /sup 232/Th, and /sup 238/U inferred from proton scattering and charge exchange cross sections; neutron-induced fission cross sections of /sup 245/Cm and /sup 242/Am; fission neutron multiplicities for /sup 245/Cm and /sup 242/Am; the transport of 14 MeV neutrons through heavy materials 150 < A < 208; /sup 249/Cm energy levels from measurement of thermal neutron capture gamma rays; /sup 231/Th energy levels from neutron capture gamma ray and conversion electron spectroscopy; new measurements of conversion electron binding energies in berkelium and californium; nuclear level densities; relative importance of statistical vs. valence neutron capture in the mass-90 region; determination of properties of short-lived fission products; fission yield of /sup 87/Br and /sup 137/I from 15 nuclei ranging from /sup 232/Th to /sup 249/Cf; evaluation of charged particle data for the ECPL library; evaluation of secondary charged-particle energy and angular distributions for ENDL; and evaluated nuclear structure libraries derived from the table of isotopes. (GHT)
Williams, David E.
1981-01-01
This short quiz for teachers is intended to help them to brush up on their calculator operating skills and to prepare for the types of questions their students will ask about calculator idiosyncracies. (SJL)
Bahr, Patrick; Hutton, Graham
2015-01-01
In this article we present a new approach to the problem of calculating compilers. In particular, we develop a simple but general technique that allows us to derive correct compilers from high- level semantics by systematic calculation, with all details of the implementation of the compilers falling naturally out of the calculation process. Our approach is based upon the use of standard equational reasoning techniques, and has been applied to calculate compilers for a wide range of language f...
Autistic Savant Calendar Calculators.
Patti, Paul J.
This study identified 10 savants with developmental disabilities and an exceptional ability to calculate calendar dates. These "calendar calculators" were asked to demonstrate their abilities, and their strategies were analyzed. The study found that the ability to calculate dates into the past or future varied widely among these…
Threlfall, John
2002-01-01
Suggests that strategy choice is a misleading characterization of efficient mental calculation and that teaching mental calculation methods as a whole is not conducive to flexibility. Proposes an alternative in which calculation is thought of as an interaction between noticing and knowledge. Presents an associated teaching approach to promote…
Mutual coupling, channel model, and BER for curvilinear antenna arrays
Huang, Zhiyong
This dissertation introduces a wireless communications system with an adaptive beam-former and investigates its performance with different antenna arrays. Mutual coupling, real antenna elements and channel models are included to examine the system performance. In a beamforming system, mutual coupling (MC) among the elements can significantly degrade the system performance. However, MC effects can be compensated if an accurate model of mutual coupling is available. A mutual coupling matrix model is utilized to compensate mutual coupling in the beamforming of a uniform circular array (UCA). Its performance is compared with other models in uplink and downlink beamforming scenarios. In addition, the predictions are compared with measurements and verified with results from full-wave simulations. In order to accurately investigate the minimum mean-square-error (MSE) of an adaptive array in MC, two different noise models, the environmental and the receiver noise, are modeled. The minimum MSEs with and without data domain MC compensation are analytically compared. The influence of mutual coupling on the convergence is also examined. In addition, the weight compensation method is proposed to attain the desired array pattern. Adaptive arrays with different geometries are implemented with the minimum MSE algorithm in the wireless communications system to combat interference at the same frequency. The bit-error-rate (BER) of systems with UCA, uniform rectangular array (URA) and UCA with center element are investigated in additive white Gaussian noise plus well-separated signals or random direction signals scenarios. The output SINR of an adaptive array with multiple interferers is analytically examined. The influence of the adaptive algorithm convergence on the BER is investigated. The UCA is then investigated in a narrowband Rician fading channel. The channel model is built and the space correlations are examined. The influence of the number of signal paths, number of the interferers, Doppler spread and convergence are investigated. The tracking mode is introduced to the adaptive array system, and it further improves the BER. The benefit of using faster data rate (wider bandwidth) is discussed. In order to have better performance in a 3D space, the geometries of uniform spherical array (USAs) are presented and different configurations of USAs are discussed. The LMS algorithm based on temporal a priori information is applied to UCAs and USAs to beamform the patterns. Their performances are compared based on simulation results. Based on the analytical and simulation results, it can be concluded that mutual coupling slightly influences the performance of the adaptive array in communication systems. In addition, arrays with curvilinear geometries perform well in AWGN and fading channels.
Energy Technology Data Exchange (ETDEWEB)
Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment
1998-03-01
In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)
Multiphase flow calculation software
Fincke, James R.
2003-04-15
Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.
Radar Signature Calculation Facility
Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...
Waste Package Lifting Calculation
Energy Technology Data Exchange (ETDEWEB)
H. Marr
2000-05-11
The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.
Electrical installation calculations advanced
Kitcher, Christopher
2013-01-01
All the essential calculations required for advanced electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practiceA step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3For apprentices and electrical installatio
Evapotranspiration Calculator Desktop Tool
The Evapotranspiration Calculator estimates evapotranspiration time series data for hydrological and water quality models for the Hydrologic Simulation Program - Fortran (HSPF) and the Stormwater Management Model (SWMM).
Electronics Environmental Benefits Calculator
U.S. Environmental Protection Agency — The Electronics Environmental Benefits Calculator (EEBC) was developed to assist organizations in estimating the environmental benefits of greening their purchase,...
Electrical installation calculations basic
Kitcher, Christopher
2013-01-01
All the essential calculations required for basic electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practice. A step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3Fo
Chemical calculations and chemicals that might calculate
Barnett, Michael P.
I summarize some applications of symbolic calculation to the evaluation of molecular integrals over Slater orbitals, and discuss some spin-offs of this work that have wider potential. These include the exploration of the mechanized use of analogy. I explain the methods that I use to do this, in relation to mathematical proofs and to modeling step by step processes such as organic syntheses and NMR pulse sequences. Another spin-off relates to biological information processing. Some challenges and opportunities in the information infrastructure of interdisciplinary research are discussed.
[Understanding dosage calculations].
Benlahouès, Daniel
2016-01-01
The calculation of dosages in paediatrics is the concern of the whole medical and paramedical team. This activity must generate a minimum of risks in order to prevent care-related adverse events. In this context, the calculation of dosages is a practice which must be understood by everyone. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
DEFF Research Database (Denmark)
Frederiksen, Morten
2014-01-01
Williamson’s characterisation of calculativeness as inimical to trust contradicts most sociological trust research. However, a similar argument is found within trust phenomenology. This paper re-investigates Williamson’s argument from the perspective of Løgstrup’s phenomenological theory of trust....... Contrary to Williamson, however, Løgstrup’s contention is that trust, not calculativeness, is the default attitude and only when suspicion is awoken does trust falter. The paper argues that while Williamson’s distinction between calculativeness and trust is supported by phenomenology, the analysis needs...... to take actual subjective experience into consideration. It points out that, first, Løgstrup places trust alongside calculativeness as a different mode of engaging in social interaction, rather conceiving of trust as a state or the outcome of a decision-making process. Secondly, the analysis must take...
Unit Cost Compendium Calculations
U.S. Environmental Protection Agency — The Unit Cost Compendium (UCC) Calculations raw data set was designed to provide for greater accuracy and consistency in the use of unit costs across the USEPA...
Magnetic Field Grid Calculator
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...
National Stormwater Calculator
EPA’s National Stormwater Calculator (SWC) is a desktop application that estimates the annual amount of rainwater and frequency of runoff from a specific site anywhere in the United States (including Puerto Rico).
Calculation Tool for Engineering
Lampinen, Samuli
2016-01-01
The Study was conducted as qualitative research for K-S Konesuunnittelu Oy. The company provides mechanical engineering for technology suppliers in the Finnish export industries. The main objective was to study if the competitiveness of the case company could be improved using a self-made Calculation Tool (Excel Tool). The mission was to clarify processes in the case company to see the possibilities of Excel Tool and to compare it with other potential calculation applications. In addition,...
Current interruption transients calculation
Peelo, David F
2014-01-01
Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,
Wisniewski, H.; Gourdain, P.-A.
2017-10-01
APOLLO is an online, Linux based plasma calculator. Users can input variables that correspond to their specific plasma, such as ion and electron densities, temperatures, and external magnetic fields. The system is based on a webserver where a FastCGI protocol computes key plasma parameters including frequencies, lengths, velocities, and dimensionless numbers. FastCGI was chosen to overcome security problems caused by JAVA-based plugins. The FastCGI also speeds up calculations over PHP based systems. APOLLO is built upon the WT library, which turns any web browser into a versatile, fast graphic user interface. All values with units are expressed in SI units except temperature, which is in electron-volts. SI units were chosen over cgs units because of the gradual shift to using SI units within the plasma community. APOLLO is intended to be a fast calculator that also provides the user with the proper equations used to calculate the plasma parameters. This system is intended to be used by undergraduates taking plasma courses as well as graduate students and researchers who need a quick reference calculation.
LHC Bellows Impedance Calculations
Dyachkov, M
1997-01-01
To compensate for thermal expansion the LHC ring has to accommodate about 2500 bellows which, together with beam position monitors, are the main contributors to the LHC broad-band impedance budget. In order to reduce this impedance to an acceptable value the bellows have to be shielded. In this paper we compare different designs proposed for the bellows and calculate their transverse and longitudinal wakefields and impedances. Owing to the 3D geometry of the bellows, the code MAFIA was used for the wakefield calculations; when possible the MAFIA results were compared to those obtained with ABCI. The results presented in this paper indicate that the latest bellows design, in which shielding is provided by sprung fingers which can slide along the beam screen, has impedances smaller tha those previously estimated according to a rather conservative scaling of SSC calculations and LEP measurements. Several failure modes, such as missing fingers and imperfect RF contact, have also been studied.
INVAP's Nuclear Calculation System
Directory of Open Access Journals (Sweden)
Ignacio Mochi
2011-01-01
Full Text Available Since its origins in 1976, INVAP has been on continuous development of the calculation system used for design and optimization of nuclear reactors. The calculation codes have been polished and enhanced with new capabilities as they were needed or useful for the new challenges that the market imposed. The actual state of the code packages enables INVAP to design nuclear installations with complex geometries using a set of easy-to-use input files that minimize user errors due to confusion or misinterpretation. A set of intuitive graphic postprocessors have also been developed providing a fast and complete visualization tool for the parameters obtained in the calculations. The capabilities and general characteristics of this deterministic software package are presented throughout the paper including several examples of its recent application.
Salgado, C A; Salgado, Carlos A.; Wiedemann, Urs Achim
2003-01-01
We calculate the probability (``quenching weight'') that a hard parton radiates an additional energy fraction due to scattering in spatially extended QCD matter. This study is based on an exact treatment of finite in-medium path length, it includes the case of a dynamically expanding medium, and it extends to the angular dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft scattering approximation (Baier-Dokshitzer-Mueller-Peign\\'e-Schiff--Zakharov ``BDMPS-Z''-formalism) and in the single hard scattering approximation (N=1 opacity approximation). By comparison, we establish a simple relation between transport coefficient, Debye screening mass and opacity, for which both approximations lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating quenching weights is provided electronically. To illustrate its applications, we discuss the suppression of hadronic transverse momentum spectra in nucleus-nucleus colli...
Graphing Calculator Mini Course
Karnawat, Sunil R.
1996-01-01
The "Graphing Calculator Mini Course" project provided a mathematically-intensive technologically-based summer enrichment workshop for teachers of American Indian students on the Turtle Mountain Indian Reservation. Eleven such teachers participated in the six-day workshop in summer of 1996 and three Sunday workshops in the academic year. The project aimed to improve science and mathematics education on the reservation by showing teachers effective ways to use high-end graphing calculators as teaching and learning tools in science and mathematics courses at all levels. In particular, the workshop concentrated on applying TI-82's user-friendly features to understand the various mathematical and scientific concepts.
Gravitational constant calculation methodologies
Shakhparonov, V. M.; Karagioz, O. V.; Izmailov, V. P.
2011-01-01
We consider the gravitational constant calculation methodologies for a rectangular block of the torsion balance body presented in the papers Phys. Rev. Lett. 102, 240801 (2009) and Phys.Rev. D. 82, 022001 (2010). We have established the influence of non-equilibrium gas flows on the obtained values of G.
Calculation of collisional mixing
Koponen, I.; Hautala, M.
1990-06-01
Collisional mixing of markers is calculated by splitting the calculation into two parts. Relocation cross sections have been calculated using a realistic potential in a Monte Carlo simulation. The cross sections are used in the computation of marker relocation. The cumulative effect of successive relocations is assumed to be an uncorrelated transport process and it is treated as a weighted random walk. Matrix relocation was not included in the calculations. The results from this two-step simulation model are compared with analytical models. A fit to the simulated differential relocation cross sections has been found which makes the numerical integration of the Bothe formula feasible. The influence of primaries has been treated in this way. When all the recoils are included the relocation profiles are nearly Gaussian and the Pearson IV distributions yield acceptable profiles in the studied cases. The approximations and cut-off procedures which cause the major uncertainties in calculations are pointed out. The choice of the cut-off energy is shown to be the source of the largest uncertainty whereas the mathematical approximations can be used with good accuracy. The methods are used to study the broadening of a Pt marker in Si mixed by 300 keV Xe ions, broadening of a Ti marker in Al mixed by 300 keV Xe ions and broadening of a Ti marker in Hf mixed by 750 keV Kr ions. The fluence in each case is 2 × 10 16{ions}/{cm 2}. The calculated averages of half widths at half maximum vary between 11-18, 9-12 and 10-15 nm, respectively, depending on the cut-off energy and the mixing efficiencies vary between 11-29, 6-11 and 6-14 {Å5}/{eV}, respectively. The broadenings of Pt in Si and Ti in Al are about two times smaller than the measured values and the broadening of Ti in Hf is in agreement with the measured values.
Microcomputer calculations in physics
Killingbeck, J. P.
1985-01-01
The use of microcomputers to carry out computations in an interactive manner allows the judgement of the operator to be allied with the calculating power of the machine in a synthesis which speeds up the creation and testing of mathematical techniques for physical problems. This advantage is accompanied by a disadvantage, in that microcomputers are limited in capacity and power, and special analysis is needed to compensate for this. These two features together mean that there is a fairly recognisable body of methods which are particularly appropriate for interactive microcomputing. This article surveys a wide range of mathematical methods used in physics, indicating how they can be applied using microcomputers and giving several original calculations which illustrate the value of the microcomputer in stimulating the exploration of new methods. Particular emphasis is given to methods which use iteration, recurrence relation or extrapolation procedures which are well adapted to the capabilities of modern microcomputers.
CONVEYOR FOUNDATIONS CALCULATION
Energy Technology Data Exchange (ETDEWEB)
S. Romanos
1995-03-10
The purpose of these calculations is to design foundations for all conveyor supports for the surface conveyors that transport the muck resulting from the TBM operation, from the belt storage to the muck stockpile. These conveyors consist of: (1) Conveyor W-TO3, from the belt storage, at the starter tunnel, to the transfer tower. (2) Conveyor W-SO1, from the transfer tower to the material stacker, at the muck stockpile.
Calculations in furnace technology
Davies, Clive; Hopkins, DW; Owen, WS
2013-01-01
Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi
Bhatnagar, Shalabh
2017-01-01
Sound is an emerging source of renewable energy but it has some limitations. The main limitation is, the amount of energy that can be extracted from sound is very less and that is because of the velocity of the sound. The velocity of sound changes as per medium. If we could increase the velocity of the sound in a medium we would be probably able to extract more amount of energy from sound and will be able to transfer it at a higher rate. To increase the velocity of sound we should know the speed of sound. If we go by the theory of classic mechanics speed is the distance travelled by a particle divided by time whereas velocity is the displacement of particle divided by time. The speed of sound in dry air at 20 °C (68 °F) is considered to be 343.2 meters per second and it won't be wrong in saying that 342.2 meters is the velocity of sound not the speed as it's the displacement of the sound not the total distance sound wave covered. Sound travels in the form of mechanical wave, so while calculating the speed of sound the whole path of wave should be considered not just the distance traveled by sound. In this paper I would like to focus on calculating the actual speed of sound wave which can help us to extract more energy and make sound travel with faster velocity.
Multilayer optical calculations
Byrnes, Steven J
2016-01-01
When light hits a multilayer planar stack, it is reflected, refracted, and absorbed in a way that can be derived from the Fresnel equations. The analysis is treated in many textbooks, and implemented in many software programs, but certain aspects of it are difficult to find explicitly and consistently worked out in the literature. Here, we derive the formulas underlying the transfer-matrix method of calculating the optical properties of these stacks, including oblique-angle incidence, absorption-vs-position profiles, and ellipsometry parameters. We discuss and explain some strange consequences of the formulas in the situation where the incident and/or final (semi-infinite) medium are absorptive, such as calculating $T>1$ in the absence of gain. We also discuss some implementation details like complex-plane branch cuts. Finally, we derive modified formulas for including one or more "incoherent" layers, i.e. very thick layers in which interference can be neglected. This document was written in conjunction with ...
IPC - Isoelectric Point Calculator.
Kozlowski, Lukasz P
2016-10-21
Accurate estimation of the isoelectric point (pI) based on the amino acid sequence is useful for many analytical biochemistry and proteomics techniques such as 2-D polyacrylamide gel electrophoresis, or capillary isoelectric focusing used in combination with high-throughput mass spectrometry. Additionally, pI estimation can be helpful during protein crystallization trials. Here, I present the Isoelectric Point Calculator (IPC), a web service and a standalone program for the accurate estimation of protein and peptide pI using different sets of dissociation constant (pKa) values, including two new computationally optimized pKa sets. According to the presented benchmarks, the newly developed IPC pKa sets outperform previous algorithms by at least 14.9 % for proteins and 0.9 % for peptides (on average, 22.1 % and 59.6 %, respectively), which corresponds to an average error of the pI estimation equal to 0.87 and 0.25 pH units for proteins and peptides, respectively. Moreover, the prediction of pI using the IPC pKa's leads to fewer outliers, i.e., predictions affected by errors greater than a given threshold. The IPC service is freely available at http://isoelectric.ovh.org Peptide and protein datasets used in the study and the precalculated pI for the PDB and some of the most frequently used proteomes are available for large-scale analysis and future development. This article was reviewed by Frank Eisenhaber and Zoltán Gáspári.
The rating reliability calculator
Directory of Open Access Journals (Sweden)
Solomon David J
2004-04-01
Full Text Available Abstract Background Rating scales form an important means of gathering evaluation data. Since important decisions are often based on these evaluations, determining the reliability of rating data can be critical. Most commonly used methods of estimating reliability require a complete set of ratings i.e. every subject being rated must be rated by each judge. Over fifty years ago Ebel described an algorithm for estimating the reliability of ratings based on incomplete data. While his article has been widely cited over the years, software based on the algorithm is not readily available. This paper describes an easy-to-use Web-based utility for estimating the reliability of ratings based on incomplete data using Ebel's algorithm. Methods The program is available public use on our server and the source code is freely available under GNU General Public License. The utility is written in PHP, a common open source imbedded scripting language. The rating data can be entered in a convenient format on the user's personal computer that the program will upload to the server for calculating the reliability and other statistics describing the ratings. Results When the program is run it displays the reliability, number of subject rated, harmonic mean number of judges rating each subject, the mean and standard deviation of the averaged ratings per subject. The program also displays the mean, standard deviation and number of ratings for each subject rated. Additionally the program will estimate the reliability of an average of a number of ratings for each subject via the Spearman-Brown prophecy formula. Conclusion This simple web-based program provides a convenient means of estimating the reliability of rating data without the need to conduct special studies in order to provide complete rating data. I would welcome other researchers revising and enhancing the program.
Close-out report: Schematics and documentation
Energy Technology Data Exchange (ETDEWEB)
Medvedko, E.
1994-02-01
This report summarizes work on a project to develop a peak detector circuit, making use of the SPICE program. The main idea of the circuit, which was proposed by Comlinear Corporation, is that the voltage on the storing capacitor precisely repeats the input voltage. This is done by using negative feedback. This circuit is part of a proposed beam position monitoring system.
Schematic Approach to Information Services Reconfiguration
Directory of Open Access Journals (Sweden)
Sabah Al-Fedaghi
2015-02-01
Full Text Available Information system change is concerned with deliberate modifications to an organization’s technical and organiza‐ tional subsystems that deal with information. Changes result in adjustments being made to the configuration of information systems that could have an impact on the operations of those systems. This paper examines the problem of interference between old configuration activi‐ ties, new configuration activities and reconfiguration activities that occur due to overlapping modes. The paper proposes a novel form of depicting and solving the problem based on a flow-based conceptualization in which a configuration can be viewed as a system of flow systems organized architecturally, described by their internal flows, and connected by external flows and triggering. This method of diagramming is applied to a complex case study involving the reconfiguration of an office workflow for order processing described in BPMN. The diagrams resulting from this method and the BPMN diagrams are then examined side by side. Accordingly, the conclusion is that a new high-level representation seems more system‐ atic as a foundation for building a conceptual schema of business processes.
Point Defect Calculations in Tungsten
National Research Council Canada - National Science Library
Danilowicz, Ronald
1968-01-01
.... The vacancy migration energy for tungsten was calculated. The calculated value of 1.73 electron volts, together with experimental data, suggests that vacancies migrate in stage III recovery in tungsten...
CDCC calculations of fusion of 6Li with targets 144Sm and 154Sm: effect of resonance states
Gómez Camacho, A.; Lubian, J.; Zhang, H. Q.; Zhou, Shan-Gui
2017-12-01
Continuum Discretized Coupled-Channel (CDCC) model calculations of total, complete and incomplete fusion cross sections for reactions of the weakly bound 6Li with 144,154Sm targets at energies around the Coulomb barrier are presented. In the cluster structure frame of 6Li→α+d, short-range absorption potentials are considered for the interactions between the ground state of the projectile 6Li and α-d fragments with the target. In order to separately calculate complete and incomplete fusion and to reduce double-counting, the corresponding absorption potentials are chosen to be of different range. Couplings to low-lying excited states 2+, 3‑ of 144Sm and 2+, 4+ of 154Sm are included. So, the effect on total fusion from the excited states of the target is investigated. Similarly, the effect on fusion due to couplings to resonance breakup states of 6Li, namely, l=2, J π =3+,2+,1+ is also calculated. The latter effect is determined by using two approaches, (a) by considering only resonance state couplings and (b) by omitting these states from the full discretized energy space. Among other things, it is found that both resonance and non-resonance continuum breakup couplings produce fusion suppression at all the energies considered. A. Gómez Camacho from CONACYT, México, J. Lubian from CNPq, FAPERJ, Pronex, Brazil. S.G.Z was partly supported by the NSF of China (11120101005, 11275248, 11525524, 11621131001, 11647601, 11711540016), 973 Program of China (2013CB834400) and the Key Research Program of Frontier Sciences of CAS. H.Q.Z. from NSF China (11375266)
relline: Relativistic line profiles calculation
Dauser, Thomas
2015-05-01
relline calculates relativistic line profiles; it is compatible with the common X-ray data analysis software XSPEC (ascl:9910.005) and ISIS (ascl:1302.002). The two basic forms are an additive line model (RELLINE) and a convolution model to calculate relativistic smearing (RELCONV).
Calculated neutron intensities for SINQ
Energy Technology Data Exchange (ETDEWEB)
Atchison, F
1998-03-01
A fully detailed calculation of the performance of the SINQ neutron source, using the PSI version of the HETC code package, was made in 1996 to provide information useful for source commissioning. Relevant information about the formulation of the problem, cascade analysis and some of the results are presented. Aspects of the techniques used to verify the results are described and discussed together with a limited comparison with earlier results obtained from neutron source design calculations. A favourable comparison between the measured and calculated differential neutron flux in one of the guides gives further indirect evidence that such calculations can give answers close to reality in absolute terms. Due to the complex interaction between the many nuclear (and other) models involved, no quantitative evaluation of the accuracy of the calculational method in general terms can be given. (author) refs., 13 figs., 9 tabs.
Gómez Camacho, A.
2015-01-01
Calculations of elastic scattering angular distributions for reactions of the weakly bound projectile 6Li with targets 144Sm and 208Pb at energies above the barrier, are performed with the Continuum Discretized Coupled-Channel method (CDCC). Ground, resonant and nonresonant continuum states of 6Li are included up to some maximum energy epsilonmax for which convergence is achieved. In the three-body system, global interactions are used for the α-target and d - target sub-systems. The effect of continuum resonant states of 6Li, i.e., l = 2, jπ = 3+, 2+ and 1+ on elastic scattering angular distributions is investigated by extracting these states from the continuum space. It is found that the calculated elastic scattering angular distributions are in good agreement with the measurements for most of the cases studied where consideration of couplings to continuum states is essential. It is also found that the resonance character of the continuum states is in some cases important to obtain agreement with the data.
Energy Technology Data Exchange (ETDEWEB)
Garcilazo, H., E-mail: humberto@esfm.ipn.mx [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, Edificio 9, 07738 Mexico D.F. (Mexico); Gal, A., E-mail: avragal@savion.huji.ac.il [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)
2013-01-02
The {pi}{Lambda}N-{pi}{Sigma}N coupled-channel system with quantum numbers (Y,I,J{sup P})=(1,3/2 ,2{sup +}) is studied in a relativistic three-body model, using two-body separable interactions in the dominant p-wave pion-baryon and {sup 3}S{sub 1}YN channels. Three-body equations are solved in the complex energy plane to search for quasibound state and resonance poles, producing a robust narrow {pi}{Lambda}N resonance about 10-20 MeV below the {pi}{Sigma}N threshold. Viewed as a dibaryon, it is a {sup 5}S{sub 2} quasibound state consisting of {Sigma}(1385)N and {Delta}(1232)Y components. Comparison is made between the present relativistic model calculation and a previous, outdated nonrelativistic calculation which resulted in a {pi}{Lambda}N bound state. Effects of adding a K{sup Macron }NN channel are studied and found insignificant. Possible production and decay reactions of this (Y,I,J{sup P})=(1,3/2 ,2{sup +}) dibaryon are discussed.
Alaska Village Electric Load Calculator
Energy Technology Data Exchange (ETDEWEB)
Devine, M.; Baring-Gould, E. I.
2004-10-01
As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.
Practical astronomy with your calculator
Duffett-Smith, Peter
1989-01-01
Practical Astronomy with your Calculator, first published in 1979, has enjoyed immense success. The author's clear and easy to follow routines enable you to solve a variety of practical and recreational problems in astronomy using a scientific calculator. Mathematical complexity is kept firmly in the background, leaving just the elements necessary for swiftly making calculations. The major topics are: time, coordinate systems, the Sun, the planetary system, binary stars, the Moon, and eclipses. In the third edition there are entirely new sections on generalised coordinate transformations, nutr
Calculate Your Body Mass Index
... Institutes of Health Contact Us Get Email Alerts Font Size Accessible Search Form Search the NHLBI, use ... Be Physically Active Healthy Weight Tools BMI Calculator Menu Plans Portion Distortion Key Recommendations Healthy Weight Resources ...
Computer Calculation of Fire Danger
William A. Main
1969-01-01
This paper describes a computer program that calculates National Fire Danger Rating Indexes. fuel moisture, buildup index, and drying factor are also available. The program is written in FORTRAN and is usable on even the smallest compiler.
Landfill Gas Energy Benefits Calculator
This page contains the LFG Energy Benefits Calculator to estimate direct, avoided, and total greenhouse gas reductions, as well as environmental and energy benefits, for a landfill gas energy project.
Nursing students' mathematic calculation skills.
Rainboth, Lynde; DeMasi, Chris
2006-12-01
This mixed method study used a pre-test/post-test design to evaluate the efficacy of a teaching strategy in improving beginning nursing student learning outcomes. During a 4-week student teaching period, a convenience sample of 54 sophomore level nursing students were required to complete calculation assignments, taught one calculation method, and mandated to attend medication calculation classes. These students completed pre- and post-math tests and a major medication mathematic exam. Scores from the intervention student group were compared to those achieved by the previous sophomore class. Results demonstrated a statistically significant improvement from pre- to post-test and the students who received the intervention had statistically significantly higher scores on the major medication calculation exam than did the students in the control group. The evaluation completed by the intervention group showed that the students were satisfied with the method and outcome.
Transfer Area Mechanical Handling Calculation
Energy Technology Data Exchange (ETDEWEB)
B. Dianda
2004-06-23
This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use
Calculation of Rydberg interaction potentials
Weber, Sebastian; Tresp, Christoph; Menke, Henri; Urvoy, Alban; Firstenberg, Ofer; Büchler, Hans Peter; Hofferberth, Sebastian
2017-07-01
The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence can be fine-tuned with great flexibility by choosing appropriate Rydberg states and applying external electric and magnetic fields. More and more experiments are probing this interaction at short atomic distances or with such high precision that perturbative calculations as well as restrictions to the leading dipole-dipole interaction term are no longer sufficient. In this tutorial, we review all relevant aspects of the full calculation of Rydberg interaction potentials. We discuss the derivation of the interaction Hamiltonian from the electrostatic multipole expansion, numerical and analytical methods for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up to higher multipole orders on a desktop computer. Finally, we present example calculations showing the relevance of the full interaction calculation to current experiments. Our software for calculating Rydberg potentials including all features discussed in this tutorial is available as open source.
A Romberg Integral Spreadsheet Calculator
Directory of Open Access Journals (Sweden)
Kim Gaik Tay
2015-04-01
Full Text Available Motivated by the work of Richardson’s extrapolation spreadsheet calculator up to level 4 to approximate definite differentiation, we have developed a Romberg integral spreadsheet calculator to approximate definite integral. The main feature of this version of spreadsheet calculator is a friendly graphical user interface developed to capture the needed information to solve the integral by Romberg method. Users simply need to enter the variable in the integral, function to be integrated, lower and upper limits of the integral, select the desired accuracy of computation, select the exact function if it exists and lastly click the Compute button which is associated with VBA programming written to compute Romberg integral table. The full solution of the Romberg integral table up to any level can be obtained quickly and easily using this method. The attached spreadsheet calculator together with this paper helps educators to prepare their marking scheme easily and assist students in checking their answers instead of reconstructing the answers from scratch. A summative evaluation of this Romberg Spreadsheet Calculator has been conducted by involving 36 students as sample. The data was collected using questionnaire. The findings showed that the majority of the students agreed that the Romberg Spreadsheet Calculator provides a structured learning environment that allows learners to be guided through a step-by-step solution.
Recursive calculation of Hansen coefficients
Branham, Richard L., Jr.
1990-06-01
Hansen coefficients are used in expansions of the elliptic motion. Three methods for calculating the coefficients are studied: Tisserand's method, the Von Zeipel-Andoyer (VZA) method with explicit representation of the polynomials required to compute the Hansen coefficients, and the VZA method with the values of the polynomials calculated recursively. The VZA method with explicit polynomials is by far the most rapid, but the tabulation of the polynomials only extends to 12th order in powers of the eccentricity, and unless one has access to the polynomials in machine-readable form their entry is laborious and error-prone. The recursive calculation of the VZA polynomials, needed to compute the Hansen coefficients, while slower, is faster than the calculation of the Hansen coefficients by Tisserand's method, up to 10th order in the eccentricity and is still relatively efficient for higher orders. The main advantages of the recursive calculation are the simplicity of the program and one's being able to extend the expansions to any order of eccentricity with ease. Because FORTRAN does not implement recursive procedures, this paper used C for all of the calculations. The most important conclusion is recursion's genuine usefulness in scientific computing.
Mordred: a molecular descriptor calculator.
Moriwaki, Hirotomo; Tian, Yu-Shi; Kawashita, Norihito; Takagi, Tatsuya
2018-02-06
Molecular descriptors are widely employed to present molecular characteristics in cheminformatics. Various molecular-descriptor-calculation software programs have been developed. However, users of those programs must contend with several issues, including software bugs, insufficient update frequencies, and software licensing constraints. To address these issues, we propose Mordred, a developed descriptor-calculation software application that can calculate more than 1800 two- and three-dimensional descriptors. It is freely available via GitHub. Mordred can be easily installed and used in the command line interface, as a web application, or as a high-flexibility Python package on all major platforms (Windows, Linux, and macOS). Performance benchmark results show that Mordred is at least twice as fast as the well-known PaDEL-Descriptor and it can calculate descriptors for large molecules, which cannot be accomplished by other software. Owing to its good performance, convenience, number of descriptors, and a lax licensing constraint, Mordred is a promising choice of molecular descriptor calculation software that can be utilized for cheminformatics studies, such as those on quantitative structure-property relationships.
Precision Calculations in Supersymmetric Theories
Directory of Open Access Journals (Sweden)
L. Mihaila
2013-01-01
Full Text Available In this paper we report on the newest developments in precision calculations in supersymmetric theories. An important issue related to this topic is the construction of a regularization scheme preserving simultaneously gauge invariance and supersymmetry. In this context, we discuss in detail dimensional reduction in component field formalism as it is currently the preferred framework employed in the literature. Furthermore, we set special emphasis on the application of multi-loop calculations to the analysis of gauge coupling unification, the prediction of the lightest Higgs boson mass, and the computation of the hadronic Higgs production and decay rates in supersymmetric models. Such precise theoretical calculations up to the fourth order in perturbation theory are required in order to cope with the expected experimental accuracy on the one hand and to enable us to distinguish between the predictions of the Standard Model and those of supersymmetric theories on the other hand.
Monte Carlo calculations for HTRs
Energy Technology Data Exchange (ETDEWEB)
Hogenbirk, A. [ECN Nuclear Research, Petten (Netherlands)
1998-09-01
From a neutronics point of view pebble-bed HTRs are completely different from standard LWRs. The most important differences are to be found in the reactor geometry, the properties of the moderator (graphite instead of water) and the self-shielding of the fuel regions. Therefore, computer packages normally used for core analyses should be validated with experimental data before they can be used for HTR analyses. This especially holds for deterministic computer codes, in which approximations are made which may not be valid in pebble-bed HTRs. Monte Carlo codes more based on first principles suffer much less from this problem. In order to study small- and medium-sized LEU-HTR systems in the late 1980s an IAEA Coordinated Research Programme (CRP) was started. This CRP was mainly directed to the effects of water ingress and neutron streaming. The PROTEUS facility at the Paul Scherrer Institute (PSI) in Villigen, Switzerland, played a central role in this CRP. Benchmark quality measurements were provided in clean, easy-to-interpret critical configurations, using pebble-type fuel. ECN in Petten, Netherlands, contributed to the CRP by performing reactor calculations using the WIMS code system with deterministic calculations. However, a need was felt for reference calculations, in which as few approximations as possible were made. These analyses were performed with the Monte Carlo code MCNP-4A. In this contribution the results are given of the main MCNP-calculations. In these analyses a detailed model of the PROTEUS experimental set-up was used, whereas in the calculations use was made of high-quality continuous-energy cross-section data. The attention was focused on the calculation of the value of k{sub eff} and of streaming effects in the pebble-bed core. 15 refs.
Friction and wear calculation methods
Kragelsky, I V; Kombalov, V S
1981-01-01
Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a
Algorithmes Efficaces en Calcul Formel
Bostan, Alin; Chyzak, Frédéric; Giusti, Marc; Lebreton, Romain; Lecerf, Grégoire; Salvy, Bruno; Schost, Eric
2017-01-01
Voir la page du livre à l’adresse \\url{https://hal.archives-ouvertes.fr/AECF/}; International audience; Le calcul formel traite des objets mathématiques exacts d’un point de vue informatique. Cet ouvrage « Algorithmes efficaces en calcul formel » explore deux directions : la calculabilité et la complexité. La calculabilité étudie les classes d’objets mathématiques sur lesquelles des réponses peuvent être obtenues algorithmiquement. La complexité donne ensuite des outils pour comparer des algo...
Methods for Melting Temperature Calculation
Hong, Qi-Jun
Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which
Ab initio calculations of biomolecules
Leś, Andrzej; Adamowicz, Ludwik
1995-08-01
Ab initio quantum mechanical calculations are valuable tools for interpretation and elucidation of elemental processes in biochemical systems. With the ab initio approach one can calculate data that sometimes are difficult to obtain by experimental techniques. The most popular computational theoretical methods include the Hartree-Fock method as well as some lower-level variational and perturbational post-Hartree Fock approaches which allow to predict molecular structures and to calculate spectral properties. We have been involved in a number of joined theoretical and experimental studies in the past and some examples of these studies are given in this presentation. The systems chosen cover a wide variety of simple biomolecules, such as precursors of nucleic acids, double-proton transferring molecules, and simple systems involved in processes related to first stages of substrate-enzyme interactions. In particular, examples of some ab initio calculations used in the assignment of IR spectra of matrix isolated pyrimidine nucleic bases are shown. Some radiation-induced transformations in model chromophores are also presented. Lastly, we demonstrate how the ab-initio approach can be used to determine the initial several steps of the molecular mechanism of thymidylate synthase inhibition by dUMP analogues.
Dead reckoning calculating without instruments
Doerfler, Ronald W
1993-01-01
No author has gone as far as Doerfler in covering methods of mental calculation beyond simple arithmetic. Even if you have no interest in competing with computers you'll learn a great deal about number theory and the art of efficient computer programming. -Martin Gardner
CALCULATION OF PHYSISORPTION ENERGIES OF
African Journals Online (AJOL)
o-Fe:Os (I) SURFACE USING A CRYSTAL FIELD CLUSTER MODEL. A. Uzairu' ... is of considerable interest in industry and theoretial calculations of ... This choice of cluster naturally assumes an oxygen vacancy at the physisorption site and the adoption of at least three top Llli planes of atomic layers as the surface region.
QCD calculations for jet substructure
Dasgupta, Mrinal; Salam, Gavin P.
2014-01-01
We present results on novel analytic calculations to describe invariant mass distributions of QCD jets with three substructure algorithms: trimming, pruning and the mass-drop taggers. These results not only lead to considerable insight into the behaviour of these tools, but also show how they can be improved. As an example, we discuss the remarkable properties of the modified mass-drop tagger.
Affect and Graphing Calculator Use
McCulloch, Allison W.
2011-01-01
This article reports on a qualitative study of six high school calculus students designed to build an understanding about the affect associated with graphing calculator use in independent situations. DeBellis and Goldin's (2006) framework for affect as a representational system was used as a lens through which to understand the ways in which…
Algorithm Calculates Cumulative Poisson Distribution
Bowerman, Paul N.; Nolty, Robert C.; Scheuer, Ernest M.
1992-01-01
Algorithm calculates accurate values of cumulative Poisson distribution under conditions where other algorithms fail because numbers are so small (underflow) or so large (overflow) that computer cannot process them. Factors inserted temporarily to prevent underflow and overflow. Implemented in CUMPOIS computer program described in "Cumulative Poisson Distribution Program" (NPO-17714).
Heat transfer, insulation calculations simplified
Energy Technology Data Exchange (ETDEWEB)
Ganapathy, V.
1985-08-19
Determination of heat transfer coefficients for air, water, and steam flowing in tubes and calculation of heat loss through multilayered insulated surfaces have been simplified by two computer programs. The programs, written in BASIC, have been developed for the IBM and equivalent personal computers.
Calculating the Number of Tunnels
Li, Fajie; Klette, Reinhard; RuizShulcloper, J; Kropatsch, WG
2008-01-01
This paper considers 2-regions of grid cubes and proposes an algorithm for calculating the number of tunnels of such a. region. The graph-theoretical algorithm proceeds layer by layer; a proof of its correctness is provided, and its time complexity is also given.
Monte Carlo calculations of nuclei
Energy Technology Data Exchange (ETDEWEB)
Pieper, S.C. [Argonne National Lab., IL (United States). Physics Div.
1997-10-01
Nuclear many-body calculations have the complication of strong spin- and isospin-dependent potentials. In these lectures the author discusses the variational and Green`s function Monte Carlo techniques that have been developed to address this complication, and presents a few results.
The "Intelligence" of Calendrical Calculators.
Young, R. L.; Nettelbeck, T.
1994-01-01
The strategies of four men with mild mental retardation when performing calendar calculations were investigated. Results suggested that subjects were aware of calendar rules and regularities, including knowledge of the 14 different calendar templates. Their strategies were rigidly applied and relied heavily on memory, with little manipulation of…
Ab Initio Calculations of Oxosulfatovanadates
DEFF Research Database (Denmark)
Frøberg, Torben; Johansen, Helge
1996-01-01
Restricted Hartree-Fock and multi-configurational self-consistent-field calculations together with secondorder perturbation theory have been used to study the geometry, the electron density, and the electronicspectrum of (VO2SO4)-. A bidentate sulphate attachment to vanadium was found to be stabl...
Distorted Wave Calculations and Applications
Bhatia, A. K.; Fisher, Richard R. (Technical Monitor)
2000-01-01
Physical properties such as temperature and electron density of solar plasma and other astrophysical objects can be inferred from EUV and X-ray emission lines observed from space. These lines are emitted when the higher states of an ion are excited by electron impact and then decay by photon emission. Excitation cross sections are required for the spectroscopic analyses of the observations and various approximations have been used to calculate the scattering functions. One of them which has been widely used is a distorted wave approximation. This approximation, along with its applications to solar observations, is discussed. The Bowen fluorescence mechanism and optical depth effects are also discussed. It is concluded that such calculations are reliable for highly charged ions and for high electron temperatures.
CONTRIBUTION FOR MINING ATMOSPHERE CALCULATION
Directory of Open Access Journals (Sweden)
Franica Trojanović
1989-12-01
Full Text Available Humid air is an unavoidable feature of mining atmosphere, which plays a significant role in defining the climate conditions as well as permitted circumstances for normal mining work. Saturated humid air prevents heat conduction from the human body by means of evaporation. Consequently, it is of primary interest in the mining practice to establish the relative air humidity either by means of direct or indirect methods. Percentage of water in the surrounding air may be determined in various procedures including tables, diagrams or particular calculations, where each technique has its specific advantages and disadvantages. Classical calculation is done according to Sprung's formula, in which case partial steam pressure should also be taken from the steam table. The new method without the use of diagram or tables, established on the functional relation of pressure and temperature on saturated line, is presented here for the first time (the paper is published in Croatian.
Algorithm project weight calculation aircraft
Directory of Open Access Journals (Sweden)
Г. В. Абрамова
2013-07-01
Full Text Available The paper describes the process of a complex technical object design on the example of the aircraft, using information technology such as CAD/CAM/CAE-systems, presents the basic models of aircraft which are developed in the process of designing and reflect the different aspects of its structure and function. The idea of control parametric model at complex technical object design is entered, which is a set of initial data for the development of design stations and enables the optimal complex technical object control at all stages of design using modern computer technology. The paper discloses a process of weight design, which is associated with all stages of development aircraft and its production. Usage of a scheduling algorithm that allows to organize weight calculations are carried out at various stages of planning and weighing options to optimize the use of available database of formulas and methods of calculation
MARKOV MODELS IN CALCULATING CLV
DECEWICZ, Anna
2015-01-01
The paper presents a me hod of calculating customer lifetime value and finding optimal remarketing strategy basing on Markov model with short-term memory of client's activity. Furthermore, sensitivity analysis of optimal strategy is conducted for two ty pes of retention rate functional form defining transitin probabilities
Parallel plasma fluid turbulence calculations
Leboeuf, J. N.; Carreras, B. A.; Charlton, L. A.; Drake, J. B.; Lynch, V. E.; Newman, D. E.; Sidikman, K. L.; Spong, D. A.
The study of plasma turbulence and transport is a complex problem of critical importance for fusion-relevant plasmas. To this day, the fluid treatment of plasma dynamics is the best approach to realistic physics at the high resolution required for certain experimentally relevant calculations. Core and edge turbulence in a magnetic fusion device have been modeled using state-of-the-art, nonlinear, three-dimensional, initial-value fluid and gyrofluid codes. Parallel implementation of these models on diverse platforms--vector parallel (National Energy Research Supercomputer Center's CRAY Y-MP C90), massively parallel (Intel Paragon XP/S 35), and serial parallel (clusters of high-performance workstations using the Parallel Virtual Machine protocol)--offers a variety of paths to high resolution and significant improvements in real-time efficiency, each with its own advantages. The largest and most efficient calculations have been performed at the 200 Mword memory limit on the C90 in dedicated mode, where an overlap of 12 to 13 out of a maximum of 16 processors has been achieved with a gyrofluid model of core fluctuations. The richness of the physics captured by these calculations is commensurate with the increased resolution and efficiency and is limited only by the ingenuity brought to the analysis of the massive amounts of data generated.
Calculation of minimum miscibility pressure
Energy Technology Data Exchange (ETDEWEB)
Wang, Y.; Orr, F.M. [Department of Petroleum Engineering, Stanford University, Mitchell Bldg., Room 360, 94305-2220 Stanford, CA (United States)
2000-09-01
A method is described and tested for calculation of minimum miscibility pressure (MMP) that makes use of an analytical theory for one-dimensional, dispersion-free flow of multicomponent mixtures. The theory shows that in a displacement of an oil by a gas with n{sub c} components, the behavior of the displacement is controlled by a sequence of n{sub c}-1 key tie lines. Besides, the tie lines that extend through the initial oil and injection gas compositions, there are n{sub c}-3 tie lines, known as crossover tie lines, that can be found from a set of conditions that require the extensions of the appropriate tie lines to intersect each other. The MMP is calculated as the pressure at which one of the key tie lines becomes a tie line of zero length that is tangent to the critical locus. The numerical approach for solving the tie line intersection equations is described; slim tube test and compositional simulation data reported in the literature are used to show that the proposed approach can be used to calculate MMP accurately for displacements with an arbitrary number of components present.
Trejos Montoya, Victor Manuel
2010-01-01
El presente trabajo establece el desarrollo de un esquema de análisis del equilibrio líquido vapor de sistemas binarios asimétricos que contienen dióxido de carbono a altas presiones. Dicho esquema integra el ajuste de parámetros del equilibrio líquido vapor, análisis de funciones objetivo, reglas de mezclado EOS-Gex y consistencia termodinámica de este tipo de mezclas con el fin de mejorar las etapas de diseño y la puesta en marcha de equipos que operan con fluidos supercríticos / Abstrac...
AGING FACILITY CRITICALITY SAFETY CALCULATIONS
Energy Technology Data Exchange (ETDEWEB)
C.E. Sanders
2004-09-10
The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the
Band calculation of lonsdaleite Ge
Chen, Pin-Shiang; Fan, Sheng-Ting; Lan, Huang-Siang; Liu, Chee Wee
2017-01-01
The band structure of Ge in the lonsdaleite phase is calculated using first principles. Lonsdaleite Ge has a direct band gap at the Γ point. For the conduction band, the Γ valley is anisotropic with the low transverse effective mass on the hexagonal plane and the large longitudinal effective mass along the c axis. For the valence band, both heavy-hole and light-hole effective masses are anisotropic at the Γ point. The in-plane electron effective mass also becomes anisotropic under uniaxial tensile strain. The strain response of the heavy-hole mass is opposite to the light hole.
Yet another partial wave calculator
Energy Technology Data Exchange (ETDEWEB)
Greenwald, Daniel; Rauch, Johannes [TUM, Munich (Germany)
2016-07-01
We will present a new C++ library for partial wave analysis: YAP - yet another partial wave calculator. YAP is intended for amplitude analyses of the decays of spin-0 heavy mesons (principally B and D) to multiple (3, 4, etc.) pseudoscalar mesons but is not hard coded for such situations and is flexible enough to handle other decay scenarios. The library allows for both model dependent and model independent analysis methods. We introduce the software, and demonstrate examples for generating Monte Carlo data efficiently, and for analyzing data (both with the aid of the Bayesian Analysis Toolkit).
Entanglement entropy: a perturbative calculation
Energy Technology Data Exchange (ETDEWEB)
Rosenhaus, Vladimir; Smolkin, Michael [Center for Theoretical Physics and Department of Physics,University of California, Berkeley, CA 94720 (United States)
2014-12-31
We provide a framework for a perturbative evaluation of the reduced density matrix. The method is based on a path integral in the analytically continued spacetime. It suggests an alternative to the holographic and ‘standard’ replica trick calculations of entanglement entropy. We implement this method within solvable field theory examples to evaluate leading order corrections induced by small perturbations in the geometry of the background and entangling surface. Our findings are in accord with Solodukhin’s formula for the universal term of entanglement entropy for four dimensional CFTs.
The Dental Trauma Internet Calculator
DEFF Research Database (Denmark)
Gerds, Thomas Alexander; Lauridsen, Eva Fejerskov; Christensen, Søren Steno Ahrensburg
2012-01-01
Background/Aim Prediction tools are increasingly used to inform patients about the future dental health outcome. Advanced statistical methods are required to arrive at unbiased predictions based on follow-up studies. Material and Methods The Internet risk calculator at the Dental Trauma Guide...... provides prognoses for teeth with traumatic injuries based on the Copenhagen trauma database: http://www.dentaltraumaguide.org The database includes 2191 traumatized permanent teeth from 1282 patients that were treated at the dental trauma unit at the University Hospital in Copenhagen (Denmark...
Calculation of confined swirling jets
Chen, C. P.
1986-01-01
Computations of a confined coaxial swirling jet are carried out using a standard two-equation (k-epsilon) model and two modifications of this model based on Richardson-number corrections of the length-scale (epsilon) governing equation. To avoid any uncertainty involved in the setting up of inlet boundary conditions, actual measurements are used at the inlet plane of this calculation domain. The results of the numerical investigation indicate that the k-epsilon model is inadequate for the predictions of confined swirling flows. Although marginal improvement of the flow predictions can be achieved by these two corrections, neither can be judged satisfactory.
Calculation of Rydberg interaction potentials
DEFF Research Database (Denmark)
Weber, Sebastian; Tresp, Christoph; Menke, Henri
2017-01-01
The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence...... for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up...
Electronics reliability calculation and design
Dummer, Geoffrey W A; Hiller, N
1966-01-01
Electronics Reliability-Calculation and Design provides an introduction to the fundamental concepts of reliability. The increasing complexity of electronic equipment has made problems in designing and manufacturing a reliable product more and more difficult. Specific techniques have been developed that enable designers to integrate reliability into their products, and reliability has become a science in its own right. The book begins with a discussion of basic mathematical and statistical concepts, including arithmetic mean, frequency distribution, median and mode, scatter or dispersion of mea
Digital calculations of engine cycles
Starkman, E S; Taylor, C Fayette
1964-01-01
Digital Calculations of Engine Cycles is a collection of seven papers which were presented before technical meetings of the Society of Automotive Engineers during 1962 and 1963. The papers cover the spectrum of the subject of engine cycle events, ranging from an examination of composition and properties of the working fluid to simulation of the pressure-time events in the combustion chamber. The volume has been organized to present the material in a logical sequence. The first two chapters are concerned with the equilibrium states of the working fluid. These include the concentrations of var
Langenbucher, Achim; Szentmáry, Nóra; Spira, Corinna; Seitz, Berthold; Eppig, Timo
2016-06-01
Descemet stripping automated endothelial keratoplasty (DSAEK) is an established treatment option for pathologies of the corneal endothelium. It is typically accompanied with a hyperopic shift in refraction. The purpose of this work is to predict corneal geometry after DSAEK based on model data and to present a concept how to determine corneal power, e.g. for intraocular power calculation to prevent a refractive surprise with a subsequent cataract surgery. Based on data of the Kooijman schematic model eye we simulated a microkeratome cut parallel to the corneal front surface for donor trephination to determine the radial thickness profile of the posterior corneal donor lamella. This donor lamella was tension-neutrally adapted to the back surface of the host and the profile of the cornea after DSAEK was derived and characterized by a quadric surface. Comparison with the curvature of the host without and with donor could resample hyperopic shift which was published in literature. A method was shown how to determine corneal power after DSAEK. From the data of the Kooijman schematic model eye and the donor characteristics central / peripheral corneal thickness was increased by 150 / 250μm due to adaptation of the donor lamella. Geometry of corneal back surface showed a reduced radius of curvature (by about 0.9mm) and a change in conic constant (by about -0.13). Persistent clinically observed hyperopic shift correlates to the change in geometry of the cornea due to adaptation of the donor lamella, which reduces corneal power by 0.88 D. DSAEK leads to a hyperopic shift in refraction, which can be explained by a change in corneal back surface geometry. In case of subsequent cataract surgery, the intraocular lens power should be calculated with consideration of both corneal surfaces rather than keratometry or corneal topography in order to minimize a systematic hyperopic shift due to misinterpretation of corneal power after DSAEK. In case of a Triple-DSAEK, a target
Calculational Tool for Skin Contamination Dose Assessment
Hill, R L
2002-01-01
Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.
Dissecting Reactor Antineutrino Flux Calculations
Sonzogni, A. A.; McCutchan, E. A.; Hayes, A. C.
2017-09-01
Current predictions for the antineutrino yield and spectra from a nuclear reactor rely on the experimental electron spectra from 235U, 239Pu, 241Pu and a numerical method to convert these aggregate electron spectra into their corresponding antineutrino ones. In the present work we investigate quantitatively some of the basic assumptions and approximations used in the conversion method, studying first the compatibility between two recent approaches for calculating electron and antineutrino spectra. We then explore different possibilities for the disagreement between the measured Daya Bay and the Huber-Mueller antineutrino spectra, including the 238U contribution as well as the effective charge and the allowed shape assumption used in the conversion method. We observe that including a shape correction of about +6 % MeV-1 in conversion calculations can better describe the Daya Bay spectrum. Because of a lack of experimental data, this correction cannot be ruled out, concluding that in order to confirm the existence of the reactor neutrino anomaly, or even quantify it, precisely measured electron spectra for about 50 relevant fission products are needed. With the advent of new rare ion facilities, the measurement of shape factors for these nuclides, for many of which precise beta intensity data from TAGS experiments already exist, would be highly desirable.
Calculation of sound propagation in fibrous materials
DEFF Research Database (Denmark)
Tarnow, Viggo
1996-01-01
Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements.......Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements....
Energy Technology Data Exchange (ETDEWEB)
Fung, Jimmy [Los Alamos National Laboratory; Schofield, Sam [LLNL; Shashkov, Mikhail J. [Los Alamos National Laboratory
2012-06-25
We did not run with a 'cylindrically painted region'. However, we did compute two general variants of the original problem. Refinement studies where a single zone at each level of refinement contains the entire internal energy at t=0 or A 'finite' energy source which has the same physical dimensions as that for the 91 x 46 mesh, but consisting of increasing numbers of zones with refinement. Nominal mesh resolution: 91 x 46. Other mesh resolutions: 181 x 92 and 361 x 184. Note, not identical to the original specification. To maintain symmetry for the 'fixed' energy source, the mesh resolution was adjusted slightly. FLAG Lagrange or full (Eulerian) ALE was used with various options for each simulation. Observation - for either Lagrange or ALE, point or 'fixed' source, calculations converge on density and pressure with mesh resolution, but not energy, (not vorticity either).
Dyscalculia and the Calculating Brain.
Rapin, Isabelle
2016-08-01
Dyscalculia, like dyslexia, affects some 5% of school-age children but has received much less investigative attention. In two thirds of affected children, dyscalculia is associated with another developmental disorder like dyslexia, attention-deficit disorder, anxiety disorder, visual and spatial disorder, or cultural deprivation. Infants, primates, some birds, and other animals are born with the innate ability, called subitizing, to tell at a glance whether small sets of scattered dots or other items differ by one or more item. This nonverbal approximate number system extends mostly to single digit sets as visual discrimination drops logarithmically to "many" with increasing numerosity (size effect) and crowding (distance effect). Preschoolers need several years and specific teaching to learn verbal names and visual symbols for numbers and school agers to understand their cardinality and ordinality and the invariance of their sequence (arithmetic number line) that enables calculation. This arithmetic linear line differs drastically from the nonlinear approximate number system mental number line that parallels the individual number-tuned neurons in the intraparietal sulcus in monkeys and overlying scalp distribution of discrete functional magnetic resonance imaging activations by number tasks in man. Calculation is a complex skill that activates both visual and spatial and visual and verbal networks. It is less strongly left lateralized than language, with approximate number system activation somewhat more right sided and exact number and arithmetic activation more left sided. Maturation and increasing number skill decrease associated widespread non-numerical brain activations that persist in some individuals with dyscalculia, which has no single, universal neurological cause or underlying mechanism in all affected individuals. Copyright © 2016 Elsevier Inc. All rights reserved.
RTU Comparison Calculator Enhancement Plan
Energy Technology Data Exchange (ETDEWEB)
Miller, James D.; Wang, Weimin; Katipamula, Srinivas
2014-03-31
Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.
RTU Comparison Calculator Enhancement Plan
Energy Technology Data Exchange (ETDEWEB)
Miller, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-07-01
Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.
Selfconsistent calculations for hyperdeformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)
1996-12-31
Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.
Marek, Repka
2015-01-01
The original McEliece PKC proposal is interesting thanks to its resistance against all known attacks, even using quantum cryptanalysis, in an IND-CCA2 secure conversion. Here we present a generic implementation of the original McEliece PKC proposal, which provides test vectors (for all important intermediate results), and also in which a measurement tool for side-channel analysis is employed. To our best knowledge, this is the first such an implementation. This Calculator is valuable in implementation optimization, in further McEliece/Niederreiter like PKCs properties investigations, and also in teaching. Thanks to that, one can, for example, examine side-channel vulnerability of a certain implementation, or one can find out and test particular parameters of the cryptosystem in order to make them appropriate for an efficient hardware implementation. This implementation is available [1] in executable binary format, and as a static C++ library, as well as in form of source codes, for Linux and Windows operating systems.
Coupling channel hydro-morphodynamics and fish spawning habitat in a forested montane stream
Cienciala, P.; Hassan, M. A.
2011-12-01
In this paper we couple a hydrodynamic model with field data to investigate channel dynamics and spawning habitat potential for small-bodied salmonids in coarse-bed streams in British Columbia. We studied four reaches of East Creek, a small montane stream near Vancouver, BC, which display rapid (plane bed) and riffle-pool morphologies and provide habitat for a population of resident coastal cutthroat trout. Repeated channel surveys were conducted to obtain detailed information on channel topography and dynamics; net change in bed elevation between successive surveys was utilized as an index of scour and fill. Extensive bed surface sampling and low altitude vertical imagery were used in order to investigate bed surface texture and structures and to identify suitable spawning substrate patches. A 2-D hydrodynamic model, FaSTMECH (within MultiDimensional Surface Water Modeling System interface), was calibrated using field data and applied to simulate the spatial pattern of bed shear stress during a bankfull flow event. During small-to-intermediate floods significant bed scour, deeper than the estimated egg burial depth, occurred on a small proportion of bed area, in well-defined zones associated with obstacles such as large woody debris. Usually, distinct depositional zones developed just downstream of the scour locations. The spatial distribution of forcing elements and modeled bed shear stress explained well the observed pattern of scour and fill. Suitable spawning gravel was very limited in the study sites, particularly in two upstream reaches, primarily due to the coarse nature of the bed. In summary, scour disturbance risk appears to be relatively low in coarse-bed channels, except during extreme flow events, and shortage of suitable spawning substrate may be more important for small-bodied salmonids. This study demonstrates that coupling of hydro-morphodynamic and ecological data can provide a useful tool in fish habitat assessment and restoration.
The physical meaning of scattering matrix singularities in coupled-channel formalisms
Energy Technology Data Exchange (ETDEWEB)
S. Capstick; A. Svarc; L. Tiator; J. Gegelia; M.M. Giannini; E. Santopinto; C. Hanhart; S. Scherer; T.-S.H. Lee; T. Sato; N. Suzuki
2007-09-04
The physical meaning of bare and dressed scattering matrix singularities has been investigated. Special attention has been attributed to the role of well known invariance of scattering matrix with respect to the field transformation of the effective Lagrangian. Examples of evaluating bare and dressed quantities in various models are given.
Coupled-channel analysis for 20.4 MeV energy of p- Zn inelastic ...
Indian Academy of Sciences (India)
The major issues in nucleon–nucleus scattering studies are the determination of geome- tries, energy dependencies and deformation parameters of the phenomenological, local, complex optical model potential. Until recently, the gross properties of the optical model potential were deduced mainly from proton scattering ...
Coupled channel analysis in the K$\\overline{K}$ threshold region
Grayer, G; Dietl, H; Hyams, Bernard David; Jones, C; Koch, W; Lorenz, E; Lütjens, G; Männer, W; Meissburger, J; Ochs, W; Schlein, P E; Stierlin, U; Weilhammer, P
1973-01-01
Results of an energy-dependent phase-shift analysis for pi pi scattering between 900 and 1120 MeV mass are presented using data of the reactions pi /sup +or-/p to pi /sup +or-/ pi /sup +/n and pi /sup -/p to K/sup +/K/sup -/n. The I=0 S-wave becomes highly inelastic at KK threshold and accounts for the structure in the pi pi system. A zero effective range approximation for the S-wave leads to a pole of the S-matrix which is located on the second Riemann sheet at (1012+or-6)-i(16+or-5) MeV. (26 refs).
76 FR 71431 - Civil Penalty Calculation Methodology
2011-11-17
... TRANSPORTATION Federal Motor Carrier Safety Administration Civil Penalty Calculation Methodology AGENCY: Federal... its civil penalty methodology. Part of this evaluation includes a forthcoming explanation of the... methodology for calculation of certain civil penalties. To induce compliance with federal regulations, FMCSA...
Dissociated brain potentials for two calculation strategies.
Luo, Wenbo; Liu, Dianzhi; He, Weiqi; Tao, Weidong; Luo, Yuejia
2009-03-04
Event-related brain potentials were used to investigate the shortcut calculation strategy and nonshortcut calculation strategy in performing addition using mental arithmetic. Results showed that the shortcut calculation strategy elicited a larger P220 than the nonshortcut calculation strategy in the 180-280 ms. Dipole source analysis of the difference wave (shortcut calculation minus nonshortcut calculation) indicated that a generator was localized in the posterior cingulate cortex, which reflected the evaluation effect of number in the use of the shortcut strategy. In the 320-500 ms time window, a greater N400 was found in the nonshortcut calculation as compared with the shortcut calculation. Dipole source analysis of the difference wave indicated that a generator was localized in the anterior cingulate cortex. The N400 might reflect the greater working memory load.
Pressure Vessel Calculations for VVER-440 Reactors
Hordósy, G.; Hegyi, Gy.; Keresztúri, A.; Maráczy, Cs.; Temesvári, E.; Vértes, P.; Zsolnay, É.
2003-06-01
Monte Carlo calculations were performed for a selected cycle of the Paks NPP Unit II to test a computational model. In the model the source term was calculated by the core design code KARATE and the neutron transport calculations were performed by the MCNP. Different forms of the source specification were examined. The calculated results were compared with measurements and in most cases fairly good agreement was found.
46 CFR 154.429 - Calculations.
2010-10-01
... § 154.429 Calculations. The tank design load calculations for a membrane tank must include the following... submitted to meet this paragraph. (c) The combined strains from static, dynamic, and thermal loads. ... 46 Shipping 5 2010-10-01 2010-10-01 false Calculations. 154.429 Section 154.429 Shipping COAST...
47 CFR 1.1623 - Probability calculation.
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Probability calculation. 1.1623 Section 1.1623... Mass Media Services General Procedures § 1.1623 Probability calculation. (a) All calculations shall be computed to no less than three significant digits. Probabilities will be truncated to the number of...
Mathematical Creative Activity and the Graphic Calculator
Duda, Janina
2011-01-01
Teaching mathematics using graphic calculators has been an issue of didactic discussions for years. Finding ways in which graphic calculators can enrich the development process of creative activity in mathematically gifted students between the ages of 16-17 is the focus of this article. Research was conducted using graphic calculators with…
Recursive Delay Calculation Unit for Parametric Beamformer
DEFF Research Database (Denmark)
Nikolov, Svetoslav; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev
2006-01-01
This paper presents a recursive approach for parametric delay calculations for a beamformer. The suggested calculation procedure is capable of calculating the delays for any image line defined by an origin and arbitrary direction. It involves only add and shift operations making it suitable...
How to calculate sample size and why.
Kim, Jeehyoung; Seo, Bong Soo
2013-09-01
Calculating the sample size is essential to reduce the cost of a study and to prove the hypothesis effectively. Referring to pilot studies and previous research studies, we can choose a proper hypothesis and simplify the studies by using a website or Microsoft Excel sheet that contains formulas for calculating sample size in the beginning stage of the study. There are numerous formulas for calculating the sample size for complicated statistics and studies, but most studies can use basic calculating methods for sample size calculation.
The Band Structure of Polymers: Its Calculation and Interpretation. Part 2. Calculation.
Duke, B. J.; O'Leary, Brian
1988-01-01
Details ab initio crystal orbital calculations using all-trans-polyethylene as a model. Describes calculations based on various forms of translational symmetry. Compares these calculations with ab initio molecular orbital calculations discussed in a preceding article. Discusses three major approximations made in the crystal case. (CW)
MATNORM: Calculating NORM using composition matrices
Pruseth, Kamal L.
2009-09-01
This paper discusses the implementation of an entirely new set of formulas to calculate the CIPW norm. MATNORM does not involve any sophisticated programming skill and has been developed using Microsoft Excel spreadsheet formulas. These formulas are easy to understand and a mere knowledge of the if-then-else construct in MS-Excel is sufficient to implement the whole calculation scheme outlined below. The sequence of calculation used here differs from that of the standard CIPW norm calculation, but the results are very similar. The use of MS-Excel macro programming and other high-level programming languages has been deliberately avoided for simplicity.
The conundrum of calculating carbon footprints
DEFF Research Database (Denmark)
Strobel, Bjarne W.; Erichsen, Anders Christian; Gausset, Quentin
2016-01-01
A pre-condition for reducing global warming is to minimise the emission of greenhouse gasses (GHGs). A common approach to informing people about the link between behaviour and climate change rests on developing GHG calculators that quantify the ‘carbon footprint’ of a product, a sector or an actor....... There is, however, an abundance of GHG calculators that rely on very different premises and give very different estimates of carbon footprints. In this chapter, we compare and analyse the main principles of calculating carbon footprints, and discuss how calculators can inform (or misinform) people who wish...
Methodology for embedded transport core calculation
Ivanov, Boyan D.
The progress in the Nuclear Engineering field leads to developing new generations of Nuclear Power Plants (NPP) with complex rector core designs, such as cores loaded partially with mixed-oxide (MOX) fuel, high burn-up loadings, and cores with advanced designs of fuel assemblies and control rods. Such heterogeneous cores introduce challenges for the diffusion theory that has been used for several decades for calculations of the current Pressurized Water Rector (PWR) cores. To address the difficulties the diffusion approximation encounters new core calculation methodologies need to be developed by improving accuracy, while preserving efficiency of the current reactor core calculations. In this thesis, an advanced core calculation methodology is introduced, based on embedded transport calculations. Two different approaches are investigated. The first approach is based on embedded finite element (FEM), simplified P3 approximation (SP3), fuel assembly (FA) homogenization calculation within the framework of the diffusion core calculation with NEM code (Nodal Expansion Method). The second approach involves embedded FA lattice physics eigenvalue calculation based on collision probability method (CPM) again within the framework of the NEM diffusion core calculation. The second approach is superior to the first because most of the uncertainties introduced by the off-line cross-section generation are eliminated.
Pile Load Capacity – Calculation Methods
Directory of Open Access Journals (Sweden)
Wrana Bogumił
2015-12-01
Full Text Available The article is a review of the current problems of the foundation pile capacity calculations. The article considers the main principles of pile capacity calculations presented in Eurocode 7 and other methods with adequate explanations. Two main methods are presented: α – method used to calculate the short-term load capacity of piles in cohesive soils and β – method used to calculate the long-term load capacity of piles in both cohesive and cohesionless soils. Moreover, methods based on cone CPTu result are presented as well as the pile capacity problem based on static tests.
Nasri, Amine; Dupuis, Marc; Blanchon, Guillaume; Bauge, Eric; Arellano, Hugo F.
2017-09-01
Direct reactions on deformed nuclei such as actinides are best studied with the coupled channel (CC) formalism and a complex coupling scheme. With all significant progress that has been made in describing target nuclei with mean field and beyond approaches, we can assess the scattering problem within CC framework using microscopic non local potentials. To undertake this challenging task, one needs a well-defined strategy. In this work, we describe our choices of interaction, of microscopic description of target nuclei and our numerical methods to solve CC equations with non local potentials. Motivations behind our choices are also presented.
Nasri, Amine; Dupuis, Marc; Blanchon, Guillaume; Bauge, Eric; Arellano, Hugo F.
2017-09-01
Direct reactions on deformed nuclei such as actinides are best studied with the coupled channel (CC) formalism and a complex coupling scheme. With all significant progress that has been made in describing target nuclei with mean field and beyond approaches, we can assess the scattering problem within CC framework using microscopic non-local potentials. To undertake this challenging task, one needs a well-defined strategy. In this work, we describe our choices of interaction, of microscopic description of target nuclei and our numerical methods to solve CC equations with non-local potentials. Motivations behind our choices are also presented.
Directory of Open Access Journals (Sweden)
Nasri Amine
2017-01-01
Full Text Available Direct reactions on deformed nuclei such as actinides are best studied with the coupled channel (CC formalism and a complex coupling scheme. With all significant progress that has been made in describing target nuclei with mean field and beyond approaches, we can assess the scattering problem within CC framework using microscopic non local potentials. To undertake this challenging task, one needs a well-defined strategy. In this work, we describe our choices of interaction, of microscopic description of target nuclei and our numerical methods to solve CC equations with non local potentials. Motivations behind our choices are also presented.
Calculation reliability in vehicle accident reconstruction.
Wach, Wojciech
2016-06-01
The reconstruction of vehicle accidents is subject to assessment in terms of the reliability of a specific system of engineering and technical operations. In the article [26] a formalized concept of the reliability of vehicle accident reconstruction, defined using Bayesian networks, was proposed. The current article is focused on the calculation reliability since that is the most objective section of this model. It is shown that calculation reliability in accident reconstruction is not another form of calculation uncertainty. The calculation reliability is made dependent on modeling reliability, adequacy of the model and relative uncertainty of calculation. All the terms are defined. An example is presented concerning the analytical determination of the collision location of two vehicles on the road in the absence of evidential traces. It has been proved that the reliability of this kind of calculations generally does not exceed 0.65, despite the fact that the calculation uncertainty itself can reach only 0.05. In this example special attention is paid to the analysis of modeling reliability and calculation uncertainty using sensitivity coefficients and weighted relative uncertainty. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Calculated optical absorption of different perovskite phases
DEFF Research Database (Denmark)
Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel
2015-01-01
We present calculations of the optical properties of a set of around 80 oxides, oxynitrides, and organometal halide cubic and layered perovskites (Ruddlesden-Popper and Dion-Jacobson phases) with a bandgap in the visible part of the solar spectrum. The calculations show that for different classes...
Impedance Calculations of Induction Machine Rotor Conductors ...
African Journals Online (AJOL)
The exact calculation of the impedance of induction machine rotor conductors at several operating frequencies are necessary if the dynamic behaviour of the machine is to give a good correlation between the simulated starting torque and current and the experimental results. This paper describes a method of' calculating ...
46 CFR 154.520 - Piping calculations.
2010-10-01
...: (a) Pipe weight loads; (b) Acceleration loads; (c) Internal pressure loads; (d) Thermal loads; and (e... 46 Shipping 5 2010-10-01 2010-10-01 false Piping calculations. 154.520 Section 154.520 Shipping... Process Piping Systems § 154.520 Piping calculations. A piping system must be designed to meet the...
Calculated Atomic Volumes of the Actinide Metals
DEFF Research Database (Denmark)
Skriver, H.; Andersen, O. K.; Johansson, B.
1979-01-01
The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....
Numerical calculations of turbulent swirling flow
Kubo, I.; Gouldin, F. C.
1974-01-01
Description of a numerical technique for solving axisymmetric, incompressible, turbulent swirling flow problems. Isothermal flow calculations are presented for a coaxial flow configuration of special interest. The calculation results are discussed in regard to their implications for the design of gas turbine combustors.
47 CFR 54.609 - Calculating support.
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Calculating support. 54.609 Section 54.609... SERVICE Universal Service Support for Health Care Providers § 54.609 Calculating support. (a) Except with... amount of universal service support for an eligible service provided to a public or non-profit rural...
Calculation of the Poisson cumulative distribution function
Bowerman, Paul N.; Nolty, Robert G.; Scheuer, Ernest M.
1990-01-01
A method for calculating the Poisson cdf (cumulative distribution function) is presented. The method avoids computer underflow and overflow during the process. The computer program uses this technique to calculate the Poisson cdf for arbitrary inputs. An algorithm that determines the Poisson parameter required to yield a specified value of the cdf is presented.
Data base to compare calculations and observations
Energy Technology Data Exchange (ETDEWEB)
Tichler, J.L.
1985-01-01
Meteorological and climatological data bases were compared with known tritium release points and diffusion calculations to determine if calculated concentrations could replace measure concentrations at the monitoring stations. Daily tritium concentrations were monitored at 8 stations and 16 possible receptors. Automated data retrieval strategies are listed. (PSB)
Lewis Carroll's Formula for Calendar Calculating.
Spitz, Herman H.
1993-01-01
This paper presents Lewis Carroll's formula for mentally calculating the day of the week of a given date. The paper concludes that such formulas are too complex for individuals of low intelligence to learn by themselves, and thus "idiots savants" who perform such calendar calculations must be using other systems. (JDD)
BURDEN OF DISEASE CALCULATION, COST OF ILLNESS ...
African Journals Online (AJOL)
CIU
individual's relatives and the society can channel such resources and energy to other uses that would ..... European countries. Useful Steps in BoD Calculation and CoI Analysis. The first useful step in the calculation is the outcome tree. Others are perspective of evaluation ... illustrating their conditional dependency. The first ...
10 CFR 766.102 - Calculation methodology.
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Calculation methodology. 766.102 Section 766.102 Energy DEPARTMENT OF ENERGY URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND; PROCEDURES FOR SPECIAL ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.102 Calculation methodology. (a...
Sniderman, A.D.; Tremblay, A.J.; Graaf, J. de; Couture, P.
2014-01-01
OBJECTIVES: This study tests the validity of the Hattori formula to calculate LDL apoB based on plasma lipids and total apoB. METHODS: In 2178 patients in a tertiary care lipid clinic, LDL apoB calculated as suggested by Hattori et al. was compared to directly measured LDL apoB isolated by
5 CFR 1653.4 - Calculating entitlements.
2010-01-01
... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Calculating entitlements. 1653.4 Section 1653.4 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD COURT ORDERS AND LEGAL PROCESSES AFFECTING THRIFT SAVINGS PLAN ACCOUNTS Retirement Benefits Court Orders § 1653.4 Calculating...
Calculation of Temperature Rise in Calorimetry.
Canagaratna, Sebastian G.; Witt, Jerry
1988-01-01
Gives a simple but fuller account of the basis for accurately calculating temperature rise in calorimetry. Points out some misconceptions regarding these calculations. Describes two basic methods, the extrapolation to zero time and the equal area method. Discusses the theoretical basis of each and their underlying assumptions. (CW)
Direct calculation of wind turbine tip loss
DEFF Research Database (Denmark)
Wood, D.H.; Okulov, Valery; Bhattacharjee, D.
2016-01-01
The usual method to account for a finite number of blades in blade element calculations of wind turbine performance is through a tip loss factor. Most analyses use the tip loss approximation due to Prandtl which is easily and cheaply calculated but is known to be inaccurate at low tip speed ratio...
Directory of Open Access Journals (Sweden)
V. V. Ivashechkin
2014-01-01
Full Text Available The purpose of this work is the study of decolmatation rate of granular layer of gravel pack of well during creating inside of it flushing of reagent with given hydrodynamic parameters and determination the duration of treatment. This article deals with radical movement of chemical solutions by injection of it outside of gravel pack of filter when the flow directs to borehole axis under conditions of quasi-steady-state mode of filtration for equal yield of input and output reagent from borehole.Colmataged layer of gravel pack is schematized in the form of porous ring cylinder with outside radius which is equal to radius of line of gravel pack and the height which is equal to the length of filter made in formation drilling and inside radius which is equal to radius of filter. Initial saturation of subsoil with colmatant is given. It was accepted that reagent with given rate flows through outside surface of ring cylinder equal along all height. Near-filtering zone is given uniform and movement is quasi-steady-state.Equations’ system is composed including: joint equation of movement and mass conservation and generalized equation of kinetics, which describes kinetics of colmatant dissolution in the regime of out-pipe watering of ring gravel pack of well taking into account the change of structure of porous medium. The analytic solution of equations’ system was obtained, which allow to calculate salt content in reagent during the leaching process and to determine the specific volume of deposits in the point of gravel pack at any moment of time in the process of regent injection. The analytic dependence was obtained for calculation of duration of complete regeneration of soil grains’ layer of outer contour of gravel packing. For calculation of duration of full regeneration of the whole thickness of packing it is suggested to divide the regeneration period into a series of stages of salt transferring from subsoil. Duration of one stage is equal
HP-67 calculator programs for thermodynamic data and phase diagram calculations
Energy Technology Data Exchange (ETDEWEB)
Brewer, L.
1978-05-25
This report is a supplement to a tabulation of the thermodynamic and phase data for the 100 binary systems of Mo with the elements from H to Lr. The calculations of thermodynamic data and phase equilibria were carried out from 5000/sup 0/K to low temperatures. This report presents the methods of calculation used. The thermodynamics involved is rather straightforward and the reader is referred to any advanced thermodynamic text. The calculations were largely carried out using an HP-65 programmable calculator. In this report, those programs are reformulated for use with the HP-67 calculator; great reduction in the number of programs required to carry out the calculation results.
Predictive displays for a process-control schematic interface.
Yin, Shanqing; Wickens, Christopher D; Helander, Martin; Laberge, Jason C
2015-02-01
Our objective was to examine the extent to which increasing precision of predictive (rate of change) information in process control will improve performance on a simulated process-control task. Predictive displays have been found to be useful in process control (as well as aviation and maritime industries). However, authors of prior research have not examined the extent to which predictive value is increased by increasing predictor resolution, nor has such research tied potential improvements to changes in process control strategy. Fifty nonprofessional participants each controlled a simulated chemical mixture process (honey mixer simulation) that simulated the operations found in process control. Participants in each of five groups controlled with either no predictor or a predictor ranging in the resolution of prediction of the process. Increasing detail resolution generally increased the benefit of prediction over the control condition although not monotonically so. The best overall performance, combining quality and predictive ability, was obtained by the display of intermediate resolution. The two displays with the lowest resolution were clearly inferior. Predictors with higher resolution are of value but may trade off enhanced sensitivity to variable change (lower-resolution discrete state predictor) with smoother control action (higher-resolution continuous predictors). The research provides guidelines to the process-control industry regarding displays that can most improve operator performance.
100 A Schematic Evaluation of the Impact of Heresies and ...
African Journals Online (AJOL)
Ike Odimegwu
spiritual sensibilities with the ancestry of Christian faith long demonstrated from the apostolic times till now in the ... In fact, from the first century of its inception, the powers of the earth and hell arrayed themselves against Christ ...... fertility and infertility of men and women, etc. The Pentecostal. Churches are at the vanguard of ...
Effects of Schematic Factors on the EFL Reading Comprehension
Directory of Open Access Journals (Sweden)
Wido H. Toendan
2016-02-01
Full Text Available This paper report an experimental study on the effects of EFL reading proficiency (PROF, text structure (TEXT, and prefactory Framework (PREF on the EFL reading comprehension (COMP of expository texts. The subjects of the study were the intermediate and advanced readers of the English Department students of STKIP Unika Widya Mandala Surabaya. Results of the study significantly reveal the independent effects of EFL PROF, TEXT, and PREF on the COMP of expository texts. Based on the findings of the study, some suggestions intended for the reading instructors, developers of the written instructional materials, and area of further research are offered
Schematic representations of ethnic minorities in young university students
National Research Council Canada - National Science Library
Salvador Alvídrez; Juan-José Igartua
2015-01-01
.... In consecutive group interviews, participants were quizzed about their knowledge, experiences and expectations associated with social interactions with people belonging to ethnic minority groups...
Sexism in Political Thought and Its Refutation: A Schematic Overview.
Fox, Siegrun F.
The document examines Western political thought in terms of women's and men's expected spheres of concern, the proper male and female nature, and the sex-specific allocation of social values. In addition, the author applies her conclusions to contemporary political issues in the United States. Aristotle, Cicero, Aquinas, Rousseau, and Hegel made a…
Schematic Method for Effective Identification of Anaerobes from ...
African Journals Online (AJOL)
Further tests revealed Bacteroides fragilis, Fusobacterium nucleatium, Porphyromonas assacharolytica, Prevotella intermedia, and Peptosterptococcus magnus as most frequently isolated. The developed scheme interlinked the various identification steps: 1st level; inoculation and growth, 2nd level; Gram differentiation and ...
Normal mode calculations of trigonal selenium
DEFF Research Database (Denmark)
Hansen, Flemming Yssing; McMurry, H. L.
1980-01-01
. With such coordinates a potential energy, calculated with only a diagonal force matrix, is equivalent to one calculated with both off diagonal and diagonal elements when conventional coordinates are used. Another advantage is that often some force constants may be determined directly from frequencies at points of high....... In this way we have eliminated the ambiguity in the choice of valence coordinates, which has been a problem in previous models which used valence type interactions. Calculated sound velocities and elastic moduli are also given. The Journal of Chemical Physics is copyrighted by The American Institute...
Spreadsheet Based Scaling Calculations and Membrane Performance
Energy Technology Data Exchange (ETDEWEB)
Wolfe, T D; Bourcier, W L; Speth, T F
2000-12-28
Many membrane element manufacturers provide a computer program to aid buyers in the use of their elements. However, to date there are few examples of fully integrated public domain software available for calculating reverse osmosis and nanofiltration system performance. The Total Flux and Scaling Program (TFSP), written for Excel 97 and above, provides designers and operators new tools to predict membrane system performance, including scaling and fouling parameters, for a wide variety of membrane system configurations and feedwaters. The TFSP development was funded under EPA contract 9C-R193-NTSX. It is freely downloadable at www.reverseosmosis.com/download/TFSP.zip. TFSP includes detailed calculations of reverse osmosis and nanofiltration system performance. Of special significance, the program provides scaling calculations for mineral species not normally addressed in commercial programs, including aluminum, iron, and phosphate species. In addition, ASTM calculations for common species such as calcium sulfate (CaSO{sub 4}{times}2H{sub 2}O), BaSO{sub 4}, SrSO{sub 4}, SiO{sub 2}, and LSI are also provided. Scaling calculations in commercial membrane design programs are normally limited to the common minerals and typically follow basic ASTM methods, which are for the most part graphical approaches adapted to curves. In TFSP, the scaling calculations for the less common minerals use subsets of the USGS PHREEQE and WATEQ4F databases and use the same general calculational approach as PHREEQE and WATEQ4F. The activities of ion complexes are calculated iteratively. Complexes that are unlikely to form in significant concentration were eliminated to simplify the calculations. The calculation provides the distribution of ions and ion complexes that is used to calculate an effective ion product ''Q.'' The effective ion product is then compared to temperature adjusted solubility products (Ksp's) of solids in order to calculate a Saturation Index (SI
Ti-84 Plus graphing calculator for dummies
McCalla
2013-01-01
Get up-to-speed on the functionality of your TI-84 Plus calculator Completely revised to cover the latest updates to the TI-84 Plus calculators, this bestselling guide will help you become the most savvy TI-84 Plus user in the classroom! Exploring the standard device, the updated device with USB plug and upgraded memory (the TI-84 Plus Silver Edition), and the upcoming color screen device, this book provides you with clear, understandable coverage of the TI-84's updated operating system. Details the new apps that are available for download to the calculator via the USB cabl
Hamming generalized corrector for reactivity calculation
Energy Technology Data Exchange (ETDEWEB)
Suescun-Diaz, Daniel; Ibarguen-Gonzalez, Maria C.; Figueroa-Jimenez, Jorge H. [Pontificia Universidad Javeriana Cali, Cali (Colombia). Dept. de Ciencias Naturales y Matematicas
2014-06-15
This work presents the Hamming method generalized corrector for numerically resolving the differential equation of delayed neutron precursor concentration from the point kinetics equations for reactivity calculation, without using the nuclear power history or the Laplace transform. A study was carried out of several correctors with their respective modifiers with different time step calculations, to offer stability and greater precision. Better results are obtained for some correctors than with other existing methods. Reactivity can be calculated with precision of the order h{sup 5}, where h is the time step. (orig.)
NASCAP/LEO calculations of current collection
Mandell, Myron J.; Katz, Ira; Davis, Victoria A.; Kuharski, Robert A.
1990-12-01
NASCAP/LEO is a 3-dimensional computer code for calculating the interaction of a high-voltage spacecraft with the cold dense plasma found in Low Earth Orbit. Although based on a cubic grid structure, NASCAP/LEO accepts object definition input from standard computer aided design (CAD) programs so that a model may be correctly proportioned and important features resolved. The potential around the model is calculated by solving the finite element formulation of Poisson's equation with an analytic space charge function. Five previously published NASCAP/LEO calculations for three ground test experiments and two space flight experiments are presented. The three ground test experiments are a large simulated panel, a simulated pinhole, and a 2-slit experiment with overlapping sheaths. The two space flight experiments are a solar panel biased up to 1000 volts, and a rocket-mounted sphere biased up to 46 kilovolts. In all cases, the authors find good agreement between calculation and measurement.
Carbon Footprint Calculator | Climate Change | US EPA
2016-12-12
An interactive calculator to estimate your household's carbon footprint. This tool will estimate carbon pollution emissions from your daily activities and show how to reduce your emissions and save money through simple steps.
Calculated Leaf Carbon and Nitrogen, 1992 (ACCP)
National Aeronautics and Space Administration — Study plot canopy chemistry values were calculated from leaf chemistry and litterfall weight values. Average leaf concentrations of nitrogen and carbon were used to...
Calculating Employee Compensation Using An Economic Principle
National Research Council Canada - National Science Library
Puneet Jaiprakash
2015-01-01
.... This paper develops an intuitive method for calculating the minimum amount by which an employee's compensation must be adjusted taking into account changes in economic conditions since the start of employment...
Teaching Graphing Concepts with Graphing Calculators.
Mercer, Joseph
1995-01-01
Presents five lessons to demonstrate how graphing calculators can be used to teach the slope-intercept concept of linear equations and to establish more general principles about two-dimensional graphs. Contains a reproducible student quiz. (MKR)
Numerical calculations in quantum field theories
Energy Technology Data Exchange (ETDEWEB)
Rebbi, C.
1984-01-01
Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references. (WHK)
108 NUMERICAL CALCULATIONS IN THE GENERAL DYNAMICAL ...
African Journals Online (AJOL)
DR. AMINU
Correspondence Author ... of Moving Bodies”, the following postulates were introduced:- .... 110. Table1: calculated values of the ratio of coordinate time to proper time for both general relativity and dynamical theory of gravitation. Body. Mass (M) Kg.
Fair and Reasonable Rate Calculation Data -
Department of Transportation — This dataset provides guidelines for calculating the fair and reasonable rates for U.S. flag vessels carrying preference cargoes subject to regulations contained at...
Temperature calculation in fire safety engineering
Wickström, Ulf
2016-01-01
This book provides a consistent scientific background to engineering calculation methods applicable to analyses of materials reaction-to-fire, as well as fire resistance of structures. Several new and unique formulas and diagrams which facilitate calculations are presented. It focuses on problems involving high temperature conditions and, in particular, defines boundary conditions in a suitable way for calculations. A large portion of the book is devoted to boundary conditions and measurements of thermal exposure by radiation and convection. The concepts and theories of adiabatic surface temperature and measurements of temperature with plate thermometers are thoroughly explained. Also presented is a renewed method for modeling compartment fires, with the resulting simple and accurate prediction tools for both pre- and post-flashover fires. The final chapters deal with temperature calculations in steel, concrete and timber structures exposed to standard time-temperature fire curves. Useful temperature calculat...
IOL Power Calculation after Corneal Refractive Surgery
Maddalena De Bernardo; Luigi Capasso; Luisa Caliendo; Francesco Paolercio; Nicola Rosa
2014-01-01
Purpose. To describe the different formulas that try to overcome the problem of calculating the intraocular lens (IOL) power in patients that underwent corneal refractive surgery (CRS). Methods. A Pubmed literature search review of all published articles, on keyword associated with IOL power calculation and corneal refractive surgery, as well as the reference lists of retrieved articles, was performed. Results. A total of 33 peer reviewed articles dealing with methods that try to overcome the...
PROSPECTS OF MANAGEMENT ACCOUNTING AND COST CALCULATION
Directory of Open Access Journals (Sweden)
Marian ŢAICU
2014-11-01
Full Text Available Progress in improving production technology requires appropriate measures to achieve an efficient management of costs. This raises the need for continuous improvement of management accounting and cost calculation. Accounting information in general, and management accounting information in particular, have gained importance in the current economic conditions, which are characterized by risk and uncertainty. The future development of management accounting and cost calculation is essential to meet the information needs of management.
Flow calculation of a bulb turbine
Energy Technology Data Exchange (ETDEWEB)
Goede, E.; Pestalozzi, J.
1987-01-01
In recent years remarkable progress has been made in the field of theoretical flow calculation. Studying the relevant literature one might receive the impression that most problems have been solved. But probing more deeply into details one becomes aware that by no means all questions are answered. The report tries to point out what may be expected of the quasi-three-dimensional flow calculation method employed and - much more important - what it must not be expected to accomplish. (orig.)
Providing driving rain data for hygrothermal calculations
DEFF Research Database (Denmark)
Kragh, Mikkel Kristian
1996-01-01
Due to a wish for driving rain data as input for hygrothermal calculations, this report deals with utilizing commonly applied empirical relations and standard meteorological data, in an attempt to provide realistic estimates rather than exact correlations.......Due to a wish for driving rain data as input for hygrothermal calculations, this report deals with utilizing commonly applied empirical relations and standard meteorological data, in an attempt to provide realistic estimates rather than exact correlations....
DOWNSCALE APPLICATION OF BOILER THERMAL CALCULATION APPROACH
Zelený, Zbynĕk; Hrdlička, Jan
2016-01-01
Commonly used thermal calculation methods are intended primarily for large scale boilers. Hot water small scale boilers, which are commonly used for home heating have many specifics, that distinguish them from large scale boilers especially steam boilers. This paper is focused on application of thermal calculation procedure that is designed for large scale boilers, on a small scale boiler for biomass combustion of load capacity 25 kW. Special issue solved here is influence of formation of dep...
A revised calculational model for fission
Energy Technology Data Exchange (ETDEWEB)
Atchison, F.
1998-09-01
A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)
Efficient Finite Element Calculation of Nγ
DEFF Research Database (Denmark)
Clausen, Johan; Damkilde, Lars; Krabbenhøft, K.
2007-01-01
This paper deals with the computational aspects of the Mohr-Coulomb material model, in particular the calculation of the bearing capacity factor Nγfor a strip and a circular footing.......This paper deals with the computational aspects of the Mohr-Coulomb material model, in particular the calculation of the bearing capacity factor Nγfor a strip and a circular footing....
Internal Mechanism of a Schoonschip Calculation
Strubbe, H
1973-01-01
Schoonschip is a general purpose "Algebraic Manipulation" program. It is designed to do long - but in principle straightforward - analytic calculations. It can be used interactively. It is very fast in execution and very economical in storage (25K). This is achieved by writing the program almost entirely in (CDC 6000) machine code. Therefore, the representation of the algebraic formulae (list structure) and the calculation mechanism can be set up very efficiently. Input, Output and a few numerical tasks are done in Fortran.
Environmental flow allocation and statistics calculator
Konrad, Christopher P.
2011-01-01
The Environmental Flow Allocation and Statistics Calculator (EFASC) is a computer program that calculates hydrologic statistics based on a time series of daily streamflow values. EFASC will calculate statistics for daily streamflow in an input file or will generate synthetic daily flow series from an input file based on rules for allocating and protecting streamflow and then calculate statistics for the synthetic time series. The program reads dates and daily streamflow values from input files. The program writes statistics out to a series of worksheets and text files. Multiple sites can be processed in series as one run. EFASC is written in MicrosoftRegistered Visual BasicCopyright for Applications and implemented as a macro in MicrosoftOffice Excel 2007Registered. EFASC is intended as a research tool for users familiar with computer programming. The code for EFASC is provided so that it can be modified for specific applications. All users should review how output statistics are calculated and recognize that the algorithms may not comply with conventions used to calculate streamflow statistics published by the U.S. Geological Survey.
Biases for current FFTF calculational methods
Energy Technology Data Exchange (ETDEWEB)
Ombrellaro, P.A.; Bennett, R.A.; Daughtry, J.W.; Dobbin, K.D.; Harris, R.A.; Nelson, J.V.; Peterson, R.E.; Rothrock, R.B.
1978-01-01
Uncertainties in nuclear data and approximate calculational methods used in safety design, and operational support of a reactor yield biased as well as uncertain results. Experimentally based biases for use in Fast Flux Test Facility (FFTF) core calculations have been evaluated and are presented together with a description of calculational methods. Experimental data for these evaluations were obtained from an Engineering Mockup Critical (EMC) of the FFTF core built at the Argonne National Laboratory (ANL). The experiments were conceived and planned by the Hanford Engineering Development Laboratory (HEDL) in cooperation with the Westinghouse Advanced Reactors Division (WARD) and ANL personnel, and carried out by the ANL staff. All experiments were designed specifically to provide data for evaluation of current FFTF core calculational methods. These comprehensive experiments were designed to allow simultaneous evaluations of biases and uncertainties in calculated reactivities, fuel sub-assembly and material reactivity worths, small sample worths, absorber rod worths, spatial fission rate distributions, power tilting effects and spatial neutron spectra. Modified source multiplication and reactivity anomaly methods have also been evaluated. Uncertainties in the biases have been established and are sufficiently small to attain a high degree of confidence in the design, safety and operational aspects of the FFTF core.
Good Practices in Free-energy Calculations
Pohorille, Andrew; Jarzynski, Christopher; Chipot, Christopher
2013-01-01
As access to computational resources continues to increase, free-energy calculations have emerged as a powerful tool that can play a predictive role in drug design. Yet, in a number of instances, the reliability of these calculations can be improved significantly if a number of precepts, or good practices are followed. For the most part, the theory upon which these good practices rely has been known for many years, but often overlooked, or simply ignored. In other cases, the theoretical developments are too recent for their potential to be fully grasped and merged into popular platforms for the computation of free-energy differences. The current best practices for carrying out free-energy calculations will be reviewed demonstrating that, at little to no additional cost, free-energy estimates could be markedly improved and bounded by meaningful error estimates. In energy perturbation and nonequilibrium work methods, monitoring the probability distributions that underlie the transformation between the states of interest, performing the calculation bidirectionally, stratifying the reaction pathway and choosing the most appropriate paradigms and algorithms for transforming between states offer significant gains in both accuracy and precision. In thermodynamic integration and probability distribution (histogramming) methods, properly designed adaptive techniques yield nearly uniform sampling of the relevant degrees of freedom and, by doing so, could markedly improve efficiency and accuracy of free energy calculations without incurring any additional computational expense.
Paramedics’ Ability to Perform Drug Calculations
Directory of Open Access Journals (Sweden)
Eastwood, Kathyrn J
2009-11-01
Full Text Available Background: The ability to perform drug calculations accurately is imperative to patient safety. Research into paramedics’ drug calculation abilities was first published in 2000 and for nurses’ abilities the research dates back to the late 1930s. Yet, there have been no studies investigating an undergraduate paramedic student’s ability to perform drug or basic mathematical calculations. The objective of this study was to review the literature and determine the ability of undergraduate and qualified paramedics to perform drug calculations.Methods: A search of the prehospital-related electronic databases was undertaken using the Ovid and EMBASE systems available through the Monash University Library. Databases searched included the Cochrane Central Register of Controlled Trials (CENTRAL, MEDLINE, CINAHL, JSTOR, EMBASE and Google Scholar, from their beginning until the end of August 2009. We reviewed references from articles retrieved.Results: The electronic database search located 1,154 articles for review. Six additional articles were identified from reference lists of retrieved articles. Of these, 59 were considered relevant. After reviewing the 59 articles only three met the inclusion criteria. All articles noted some level of mathematical deficiencies amongst their subjects.Conclusions: This study identified only three articles. Results from these limited studies indicate a significant lack of mathematical proficiency amongst the paramedics sampled. A need exists to identify if undergraduate paramedic students are capable of performing the required drug calculations in a non-clinical setting.[WestJEM. 2009;10:240-243.
Paramedics’ Ability to Perform Drug Calculations
Eastwood, Kathryn J; Boyle, Malcolm J; Williams, Brett
2009-01-01
Background: The ability to perform drug calculations accurately is imperative to patient safety. Research into paramedics’ drug calculation abilities was first published in 2000 and for nurses’ abilities the research dates back to the late 1930s. Yet, there have been no studies investigating an undergraduate paramedic student’s ability to perform drug or basic mathematical calculations. The objective of this study was to review the literature and determine the ability of undergraduate and qualified paramedics to perform drug calculations. Methods: A search of the prehospital-related electronic databases was undertaken using the Ovid and EMBASE systems available through the Monash University Library. Databases searched included the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, CINAHL, JSTOR, EMBASE and Google Scholar, from their beginning until the end of August 2009. We reviewed references from articles retrieved. Results: The electronic database search located 1,154 articles for review. Six additional articles were identified from reference lists of retrieved articles. Of these, 59 were considered relevant. After reviewing the 59 articles only three met the inclusion criteria. All articles noted some level of mathematical deficiencies amongst their subjects. Conclusions: This study identified only three articles. Results from these limited studies indicate a significant lack of mathematical proficiency amongst the paramedics sampled. A need exists to identify if undergraduate paramedic students are capable of performing the required drug calculations in a non-clinical setting. PMID:20046240
Paramedics' ability to perform drug calculations.
Eastwood, Kathryn J; Boyle, Malcolm J; Williams, Brett
2009-11-01
The ability to perform drug calculations accurately is imperative to patient safety. Research into paramedics' drug calculation abilities was first published in 2000 and for nurses' abilities the research dates back to the late 1930s. Yet, there have been no studies investigating an undergraduate paramedic student's ability to perform drug or basic mathematical calculations. The objective of this study was to review the literature and determine the ability of undergraduate and qualified paramedics to perform drug calculations. A search of the prehospital-related electronic databases was undertaken using the Ovid and EMBASE systems available through the Monash University Library. Databases searched included the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, CINAHL, JSTOR, EMBASE and Google Scholar, from their beginning until the end of August 2009. We reviewed references from articles retrieved. The electronic database search located 1,154 articles for review. Six additional articles were identified from reference lists of retrieved articles. Of these, 59 were considered relevant. After reviewing the 59 articles only three met the inclusion criteria. All articles noted some level of mathematical deficiencies amongst their subjects. This study identified only three articles. Results from these limited studies indicate a significant lack of mathematical proficiency amongst the paramedics sampled. A need exists to identify if undergraduate paramedic students are capable of performing the required drug calculations in a non-clinical setting.
Automated one-loop calculations with GOSAM
Energy Technology Data Exchange (ETDEWEB)
Cullen, Gavin [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Greiner, Nicolas [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); Heinrich, Gudrun; Reiter, Thomas [Max-Planck-Institut fuer Physik, Muenchen (Germany); Luisoni, Gionata [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Mastrolia, Pierpaolo [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padua Univ. (Italy). Dipt. di Fisica; Ossola, Giovanni [New York City Univ., NY (United States). New York City College of Technology; New York City Univ., NY (United States). The Graduate School and University Center; Tramontano, Francesco [European Organization for Nuclear Research (CERN), Geneva (Switzerland)
2011-11-15
We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop. (orig.)
Resolving resonances in R-matrix calculations
Energy Technology Data Exchange (ETDEWEB)
Ramirez, J.M.; Bautista, Manuel A. [Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Caracas (Venezuela)
2002-10-28
We present a technique to obtain detailed resonance structures from R-matrix calculations of atomic cross sections for both collisional and radiative processes. The resolving resonances (RR) method relies on the QB method of Quigley-Berrington (Quigley L, Berrington K A and Pelan J 1998 Comput. Phys. Commun. 114 225) to find the position and width of resonances directly from the reactance matrix. Then one determines the symmetry parameters of these features and generates an energy mesh whereby fully resolved cross sections are calculated with minimum computational cost. The RR method is illustrated with the calculation of the photoionization cross sections and the unified recombination rate coefficients of Fe XXIV, O VI, and Fe XVII. The RR method reduces numerical errors arising from unresolved R-matrix cross sections in the computation of synthetic bound-free opacities, thermally averaged collision strengths and recombination rate coefficients. (author)
Green's function calculation from equipartition theorem.
Perton, Mathieu; Sánchez-Sesma, Francisco José
2016-08-01
A method is presented to calculate the elastodynamic Green's functions by using the equipartition principle. The imaginary parts are calculated as the average cross correlations of the displacement fields generated by the incidence of body and surface waves with amplitudes weighted by partition factors. The real part is retrieved using the Hilbert transform. The calculation of the partition factors is discussed for several geometrical configurations in two dimensional space: the full-space, a basin in a half-space and for layered media. For the last case, it results in a fast computation of the full Green's functions. Additionally, if the contribution of only selected states is desired, as for instance the surface wave part, the computation is even faster. Its use for full waveform inversion may then be advantageous.
Daylight calculations using constant luminance curves
Energy Technology Data Exchange (ETDEWEB)
Betman, E. [CRICYT, Mendoza (Argentina). Laboratorio de Ambiente Humano y Vivienda
2005-02-01
This paper presents a simple method to manually estimate daylight availability and to make daylight calculations using constant luminance curves calculated with local illuminance and irradiance data and the all-weather model for sky luminance distribution developed in the Atmospheric Science Research Center of the University of New York (ARSC) by Richard Perez et al. Work with constant luminance curves has the advantage that daylight calculations include the problem's directionality and preserve the information of the luminous climate of the place. This permits accurate knowledge of the resource and a strong basis to establish conclusions concerning topics related to the energy efficiency and comfort in buildings. The characteristics of the proposed method are compared with the method that uses the daylight factor. (author)
Using inverted indices for accelerating LINGO calculations.
Kristensen, Thomas G; Nielsen, Jesper; Pedersen, Christian N S
2011-03-28
The ever growing size of chemical databases calls for the development of novel methods for representing and comparing molecules. One such method called LINGO is based on fragmenting the SMILES string representation of molecules. Comparison of molecules can then be performed by calculating the Tanimoto coefficient, which is called LINGOsim when used on LINGO multisets. This paper introduces a verbose representation for storing LINGO multisets, which makes it possible to transform them into sparse fingerprints such that fingerprint data structures and algorithms can be used to accelerate queries. The previous best method for rapidly calculating the LINGOsim similarity matrix required specialized hardware to yield a significant speedup over existing methods. By representing LINGO multisets in the verbose representation and using inverted indices, it is possible to calculate LINGOsim similarity matrices roughly 2.6 times faster than existing methods without relying on specialized hardware.
Note about socio-economic calculations
DEFF Research Database (Denmark)
Landex, Alex; Andersen, Jonas Lohmann Elkjær; Salling, Kim Bang
2006-01-01
This note gives a short introduction of how to make socio-economic evaluations in connection with the teaching at the Centre for Traffic and Transport (CTT). It is not a manual for making socio-economic calculations in transport infrastructure projects – in this context we refer to the guidelines...... for socio-economic calculations within the transportation area (Ministry of Traffic, 2003). The note also explains the theory of socio-economic calculations – reference is here made to ”Road Infrastructure Planning – a Decision-oriented approach” (Leleur, 2000). Socio-economic evaluations of infrastructure...... projects are common and can be made at different levels of detail depending on the type of project and the decision making phase. A common feature of the different levels of detail of the socio-economic analysis is that the planned project(s) is compared with a basic; the basic alternative or a null...
eQuilibrator—the biochemical thermodynamics calculator
Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron
2012-01-01
The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852
Undergraduate paramedic students cannot do drug calculations
Eastwood, Kathryn; Boyle, Malcolm J; Williams, Brett
2012-01-01
BACKGROUND: Previous investigation of drug calculation skills of qualified paramedics has highlighted poor mathematical ability with no published studies having been undertaken on undergraduate paramedics. There are three major error classifications. Conceptual errors involve an inability to formulate an equation from information given, arithmetical errors involve an inability to operate a given equation, and finally computation errors are simple errors of addition, subtraction, division and multiplication. The objective of this study was to determine if undergraduate paramedics at a large Australia university could accurately perform common drug calculations and basic mathematical equations normally required in the workplace. METHODS: A cross-sectional study methodology using a paper-based questionnaire was administered to undergraduate paramedic students to collect demographical data, student attitudes regarding their drug calculation performance, and answers to a series of basic mathematical and drug calculation questions. Ethics approval was granted. RESULTS: The mean score of correct answers was 39.5% with one student scoring 100%, 3.3% of students (n=3) scoring greater than 90%, and 63% (n=58) scoring 50% or less, despite 62% (n=57) of the students stating they ‘did not have any drug calculations issues’. On average those who completed a minimum of year 12 Specialist Maths achieved scores over 50%. Conceptual errors made up 48.5%, arithmetical 31.1% and computational 17.4%. CONCLUSIONS: This study suggests undergraduate paramedics have deficiencies in performing accurate calculations, with conceptual errors indicating a fundamental lack of mathematical understanding. The results suggest an unacceptable level of mathematical competence to practice safely in the unpredictable prehospital environment. PMID:25215067
Calculation of water activation for the LHC
Vollaire, Joachim; Brugger, Markus; Forkel-Wirth, Doris; Roesler, Stefan; Vojtyla, Pavol
2006-06-01
The management of activated water in the Large Hadron Collider (LHC) at CERN is a key concern for radiation protection. For this reason, the induced radioactivity of the different water circuits is calculated using the Monte-Carlo (MC) code FLUKA. The results lead to the definition of procedures to be taken into account during the repair and maintenance of the machine, as well as to measures being necessary for a release of water into the environment. In order to assess the validity of the applied methods, a benchmark experiment was carried out at the CERN-EU High Energy Reference Field (CERF) facility, where a hadron beam (120 GeV) is impinging on a copper target. Four samples of water, as used at the LHC, and different in their chemical compositions, were irradiated near the copper target. In addition to the tritium activity measured with a liquid scintillation counter, the samples were also analyzed using gamma spectroscopy in order to determine the activity of the gamma emitting isotopes such as Be7 and Na24. While for the latter an excellent agreement between simulation and measurement was found, for the calculation of tritium a correction factor is derived to be applied for future LHC calculations in which the activity is calculated by direct scoring of produced nuclei. A simplified geometry representing the LHC Arc sections is then used to evaluate the different calculation methods with FLUKA. By comparing these methods and by taking into account the benchmark results, a strategy for the environmental calculations can be defined.
First principles calculations for litiated manganese oxides
Energy Technology Data Exchange (ETDEWEB)
Benedek, R; Prasad, R; Thackeray, M; Wills, J M; Yang, L H
1998-12-22
First principles calculations using the local-spin-density-functional theory are presented of densities of electronic states for MnO, LiMnO{sub 2} in the monoclinic and orthorhombic structures, cubic LiMn{sub 2}O{sub 4} spinel, and {lambda}-MnO{sub 2} (delithiated spinel), all in antiferromagnetic spin configurations. The changes in energy spectra as the Mn oxidation state varies between 2+ and 4+ are illustrated. Preliminary calculations for Co-doped LiMnO{sub 2} are presented, and the destabilization of a monoclinic relative to a rhombohedral structure is discussed.
Transmission pipeline calculations and simulations manual
Menon, E Shashi
2014-01-01
Transmission Pipeline Calculations and Simulations Manual is a valuable time- and money-saving tool to quickly pinpoint the essential formulae, equations, and calculations needed for transmission pipeline routing and construction decisions. The manual's three-part treatment starts with gas and petroleum data tables, followed by self-contained chapters concerning applications. Case studies at the end of each chapter provide practical experience for problem solving. Topics in this book include pressure and temperature profile of natural gas pipelines, how to size pipelines for specified f
Calculation of a Shock Response Spectra
Directory of Open Access Journals (Sweden)
Jiri Tuma
2011-11-01
Full Text Available As it is stated in the ISO 18431-4 Standard, a Shock Response Spectrum is defined as the response to a given accelerationacting at a set of mass-damper-spring oscillators, which are adjusted to the different resonance frequencies while their resonancegains (Q-factor are equal to the same value. The maximum of the absolute value of the calculated responses as a function of theresonance frequencies compose the shock response spectrum (SRS. The paper will deal with employing Signal Analyzer, the softwarefor signal processing, for calculation of the SRS. The theory is illustrated by examples.
Histidine in Continuum Electrostatics Protonation State Calculations
Couch, Vernon; Stuchebruckhov, Alexei
2014-01-01
A modification to the standard continuum electrostatics approach to calculate protein pKas which allows for the decoupling of histidine tautomers within a two state model is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two state formalism because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation between histidine’s charge states, allows for a natural separation of the two protonatable sites associated with the imidazole ring as well as the inclusion of all protonation states within the calculation. PMID:22072521
The new pooled cohort equations risk calculator
DEFF Research Database (Denmark)
Preiss, David; Kristensen, Søren L
2015-01-01
total cardiovascular risk score. During development of joint guidelines released in 2013 by the American College of Cardiology (ACC) and American Heart Association (AHA), the decision was taken to develop a new risk score. This resulted in the ACC/AHA Pooled Cohort Equations Risk Calculator. This risk...... disease and any measure of social deprivation. An early criticism of the Pooled Cohort Equations Risk Calculator has been its alleged overestimation of ASCVD risk which, if confirmed in the general population, is likely to result in statin therapy being prescribed to many individuals at lower risk than...
Ab initio valence calculations in chemistry
Cook, D B
1974-01-01
Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge
BASIC program calculates flue gas energy balance
Energy Technology Data Exchange (ETDEWEB)
Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (United States))
1993-10-01
Engineers always seek cost-cutting, energy-efficient ways to operate boilers and waste-heat recovery systems. The starting point in the design or performance evaluation of any heat transfer equipment is an energy balance calculation. This easy-to-use BASIC program tackles this problem. Using the gas stream analysis as percent weight or volume, the program calculates inlet and exit temperatures, heat duty, the gas stream's molecular weight, etc. This program is a definite must for the plant engineering notebook.
Criticality calculation of non-ordinary systems
Energy Technology Data Exchange (ETDEWEB)
Kalugin, A. V., E-mail: Kalugin-AV@nrcki.ru; Tebin, V. V. [National Research Centre Kurchatov Institute (Russian Federation)
2016-12-15
The specific features of calculation of the effective multiplication factor using the Monte Carlo method for weakly coupled and non-asymptotic multiplying systems are discussed. Particular examples are considered and practical recommendations on detection and Monte Carlo calculation of systems typical in numerical substantiation of nuclear safety for VVER fuel management problems are given. In particular, the problems of the choice of parameters for the batch mode and the method for normalization of the neutron batch, as well as finding and interpretation of the eigenvalue spectrum for the integral fission matrix, are discussed.
Engineering calculations in radiative heat transfer
Gray, W A; Hopkins, D W
1974-01-01
Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.
Calculators and the SAT: A Status Report.
Rigol, Gretchen W.
1991-01-01
The College Entrance Examination Board has not permitted calculator use on the Scholastic Aptitude Test because of unresolved concerns about equity, implications for test content, and logistical and security issues. Those issues no longer seem insurmountable, and significant changes are being introduced on many tests. (MSE)
Cubic scaling GW: Towards fast quasiparticle calculations
Czech Academy of Sciences Publication Activity Database
Liu, P.; Kaltak, M.; Klimeš, Jiří; Kresse, G.
2016-01-01
Roč. 94, č. 16 (2016), s. 165109 ISSN 2469-9950 Institutional support: RVO:61388955 Keywords : MEAN-FIELD THEORY * ELECTRONIC-STRUCTURE CALCULATIONS * AUGMENTED-WAVE METHOD Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.836, year: 2016
IOL Power Calculation after Corneal Refractive Surgery
Directory of Open Access Journals (Sweden)
Maddalena De Bernardo
2014-01-01
Full Text Available Purpose. To describe the different formulas that try to overcome the problem of calculating the intraocular lens (IOL power in patients that underwent corneal refractive surgery (CRS. Methods. A Pubmed literature search review of all published articles, on keyword associated with IOL power calculation and corneal refractive surgery, as well as the reference lists of retrieved articles, was performed. Results. A total of 33 peer reviewed articles dealing with methods that try to overcome the problem of calculating the IOL power in patients that underwent CRS were found. According to the information needed to try to overcome this problem, the methods were divided in two main categories: 18 methods were based on the knowledge of the patient clinical history and 15 methods that do not require such knowledge. The first group was further divided into five subgroups based on the parameters needed to make such calculation. Conclusion. In the light of our findings, to avoid postoperative nasty surprises, we suggest using only those methods that have shown good results in a large number of patients, possibly by averaging the results obtained with these methods.
IOL power calculation after corneal refractive surgery.
De Bernardo, Maddalena; Capasso, Luigi; Caliendo, Luisa; Paolercio, Francesco; Rosa, Nicola
2014-01-01
To describe the different formulas that try to overcome the problem of calculating the intraocular lens (IOL) power in patients that underwent corneal refractive surgery (CRS). A Pubmed literature search review of all published articles, on keyword associated with IOL power calculation and corneal refractive surgery, as well as the reference lists of retrieved articles, was performed. A total of 33 peer reviewed articles dealing with methods that try to overcome the problem of calculating the IOL power in patients that underwent CRS were found. According to the information needed to try to overcome this problem, the methods were divided in two main categories: 18 methods were based on the knowledge of the patient clinical history and 15 methods that do not require such knowledge. The first group was further divided into five subgroups based on the parameters needed to make such calculation. In the light of our findings, to avoid postoperative nasty surprises, we suggest using only those methods that have shown good results in a large number of patients, possibly by averaging the results obtained with these methods.
{ital Ab} {ital initio} calculations of biomolecules
Energy Technology Data Exchange (ETDEWEB)
Les, A. [Department of Chemistry, University of Warsaw, 02-093 Warsaw (Poland)]|[Department of Chemistry, University of Arizona, Tucson, Arizona 85721 (United States); Adamowicz, L. [Department of Theoretical Chemistry, University of Lund, Lund, S-22100 (Sweden)]|[Department of Chemistry, University of Arizona, Tucson, Arizona 85721 (United States)
1995-08-01
{ital Ab} {ital initio} quantum mechanical calculations are valuable tools for interpretation and elucidation of elemental processes in biochemical systems. With the {ital ab} {ital initio} approach one can calculate data that sometimes are difficult to obtain by experimental techniques. The most popular computational theoretical methods include the Hartree-Fock method as well as some lower-level variational and perturbational post-Hartree Fock approaches which allow to predict molecular structures and to calculate spectral properties. We have been involved in a number of joined theoretical and experimental studies in the past and some examples of these studies are given in this presentation. The systems chosen cover a wide variety of simple biomolecules, such as precursors of nucleic acids, double-proton transferring molecules, and simple systems involved in processes related to first stages of substrate-enzyme interactions. In particular, examples of some {ital ab} {ital initio} calculations used in the assignment of IR spectra of matrix isolated pyrimidine nucleic bases are shown. Some radiation-induced transformations in model chromophores are also presented. Lastly, we demonstrate how the {ital ab}-{ital initio} approach can be used to determine the initial several steps of the molecular mechanism of thymidylate synthase inhibition by dUMP analogues.
24 CFR 3280.811 - Calculations.
2010-04-01
... neutral load determined by Article 220.61 of the National Electrical Code, NFPA No. 70-2005. The loads... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Electrical Systems § 3280.811 Calculations. (a... motors and heater loads (exhaust fans, air conditioners, electric, gas, or oil heating). Omit smaller of...
COMPARISON OF CALCULATED AND DIRECT LOW DENSITY ...
African Journals Online (AJOL)
hi-tech
2004-03-03
Mar 3, 2004 ... linear regression analyses using SPSS (VER 10.0). To assess the degree of agreement ... Summary of Cholesterol, TG's, HDL-C and LDL-C; and correlation between calculated and direct. LDC-C among the groups(a) .... associated with hyperlipidaemia, including diabetes mellitus, nephrotic syndrome and ...
Work Function Calculation For Hafnium- Barium System
Directory of Open Access Journals (Sweden)
K.A. Tursunmetov
2015-08-01
Full Text Available The adsorption process of barium atoms on hafnium is considered. A structural model of the system is presented and on the basis of calculation of interaction between ions dipole system the dependence of the work function on the coating.
molecular dynamics simulations and quantum chemical calculations ...
African Journals Online (AJOL)
KEYWORDS: Molecular dynamic simulation; iron surface; adsorption; imidazoline derivatives; quantum chemical calculations ..... break any bond. This means that the closer the nuclei of the bonding atoms are a greater supply of energy is needed to separate the atoms due to large force of attraction between the atoms.
Simple Calculation Programs for Biology Other Methods
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Simple Calculation Programs for Biology Other Methods. Hemolytic potency of drugs. Raghava et al., (1994) Biotechniques 17: 1148. FPMAP: methods for classification and identification of microorganisms 16SrRNA. graphical display of restriction and fragment map of ...
Molecular transport calculations with Wannier Functions
DEFF Research Database (Denmark)
Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel
2005-01-01
We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane-wave...
Unified approach to alpha decay calculations
Indian Academy of Sciences (India)
2014-05-02
May 2, 2014 ... a small error in E can cause a much bigger error in τ. Due to this reason, in many analyses of α decay one uses experimentally measured E rather than the theoretically calculated one, even though a more satisfactory theoretical approach should generate both E and τ within a unified framework. Further ...
A New Iterative Method to Calculate [pi
Dion, Peter; Ho, Anthony
2012-01-01
For at least 2000 years people have been trying to calculate the value of [pi], the ratio of the circumference to the diameter of a circle. People know that [pi] is an irrational number; its decimal representation goes on forever. Early methods were geometric, involving the use of inscribed and circumscribed polygons of a circle. However, real…
Auger yield calculations for medical radioisotopes
Directory of Open Access Journals (Sweden)
Lee Boon Q.
2015-01-01
Full Text Available Auger yields from the decays of 71Ge, 99mTc, 111In and 123–125I have been calculated using a Monte Carlo model of the Auger cascade that has been developed at the ANU. In addition, progress to improve the input data of the model has been made with the Multiconfiguration Dirac-Hartree-Fock method.
Attitudes towards Graphing Calculators in Developmental Mathematics
Rajan, Shaun Thomas
2013-01-01
The purpose of this exploratory study was to examine instructor and student attitudes towards the use of the graphing calculator in the developmental mathematics classroom. A focus of the study was to see if instructors or students believed there were changes in the conceptual understanding of mathematics as a result of graphing calculator…
Calculation of the CIPW norm: New formulas
Indian Academy of Sciences (India)
A completely new set of formulas,based on matrix algebra,has been suggested for the calculation of the CIPW norm for igneous rocks to achieve highly consistent and accurate norms.The suggested sequence of derivation of the normative minerals greatly deviates from the sequence followed in the classical scheme.
7 CFR 1416.704 - Payment calculation.
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Payment calculation. 1416.704 Section 1416.704 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... necessary to ensure successful plant survival; (3) Chemicals and nutrients necessary for successful...
Conductance calculations with a wavelet basis set
DEFF Research Database (Denmark)
Thygesen, Kristian Sommer; Bollinger, Mikkel; Jacobsen, Karsten Wedel
2003-01-01
. The linear-response conductance is calculated from the Green's function which is represented in terms of a system-independent basis set containing wavelets with compact support. This allows us to rigorously separate the central region from the contacts and to test for convergence in a systematic way...
Simple Calculation Programs for Biology Immunological Methods
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Simple Calculation Programs for Biology Immunological Methods. Computation of Ab/Ag Concentration from EISA data. Graphical Method; Raghava et al., 1992, J. Immuno. Methods 153: 263. Determination of affinity of Monoclonal Antibody. Using non-competitive ...
Gaseous Nitrogen Orifice Mass Flow Calculator
Ritrivi, Charles
2013-01-01
The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.
Bullet Design of MEMS Cantilever - Hand Calculation
Directory of Open Access Journals (Sweden)
Abhijeet V. KSHIRSAGAR
2008-04-01
Full Text Available The present article describes the basic hand calculations for design of MEMS cantilever for beginners. The MATLAB software code was written to analysis the all formulae. Further the article gives insight of important parameters, its dependence and consideration for a good design.
Model calculations in correlated finite nuclei
Energy Technology Data Exchange (ETDEWEB)
Guardiola, R.; Ros, J. (Granada Univ. (Spain). Dept. de Fisica Nuclear); Polls, A. (Tuebingen Univ. (Germany, F.R.). Inst. fuer Theoretische Physik)
1980-10-21
In order to study the convergence condition of the FAHT cluster expansion several model calculations are described and numerically tested. It is concluded that this cluster expansion deals properly with the central part of the two-body distribution function, but presents some difficulties for the exchange part.
Total energy calculations and bonding at interfaces
Energy Technology Data Exchange (ETDEWEB)
Louie, S.G.
1984-08-01
Some of the concepts and theoretical techniques employed in recent ab initio studies of the electronic and structural properties of surfaces and interfaces are discussed. Results of total energy calculations for the 2 x 1 reconstructed diamond (111) surface and for stacking faults in Si are reviewed. 30 refs., 8 figs.
Calculating Free Energies Using Average Force
Darve, Eric; Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
A new, general formula that connects the derivatives of the free energy along the selected, generalized coordinates of the system with the instantaneous force acting on these coordinates is derived. The instantaneous force is defined as the force acting on the coordinate of interest so that when it is subtracted from the equations of motion the acceleration along this coordinate is zero. The formula applies to simulations in which the selected coordinates are either unconstrained or constrained to fixed values. It is shown that in the latter case the formula reduces to the expression previously derived by den Otter and Briels. If simulations are carried out without constraining the coordinates of interest, the formula leads to a new method for calculating the free energy changes along these coordinates. This method is tested in two examples - rotation around the C-C bond of 1,2-dichloroethane immersed in water and transfer of fluoromethane across the water-hexane interface. The calculated free energies are compared with those obtained by two commonly used methods. One of them relies on determining the probability density function of finding the system at different values of the selected coordinate and the other requires calculating the average force at discrete locations along this coordinate in a series of constrained simulations. The free energies calculated by these three methods are in excellent agreement. The relative advantages of each method are discussed.
Block Tridiagonal Matrices in Electronic Structure Calculations
DEFF Research Database (Denmark)
Petersen, Dan Erik
This thesis focuses on some of the numerical aspects of the treatment of the electronic structure problem, in particular that of determining the ground state electronic density for the non–equilibrium Green’s function formulation of two–probe systems and the calculation of transmission...
Deconstructing Calculation Methods, Part 3: Multiplication
Thompson, Ian
2008-01-01
In this third of a series of four articles, the author deconstructs the primary national strategy's approach to written multiplication. The approach to multiplication, as set out on pages 12 to 15 of the primary national strategy's "Guidance paper" "Calculation" (DfES, 2007), is divided into six stages: (1) mental…
Calculated Bulk Properties of the Actinide Metals
DEFF Research Database (Denmark)
Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.
1978-01-01
Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains t...
Unified approach to alpha decay calculations
Indian Academy of Sciences (India)
2014-05-02
May 2, 2014 ... We describe the analytic -matrix (SM) method which gives a procedure for the calculation of decay energy and mean life in an integrated way by evaluating the resonance pole of the -matrix in the complex momentum or energy plane. We make an illustrative comparative study of WKB and -matrix ...
CALCULATION OF THE PROCESS OF BURDEN HEATING
Directory of Open Access Journals (Sweden)
S. L. Rovin
2009-01-01
Full Text Available The original method of calculation of duration of burden heating till predetermined temperature is stated. The results of numerical modeling of nonstationary heating of fixed bed are given. Experimental check of the received results is carried out at full-scale plants.
5 CFR 1653.14 - Calculating entitlements.
2010-01-01
... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Calculating entitlements. 1653.14 Section 1653.14 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD COURT ORDERS AND LEGAL PROCESSES AFFECTING THRIFT SAVINGS PLAN ACCOUNTS Legal Process for the Enforcement of a Participant's Legal...
30 CFR 5.30 - Fee calculation.
2010-07-01
... MINING PRODUCTS FEES FOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS § 5.30 Fee calculation. (a) MSHA bases fees under this subchapter on the direct and indirect costs of the services provided, except... product. (d) If the actual cost of processing the application is less than MSHA's maximum fee estimate...
Calculating track thrust with track functions
Chang, Hsi-Ming; Procura, Massimiliano; Thaler, Jesse; Waalewijn, Wouter J.
2013-08-01
In e+e- event shapes studies at LEP, two different measurements were sometimes performed: a “calorimetric” measurement using both charged and neutral particles and a “track-based” measurement using just charged particles. Whereas calorimetric measurements are infrared and collinear safe, and therefore calculable in perturbative QCD, track-based measurements necessarily depend on nonperturbative hadronization effects. On the other hand, track-based measurements typically have smaller experimental uncertainties. In this paper, we present the first calculation of the event shape “track thrust” and compare to measurements performed at ALEPH and DELPHI. This calculation is made possible through the recently developed formalism of track functions, which are nonperturbative objects describing how energetic partons fragment into charged hadrons. By incorporating track functions into soft-collinear effective theory, we calculate the distribution for track thrust with next-to-leading logarithmic resummation. Due to a partial cancellation between nonperturbative parameters, the distributions for calorimeter thrust and track thrust are remarkably similar, a feature also seen in LEP data.
Relativistic calculations of coalescing binary neutron stars
Indian Academy of Sciences (India)
We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and ...
Relativistic calculations of coalescing binary neutron stars
Indian Academy of Sciences (India)
Relativistic calculations of coalescing binary neutron stars. JOSHUA FABER, PHILIPPE GRANDCLÉMENT and FREDERIC RASIO. Department of Physics and Astronomy, Northwestern University, Evanston,. IL 60208-0834, USA. E-mail: rasio@mac.com. Abstract. We have designed and tested a new relativistic Lagrangian ...
Fast calculation of best focus position
Bezzubik, V.; Belashenkov, N.; Vdovin, G.V.
2015-01-01
New computational technique based on linear-scale differential analysis (LSDA) of digital image is proposed to find the best focus position in digital microscopy by means of defocus estimation in two near-focal positions only. The method is based on the calculation of local gradients of the image on
Synthesis, characterization, ab initio calculations, thermal behaviour ...
Indian Academy of Sciences (India)
Administrator
through titration of the ligands with the metal ions at constant ionic strength (0⋅1 M NaClO4) and at 25°C. According to the thermodynamic studies, as the steric character of the ligand increases, the complexation tendency to VO(IV) center decreases. Also, the ab initio calculations were carried out to determine the structural ...
A Tabular Approach to Titration Calculations
Lim, Kieran F.
2012-01-01
Titrations are common laboratory exercises in high school and university chemistry courses, because they are easy, relatively inexpensive, and they illustrate a number of fundamental chemical principles. While students have little difficulty with calculations involving a single titration step, there is a significant leap in conceptual difficulty…
Ammonia synthesis from first principles calculations
DEFF Research Database (Denmark)
Honkala, Johanna Karoliina; Hellman, Anders; Remediakis, Ioannis
2005-01-01
The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinet...
Why Do Calculators Have Rubber Feet?
Heavers, Richard M.
2007-01-01
Our students like using the covers of their TI graphing calculators in an inquiry-based extension of a traditional exercise that challenges their preconceived ideas about friction. Biology major Fiona McGraw (Fig. 1) is obviously excited about the large coefficient of static friction ([mu][subscript s] = 1.3) for the four little rubber feet on her…
Calculation of U-value for Concrete Element
DEFF Research Database (Denmark)
Rose, Jørgen
1997-01-01
This report is a U-value calculation of a typical concrete element used in industrial buildings.The calculations are performed using a 2-dimensional finite difference calculation programme.......This report is a U-value calculation of a typical concrete element used in industrial buildings.The calculations are performed using a 2-dimensional finite difference calculation programme....
Procedures for Calculating Residential Dehumidification Loads
Energy Technology Data Exchange (ETDEWEB)
Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2016-06-01
Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity. The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.
Radionuclide release calculations for SAR-08
Energy Technology Data Exchange (ETDEWEB)
Thomson, Gavin; Miller, Alex; Smith, Graham; Jackson, Duncan (Enviros Consulting Ltd, Wolverhampton (United Kingdom))
2008-04-15
Following a review by the Swedish regulatory authorities of the post-closure safety assessment of the SFR 1 disposal facility for low and intermediate waste (L/ILW), SAFE, the SKB has prepared an updated assessment called SAR-08. This report describes the radionuclide release calculations that have been undertaken as part of SAR-08. The information, assumptions and data used in the calculations are reported and the results are presented. The calculations address issues raised in the regulatory review, but also take account of new information including revised inventory data. The scenarios considered include the main case of expected behaviour of the system, with variants; low probability releases, and so-called residual scenarios. Apart from these scenario uncertainties, data uncertainties have been examined using a probabilistic approach. Calculations have been made using the AMBER software. This allows all the component features of the assessment model to be included in one place. AMBER has been previously used to reproduce results the corresponding calculations in the SAFE assessment. It is also used in demonstration of the IAEA's near surface disposal assessment methodology ISAM and has been subject to very substantial verification tests and has been used in verifying other assessment codes. Results are presented as a function of time for the release of radionuclides from the near field, and then from the far field into the biosphere. Radiological impacts of the releases are reported elsewhere. Consideration is given to each radionuclide and to each component part of the repository. The releases from the entire repository are also presented. The peak releases rates are, for most scenarios, due to organic C-14. Other radionuclides which contribute to peak release rates include inorganic C-14, Ni-59 and Ni-63. (author)
Coupled-cluster calculations of nucleonic matter
Hagen, G.; Papenbrock, T.; Ekström, A.; Wendt, K. A.; Baardsen, G.; Gandolfi, S.; Hjorth-Jensen, M.; Horowitz, C. J.
2014-01-01
Background: The equation of state (EoS) of nucleonic matter is central for the understanding of bulk nuclear properties, the physics of neutron star crusts, and the energy release in supernova explosions. Because nuclear matter exhibits a finely tuned saturation point, its EoS also constrains nuclear interactions. Purpose: This work presents coupled-cluster calculations of infinite nucleonic matter using modern interactions from chiral effective field theory (EFT). It assesses the role of correlations beyond particle-particle and hole-hole ladders, and the role of three-nucleon forces (3NFs) in nuclear matter calculations with chiral interactions. Methods: This work employs the optimized nucleon-nucleon (NN) potential NNLOopt at next-to-next-to leading order, and presents coupled-cluster computations of the EoS for symmetric nuclear matter and neutron matter. The coupled-cluster method employs up to selected triples clusters and the single-particle space consists of a momentum-space lattice. We compare our results with benchmark calculations and control finite-size effects and shell oscillations via twist-averaged boundary conditions. Results: We provide several benchmarks to validate the formalism and show that our results exhibit a good convergence toward the thermodynamic limit. Our calculations agree well with recent coupled-cluster results based on a partial wave expansion and particle-particle and hole-hole ladders. For neutron matter at low densities, and for simple potential models, our calculations agree with results from quantum Monte Carlo computations. While neutron matter with interactions from chiral EFT is perturbative, symmetric nuclear matter requires nonperturbative approaches. Correlations beyond the standard particle-particle ladder approximation yield non-negligible contributions. The saturation point of symmetric nuclear matter is sensitive to the employed 3NFs and the employed regularization scheme. 3NFs with nonlocal cutoffs exhibit a
Black hole entropy calculations based on symmetries
Dreyer, O; Wísniewski, J A; Dreyer, Olaf; Ghosh, Amit; Wisniewski, Jacek
2001-01-01
Symmetry based approaches to the black hole entropy problem have a number of attractive features; in particular they are very general and do not depend on the details of the quantization method. However we point out that, of the two available approaches, one faces conceptual problems (also emphasized by others), while the second contains certain technical flaws. We correct these errors and, within the new, improved scheme, calculate the entropy of 3-dimensional black holes. We find that, while the new symmetry vector fields are well-defined on the ``stretched horizon,'' and lead to well-defined Hamiltonians satisfying the expected Lie algebra, they fail to admit a well-defined limit to the horizon. This suggests that, although the formal calculation can be carried out at the classical level, its real, conceptual origin probably lies in the quantum theory.
On the Origins of Calculation Abilities
Directory of Open Access Journals (Sweden)
A. Ardila
1993-01-01
Full Text Available A historical review of calculation abilities is presented. Counting, starting with finger sequencing, has been observed in different ancient and contemporary cultures, whereas number representation and arithmetic abilities are found only during the last 5000–6000 years. The rationale for selecting a base of ten in most numerical systems and the clinical association between acalculia and finger agnosia are analyzed. Finger agnosia (as a restricted form of autotopagnosia, right–left discrimination disturbances, semantic aphasia, and acalculia are proposed to comprise a single neuropsychological syndrome associated with left angular gyrus damage. A classification of calculation disturbances resulting from brain damage is presented. It is emphasized that using historical/anthropological analysis, it becomes evident that acalculia, finger agnosia, and disorders in right–left discrimination (as in general, in the use of spatial concepts must constitute a single clinical syndrome, resulting from the disruption of some common brain activity and the impairment of common cognitive mechanisms.
Labview virtual instruments for calcium buffer calculations.
Reitz, Frederick B; Pollack, Gerald H
2003-01-01
Labview VIs based upon the calculator programs of Fabiato and Fabiato (J. Physiol. Paris 75 (1979) 463) are presented. The VIs comprise the necessary computations for the accurate preparation of multiple-metal buffers, for the back-calculation of buffer composition given known free metal concentrations and stability constants used, for the determination of free concentrations from a given buffer composition, and for the determination of apparent stability constants from absolute constants. As implemented, the VIs can concurrently account for up to three divalent metals, two monovalent metals and four ligands thereof, and the modular design of the VIs facilitates further extension of their capacity. As Labview VIs are inherently graphical, these VIs may serve as useful templates for those wishing to adapt this software to other platforms.
A priori calculations for the rotational stabilisation
Directory of Open Access Journals (Sweden)
Iwata Yoritaka
2013-12-01
Full Text Available The synthesis of chemical elements are mostly realised by low-energy heavy-ion reactions. Synthesis of exotic and heavy nuclei as well as that of superheavy nuclei is essential not only to find out the origin and the limit of the chemical elements but also to clarify the historical/chemical evolution of our universe. Despite the life time of exotic nuclei is not so long, those indispensable roles in chemical evolution has been pointed out. Here we are interested in examining the rotational stabilisation. In this paper a priori calculation (before microscopic density functional calculations is carried out for the rotational stabilisation effect in which the balance between the nuclear force, the Coulomb force and the centrifugal force is taken into account.
A corrector for spacecraft calculated electron moments
Directory of Open Access Journals (Sweden)
J. Geach
2005-03-01
Full Text Available We present the application of a numerical method to correct electron moments calculated on-board spacecraft from the effects of potential broadening and energy range truncation. Assuming a shape for the natural distribution of the ambient plasma and employing the scalar approximation, the on-board moments can be represented as non-linear integral functions of the underlying distribution. We have implemented an algorithm which inverts this system successfully over a wide range of parameters for an assumed underlying drifting Maxwellian distribution. The outputs of the solver are the corrected electron plasma temperature Te, density Ne and velocity vector Ve. We also make an estimation of the temperature anisotropy A of the distribution. We present corrected moment data from Cluster's PEACE experiment for a range of plasma environments and make comparisons with electron and ion data from other Cluster instruments, as well as the equivalent ground-based calculations using full 3-D distribution PEACE telemetry.
CALCULATION ALGORITHM TRUSS UNDER CRANE BEAMS
Directory of Open Access Journals (Sweden)
N. K. Akaev1
2016-01-01
Full Text Available Aim.The task of reducing the deflection and increase the rigidity of single-span beams are made. In the article the calculation algorithm for truss crane girders is determined.Methods. To identify the internal effort required for the selection of cross section elements the design uses the Green's function.Results. It was found that the simplest truss system reduces deflection and increases the strength of design. The upper crossbar is subjected not only to bending and shear and compression work due to tightening tension. Preliminary determination of the geometrical characteristics of the crane farms elements are offered to make a comparison with previous similar configuration of his farms, using a simple approximate calculation methods.Conclusion.The method of sequential movements (incrementally the two bridge cranes along the length of the upper crossbar truss beams is suggested. We give the corresponding formulas and conditions of safety.
Fastlim: a fast LHC limit calculator
Papucci, Michele; Weiler, Andreas; Zeune, Lisa
2014-01-01
Fastlim is a tool to calculate conservative limits on extensions of the Standard Model from direct LHC searches without performing any Monte Carlo event generation. The program reconstructs the visible cross sections from pre-calculated efficiency tables and cross section tables for simplified event topologies. As a proof of concept of the approach, we have implemented searches relevant for supersymmetric models with R-parity conservation. Fastlim takes the spectrum and coupling information of a given model point and provides, for each signal region of the implemented analyses, the visible cross sections normalised to the corresponding upper limit, reported by the experiments, as well as the exclusion $p$-value. To demonstrate the utility of the program we study the sensitivity of the recent ATLAS missing energy searches to the parameter space of natural SUSY models. The program structure allows the straight-forward inclusion of external efficiency tables and can be generalised to R-parity violating scenarios...
Calculation of coherent synchrotron radiation using mesh
Directory of Open Access Journals (Sweden)
T. Agoh
2004-05-01
Full Text Available We develop a new method to simulate coherent synchrotron radiation numerically. It is based on the mesh calculation of the electromagnetic field in the frequency domain. We make an approximation in the Maxwell equation which allows a mesh size much larger than the relevant wavelength so that the computing time is tolerable. Using the equation, we can perform a mesh calculation of coherent synchrotron radiation in transient states with shielding effects by the vacuum chamber. The simulation results obtained by this method are compared with analytic solutions. Though, for the comparison with theories, we adopt simplifications such as longitudinal Gaussian distribution, zero-width transverse distribution, horizontal uniform bend, and a vacuum chamber with rectangular cross section, the method is applicable to general cases.
Comparative Study of Daylighting Calculation Methods
Directory of Open Access Journals (Sweden)
Mandala Ariani
2018-01-01
Full Text Available The aim of this study is to assess five daylighting calculation method commonly used in architectural study. The methods used include hand calculation methods (SNI/DPMB method and BRE Daylighting Protractors, scale models studied in an artificial sky simulator and computer programs using Dialux and Velux lighting software. The test room is conditioned by the uniform sky conditions, simple room geometry with variations of the room reflectance (black, grey, and white color. The analyses compared the result (including daylight factor, illumination, and coefficient of uniformity value and examines the similarity and contrast the result different. The color variations trial is used to analyses the internally reflection factor contribution to the result.
Low-energy calculations for nuclear photodisintegration
Directory of Open Access Journals (Sweden)
Deflorian S.
2016-01-01
Full Text Available In the Standard Solar Model a central role in the nucleosynthesis is played by reactions of the kind XZ1A11+XZ2A22→YZ1+Z2A1+A2+γ${}_{{Z_1}}^{{A_1}}{X_1} + {}_{{Z_2}}^{{A_2}}{X_2} \\to {}_{{Z_1} + {Z_2}}^{{A_1} + {A_2}}Y + \\gamma $, which enter the proton-proton chains. These reactions can also be studied through the inverse photodisintegration reaction. One option is to use the Lorentz Integral Transform approach, which transforms the continuum problem into a bound state-like one. A way to check the reliability of such methods is a direct calculation, for example using the Kohn Variational Principle to obtain the scattering wave function and then directly calculate the response function of the reaction.
Integral dependent spin couplings in CI calculations
Iberle, K.; Davidson, E. R.
1982-01-01
Although the number of ways to combine Slater determinants to form spin eigenfunctions increases rapidly with the number of open shells, most of these spin couplings will make only a small contribution to a given state, provided the spin coupling is chosen judiciously. The technique of limiting calculations to the interacting subspace pioneered by Bunge (1970) was employed by Munch and Davidson (1975) to the vanadium atom. The use of an interacting space looses its advantage in more complex cases. However, the problem can always be reduced to only one interacting spin coupling by making the coefficients integral dependent. The present investigation is concerned with the performance of integral dependent interacting couplings, taking into account the results of three test calculations.
A Methodology for Calculating Radiation Signatures
Energy Technology Data Exchange (ETDEWEB)
Klasky, Marc Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilcox, Trevor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bathke, Charles G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); James, Michael R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-05-01
A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.
Reading and Calculating Billing Through Mobile Devices
Directory of Open Access Journals (Sweden)
Pilar Alexandra Moreno
2013-06-01
Full Text Available This article broadly describes the analysis, design and development of the system utilitarian, called “Reading and billing calculation site through mobile devices.” The application is oriented Public Services Companies, first water services, to perform part of the billing process “in place” through phones or any mobile devices compatible with Android. Will enable you to take readings of service consumption, recording new gauging, online update and control the information for users and turnover. This technology is considered as such one site billing method as through Internet is connected with the database of the company, sending and receiving date information, which makes the calculation of the billing for the reading period, bringing benefits to the client and the service generating company.
Improving the calculation of interdiffusion coefficients
Kapoor, Rakesh R.; Eagar, Thomas W.
1990-12-01
Least-squares spline interpolation techniques are reviewed and presented as a mathematical tool for noise reduction and interpolation of diffusion profiles. Numerically simulated diffusion profiles were interpolated using a sixth-order spline. The spline fit data were successfully used in conjunction with the Boltzmann-Matano treatment to compute the interdiffusion coefficient, demonstrating the usefulness of splines as a numerical tool for such calculations. Simulations conducted on noisy data indicate that the technique can extract the correct diffusivity data given compositional data that contain only three digits of information and are contaminated with a noise level of 0.001. Splines offer a reproducible and reliable alternative to graphical evaluation of the slope of a diffusion profile, which is used in the Boltzmann-Matano treatment. Hence, use of splines reduces the numerical errors associated with calculation of interdiffusion coefficients from raw diffusion profile data.
Tearing mode stability calculations with pressure flattening
Ham, C J; Cowley, S C; Hastie, R J; Hender, T C; Liu, Y Q
2013-01-01
Calculations of tearing mode stability in tokamaks split conveniently into an external region, where marginally stable ideal MHD is applicable, and a resonant layer around the rational surface where sophisticated kinetic physics is needed. These two regions are coupled by the stability parameter. Pressure and current perturbations localized around the rational surface alter the stability of tearing modes. Equations governing the changes in the external solution and - are derived for arbitrary perturbations in axisymmetric toroidal geometry. The relationship of - with and without pressure flattening is obtained analytically for four pressure flattening functions. Resistive MHD codes do not contain the appropriate layer physics and therefore cannot predict stability directly. They can, however, be used to calculate -. Existing methods (Ham et al. 2012 Plasma Phys. Control. Fusion 54 025009) for extracting - from resistive codes are unsatisfactory when there is a finite pressure gradient at the rational surface ...
Through-Flow Calculations in Axial Turbomachinery
1976-10-01
Glassman , Lewis Research Center, NASA SP-290, 1973. 3. Dzung, L.S.: Schaufelgitter mit dicker Hinterkante, Technical Note BBC, (unpublished) 4...of peak efficiency was taken from - Warner L.S. : ASME Paper 61-WA-37 - Glassman A.J. : NASA TN-D-6702 The method for computing incidence losses is...devise more intelligent ý , flow models whicn will enable us to do semi-empirical simpler calculations. One of the things that I have in mind and has not
Continuum RPA calculation of escape widths
Energy Technology Data Exchange (ETDEWEB)
Vertse, T. (Inst. of Nuclear Research, Hungarian Academy of Sciences, Debrecen (Hungary)); Curutchet, P.; Liotta, R.J. (Manne Siegbahn Inst. of Physics, Stockholm (Sweden)); Bang, J. (Niels Bohr Inst., Copenhagen (Denmark)); Giai, N. van (Inst. de Physique Nucleaire, 91 - Orsay (France))
1991-07-25
Particle-hole partial decay widths are calculated within the continuum RPA exactly, i.e. without any further approximation, in a square well plus Coulomb potential and using a separable residual interaction. The results are compared with the ones obtained by making pole expansions of the single-particle Green functions (Berggren and Mittag-Leffler). It is found that the Berggren and Mittag-Leffler expansions give results in good agreement with the 'exact' ones. (orig.).
Temperature Calculations in the Coastal Modeling System
2017-04-01
System by Honghai Li and Mitchell E. Brown PURPOSE: This Coastal and Hydraulics Engineering Technical Note (CHETN) describes procedures to calculate...strong tidal signals and sufficient wind energy to provide the vertical mixing. Also, the assumption of sufficient energy to mix over the water...of the Corrotoman River is predominated by tidal process with occasional passages of meteorological events. Tide and wind provide sufficient energy
Toward a nitrogen footprint calculator for Tanzania
Hutton, Mary Olivia; Leach, Allison M.; Leip, Adrian; Galloway, James N.; Bekunda, Mateete; Sullivan, Clare; Lesschen, Jan Peter
2017-03-01
We present the first nitrogen footprint model for a developing country: Tanzania. Nitrogen (N) is a crucial element for agriculture and human nutrition, but in excess it can cause serious environmental damage. The Sub-Saharan African nation of Tanzania faces a two-sided nitrogen problem: while there is not enough soil nitrogen to produce adequate food, excess nitrogen that escapes into the environment causes a cascade of ecological and human health problems. To identify, quantify, and contribute to solving these problems, this paper presents a nitrogen footprint tool for Tanzania. This nitrogen footprint tool is a concept originally designed for the United States of America (USA) and other developed countries. It uses personal resource consumption data to calculate a per-capita nitrogen footprint. The Tanzania N footprint tool is a version adapted to reflect the low-input, integrated agricultural system of Tanzania. This is reflected by calculating two sets of virtual N factors to describe N losses during food production: one for fertilized farms and one for unfertilized farms. Soil mining factors are also calculated for the first time to address the amount of N removed from the soil to produce food. The average per-capita nitrogen footprint of Tanzania is 10 kg N yr-1. 88% of this footprint is due to food consumption and production, while only 12% of the footprint is due to energy use. Although 91% of farms in Tanzania are unfertilized, the large contribution of fertilized farms to N losses causes unfertilized farms to make up just 83% of the food production N footprint. In a developing country like Tanzania, the main audiences for the N footprint tool are community leaders, planners, and developers who can impact decision-making and use the calculator to plan positive changes for nitrogen sustainability in the developing world.
On the Origins of Calculation Abilities
Ardila, A.
1993-01-01
A historical review of calculation abilities is presented. Counting, starting with finger sequencing, has been observed in different ancient and contemporary cultures, whereas number representation and arithmetic abilities are found only during the last 5000–6000 years. The rationale for selecting a base of ten in most numerical systems and the clinical association between acalculia and finger agnosia are analyzed. Finger agnosia (as a restricted form of autotopagnosia), right–left discrimina...
Thermal Load Calculations of Multilayered Walls
Bashir M. Suleiman
2012-01-01
Thermal load calculations have been performed for multi-layered walls that are composed of three different parts; a common (sand and cement) plaster, and two types of locally produced soft and hard bricks. The masonry construction of these layered walls was based on concrete-backed stone masonry made of limestone bricks joined by mortar. These multilayered walls are forming the outer walls of the building envelope of a typical Libyan house. Based on the periodic seasonal ...
Flow calculation in a bulb turbine
Energy Technology Data Exchange (ETDEWEB)
Goede, E.; Pestalozzi, J.
1987-02-01
In recent years remarkable progress has been made in the field of computational fluid dynamics. Sometimes the impression may arise when reading the relevant literature that most of the problems in this field have already been solved. Upon studying the matter more deeply, however, it is apparent that some questions still remain unanswered. The use of the quasi-3D (Q3D) computational method for calculating the flow in a fuel hydraulic turbine is described.
Calculation methods of the nuclear characteristics
Dubovichenko, S. B.
2010-01-01
In the book the mathematical methods of nuclear cross sections and phases of elastic scattering, energy and characteristics of bound states in two- and three-particle nuclear systems, when the potentials of interaction contain not only central, but also tensor component, are presented. Are given the descriptions of the mathematical numerical calculation methods and computer programs in the algorithmic language "BASIC" for "Turbo Basic" of firm "Borland" for the computers of the type IBM PC AT...
Calculation Of Residual Volume By Spirometric Data
Directory of Open Access Journals (Sweden)
R. Hashemi
2005-05-01
Full Text Available Background: The current practice to measure RV is either by BPG or helium dilution methods which may not be available in all clinics due to their cost. Methods: This paper outlines a method for both direct and indirect calculation of RV via PFT with acceptable sensitivity (81 %, 60% , specificity (71 %, 94% and validity (76%, 78% for obstructive and restrictive lung disease respectively at a much lower cost.
Calculation of Weighted Geometric Dilution of Precision
Directory of Open Access Journals (Sweden)
Chien-Sheng Chen
2013-01-01
Full Text Available To achieve high accuracy in wireless positioning systems, both accurate measurements and good geometric relationship between the mobile device and the measurement units are required. Geometric dilution of precision (GDOP is widely used as a criterion for selecting measurement units, since it represents the geometric effect on the relationship between measurement error and positioning determination error. In the calculation of GDOP value, the maximum volume method does not necessarily guarantee the selection of the optimal four measurement units with minimum GDOP. The conventional matrix inversion method for GDOP calculation demands a large amount of operation and causes high power consumption. To select the subset of the most appropriate location measurement units which give the minimum positioning error, we need to consider not only the GDOP effect but also the error statistics property. In this paper, we employ the weighted GDOP (WGDOP, instead of GDOP, to select measurement units so as to improve the accuracy of location. The handheld global positioning system (GPS devices and mobile phones with GPS chips can merely provide limited calculation ability and power capacity. Therefore, it is very imperative to obtain WGDOP accurately and efficiently. This paper proposed two formations of WGDOP with less computation when four measurements are available for location purposes. The proposed formulae can reduce the computational complexity required for computing the matrix inversion. The simpler WGDOP formulae for both the 2D and the 3D location estimation, without inverting a matrix, can be applied not only to GPS but also to wireless sensor networks (WSN and cellular communication systems. Furthermore, the proposed formulae are able to provide precise solution of WGDOP calculation without incurring any approximation error.
40 CFR 91.1307 - Credit calculation.
2010-07-01
...) are to be calculated according to the following equation and rounded, in accordance with ASTM E29-93a, to the nearest gram. ASTM E29-93a has been incorporated by reference. See § 91.6. Consistent units... family in grams per kilowatt hour. CL = compliance level of the in-use testing in g/kW-hr. μuse = mean...
Theoretical Calculations of Atomic Data for Spectroscopy
Bautista, Manuel A.
2000-01-01
Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.
Bias in Dynamic Monte Carlo Alpha Calculations
Energy Technology Data Exchange (ETDEWEB)
Sweezy, Jeremy Ed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nolen, Steven Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Adams, Terry R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trahan, Travis John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-06
A 1/N bias in the estimate of the neutron time-constant (commonly denoted as α) has been seen in dynamic neutronic calculations performed with MCATK. In this paper we show that the bias is most likely caused by taking the logarithm of a stochastic quantity. We also investigate the known bias due to the particle population control method used in MCATK. We conclude that this bias due to the particle population control method is negligible compared to other sources of bias.
Characteristic features of calculations of hydrogen generators
Troshen'kin, V. B.
2010-03-01
Among the methods of hydrogen generation that are economically sound for autonomous customers is the silikol method. The technique of calculation of the cylinder gas generator circuit is given. The restrictions imposed on the flow velocity in a three-phase reacting system are considered. It is established that the reaction rate in the circuit as a dissipative structure is in direct correlation with the change in the Gibbs energy.
Calculation of reactor antineutrino spectra in TEXONO
Chen Dong Liang; Mao Ze Pu; Wong, T H
2002-01-01
In the low energy reactor antineutrino physics experiments, either for the researches of antineutrino oscillation and antineutrino reactions, or for the measurement of abnormal magnetic moment of antineutrino, the flux and the spectra of reactor antineutrino must be described accurately. The method of calculation of reactor antineutrino spectra was discussed in detail. Furthermore, based on the actual circumstances of NP2 reactors and the arrangement of detectors, the flux and the spectra of reactor antineutrino in TEXONO were worked out
Activation Product Inverse Calculations with NDI
Energy Technology Data Exchange (ETDEWEB)
Gray, Mark Girard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-27
NDI based forward calculations of activation product concentrations can be systematically used to infer structural element concentrations from measured activation product concentrations with an iterative algorithm. The algorithm converges exactly for the basic production-depletion chain with explicit activation product production and approximately, in the least-squares sense, for the full production-depletion chain with explicit activation product production and nosub production-depletion chain. The algorithm is suitable for automation.
TINTE. Nuclear calculation theory description report
Energy Technology Data Exchange (ETDEWEB)
Gerwin, H.; Scherer, W.; Lauer, A. [Forschungszentrum Juelich GmbH (DE). Institut fuer Energieforschung (IEF), Sicherheitsforschung und Reaktortechnik (IEF-6); Clifford, I. [Pebble Bed Modular Reactor (Pty) Ltd. (South Africa)
2010-01-15
The Time Dependent Neutronics and Temperatures (TINTE) code system deals with the nuclear and the thermal transient behaviour of the primary circuit of the High-temperature Gas-cooled Reactor (HTGR), taking into consideration the mutual feedback effects in twodimensional axisymmetric geometry. This document contains a complete description of the theoretical basis of the TINTE nuclear calculation, including the equations solved, solution methods and the nuclear data used in the solution. (orig.)
In situ magnetotail magnetic flux calculation
Directory of Open Access Journals (Sweden)
M. A. Shukhtina
2015-06-01
Full Text Available We explore two new modifications of the magnetotail magnetic flux (F calculation algorithm based on the Petrinec and Russell (1996 (PR96 approach of the tail radius determination. Unlike in the PR96 model, the tail radius value is calculated at each time step based on simultaneous magnetotail and solar wind observations. Our former algorithm, described in Shukhtina et al. (2009, required that the "tail approximation" requirement were fulfilled, i.e., it could be applied only tailward x ∼ −15 RE. The new modifications take into account the approximate uniformity of the magnetic field of external sources in the near and middle tail. Tests, based on magnetohydrodynamics (MHD simulations, show that this approach may be applied at smaller distances, up to x ∼ −3 RE. The tests also show that the algorithm fails during long periods of strong positive interplanetary magnetic field (IMF Bz. A new empirical formula has also been obtained for the tail radius at the terminator (at x = 0 which improves the calculations.
Accurate Calculation of Electric Fields Inside Enzymes.
Wang, X; He, X; Zhang, J Z H
2016-01-01
The specific electric field generated by a protease at its active site is considered as an important source of the catalytic power. Accurate calculation of electric field at the active site of an enzyme has both fundamental and practical importance. Measuring site-specific changes of electric field at internal sites of proteins due to, eg, mutation, has been realized by using molecular probes with CO or CN groups in the context of vibrational Stark effect. However, theoretical prediction of change in electric field inside a protein based on a conventional force field, such as AMBER or OPLS, is often inadequate. For such calculation, quantum chemical approach or quantum-based polarizable or polarized force field is highly preferable. Compared with the result from conventional force field, significant improvement is found in predicting experimentally measured mutation-induced electric field change using quantum-based methods, indicating that quantum effect such as polarization plays an important role in accurate description of electric field inside proteins. In comparison, the best theoretical prediction comes from fully quantum mechanical calculation in which both polarization and inter-residue charge transfer effects are included for accurate prediction of electrostatics in proteins. © 2016 Elsevier Inc. All rights reserved.
Excited state electron affinity calculations for aluminum
Hussein, Adnan Yousif
2017-08-01
Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.
Agriculture-related radiation dose calculations
Energy Technology Data Exchange (ETDEWEB)
Furr, J.M.; Mayberry, J.J.; Waite, D.A.
1987-10-01
Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.
Sample size calculations for skewed distributions.
Cundill, Bonnie; Alexander, Neal D E
2015-04-02
Sample size calculations should correspond to the intended method of analysis. Nevertheless, for non-normal distributions, they are often done on the basis of normal approximations, even when the data are to be analysed using generalized linear models (GLMs). For the case of comparison of two means, we use GLM theory to derive sample size formulae, with particular cases being the negative binomial, Poisson, binomial, and gamma families. By simulation we estimate the performance of normal approximations, which, via the identity link, are special cases of our approach, and for common link functions such as the log. The negative binomial and gamma scenarios are motivated by examples in hookworm vaccine trials and insecticide-treated materials, respectively. Calculations on the link function (log) scale work well for the negative binomial and gamma scenarios examined and are often superior to the normal approximations. However, they have little advantage for the Poisson and binomial distributions. The proposed method is suitable for sample size calculations for comparisons of means of highly skewed outcome variables.
TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES
Energy Technology Data Exchange (ETDEWEB)
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver, E-mail: jasmina@physics.ucf.edu [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States)
2016-07-01
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.
SEECAL: Program to calculate age-dependent
Energy Technology Data Exchange (ETDEWEB)
Cristy, M.; Eckerman, K.F.
1993-12-01
This report describes the computer program SEECAL, which calculates specific effective energies (SEE) to specified target regions for ages newborn, 1 y, 5 y, 10 y, 15 y, a 70-kg adult male, and a 58-kg adult female. The dosimetric methodology is that of the International Commission on Radiological Protection (ICRP) and is generally consistent with the schema of the Medical Internal Radiation Dose committee of the US Society of Nuclear Medicine. Computation of SEEs is necessary in the computation of equivalent dose rate in a target region, for occupational or public exposure to radionuclides taken into the body. Program SEECAL replaces the program SEE that was previously used by the Dosimetry Research Group at Oak Ridge National Laboratory. The program SEE was used in the dosimetric calculations for occupational exposures for ICRP Publication 30 and is limited to adults. SEECAL was used to generate age-dependent SEEs for ICRP Publication 56, Part 1. SEECAL is also incorporated into DCAL, a radiation dose and risk calculational system being developed for the Environmental Protection Agency. Electronic copies of the program and data files and this report are available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.
Cost Calculation Model for Logistics Service Providers
Directory of Open Access Journals (Sweden)
Zoltán Bokor
2012-11-01
Full Text Available The exact calculation of logistics costs has become a real challenge in logistics and supply chain management. It is essential to gain reliable and accurate costing information to attain efficient resource allocation within the logistics service provider companies. Traditional costing approaches, however, may not be sufficient to reach this aim in case of complex and heterogeneous logistics service structures. So this paper intends to explore the ways of improving the cost calculation regimes of logistics service providers and show how to adopt the multi-level full cost allocation technique in logistics practice. After determining the methodological framework, a sample cost calculation scheme is developed and tested by using estimated input data. Based on the theoretical findings and the experiences of the pilot project it can be concluded that the improved costing model contributes to making logistics costing more accurate and transparent. Moreover, the relations between costs and performances also become more visible, which enhances the effectiveness of logistics planning and controlling significantly
Neural correlates of arithmetic calculation strategies.
Rosenberg-Lee, Miriam; Lovett, Marsha C; Anderson, John R
2009-09-01
Recent research into math cognition has identified areas of the brain that are involved in number processing (Dehaene, Piazza, Pinel, & Cohen, 2003) and complex problem solving (Anderson, 2007). Much of this research assumes that participants use a single strategy; yet, behavioral research finds that people use a variety of strategies (LeFevre et al., 1996; Siegler, 1987; Siegler & Lemaire, 1997). In the present study, we examined cortical activation as a function of two different calculation strategies for mentally solving multidigit multiplication problems. The school strategy, equivalent to long multiplication, involves working from right to left. The expert strategy, used by "lightning" mental calculators (Staszewski, 1988), proceeds from left to right. The two strategies require essentially the same calculations, but have different working memory demands (the school strategy incurs greater demands). The school strategy produced significantly greater early activity in areas involved in attentional aspects of number processing (posterior superior parietal lobule, PSPL) and mental representation (posterior parietal cortex, PPC), but not in a numerical magnitude area (horizontal intraparietal sulcus, HIPS) or a semantic memory retrieval area (lateral inferior prefrontal cortex, LIPFC). An ACT-R model of the task successfully predicted BOLD responses in PPC and LIPFC, as well as in PSPL and HIPS.
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_{s} meson decay constant f_{Ds}, the strangeness and charmness, the meson mass
Calculations of turbidite deposits and tsunamis from submarine landslides
Energy Technology Data Exchange (ETDEWEB)
Gisler, Galen R [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Gittings, Michael L [Los Alamos National Laboratory
2009-01-01
Great underwater landslides like Storegga off the Norwegian coast leave massive deposits on the seafloor and must produce enormous tsunamis. Such events have occurred on continental slopes worldwide, and continue to do so. Triggers for such slides include earthquakes, gas hydrate releases, and underwater volcanos. We have petformed a numerical study of such landslides using the multi-material compressible hydrocode Sage in order to understand the relationship between the rheology of the slide material, the configuration of the resulting deposits on the seafloor, and the tsunami that is produced. Instabilities in the fluid-fluid mixing between slide material and seawater produce vortices and swirls with sizes that depend on the rheology of the slide material. These dynamical features of the flow may be preserved as ridges when the sliding material finally stops. Thus studying the configuration of the ridges in prehistoric slides may give us measures of the circumstances under which the slide was initiated. As part of this study, we have also done a convergence test showing that the slide velocity is sensitive to the resolution adopted in the simulation, but that extrapolation to infinite resolution is possible, and can yield good velocities. We will present two-dimensional simulations of schematic underwater slides for our study of rheology, and a three-dimensional simulation in bathymetric conditions that resemble the pre-Storegga Norwegian margin.
Numerical precision calculations for LHC physics
Energy Technology Data Exchange (ETDEWEB)
Reuschle, Christian Andreas
2013-02-05
In this thesis I present aspects of QCD calculations, which are related to the fully numerical evaluation of next-to-leading order (NLO) QCD amplitudes, especially of the one-loop contributions, and the efficient computation of associated collider observables. Two interrelated topics have thereby been of concern to the thesis at hand, which give rise to two major parts. One large part is focused on the general group-theoretical behavior of one-loop QCD amplitudes, with respect to the underlying SU(N{sub c}) theory, in order to correctly and efficiently handle the color degrees of freedom in QCD one-loop amplitudes. To this end a new method is introduced that can be used in order to express color-ordered partial one-loop amplitudes with multiple quark-antiquark pairs as shuffle sums over cyclically ordered primitive one-loop amplitudes. The other large part is focused on the local subtraction of divergences off the one-loop integrands of primitive one-loop amplitudes. A method for local UV renormalization has thereby been developed, which uses local UV counterterms and efficient recursive routines. Together with suitable virtual soft and collinear subtraction terms, the subtraction method is extended to the virtual contributions in the calculations of NLO observables, which enables the fully numerical evaluation of the one-loop integrals in the virtual contributions. The method has been successfully applied to the calculation of jet rates in electron-positron annihilation to NLO accuracy in the large-N{sub c} limit.
Rooftop Unit Comparison Calculator User Manual
Energy Technology Data Exchange (ETDEWEB)
Miller, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-04-30
This document serves as a user manual for the Packaged rooftop air conditioners and heat pump units comparison calculator (RTUCC) and is an aggregation of the calculator’s website documentation. Content ranges from new-user guide material like the “Quick Start” to the more technical/algorithmic descriptions of the “Methods Pages.” There is also a section listing all the context-help topics that support the features on the “Controls” page. The appendix has a discussion of the EnergyPlus runs that supported the development of the building-response models.
Calculating the cost of a healthcare project.
Stichler, Jaynelle F
2008-02-01
Nearly $200 billion of healthcare construction is expected by the year 2015, and nurse leaders must expand their knowledge and capabilities in healthcare design. This bimonthly department prepares nurse leaders to use the evidence-based design process to ensure that new, expanded, and renovated hospitals facilitate optimal patient outcomes, enhance the work environment for healthcare providers, and improve organizational performance. In this article, the author introduces important project budget terms and a method of calculating an estimation of probable cost for a building project.
Calculations in bridge aeroelasticity via CFD
Energy Technology Data Exchange (ETDEWEB)
Brar, P.S.; Raul, R.; Scanlan, R.H. [Johns Hopkins Univ., Baltimore, MD (United States)
1996-12-31
The central focus of the present study is the numerical calculation of flutter derivatives. These aeroelastic coefficients play an important role in determining the stability or instability of long, flexible structures under ambient wind loading. A class of Civil Engineering structures most susceptible to such an instability are long-span bridges of the cable-stayed or suspended-span variety. The disastrous collapse of the Tacoma Narrows suspension bridge in the recent past, due to a flutter instability, has been a big impetus in motivating studies in flutter of bridge decks.
Exact and approximate calculation of giant resonances
Energy Technology Data Exchange (ETDEWEB)
Vertse, T. [Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete; Liotta, R.J. [Royal Inst. of Tech., Stockholm (Sweden); Maglione, E. [Padua Univ. (Italy). Ist. di Fisica
1995-02-13
Energies, sum rules and partial decay widths of giant resonances in {sup 208}Pb are calculated solving exactly the continuum RPA equations corresponding to a central Woods-Saxon potential. For comparison an approximate treatment of those quantities in terms of pole expansions of the Green function (Berggren and Mittag-Leffler) is also performed. It is found that the approximated results agree well with the exact ones. Comparison with experimental data is made and a search for physically meaningful resonances is carried out. ((orig.))
Calculation of persistent currents in superconducting magnets
Directory of Open Access Journals (Sweden)
C. Völlinger
2000-12-01
Full Text Available This paper describes a semianalytical hysteresis model for hard superconductors. The model is based on the critical state model considering the dependency of the critical current density on the varying local field in the superconducting filaments. By combining this hysteresis model with numerical field computation methods, it is possible to calculate the persistent current multipole errors in the magnet taking local saturation effects in the magnetic iron parts into consideration. As an application of the method, the use of soft magnetic iron sheets (coil protection sheets mounted between the coils and the collars for partial compensation of the multipole errors during the ramping of the magnets is investigated.
Electrical Conductivity Calculations from the Purgatorio Code
Energy Technology Data Exchange (ETDEWEB)
Hansen, S B; Isaacs, W A; Sterne, P A; Wilson, B G; Sonnad, V; Young, D A
2006-01-09
The Purgatorio code [Wilson et al., JQSRT 99, 658-679 (2006)] is a new implementation of the Inferno model describing a spherically symmetric average atom embedded in a uniform plasma. Bound and continuum electrons are treated using a fully relativistic quantum mechanical description, giving the electron-thermal contribution to the equation of state (EOS). The free-electron density of states can also be used to calculate scattering cross sections for electron transport. Using the extended Ziman formulation, electrical conductivities are then obtained by convolving these transport cross sections with externally-imposed ion-ion structure factors.
ICBM vulnerability: Calculations, predictions, and error bars
Hobson, Art
1988-09-01
The theory of intercontinental ballistic missile (ICBM) silo vulnerability is reviewed, and the present and probable future (mid-1990s) vulnerability of US silos is analyzed. The analysis emphasizes methodology, sources of information, and uncertainties. US ICBMs might still be survivable today but they will certainly be vulnerable to ICBM attack, and perhaps even to submarine-launched ballistic missile attack, by the mid-1990s. These calculations are presented not only for their immediate importance but also to introduce other physicists to some of the quantitative methods that can be used to analyze international security topics.
Drift Mode Calculations in Nonaxisymmetric Geometry
Energy Technology Data Exchange (ETDEWEB)
G. Rewoldt; L.-P. Ku; W.A. Cooper; W.M. Tang
1999-07-01
A fully kinetic assessment of the stability properties of toroidal drift modes has been obtained for nonaxisymmetric (stellarator) geometry, in the electrostatic limit. This calculation is a comprehensive solution of the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities, with a model collision operator. Results for toroidal drift waves destabilized by temperature gradients and/or trapped particle dynamics are presented, using three-dimensional magnetohydrodynamic equilibria generated as part of a design effort for a quasiaxisymmetric stellarator. Comparisons of these results with those obtained for typical tokamak cases indicate that the basic trends are similar.
Calculations in fundamental physics mechanics and heat
Heddle, T
2013-01-01
Calculations in Fundamental Physics, Volume I: Mechanics and Heat focuses on the mechanisms of heat. The manuscript first discusses motion, including parabolic, angular, and rectilinear motions, relative velocity, acceleration of gravity, and non-uniform acceleration. The book then discusses combinations of forces, such as polygons and resolution, friction, center of gravity, shearing force, and bending moment. The text looks at force and acceleration, energy and power, and machines. Considerations include momentum, horizontal or vertical motion, work and energy, pulley systems, gears and chai
Speed mathematics secrets skills for quick calculation
Handley, Bill
2011-01-01
Using this book will improve your understanding of math and haveyou performing like a genius!People who excel at mathematics use better strategies than the restof us; they are not necessarily more intelligent.Speed Mathematics teaches simple methods that will enable you tomake lightning calculations in your head-including multiplication,division, addition, and subtraction, as well as working withfractions, squaring numbers, and extracting square and cube roots.Here's just one example of this revolutionary approach to basicmathematics:96 x 97 =Subtract each number from 100.96 x 97 =4 3Subtract
PyTransport: Calculate inflationary correlation functions
Mulryne, David J.; Ronayne, John W.
2017-10-01
PyTransport calculates the 2-point and 3-point function of inflationary perturbations produced during multi-field inflation. The core of PyTransport is C++ code which is automatically edited and compiled into a Python module once an inflationary potential is specified. This module can then be called to solve the background inflationary cosmology as well as the evolution of correlations of inflationary perturbations. PyTransport includes two additional modules written in Python, one to perform the editing and compilation, and one containing a suite of functions for common tasks such as looping over the core module to construct spectra and bispectra.
Enthalpy Calculation for Pressurized Oxy- coal Combustion
Weihong Wu; Jingli Huang
2012-01-01
Oxy-fuel combustion is recognizing one of the most promising available technologies that zero emission accomplishment may be in the offing. With coal burned under the pressure of 6MPa and oxygen-enriched conditions, the high temperature and high pressure gaseous combustion product is composed of 95% CO2 and water-vapor, with the rest of O2, N2 and so on. However, once lauded as classic approach of resolving fuel gas enthalpy calculation pertaining to ideal gas at atmospheric pressure was rest...
Representation and calculation of economic uncertainties
DEFF Research Database (Denmark)
Schjær-Jacobsen, Hans
2002-01-01
the economic uncertainties involved, different procedures have been suggested. This paper discusses the representation of economic uncertainties by intervals,fuzzy numbers and probabilities, including double, triple and quadruple estimates and the problems of applying the four basic arithmetical operations...... additional uncertainties not present in the original economic problem. The paper will finally discuss the applicability and limitations of a few computational procedures based on available computer programs used for practical economic calculations with uncertain values. (C) 2002 Elsevier Science B.V. All...
Cobalamins uncovered by modern electronic structure calculations
DEFF Research Database (Denmark)
Kepp, Kasper Planeta; Ryde, Ulf
2009-01-01
This review describes how computational methods have contributed to the held of cobalamin chemistry since the start of the new millennium. Cobalamins are cobalt-dependent cofactors that are used for alkyl transfer and radical initiation by several classes of enzymes. Since the entry of modern...... electronic-structure calculations, in particular density functional methods, the understanding of the molecular mechanism of cobalamins has changed dramatically, going from a dominating view of trans-steric strain effects to a much more complex view involving an arsenal of catalytic strategies. Among...
Calculate the moisture content of steam
Energy Technology Data Exchange (ETDEWEB)
Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (United States))
1993-08-01
Water droplets in steam can create serious problems. For example, if the steam is being used to drive turbines, droplets can damage the turbine blades. It is important, therefore, for an engineer to know if steam contains moisture, especially if the steam is generated in low-pressure boilers (under 500 psia). Unlike larger boilers, these units don't have internal separation devices such as cyclones. Calculating the steam's moisture content, or quality, can be complicated procedure. Now, a simple chart can be used to get the data from one temperature reading. The paper explains the procedure.
Motor Torque Calculations For Electric Vehicle
Directory of Open Access Journals (Sweden)
Saurabh Chauhan
2015-08-01
Full Text Available Abstract It is estimated that 25 of the total cars across the world will run on electricity by 2025. An important component that is an integral part of all electric vehicles is the motor. The amount of torque that the driving motor delivers is what plays a decisive role in determining the speed acceleration and performance of an electric vehicle. The following work aims at simplifying the calculations required to decide the capacity of the motor that should be used to drive a vehicle of particular specifications.
Atomic Reference Data for Electronic Structure Calculations
Kotochigova, S; Shirley, E L
We have generated data for atomic electronic structure calculations, to provide a standard reference for results of specified accuracy under commonly used approximations. Results are presented here for total energies and orbital energy eigenvalues for all atoms from H to U, at microHartree accuracy in the total energy, as computed in the local-density approximation (LDA) the local-spin-density approximation (LSD); the relativistic local-density approximation (RLDA); and scalar-relativistic local-density approximation (ScRLDA).
Casamayou, Alexandre; Cohen, Nathann; Connan, Guillaume; Dumont, Thierry; Fousse, Laurent; Maltey, Francois; Meulien, Matthias; Mezzarobba, Marc; Pernet, Clément; Thiéry, Nicolas M.; Zimmermann, Paul
2013-01-01
electronic version available under Creative Commons license; Sage est un logiciel libre de calcul mathématique s'appuyant sur le langage de programmation Python. Ses auteurs, une communauté internationale de centaines d'enseignants et de chercheurs, se sont donné pour mission de fournir une alternative viable aux logiciels Magma, Maple, Mathematica et Matlab. Sage fait appel pour cela à de multiples logiciels libres existants, comme GAP, Maxima, PARI et diverses bibliothèques scientifiques po...
Using reciprocity in Boundary Element Calculations
DEFF Research Database (Denmark)
Juhl, Peter Møller; Cutanda Henriquez, Vicente
2010-01-01
as the reciprocal radiation problem. The present paper concerns the situation of having a point source (which is reciprocal to a point receiver) at or near a discretized boundary element surface. The accuracy of the original and the reciprocal problem is compared in a test case for which an analytical solution......The concept of reciprocity is widely used in both theoretical and experimental work. In Boundary Element calculations reciprocity is sometimes employed in the solution of computationally expensive scattering problems, which sometimes can be more efficiently dealt with when formulated...
Chinese books on Western calendrical calculations and Japanese calendrical calculators in Edo era
Kobayashi, Tatsuhiko
2005-06-01
From the end of Ming to the beginning of Qing China many Western scientific books were translated into Chinese by Jesuit missionaries with cooperation of Chinese intellectuals. The Tokugawa government began to permit the importation of them as an exception to the Shogunate's seclusion policy in 1720. In this paper the author discussed the acceptances of them, especially Chinese books on Western calendrical calculations by Japanese calendrical calculators in 18th-19th centuries.
The calculation of information and organismal complexity
Directory of Open Access Journals (Sweden)
Xu Cunshuan
2010-10-01
Full Text Available Abstract Background It is difficult to measure precisely the phenotypic complexity of living organisms. Here we propose a method to calculate the minimal amount of genomic information needed to construct organism (effective information as a measure of organismal complexity, by using permutation and combination formulas and Shannon's information concept. Results The results demonstrate that the calculated information correlates quite well with the intuitive organismal phenotypic complexity defined by traditional taxonomy and evolutionary theory. From viruses to human beings, the effective information gradually increases, from thousands of bits to hundreds of millions of bits. The simpler the organism is, the less the information; the more complex the organism, the more the information. About 13% of human genome is estimated as effective information or functional sequence. Conclusions The effective information can be used as a quantitative measure of phenotypic complexity of living organisms and also as an estimate of functional fraction of genome. Reviewers This article was reviewed by Dr. Lavanya Kannan (nominated by Dr. Arcady Mushegian, Dr. Chao Chen, and Dr. ED Rietman (nominated by Dr. Marc Vidal.
ARTc: Anisotropic reflectivity and transmissivity calculator
Malehmir, Reza; Schmitt, Douglas R.
2016-08-01
While seismic anisotropy is known to exist within the Earth's crust and even deeper, isotropic or even highly symmetric elastic anisotropic assumptions for seismic imaging is an over-simplification which may create artifacts in the image, target mis-positioning and hence flawed interpretation. In this paper, we have developed the ARTc algorithm to solve reflectivity, transmissivity as well as velocity and particle polarization in the most general case of elastic anisotropy. This algorithm is able to provide reflectivity solution from the boundary between two anisotropic slabs with arbitrary symmetry and orientation up to triclinic. To achieve this, the algorithm solves full elastic wave equation to find polarization, slowness and amplitude of all six wave-modes generated from the incident plane-wave and welded interface. In the first step to calculate the reflectivity, the algorithm solves properties of the incident wave such as particle polarization and slowness. After calculation of the direction of generated waves, the algorithm solves their respective slowness and particle polarization. With this information, the algorithm then solves a system of equations incorporating the imposed boundary conditions to arrive at the scattered wave amplitudes, and thus reflectivity and transmissivity. Reflectivity results as well as slowness and polarization are then tested in complex computational anisotropic models to ensure their accuracy and reliability. ARTc is coded in MATLAB ® and bundled with an interactive GUI and bash script to run on single or multi-processor computers.
Calculating scattering matrices by wave function matching
Energy Technology Data Exchange (ETDEWEB)
Zwierzycki, M. [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznan (Poland); Khomyakov, P.A.; Starikov, A.A.; Talanana, M.; Xu, P.X.; Karpan, V.M.; Marushchenko, I.; Brocks, G.; Kelly, P.J. [Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Xia, K. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Turek, I. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, 616 62 Brno (Czech Republic); Bauer, G.E.W. [Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands)
2008-04-15
The conductance of nanoscale structures can be conveniently related to their scattering properties expressed in terms of transmission and reflection coefficients. Wave function matching (WFM) is a transparent technique for calculating transmission and reflection matrices for any Hamiltonian that can be represented in tight-binding form. A first-principles Kohn-Sham Hamiltonian represented on a localized orbital basis or on a real space grid has such a form. WFM is based upon direct matching of the scattering-region wave function to the Bloch modes of ideal leads used to probe the scattering region. The purpose of this paper is to give a pedagogical introduction to WFM and present some illustrative examples of its use in practice. We briefly discuss WFM for calculating the conductance of atomic wires, using a real space grid implementation. A tight-binding muffin-tin orbital implementation very suitable for studying spin-dependent transport in layered magnetic materials is illustrated by looking at spin-dependent transmission through ideal and disordered interfaces. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Group Contribution Methods for Phase Equilibrium Calculations.
Gmehling, Jürgen; Constantinescu, Dana; Schmid, Bastian
2015-01-01
The development and design of chemical processes are carried out by solving the balance equations of a mathematical model for sections of or the whole chemical plant with the help of process simulators. For process simulation, besides kinetic data for the chemical reaction, various pure component and mixture properties are required. Because of the great importance of separation processes for a chemical plant in particular, a reliable knowledge of the phase equilibrium behavior is required. The phase equilibrium behavior can be calculated with the help of modern equations of state or g(E)-models using only binary parameters. But unfortunately, only a very small part of the experimental data for fitting the required binary model parameters is available, so very often these models cannot be applied directly. To solve this problem, powerful predictive thermodynamic models have been developed. Group contribution methods allow the prediction of the required phase equilibrium data using only a limited number of group interaction parameters. A prerequisite for fitting the required group interaction parameters is a comprehensive database. That is why for the development of powerful group contribution methods almost all published pure component properties, phase equilibrium data, excess properties, etc., were stored in computerized form in the Dortmund Data Bank. In this review, the present status, weaknesses, advantages and disadvantages, possible applications, and typical results of the different group contribution methods for the calculation of phase equilibria are presented.
Calculation of aberration coefficients by ray tracing.
Oral, M; Lencová, B
2009-10-01
In this paper we present an approach for the calculation of aberration coefficients using accurate ray tracing. For a given optical system, intersections of a large number of trajectories with a given plane are computed. In the Gaussian image plane the imaging with the selected optical system can be described by paraxial and aberration coefficients (geometric and chromatic) that can be calculated by least-squares fitting of the analytical model on the computed trajectory positions. An advantage of such a way of computing the aberration coefficients is that, in comparison with the aberration integrals and the differential algebra method, it is relatively easy to use and its complexity stays almost constant with the growing complexity of the optical system. This paper shows a tested procedure for choosing proper initial conditions and computing the coefficients of the fifth-order geometrical and third-order, first-degree chromatic aberrations by ray tracing on an example of a weak electrostatic lens. The results are compared with the values for the same lens from a paper Liu [Ultramicroscopy 106 (2006) 220-232].
Radioprotection calculations for the TRADE experiment
Zanini, L; Herrera-Martínez, A; Kadi, Y; Rubbia, Carlo; Burgio, N; Carta, M; Santagata, A; Cinotti, L
2002-01-01
The TRADE project is based on the coupling of, in a sub-critical configuration, of a 115 MeV, 2 mA proton cyclotron with a TRIGA research reactor at the ENEA Casaccia centre (Rome). Detailed radioprotection calculations using the FLUKA and EA-MC Monte Carlo codes were performed during the feasibility study. The study concentrated on dose rates due to beam losses in normal operating conditions and in the calculation of activation in the most sensitive components of the experiment. Results show that a shielding of 1.4 m of barytes concrete around the beam line will be sufficient to maintain the effective doses below the level of 10 Mu Sv/h, provided that the beam losses are at the level of 10 nA/m. The activation level around the beam line and in the water will be negligible, while the spallation target will reach an activation level comparable to the one of a fuel element at maximum burnup.
Criticality Calculations with MCNP6 - Practical Lectures
Energy Technology Data Exchange (ETDEWEB)
Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications (XCP-3); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications (XCP-3); Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications (XCP-3)
2016-11-29
These slides are used to teach MCNP (Monte Carlo N-Particle) usage to nuclear criticality safety analysts. The following are the lecture topics: course information, introduction, MCNP basics, criticality calculations, advanced geometry, tallies, adjoint-weighted tallies and sensitivities, physics and nuclear data, parameter studies, NCS validation I, NCS validation II, NCS validation III, case study 1 - solution tanks, case study 2 - fuel vault, case study 3 - B&W core, case study 4 - simple TRIGA, case study 5 - fissile mat. vault, criticality accident alarm systems. After completion of this course, you should be able to: Develop an input model for MCNP; Describe how cross section data impact Monte Carlo and deterministic codes; Describe the importance of validation of computer codes and how it is accomplished; Describe the methodology supporting Monte Carlo codes and deterministic codes; Describe pitfalls of Monte Carlo calculations; Discuss the strengths and weaknesses of Monte Carlo and Discrete Ordinants codes; The diffusion theory model is not strictly valid for treating fissile systems in which neutron absorption, voids, and/or material boundaries are present. In the context of these limitations, identify a fissile system for which a diffusion theory solution would be adequate.
A new calculation of LAMOST optical vignetting
Li, Shuang; Luo, Ali; Chen, Jianjun; Liu, Genrong; Comte, Georges
2012-09-01
A new method to calculate the optical vignetting of LAMOST (Large Sky Area Muti-Object Fiber Spectroscopic Telescope) is presented. With the pilot survey of LAMOST, it is necessary to have thorough and quantitative estimation and analysis on the observing efficiency which is affected by various factors: the optical system of the telescope and the spectrograph that is vignetting, the focal instrument, and the site condition. The wide field and large pupil of LAMOST fed by a Schmidt reflecting mirror, with a fixed optical axis coinciding with the local polar axis, lead to significant telescope vignetting, caused by the effective light-collecting area of the corrector, the light obstruction of the focal-plate, and the size of the primary mirror. A calculation of the vignetting has been presented by Xue et al. (2007), which considered 4 meter circle limitation and based on ray-tracking. In fact, there is no effect of the 4 meter circle limitation, so that we compute the vignetting again by means of obtaining the ratio of effective projected area of the corrector. All the results are derived by AUTOCAD. Moreover, the vignetting functions and vignetting variations with declination at which the telescope is pointed and the position considered in the focal surface are presented and analysed. Finally, compared with the ray-tracing method to obtain the vignetting before, the validity and availability of the proposed method are illustrated.
Electronic Structure Calculations and the Ising Hamiltonian.
Xia, Rongxin; Bian, Teng; Kais, Sabre
2017-11-20
Obtaining exact solutions to the Schrödinger equation for atoms, molecules, and extended systems continues to be a "Holy Grail" problem which the fields of theoretical chemistry and physics have been striving to solve since inception. Recent breakthroughs have been made in the development of hardware-efficient quantum optimizers and coherent Ising machines capable of simulating hundreds of interacting spins with an Ising-type Hamiltonian. One of the most vital questions pertaining to these new devices is, "Can these machines be used to perform electronic structure calculations?" Within this work, we review the general procedure used by these devices and prove that there is an exact mapping between the electronic structure Hamiltonian and the Ising Hamiltonian. Additionally, we provide simulation results of the transformed Ising Hamiltonian for H2 , He2 , HeH+, and LiH molecules, which match the exact numerical calculations. This demonstrates that one can map the molecular Hamiltonian to an Ising-type Hamiltonian which could easily be implemented on currently available quantum hardware. This is an early step in developing generalized methods on such devices for chemical physics.
Cognitive Reflection Versus Calculation in Decision Making
Directory of Open Access Journals (Sweden)
Aleksandr eSinayev
2015-05-01
Full Text Available Scores on the three-item Cognitive Reflection Test (CRT have been linked with dual-system theory and normative decision making (Frederick, 2005. In particular, the CRT is thought to measure monitoring of System 1 intuitions such that, if cognitive reflection is high enough, intuitive errors will be detected and the problem will be solved. However, CRT items also require numeric ability to be answered correctly and it is unclear how much numeric ability vs. cognitive reflection contributes to better decision making. In two studies, CRT responses were used to calculate Cognitive Reflection and numeric ability; a numeracy scale was also administered. Numeric ability, measured on the CRT or the numeracy scale, accounted for the CRT’s ability to predict more normative decisions (a subscale of decision-making competence, incentivized measures of impatient and risk-averse choice, and self-reported financial outcomes; Cognitive Reflection contributed no independent predictive power. Results were similar whether the two abilities were modeled (Study 1 or calculated using proportions (Studies 1 and 2. These findings demonstrate numeric ability as a robust predictor of superior decision making across multiple tasks and outcomes. They also indicate that correlations of decision performance with the CRT are insufficient evidence to implicate overriding intuitions in the decision-making biases and outcomes we examined. Numeric ability appears to be the key mechanism instead.
Fastlim: a fast LHC limit calculator.
Papucci, Michele; Sakurai, Kazuki; Weiler, Andreas; Zeune, Lisa
Fastlim is a tool to calculate conservative limits on extensions of the Standard Model from direct LHC searches without performing any Monte Carlo event generation. The program reconstructs the visible cross sections (cross sections after event selection cuts) from pre-calculated efficiency tables and cross section tables for simplified event topologies. As a proof of concept of the approach, we have implemented searches relevant for supersymmetric models with R-parity conservation. Fastlim takes the spectrum and coupling information of a given model point and provides, for each signal region of the implemented analyses, the visible cross sections normalised to the corresponding upper limit, reported by the experiments, as well as the [Formula: see text] value. To demonstrate the utility of the program we study the sensitivity of the recent ATLAS missing energy searches to the parameter space of natural SUSY models. The program structure allows the straightforward inclusion of external efficiency tables and can be generalised to R-parity violating scenarios and non-SUSY models. This paper serves as a self-contained user guide and indicates the conventions and approximations used.
Direct search algorithms for optimization calculations
Powell, M. J. D.
Many different procedures have been proposed for optimization calculations when first derivatives are not available. Further, several researchers have contributed to the subject, including some who wish to prove convergence theorems, and some who wish to make any reduction in the least calculated value of the objective function. There is not even a key idea that can be used as a foundation of a review, except for the problem itself, which is the adjustment of variables so that a function becomes least, where each value of the function is returned by a subroutine for each trial vector of variables. Therefore the paper is a collection of essays on particular strategies and algorithms, in order to consider the advantages, limitations and theory of several techniques. The subjects addressed are line search methods, the restriction of vectors of variables to discrete grids, the use of geometric simplices, conjugate direction procedures, trust region algorithms that form linear or quadratic approximations to the objective function, and simulated annealing. We study the main features of the methods themselves, instead of providing a catalogue of references to published work, because an understanding of these features may be very helpful to future research.
Electron mobility calculation for graphene on substrates
Energy Technology Data Exchange (ETDEWEB)
Hirai, Hideki; Ogawa, Matsuto [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokko-dai, Nada-ku, Kobe 657-8501 (Japan); Tsuchiya, Hideaki, E-mail: tsuchiya@eedept.kobe-u.ac.jp [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokko-dai, Nada-ku, Kobe 657-8501 (Japan); Japan Science and Technology Agency, CREST, Chiyoda, Tokyo 102-0075 (Japan); Kamakura, Yoshinari; Mori, Nobuya [Japan Science and Technology Agency, CREST, Chiyoda, Tokyo 102-0075 (Japan); Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)
2014-08-28
By a semiclassical Monte Carlo method, the electron mobility in graphene is calculated for three different substrates: SiO{sub 2}, HfO{sub 2}, and hexagonal boron nitride (h-BN). The calculations account for polar and non-polar surface optical phonon (OP) scatterings induced by the substrates and charged impurity (CI) scattering, in addition to intrinsic phonon scattering in pristine graphene. It is found that HfO{sub 2} is unsuitable as a substrate, because the surface OP scattering of the substrate significantly degrades the electron mobility. The mobility on the SiO{sub 2} and h-BN substrates decreases due to CI scattering. However, the mobility on the h-BN substrate exhibits a high electron mobility of 170 000 cm{sup 2}/(V·s) for electron densities less than 10{sup 12 }cm{sup −2}. Therefore, h-BN should be an appealing substrate for graphene devices, as confirmed experimentally.
Calculation of fractional electron capture probabilities
Schoenfeld, E
1998-01-01
A 'Table of Radionuclides' is being prepared which will supersede the 'Table de Radionucleides' formerly issued by the LMRI/LPRI (France). In this effort it is desirable to have a uniform basis for calculating theoretical values of fractional electron capture probabilities. A table has been compiled which allows one to calculate conveniently and quickly the fractional probabilities P sub K , P sub L , P sub M , P sub N and P sub O , their ratios and the assigned uncertainties for allowed and non-unique first forbidden electron capture transitions of known transition energy for radionuclides with atomic numbers from Z=3 to 102. These results have been applied to a total of 28 transitions of 14 radionuclides ( sup 7 Be, sup 2 sup 2 Na, sup 5 sup 1 Cr, sup 5 sup 4 Mn, sup 5 sup 5 Fe, sup 6 sup 8 Ge , sup 6 sup 8 Ga, sup 7 sup 5 Se, sup 1 sup 0 sup 9 Cd, sup 1 sup 2 sup 5 I, sup 1 sup 3 sup 9 Ce, sup 1 sup 6 sup 9 Yb, sup 1 sup 9 sup 7 Hg, sup 2 sup 0 sup 2 Tl). The values are in reasonable agreement with measure...
Calculations of neoclassical impurity transport in stellarators
Mollén, Albert; Smith, Håkan M.; Langenberg, Andreas; Turkin, Yuriy; Beidler, Craig D.; Helander, Per; Landreman, Matt; Newton, Sarah L.; García-Regaña, José M.; Nunami, Masanori
2017-10-01
The new stellarator Wendelstein 7-X has finished the first operational campaign and is restarting operation in the summer 2017. To demonstrate that the stellarator concept is a viable candidate for a fusion reactor and to allow for long pulse lengths of 30 min, i.e. ``quasi-stationary'' operation, it will be important to avoid central impurity accumulation typically governed by the radial neoclassical transport. The SFINCS code has been developed to calculate neoclassical quantities such as the radial collisional transport and the ambipolar radial electric field in 3D magnetic configurations. SFINCS is a cutting-edge numerical tool which combines several important features: the ability to model an arbitrary number of kinetic plasma species, the full linearized Fokker-Planck collision operator for all species, and the ability to calculate and account for the variation of the electrostatic potential on flux surfaces. In the present work we use SFINCS to study neoclassical impurity transport in stellarators. We explore how flux-surface potential variations affect the radial particle transport, and how the radial electric field is modified by non-trace impurities and flux-surface potential variations.
Free-Energy Calculations. A Mathematical Perspective
Pohorille, Andrzej
2015-01-01
Ion channels are pore-forming assemblies of transmembrane proteins that mediate and regulate ion transport through cell walls. They are ubiquitous to all life forms. In humans and other higher organisms they play the central role in conducting nerve impulses. They are also essential to cardiac processes, muscle contraction and epithelial transport. Ion channels from lower organisms can act as toxins or antimicrobial agents, and in a number of cases are involved in infectious diseases. Because of their important and diverse biological functions they are frequent targets of drug action. Also, simple natural or synthetic channels find numerous applications in biotechnology. For these reasons, studies of ion channels are at the forefront of biophysics, structural biology and cellular biology. In the last decade, the increased availability of X-ray structures has greatly advanced our understanding of ion channels. However, their mechanism of action remains elusive. This is because, in order to assist controlled ion transport, ion channels are dynamic by nature, but X-ray crystallography captures the channel in a single, sometimes non-native state. To explain how ion channels work, X-ray structures have to be supplemented with dynamic information. In principle, molecular dynamics (MD) simulations can aid in providing this information, as this is precisely what MD has been designed to do. However, MD simulations suffer from their own problems, such as inability to access sufficiently long time scales or limited accuracy of force fields. To assess the reliability of MD simulations it is only natural to turn to the main function of channels - conducting ions - and compare calculated ionic conductance with electrophysiological data, mainly single channel recordings, obtained under similar conditions. If this comparison is satisfactory it would greatly increase our confidence that both the structures and our computational methodologies are sufficiently accurate. Channel
Development of thermodynamic databases for geochemical calculations
Energy Technology Data Exchange (ETDEWEB)
Arthur, R.C. [Monitor Scientific, L.L.C., Denver, Colorado (United States); Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Neyama, Atsushi [Computer Software Development Corp., Tokyo (Japan)
1999-09-01
Two thermodynamic databases for geochemical calculations supporting research and development on geological disposal concepts for high level radioactive waste are described in this report. One, SPRONS.JNC, is compatible with thermodynamic relations comprising the SUPCRT model and software, which permits calculation of the standard molal and partial molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0 to 1000degC. This database includes standard molal Gibbs free energies and enthalpies of formation, standard molal entropies and volumes, and Maier-Kelly heat capacity coefficients at the reference pressure (1 bar) and temperature (25degC) for 195 minerals and 16 gases. It also includes standard partial molal Gibbs free energies and enthalpies of formation, standard partial molal entropies, and Helgeson, Kirkham and Flowers (HKF) equation-of-state coefficients at the reference pressure and temperature for 1147 inorganic and organic aqueous ions and complexes. SPRONS.JNC extends similar databases described elsewhere by incorporating new and revised data published in the peer-reviewed literature since 1991. The other database, PHREEQE.JNC, is compatible with the PHREEQE series of geochemical modeling codes. It includes equilibrium constants at 25degC and l bar for mineral-dissolution, gas-solubility, aqueous-association and oxidation-reduction reactions. Reaction enthalpies, or coefficients in an empirical log K(T) function, are also included in this database, which permits calculation of equilibrium constants between 0 and 100degC at 1 bar. All equilibrium constants, reaction enthalpies, and log K(T) coefficients in PHREEQE.JNC are calculated using SUPCRT and SPRONS.JNC, which ensures that these two databases are mutually consistent. They are also internally consistent insofar as all the data are compatible with basic thermodynamic definitions and functional relations in the SUPCRT model, and because primary
Corrugated Membrane Nonlinear Deformation Process Calculation
Directory of Open Access Journals (Sweden)
A. S. Nikolaeva
2015-01-01
Full Text Available Elastic elements are widely used in instrumentation. They are used to create a particular interference between the parts, for accumulating mechanical energy, as the motion transmission elements, elastic supports, and sensing elements of measuring devices. Device reliability and quality depend on the calculation accuracy of the elastic elements. A corrugated membrane is rather common embodiment of the elastic element.The corrugated membrane properties depend largely on its profile i.e. a generatrix of the meridian surface.Unlike other types of pressure elastic members (bellows, tube spring, the elastic characteristics of which are close to linear, an elastic characteristic of the corrugated membrane (typical movement versus external load is nonlinear. Therefore, the corrugated membranes can be used to measure quantities, nonlinearly related to the pressure (e.g., aircraft air speed, its altitude, pipeline fluid or gas flow rate. Another feature of the corrugated membrane is that significant movements are possible within the elastic material state. However, a significant non-linearity of membrane characteristics leads to severe complicated calculation.This article is aimed at calculating the corrugated membrane to obtain the elastic characteristics and the deformed shape of the membrane meridian, as well as at investigating the processes of buckling. As the calculation model, a thin-walled axisymmetric shell rotation is assumed. The material properties are linearly elastic. We consider a corrugated membrane of sinusoidal profile. The membrane load is a uniform pressure.The algorithm for calculating the mathematical model of an axisymmetric corrugated membrane of constant thickness, based on the Reissner’s theory of elastic thin shells, was realized as the author's program in C language. To solve the nonlinear problem were used a method of changing the subspace of control parameters, developed by S.S., Gavriushin, and a parameter marching method
Clinical calculators in hospital medicine: Availability, classification, and needs.
Dziadzko, Mikhail A; Gajic, Ognjen; Pickering, Brian W; Herasevich, Vitaly
2016-09-01
Clinical calculators are widely used in modern clinical practice, but are not generally applied to electronic health record (EHR) systems. Important barriers to the application of these clinical calculators into existing EHR systems include the need for real-time calculation, human-calculator interaction, and data source requirements. The objective of this study was to identify, classify, and evaluate the use of available clinical calculators for clinicians in the hospital setting. Dedicated online resources with medical calculators and providers of aggregated medical information were queried for readily available clinical calculators. Calculators were mapped by clinical categories, mechanism of calculation, and the goal of calculation. Online statistics from selected Internet resources and clinician opinion were used to assess the use of clinical calculators. One hundred seventy-six readily available calculators in 4 categories, 6 primary specialties, and 40 subspecialties were identified. The goals of calculation included prediction, severity, risk estimation, diagnostic, and decision-making aid. A combination of summation logic with cutoffs or rules was the most frequent mechanism of computation. Combined results, online resources, statistics, and clinician opinion identified 13 most utilized calculators. Although not an exhaustive list, a total of 176 validated calculators were identified, classified, and evaluated for usefulness. Most of these calculators are used for adult patients in the critical care or internal medicine settings. Thirteen of 176 clinical calculators were determined to be useful in our institution. All of these calculators have an interface for manual input. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Void growth in metals: Atomistic calculations
Energy Technology Data Exchange (ETDEWEB)
Traiviratana, Sirirat [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Bringa, Eduardo M. [Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Benson, David J. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Meyers, Marc A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); NanoEngineering, University of California, San Diego, La Jolla, CA 92093 (United States)], E-mail: mameyers@ucsd.edu
2008-09-15
Molecular dynamics simulations in monocrystalline and bicrystalline copper were carried out with LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) to reveal void growth mechanisms. The specimens were subjected to tensile uniaxial strains; the results confirm that the emission of (shear) loops is the primary mechanism of void growth. It is observed that many of these shear loops develop along two slip planes (and not one, as previously thought), in a heretofore unidentified mechanism of cooperative growth. The emission of dislocations from voids is the first stage, and their reaction and interaction is the second stage. These loops, forming initially on different {l_brace}1 1 1{r_brace} planes, join at the intersection, if the Burgers vector of the dislocations is parallel to the intersection of two {l_brace}1 1 1{r_brace} planes: a <1 1 0> direction. Thus, the two dislocations cancel at the intersection and a biplanar shear loop is formed. The expansion of the loops and their cross slip leads to the severely work-hardened region surrounding a growing void. Calculations were carried out on voids with different sizes, and a size dependence of the stress threshold to emit dislocations was obtained by MD, in disagreement with the Gurson model which is scale independent. This disagreement is most marked for the nanometer sized voids. The scale dependence of the stress required to grow voids is interpreted in terms of the decreasing availability of optimally oriented shear planes and increased stress required to nucleate shear loops as the void size is reduced. The growth of voids simulated by MD is compared with the Cocks-Ashby constitutive model and significant agreement is found. The density of geometrically necessary dislocations as a function of void size is calculated based on the emission of shear loops and their outward propagation. Calculations are also carried out for a void at the interface between two grains to simulate polycrystalline
Parameterization Impacts on Linear Uncertainty Calculation
Fienen, M. N.; Doherty, J.; Reeves, H. W.; Hunt, R. J.
2009-12-01
Efficient linear calculation of model prediction uncertainty can be an insightful diagnostic metric for decision-making. Specifically, the contributions of parameter uncertainty or the location and type of data to prediction uncertainty can be used to evaluate which types of information are most valuable. Information that most significantly reduces prediction uncertainty can be considered to have greater worth. Prediction uncertainty is commonly calculated including or excluding specific information and compared to a base scenario. The quantitative difference in uncertainty with or without the information is indicative of that information's worth in the decision-making process. These results can be calculated at many hypothetical locations to guide network design (i.e., where to install new wells/stream gages/etc.) or used to indicate which parameters are the most important to understand thus likely candidates for future characterization work. We examine a hypothetical case in which an inset model is created from a large regional model in order to better represent a surface stream network and make predictions of head near and flux in a stream due to installation and pumping of a large well near a stream headwater. Parameterization and edge boundary conditions are inherited from the regional model, the simple act of refining discretization and stream geometry shows improvement in the representation of the streams. Even visual inspection of the simulated head field highlights the need to recalibrate and potentially re-parametrize the inset model. A network of potential head observations is evaluated and contoured in the shallowest two layers of the six-layer model to assess their worth in both predicting flux at a specific gage, and head at a specific location near the stream. Three hydraulic conductivity parameterization scenarios are evaluated: using a single multiplier on hydraulic conductivity acting on the inherited hydraulic conductivity zonation using; the
Relativistic Few-Body Hadronic Physics Calculations
Energy Technology Data Exchange (ETDEWEB)
Polyzou, Wayne [Univ. of Iowa, Iowa City, IA (United States)
2016-06-20
The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computations push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In
Using Angle calculations to demonstrate vowel shifts
DEFF Research Database (Denmark)
Fabricius, Anne
2008-01-01
This paper gives an overview of the long-term trends of diachronic changes evident within the short vowel system of RP during the 20th century. more specifically, it focusses on changing juxtapositions of the TRAP, STRUT and LOT, FOOT vowel centroid positions. The paper uses geometric calculations...... to give precise and replicable representations of the vowel system and the generational changes apparent in the data. While FOOT-fronting is well known in British English (Torgersen 1997), less is known about the historical trajectory of the STRUT vowel in response to the encroachment of the TRAP vowel...... whose lowering and backing are also well-documented (Wells 1982). The discussion draws out differences between 'phonetic' and 'sociolinguistic' stances on the interpretation of acoustic vowel data in formant plots...
Distributed Function Calculation over Noisy Networks
Directory of Open Access Journals (Sweden)
Zhidun Zeng
2016-01-01
Full Text Available Considering any connected network with unknown initial states for all nodes, the nearest-neighbor rule is utilized for each node to update its own state at every discrete-time step. Distributed function calculation problem is defined for one node to compute some function of the initial values of all the nodes based on its own observations. In this paper, taking into account uncertainties in the network and observations, an algorithm is proposed to compute and explicitly characterize the value of the function in question when the number of successive observations is large enough. While the number of successive observations is not large enough, we provide an approach to obtain the tightest possible bounds on such function by using linear programing optimization techniques. Simulations are provided to demonstrate the theoretical results.
Molecular orbital calculations using chemical graph theory
Dias, Jerry Ray
1993-01-01
Professor John D. Roberts published a highly readable book on Molecular Orbital Calculations directed toward chemists in 1962. That timely book is the model for this book. The audience this book is directed toward are senior undergraduate and beginning graduate students as well as practicing bench chemists who have a desire to develop conceptual tools for understanding chemical phenomena. Although, ab initio and more advanced semi-empirical MO methods are regarded as being more reliable than HMO in an absolute sense, there is good evidence that HMO provides reliable relative answers particularly when comparing related molecular species. Thus, HMO can be used to rationalize electronic structure in 1t-systems, aromaticity, and the shape use HMO to gain insight of simple molecular orbitals. Experimentalists still into subtle electronic interactions for interpretation of UV and photoelectron spectra. Herein, it will be shown that one can use graph theory to streamline their HMO computational efforts and to arrive...
Improving calorimeter resolution using temperature compensation calculations
Smiga, Joseph; Purschke, Martin
2017-01-01
The sPHENIX experiment is an upgrade of the existing PHENIX apparatus at the Relativistic Heavy-Ion Collider (RHIC). The new detector improves upon measurements of various physical processes, such as jets of particles created during heavy-ion collisions. Prototypes of various calorimeter components were tested at the Fermilab Test Beam Facility (FTBF). This analysis tries to compensate the effects of temperature drifts in the silicon photomultipliers (SiPMs). Temperature data were used to calculate an appropriate compensation factor. This analysis will improve the achievable resolution and will also determine how accurately the temperature must be controlled in the final experiment. This will improve the performance of the calorimeters in the sPHENIX experiment. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).
Thermal calculations of underground oil pipelines
Directory of Open Access Journals (Sweden)
Moiseev Boris
2017-01-01
Full Text Available Operation of oil pipelines in the frozen soil causes heat exchange between the pipeline and the soil and formation of a melt zone which leads to deformation of pipelines. Terms of construction and operation of oil pipelines are greatly related to their temperature conditions. In this regard it is necessary to know the laws of formation of thawing halos around oil pipelines. Thus, elucidation of laws of formation of thawing halos around oil pipelines and determination of optimal conditions for their installation during construction in areas of permafrost in the north of Tyumen region is a very urgent task. The authors developed an algorithm and a computer program for construction of the temperature field of the frozen soil. Some problems have been solved basing on the obtained dependences and graphs of the dependence were constructed. Research and calculations made on the underground oil pipeline construction allowed the authors to give recommendations aimed at increasing the reliability of oil pipelines.
Angular size-redshift: Experiment and calculation
Amirkhanyan, V. R.
2014-10-01
In this paper the next attempt is made to clarify the nature of the Euclidean behavior of the boundary in the angular size-redshift cosmological test. It is shown experimentally that this can be explained by the selection determined by anisotropic morphology and anisotropic radiation of extended radio sources. A catalogue of extended radio sources with minimal flux densities of about 0.01 Jy at 1.4 GHz was compiled for conducting the test. Without the assumption of their size evolution, the agreement between the experiment and calculation was obtained both in the ΛCDM model (Ω m = 0.27, Ω v = 0.73) and the Friedman model (Ω = 0.1).
Modulated structure calculated for superconducting hydrogen sulfide
Energy Technology Data Exchange (ETDEWEB)
Majumdar, Arnab; Tse, John S.; Yao, Yansun [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK (Canada)
2017-09-11
Compression of hydrogen sulfide using first principles metadynamics and molecular dynamics calculations revealed a modulated structure with high proton mobility which exhibits a diffraction pattern matching well with experiment. The structure consists of a sublattice of rectangular meandering SH{sup -} chains and molecular-like H{sub 3}S{sup +} stacked alternately in tetragonal and cubic slabs forming a long-period modulation. The novel structure offers a new perspective on the possible origin of the superconductivity at very high temperatures in which the conducting electrons in the SH chains are perturbed by the fluxional motions of the H{sub 3}S resulting in strong electron-phonon coupling. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
Spontaneous Radiation Background Calculation for LCLS
Reiche, Sven
2004-01-01
The intensity of undulator radiation, not amplified by the FEL interaction, can be larger than the maximum FEL signal in the case of an X-ray FEL. In the commissioning of a SASE FEL it is essential to extract an amplified signal early to diagnose eventual misalignment of undulator modules or errors in the undulator field strength. We developed a numerical code to calculate the radiation pattern at any position behind a multi-segmented undulator with arbitrary spacing and field profiles. The output can be run through numerical spatial and frequency filters to model the radiation beam transport and diagnostic. In this presentation we estimate the expected background signal for the FEL diagnostic and at what point along the undulator the FEL signal can be separated from the background. We also discusses how much information on the undulator field and alignment can be obtained from the incoherent radiation signal itself.
COSTS CALCULATION OF TARGET COSTING METHOD
Directory of Open Access Journals (Sweden)
Sebastian UNGUREANU
2014-06-01
Full Text Available Cost information system plays an important role in every organization in the decision making process. An important task of management is ensuring control of the operations, processes, sectors, and not ultimately on costs. Although in achieving the objectives of an organization compete more control systems (production control, quality control, etc., the cost information system is important because monitors results of the other. Detailed analysis of costs, production cost calculation, quantification of losses, estimate the work efficiency provides a solid basis for financial control. Knowledge of the costs is a decisive factor in taking decisions and planning future activities. Managers are concerned about the costs that will appear in the future, their level underpinning the supply and production decisions as well as price policy. An important factor is the efficiency of cost information system in such a way that the information provided by it may be useful for decisions and planning of the work.
Parallelizing Gaussian Process Calculations in R
Directory of Open Access Journals (Sweden)
Christopher J. Paciorek
2015-02-01
Full Text Available We consider parallel computation for Gaussian process calculations to overcome computational and memory constraints on the size of datasets that can be analyzed. Using a hybrid parallelization approach that uses both threading (shared memory and message-passing (distributed memory, we implement the core linear algebra operations used in spatial statistics and Gaussian process regression in an R package called bigGP that relies on C and MPI. The approach divides the covariance matrix into blocks such that the computational load is balanced across processes while communication between processes is limited. The package provides an API enabling R programmers to implement Gaussian process-based methods by using the distributed linear algebra operations without any C or MPI coding. We illustrate the approach and software by analyzing an astrophysics dataset with n = 67, 275 observations.
Shell model calculations for exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Brown, B.A. (Michigan State Univ., East Lansing, MI (USA)); Warburton, E.K. (Brookhaven National Lab., Upton, NY (USA)); Wildenthal, B.H. (New Mexico Univ., Albuquerque, NM (USA). Dept. of Physics and Astronomy)
1990-02-01
In this paper we review the progress of the shell-model approach to understanding the properties of light exotic nuclei (A < 40). By shell-model'' we mean the consistent and large-scale application of the classic methods discussed, for example, in the book of de-Shalit and Talmi. Modern calculations incorporate as many of the important configurations as possible and make use of realistic effective interactions for the valence nucleons. Properties such as the nuclear densities depend on the mean-field potential, which is usually separately from the valence interaction. We will discuss results for radii which are based on a standard Hartree-Fock approach with Skyrme-type interactions.
Calculating Outsourcing Strategies and Trials of Strength
DEFF Research Database (Denmark)
Christensen, Mark; Skærbæk, Peter; Tryggestad, Kjell
. The alternative option was an immediate outsourcing strategy with facility services being the object of large cross-functional contracts for all Danish military establishments. By succeeding in presenting ‘internal optimization’ as an outsourcing option (as opposed to the usual ‘make’ option) this case...... demonstrates the power of projects and their use of accounting calculation. We study how the two options emerged and were valued differently by the supra-national outsourcing program and the local Defense projects over 22 years and how that valuation process involved accounting. Drawing on Actor-Network Theory...... outsourcing strategies during a series of trials of strength, 2. develops the concept of ‘trial of strength’ for accounting and organization research by showing how ‘the rules of the game’ for the trials of strength can become challenged and controversial, 3. shows that, in addition to the pervasive role...
Marginal Loss Calculations for the DCOPF
Energy Technology Data Exchange (ETDEWEB)
Eldridge, Brent [Federal Energy Regulatory Commission, Washington, DC (United States); Johns Hopkins Univ., Baltimore, MD (United States); O' Neill, Richard P. [Federal Energy Regulatory Commission, Washington, DC (United States); Castillo, Andrea R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-12-05
The purpose of this paper is to explain some aspects of including a marginal line loss approximation in the DCOPF. The DCOPF optimizes electric generator dispatch using simplified power flow physics. Since the standard assumptions in the DCOPF include a lossless network, a number of modifications have to be added to the model. Calculating marginal losses allows the DCOPF to optimize the location of power generation, so that generators that are closer to demand centers are relatively cheaper than remote generation. The problem formulations discussed in this paper will simplify many aspects of practical electric dispatch implementations in use today, but will include sufficient detail to demonstrate a few points with regard to the handling of losses.
Improving the accuracy of dynamic mass calculation
Directory of Open Access Journals (Sweden)
Oleksandr F. Dashchenko
2015-06-01
Full Text Available With the acceleration of goods transporting, cargo accounting plays an important role in today's global and complex environment. Weight is the most reliable indicator of the materials control. Unlike many other variables that can be measured indirectly, the weight can be measured directly and accurately. Using strain-gauge transducers, weight value can be obtained within a few milliseconds; such values correspond to the momentary load, which acts on the sensor. Determination of the weight of moving transport is only possible by appropriate processing of the sensor signal. The aim of the research is to develop a methodology for weighing freight rolling stock, which increases the accuracy of the measurement of dynamic mass, in particular wagon that moves. Apart from time-series methods, preliminary filtration for improving the accuracy of calculation is used. The results of the simulation are presented.
Massively parallel self-consistent-field calculations
Energy Technology Data Exchange (ETDEWEB)
Tilson, J.L.
1994-10-29
The advent of supercomputers with many computational nodes each with its own independent memory makes possible extremely fast computations. The author`s work, as part of the US High Performance Computing and Communications Program (HPCCP), is focused on the development of electronic structure techniques for the solution of Grand Challenge-size molecules containing hundreds of atoms. Their efforts have resulted in a fully scalable Direct-SCF program that is portable and efficient. This code, named NWCHEM, is built around a distributed-data model. This distributed data is managed by a software package called Global Arrays developed within the HPCCP. They present performance results for Direct-SCF calculations of interest to the consortium.
Calculations of superconducting parametric amplifiers performances
Goto, T.; Takeda, M.; Saito, S.; Shimakage, H.
2017-07-01
A superconducting parametric amplifier is an electromagnetic wave amplifier with high-quality characteristics such as a wide bandwidth, an extremely low noise, and a high dynamic range. In this paper, we report on the estimations of a YBCO superconducting parametric amplifier characteristic. The YBCO thin films were deposited on an MgO substrate by a pulsed laser deposition method. Based on the measured YBCO thin film parameters, theoretical calculations were implemented for evaluations of kinetic inductance nonlinearities and parametric gains. The nonlinearity of the YBCO thin film was estimated to be stronger than a single crystal NbTiN thin film. It is indicated that the YBCO parametric amplifier has a potential to be realized the amplifier with the high parametric gain. It is also expected that it could be operated in the range of the high frequency band, at the high temperature, and low applied current.
Zero energy scattering calculation in Euclidean space
Energy Technology Data Exchange (ETDEWEB)
Carbonell, J. [Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex (France); Karmanov, V.A., E-mail: karmanov@sci.lebedev.ru [Lebedev Physical Institute, Leninsky Prospekt 53, 119991 Moscow (Russian Federation)
2016-03-10
We show that the Bethe–Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe–Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe–Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.
Improved algorithm for calculating the Chandrasekhar function
Jablonski, A.
2013-02-01
Theoretical models of electron transport in condensed matter require an effective source of the Chandrasekhar H(x,omega) function. A code providing the H(x,omega) function has to be both accurate and very fast. The current revision of the code published earlier [A. Jablonski, Comput. Phys. Commun. 183 (2012) 1773] decreased the running time, averaged over different pairs of arguments x and omega, by a factor of more than 20. The decrease of the running time in the range of small values of the argument x, less than 0.05, is even more pronounced, reaching a factor of 30. The accuracy of the current code is not affected, and is typically better than 12 decimal places. New version program summaryProgram title: CHANDRAS_v2 Catalogue identifier: AEMC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 976 No. of bytes in distributed program, including test data, etc.: 11416 Distribution format: tar.gz Programming language: Fortran 90 Computer: Any computer with a Fortran 90 compiler Operating system: Windows 7, Windows XP, Unix/Linux RAM: 0.7 MB Classification: 2.4, 7.2 Catalogue identifier of previous version: AEMC_v1_0 Journal reference of previous version: Comput. Phys. Commun. 183 (2012) 1773 Does the new version supersede the old program: Yes Nature of problem: An attempt has been made to develop a subroutine that calculates the Chandrasekhar function with high accuracy, of at least 10 decimal places. Simultaneously, this subroutine should be very fast. Both requirements stem from the theory of electron transport in condensed matter. Solution method: Two algorithms were developed, each based on a different integral representation of the Chandrasekhar function. The final algorithm is edited by mixing these two
[IOL power calculation after refractive surgery].
Rabsilber, T M; Auffarth, G U
2010-08-01
Cataract surgery is evolving more and more into a refractive procedure with high expectations in terms of visual rehabilitation. Especially patients presenting after previous Excimer laser corneal surgery are used to being independent from glasses. Unfortunately, some of these patients showed unexpected hyperopic surprises after cataract surgery in the past. The changes of corneal radii and keratometer index as well as the inaccurate prediction of the postoperative intraocular lens (IOL) position using different formulas were determined as error sources which led to a reduced IOL power calculation in dioptres. Several methods have been proposed to solve this problem which can be divided in two groups. On the one hand, there are methods that depend on refraction and biometry values before the initial treatment (e. g., clinical history, Feiz-Mannis, double-K, adjusted effective refractive power [EffRadj]-, cornea bypass/Wake Forest methods as well as correction factors to adjust K-values) and on the other hand procedures that only need current pre-cataract surgery measurements (e. g., contact lens method, corneal topography systems, ray tracing, aphakic refraction technique, correction factors to adjust K-values and new formulas including Haigis-L or BESSt and recently a novel pachymetry method). This review describes these procedures and analyses their strengths and weaknesses. The number of presented methods emphasises already that no perfect solution has been determined so far that would be valid for every patient. Some methods do provide a good predictability; however, individual deviations can occur. In general, it is advisable to inform the patient about the higher risk for an inaccurate IOL power calculation. It can be helpful to compare the results of different methods indicating the importance to provide all required individual data by the refractive surgeon already. Georg Thieme Verlag KG Stuttgart, New York.
Calculating polaron mobility in halide perovskites
Frost, Jarvist Moore
2017-11-01
Lead halide perovskite semiconductors are soft, polar materials. The strong driving force for polaron formation (the dielectric electron-phonon coupling) is balanced by the light band effective masses, leading to a strongly-interacting large polaron. A first-principles prediction of mobility would help understand the fundamental mobility limits. Theories of mobility need to consider the polaron (rather than free-carrier) state due to the strong interactions. In this material we expect that at room temperature polar-optical phonon mode scattering will dominate and so limit mobility. We calculate the temperature-dependent polaron mobility of hybrid halide perovskites by variationally solving the Feynman polaron model with the finite-temperature free energies of Ōsaka. This model considers a simplified effective-mass band structure interacting with a continuum dielectric of characteristic response frequency. We parametrize the model fully from electronic-structure calculations. In methylammonium lead iodide at 300 K we predict electron and hole mobilities of 133 and 94 cm2V-1s-1 , respectively. These are in acceptable agreement with single-crystal measurements, suggesting that the intrinsic limit of the polaron charge carrier state has been reached. Repercussions for hot-electron photoexcited states are discussed. As well as mobility, the model also exposes the dynamic structure of the polaron. This can be used to interpret impedance measurements of the charge-carrier state. We provide the phonon-drag mass renormalization and scattering time constants. These could be used as parameters for larger-scale device models and band-structure dependent mobility simulations.
Data calculation program for RELAP 5 code
Energy Technology Data Exchange (ETDEWEB)
Silvestre, Larissa J.B.; Sabundjian, Gaiane, E-mail: larissajbs@usp.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2015-07-01
As the criteria and requirements for a nuclear power plant are extremely rigid, computer programs for simulation and safety analysis are required for certifying and licensing a plant. Based on this scenario, some sophisticated computational tools have been used such as the Reactor Excursion and Leak Analysis Program (RELAP5), which is the most used code for the thermo-hydraulic analysis of accidents and transients in nuclear reactors. A major difficulty in the simulation using RELAP5 code is the amount of information required for the simulation of thermal-hydraulic accidents or transients. The preparation of the input data leads to a very large number of mathematical operations for calculating the geometry of the components. Therefore, a mathematical friendly preprocessor was developed in order to perform these calculations and prepare RELAP5 input data. The Visual Basic for Application (VBA) combined with Microsoft EXCEL demonstrated to be an efficient tool to perform a number of tasks in the development of the program. Due to the absence of necessary information about some RELAP5 components, this work aims to make improvements to the Mathematic Preprocessor for RELAP5 code (PREREL5). For the new version of the preprocessor, new screens of some components that were not programmed in the original version were designed; moreover, screens of pre-existing components were redesigned to improve the program. In addition, an English version was provided for the new version of the PREREL5. The new design of PREREL5 contributes for saving time and minimizing mistakes made by users of the RELAP5 code. The final version of this preprocessor will be applied to Angra 2. (author)
An integrated tool for loop calculations: AITALC
Lorca, Alejandro; Riemann, Tord
2006-01-01
AITALC, a new tool for automating loop calculations in high energy physics, is described. The package creates Fortran code for two-fermion scattering processes automatically, starting from the generation and analysis of the Feynman graphs. We describe the modules of the tool, the intercommunication between them and illustrate its use with three examples. Program summaryTitle of the program:AITALC version 1.2.1 (9 August 2005) Catalogue identifier:ADWO Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWO Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Computer:PC i386 Operating system:GNU/ LINUX, tested on different distributions SuSE 8.2 to 9.3, Red Hat 7.2, Debian 3.0, Ubuntu 5.04. Also on SOLARIS Programming language used:GNU MAKE, DIANA, FORM, FORTRAN77 Additional programs/libraries used:DIANA 2.35 ( QGRAF 2.0), FORM 3.1, LOOPTOOLS 2.1 ( FF) Memory required to execute with typical data:Up to about 10 MB No. of processors used:1 No. of lines in distributed program, including test data, etc.:40 926 No. of bytes in distributed program, including test data, etc.:371 424 Distribution format:tar gzip file High-speed storage required:from 1.5 to 30 MB, depending on modules present and unfolding of examples Nature of the physical problem:Calculation of differential cross sections for ee annihilation in one-loop approximation. Method of solution:Generation and perturbative analysis of Feynman diagrams with later evaluation of matrix elements and form factors. Restriction of the complexity of the problem:The limit of application is, for the moment, the 2→2 particle reactions in the electro-weak standard model. Typical running time:Few minutes, being highly depending on the complexity of the process and the FORTRAN compiler.
Directory of Open Access Journals (Sweden)
Kochkarev Dmitriy
2017-01-01
Full Text Available Calculation methodology of reinforced concrete elements based on the calculated resistance of reinforced concrete is presented. The basic dependence which allows setting the strength of bending sections and non-central compressed elements is obtained. The proposed method for calculating reinforced concrete elements is based on the use of nonlinear diagrams of material deformation, the hypothesis of flat sections and deformation criteria for the destruction of materials. The basic equations of strength are reduced to dimensionless quantities and are tabulated. When compiling the tables, the formula proposed in Euroсode 2 was adopted as the diagram of concrete deformation, and for the reinforcement two linear Prandtl diagram was used. The calculated formulas of the proposed method fully correspond to the formulas of the classical resistance of materials, and make it possible to solve the most frequently encountered problems in the practice of modern construction. The reliability of the dependencies is experimentally confirmed. There are calculation examples of bending and non-central compressed elements by the developed methodology.
21 CFR 868.1880 - Pulmonary-function data calculator.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pulmonary-function data calculator. 868.1880... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1880 Pulmonary-function data calculator. (a) Identification. A pulmonary-function data calculator is a device used to calculate pulmonary...
[Calculation of workers' health care costs].
Rydlewska-Liszkowska, Izabela
2006-01-01
In different health care systems, there are different schemes of organization and principles of financing activities aimed at ensuring the working population health and safety. Regardless of the scheme and the range of health care provided, economists strive for rationalization of costs (including their reduction). This applies to both employers who include workers' health care costs into indirect costs of the market product manufacture and health care institutions, which provide health care services. In practice, new methods of setting costs of workers' health care facilitate regular cost control, acquisition of detailed information about costs, and better adjustment of information to planning and control needs in individual health care institutions. For economic institutions and institutions specialized in workers' health care, a traditional cost-effect calculation focused on setting costs of individual products (services) is useful only if costs are relatively low and the output of simple products is not very high. But when products form aggregates of numerous actions like those involved in occupational medicine services, the method of activity based costing (ABC), representing the process approach, is much more useful. According to this approach costs are attributed to the product according to resources used during different activities involved in its production. The calculation of costs proceeds through allocation of all direct costs for specific processes in a given institution. Indirect costs are settled on the basis of resources used during the implementation of individual tasks involved in the process of making a new product. In this method, so called map of processes/actions consisted in the manufactured product and their interrelations are of particular importance. Advancements in the cost-effect for the management of health care institutions depend on their managerial needs. Current trends in this regard primarily depend on treating all cost reference
Iron diffusion from first principles calculations
Wann, E.; Ammann, M. W.; Vocadlo, L.; Wood, I. G.; Lord, O. T.; Brodholt, J. P.; Dobson, D. P.
2013-12-01
The cores of Earth and other terrestrial planets are made up largely of iron1 and it is therefore very important to understand iron's physical properties. Chemical diffusion is one such property and is central to many processes, such as crystal growth, and viscosity. Debate still surrounds the explanation for the seismologically observed anisotropy of the inner core2, and hypotheses include convection3, anisotropic growth4 and dendritic growth5, all of which depend on diffusion. In addition to this, the main deformation mechanism at the inner-outer core boundary is believed to be diffusion creep6. It is clear, therefore, that to gain a comprehensive understanding of the core, a thorough understanding of diffusion is necessary. The extremely high pressures and temperatures of the Earth's core make experiments at these conditions a challenge. Low-temperature and low-pressure experimental data must be extrapolated across a very wide gap to reach the relevant conditions, resulting in very poorly constrained values for diffusivity and viscosity. In addition to these dangers of extrapolation, preliminary results show that magnetisation plays a major role in the activation energies for diffusion at low pressures therefore creating a break down in homologous scaling to high pressures. First principles calculations provide a means of investigating diffusivity at core conditions, have already been shown to be in very good agreement with experiments7, and will certainly provide a better estimate for diffusivity than extrapolation. Here, we present first principles simulations of self-diffusion in solid iron for the FCC, BCC and HCP structures at core conditions in addition to low-temperature and low-pressure calculations relevant to experimental data. 1. Birch, F. Density and composition of mantle and core. Journal of Geophysical Research 69, 4377-4388 (1964). 2. Irving, J. C. E. & Deuss, A. Hemispherical structure in inner core velocity anisotropy. Journal of Geophysical
Coupled-channels study of Lambda K and Sigma K states in the chiral SU(3) quark model
Huang, F.; Zhang, D.; Zhang, Z. Y.; Yu, Y. W.
2005-01-01
The $S$-wave $\\Lambda K$ and $\\Sigma K$ states with isospin $I=1/2$ are dynamically investigated within the framework of the chiral SU(3) quark model by solving a resonating group method (RGM) equation. The model parameters are taken from our previous work, which gave a good description of the energies of the baryon ground states, the binding energy of the deuteron, and the experimental data of the nucleon-nucleon ($NN$) and nucleon-hyperon ($NY$) scattering. Assumed not to give important con...
CALCULATION OF COMPANY COSTS THROUGH THE DIRECT-COSTING CALCULATION METHOD
Directory of Open Access Journals (Sweden)
Florin-Constantin DIMA
2013-06-01
Full Text Available The cost of production has as its starting point the purchase cost of raw materials and consumables, as well as their processing cost and the calculation of the production cost involves complex aspects. This article is based on the two major concepts of costs calculation, namely the concept of full costs and the concept of partial costs, and it analyses the direct-costing calculation method. Necessity of the Development of calculation methods to ensure rapid determination of the cost of production, and the establishment of indicators broad spectrum of information necessary for making decisions to streamline a business activity conducted by direct-costing method. Direct-costing method appeared in the U.S. for the first time in 1934 (applied by Jonathan Harris and G. Charter Harrison. Subsequently, this method was applied to European countries (England, France, Germany etc.. We stopped on this method because it is considered a modern method of costing. Therefore, we analyzed both advantages and limitations of the method in question
Reznichenko, Nataliya
2012-01-01
Since technology has taken its place in almost all classrooms in schools and colleges across the country, there is a need to know how technology influences the mathematics that is taught and how students learn. In this study, the graphing calculator (GC) (namely the Texas Instruments TI-83) was implemented as a tool to enhance learning of function…
Alpha decay calculations with a new formula
Akrawy, D. T.; Poenaru, D. N.
2017-10-01
A new semi-empirical formula for calculations of α decay half-lives is presented. It was derived from the Royer relationship by introducing new parameters which are fixed by fit to a set of experimental data. We are using three sets: set A with 130 e-e (even-even), 119 e-o (even-odd), 109 o-e, and 96 o-o, set B with 188 e-e, 147 e-o, 131 o-e and 114 o-o, and set C with 136 e-e, 84 e-o, 76 o-e and 48 o-o alpha emitters. A comparison of results obtained with the new formula (newF) and the following well known relationships: semiempirical relationship based on fission theory (semFIS), analytical superasymmetric fission (ASAF) model and universal formula (UNIV) made in terms of rms standard deviation. We also introduced a weighted mean value of this quantity, allowing us to compare the global properties of a given model. For set B the order of the four models is the following: semFIS, UNIV, newF and ASAF. Nevertheless for even-even alpha emitters, UNIV gives the second best result after semFIS, and for odd-even parents the second is newF. Despite its simplicity in comparison with semFIS, newF, presented in this article, behaves quite well, competing with the other well known relationships.
Detailed Opacity Calculations for Astrophysical Applications
Directory of Open Access Journals (Sweden)
Jean-Christophe Pain
2017-05-01
Full Text Available Nowadays, several opacity codes are able to provide data for stellar structure models, but the computed opacities may show significant differences. In this work, we present state-of-the-art precise spectral opacity calculations, illustrated by stellar applications. The essential role of laboratory experiments to check the quality of the computed data is underlined. We review some X-ray and XUV laser and Z-pinch photo-absorption measurements as well as X-ray emission spectroscopy experiments involving hot dense plasmas produced by ultra-high-intensity laser irradiation. The measured spectra are systematically compared with the fine-structure opacity code SCO-RCG. The focus is on iron, due to its crucial role in understanding asteroseismic observations of β Cephei-type and Slowly Pulsating B stars, as well as of the Sun. For instance, in β Cephei-type stars, the iron-group opacity peak excites acoustic modes through the “kappa-mechanism”. Particular attention is paid to the higher-than-predicted iron opacity measured at the Sandia Z-machine at solar interior conditions. We discuss some theoretical aspects such as density effects, photo-ionization, autoionization or the “filling-the-gap” effect of highly excited states.
Methods for Calculating Empires in Quasicrystals
Directory of Open Access Journals (Sweden)
Fang Fang
2017-10-01
Full Text Available This paper reviews the empire problem for quasiperiodic tilings and the existing methods for generating the empires of the vertex configurations in quasicrystals, while introducing a new and more efficient method based on the cut-and-project technique. Using Penrose tiling as an example, this method finds the forced tiles with the restrictions in the high dimensional lattice (the mother lattice that can be cut-and-projected into the lower dimensional quasicrystal. We compare our method to the two existing methods, namely one method that uses the algorithm of the Fibonacci chain to force the Ammann bars in order to find the forced tiles of an empire and the method that follows the work of N.G. de Bruijn on constructing a Penrose tiling as the dual to a pentagrid. This new method is not only conceptually simple and clear, but it also allows us to calculate the empires of the vertex configurations in a defected quasicrystal by reversing the configuration of the quasicrystal to its higher dimensional lattice, where we then apply the restrictions. These advantages may provide a key guiding principle for phason dynamics and an important tool for self error-correction in quasicrystal growth.
The first calculation of fractional jets
Energy Technology Data Exchange (ETDEWEB)
Bertolini, Daniele [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Center for Theoretical Physics, University of California, Berkeley, CA 94720 (United States); Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Walsh, Jonathan R. [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Center for Theoretical Physics, University of California, Berkeley, CA 94720 (United States)
2015-05-04
In collider physics, jet algorithms are a ubiquitous tool for clustering particles into discrete jet objects. Event shapes offer an alternative way to characterize jets, and one can define a jet multiplicity event shape, which can take on fractional values, using the framework of “jets without jets”. In this paper, we perform the first analytic studies of fractional jet multiplicity N-tilde{sub jet} in the context of e{sup +}e{sup −} collisions. We use fixed-order QCD to understand the N-tilde{sub jet} cross section at order α{sub s}{sup 2}, and we introduce a candidate factorization theorem to capture certain higher-order effects. The resulting distributions have a hybrid jet algorithm/event shape behavior which agrees with parton shower Monte Carlo generators. The N-tilde{sub jet} observable does not satisfy ordinary soft-collinear factorization, and the N-tilde{sub jet} cross section exhibits a number of unique features, including the absence of collinear logarithms and the presence of soft logarithms that are purely non-global. Additionally, we find novel divergences connected to the energy sharing between emissions, which are reminiscent of rapidity divergences encountered in other applications. Given these interesting properties of fractional jet multiplicity, we advocate for future measurements and calculations of N-tilde{sub jet} at hadron colliders like the LHC.
Constructivist philosophy and nursing student medication calculations.
Newton, Sarah E; Harris, Margaret; Pittiglio, Laura
2013-01-01
Prelicensure nursing students often have difficulty performing medication calculations (MCs). Faculty at one baccalaureate nursing program wanted to use nursing theory to guide the development of a teaching-learning approach related to MC's. Finding little theory related to the topic of MCs, a constructivist-based teaching-learning approach was used instead. The purpose of the study was to assess whether nursing students who received an MC review class that used a teaching-learning approach based on constructivist philosophy had better results on an MC examination than students who received their review via traditional teaching-learning methods. The study participants consisted of two cohorts of first-semester junior-level nursing students from one university-based school of nursing in the Midwestern United States. The results indicated that students in the simulation review class had higher mean scores on an MC examination than students who received their review via more traditional means. Teaching-learning strategies related to MCs based on constructivist philosophy have the potential to improve student learning outcomes, but more research is needed before middle-range theory related to this critically important area of nursing education can be developed.
Stress Intensity Factor calculation from displacement fields
Directory of Open Access Journals (Sweden)
S. Beretta
2017-07-01
Full Text Available In the last two decades, visual image techniques such as Digital Image Correlation (DIC enabled to experimentally determine the crack tip displacement and strain fields at small scales. The displacements are tracked during loading, and parameters as the Stress Intensity Factor (SIF, opening and closing loads, T-stress can be readily measured. In particular, the SIFs and the T-stress can be obtained by fitting the analytical equation of the Williamstype expansion with the experimentally-determined displacement fields. The results in terms of fracture mechanics parameters strictly depend on the dimension of the area considered around the crack tip in conjunction with the crack length, the maximum SIF (and thus the plastic tip radius, and the number of terms to be considered in the Williams-type expansion. This work focuses in understanding the accuracy of the SIF calculation based on these factors. The study is based on Finite Element Analysis simulations where purely elastic material behavior is considered. The accuracy of the estimation of the SIF is investigated and a guide-line is provided to properly set the DIC measurements. The analysis is then experimentally validated for crack closure measurements adopting the SENT specimen geometry.
National Stormwater Calculator: Low Impact Development ...
Stormwater discharges continue to cause impairment of our Nation’s waterbodies. EPA has developed the National Stormwater Calculator (SWC) to help support local, state, and national stormwater management objectives to reduce runoff through infiltration and retention using green infrastructure practices as low impact development (LID) controls. The primary focus of the SWC is to inform site developers on how well they can meet a desired stormwater retention target with and without the use of green infrastructure. It can also be used by landscapers and homeowners. Platform. The SWC is a Windows-based desktop program that requires an internet connection. A mobile web application version that will be compatible with all operating systems is currently being developed and is expected to be released in the fall of 2017.Cost Module. An LID cost estimation module within the application allows planners and managers to evaluate LID controls based on comparison of regional and national project planning level cost estimates (capital and average annual maintenance) and predicted LID control performance. Cost estimation is accomplished based on user-identified size configuration of the LID control infrastructure and other key project and site-specific variables. This includes whether the project is being applied as part of new development or redevelopment and if there are existing site constraints.Climate Scenarios. The SWC allows users to consider how runoff may vary based
Calculation of the energetics of chemical reactions
Energy Technology Data Exchange (ETDEWEB)
Dunning, T.H. Jr.; Harding, L.B.; Shepard, R.L.; Harrison, R.J.
1988-01-01
To calculate the energetics of chemical reactions we must solve the electronic Schroedinger equation for the molecular conformations of importance for the reactive encounter. Substantial changes occur in the electronic structure of a molecular system as the reaction progresses from reactants through the transition state to products. To describe these changes, our approach includes the following three elements: the use of multiconfiguration self-consistent field wave functions to provide a consistent zero-order description of the electronic structure of the reactants, transition state, and products; the use of configuration interaction techniques to describe electron correlation effects needed to provide quantitative predictions of the reaction energetics; and the use of large, optimized basis sets to provide the flexibility needed to describe the variations in the electronic distributions. With this approach we are able to study reactions involving as many as 5--6 atoms with errors of just a few kcal/mol in the predicted reaction energetics. Predictions to chemical accuracy, i.e., to 1 kcal/mol or less, are not yet feasible, although continuing improvements in both the theoretical methodology and computer technology suggest that this will soon be possible, at least for reactions involving small polyatomic species. 4 figs.
Fast Electron Beam Simulation and Dose Calculation
Trindade, A; Peralta, L; Lopes, M C; Alves, C; Chaves, A
2003-01-01
A flexible multiple source model capable of fast reconstruction of clinical electron beams is presented in this paper. A source model considers multiple virtual sources emulating the effect of accelerator head components. A reference configuration (10 MeV and 10x10 cm2 field size) for a Siemens KD2 linear accelerator was simulated in full detail using GEANT3 Monte Carlo code. Our model allows the reconstruction of other beam energies and field sizes as well as other beam configurations for similar accelerators using only the reference beam data. Electron dose calculations were performed with the reconstructed beams in a water phantom and compared with experimental data. An agreement of 1-2% / 1-2 mm was obtained, equivalent to the accuracy of full Monte Carlo accelerator simulation. The source model reduces accelerator simulation CPU time by a factor of 7500 relative to full Monte Carlo approaches. The developed model was then interfaced with DPM, a fast radiation transport Monte Carlo code for dose calculati...
ALGORITHME POUR LE CALCUL DES COURBURES GENERALISEES
Directory of Open Access Journals (Sweden)
K MEZAGHCHA
2004-06-01
Full Text Available On sait qu’une courbe algébrique standard d'équation f(x, y =0 admet un nombre fini de branches (nombre inférieur à l'ordre de f , dont les paramètrages peuvent être obtenus en particulier à partir de la décomposition de Goze itérée. On aimerait calculer leur courbure généralisée sans les déterminer explicitement, la notion de courbure généralisée ayant fait l’objet d’un travail, publié dans les comptes rendus de l’Université de Cagliari (Italie [12]. Dans cet article, on se propose d'établir à cet effet un algorithme qui donnera à partir seulement des coefficients de f, la liste exhaustive des courbures généralisées de toutes les branches réelles. L’article se termine par la donnée d’un exemple pour montrer l’efficacité de l’algorithme proposé.
Comparisons of Yield Calculations with Data
Energy Technology Data Exchange (ETDEWEB)
Dugan, G.
1986-02-01
Given what is claimed to a reasonably accurate technique for calculating the pbar yield, it is useful to ask for comparisons with the data available from the recent commissioning run. The simplest comparison to make is that of the yield. The number of pbars circulating in the Debuncher was measured many times; the total number of secondaries at IC728 in AP-2 was also measured many times. The ratio of pbars to total flux at IC728 was measured once (Bk. I, p 166); this number was {bar P}/total = 0.032. Typically, the ratio of secondaries at IC728 to protons on target was about 0.0012 (this was about the same number, independent of whether the lens was operated at 600 or 1000 T/m.). Thus, at IC728 we have N{sub P}/N{sub {bar P}} {approx} 1.2 x 10{sup -3} x 3.2 x 10{sup -2} = 3.8 x 10{sup -5} = 38 ppm.
Cleary, David A.
2014-01-01
The usefulness of the JANAF tables is demonstrated with specific equilibrium calculations. An emphasis is placed on the nature of standard chemical potential calculations. Also, the use of the JANAF tables for calculating partition functions is examined. In the partition function calculations, the importance of the zero of energy is highlighted.
Real time UAV autonomy through offline calculations
Jung, Sunghun
Two or three dimensional mission plans for a single or a group of hover or fixed wing UAVs are generated. The mission plans can largely be separated into seven main parts. Firstly, the Region Growing algorithm is used to generate a map from 2D or 3D images. Secondly, the map is analyzed to separate each blocks using vertices of blocks and seven filtering steps. Thirdly, the Trapezoidal map algorithm is used to convert the map into a traversability graph. Fourthly, this process also filters out paths that are not traversable. That is, nodes located inside the blocks and too closely located nodes are filtered out. Fifthly, the Dijkstra algorithm is used to calculate the shortest path from a starting point to a goal point. Sixthly, the 1D Optimal Control algorithm is applied to manipulate the velocity and acceleration of the UAVs efficiently. Basically, the UAVs accelerates at one graph node and maintains a constant velocity and decelerates before reaching the next graph node. Lastly, Traveling Salesman Problem Method (TSP) algorithm is used to calculate the shortest path to search the whole region. After this discretization of space and time, it becomes possible to solve several autonomous mission planning problems. We focus on one of the most difficult problems: coordinated search. This is a multiple Traveling Salesman Problem (mTSP). We solve it by decomposing the search region and solving TSPs for each vehicle searching a sub-region. The mTSP is generally used when there are more than one salesman is used. In addition to the four main parts, there are three minor parts which support the main parts. Firstly, Target Detection algorithm is generated to detect a target located near the UAVs' path. A picture of the desired target is inserted into the algorithm before UAVs launch. Using the Scale-Invariant Transform Feature (SIFT) algorithm, a target with a specific shape can be detected. Secondly, Tracking algorithm is generated to manipulate UAVs to follow targets
The experience of GPU calculations at Lunarc
Sjöström, Anders; Lindemann, Jonas; Church, Ross
2011-09-01
To meet the ever increasing demand for computational speed and use of ever larger datasets, multi GPU instal- lations look very tempting. Lunarc and the Theoretical Astrophysics group at Lund Observatory collaborate on a pilot project to evaluate and utilize multi-GPU architectures for scientific calculations. Starting with a small workshop in 2009, continued investigations eventually lead to the procurement of the GPU-resource Timaeus, which is a four-node eight-GPU cluster with two Nvidia m2050 GPU-cards per node. The resource is housed within the larger cluster Platon and share disk-, network- and system resources with that cluster. The inaugu- ration of Timaeus coincided with the meeting "Computational Physics with GPUs" in November 2010, hosted by the Theoretical Astrophysics group at Lund Observatory. The meeting comprised of a two-day workshop on GPU-computing and a two-day science meeting on using GPUs as a tool for computational physics research, with a particular focus on astrophysics and computational biology. Today Timaeus is used by research groups from Lund, Stockholm and Lule in fields ranging from Astrophysics to Molecular Chemistry. We are investigating the use of GPUs with commercial software packages and user supplied MPI-enabled codes. Looking ahead, Lunarc will be installing a new cluster during the summer of 2011 which will have a small number of GPU-enabled nodes that will enable us to continue working with the combination of parallel codes and GPU-computing. It is clear that the combination of GPUs/CPUs is becoming an important part of high performance computing and here we will describe what has been done at Lunarc regarding GPU-computations and how we will continue to investigate the new and coming multi-GPU servers and how they can be utilized in our environment.
CALCULATING ECONOMIC RISK AFTER HANFORD CLEANUP
Energy Technology Data Exchange (ETDEWEB)
Scott, M.J.
2003-02-27
Since late 1997, researchers at the Hanford Site have been engaged in the Groundwater Protection Project (formerly, the Groundwater/Vadose Zone Project), developing a suite of integrated physical and environmental models and supporting data to trace the complex path of Hanford legacy contaminants through the environment for the next thousand years, and to estimate corresponding environmental, human health, economic, and cultural risks. The linked set of models and data is called the System Assessment Capability (SAC). The risk mechanism for economics consists of ''impact triggers'' (sequences of physical and human behavior changes in response to, or resulting from, human health or ecological risks), and processes by which particular trigger mechanisms induce impacts. Economic impacts stimulated by the trigger mechanisms may take a variety of forms, including changes in either costs or revenues for economic sectors associated with the affected resource or activity. An existing local economic impact model was adapted to calculate the resulting impacts on output, employment, and labor income in the local economy (the Tri-Cities Economic Risk Model or TCERM). The SAC researchers ran a test suite of 25 realization scenarios for future contamination of the Columbia River after site closure for a small subset of the radionuclides and hazardous chemicals known to be present in the environment at the Hanford Site. These scenarios of potential future river contamination were analyzed in TCERM. Although the TCERM model is sensitive to river contamination under a reasonable set of assumptions concerning reactions of the authorities and the public, the scenarios show low enough future contamination that the impacts on the local economy are small.
A Radiative Transfer Model for Climate Calculations
Bergstrom, Robert W.; Mlawer, Eli J.; Sokolik, Irina N.; Clough, Shepard A.; Toon, Owen B.
2000-01-01
This paper describes a radiative transfer model developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. We use a newly developed k-distribution model for both the thermal and solar parts of the spectrum. We employ a generalized two-stream approximation for the scattering by aerosol and clouds. To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. We perform several calculations focussing primarily on the question of absorption of solar radiation by gases and aerosols. We estimate the accuracy of the k-distribution to be approx. 1 W/sq m for the gaseous absorption in the solar spectrum. We estimate the accuracy of the two-stream method to be 3-12 W/sq m for the downward solar flux and 1-5 W/sq m for the upward solar flux at the top of atmosphere depending on the optical depth of the aerosol layer. We also show that the effect of ignoring aerosol absorption on the downward solar flux at the surface is 50 W/sq m for the TARFOX aerosol for an optical depth of 0.5 and 150 W/sq m for a highly absorbing mineral aerosol. Thus, we conclude that the uncertainty introduced by the aerosol solar radiative properties (and merely assuming some "representative" model) can be considerably larger than the error introduced by the use of a two-stream method.
Energy Technology Data Exchange (ETDEWEB)
Lamarcq, J. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)
1998-07-10
Numerical simulation allows the theorists to convince themselves about the validity of the models they use. Particularly by simulating the spin lattices one can judge about the validity of a conjecture. Simulating a system defined by a large number of degrees of freedom requires highly sophisticated machines. This study deals with modelling the magnetic interactions between the ions of a crystal. Many exact results have been found for spin 1/2 systems but not for systems of other spins for which many simulation have been carried out. The interest for simulations has been renewed by the Haldane`s conjecture stipulating the existence of a energy gap between the ground state and the first excited states of a spin 1 lattice. The existence of this gap has been experimentally demonstrated. This report contains the following four chapters: 1. Spin systems; 2. Calculation of eigenvalues; 3. Programming; 4. Parallel calculation 14 refs., 6 figs.
A new Calculation Procedure for Spatial Impulse Responses in Ultrasound
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
1999-01-01
A new procedure for the calculation of spatial impulse responses for linear sound fields is introduced. This calculation procedure uses the well known technique of calculating the spatial impulse response from the intersection of a circle emanating from the projected spherical wave with the bound......A new procedure for the calculation of spatial impulse responses for linear sound fields is introduced. This calculation procedure uses the well known technique of calculating the spatial impulse response from the intersection of a circle emanating from the projected spherical wave...
Soil structure interaction calculations: a comparison of methods
Energy Technology Data Exchange (ETDEWEB)
Wight, L.; Zaslawsky, M.
1976-07-22
Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes.
Rovibrational analysis of the ν calculations
Albert, Sieghard; Hollenstein, Hans; Quack, Martin; Willeke, Martin
High resolution FTIR spectra of the ν4/2ν6 band system in the region 750-850 cm-1 were measured with our Bruker IFS 125 HR Zürich prototype (ZP2001) spectrometer using an instrumental resolution of better than 0.001 cm-1 (FWHM, unapodized or 1/MOPD =0.001 cm-1 with the maximum optical path difference MOPD). The spectra were analysed by means of a polyad Hamiltonian built up from the ν4/2ν6 Fermi dyad and the 2ν6,ν6+ν9,2ν9 Coriolis triad which share the level 2ν6. The levels ν6+ν9 and 2ν9 are not directly observed but are included as dark states. Spectroscopic parameters for ν6+ν9 and 2ν9 as well as the Coriolis coupling constants for the Coriolis triad were transferred from the Coriolis dyad ν6,ν9 using previously reported values. The analysis included both isotopomers CH35ClF2, and CH37ClF2. The deperturbed band centres of ν4 and 2ν6 obtained from the fit are ILM0001 cm-1 and ILM0002 cm-1 for CH35ClF2, and ILM0003 cm-1 and ILM0004 cm-1 for CH37ClF2. The Fermi resonance coupling matrix element obtained for CH35ClF2 is F = -7.6839 cm-1. In the corresponding analysis of the isotopomer CH37ClF2, we employed also this value without further adjustment. A comparison with results obtained in the framework of simpler models shows that the inclusion of the full Coriolis triad is essential. We also report ab initio calculations on the MP2 level of theory with aug-cc-pVDZ and aug-cc-pVTZ basis sets pertaining to (q4), (q6) and (q4, q6) subspaces. These results agree well with the empirical findings and allow us to assign a sign to certain coupling constants which cannot be obtained from the analysis of the experimental spectra.
Glass dissolution rate measurement and calculation revisited
Energy Technology Data Exchange (ETDEWEB)
Fournier, Maxime, E-mail: maxime.fournier@cea.fr [CEA, DEN, DTCD, SECM, F-30207, Bagnols sur Cèze (France); Ull, Aurélien; Nicoleau, Elodie [CEA, DEN, DTCD, SECM, F-30207, Bagnols sur Cèze (France); Inagaki, Yaohiro [Department of Applied Quantum Physics & Nuclear Engineering, Kyushu University, Fukuoka, 819-0395 (Japan); Odorico, Michaël [ICSM-UMR5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule, BP17171, F-30207, Bagnols sur Cèze (France); Frugier, Pierre; Gin, Stéphane [CEA, DEN, DTCD, SECM, F-30207, Bagnols sur Cèze (France)
2016-08-01
Aqueous dissolution rate measurements of nuclear glasses are a key step in the long-term behavior study of such waste forms. These rates are routinely normalized to the glass surface area in contact with solution, and experiments are very often carried out using crushed materials. Various methods have been implemented to determine the surface area of such glass powders, leading to differing values, with the notion of the reactive surface area of crushed glass remaining vague. In this study, around forty initial dissolution rate measurements were conducted following static and flow rate (SPFT, MCFT) measurement protocols at 90 °C, pH 10. The international reference glass (ISG), in the forms of powders with different particle sizes and polished monoliths, and soda-lime glass beads were examined. Although crushed glass grains clearly cannot be assimilated with spheres, it is when using the samples geometric surface (S{sub geo}) that the rates measured on powders are closest to those found for monoliths. Overestimation of the reactive surface when using the BET model (S{sub BET}) may be due to small physical features at the atomic scale—contributing to BET surface area but not to AFM surface area. Such features are very small compared with the thickness of water ingress in glass (a few hundred nanometers) and should not be considered in rate calculations. With a S{sub BET}/S{sub geo} ratio of 2.5 ± 0.2 for ISG powders, it is shown here that rates measured on powders and normalized to S{sub geo} should be divided by 1.3 and rates normalized to S{sub BET} should be multiplied by 1.9 in order to be compared with rates measured on a monolith. The use of glass beads indicates that the geometric surface gives a good estimation of glass reactive surface if sample geometry can be precisely described. Although data clearly shows the repeatability of measurements, results must be given with a high uncertainty of approximately ±25%. - Highlights: • Initial dissolution
A finite element calculation of flux pumping
Campbell, A. M.
2017-12-01
A flux pump is not only a fascinating example of the power of Faraday’s concept of flux lines, but also an attractive way of powering superconducting magnets without large electronic power supplies. However it is not possible to do this in HTS by driving a part of the superconductor normal, it must be done by exceeding the local critical density. The picture of a magnet pulling flux lines through the material is attractive, but as there is no direct contact between flux lines in the magnet and vortices, unless the gap between them is comparable to the coherence length, the process must be explicable in terms of classical electromagnetism and a nonlinear V–I characteristic. In this paper a simple 2D model of a flux pump is used to determine the pumping behaviour from first principles and the geometry. It is analysed with finite element software using the A formulation and FlexPDE. A thin magnet is passed across one or more superconductors connected to a load, which is a large rectangular loop. This means that the self and mutual inductances can be calculated explicitly. A wide strip, a narrow strip and two conductors are considered. Also an analytic circuit model is analysed. In all cases the critical state model is used, so the flux flow resistivity and dynamic resistivity are not directly involved, although an effective resistivity appears when J c is exceeded. In most of the cases considered here is a large gap between the theory and the experiments. In particular the maximum flux transferred to the load area is always less than the flux of the magnet. Also once the threshold needed for pumping is exceeded the flux in the load saturates within a few cycles. However the analytic circuit model allows a simple modification to allow for the large reduction in I c when the magnet is over a conductor. This not only changes the direction of the pumped flux but leads to much more effective pumping.
Energy Technology Data Exchange (ETDEWEB)
Barnard, R.W.; Dockery, H.A.
1990-10-01
The Performance Assessment Calculational Exercises (PACE) are an ongoing effort coordinated by Yucca Mountain Project Office. The objectives of fiscal year 1990 work, termed PACE-90, as outlined in the Department of Energy Performance Assessment (PA) Implementation Plan were to develop PA capabilities among Yucca Mountain Project (YMP) participants by calculating performance of a Yucca Mountain (YM) repository under ``expected`` and also ``disturbed`` conditions, to identify critical elements and processes necessary to assess the performance of YM, and to perform sensitivity studies on key parameters. It was expected that the PACE problems would aid in development of conceptual models and eventual evaluation of site data. The PACE-90 participants calculated transport of a selected set of radionuclides through a portion of Yucca Mountain for a period of 100,000 years. Results include analyses of fluid-flow profiles, development of a source term for radionuclide release, and simulations of contaminant transport in the fluid-flow field. Later work included development of a problem definition for perturbations to the originally modeled conditions and for some parametric sensitivity studies. 3 refs.
Compilation of kinetic data for geochemical calculations
Energy Technology Data Exchange (ETDEWEB)
Arthur, R.C. [Monitor Scientific, LLC., Denver, Colorado (United States); Savage, D. [Quintessa, Ltd., Nottingham (United Kingdom); Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works
2000-01-01
mineralogical and physical properties of the fracture must be homogeneous over a characteristic length that is greater than or equal to the equilibration length. If these conditions are met, calculations suggest local equilibrium would be a valid assumption in groundwater evolution models applied to the Kamaishi site if: it applies to reactions involving calcite, stilbite (assuming its dissolution / precipitation behavior is similar to that of heulandite), laumontite, albite and prehnite, but not quartz; Darcy flow velocities are relatively low (e.g., less than about 0.1 m yr-1), and it is based on the assumption that equilibrium corresponds to an uncertainty in the saturation index of 0.0{+-}0.4. If, however, actual reaction rates in the field are lower than expected, possibly because reactive surface areas are overestimated, the modeling approach may be inappropriate because it is probably unrealistic to assume that fracture mineralogy is homogeneous over fracture lengths exceeding a few meters or tens of meters. An analytical model of redox-front migration behavior based on the stationary-state approximation, and JNC's conceptual model of a natural events scenario involving the migration of oxidizing surface waters in fractures, suggests that oxidizing solutions could travel from the surface to the depth of a repository in crystalline rock within 400 to 50,000 years. These estimates are relatively short compared with time periods considered in safety assessments of repository performance, which suggests that time-dependent variations in the redox environment of both the near field and geosphere may need to be accounted for in these assessments. The flow velocities and concentrations of reducing minerals assumed in JNC's conceptual model may be overly conservative, however. (author)
Standard Guide for Benchmark Testing of Light Water Reactor Calculations
American Society for Testing and Materials. Philadelphia
2010-01-01
1.1 This guide covers general approaches for benchmarking neutron transport calculations in light water reactor systems. A companion guide (Guide E2005) covers use of benchmark fields for testing neutron transport calculations and cross sections in well controlled environments. This guide covers experimental benchmarking of neutron fluence calculations (or calculations of other exposure parameters such as dpa) in more complex geometries relevant to reactor surveillance. Particular sections of the guide discuss: the use of well-characterized benchmark neutron fields to provide an indication of the accuracy of the calculational methods and nuclear data when applied to typical cases; and the use of plant specific measurements to indicate bias in individual plant calculations. Use of these two benchmark techniques will serve to limit plant-specific calculational uncertainty, and, when combined with analytical uncertainty estimates for the calculations, will provide uncertainty estimates for reactor fluences with ...
Calculations of optical rotation: Influence of molecular structure
Directory of Open Access Journals (Sweden)
Yu Jia
2012-01-01
Full Text Available Ab initio Hartree-Fock (HF method and Density Functional Theory (DFT were used to calculate the optical rotation of 26 chiral compounds. The effects of theory and basis sets used for calculation, solvents influence on the geometry and values of calculated optical rotation were all discussed. The polarizable continuum model, included in the calculation, did not improve the accuracy effectively, but it was superior to γs. Optical rotation of five or sixmembered of cyclic compound has been calculated and 17 pyrrolidine or piperidine derivatives which were calculated by HF and DFT methods gave acceptable predictions. The nitrogen atom affects the calculation results dramatically, and it is necessary in the molecular structure in order to get an accurate computation result. Namely, when the nitrogen atom was substituted by oxygen atom in the ring, the calculation result deteriorated.
Equivalence of Stress and Energy Calculations of Mean Stress
DEFF Research Database (Denmark)
Pedersen, Ole Bøcker; Brown, L. M.
1977-01-01
Calculations of the mean stress in a plastically deformed matrix containing randomly distributed elastic inclusions are considered. The mean stress for an elastically homogeneous material is calculated on the basis of an energy consideration which completely accounts for elastic interactions...
Dipole Approximation in the Calculation of the Perturbed Velocities
Directory of Open Access Journals (Sweden)
Solovyov Oleg
2014-12-01
Full Text Available In this article we consider one of the approaches aimed at reducing time of calculation of aerodynamic characteristics of the studied objects using discrete vortex method. Also, accuracy assessment of calculation of aerodynamic characteristics was performed.
Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study
Energy Technology Data Exchange (ETDEWEB)
Pajunen, A. J.; Tedeschi, A. R.
2012-09-18
This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.
On the calculation of soft phase space integral
Zhu, Hua
2014-01-01
The recent discovery of the Higgs boson at the LHC attracts much attention to the precise calculation of its production cross section in quantum chromodynamics. In this work, we discuss the calculation of soft triple-emission phase space integral, which is an essential ingredient in the recently calculated soft-virtual corrections to Higgs boson production at next-to-next-to-next-to-leading order. The main techniques used this calculation are method of differential equation for Feynman integr...
Parametric Criticality Safety Calculations for Arrays of TRU Waste Containers
Energy Technology Data Exchange (ETDEWEB)
Gough, Sean T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-26
The Nuclear Criticality Safety Division (NCSD) has performed criticality safety calculations for finite and infinite arrays of transuranic (TRU) waste containers. The results of these analyses may be applied in any technical area onsite (e.g., TA-54, TA-55, etc.), as long as the assumptions herein are met. These calculations are designed to update the existing reference calculations for waste arrays documented in Reference 1, in order to meet current guidance on calculational methodology.
Field-theoretic calculation of kinetic helicity flux
Indian Academy of Sciences (India)
bulence and compute the fluxes of energy and kinetic helicity. The renormalized viscosity computed using RG procedure is used in the calculation. Contrast this with the arbitrary constant used in EDQNM calculation. In addition, the EDQNM calculations require numerical integration of energy equation, which is not required.
Body Mass Index: Calculator for Child and Teen
... age percentile on a CDC BMI-for-age growth chart. Use this calculator for children and teens, aged 2 through 19 years old. For adults, 20 years old and older, use the Adult BMI Calculator . Measuring Height and Weight Accurately At Home BMI Calculator for ...
21 CFR 211.103 - Calculation of yield.
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Calculation of yield. 211.103 Section 211.103 Food... § 211.103 Calculation of yield. Actual yields and percentages of theoretical yield shall be determined... by a second person, or, if the yield is calculated by automated equipment under § 211.68, be...
Intrinsic Hysteresis Loops Calculation of BZT Thin Films
Hikam, M.; Adnan, S. R.
2014-04-01
The Landau Devonshire (LK) simulation is utilized to calculate the intrinsic hysteresis properties of Barium Zirconium Titanate (BZT) doped by Indium and Lanthanum. A Delphi program run on Windows platform is used to facilitate the calculation. The simulation is very useful to calculate and understand the Gibbs free energy and the relationship between spontaneous polarization and electric field.
The Graphics Calculator: A Tool for Critical Thinking.
Dion, Gloria
1990-01-01
Appropriate uses for graphics calculators in precalculus and calculus are discussed. The functions of Casio, Sharp, and Hewlett-Packard brand calculators are stressed. A "Stress Test" for graphics calculators designed to illustrate common errors and to furnish examples of tasks which cannot be completed on these instruments is provided.…
49 CFR 1141.1 - Procedures to calculate interest rates.
2010-10-01
... 49 Transportation 8 2010-10-01 2010-10-01 false Procedures to calculate interest rates. 1141.1... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE PROCEDURES TO CALCULATE INTEREST RATES § 1141.1 Procedures to calculate interest rates. (a) For purposes of complying with a Board decision in a...
Can medical students calculate drug doses? | Harries | Southern ...
African Journals Online (AJOL)
... with calculations when the drug concentration was expressed either as a ratio or a percentage. Conclusion: Our findings support calls for the standardised labelling of drugs in solution and for dosage calculation training in the medical curriculum. Keywords: drug dosage calculations, clinical competence, medication errors
Channel Coupling Effects in Photo-Induced ρ - N Production
Usov, A.; Scholten, O.
2006-01-01
We present an extension of our coupled channels calculation to include photo-induced ρ - N production. We show that indirect contributions are large and can account for some of the typical discrepancies seen in a tree-level calculations.
Girerd, X; Hanon, O; Pannier, B; Vaïsse, B
2017-06-01
To investigate the determinants of non-compliance with antihypertensive treatments among participants in the FLAHS 2015 survey and to develop a risk calculator for drug compliance in a hypertensive population. The FLAHS surveys are carried out by self-questionnaire sent by mail to individuals from the TNS SOFRES (representative panel of the population living in metropolitan France) sampling frame. In 2015, FLAHS was performed in subjects aged 55years and older. Using the Girerd questionnaire, the "perfect observance" was determined for a score of 0 and "nonobservance" for a score of 1 or higher. A Poisson regression was conducted in univariate and multivariate to estimate risk ratios for each determinant. A non-compliance risk calculator is constructed from multivariate analysis. A Poisson regression was performed in univariate and multivariate to estimate risk ratios. For each sex, a probability table is produced from the equation of the multivariate analysis and then the calculation of a nonobservance probability ratio (PR) using the profile with the best probability as a reference. Each subject is then classified into one of the three classes of risk of non-compliance: low (PR =2) and intermediate (PR>=1.5 and non-compliance are: male sex, young age, number of antihypertensive tablet, treatment for a metabolic disease (diabetes, dyslipidemia), presence of other chronic illness, secondary prevention of cardiovascular disease. To get the risk class of nonobservance a web page is available at http://www.comitehta.org/flahs-observance-hta/. The development of the FLAHS Compliance Test is a tool whose use is possible during an office visit. Its free availability for French doctor will be one of the actions undertaken as part of the "call for action for adherence in hypertension" proposed by the French League Against Hypertension in 2017. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Benomar, M
1998-09-01
The neutronic modeling of a nuclear reactor core requires 2 steps. The first step that is called transport calculation, is an accurate modeling of each type of assemblies put in a simple configuration. APOLLO2, a French neutronic code is used. This step allows the constitution of assembly data libraries. The second step represents the computing of the whole core by the diffusion theory and by using the data libraries defined in the first step. This work is dedicated to the improvement of the first step by allowing both a 172 group energy meshing and a two-dimension spatial processing. (A.C.) 7 refs.
Thermal Bridges in Building Construction - Measurements and Calculations
DEFF Research Database (Denmark)
Rose, Jørgen
The thesis investigates detailed calculation methods for evaluating heat loss through building envelope constructions, or more specific, thermal bridges. First a detailed description of the calculation methods, i.e. both calculation programs and guidelines, for calculating typical thermal bridges...... in building envelope constructions is given. After this a validation of both programs and guidelines is presented. The validation is performed by comparing calculated U-values with Guarded Hot Box measurements. The last part of the thesis discusses the possibilities of utilising the results of detailed...
Danish Sector Guide for Calculation of the Actual Energy Consumption
DEFF Research Database (Denmark)
Mortensen, Lone Hedegaard
2016-01-01
, the innovation network for sustainable construction, InnoBYG started work on a Danish sector guide for the calculation of actual energy consumption in relation to upgrading of buildings. The focus was to make a common guide for energy calculations that can be used by consultants performing calculations...... consumption compared with the estimated energy demand by calculation. The paper concludes that the result of an energy calculation should not be given as a single figure but rather as a spread between the best and worst case for the assumed conditions. Finally, a brief update on current actions is given...... related to the sector guide for calculation of actual energy consumption. Keywords – Energy calculations, actual energy consumption, energy perfomance...
Approximate design calculation methods for radiation streaming in shield irregularities
Energy Technology Data Exchange (ETDEWEB)
Miura, Toshimasa; Hirao, Yoshihiro [Ship Research Inst., Mitaka, Tokyo (Japan); Yoritsune, Tsutomu
1997-10-01
Investigation and assessment are made for approximate design calculation methods of radiation streaming in shield irregularities. Investigation is made for (1) source, (2) definition of streaming radiation components, (3) calculation methods of streaming radiation, (4) streaming formulas for each irregularity, (5) difficulties in application of streaming formulas, etc. Furthermore, investigation is made for simple calculation codes and albedo data. As a result, it is clarified that streaming calculation formulas are not enough to cover various irregularities and their accuracy or application limit is not sufficiently clear. Accurate treatment is not made in the formulas with respect to the radiation behavior for slant incidence, bend part, offset etc., that results in too much safety factors in the design calculation and distrust of the streaming calculation. To overcome the state and improve the accuracy of the design calculation for shield irregularities, it is emphasized to assess existing formulas and develop better formulas based on systematic experimental studies. (author)
Superelevation Calculation of Debris Flow Climbing Ascending Slopes
Directory of Open Access Journals (Sweden)
HaiXin Zhao
2017-01-01
Full Text Available We present a new method for calculating the superelevation of debris flow when it encounters obstacles in the process of flowing. Our calculation method is based on the Bingham Model for debris flow determination and considers the vertical difference of debris flow velocity and characteristic parameters of debris flow on a hypothetical basis. Moreover, we conducted an indoor flume experiment to verify the accuracy and reasonability of our calculation method. The experimental results showed that our method is able to accurately calculate the superelevation of debris flow with a root-mean-square error (16%. Furthermore, we provide an in-depth example of how our calculation method can be employed. Ultimately, we conclusively prove that our calculation method can be used for the superelevation calculation of debris flow climbing ascending slopes. Finally, we provide more exact parameters for debris flow protection engineering.
Probability calculations for three-part mineral resource assessments
Ellefsen, Karl J.
2017-06-27
Three-part mineral resource assessment is a methodology for predicting, in a specified geographic region, both the number of undiscovered mineral deposits and the amount of mineral resources in those deposits. These predictions are based on probability calculations that are performed with computer software that is newly implemented. Compared to the previous implementation, the new implementation includes new features for the probability calculations themselves and for checks of those calculations. The development of the new implementation lead to a new understanding of the probability calculations, namely the assumptions inherent in the probability calculations. Several assumptions strongly affect the mineral resource predictions, so it is crucial that they are checked during an assessment. The evaluation of the new implementation leads to new findings about the probability calculations,namely findings regarding the precision of the computations,the computation time, and the sensitivity of the calculation results to the input.
Numeric calculation of celestial bodies with spreadsheet analysis
Koch, Alexander
2016-04-01
The motion of the planets and moons in our solar system can easily be calculated for any time by the Kepler laws of planetary motion. The Kepler laws are a special case of the gravitational law of Newton, especially if you consider more than two celestial bodies. Therefore it is more basic to calculate the motion by using the gravitational law. But the problem is, that by gravitational law it is not possible to calculate the state of motion with only one step of calculation. The motion has to be numerical calculated for many time intervalls. For this reason, spreadsheet analysis is helpful for students. Skills in programmes like Excel, Calc or Gnumeric are important in professional life and can easily be learnt by students. These programmes can help to calculate the complex motions with many intervalls. The more intervalls are used, the more exact are the calculated orbits. The sutdents will first get a quick course in Excel. After that they calculate with instructions the 2-D-coordinates of the orbits of Moon and Mars. Step by step the students are coding the formulae for calculating physical parameters like coordinates, force, acceleration and velocity. The project is limited to 4 weeks or 8 lessons. So the calcualtion will only include the calculation of one body around the central mass like Earth or Sun. The three-body problem can only be shortly discussed at the end of the project.
Propellant Mass Fraction Calculation Methodology for Launch Vehicles
Holt, James B.; Monk, Timothy S.
2009-01-01
Propellant Mass Fraction (pmf) calculation methods vary throughout the aerospace industry. While typically used as a means of comparison between competing launch vehicle designs, the actual pmf calculation method varies slightly from one entity to another. It is the purpose of this paper to present various methods used to calculate the pmf of a generic launch vehicle. This includes fundamental methods of pmf calculation which consider only the loaded propellant and the inert mass of the vehicle, more involved methods which consider the residuals and any other unusable propellant remaining in the vehicle, and other calculations which exclude large mass quantities such as the installed engine mass. Finally, a historic comparison is made between launch vehicles on the basis of the differing calculation methodologies.
VIBRATIONAL RAMAN OPTICAL-ACTIVITY CALCULATIONS USING LONDON ATOMIC ORBITALS
DEFF Research Database (Denmark)
Helgaker, T.; Ruud, K.; Bak, Keld L.
1994-01-01
Ab initio calculations of Raman differential intensities are presented at the self-consistent field (SCF) level of theory. The electric dipole-electric dipole, electric dipole-magnetic dipole and electric dipole-electric quadrupole polarizability tensors are calculated at the frequency of the inc...... of the incident light, using SCF linear response theory. London atomic orbitals are employed, imposing gauge origin invariance on the calculations. Calculations have been carried out in the harmonic approximation for CFHDT and methyloxirane.......Ab initio calculations of Raman differential intensities are presented at the self-consistent field (SCF) level of theory. The electric dipole-electric dipole, electric dipole-magnetic dipole and electric dipole-electric quadrupole polarizability tensors are calculated at the frequency...
Coil current and vacuum magnetic flux calculation for axisymmetric equilibria
Guazzotto, L.
2017-12-01
In fixed-boundary axisymmetric equilibrium calculations the plasma shape is assigned from input. In several circumstances, the plasma shape may not be known a priori, or one may desire to also compute the magnetic field in the volume surrounding the plasma through the calculation of a free-boundary equilibrium. This requires either the coil currents or the magnetic poloidal flux on a curve in the vacuum region to be assigned as input for the free-boundary equilibrium calculation. The FREE-FIX code presented in this article is a general tool for calculating coil currents being given a fixed-boundary calculation. A new formulation is presented, which considerably reduces the computational cost of the calculation. FREE-FIX performs well for different geometries and experiments.
Methodological studies on the VVER-440 control assembly calculations
Energy Technology Data Exchange (ETDEWEB)
Hordosy, G.; Kereszturi, A.; Maraczy, C. [KFKI Atomic Energy Research Institute, Budapest (Hungary)
1995-12-31
The control assembly regions of VVER-440 reactors are represented by 2-group albedo matrices in the global calculations of the KARATE code system. Some methodological aspects of calculating albedo matrices with the COLA transport code are presented. Illustrations are given how these matrices depend on the relevant parameters describing the boron steel and steel regions of the control assemblies. The calculation of the response matrix for a node consisting of two parts filled with different materials is discussed.
Accuracy Improvement of Magnetic Hysteresis Calculated by LLG Equation
Tanaka, H.; Nakamura, K.; Ichinokura, O.
2017-10-01
Quantitative estimation of iron loss including magnetic hysteresis behavior is essential to the development of high-efficient electrical machines. A simplified micromagnetic model using Landau-Lifshitz-Gilbert (LLG) equation is one of the useful models for calculating the hysteresis behavior. However, further improvement of the calculation accuracy under magnetic saturation is required. This paper presents the accuracy improvement of the magnetic hysteresis calculated by the LLG equation.
Electric field calculations in brain stimulation based on finite elements
DEFF Research Database (Denmark)
Windhoff, Mirko; Opitz, Alexander; Thielscher, Axel
2013-01-01
The need for realistic electric field calculations in human noninvasive brain stimulation is undisputed to more accurately determine the affected brain areas. However, using numerical techniques such as the finite element method (FEM) is methodologically complex, starting with the creation...... elements. The latter is crucial to guarantee the numerical robustness of the FEM calculations. The pipeline will be released as open-source, allowing for the first time to perform realistic field calculations at an acceptable methodological complexity and moderate costs....
An atlas of functions: with equator, the atlas function calculator
National Research Council Canada - National Science Library
Oldham, Keith
2008-01-01
... of arguments. The first edition of An Atlas of Functions, the product of collaboration between a mathematician and a chemist, appeared during an era when the programmable calculator was the workhorse for the numerical evaluation of functions. That role has now been taken over by the omnipresent computer, and therefore the second edition delegates this duty to Equator, the Atlas function calculator. This is a software program that, as well as carrying out other tasks, will calculate va...
38 CFR 8.6 - Calculation of time period.
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Calculation of time period. 8.6 Section 8.6 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS NATIONAL SERVICE LIFE INSURANCE Calculation of Time Period § 8.6 Calculation of time period. If the last day of a time period specified in §§ 8.2 or 8.3 or...
Calculation of the spectrum of the superheavy element Z=120
Dinh, T. H.; Dzuba, V. A.; Flambaum, V. V.; Ginges, J. S. M.
2008-01-01
High-precision calculations of the energy levels of the superheavy element Z=120 are presented. The relativistic Hartree-Fock and configuration interaction techniques are employed. The correlations between core and valence electrons are treated by means of the correlation potential method and many-body perturbation theory. Similar calculations for barium and radium are used to gauge the accuracy of the calculations and to improve the ab initio results.