WorldWideScience

Sample records for scheduling robot sensors

  1. Mining robotics sensors

    CSIR Research Space (South Africa)

    Green, JJ

    2011-07-01

    Full Text Available International Conference of CAD/CAM, Robotics & Factories of the Future (CARs&FOF 2011) 26-28 July 2-11, Kuala Lumpur, Malaysia Mining Robotics Sensors Perception Sensors on a Mine Safety Platform Green JJ1, Hlophe K2, Dickens J3, Teleka R4, Mathew Price5...-28 July 2-11, Kuala Lumpur, Malaysia visualization in confined, lightless environments, and thermography for assessing the safety and stability of hanging walls. Over the last decade approximately 200 miners have lost their lives per year in South...

  2. Simultaneous scheduling of machines and mobile robots

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa

    2013-01-01

    This paper deals with the problem of simultaneously scheduling machines and a number of autonomous mobile robots in a flexible manufacturing system (FMS). Besides capability of transporting materials between machines, the considered mobile robots are different from other material handling devices...

  3. Cooperative robots and sensor networks

    CERN Document Server

    Khelil, Abdelmajid

    2014-01-01

    Mobile robots and Wireless Sensor Networks (WSNs) have enabled great potentials and a large space for ubiquitous and pervasive applications. Robotics and WSNs have mostly been considered as separate research fields and little work has investigated the marriage between these two technologies. However, these two technologies share several features, enable common cyber-physical applications and provide complementary support to each other.
 The primary objective of book is to provide a reference for cutting-edge studies and research trends pertaining to robotics and sensor networks, and in particular for the coupling between them. The book consists of five chapters. The first chapter presents a cooperation strategy for teams of multiple autonomous vehicles to solve the rendezvous problem. The second chapter is motivated by the need to improve existing solutions that deal with connectivity prediction, and proposed a genetic machine learning approach for link-quality prediction. The third chapter presents an arch...

  4. Irrigation scheduling using soil moisture sensors

    Science.gov (United States)

    Soil moisture sensors were evaluated and used for irrigation scheduling in humid region. Soil moisture sensors were installed in soil at depths of 15cm, 30cm, and 61cm belowground. Soil volumetric water content was automatically measured by the sensors in a time interval of an hour during the crop g...

  5. Mining robotics sensors

    CSIR Research Space (South Africa)

    Green, JJ

    2012-04-01

    Full Text Available of threedimensional cameras (SR 4000 and XBOX Kinect) and a thermal imaging sensor (FLIR A300) in order to create 3d thermal models of narrow mining stopes. This information can be used in determining the risk of rockfall in an underground mine, which is a major...

  6. Planning and Scheduling for Environmental Sensor Networks

    Science.gov (United States)

    Frank, J. D.

    2005-12-01

    Environmental Sensor Networks are a new way of monitoring the environment. They comprise autonomous sensor nodes in the environment that record real-time data, which is retrieved, analyzed, integrated with other data sets (e.g. satellite images, GIS, process models) and ultimately lead to scientific discoveries. Sensor networks must operate within time and resource constraints. Sensors have limited onboard memory, energy, computational power, communications windows and communications bandwidth. The value of data will depend on when, where and how it was collected, how detailed the data is, how long it takes to integrate the data, and how important the data was to the original scientific question. Planning and scheduling of sensor networks is necessary for effective, safe operations in the face of these constraints. For example, power bus limitations may preclude sensors from simultaneously collecting data and communicating without damaging the sensor; planners and schedulers can ensure these operations are ordered so that they do not happen simultaneously. Planning and scheduling can also ensure best use of the sensor network to maximize the value of collected science data. For example, if data is best recorded using a particular camera angle but it is costly in time and energy to achieve this, planners and schedulers can search for times when time and energy are available to achieve the optimal camera angle. Planning and scheduling can handle uncertainty in the problem specification; planners can be re-run when new information is made available, or can generate plans that include contingencies. For example, if bad weather may prevent the collection of data, a contingent plan can check lighting conditions and turn off data collection to save resources if lighting is not ideal. Both mobile and immobile sensors can benefit from planning and scheduling. For example, data collection on otherwise passive sensors can be halted to preserve limited power and memory

  7. A Web-Remote/Robotic/Scheduled Astronomical Data Acquisition System

    Science.gov (United States)

    Denny, Robert

    2011-03-01

    Traditionally, remote/robotic observatory operating systems have been custom made for each observatory. While data reduction pipelines need to be tailored for each investigation, the data acquisition process (especially for stare-mode optical images) is often quite similar across investigations. Since 1999, DC-3 Dreams has focused on providing and supporting a remote/robotic observatory operating system which can be adapted to a wide variety of physical hardware and optics while achieving the highest practical observing efficiency and safe/secure web browser user controls. ACP Expert consists of three main subsystems: (1) a robotic list-driven data acquisition engine which controls all aspects of the observatory, (2) a constraint-driven dispatch scheduler with a long-term database of requests, and (3) a built-in "zero admin" web server and dynamic web pages which provide a remote capability for immediate execution and monitoring as well as entry and monitoring of dispatch-scheduled observing requests. No remote desktop login is necessary for observing, thus keeping the system safe and consistent. All routine operation is via the web browser. A wide variety of telescope mounts, CCD imagers, guiding sensors, filter selectors, focusers, instrument-package rotators, weather sensors, and dome control systems are supported via the ASCOM standardized device driver architecture. The system is most commonly employed on commercial 1-meter and smaller observatories used by universities and advanced amateurs for both science and art. One current project, the AAVSO Photometric All-Sky Survey (APASS), uses ACP Expert to acquire large volumes of data in dispatch-scheduled mode. In its first 18 months of operation (North then South), 40,307 sky images were acquired in 117 photometric nights, resulting in 12,107,135 stars detected two or more times. These stars had measures in 5 filters. The northern station covered 754 fields (6446 square degrees) at least twice, the southern

  8. Compact Tactile Sensors for Robot Fingers

    Science.gov (United States)

    Martin, Toby B.; Lussy, David; Gaudiano, Frank; Hulse, Aaron; Diftler, Myron A.; Rodriguez, Dagoberto; Bielski, Paul; Butzer, Melisa

    2004-01-01

    Compact transducer arrays that measure spatial distributions of force or pressure have been demonstrated as prototypes of tactile sensors to be mounted on fingers and palms of dexterous robot hands. The pressure- or force-distribution feedback provided by these sensors is essential for the further development and implementation of robot-control capabilities for humanlike grasping and manipulation.

  9. Cooperative robots and sensor networks 2014

    CERN Document Server

    Khelil, Abdelmajid

    2014-01-01

    This book is the second volume on Cooperative Robots and Sensor Networks. The primary objective of this book is to provide an up-to-date reference for cutting-edge studies and research trends related to mobile robots and wireless sensor networks, and in particular for the coupling between them. Indeed, mobile robots and wireless sensor networks have enabled great potentials and a large space for ubiquitous and pervasive applications. Robotics and wireless sensor networks have mostly been considered as separate research fields and little work has investigated the marriage between these two technologies. However, these two technologies share several features, enable common cyber-physical applications and provide complementary support to each other. The book consists of ten chapters, organized into four parts. The first part of the book presents three chapters related to localization of mobile robots using wireless sensor networks. Two chapters presented new solutions based Extended Kalman Filter and Particle Fi...

  10. Cooperative robots and sensor networks 2015

    CERN Document Server

    Dios, JRamiro

    2015-01-01

    This book compiles some of the latest research in cooperation between robots and sensor networks. Structured in twelve chapters, this book addresses fundamental, theoretical, implementation and experimentation issues. The chapters are organized into four parts namely multi-robots systems, data fusion and localization, security and dependability, and mobility.

  11. Robotic Hand Controlling Based on Flexible Sensor

    OpenAIRE

    Bilgin, Süleyman; Üser, Yavuz; Mercan, Muhammet

    2016-01-01

    Today's technology has increased the interest in robotic systems andincrease the number of studies realized in this area.  There are many studies on robotic systems inseveral fields to facilitate human life in the literature. In this study, arobot hand is designed to repeat finger movements depending upon flexiblesensors mounted on any wearable glove. In the literature, various sensors thatdetect the finger movement are used. The sensor that detects the angle of thefingers has b...

  12. Piezoresistive pressure sensor array for robotic skin

    Science.gov (United States)

    Mirza, Fahad; Sahasrabuddhe, Ritvij R.; Baptist, Joshua R.; Wijesundara, Muthu B. J.; Lee, Woo H.; Popa, Dan O.

    2016-05-01

    Robots are starting to transition from the confines of the manufacturing floor to homes, schools, hospitals, and highly dynamic environments. As, a result, it is impossible to foresee all the probable operational situations of robots, and preprogram the robot behavior in those situations. Among human-robot interaction technologies, haptic communication is an intuitive physical interaction method that can help define operational behaviors for robots cooperating with humans. Multimodal robotic skin with distributed sensors can help robots increase perception capabilities of their surrounding environments. Electro-Hydro-Dynamic (EHD) printing is a flexible multi-modal sensor fabrication method because of its direct printing capability of a wide range of materials onto substrates with non-uniform topographies. In past work we designed interdigitated comb electrodes as a sensing element and printed piezoresistive strain sensors using customized EHD printable PEDOT:PSS based inks. We formulated a PEDOT:PSS derivative ink, by mixing PEDOT:PSS and DMSO. Bending induced characterization tests of prototyped sensors showed high sensitivity and sufficient stability. In this paper, we describe SkinCells, robot skin sensor arrays integrated with electronic modules. 4x4 EHD-printed arrays of strain sensors was packaged onto Kapton sheets and silicone encapsulant and interconnected to a custom electronic module that consists of a microcontroller, Wheatstone bridge with adjustable digital potentiometer, multiplexer, and serial communication unit. Thus, SkinCell's electronics can be used for signal acquisition, conditioning, and networking between sensor modules. Several SkinCells were loaded with controlled pressure, temperature and humidity testing apparatuses, and testing results are reported in this paper.

  13. Sensor Fusion for Autonomous Mobile Robot Navigation

    DEFF Research Database (Denmark)

    Plascencia, Alfredo

    Multi-sensor data fusion is a broad area of constant research which is applied to a wide variety of fields such as the field of mobile robots. Mobile robots are complex systems where the design and implementation of sensor fusion is a complex task. But research applications are explored constantl....... The scope of the thesis is limited to building a map for a laboratory robot by fusing range readings from a sonar array with landmarks extracted from stereo vision images using the (Scale Invariant Feature Transform) SIFT algorithm....

  14. Molecular robots with sensors and intelligence.

    Science.gov (United States)

    Hagiya, Masami; Konagaya, Akihiko; Kobayashi, Satoshi; Saito, Hirohide; Murata, Satoshi

    2014-06-17

    CONSPECTUS: What we can call a molecular robot is a set of molecular devices such as sensors, logic gates, and actuators integrated into a consistent system. The molecular robot is supposed to react autonomously to its environment by receiving molecular signals and making decisions by molecular computation. Building such a system has long been a dream of scientists; however, despite extensive efforts, systems having all three functions (sensing, computation, and actuation) have not been realized yet. This Account introduces an ongoing research project that focuses on the development of molecular robotics funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan). This 5 year project started in July 2012 and is titled "Development of Molecular Robots Equipped with Sensors and Intelligence". The major issues in the field of molecular robotics all correspond to a feedback (i.e., plan-do-see) cycle of a robotic system. More specifically, these issues are (1) developing molecular sensors capable of handling a wide array of signals, (2) developing amplification methods of signals to drive molecular computing devices, (3) accelerating molecular computing, (4) developing actuators that are controllable by molecular computers, and (5) providing bodies of molecular robots encapsulating the above molecular devices, which implement the conformational changes and locomotion of the robots. In this Account, the latest contributions to the project are reported. There are four research teams in the project that specialize on sensing, intelligence, amoeba-like actuation, and slime-like actuation, respectively. The molecular sensor team is focusing on the development of molecular sensors that can handle a variety of signals. This team is also investigating methods to amplify signals from the molecular sensors. The molecular intelligence team is developing molecular computers and is currently focusing on a new photochemical technology for accelerating DNA

  15. Path Planning and Navigation for Mobile Robots in a Hybrid Sensor Network without Prior Location Information

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2013-03-01

    Full Text Available In a hybrid wireless sensor network with mobile and static nodes, which have no prior geographical knowledge, successful navigation for mobile robots is one of the main challenges. In this paper, we propose two novel navigation algorithms for outdoor environments, which permit robots to travel from one static node to another along a planned path in the sensor field, namely the RAC and the IMAP algorithms. Using this, the robot can navigate without the help of a map, GPS or extra sensor modules, only using the received signal strength indication (RSSI and odometry. Therefore, our algorithms have the advantage of being cost-effective. In addition, a path planning algorithm to schedule mobile robots' travelling paths is presented, which focuses on shorter distances and robust paths for robots by considering the RSSI-Distance characteristics. The simulations and experiments conducted with an autonomous mobile robot show the effectiveness of the proposed algorithms in an outdoor environment.

  16. Biomimetic actuator and sensor for robot hand

    International Nuclear Information System (INIS)

    Kim, Baekchul; Chung, Jinah; Cho, Hanjoung; Shin, Seunghoon; Lee, Hyoungsuk; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Jachoon

    2012-01-01

    To manufacture a robot hand that essentially mimics the functions of a human hand, it is necessary to develop flexible actuators and sensors. In this study, we propose the design, manufacture, and performance verification of flexible actuators and sensors based on Electro Active Polymer (EAP). EAP is fabricated as a type of film, and it moves with changes in the voltage because of contraction and expansion in the polymer film. Furthermore, if a force is applied to an EAP film, its thickness and effective area change, and therefore, the capacitance also changes. By using this mechanism, we produce capacitive actuators and sensors. In this study, we propose an EAP based capacitive sensor and evaluate its use as a robot hand sensor

  17. Biomimetic actuator and sensor for robot hand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Baekchul; Chung, Jinah; Cho, Hanjoung; Shin, Seunghoon; Lee, Hyoungsuk; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Jachoon [Sungkyunkwan Univ., Seoul (Korea, Republic of)

    2012-12-15

    To manufacture a robot hand that essentially mimics the functions of a human hand, it is necessary to develop flexible actuators and sensors. In this study, we propose the design, manufacture, and performance verification of flexible actuators and sensors based on Electro Active Polymer (EAP). EAP is fabricated as a type of film, and it moves with changes in the voltage because of contraction and expansion in the polymer film. Furthermore, if a force is applied to an EAP film, its thickness and effective area change, and therefore, the capacitance also changes. By using this mechanism, we produce capacitive actuators and sensors. In this study, we propose an EAP based capacitive sensor and evaluate its use as a robot hand sensor.

  18. Humanoid Walking Robot: Modeling, Inverse Dynamics, and Gain Scheduling Control

    Directory of Open Access Journals (Sweden)

    Elvedin Kljuno

    2010-01-01

    Full Text Available This article presents reference-model-based control design for a 10 degree-of-freedom bipedal walking robot, using nonlinear gain scheduling. The main goal is to show concentrated mass models can be used for prediction of the required joint torques for a bipedal walking robot. Relatively complicated architecture, high DOF, and balancing requirements make the control task of these robots difficult. Although linear control techniques can be used to control bipedal robots, nonlinear control is necessary for better performance. The emphasis of this work is to show that the reference model can be a bipedal walking model with concentrated mass at the center of gravity, which removes the problems related to design of a pseudo-inverse system. Another significance of this approach is the reduced calculation requirements due to the simplified procedure of nominal joint torques calculation. Kinematic and dynamic analysis is discussed including results for joint torques and ground force necessary to implement a prescribed walking motion. This analysis is accompanied by a comparison with experimental data. An inverse plant and a tracking error linearization-based controller design approach is described. We propose a novel combination of a nonlinear gain scheduling with a concentrated mass model for the MIMO bipedal robot system.

  19. Sensor Transmission Power Schedule for Smart Grids

    Science.gov (United States)

    Gao, C.; Huang, Y. H.; Li, J.; Liu, X. D.

    2017-11-01

    Smart grid has attracted much attention by the requirement of new generation renewable energy. Nowadays, the real-time state estimation, with the help of phasor measurement unit, plays an important role to keep smart grid stable and efficient. However, the limitation of the communication channel is not considered by related work. Considering the familiar limited on-board batteries wireless sensor in smart grid, transmission power schedule is designed in this paper, which minimizes energy consumption with proper EKF filtering performance requirement constrain. Based on the event-triggered estimation theory, the filtering algorithm is also provided to utilize the information contained in the power schedule. Finally, its feasibility and performance is demonstrated using the standard IEEE 39-bus system with phasor measurement units (PMUs).

  20. Sensor fusion for mobile robot navigation

    International Nuclear Information System (INIS)

    Kam, M.; Zhu, X.; Kalata, P.

    1997-01-01

    The authors review techniques for sensor fusion in robot navigation, emphasizing algorithms for self-location. These find use when the sensor suite of a mobile robot comprises several different sensors, some complementary and some redundant. Integrating the sensor readings, the robot seeks to accomplish tasks such as constructing a map of its environment, locating itself in that map, and recognizing objects that should be avoided or sought. The review describes integration techniques in two categories: low-level fusion is used for direct integration of sensory data, resulting in parameter and state estimates; high-level fusion is used for indirect integration of sensory data in hierarchical architectures, through command arbitration and integration of control signals suggested by different modules. The review provides an arsenal of tools for addressing this (rather ill-posed) problem in machine intelligence, including Kalman filtering, rule-based techniques, behavior based algorithms and approaches that borrow from information theory, Dempster-Shafer reasoning, fuzzy logic and neural networks. It points to several further-research needs, including: robustness of decision rules; simultaneous consideration of self-location, motion planning, motion control and vehicle dynamics; the effect of sensor placement and attention focusing on sensor fusion; and adaptation of techniques from biological sensor fusion

  1. Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    Science.gov (United States)

    Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M.; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T.J.

    2010-01-01

    In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted. PMID:22294927

  2. Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    Directory of Open Access Journals (Sweden)

    Aníbal Ollero

    2010-03-01

    Full Text Available In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites, a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted.

  3. Sleep scheduling with expected common coverage in wireless sensor networks

    OpenAIRE

    Bulut, Eyuphan; Korpeoglu, Ibrahim

    2011-01-01

    Sleep scheduling, which is putting some sensor nodes into sleep mode without harming network functionality, is a common method to reduce energy consumption in dense wireless sensor networks. This paper proposes a distributed and energy efficient sleep scheduling and routing scheme that can be used to extend the lifetime of a sensor network while maintaining a user defined coverage and connectivity. The scheme can activate and deactivate the three basic units of a sensor node (sensing, proces...

  4. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    Science.gov (United States)

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  5. Grasp force sensor for robotic hands

    Science.gov (United States)

    Scheinman, Victor D. (Inventor); Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)

    1989-01-01

    A grasp force sensor for robotic hands is disclosed. A flexible block is located in the base of each claw through which the grasp force is exerted. The block yields minute parallelogram deflection when the claws are subjected to grasping forces. A parallelogram deflection closely resembles pure translational deflection, whereby the claws remain in substantial alignment with each other during grasping. Strain gauge transducers supply signals which provide precise knowledge of and control over grasp forces.

  6. Fibre optic sensor on robot end effector for flexible assembly

    International Nuclear Information System (INIS)

    Yung, K.L.; Lau, W.S.; Choi, C.K.; Shan, Y.Y.

    1995-01-01

    A fibre optic sensor system was constructed for use on robot end effectors for flexible assembly. The sensor detected the deviations between robot end effector and the workpiece. The signal was fed back to robot controller to shift the end effector until the centre of end effector and the centre of workpiece were aligned at the correct orientation. Then workpiece can be grasped symmetrically. Sensor fusion concept was used to guard against sensor system failure. Fuzzy linguistic variable and control rule concept were introduced in the sensor integration. The experimental setup for the sensor integrated system was shown. The accuracy was also discussed

  7. Artificial Immune Algorithm for Subtask Industrial Robot Scheduling in Cloud Manufacturing

    Science.gov (United States)

    Suma, T.; Murugesan, R.

    2018-04-01

    The current generation of manufacturing industry requires an intelligent scheduling model to achieve an effective utilization of distributed manufacturing resources, which motivated us to work on an Artificial Immune Algorithm for subtask robot scheduling in cloud manufacturing. This scheduling model enables a collaborative work between the industrial robots in different manufacturing centers. This paper discussed two optimizing objectives which includes minimizing the cost and load balance of industrial robots through scheduling. To solve these scheduling problems, we used the algorithm based on Artificial Immune system. The parameters are simulated with MATLAB and the results compared with the existing algorithms. The result shows better performance than existing.

  8. A Review on Sensor Network Issues and Robotics

    Directory of Open Access Journals (Sweden)

    Ji Hyoung Ryu

    2015-01-01

    Full Text Available The interaction of distributed robotics and wireless sensor networks has led to the creation of mobile sensor networks. There has been an increasing interest in building mobile sensor networks and they are the favored class of WSNs in which mobility plays a key role in the execution of an application. More and more researches focus on development of mobile wireless sensor networks (MWSNs due to its favorable advantages and applications. In WSNs robotics can play a crucial role, and integrating static nodes with mobile robots enhances the capabilities of both types of devices and enables new applications. In this paper we present an overview on mobile sensor networks in robotics and vice versa and robotic sensor network applications.

  9. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.

    Science.gov (United States)

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Portillo, Eva; Jung, Je Hyung

    2018-03-05

    In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP) rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error). Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.

  10. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics

    Directory of Open Access Journals (Sweden)

    Aitziber Mancisidor

    2018-03-01

    Full Text Available In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error. Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.

  11. Multi-objective Mobile Robot Scheduling Problem with Dynamic Time Windows

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Steger-Jensen, Kenn

    2012-01-01

    This paper deals with the problem of scheduling feeding tasks of a single mobile robot which has capability of supplying parts to feeders on pro-duction lines. The performance criterion is to minimize the total traveling time of the robot and the total tardiness of the feeding tasks being scheduled...

  12. A tabu search algorithm for scheduling a single robot in a job-shop environment

    NARCIS (Netherlands)

    Hurink, Johann L.; Knust, S.

    1999-01-01

    We consider a single-machine scheduling problem which arises as a subproblem in a job-shop environment where the jobs have to be transported between the machines by a single transport robot. The robot scheduling problem may be regarded as a generalization of the travelling-salesman problem with time

  13. A tabu search algorithm for scheduling a single robot in a job-shop environment

    NARCIS (Netherlands)

    Hurink, Johann L.; Knust, Sigrid

    2002-01-01

    We consider a single-machine scheduling problem which arises as a subproblem in a job-shop environment where the jobs have to be transported between the machines by a single transport robot. The robot scheduling problem may be regarded as a generalization of the travelling-salesman problem with time

  14. Developing sensor-driven robots for hazardous environments

    International Nuclear Information System (INIS)

    Trivedi, M.M.; Gonzalez, R.C.; Abidi, M.A.

    1987-01-01

    Advancements in robotic technology are sought to provide enhanced personnel safety and reduced costs of operation associated with nuclear power plant manufacture, construction, maintenance, operation, and decommissioning. The authors describe main characteristics of advanced robotic systems for such applications and suggest utilization of sensor-driven robots. Research efforts described in the paper are directed towards developing robotic systems for automatic inspection and manipulation of various tasks associated with a test panel mounted with a variety of switches, controls, displays, meters, and valves

  15. Multi-sensor measurement system for robotic drilling

    OpenAIRE

    Frommknecht, Andreas; Kühnle, Jens; Pidan, Sergej; Effenberger, Ira

    2015-01-01

    A multi-sensor measurement system for robotic drilling is presented. The system enables a robot to measure its 6D pose with respect to the work piece and to establish a reference coordinate system for drilling. The robot approaches the drill point and performs an orthogonal alignment with the work piece. Although the measurement systems are readily capable of achieving high position accuracy and low deviation to perpendicularity, experiments show that inaccuracies in the robot's 6D-pose and e...

  16. Task path planning, scheduling and learning for free-ranging robot systems

    Science.gov (United States)

    Wakefield, G. Steve

    1987-01-01

    The development of robotics applications for space operations is often restricted by the limited movement available to guided robots. Free ranging robots can offer greater flexibility than physically guided robots in these applications. Presented here is an object oriented approach to path planning and task scheduling for free-ranging robots that allows the dynamic determination of paths based on the current environment. The system also provides task learning for repetitive jobs. This approach provides a basis for the design of free-ranging robot systems which are adaptable to various environments and tasks.

  17. Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems

    CERN Document Server

    Patan, Maciej

    2012-01-01

    Sensor networks have recently come into prominence because they hold the potential to revolutionize a wide spectrum of both civilian and military applications. An ingenious characteristic of sensor networks is the distributed nature of data acquisition. Therefore they seem to be ideally prepared for the task of monitoring processes with spatio-temporal dynamics which constitute one of most general and important classes of systems in modelling of the real-world phenomena. It is clear that careful deployment and activation of sensor nodes are critical for collecting the most valuable information from the observed environment. Optimal Sensor Network Scheduling in Identification of Distributed Parameter Systems discusses the characteristic features of the sensor scheduling problem, analyzes classical and recent approaches, and proposes a wide range of original solutions, especially dedicated for networks with mobile and scanning nodes. Both researchers and practitioners will find the case studies, the proposed al...

  18. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Science.gov (United States)

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-01-01

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766

  19. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Directory of Open Access Journals (Sweden)

    Marwah Almasri

    2015-12-01

    Full Text Available Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes.

  20. Sensor based real-time control of robots

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm

    in the sensor to actuation delays in the robot. To that end a method for measuring the actuation and response delay of an industrial robot manipulator, relative to the joint configuration of the robot, is presented. It is also shown how modern machine learning algorithms can be trained to build model based......As robots are becoming more and more widespread in manufacturing, the desire and need for more advanced robotic solutions are increasingly expressed. This is especially the case in Denmark where products with natural variances like agricultural products takes up a large share of the produced goods....... For such production lines, it is often not possible to use primitive preprogrammed industrial robots to handle the otherwise repetitive tasks due to the uniqueness of each product. To handle such products it is necessary to use sensors to determine the size, shape, and position of the product before a proper...

  1. DEVELOPMENT OF GENETIC ALGORITHM-BASED METHODOLOGY FOR SCHEDULING OF MOBILE ROBOTS

    DEFF Research Database (Denmark)

    Dang, Vinh Quang

    problem is to minimize the total traveling time of the single mobile robot and thereby increase its availability. For the second scheduling problem, a fleet of mobile robots is considered together with a set of machines to carry out different types of tasks, e.g. pre-assembly or quality inspection. Some...... problem and finding optimal solutions for each one. However, the formulated mathematical models could only be applicable to small-scale problems in practice due to the significant increase of computation time as the problem size grows. Note that making schedules of mobile robots is part of real-time....... For the first scheduling problem, a single mobile robot is considered to collect and transport container of parts and empty them into machine feeders where needed. A limit on carrying capacity of the single mobile robot and hard time windows of part-feeding tasks are considered. The objective of the first...

  2. Intelligent lead: a novel HRI sensor for guide robots.

    Science.gov (United States)

    Cho, Keum-Bae; Lee, Beom-Hee

    2012-01-01

    This paper addresses the introduction of a new Human Robot Interaction (HRI) sensor for guide robots. Guide robots for geriatric patients or the visually impaired should follow user's control command, keeping a certain desired distance allowing the user to work freely. Therefore, it is necessary to acquire control commands and a user's position on a real-time basis. We suggest a new sensor fusion system to achieve this objective and we will call this sensor the "intelligent lead". The objective of the intelligent lead is to acquire a stable distance from the user to the robot, speed-control volume and turn-control volume, even when the robot platform with the intelligent lead is shaken on uneven ground. In this paper we explain a precise Extended Kalman Filter (EKF) procedure for this. The intelligent lead physically consists of a Kinect sensor, the serial linkage attached with eight rotary encoders, and an IMU (Inertial Measurement Unit) and their measurements are fused by the EKF. A mobile robot was designed to test the performance of the proposed sensor system. After installing the intelligent lead in the mobile robot, several tests are conducted to verify that the mobile robot with the intelligent lead is capable of achieving its goal points while maintaining the appropriate distance between the robot and the user. The results show that we can use the intelligent lead proposed in this paper as a new HRI sensor joined a joystick and a distance measure in the mobile environments such as the robot and the user are moving at the same time.

  3. Sensor Fusion and Model Verification for a Mobile Robot

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Vinther, Dennis; Østergaard, Kasper Zinck

    2005-01-01

    This paper presents the results of modeling, sensor fusion and model verification for a four-wheel driven, four-wheel steered mobile robot moving in outdoor terrain. The model derived for the robot describes the actuator and wheel dynamics and the vehicle kinematics, and includes friction terms...

  4. GCF: Green Conflict Free TDMA Scheduling for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Pawar, Pranav M.; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2012-01-01

    The last few years have seen the promising growth in the application of wireless sensor networks (WSNs). The contribution of this paper is on a cluster-based time division multiple access (TDMA) scheduling algorithm to improve the performance of WSN applications in terms of energy efficiency, delay...

  5. An Orientation Sensor for Mobile Robots Using Differentials

    Directory of Open Access Journals (Sweden)

    Wei-Chen Lee

    2013-02-01

    Full Text Available Without access to external guidance, such as landmarks or beacons, indoor mobile robots usually orientate themselves by using magnetic compasses or gyroscopes. However, compasses face interference from steel furniture, and gyroscopes suffer from zero drift errors. This paper proposes an orientation sensor that can be used on differentially driven mobile robots to resolve these issues. The sensor innovatively combines the general differentials and an optical encoder so that it can provide only the orientation information. Such a sensor has not been described in any known literature and is cost-efficient compared to the common method of using two encoders for differentially driven mobile robots. The kinematic analysis and the mechanical design of this sensor are presented in this paper. The maximum mean error of the proposed orientation sensor was about 0.7° during the component tests. The application of the sensor on a vacuum cleaning robot was also demonstrated. The use of the proposed sensor may provide less uncertain orientation data for an indoor differentially driven mobile robot.

  6. International Conference on Wearable Sensors and Robots 2015

    CERN Document Server

    Virk, G; Yang, Huayong

    2017-01-01

    These proceedings present the latest information on regulations and standards for medical and non-medical devices, including wearable robots for gait training and support, design of exoskeletons for the elderly, innovations in assistive robotics, and analysis of human–machine interactions taking into account ergonomic considerations. The rapid development of key mechatronics technologies in recent years has shown that human living standards have significantly improved, and the International Conference on Wearable Sensor and Robot was held in Hangzhou, China from October 16 to 18, 2015, to present research mainly focused on personal-care robots and medical devices. The aim of the conference was to bring together academics, researchers, engineers and students from across the world to discuss state-of-the-art technologies related to various aspects of wearable sensors and robots. .

  7. Autonomous Deployment and Restoration of Sensor Network using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Suzuki

    2010-09-01

    Full Text Available This paper describes an autonomous deployment and restoration of a Wireless Sensor Network (WSN using mobile robots. The authors have been developing an information-gathering system using mobile robots and WSNs in underground spaces in post-disaster environments. In our system, mobile robots carry wireless sensor nodes (SN and deploy them into the environment while measuring Received Signal Strength Indication (RSSI values to ensure communication, thereby enabling the WSN to be deployed and restored autonomously. If the WSN is disrupted, mobile robots restore the communication route by deploying additional or alternate SNs to suitable positions. Utilizing the proposed method, a mobile robot can deploy a WSN and gather environmental information via the WSN. Experimental results using a verification system equipped with a SN deployment and retrieval mechanism are presented.

  8. Autonomous Deployment and Restoration of Sensor Network using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Suzuki

    2010-06-01

    Full Text Available This paper describes an autonomous deployment and restoration of a Wireless Sensor Network (WSN using mobile robots. The authors have been developing an information-gathering system using mobile robots and WSNs in underground spaces in post-disaster environments. In our system, mobile robots carry wireless sensor nodes (SN and deploy them into the environment while measuring Received Signal Strength Indication (RSSI values to ensure communication, thereby enabling the WSN to be deployed and restored autonomously. If the WSN is disrupted, mobile robots restore the communication route by deploying additional or alternate SNs to suitable positions. Utilizing the proposed method, a mobile robot can deploy a WSN and gather environmental information via the WSN. Experimental results using a verification system equipped with a SN deployment and retrieval mechanism are presented.

  9. A Distributed Tactile Sensor for Intuitive Human-Robot Interfacing

    Directory of Open Access Journals (Sweden)

    Andrea Cirillo

    2017-01-01

    Full Text Available Safety of human-robot physical interaction is enabled not only by suitable robot control strategies but also by suitable sensing technologies. For example, if distributed tactile sensors were available on the robot, they could be used not only to detect unintentional collisions, but also as human-machine interface by enabling a new mode of social interaction with the machine. Starting from their previous works, the authors developed a conformable distributed tactile sensor that can be easily conformed to the different parts of the robot body. Its ability to estimate contact force components and to provide a tactile map with an accurate spatial resolution enables the robot to handle both unintentional collisions in safe human-robot collaboration tasks and intentional touches where the sensor is used as human-machine interface. In this paper, the authors present the characterization of the proposed tactile sensor and they show how it can be also exploited to recognize haptic tactile gestures, by tailoring recognition algorithms, well known in the image processing field, to the case of tactile images. In particular, a set of haptic gestures has been defined to test three recognition algorithms on a group of 20 users. The paper demonstrates how the same sensor originally designed to manage unintentional collisions can be successfully used also as human-machine interface.

  10. Mixed Criticality Scheduling for Industrial Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xi Jin

    2016-08-01

    Full Text Available Wireless sensor networks (WSNs have been widely used in industrial systems. Their real-time performance and reliability are fundamental to industrial production. Many works have studied the two aspects, but only focus on single criticality WSNs. Mixed criticality requirements exist in many advanced applications in which different data flows have different levels of importance (or criticality. In this paper, first, we propose a scheduling algorithm, which guarantees the real-time performance and reliability requirements of data flows with different levels of criticality. The algorithm supports centralized optimization and adaptive adjustment. It is able to improve both the scheduling performance and flexibility. Then, we provide the schedulability test through rigorous theoretical analysis. We conduct extensive simulations, and the results demonstrate that the proposed scheduling algorithm and analysis significantly outperform existing ones.

  11. Autonomous biomorphic robots as platforms for sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tilden, M.; Hasslacher, B.; Mainieri, R.; Moses, J.

    1996-10-01

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology.

  12. Autonomous biomorphic robots as platforms for sensors

    International Nuclear Information System (INIS)

    Tilden, M.; Hasslacher, B.; Mainieri, R.; Moses, J.

    1996-01-01

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology

  13. Constraint optimization model of a scheduling problem for a robotic arm in automatic systems

    DEFF Research Database (Denmark)

    Kristiansen, Ewa; Smith, Stephen F.; Kristiansen, Morten

    2014-01-01

    are characteristics of the painting process application itself. Unlike spot-welding, painting tasks require movement of the entire robot arm. In addition to minimizing intertask duration, the scheduler must strive to maximize painting quality and the problem is formulated as a multi-objective optimization problem....... The scheduling model is implemented as a stand-alone module using constraint programming, and integrated with a larger automatic system. The results of a number of simulation experiments with simple parts are reported, both to characterize the functionality of the scheduler and to illustrate the operation...... of the entire software system for automatic generation of robot programs for painting....

  14. A Genetic Algorithm-based Heuristic for Part-Feeding Mobile Robot Scheduling Problem

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Bocewicz, Grzegorz

    2012-01-01

    This present study deals with the problem of sequencing feeding tasks of a single mobile robot with manipulation arm which is able to provide parts or components for feeders of machines in a manufacturing cell. The mobile robot has to be scheduled in order to keep machines within the cell producing...... products without any shortage of parts. A method based on the characteristics of feeders and inspired by the (s, Q) inventory system, is thus applied to define time windows for feeding tasks of the robot. The performance criterion is to minimize total traveling time of the robot in a given planning horizon...

  15. A Positional Deviation Sensor for Training of Robots

    Directory of Open Access Journals (Sweden)

    Fredrik Dessen

    1988-04-01

    Full Text Available A device for physically guiding a robot manipulator through its task is described. It consists of inductive, contact-free positional deviation sensors. The sensor will be used in high performance sensory control systems. The paper describes problems concerning multi-dimensional, non-linear measurement functions and the design of the servo control system.

  16. Development of flexible tactile sensors for hexapod robots

    DEFF Research Database (Denmark)

    Drimus, Alin; Børlum-Petersen, Mikkel; Jouffroy, Jerome

    2013-01-01

    This paper describes the development of flexible based tactile array sensors based on piezoresistive rubber for use in the leg tips of hexapod robotics. The sensors are composed of a sandwich similar structure, with a piezoresistive rubber used as the middle layer and flexPCB electrodes...

  17. Application of ultrasonic sensor for measuring distances in robotics

    Science.gov (United States)

    Zhmud, V. A.; Kondratiev, N. O.; Kuznetsov, K. A.; Trubin, V. G.; Dimitrov, L. V.

    2018-05-01

    Ultrasonic sensors allow us to equip robots with a means of perceiving surrounding objects, an alternative to technical vision. Humanoid robots, like robots of other types, are, first, equipped with sensory systems similar to the senses of a human. However, this approach is not enough. All possible types and kinds of sensors should be used, including those that are similar to those of other animals and creations (in particular, echolocation in dolphins and bats), as well as sensors that have no analogues in the wild. This paper discusses the main issues that arise when working with the HC-SR04 ultrasound rangefinder based on the STM32VLDISCOVERY evaluation board. The characteristics of similar modules for comparison are given. A subroutine for working with the sensor is given.

  18. Speed Daemon: Experience-Based Mobile Robot Speed Scheduling

    Science.gov (United States)

    2014-10-01

    a wheeled mobile robot. Robotica , 20(2): 181–193, 2002. [7] O. Purwin and R. D‘Andrea. Trajectory generation and control for four wheeled...robot on an uneven surface. Robotica , 27(4):481–498, 2009. [9] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale

  19. Control of multiple robots using vision sensors

    CERN Document Server

    Aranda, Miguel; Sagüés, Carlos

    2017-01-01

    This monograph introduces novel methods for the control and navigation of mobile robots using multiple-1-d-view models obtained from omni-directional cameras. This approach overcomes field-of-view and robustness limitations, simultaneously enhancing accuracy and simplifying application on real platforms. The authors also address coordinated motion tasks for multiple robots, exploring different system architectures, particularly the use of multiple aerial cameras in driving robot formations on the ground. Again, this has benefits of simplicity, scalability and flexibility. Coverage includes details of: a method for visual robot homing based on a memory of omni-directional images a novel vision-based pose stabilization methodology for non-holonomic ground robots based on sinusoidal-varying control inputs an algorithm to recover a generic motion between two 1-d views and which does not require a third view a novel multi-robot setup where multiple camera-carrying unmanned aerial vehicles are used to observe and c...

  20. Scheduling a Single Mobile Robot Incorporated into Production Environment

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Steger-Jensen, Kenn

    2013-01-01

    to the challenges of issues such as energy conservation and pollution preventions. Facing the central tension between manufacturing and environmental drivers is difficult, but critical to develop new technologies, particularly mobile robots, that can be incorporated into production to achieve holistic solutions....... This chapter deals with the problem of finding optimal operating sequence in a manufacturing cell of a mobile robot with manipulation arm that feeds materials to feeders. The “Bartender Concept” is discussed to show the cooperation between the mobile robot and industrial environment. The performance criterion...

  1. CHIMERA II - A real-time multiprocessing environment for sensor-based robot control

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1989-01-01

    A multiprocessing environment for a wide variety of sensor-based robot system, providing the flexibility, performance, and UNIX-compatible interface needed for fast development of real-time code is addressed. The requirements imposed on the design of a programming environment for sensor-based robotic control is outlined. The details of the current hardware configuration are presented, along with the details of the CHIMERA II software. Emphasis is placed on the kernel, low-level interboard communication, user interface, extended file system, user-definable and dynamically selectable real-time schedulers, remote process synchronization, and generalized interprocess communication. A possible implementation of a hierarchical control model, the NASA/NBS standard reference model for telerobot control system is demonstrated.

  2. Obstacle-avoiding robot with IR and PIR motion sensors

    Science.gov (United States)

    Ismail, R.; Omar, Z.; Suaibun, S.

    2016-10-01

    Obstacle avoiding robot was designed, constructed and programmed which may be potentially used for educational and research purposes. The developed robot will move in a particular direction once the infrared (IR) and the PIR passive infrared (PIR) sensors sense a signal while avoiding the obstacles in its path. The robot can also perform desired tasks in unstructured environments without continuous human guidance. The hardware was integrated in one application board as embedded system design. The software was developed using C++ and compiled by Arduino IDE 1.6.5. The main objective of this project is to provide simple guidelines to the polytechnic students and beginners who are interested in this type of research. It is hoped that this robot could benefit students who wish to carry out research on IR and PIR sensors.

  3. Integrated sensors for robotic laser welding

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Beyer, E.; Dausinger, F; Ostendorf, A; Otto, A.

    2005-01-01

    A welding head is under development with integrated sensory systems for robotic laser welding applications. Robotic laser welding requires sensory systems that are capable to accurately guide the welding head over a seam in three-dimensional space and provide information about the welding process as

  4. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  5. Multi-Sensor SLAM Approach for Robot Navigation

    Directory of Open Access Journals (Sweden)

    Sid Ahmed BERRABAH

    2010-12-01

    Full Text Available o be able to operate and act successfully, the robot needs to know at any time where it is. This means the robot has to find out its location relative to the environment. This contribution introduces the increase of accuracy of mobile robot positioning in large outdoor environments based on data fusion from different sensors: camera, GPS, inertial navigation system (INS, and wheel encoders. The fusion is done in a Simultaneous Localization and Mapping (SLAM approach. The paper gives an overview on the proposed algorithm and discusses the obtained results.

  6. Robotic and Sensor Technologies for Mobility in Older People.

    Science.gov (United States)

    Penteridis, Lazaros; D'Onofrio, Grazia; Sancarlo, Daniele; Giuliani, Francesco; Ricciardi, Francesco; Cavallo, Filippo; Greco, Antonio; Trochidis, Ilias; Gkiokas, Alexander

    2017-10-01

    Maintaining independent mobility is fundamental to independent living and to the quality of life of older people. Robotic and sensor technologies may offer a lot of potential and can make a significant difference in the lives of older people and to their primary caregivers. The aim of this study was to provide a presentation of the methods that are used up till now for analysis and evaluation of human mobility utilizing sensor technologies and to give the state of the art in robotic platforms for supporting older people with mobility limitations. The literature was reviewed and systematic reviews of cohort studies and other authoritative reports were identified. The selection criteria included (1) patients with age ≥60 years; (2) patients with unstable gait, with or without recurrent falls; (3) patients with slow movements, short strides, and little trunk movement; (4) sensor technologies that are currently used for mobility evaluation; and (5) robotic technologies that can serve as a supporting companion for older people with mobility limitations. One hundred eighty-one studies published up until February 2017 were identified, of which 36 were included. Two categories of research were identified from the review regarding the robot and sensor technologies: (1) sensor technologies for mobility analysis and (2) robots for supporting older people with mobility limitations. Potential for robotic and sensor technologies can be taken advantage of for evaluation and support at home for elder persons with mobility limitations in an automated way without the need of the physical presence of any medical personnel, reducing the stress of caregivers.

  7. A Fully Sensorized Cooperative Robotic System for Surgical Interventions

    Science.gov (United States)

    Tovar-Arriaga, Saúl; Vargas, José Emilio; Ramos, Juan M.; Aceves, Marco A.; Gorrostieta, Efren; Kalender, Willi A.

    2012-01-01

    In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements. PMID:23012551

  8. A remote assessment system with a vision robot and wearable sensors.

    Science.gov (United States)

    Zhang, Tong; Wang, Jue; Ren, Yumiao; Li, Jianjun

    2004-01-01

    This paper describes an ongoing researched remote rehabilitation assessment system that has a 6-freedom double-eyes vision robot to catch vision information, and a group of wearable sensors to acquire biomechanical signals. A server computer is fixed on the robot, to provide services to the robot's controller and all the sensors. The robot is connected to Internet by wireless channel, and so do the sensors to the robot. Rehabilitation professionals can semi-automatically practise an assessment program via Internet. The preliminary results show that the smart device, including the robot and the sensors, can improve the quality of remote assessment, and reduce the complexity of operation at a distance.

  9. Bio-inspired smart sensors for a hexapod robot

    DEFF Research Database (Denmark)

    Bilberg, Arne

    2011-01-01

    EMICAB (Embodied Motion Intelligence for Cognitive, Autonomous Robots) is an EU founded project where a consortium of 4 Universities is working together to integrate smart body mechanics and sensors with intelligent planning and motor behavior in order to make a holistic approach to artificial...

  10. Scheduled Collision Avoidance in wireless sensor network using Zigbee

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2014-01-01

    Transmission reliability and energy consumptions are two critical concerns associated with wireless sensor network (WSN) design for a long time and continuous operation. With the increase in reliability of the transmission, the energy consumption increases by affecting the efficiency of the network....... This paper proposes the Schedule based Collision Avoidance (SCA) algorithm for finding the tradeoff between reliability and energy efficiency by fusion of CSMA/CA and TDMA techniques in Zigbee/ IEEE802.15.4. It uses the multi-path data propagation for collision avoidance and effective utilization...... of the channel providing efficient energy consumption. It analyses different scheduling schemes to provide an appropriate solution for reducing collisions and improving network lifetime....

  11. Tactile Robotic Topographical Mapping Without Force or Contact Sensors

    Science.gov (United States)

    Burke, Kevin; Melko, Joseph; Krajewski, Joel; Cady, Ian

    2008-01-01

    A method of topographical mapping of a local solid surface within the range of motion of a robot arm is based on detection of contact between the surface and the end effector (the fixture or tool at the tip of the robot arm). The method was conceived to enable mapping of local terrain by an exploratory robot on a remote planet, without need to incorporate delicate contact switches, force sensors, a vision system, or other additional, costly hardware. The method could also be used on Earth for determining the size and shape of an unknown surface in the vicinity of a robot, perhaps in an unanticipated situation in which other means of mapping (e.g., stereoscopic imaging or laser scanning with triangulation) are not available. The method uses control software modified to utilize the inherent capability of the robotic control system to measure the joint positions, the rates of change of the joint positions, and the electrical current demanded by the robotic arm joint actuators. The system utilizes these coordinate data and the known robot-arm kinematics to compute the position and velocity of the end effector, move the end effector along a specified trajectory, place the end effector at a specified location, and measure the electrical currents in the joint actuators. Since the joint actuator current is approximately proportional to the actuator forces and torques, a sudden rise in joint current, combined with a slowing of the joint, is a possible indication of actuator stall and surface contact. Hence, even though the robotic arm is not equipped with contact sensors, it is possible to sense contact (albeit with reduced sensitivity) as the end effector becomes stalled against a surface that one seeks to measure.

  12. ECS: Efficient Communication Scheduling for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Lu Hong

    2011-03-01

    Full Text Available TDMA protocols have attracted a lot of attention for underwater acoustic sensor networks (UWSNs, because of the unique characteristics of acoustic signal propagation such as great energy consumption in transmission, long propagation delay and long communication range. Previous TDMA protocols all allocated transmission time to nodes based on discrete time slots. This paper proposes an efficient continuous time scheduling TDMA protocol (ECS for UWSNs, including the continuous time based and sender oriented conflict analysis model, the transmission moment allocation algorithm and the distributed topology maintenance algorithm. Simulation results confirm that ECS improves network throughput by 20% on average, compared to existing MAC protocols.

  13. Sensor fusion-based map building for mobile robot exploration

    International Nuclear Information System (INIS)

    Ribo, M.

    2000-01-01

    To carry out exploration tasks in unknown or partially unknown environments, a mobile robot needs to acquire and maintain models of its environment. In doing so, several sensors of same nature and/or heterogeneous sensor configurations may be used by the robot to achieve reliable performances. However, this in turn poses the problem of sensor fusion-based map building: How to interpret, combine and integrate sensory information in order to build a proper representation of the environment. Specifically, the goal of this thesis is to probe integration algorithms for Occupancy Grid (OG) based map building using odometry, ultrasonic rangefinders, and stereo vision. Three different uncertainty calculi are presented here which are used for sensor fusion-based map building purposes. They are based on probability theory, Dempster-Shafer theory of evidence, and fuzzy set theory. Besides, two different sensor models are depicted which are used to translate sensing data into range information. Experimental examples of OGs built from real data recorded by two robots in office-like environment are presented. They show the feasibility of the proposed approach for building both sonar and visual based OGs. A comparison among the presented uncertainty calculi is performed in a sonar-based framework. Finally, the fusion of both sonar and visual information based of the fuzzy set theory is depicted. (author)

  14. Tracking Mobile Robot in Indoor Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liping Zhang

    2014-01-01

    Full Text Available This work addresses the problem of tracking mobile robots in indoor wireless sensor networks (WSNs. Our approach is based on a localization scheme with RSSI (received signal strength indication which is used widely in WSN. The developed tracking system is designed for continuous estimation of the robot’s trajectory. A WSN, which is composed of many very simple and cheap wireless sensor nodes, is deployed at a specific region of interest. The wireless sensor nodes collect RSSI information sent by mobile robots. A range-based data fusion scheme is used to estimate the robot’s trajectory. Moreover, a Kalman filter is designed to improve tracking accuracy. Experiments are provided to assess the performance of the proposed scheme.

  15. Soil water sensors for irrigation scheduling:Can they deliver a management allowed depletion?

    Science.gov (United States)

    Soil water sensors are widely marketed in the farming sector as aids for irrigation scheduling. Sensors report either volumetric water content (theta-v, m**3 m**-3) or soil water potential, with theta-v sensors being by far the most common. To obtain yield and quality goals, irrigations are schedule...

  16. Learning probabilistic features for robotic navigation using laser sensors.

    Directory of Open Access Journals (Sweden)

    Fidel Aznar

    Full Text Available SLAM is a popular task used by robots and autonomous vehicles to build a map of an unknown environment and, at the same time, to determine their location within the map. This paper describes a SLAM-based, probabilistic robotic system able to learn the essential features of different parts of its environment. Some previous SLAM implementations had computational complexities ranging from O(Nlog(N to O(N(2, where N is the number of map features. Unlike these methods, our approach reduces the computational complexity to O(N by using a model to fuse the information from the sensors after applying the Bayesian paradigm. Once the training process is completed, the robot identifies and locates those areas that potentially match the sections that have been previously learned. After the training, the robot navigates and extracts a three-dimensional map of the environment using a single laser sensor. Thus, it perceives different sections of its world. In addition, in order to make our system able to be used in a low-cost robot, low-complexity algorithms that can be easily implemented on embedded processors or microcontrollers are used.

  17. Learning probabilistic features for robotic navigation using laser sensors.

    Science.gov (United States)

    Aznar, Fidel; Pujol, Francisco A; Pujol, Mar; Rizo, Ramón; Pujol, María-José

    2014-01-01

    SLAM is a popular task used by robots and autonomous vehicles to build a map of an unknown environment and, at the same time, to determine their location within the map. This paper describes a SLAM-based, probabilistic robotic system able to learn the essential features of different parts of its environment. Some previous SLAM implementations had computational complexities ranging from O(Nlog(N)) to O(N(2)), where N is the number of map features. Unlike these methods, our approach reduces the computational complexity to O(N) by using a model to fuse the information from the sensors after applying the Bayesian paradigm. Once the training process is completed, the robot identifies and locates those areas that potentially match the sections that have been previously learned. After the training, the robot navigates and extracts a three-dimensional map of the environment using a single laser sensor. Thus, it perceives different sections of its world. In addition, in order to make our system able to be used in a low-cost robot, low-complexity algorithms that can be easily implemented on embedded processors or microcontrollers are used.

  18. State Estimation for Robots with Complementary Redundant Sensors

    Directory of Open Access Journals (Sweden)

    Daniele Carnevale

    2015-10-01

    Full Text Available In this paper, robots equipped with two complementary typologies of redundant sensors are considered: one typology provides sharp measures of some geometrical entity related to the robot pose (e.g., distance or angle but is not univocally associated with this quantity; the other typology is univocal but is characterized by a low level of precision. A technique is proposed to properly combine these two kinds of measurement both in a stochastic and in a deterministic context. This framework may occur in robotics, for example, when the distance from a known landmark is detected by two different sensors, one based on the signal strength or time of flight of the signal, while the other one measures the phase-shift of the signal, which has a sharp but periodical dependence on the robot-landmark distance. In the stochastic case, an effective solution is a two-stage extended Kalman filter (EKF which exploits the precise periodic signal only when the estimate of the robot position is sufficiently precise. In the deterministic setting, an approach based on a switching hybrid observer is proposed, and results are analyzed via simulation examples.

  19. Novel Approach to Control of Robotic Hand Using Flex Sensors

    Directory of Open Access Journals (Sweden)

    Sandesh R.S

    2014-05-01

    Full Text Available This paper discuss about novel design approach to control of a robotic hand using flex sensors which indicates a biomechatronic multi fingered robotic hand. This robotic hand consists of base unit, upper arm, lower arm, palm and five fingers. The aim is to develop an anthropomorphic five fingered robotic hand. The proposed design illustrates the use of 5 micro DC motors with 9 Degrees of Freedom (DOF.Each finger is controlled independently. Further three extra motors were used for the control of wrist elbow and base movement. The study of the DC motor is being carried out using the transfer function model for constant excitation. The micro DC motor performance was analyzed using MATLAB simulation environment. The whole system is implemented using flex sensors. The flex sensors placed on the human hand gloves appear as if they look like real human hand.  89v51 microcontroller was used for all the controlling actions along with RF transmitter/receiver .The performance of the system has been conducted experimentally and studied.

  20. Collaborative Distributed Scheduling Approaches for Wireless Sensor Network

    Science.gov (United States)

    Niu, Jianjun; Deng, Zhidong

    2009-01-01

    Energy constraints restrict the lifetime of wireless sensor networks (WSNs) with battery-powered nodes, which poses great challenges for their large scale application. In this paper, we propose a family of collaborative distributed scheduling approaches (CDSAs) based on the Markov process to reduce the energy consumption of a WSN. The family of CDSAs comprises of two approaches: a one-step collaborative distributed approach and a two-step collaborative distributed approach. The approaches enable nodes to learn the behavior information of its environment collaboratively and integrate sleep scheduling with transmission scheduling to reduce the energy consumption. We analyze the adaptability and practicality features of the CDSAs. The simulation results show that the two proposed approaches can effectively reduce nodes' energy consumption. Some other characteristics of the CDSAs like buffer occupation and packet delay are also analyzed in this paper. We evaluate CDSAs extensively on a 15-node WSN testbed. The test results show that the CDSAs conserve the energy effectively and are feasible for real WSNs. PMID:22408491

  1. Collaborative Distributed Scheduling Approaches for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zhidong Deng

    2009-10-01

    Full Text Available Energy constraints restrict the lifetime of wireless sensor networks (WSNs with battery-powered nodes, which poses great challenges for their large scale application. In this paper, we propose a family of collaborative distributed scheduling approaches (CDSAs based on the Markov process to reduce the energy consumption of a WSN. The family of CDSAs comprises of two approaches: a one-step collaborative distributed approach and a two-step collaborative distributed approach. The approaches enable nodes to learn the behavior information of its environment collaboratively and integrate sleep scheduling with transmission scheduling to reduce the energy consumption. We analyze the adaptability and practicality features of the CDSAs. The simulation results show that the two proposed approaches can effectively reduce nodes’ energy consumption. Some other characteristics of the CDSAs like buffer occupation and packet delay are also analyzed in this paper. We evaluate CDSAs extensively on a 15-node WSN testbed. The test results show that the CDSAs conserve the energy effectively and are feasible for real WSNs.

  2. Adaptive Synchronization of Robotic Sensor Networks

    OpenAIRE

    Yıldırım, Kasım Sinan; Gürcan, Önder

    2014-01-01

    The main focus of recent time synchronization research is developing power-efficient synchronization methods that meet pre-defined accuracy requirements. However, an aspect that has been often overlooked is the high dynamics of the network topology due to the mobility of the nodes. Employing existing flooding-based and peer-to-peer synchronization methods, are networked robots still be able to adapt themselves and self-adjust their logical clocks under mobile network dynamics? In this paper, ...

  3. Redundant Sensors for Mobile Robot Navigation

    Science.gov (United States)

    1985-09-01

    represent a probability that the area is empty, while positive numbers mcan it’s probably occupied. Zero reprtsents the unknown. The basic idea is that...room to give it absolute positioning information. This works by using two infrared emitters and detectors on the robot. Measurements of anglcs are made...meters (T in Kelvin) 273 sec Distances returned when assuming 80 degrees Farenheit , but where. actual temperature is 60 degrees, will be seven inches

  4. Sensor-guided parking system for a carlike robot

    Science.gov (United States)

    Jiang, Kaichum; Seneviratne, L. D.

    1998-07-01

    This paper presents an automated parking strategy for a car- like mobile robot. The study considers general parking manoeuvre cases for a rectangular robot, including parallel parking. The robot is constructed simulating a conventional car, which is subject to non-holonomic constraints and thus only has two degrees of freedom. The parking space is considered as rectangular, and detected by ultrasonic sensors mounted on the robot. A motion planning algorithm develops a collision-free path for parking, taking into account the non- holonomic constraints acting on the car-like robot. A research into general car maneuvers has been conducted and useful results have been achieved. The motion planning algorithm uses these results, combined with configuration space method, to produce a collision-free path for parallel parking, depending on the parking space detected. A control program in the form of a graphical user interface has been developed for users to operate the system with ease. The strategy is implemented on a modified B12 mobile robot. The strategy presented has the potential for application in automobiles.

  5. Muecas: A Multi-Sensor Robotic Head for Affective Human Robot Interaction and Imitation

    Directory of Open Access Journals (Sweden)

    Felipe Cid

    2014-04-01

    Full Text Available This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, including eyes, eyebrows, mouth and neck, and has been designed and built entirely by IADeX (Engineering, Automation and Design of Extremadura and RoboLab. A detailed description of its kinematics is provided along with the design of the most complex controllers. Muecas can be directly controlled by FACS (Facial Action Coding System, the de facto standard for facial expression recognition and synthesis. This feature facilitates its use by third party platforms and encourages the development of imitation and of goal-based systems. Imitation systems learn from the user, while goal-based ones use planning techniques to drive the user towards a final desired state. To show the flexibility and reliability of the robotic head, the paper presents a software architecture that is able to detect, recognize, classify and generate facial expressions in real time using FACS. This system has been implemented using the robotics framework, RoboComp, which provides hardware-independent access to the sensors in the head. Finally, the paper presents experimental results showing the real-time functioning of the whole system, including recognition and imitation of human facial expressions.

  6. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.

    Science.gov (United States)

    Grosu, Victor; Grosu, Svetlana; Vanderborght, Bram; Lefeber, Dirk; Rodriguez-Guerrero, Carlos

    2017-06-05

    Human-robot interaction sensing is a compulsory feature in modern robotic systems where direct contact or close collaboration is desired. Rehabilitation and assistive robotics are fields where interaction forces are required for both safety and increased control performance of the device with a more comfortable experience for the user. In order to provide an efficient interaction feedback between the user and rehabilitation device, high performance sensing units are demanded. This work introduces a novel design of a multi-axis force sensor dedicated for measuring pelvis interaction forces in a rehabilitation exoskeleton device. The sensor is conceived such that it has different sensitivity characteristics for the three axes of interest having also movable parts in order to allow free rotations and limit crosstalk errors. Integrated sensor electronics make it easy to acquire and process data for a real-time distributed system architecture. Two of the developed sensors are integrated and tested in a complex gait rehabilitation device for safe and compliant control.

  7. Bio-inspired ciliary force sensor for robotic platforms

    KAUST Repository

    Ribeiro, Pedro

    2017-01-20

    The detection of small forces is of great interest in any robotic application that involves interaction with the environment (e.g., objects manipulation, physical human-robot interaction, minimally invasive surgery), since it allows the robot to detect the contacts early on and to act accordingly. In this letter, we present a sensor design inspired by the ciliary structure frequently found in nature, consisting of an array of permanently magnetized cylinders (cilia) patterned over a giant magnetoresistance sensor (GMR). When these cylinders are deformed in shape due to applied forces, the stray magnetic field variation will change the GMR sensor resistivity, thus enabling the electrical measurement of the applied force. In this letter, we present two 3 mm × 3 mm prototypes composed of an array of five cilia with 1 mm of height and 120 and 200 μm of diameter for each prototype. A minimum force of 333 μN was measured. A simulation model for determining the magnetized cylinders average stray magnetic field is also presented.

  8. Bio-inspired ciliary force sensor for robotic platforms

    KAUST Repository

    Ribeiro, Pedro; Khan, Mohammed Asadullah; Alfadhel, Ahmed; Kosel, Jü rgen; Franco, Fernando; Cardoso, Susana; Bernardino, Alexandre; Schmitz, Alexander; Santos-Victor, Jose; Jamone, Lorenzo

    2017-01-01

    The detection of small forces is of great interest in any robotic application that involves interaction with the environment (e.g., objects manipulation, physical human-robot interaction, minimally invasive surgery), since it allows the robot to detect the contacts early on and to act accordingly. In this letter, we present a sensor design inspired by the ciliary structure frequently found in nature, consisting of an array of permanently magnetized cylinders (cilia) patterned over a giant magnetoresistance sensor (GMR). When these cylinders are deformed in shape due to applied forces, the stray magnetic field variation will change the GMR sensor resistivity, thus enabling the electrical measurement of the applied force. In this letter, we present two 3 mm × 3 mm prototypes composed of an array of five cilia with 1 mm of height and 120 and 200 μm of diameter for each prototype. A minimum force of 333 μN was measured. A simulation model for determining the magnetized cylinders average stray magnetic field is also presented.

  9. Evolutionary approaches for scheduling a flexible manufacturing system with automated guided vehicles and robots

    Directory of Open Access Journals (Sweden)

    Ramaraj Natarajan

    2012-08-01

    Full Text Available This paper addresses the scheduling of machines, an Automated Guided Vehicle (AGV and two robots in a Flexible Manufacturing System (FMS formed in three loop layouts, with objectives to minimize the makespan, mean flow time and mean tardiness. The scheduling optimization is carried out using Sheep Flock Heredity Algorithm (SFHA and Artificial Immune System (AIS algorithm. AGV is used for carrying jobs between the Load/Unload station and the machines. The robots are used for loading and unloading the jobs in the machines, and also used for transferring jobs between the machines. The algorithms are applied for test problems taken from the literature and the results obtained using the two algorithms are compared. The results indicate that SFHA performs better than AIS for this problem.

  10. Modelling and Scheduling Autonomous Mobile Robot for a Real-World Industrial Application

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Bøgh, Simon

    2013-01-01

    proposes an approach composing of: a mobile robot system design (“Little Helper”), an appropriate and comprehensive industrial application (multiple-part feeding tasks), an implementation concept for industrial environments (the bartender concept), and a real-time heuristics integrated into Mission...... from the real-time heuristics. The results also demonstrated that the proposed real-time heuristics has capability of finding the best schedule in online production mode....

  11. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications.

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori

    2017-08-28

    Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.

  12. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications †

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori

    2017-01-01

    Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954

  13. Models and control for force/torque sensors in robotics

    International Nuclear Information System (INIS)

    Johansson, Gert.

    1992-01-01

    One of the important problems in automatic assembly is the relative positioning accuracy between the parts in the assembly process. Inaccurate positions cause large insertion forces, wear and might damage the parts. They can also completely disable the assembly process. A solution to this problem is to detect the positioning error and to make a relevant adjustment of the position or path. This thesis presents a solution based on active feedback of force/torque data from a wrist mounted sensor. A task independent control algorithm has been realized through a sensor model concept. The sensor model includes an algorithm that transforms force/torque input to relevant motion of the end effector. The transformation is specified by a set of parameters e.g. desired forces, compliance and stopping criteria. The problem with gravity forces for varying end effector orientation is compensated by an algorithm, divided into three complexity levels. The compensation method includes a calibration sequence to ensure valid end effector properties to be used in the algorithm. A problem with available robot technology is bad integration possibilities for external sensors. To allow necessary modifications and expansions, an open and general control system architecture is proposed. The architecture is based in a computer workstation and transputers in pipeline for the robot specific operations. (au)

  14. Multi-robot system using low-cost infrared sensors

    Directory of Open Access Journals (Sweden)

    Anubhav Kakkar

    2013-03-01

    Full Text Available This paper presents a proposed set of the novel technique, methods, and algorithm for simultaneous path planning, area exploration, area retrieval, obstacle avoidance, object detection, and object retrieval   autonomously by a multi-robot system. The proposed methods and algorithms are built considering the use of low cost infrared sensors with the ultimate function of efficiently exploring the given unknown area and simultaneously identifying desired objects by analyzing the physical characteristics of several of the objects that come across during exploration. In this paper, we have explained the scenario by building a coordinative multi-robot system consisting of two autonomously operated robots equipped with low-cost and low-range infrared sensors to perform the assigned task by analyzing some of the sudden changes in their environment. Along with identifying and retrieving the desired object, the proposed methodology also provide an inclusive analysis of the area being explored. The novelties presented in the paper may significantly provide a cost-effective solution to the problem of area exploration and finding a known object in an unknown environment by demonstrating an innovative approach of using the infrared sensors instead of high cost long range sensors and cameras. Additionally, the methodology provides a speedy and uncomplicated method of traversing a complicated arena while performing all the necessary and inter-related tasks of avoiding the obstacles, analyzing the area as well as objects, and reconstructing the area using all these information collected and interpreted for an unknown environment. The methods and algorithms proposed are simulated over a complex arena to depict the operations and manually tested over a physical environment which provided 78% correct results with respect to various complex parameters set randomly.

  15. Industrial robots with sensors and object recognition systems

    International Nuclear Information System (INIS)

    Koehler, G.W.

    1978-01-01

    The previous development and the present status of industrial robots equipped with sensors and object recognition systems are described. This type of equipment allows flexible automation of many work stations in which industrial robots of the first generation, which are unable to react to changes in their respective environments automatically, apart from their being linked to other machines, could not be used because of the prevailing boundary conditions. A classification system facilitates an overview of the large number of technical solutions now available. The manifold possibilities of application of this equipment are demonstrated by a number of examples. As a result of the present state of development of the components required, and in view also of economic reasons, there is a trend towards special designs for a small number of specific purposes and towards stripped-down object recognition. systems with limited applications. A fitting description is offered of the term 'robot', which is now being used in various contexts, and an indication is made of the capabilities and components a machine to be called robot should have as a minimum. Finally, reference is made to some potential lines of development serving to reduce expediture and accelerate recognition processes. (orig.) [de

  16. Evaluation of Sensor Configurations for Robotic Surgical Instruments

    Directory of Open Access Journals (Sweden)

    Jesús M. Gómez-de-Gabriel

    2015-10-01

    Full Text Available Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included.

  17. Evaluation of Sensor Configurations for Robotic Surgical Instruments.

    Science.gov (United States)

    Gómez-de-Gabriel, Jesús M; Harwin, William

    2015-10-27

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included.

  18. Evaluation of Sensor Configurations for Robotic Surgical Instruments

    Science.gov (United States)

    Gómez-de-Gabriel, Jesús M.; Harwin, William

    2015-01-01

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included. PMID:26516863

  19. Decentralized vs. centralized scheduling in wireless sensor networks for data fusion

    OpenAIRE

    Mitici, M.A.; Goseling, Jasper; de Graaf, Maurits; Boucherie, Richardus J.

    2014-01-01

    We consider the problem of data estimation in a sensor wireless network where sensors transmit their observations according to decentralized and centralized transmission schedules. A data collector is interested in achieving a data estimation using several sensor observations such that the variance of the estimation is below a targeted threshold. We analyze the waiting time for a collector to receive sufficient sensor observations. We show that, for sufficiently large sensor sets, the decentr...

  20. Multi-user identification and efficient user approaching by fusing robot and ambient sensors

    NARCIS (Netherlands)

    Hu, N.; Bormann, R.; Zwölfer, T.; Kröse, B.

    2014-01-01

    We describe a novel framework that combines an overhead camera and a robot RGB-D sensor for real-time people finding. Finding people is one of the most fundamental tasks in robot home care scenarios and it consists of many components, e.g. people detection, people tracking, face recognition, robot

  1. Decentralized vs. centralized scheduling in wireless sensor networks for data fusion

    NARCIS (Netherlands)

    Mitici, M.A.; Goseling, Jasper; de Graaf, Maurits; Boucherie, Richardus J.

    2014-01-01

    We consider the problem of data estimation in a sensor wireless network where sensors transmit their observations according to decentralized and centralized transmission schedules. A data collector is interested in achieving a data estimation using several sensor observations such that the variance

  2. Decentralized vs. centralized scheduling in wireless sensor networks for data fusion

    NARCIS (Netherlands)

    Mitici, Mihaela; Goseling, Jasper; de Graaf, Maurits; Boucherie, Richardus J.

    2013-01-01

    We consider the problem of data estimation in a sensor wireless network where sensors transmit their observations according to decentralized and centralized transmission schedules. A data collector is interested in achieving a data estimation using several sensor observations such that the variance

  3. Novel Hybrid Scheduling Technique for Sensor Nodes with Mixed Criticality Tasks.

    Science.gov (United States)

    Micea, Mihai-Victor; Stangaciu, Cristina-Sorina; Stangaciu, Valentin; Curiac, Daniel-Ioan

    2017-06-26

    Sensor networks become increasingly a key technology for complex control applications. Their potential use in safety- and time-critical domains has raised the need for task scheduling mechanisms specially adapted to sensor node specific requirements, often materialized in predictable jitter-less execution of tasks characterized by different criticality levels. This paper offers an efficient scheduling solution, named Hybrid Hard Real-Time Scheduling (H²RTS), which combines a static, clock driven method with a dynamic, event driven scheduling technique, in order to provide high execution predictability, while keeping a high node Central Processing Unit (CPU) utilization factor. From the detailed, integrated schedulability analysis of the H²RTS, a set of sufficiency tests are introduced and demonstrated based on the processor demand and linear upper bound metrics. The performance and correct behavior of the proposed hybrid scheduling technique have been extensively evaluated and validated both on a simulator and on a sensor mote equipped with ARM7 microcontroller.

  4. A Hybrid Quantum Evolutionary Algorithm with Improved Decoding Scheme for a Robotic Flow Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Weidong Lei

    2017-01-01

    Full Text Available We aim at solving the cyclic scheduling problem with a single robot and flexible processing times in a robotic flow shop, which is a well-known optimization problem in advanced manufacturing systems. The objective of the problem is to find an optimal robot move sequence such that the throughput rate is maximized. We propose a hybrid algorithm based on the Quantum-Inspired Evolutionary Algorithm (QEA and genetic operators for solving the problem. The algorithm integrates three different decoding strategies to convert quantum individuals into robot move sequences. The Q-gate is applied to update the states of Q-bits in each individual. Besides, crossover and mutation operators with adaptive probabilities are used to increase the population diversity. A repairing procedure is proposed to deal with infeasible individuals. Comparison results on both benchmark and randomly generated instances demonstrate that the proposed algorithm is more effective in solving the studied problem in terms of solution quality and computational time.

  5. An ultrasonic sensor controller for mapping and servo control in robotic systems

    International Nuclear Information System (INIS)

    Drotning, W.D.; Garcia, P. Jr.

    1993-03-01

    An ultrasonic sensor controller has been developed and applied in a variety of robotic systems for operation in hazardous environments. The controller consists of hardware and software that control multiple ultrasonic range sensors and provide workspace information to robot controllers for rapid, safe, and reliable operation in hazardous and remote environments. The hardware consists of a programmable multichannel controller that resides on a VMEbus for high speed communication to a multiprocessor architecture. The sensor controller has been used in a number of applications, which include providing high precision range information for proximity servo control of robots, and performing surface and obstacle mapping functions for safe path planning of robots in unstructured environments

  6. Robotics in hostile environment I. S. I. S. robot - automatic positioning and docking with proximity and force feed back sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gery, D

    1987-01-01

    Recent improvements in control command systems and the development of tactile proximity and force feed back sensors make it possible to robotize complex inspection and maintenance operations in hostile environment, which could have not been possible by classical remotely operated manipulators. We describe the I.S.I.S. robot characteristics, the control command system software principles and the tactile and force-torque sensors which have been developed for the different sequences of an hostile environment inspection and repair: access trajectories generation with obstacles shunning, final positioning and docking using parametric algorithms taking into account measurement of the end of arm proximity and force-torque sensors.

  7. A fuzzy behaviorist approach to sensor-based robot control

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.

    1996-05-01

    Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-based approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.

  8. Robotic vehicle uses acoustic sensors for voice detection and diagnostics

    Science.gov (United States)

    Young, Stuart H.; Scanlon, Michael V.

    2000-07-01

    An acoustic sensor array that cues an imaging system on a small tele- operated robotic vehicle was used to detect human voice and activity inside a building. The advantage of acoustic sensors is that it is a non-line of sight (NLOS) sensing technology that can augment traditional LOS sensors such as visible and IR cameras. Acoustic energy emitted from a target, such as from a person, weapon, or radio, will travel through walls and smoke, around corners, and down corridors, whereas these obstructions would cripple an imaging detection system. The hardware developed and tested used an array of eight microphones to detect the loudest direction and automatically setter a camera's pan/tilt toward the noise centroid. This type of system has applicability for counter sniper applications, building clearing, and search/rescue. Data presented will be time-frequency representations showing voice detected within rooms and down hallways at various ranges. Another benefit of acoustics is that it provides the tele-operator some situational awareness clues via low-bandwidth transmission of raw audio data for the operator to interpret with either headphones or through time-frequency analysis. This data can be useful to recognize familiar sounds that might indicate the presence of personnel, such as talking, equipment, movement noise, etc. The same array also detects the sounds of the robot it is mounted on, and can be useful for engine diagnostics and trouble shooting, or for self-noise emanations for stealthy travel. Data presented will characterize vehicle self noise over various surfaces such as tiles, carpets, pavement, sidewalk, and grass. Vehicle diagnostic sounds will indicate a slipping clutch and repeated unexpected application of emergency braking mechanism.

  9. Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    OpenAIRE

    Chih-Yu Wen; Ying-Chih Chen

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show t...

  10. Fault-Tolerant Robot Programming through Simulation with Realistic Sensor Models

    Directory of Open Access Journals (Sweden)

    Axel Waggershauser

    2008-11-01

    Full Text Available We introduce a simulation system for mobile robots that allows a realistic interaction of multiple robots in a common environment. The simulated robots are closely modeled after robots from the EyeBot family and have an identical application programmer interface. The simulation supports driving commands at two levels of abstraction as well as numerous sensors such as shaft encoders, infrared distance sensors, and compass. Simulation of on-board digital cameras via synthetic images allows the use of image processing routines for robot control within the simulation. Specific error models for actuators, distance sensors, camera sensor, and wireless communication have been implemented. Progressively increasing error levels for an application program allows for testing and improving its robustness and fault-tolerance.

  11. An efficient schedule based data aggregation using node mobility for wireless sensor network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Pawar, Pranav M.; Prasad, Neeli R.

    2014-01-01

    In the Wireless Sensor Networks, (WSNs) a key challenge is to schedule the activities of the mobile node for improvement in throughput, energy consumption and delay. This paper proposes efficient schedule based data aggregation algorithm using node mobility (SDNM). It considers the cluster...

  12. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory

    Science.gov (United States)

    Brewster, L.; Johnston, A.; Howard, R.; Mitchell, J.; Cryan, S.

    2007-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-loop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of"pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL

  13. Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors.

    Science.gov (United States)

    Quinn, Matt; Smith, Lincoln; Mayley, Giles; Husbands, Phil

    2003-10-15

    We report on recent work in which we employed artificial evolution to design neural network controllers for small, homogeneous teams of mobile autonomous robots. The robots were evolved to perform a formation-movement task from random starting positions, equipped only with infrared sensors. The dual constraints of homogeneity and minimal sensors make this a non-trivial task. We describe the behaviour of a successful system in which robots adopt and maintain functionally distinct roles in order to achieve the task. We believe this to be the first example of the use of artificial evolution to design coordinated, cooperative behaviour for real robots.

  14. Vision Sensor-Based Road Detection for Field Robot Navigation

    Directory of Open Access Journals (Sweden)

    Keyu Lu

    2015-11-01

    Full Text Available Road detection is an essential component of field robot navigation systems. Vision sensors play an important role in road detection for their great potential in environmental perception. In this paper, we propose a hierarchical vision sensor-based method for robust road detection in challenging road scenes. More specifically, for a given road image captured by an on-board vision sensor, we introduce a multiple population genetic algorithm (MPGA-based approach for efficient road vanishing point detection. Superpixel-level seeds are then selected in an unsupervised way using a clustering strategy. Then, according to the GrowCut framework, the seeds proliferate and iteratively try to occupy their neighbors. After convergence, the initial road segment is obtained. Finally, in order to achieve a globally-consistent road segment, the initial road segment is refined using the conditional random field (CRF framework, which integrates high-level information into road detection. We perform several experiments to evaluate the common performance, scale sensitivity and noise sensitivity of the proposed method. The experimental results demonstrate that the proposed method exhibits high robustness compared to the state of the art.

  15. Robotics

    Indian Academy of Sciences (India)

    netic induction to detect an object. The development of ... end effector, inclination of object, magnetic and electric fields, etc. The sensors described ... In the case of a robot, the various actuators and motors have to be modelled. The major ...

  16. Energy-aware scheduling of surveillance in wireless multimedia sensor networks.

    Science.gov (United States)

    Wang, Xue; Wang, Sheng; Ma, Junjie; Sun, Xinyao

    2010-01-01

    Wireless sensor networks involve a large number of sensor nodes with limited energy supply, which impacts the behavior of their application. In wireless multimedia sensor networks, sensor nodes are equipped with audio and visual information collection modules. Multimedia contents are ubiquitously retrieved in surveillance applications. To solve the energy problems during target surveillance with wireless multimedia sensor networks, an energy-aware sensor scheduling method is proposed in this paper. Sensor nodes which acquire acoustic signals are deployed randomly in the sensing fields. Target localization is based on the signal energy feature provided by multiple sensor nodes, employing particle swarm optimization (PSO). During the target surveillance procedure, sensor nodes are adaptively grouped in a totally distributed manner. Specially, the target motion information is extracted by a forecasting algorithm, which is based on the hidden Markov model (HMM). The forecasting results are utilized to awaken sensor node in the vicinity of future target position. According to the two properties, signal energy feature and residual energy, the sensor nodes decide whether to participate in target detection separately with a fuzzy control approach. Meanwhile, the local routing scheme of data transmission towards the observer is discussed. Experimental results demonstrate the efficiency of energy-aware scheduling of surveillance in wireless multimedia sensor network, where significant energy saving is achieved by the sensor awakening approach and data transmission paths are calculated with low computational complexity.

  17. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Lab

    Science.gov (United States)

    Brewster, Linda L.; Howard, Richard T.; Johnston, A. S.; Carrington, Connie; Mitchell, Jennifer D.; Cryan, Scott P.

    2008-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success ofthe Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-Ioop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of "pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL

  18. Decentralized coverage control problems for mobile robotic sensor and actuator networks

    CERN Document Server

    Savkin, A; Xi, Z; Javed, F; Matveev, A; Nguyen, H

    2015-01-01

    This book introduces various coverage control problems for mobile sensor networks including barrier, sweep and blanket. Unlike many existing algorithms, all of the robotic sensor and actuator motion algorithms developed in the book are fully decentralized or distributed, computationally efficient, easily implementable in engineering practice and based only on information on the closest neighbours of each mobile sensor and actuator and local information about the environment. Moreover, the mobile robotic sensors have no prior information about the environment in which they operation. These various types of coverage problems have never been covered before by a single book in a systematic way. Another topic of this book is the study of mobile robotic sensor and actuator networks. Many modern engineering applications include the use of sensor and actuator networks to provide efficient and effective monitoring and control of industrial and environmental processes. Such mobile sensor and actuator networks are abl...

  19. PENGENDALIAN PID PADA ROBOT MIROSOT UPN “VETERAN” YOGYAKARTA BERBASIS SENSOR GYROSCOPE DAN ACCELEROMETER

    Directory of Open Access Journals (Sweden)

    Awang Hendrianto Pratomo

    2015-07-01

    Full Text Available MiRoSoT Robot movement is influenced by the speed control from right and left wheels. Wheels speed control on MiroSot robot is determined by parameter PID (Proportional Integral and Derevative value. PID value determined by robot position and angle. MiroSot robot movement is still not stable and can not move in accordance with the instruction have been made. Instability of the robot movement in the game is affected by friction wheels against the ground, friction gear and robot load. In this study, implemented a gyroscope and accelerometer sensors to stabilize robot movement. Based on both sensors are controlled by using a microcontroller ATmega64. Speed control system based on gyroscope and accelerometer sensor is obtained that the robot is able to face a certain angle more precisely. The accelerometer sensor is used as a parameter for the braking system, so the robot is able to move more stable without the loss of power from the motor during a reduction speed from the strategy control.

  20. Robotic tool positioning process using a multi-line off-axis laser triangulation sensor

    Science.gov (United States)

    Pinto, T. C.; Matos, G.

    2018-03-01

    Proper positioning of a friction stir welding head for pin insertion, driven by a closed chain robot, is important to ensure quality repair of cracks. A multi-line off-axis laser triangulation sensor was designed to be integrated to the robot, allowing relative measurements of the surface to be repaired. This work describes the sensor characteristics, its evaluation and the measurement process for tool positioning to a surface point of interest. The developed process uses a point of interest image and a measured point cloud to define the translation and rotation for tool positioning. Sensor evaluation and tests are described. Keywords: laser triangulation, 3D measurement, tool positioning, robotics.

  1. An iconic programming language for sensor-based robots

    Science.gov (United States)

    Gertz, Matthew; Stewart, David B.; Khosla, Pradeep K.

    1993-01-01

    In this paper we describe an iconic programming language called Onika for sensor-based robotic systems. Onika is both modular and reconfigurable and can be used with any system architecture and real-time operating system. Onika is also a multi-level programming environment wherein tasks are built by connecting a series of icons which, in turn, can be defined in terms of other icons at the lower levels. Expert users are also allowed to use control block form to define servo tasks. The icons in Onika are both shape and color coded, like the pieces of a jigsaw puzzle, thus providing a form of error control in the development of high level applications.

  2. Fabrication of robot head module using contact resistance force sensor for human robot interaction and its evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ki; Kim, Jong Ho [Korea Reserch Institute of Standards and Science, Daejeon (Korea, Republic of); Kwon, Hyun Joon [Univ. of Maryland, Maryland (United States); Kwon, Young Ha [Kyung Hee Univ., Gyunggi Do (Korea, Republic of)

    2012-10-15

    This paper presents a design of a robot head module with touch sensing algorithms that can simultaneously detect contact force and location. The module is constructed with a hemisphere and three sensor units that are fabricated using contact resistance force sensors. The surface part is designed with the hemisphere that measures 300 mm in diameter and 150 mm in height. Placed at the bottom of the robot head module are three sensor units fabricated using a simple screen printing technique. The contact force and the location of the model are evaluated through the calibration setup. The experiment showed that the calculated contact positions almost coincided with the applied load points as the contact location changed with a location error of about {+-}8.67 mm. The force responses of the module were evaluated at two points under loading and unloading conditions from 0 N to 5 N. The robot head module showed almost the same force responses at the two points.

  3. Universal Robot Hand Equipped with Tactile and Joint Torque Sensors: Development and Experiments on Stiffness Control and Object Recognition

    Directory of Open Access Journals (Sweden)

    Hiroyuki NAKAMOTO

    2007-04-01

    Full Text Available Various humanoid robots have been developed and multifunction robot hands which are able to attach those robots like human hand is needed. But a useful robot hand has not been depeveloped, because there are a lot of problems such as control method of many degrees of freedom and processing method of enormous sensor outputs. Realizing such robot hand, we have developed five-finger robot hand. In this paper, the detailed structure of developed robot hand is described. The robot hand we developed has five fingers of multi-joint that is equipped with joint torque sensors and tactile sensors. We report experimental results of a stiffness control with the developed robot hand. Those results show that it is possible to change the stiffness of joints. Moreover we propose an object recognition method with the tactile sensor. The validity of that method is assured by experimental results.

  4. Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chih-Yu Wen

    2009-05-01

    Full Text Available This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.

  5. Dynamic hierarchical sleep scheduling for wireless ad-hoc sensor networks.

    Science.gov (United States)

    Wen, Chih-Yu; Chen, Ying-Chih

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.

  6. Sensors management in robotic neurosurgery: the ROBOCAST project.

    Science.gov (United States)

    Vaccarella, Alberto; Comparetti, Mirko Daniele; Enquobahrie, Andinet; Ferrigno, Giancarlo; De Momi, Elena

    2011-01-01

    Robot and computer-aided surgery platforms bring a variety of sensors into the operating room. These sensors generate information to be synchronized and merged for improving the accuracy and the safety of the surgical procedure for both patients and operators. In this paper, we present our work on the development of a sensor management architecture that is used is to gather and fuse data from localization systems, such as optical and electromagnetic trackers and ultrasound imaging devices. The architecture follows a modular client-server approach and was implemented within the EU-funded project ROBOCAST (FP7 ICT 215190). Furthermore it is based on very well-maintained open-source libraries such as OpenCV and Image-Guided Surgery Toolkit (IGSTK), which are supported from a worldwide community of developers and allow a significant reduction of software costs. We conducted experiments to evaluate the performance of the sensor manager module. We computed the response time needed for a client to receive tracking data or video images, and the time lag between synchronous acquisition with an optical tracker and ultrasound machine. Results showed a median delay of 1.9 ms for a client request of tracking data and about 40 ms for US images; these values are compatible with the data generation rate (20-30 Hz for tracking system and 25 fps for PAL video). Simultaneous acquisitions have been performed with an optical tracking system and US imaging device: data was aligned according to the timestamp associated with each sample and the delay was estimated with a cross-correlation study. A median value of 230 ms delay was calculated showing that realtime 3D reconstruction is not feasible (an offline temporal calibration is needed), although a slow exploration is possible. In conclusion, as far as asleep patient neurosurgery is concerned, the proposed setup is indeed useful for registration error correction because the brain shift occurs with a time constant of few tens of minutes.

  7. Implementasi Sensor Cahaya Sebagai Pengontrol Keseimbangan Robot Beroda Dua Menggunakan Kontroler PID

    Directory of Open Access Journals (Sweden)

    Barlian Henryranu P.

    2014-07-01

    Full Text Available Abstrak Dengan menggabungkan Sistem Kontrol, sensor dan motor Servo diharapkan Robot segway dapat direalisasikan. Dalam penelitian ini Sistem Kontrol yang digunakan adalah metode PID, sedangkan sensor yang akan digunakan adalah cahaya yang merepresentasikan sudut kemiringan terhadap bumi. Dengan input berupa Error sudut dan Del Error sudut terhadap bumi maka didapatkan hasil PID kontroller berupa angular rate yang digunakan untuk mengontrol kedua rodanya. Robot Segway memiliki rise time/fall time, settling time dan Robot Segway mampu mencapai kesetimbangannya kembali (steady state setelah mendapatkan gangguan dari luar. Kata kunci: Robot kesetimbangan, sensor cahaya, PID kontroler Abstract By combining the Control System, sensors and Servos motors are expected to Segway can be realized. In this research use the PID method, while the sensor to be used is the light that represents the elevation angle of the earth. With the input is angel Error and angel Del Error of the earth then the results obtained in the form of angular rate PID Controller is used to Control the two wheels. Segway Robot has a rise time / fall time, settling time and Segway Robot can reach the balance again (steady state after get a outside disturbance. Keywords: Self-balancing robot, light sensor, PID Controller

  8. Use of soil moisture sensors for irrigation scheduling

    Science.gov (United States)

    Various types of soil moisture sensing devices have been developed and are commercially available for water management applications. Each type of soil moisture sensors has its advantages and shortcomings in terms of accuracy, reliability, and cost. Resistive and capacitive based sensors, and time-d...

  9. Optimal task scheduling policy in energy harvesting wireless sensor networks

    NARCIS (Netherlands)

    Rao, Vijay S.; Prasad, R. Venkatesha; Niemegeers, Ignas G M M

    2015-01-01

    Ambient energy harvesting for Wireless Sensor Networks (WSNs) is being pitched as a promising solution for long-lasting deployments in various WSN applications. However, the sensor nodes most often do not have enough energy to handle application, network and house-keeping tasks because amount of

  10. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks

    OpenAIRE

    Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng

    2016-01-01

    In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical d...

  11. Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots

    OpenAIRE

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; Romero-Troncoso, Rene de Jesus

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of h...

  12. A Kinect-sensor-based Tracked Robot for Exploring and Climbing Stairs

    OpenAIRE

    I-Hsum Li; Wei-Yen Wang; Chien-Kai Tseng

    2014-01-01

    This paper focuses on the stair-climbing problem for a tracked robot. The tracked robot designed in this paper has the ability to explore stairs in an unknown indoor environment, climbing up and down the stairs, keeping balance while climbing, and successfully landing on the stair platform. Intelligent algorithms are proposed to explore and align stairs, and a fuzzy controller is introduced to stabilize the tracked robot's movement during the exploration. An inexpensive Kinect depth sensor is...

  13. Homeostasis control of building environment using sensor agent robot

    Science.gov (United States)

    Nagahama, Eri; Mita, Akira

    2012-04-01

    A human centered system for building is demanded to meet variety of needs due to the diversification and maturation of society. Smart buildings and smart houses have been studied to satisfy this demand. However, it is difficult for such systems to respond flexibly to unexpected events and needs that are caused by aging and complicate emotion changes. With this regards, we suggest "Biofied Buildings". The goal for this research is to realize buildings that are safer, more comfortable and more energy-efficient by embedding adaptive functions of life into buildings. In this paper, we propose a new control system for building environments, focused on physiological adaptation, particularly homeostasis, endocrine system and immune system. Residents are used as living sensors and controllers in the control loop. A sensor agent robot is used to acquire resident's discomfort feeling, and to output hormone-like signals to activate devices to control the environments. The proposed system could control many devices without establishing complicated scenarios. Results obtained from some simulations and the demonstration experiments using an LED lighting system showed that the proposed system were able to achieve robust and stable control of environments without complicated scenarios.

  14. An Interactive Control Algorithm Used for Equilateral Triangle Formation with Robotic Sensors

    Science.gov (United States)

    Li, Xiang; Chen, Hongcai

    2014-01-01

    This paper describes an interactive control algorithm, called Triangle Formation Algorithm (TFA), used for three neighboring robotic sensors which are distributed randomly to self-organize into and equilateral triangle (E) formation. The algorithm is proposed based on the triangular geometry and considering the actual sensors used in robotics. In particular, the stability of the TFA, which can be executed by robotic sensors independently and asynchronously for E formation, is analyzed in details based on Lyapunov stability theory. Computer simulations are carried out for verifying the effectiveness of the TFA. The analytical results and simulation studies indicate that three neighboring robots employing conventional sensors can self-organize into E formations successfully regardless of their initial distribution using the same TFAs. PMID:24759118

  15. Sensor agent robot with servo-accelerometer for structural health monitoring

    Science.gov (United States)

    Lee, Nobukazu; Mita, Akira

    2012-04-01

    SHM systems are becoming feasible with the growth of computer and sensor technologies during the last decade. However, high cost prevents SHM to become common in general homes. The reason of this high cost is partially due to many accelerometers. In this research, we propose a moving sensor agent robot with accelerometers and a laser range finder (LRF). If this robot can properly measure accurate acceleration data, the cost of SHM would be cut down and resulting in the spread of SHM systems. Our goal is to develop a platform for SHM using the sensor agent robot. We designed the prototype robot to correctly detect the floor vibrations and acquire the micro tremor information. When the sensor agent robot is set in the mode of acquiring the data, the dynamics of the robot should be tuned not to be affected by its flexibility. To achieve this purpose the robot frame was modified to move down to the ground and to provide enough rigidity to obtain good data. In addition to this mechanism, we tested an algorithm to correctly know the location of the robot and the map of the floor to be used in the SHM system using the LRF and Simultaneously Localization and Mapping (SLAM).

  16. A Comprehensive Approach to Sensor Management and Scheduling

    National Research Council Canada - National Science Library

    McIntyre, Gregory

    1998-01-01

    .... In general, single sensor systems only provide partial information on the state of the environment while multisensor systems rely on data fusion techniques to combine related data from multiple...

  17. Time-optimum packet scheduling for many-to-one routing in wireless sensor networks

    Science.gov (United States)

    Song, W.-Z.; Yuan, F.; LaHusen, R.; Shirazi, B.

    2007-01-01

    This paper studies the wireless sensor networks (WSN) application scenario with periodical traffic from all sensors to a sink. We present a time-optimum and energy-efficient packet scheduling algorithm and its distributed implementation. We first give a general many-to-one packet scheduling algorithm for wireless networks, and then prove that it is time-optimum and costs [image omitted], N(u0)-1) time slots, assuming each node reports one unit of data in each round. Here [image omitted] is the total number of sensors, while [image omitted] denotes the number of sensors in a sink's largest branch subtree. With a few adjustments, we then show that our algorithm also achieves time-optimum scheduling in heterogeneous scenarios, where each sensor reports a heterogeneous amount of data in each round. Then we give a distributed implementation to let each node calculate its duty-cycle locally and maximize efficiency globally. In this packet-scheduling algorithm, each node goes to sleep whenever it is not transceiving, so that the energy waste of idle listening is also mitigated. Finally, simulations are conducted to evaluate network performance using the Qualnet simulator. Among other contributions, our study also identifies the maximum reporting frequency that a deployed sensor network can handle.

  18. Sensor controlled robotic welding for nuclear applications. Annual progress report

    International Nuclear Information System (INIS)

    Chin, B.A.; Madsen, N.H.; Goodling, J.S.

    1986-01-01

    Significant accomplishments towards the development of an adaptive robotic welding system have been made during the first eight months of the project. The project is currently within budget and on schedule. Accomplishments were both scientific and programmatic in form. A list of the scientific accomplishments follows: demonstrated that the thermal profiles generated for intentionally induced defects during the welding process are similar in steel, aluminum and stainless steel. The conclusion is therefore that infrared sensing is applicable to the welding of over 90% of all materials used in the energy industry. Completed design and testing of a first generation communication system used to transfer information from the infrared camera to the computer in a near real time form. This demonstrates that information can be obtained, sorted, transferred and received in a time frame consistent with on-line process control. Demonstrated rudimentary seam tracking using infrared sensing and closed loop logic routines. A linear relationship exists between measured peak surface temperature and depth of penetration. Similarily, a linear relationship exists between measured infrared width and weld bead width. These relations suggest that penetration parameters may be controlled using surface measurements as obtained by infrared thermography

  19. An effective repetitive training schedule to achieve skill proficiency using a novel robotic virtual reality simulator.

    Science.gov (United States)

    Kang, Sung Gu; Ryu, Byung Ju; Yang, Kyung Sook; Ko, Young Hwii; Cho, Seok; Kang, Seok Ho; Patel, Vipul R; Cheon, Jun

    2015-01-01

    A robotic virtual reality simulator (Mimic dV-Trainer) can be a useful training method for the da Vinci surgical system. Herein, we investigate several repetitive training schedules and determine which is the most effective. A total of 30 medical students were enrolled and were divided into 3 groups according to the training schedule. Group 1 performed the task 1 hour daily for 4 consecutive days, group II performed the task on once per week for 1 hour for 4 consecutive weeks, and group III performed the task for 4 consecutive hours in 1 day. The effects of training were investigated by analyzing the number of repetitions and the time required to complete the "Tube 2" simulation task when the learning curve plateau was reached. The point at which participants reached a stable score was evaluated using the cumulative sum control graph. The average time to complete the task at the learning curve plateau was 150.3 seconds in group I, 171.9 seconds in group II, and 188.5 seconds in group III. The number of task repetitions required to reach the learning curve plateau was 45 repetitions in group I, 36 repetitions in group II, and 39 repetitions in group III. Therefore, there was continuous improvement in the time required to perform the task after 40 repetitions in group I only. There was a significant correlation between improvement in each trial interval and attempt, and the correlation coefficient (0.924) in group I was higher than that in group II (0.899) and group III (0.838). Daily 1-hour practice sessions performed for 4 consecutive days resulted in the best final score, continuous score improvement, and effective training while minimizing fatigue. This repetition schedule can be used for effectively training novices in future. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  20. Robot Control Overview: An Industrial Perspective

    Directory of Open Access Journals (Sweden)

    T. Brogårdh

    2009-07-01

    Full Text Available One key competence for robot manufacturers is robot control, defined as all the technologies needed to control the electromechanical system of an industrial robot. By means of modeling, identification, optimization, and model-based control it is possible to reduce robot cost, increase robot performance, and solve requirements from new automation concepts and new application processes. Model-based control, including kinematics error compensation, optimal servo reference- and feed-forward generation, and servo design, tuning, and scheduling, has meant a breakthrough for the use of robots in industry. Relying on this breakthrough, new automation concepts such as high performance multi robot collaboration and human robot collaboration can be introduced. Robot manufacturers can build robots with more compliant components and mechanical structures without loosing performance and robots can be used also in applications with very high performance requirements, e.g., in assembly, machining, and laser cutting. In the future it is expected that the importance of sensor control will increase, both with respect to sensors in the robot structure to increase the control performance of the robot itself and sensors outside the robot related to the applications and the automation systems. In this connection sensor fusion and learning functionalities will be needed together with the robot control for easy and intuitive installation, programming, and maintenance of industrial robots.

  1. PERANCANGAN KENDALI NAVIGASI ROBOT TANK SECARA NIRKABEL BERBASIS SENSOR ACCELEROMETER BERDASARKAN GERAKAN TANGAN

    Directory of Open Access Journals (Sweden)

    Muhamad Yusvin Mustar

    2018-04-01

    Full Text Available Sebuah sistem kendali berbeda pada navigasi robot tank diperkenalkan pada penelitian ini. Umumnya sistem kendali navigasi robot tank dikendalikan meggunakan remot kontrol atau joystick dan beberapa perangkat pengontrolan robot lainya. Pengontrolan navigasi robot tank bertujuan untuk dapat mengendalikan pergerakan robot agar dapat berjalan maju, mundur, berbelok ke kiri dan ke kanan. Pada penelitian ini, pengontrolan navigasi robot dilakukan berdasarkan gerakan tangan manusia. Sebuah sarung tangan yang dilengkapi sensor accelerometer ADXL335 didesain untuk dapat mendeteksi setiap bentuk gerakan tangan. Pendeteksian gerakan tangan didasarkan pada pembacaan orientasi axis X dan Y acceleometer. Gerakan tangan ini kemudian diinput pada mikrokontroler Arduino Nano dan ditransmisikan melalui nRF24L01 2.4GHz. Hasil pendeteksian gerak kemudian diterima dan diolah pada mikrokontroler Arduino Mega yang terdapat pada robot tank. Selanjutnya, hasil pendeteksian gerakan tangan ini dipetakan dalam beberapa bagian pengontrolan, agar sesuai dengan pola pengontrolan navigasi robot tank. Hasil penelitian ini menunjukan bahwa sebuah sistem pengontrolan navigasi robot tank berdasarkan gerakan tangan dapat diimplementasikan dan diaplikasikan secara riil, sehingga dapat memberikan pengalaman baru dalam berinteraksi dengan robot. Kata kunci: navigasi, robot tank, deteksi gerakan, accelerometer ADXL335, arduino, nRF24L01.

  2. Collision recognition and direction changes for small scale fish robots by acceleration sensors

    Science.gov (United States)

    Na, Seung Y.; Shin, Daejung; Kim, Jin Y.; Lee, Bae-Ho

    2005-05-01

    Typical obstacles are walls, rocks, water plants and other nearby robots for a group of small scale fish robots and submersibles that have been constructed in our lab. Sonar sensors are not employed to make the robot structure simple enough. All of circuits, sensors and processor cards are contained in a box of 9 x 7 x 4 cm dimension except motors, fins and external covers. Therefore, image processing results are applied to avoid collisions. However, it is useful only when the obstacles are located far enough to give images processing time for detecting them. Otherwise, acceleration sensors are used to detect collision immediately after it happens. Two of 2-axes acceleration sensors are employed to measure the three components of collision angles, collision magnitudes, and the angles of robot propulsion. These data are integrated to calculate the amount of propulsion direction change. The angle of a collision incident upon an obstacle is the fundamental value to obtain a direction change needed to design a following path. But there is a significant amount of noise due to a caudal fin motor. Because caudal fin provides the main propulsion for a fish robot, there is a periodic swinging noise at the head of a robot. This noise provides a random acceleration effect on the measured acceleration data at the collision. We propose an algorithm which shows that the MEMS-type accelerometers are very effective to provide information for direction changes in spite of the intrinsic noise after the small scale fish robots have made obstacle collision.

  3. Time response for sensor sensed to actuator response for mobile robotic system

    Science.gov (United States)

    Amir, N. S.; Shafie, A. A.

    2017-11-01

    Time and performance of a mobile robot are very important in completing the tasks given to achieve its ultimate goal. Tasks may need to be done within a time constraint to ensure smooth operation of a mobile robot and can result in better performance. The main purpose of this research was to improve the performance of a mobile robot so that it can complete the tasks given within time constraint. The problem that is needed to be solved is to minimize the time interval between sensor detection and actuator response. The research objective is to analyse the real time operating system performance of sensors and actuators on one microcontroller and on two microcontroller for a mobile robot. The task for a mobile robot for this research is line following with an obstacle avoidance. Three runs will be carried out for the task and the time between the sensors senses to the actuator responses were recorded. Overall, the results show that two microcontroller system have better response time compared to the one microcontroller system. For this research, the average difference of response time is very important to improve the internal performance between the occurrence of a task, sensors detection, decision making and actuator response of a mobile robot. This research helped to develop a mobile robot with a better performance and can complete task within the time constraint.

  4. Estimation of visual maps with a robot network equipped with vision sensors.

    Science.gov (United States)

    Gil, Arturo; Reinoso, Óscar; Ballesta, Mónica; Juliá, Miguel; Payá, Luis

    2010-01-01

    In this paper we present an approach to the Simultaneous Localization and Mapping (SLAM) problem using a team of autonomous vehicles equipped with vision sensors. The SLAM problem considers the case in which a mobile robot is equipped with a particular sensor, moves along the environment, obtains measurements with its sensors and uses them to construct a model of the space where it evolves. In this paper we focus on the case where several robots, each equipped with its own sensor, are distributed in a network and view the space from different vantage points. In particular, each robot is equipped with a stereo camera that allow the robots to extract visual landmarks and obtain relative measurements to them. We propose an algorithm that uses the measurements obtained by the robots to build a single accurate map of the environment. The map is represented by the three-dimensional position of the visual landmarks. In addition, we consider that each landmark is accompanied by a visual descriptor that encodes its visual appearance. The solution is based on a Rao-Blackwellized particle filter that estimates the paths of the robots and the position of the visual landmarks. The validity of our proposal is demonstrated by means of experiments with a team of real robots in a office-like indoor environment.

  5. Estimation of Visual Maps with a Robot Network Equipped with Vision Sensors

    Directory of Open Access Journals (Sweden)

    Arturo Gil

    2010-05-01

    Full Text Available In this paper we present an approach to the Simultaneous Localization and Mapping (SLAM problem using a team of autonomous vehicles equipped with vision sensors. The SLAM problem considers the case in which a mobile robot is equipped with a particular sensor, moves along the environment, obtains measurements with its sensors and uses them to construct a model of the space where it evolves. In this paper we focus on the case where several robots, each equipped with its own sensor, are distributed in a network and view the space from different vantage points. In particular, each robot is equipped with a stereo camera that allow the robots to extract visual landmarks and obtain relative measurements to them. We propose an algorithm that uses the measurements obtained by the robots to build a single accurate map of the environment. The map is represented by the three-dimensional position of the visual landmarks. In addition, we consider that each landmark is accompanied by a visual descriptor that encodes its visual appearance. The solution is based on a Rao-Blackwellized particle filter that estimates the paths of the robots and the position of the visual landmarks. The validity of our proposal is demonstrated by means of experiments with a team of real robots in a office-like indoor environment.

  6. Nonmyopic Sensor Scheduling and its Efficient Implementation for Target Tracking Applications

    Directory of Open Access Journals (Sweden)

    Morrell Darryl

    2006-01-01

    Full Text Available We propose two nonmyopic sensor scheduling algorithms for target tracking applications. We consider a scenario where a bearing-only sensor is constrained to move in a finite number of directions to track a target in a two-dimensional plane. Both algorithms provide the best sensor sequence by minimizing a predicted expected scheduler cost over a finite time-horizon. The first algorithm approximately computes the scheduler costs based on the predicted covariance matrix of the tracker error. The second algorithm uses the unscented transform in conjunction with a particle filter to approximate covariance-based costs or information-theoretic costs. We also propose the use of two branch-and-bound-based optimal pruning algorithms for efficient implementation of the scheduling algorithms. We design the first pruning algorithm by combining branch-and-bound with a breadth-first search and a greedy-search; the second pruning algorithm combines branch-and-bound with a uniform-cost search. Simulation results demonstrate the advantage of nonmyopic scheduling over myopic scheduling and the significant savings in computational and memory resources when using the pruning algorithms.

  7. Novel Hybrid Scheduling Technique for Sensor Nodes with Mixed Criticality Tasks

    Directory of Open Access Journals (Sweden)

    Mihai-Victor Micea

    2017-06-01

    Full Text Available Sensor networks become increasingly a key technology for complex control applications. Their potential use in safety- and time-critical domains has raised the need for task scheduling mechanisms specially adapted to sensor node specific requirements, often materialized in predictable jitter-less execution of tasks characterized by different criticality levels. This paper offers an efficient scheduling solution, named Hybrid Hard Real-Time Scheduling (H2RTS, which combines a static, clock driven method with a dynamic, event driven scheduling technique, in order to provide high execution predictability, while keeping a high node Central Processing Unit (CPU utilization factor. From the detailed, integrated schedulability analysis of the H2RTS, a set of sufficiency tests are introduced and demonstrated based on the processor demand and linear upper bound metrics. The performance and correct behavior of the proposed hybrid scheduling technique have been extensively evaluated and validated both on a simulator and on a sensor mote equipped with ARM7 microcontroller.

  8. Sleep Scheduling in Critical Event Monitoring with Wireless Sensor Networks

    NARCIS (Netherlands)

    Guo, Peng; Jiang, Tao; Zhang, Qian; Zhang, Kui

    In this paper, we focus on the applications of wireless sensor networks (WSNs) for critical event monitoring, where normally there are only small number of packets need to be transmitted, while when urgent event occurs, the alarm should be broadcast to the entire network as soon as possible. During

  9. Navigation system for a mobile robot with a visual sensor using a fish-eye lens

    Science.gov (United States)

    Kurata, Junichi; Grattan, Kenneth T. V.; Uchiyama, Hironobu

    1998-02-01

    Various position sensing and navigation systems have been proposed for the autonomous control of mobile robots. Some of these systems have been installed with an omnidirectional visual sensor system that proved very useful in obtaining information on the environment around the mobile robot for position reckoning. In this article, this type of navigation system is discussed. The sensor is composed of one TV camera with a fish-eye lens, using a reference target on a ceiling and hybrid image processing circuits. The position of the robot, with respect to the floor, is calculated by integrating the information obtained from a visual sensor and a gyroscope mounted in the mobile robot, and the use of a simple algorithm based on PTP control for guidance is discussed. An experimental trial showed that the proposed system was both valid and useful for the navigation of an indoor vehicle.

  10. Multi-sensor integration for autonomous robots in nuclear power plants

    International Nuclear Information System (INIS)

    Mann, R.C.; Jones, J.P.; Beckerman, M.; Glover, C.W.; Farkas, L.; Bilbro, G.L.; Snyder, W.

    1989-01-01

    As part of a concerted RandD program in advanced robotics for hazardous environments, scientists and engineers at the Oak Ridge National Laboratory (ORNL) are performing research in the areas of systems integration, range-sensor-based 3-D world modeling, and multi-sensor integration. This program features a unique teaming arrangement that involves the universities of Florida, Michigan, Tennessee, and Texas; Odetics Corporation; and ORNL. This paper summarizes work directed at integrating information extracted from data collected with range sensors and CCD cameras on-board a mobile robot, in order to produce reliable descriptions of the robot's environment. Specifically, the paper describes the integration of two-dimensional vision and sonar range information, and an approach to integrate registered luminance and laser range images. All operations are carried out on-board the mobile robot using a 16-processor hypercube computer. 14 refs., 4 figs

  11. Reaction Force/Torque Sensing in a Master-Slave Robot System without Mechanical Sensors

    Directory of Open Access Journals (Sweden)

    Kyoko Shibata

    2010-07-01

    Full Text Available In human-robot cooperative control systems, force feedback is often necessary in order to achieve high precision and high stability. Usually, traditional robot assistant systems implement force feedback using force/torque sensors. However, it is difficult to directly mount a mechanical force sensor on some working terminals, such as in applications of minimally invasive robotic surgery, micromanipulation, or in working environments exposed to radiation or high temperature. We propose a novel force sensing mechanism for implementing force feedback in a master-slave robot system with no mechanical sensors. The system consists of two identical electro-motors with the master motor powering the slave motor to interact with the environment. A bimanual coordinated training platform using the new force sensing mechanism was developed and the system was verified in experiments. Results confirm that the proposed mechanism is capable of achieving bilateral force sensing and mirror-image movements of two terminals in two reverse control directions.

  12. 3D Printed Wearable Sensors with Liquid Metals for the Pose Detection of Snakelike Soft Robots.

    Science.gov (United States)

    Zhou, Luyu; Gao, Qing; Zhan, Jun-Fu; Xie, Chao-Qi; Fu, Jianzhong; He, Yong

    2018-06-18

    Liquid metal-based flexible sensors, which utilize advanced liquid conductive material to serve as sensitive element, is emerging as a promising solution to measure large deformations. Nowadays, one of the biggest challenges for precise control of soft robots is the detection of their real time positions. Existing fabrication methods are unable to fabricate flexible sensors that match the shape of soft robots. In this report, we firstly described a novel 3D printed multi-function inductance flexible and stretchable sensor with liquid metals (LMs), which is capable of measuring both axial tension and curvature. This sensor is fabricated with a developed coaxial liquid metal 3D printer by co-printing of silicone rubber and LMs. Due to the solenoid shape, this sensor can be easily installed on snakelike soft robots and can accurately distinguish different degrees of tensile and bending deformation. We determined the structural parameters of the sensor and proved its excellent stability and reliability. As a demonstration, we used this sensor to measure the curvature of a finger and feedback the position of endoscope, a typical snakelike structure. Because of its bending deformation form consistent with the actual working status of the soft robot and unique shape, this sensor has better practical application prospects in the pose detection.

  13. Sensor module design and forward and inverse kinematics analysis of 6-DOF sorting transferring robot

    Science.gov (United States)

    Zhou, Huiying; Lin, Jiajian; Liu, Lei; Tao, Meng

    2017-09-01

    To meet the demand of high strength express sorting, it is significant to design a robot with multiple degrees of freedom that can sort and transfer. This paper uses infrared sensor, color sensor and pressure sensor to receive external information, combine the plan of motion path in advance and the feedback information from the sensors, then write relevant program. In accordance with these, we can design a 6-DOF robot that can realize multi-angle seizing. In order to obtain characteristics of forward and inverse kinematics, this paper describes the coordinate directions and pose estimation by the D-H parameter method and closed solution. On the basis of the solution of forward and inverse kinematics, geometric parameters of links and link parameters are optimized in terms of application requirements. In this way, this robot can identify route, sort and transfer.

  14. Irrigation Scheduling for Green Bell Peppers Using Capacitance Soil Moisture Sensors

    NARCIS (Netherlands)

    Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Femminella, K.; Munoz-Carpena, R.

    2011-01-01

    Vegetable production areas are intensively managed with high inputs of fertilizer and irrigation. The objectives of this study were to evaluate the interaction between N-fertilizer rates and irrigation scheduling using soil moisture sensor irrigation controllers (SMS) on yield, irrigation water use

  15. Multi-Channel Scheduling for Fast Convergecast in Wireless Sensor Networks

    NARCIS (Netherlands)

    Durmaz, O.; Ghosh, A.; Krishnamachari, B.; Chintalapudi, K.

    We explore the following fundamental question - how fast can information be collected from a wireless sensor network? We consider a number of design parameters such as, power control, time and frequency scheduling, and routing. There are essentially two factors that hinder efficient data collection

  16. Obstacle negotiation control for a mobile robot suspended on overhead ground wires by optoelectronic sensors

    Science.gov (United States)

    Zheng, Li; Yi, Ruan

    2009-11-01

    Power line inspection and maintenance already benefit from developments in mobile robotics. This paper presents mobile robots capable of crossing obstacles on overhead ground wires. A teleoperated robot realizes inspection and maintenance tasks on power transmission line equipment. The inspection robot is driven by 11 motor with two arms, two wheels and two claws. The inspection robot is designed to realize the function of observation, grasp, walk, rolling, turn, rise, and decline. This paper is oriented toward 100% reliable obstacle detection and identification, and sensor fusion to increase the autonomy level. An embedded computer based on PC/104 bus is chosen as the core of control system. Visible light camera and thermal infrared Camera are both installed in a programmable pan-and-tilt camera (PPTC) unit. High-quality visual feedback rapidly becomes crucial for human-in-the-loop control and effective teleoperation. The communication system between the robot and the ground station is based on Mesh wireless networks by 700 MHz bands. An expert system programmed with Visual C++ is developed to implement the automatic control. Optoelectronic laser sensors and laser range scanner were installed in robot for obstacle-navigation control to grasp the overhead ground wires. A novel prototype with careful considerations on mobility was designed to inspect the 500KV power transmission lines. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  17. Dynamic Sleep Scheduling on Air Pollution Levels Monitoring with Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Gezaq Abror

    2018-01-01

    Full Text Available Wireless Sensor Network (WSN can be applied for Air Pollution Level Monitoring System that have been determined by the Environmental Impact Management Agency which is  PM10, SO2, O3, NO2 and CO. In WSN, node system is constrained to a limited power supply, so that the node system has a lifetime. To doing lifetime maximization, power management scheme is required and sensor nodes should use energy efficiently. This paper proposes dynamic sleep scheduling using Time Category-Fuzzy Logic (Time-Fuzzy Scheduling as a reference for calculating time interval for sleep and activated node system to support power management scheme. This research contributed in power management design to be applied to the WSN system to reduce energy expenditure. From the test result in real hardware node system, it can be seen that Time-Fuzzy Scheduling is better in terms of using the battery and it is better in terms of energy consumption too because it is more efficient 51.85% when it is compared with Fuzzy Scheduling, it is more efficient 68.81% when it is compared with Standard Scheduling and it is more efficient 85.03% when compared with No Scheduling.

  18. Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots

    Directory of Open Access Journals (Sweden)

    Rene de Jesus Romero-Troncoso

    2011-04-01

    Full Text Available Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  19. Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots.

    Science.gov (United States)

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; Romero-Troncoso, Rene de Jesus

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint's angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  20. Mobile robot multi-sensor unit for unsupervised gas discrimination in uncontrolled environments

    OpenAIRE

    Xing, Yuxin; Vincent, Timothy A.; Cole, Marina; Gardner, Julian W.; Fan, Han; Hernandez Bennetts, Victor; Schaffernicht, Erik; Lilienthal, Achim

    2017-01-01

    In this work we present a novel multi-sensor unit to detect and discriminate unknown gases in uncontrolled environments. The unit includes three metal oxide (MOX) sensors with CMOS micro heaters, a plasmonic enhanced non-dispersive infra-red (NDIR) sensor, a commercial temperature humidity sensor, and a flow sensor. The proposed sensing unit was evaluated with plumes of gases (propanol, ethanol and acetone) in both, a laboratory setup on a gas testing bench and on-board a mobile robot operati...

  1. Neuromorphic Audio-Visual Sensor Fusion on a Sound-Localising Robot

    Directory of Open Access Journals (Sweden)

    Vincent Yue-Sek Chan

    2012-02-01

    Full Text Available This paper presents the first robotic system featuring audio-visual sensor fusion with neuromorphic sensors. We combine a pair of silicon cochleae and a silicon retina on a robotic platform to allow the robot to learn sound localisation through self-motion and visual feedback, using an adaptive ITD-based sound localisation algorithm. After training, the robot can localise sound sources (white or pink noise in a reverberant environment with an RMS error of 4 to 5 degrees in azimuth. In the second part of the paper, we investigate the source binding problem. An experiment is conducted to test the effectiveness of matching an audio event with a corresponding visual event based on their onset time. The results show that this technique can be quite effective, despite its simplicity.

  2. An implementation of sensor-based force feedback in a compact laparoscopic surgery robot.

    Science.gov (United States)

    Lee, Duk-Hee; Choi, Jaesoon; Park, Jun-Woo; Bach, Du-Jin; Song, Seung-Jun; Kim, Yoon-Ho; Jo, Yungho; Sun, Kyung

    2009-01-01

    Despite the rapid progress in the clinical application of laparoscopic surgery robots, many shortcomings have not yet been fully overcome, one of which is the lack of reliable haptic feedback. This study implemented a force-feedback structure in our compact laparoscopic surgery robot. The surgery robot is a master-slave configuration robot with 5 DOF (degree of freedom corresponding laparoscopic surgical motion. The force-feedback implementation was made in the robot with torque sensors and controllers installed in the pitch joint of the master and slave robots. A simple dynamic model of action-reaction force in the slave robot was used, through which the reflective force was estimated and fed back to the master robot. The results showed the system model could be identified with significant fidelity and the force feedback at the master robot was feasible. However, the qualitative human assessment of the fed-back force showed only limited level of object discrimination ability. Further developments are underway with this result as a framework.

  3. Sensor development and integration for robotized laser welding

    NARCIS (Netherlands)

    Iakovou, D.

    2009-01-01

    Laser welding requires fast and accurate positioning of the laser beam over the seam trajectory. The task of accurate positioning of the laser tools is performed by robotic systems. It is therefore necessary to teach the robot the path it has to follow. Seam teaching is implemented in several ways:

  4. Sensors on speaking terms: Schedule-based medium access control protocols for wireless sensor networks

    NARCIS (Netherlands)

    van Hoesel, L.F.W.

    2007-01-01

    Wireless sensor networks make the previously unobservable, observable. The basic idea behind these networks is straightforward: all wires are cut in traditional sensing systems and the sensors are equipped with batteries and radio's to virtually restore the cut wires. The resulting sensors can be

  5. Wireless Visual Sensor Network Robots- Based for the Emulation of Collective Behavior

    Directory of Open Access Journals (Sweden)

    Fredy Hernán Martinez Sarmiento

    2012-03-01

    Full Text Available We consider the problem of bacterial quorum sensing emulate on small mobile robots. Robots that reflect the behavior of bacteria are designed as mobile wireless camera nodes. They are able to structure a dynamic wireless sensor network. Emulated behavior corresponds to a simplification of bacterial quorum sensing, where the action of a network node is conditioned by the population density of robots(nodes in a given area. The population density reading is done visually using a camera. The robot makes an estimate of the population density of the images, and acts according to this information. The operation of the camera is done with a custom firmware, reducing the complexity of the node without loss of performance. It was noted the route planning and the collective behavior of robots without the use of any other external or local communication. Neither was it necessary to develop a model system, precise state estimation or state feedback.

  6. A Passive Learning Sensor Architecture for Multimodal Image Labeling: An Application for Social Robots

    Directory of Open Access Journals (Sweden)

    Marco A. Gutiérrez

    2017-02-01

    Full Text Available Object detection and classification have countless applications in human–robot interacting systems. It is a necessary skill for autonomous robots that perform tasks in household scenarios. Despite the great advances in deep learning and computer vision, social robots performing non-trivial tasks usually spend most of their time finding and modeling objects. Working in real scenarios means dealing with constant environment changes and relatively low-quality sensor data due to the distance at which objects are often found. Ambient intelligence systems equipped with different sensors can also benefit from the ability to find objects, enabling them to inform humans about their location. For these applications to succeed, systems need to detect the objects that may potentially contain other objects, working with relatively low-resolution sensor data. A passive learning architecture for sensors has been designed in order to take advantage of multimodal information, obtained using an RGB-D camera and trained semantic language models. The main contribution of the architecture lies in the improvement of the performance of the sensor under conditions of low resolution and high light variations using a combination of image labeling and word semantics. The tests performed on each of the stages of the architecture compare this solution with current research labeling techniques for the application of an autonomous social robot working in an apartment. The results obtained demonstrate that the proposed sensor architecture outperforms state-of-the-art approaches.

  7. Sleep/wake scheduling scheme for minimizing end-to-end delay in multi-hop wireless sensor networks

    OpenAIRE

    Madani Sajjad; Nazir Babar; Hasbullah Halabi

    2011-01-01

    Abstract We present a sleep/wake schedule protocol for minimizing end-to-end delay for event driven multi-hop wireless sensor networks. In contrast to generic sleep/wake scheduling schemes, our proposed algorithm performs scheduling that is dependent on traffic loads. Nodes adapt their sleep/wake schedule based on traffic loads in response to three important factors, (a) the distance of the node from the sink node, (b) the importance of the node's location from connectivity's perspective, and...

  8. Autonomous Kinematic Calibration of the Robot Manipulator with a Linear Laser-Vision Sensor

    Science.gov (United States)

    Kang, Hee-Jun; Jeong, Jeong-Woo; Shin, Sung-Weon; Suh, Young-Soo; Ro, Young-Schick

    This paper presents a new autonomous kinematic calibration technique by using a laser-vision sensor called "Perceptron TriCam Contour". Because the sensor measures by capturing the image of a projected laser line on the surface of the object, we set up a long, straight line of a very fine string inside the robot workspace, and then allow the sensor mounted on a robot to measure the point intersection of the line of string and the projected laser line. The data collected by changing robot configuration and measuring the intersection points are constrained to on a single straght line such that the closed-loop calibration method can be applied. The obtained calibration method is simple and accurate and also suitable for on-site calibration in an industrial environment. The method is implemented using Hyundai VORG-35 for its effectiveness.

  9. The mechanical design of a humanoid robot with flexible skin sensor for use in psychiatric therapy

    Science.gov (United States)

    Burns, Alec; Tadesse, Yonas

    2014-03-01

    In this paper, a humanoid robot is presented for ultimate use in the rehabilitation of children with mental disorders, such as autism. Creating affordable and efficient humanoids could assist the therapy in psychiatric disability by offering multimodal communication between the humanoid and humans. Yet, the humanoid development needs a seamless integration of artificial muscles, sensors, controllers and structures. We have designed a human-like robot that has 15 DOF, 580 mm tall and 925 mm arm span using a rapid prototyping system. The robot has a human-like appearance and movement. Flexible sensors around the arm and hands for safe human-robot interactions, and a two-wheel mobile platform for maneuverability are incorporated in the design. The robot has facial features for illustrating human-friendly behavior. The mechanical design of the robot and the characterization of the flexible sensors are presented. Comprehensive study on the upper body design, mobile base, actuators selection, electronics, and performance evaluation are included in this paper.

  10. A Kinect-sensor-based Tracked Robot for Exploring and Climbing Stairs

    Directory of Open Access Journals (Sweden)

    I-Hsum Li

    2014-05-01

    Full Text Available This paper focuses on the stair-climbing problem for a tracked robot. The tracked robot designed in this paper has the ability to explore stairs in an unknown indoor environment, climbing up and down the stairs, keeping balance while climbing, and successfully landing on the stair platform. Intelligent algorithms are proposed to explore and align stairs, and a fuzzy controller is introduced to stabilize the tracked robot's movement during the exploration. An inexpensive Kinect depth sensor is the only equipment needed for all the control modes. Finally, experiments illustrate the effectiveness of the proposed approach for climbing stairs.

  11. Extended Kalman filtering for model-based sensor fusion in robotics

    International Nuclear Information System (INIS)

    Fujii, Yuji; Wehe, D.K.; Lee, J.C.

    1990-01-01

    Remote surveillance and maintenance in advanced nuclear power plants will benefit from the increased utilization of mobile robotic systems. For these robotic systems to function most effectively in hazardous environments, they should be able to make decisions and take necessary actions with minimal human supervision. To accomplish this, the robot must be able to construct an accurate model of the power plant environment from diverse sensory data and a priori maps. In this paper, the authors demonstrate how a recursive parameter estimation technique known as Kalman filtering can integrate noisy data from various sensors to construct a consistent representation of the sensed environment

  12. Dynamic Sleep Scheduling on Air Pollution Levels Monitoring with Wireless Sensor Network

    OpenAIRE

    Gezaq Abror; Rusminto Tjatur Widodo; M. Udin Harun Al Rasyid

    2018-01-01

    Wireless Sensor Network (WSN) can be applied for Air Pollution Level Monitoring System that have been determined by the Environmental Impact Management Agency which is  PM10, SO2, O3, NO2 and CO. In WSN, node system is constrained to a limited power supply, so that the node system has a lifetime. To doing lifetime maximization, power management scheme is required and sensor nodes should use energy efficiently. This paper proposes dynamic sleep scheduling using Time Category-Fuzzy Logic (Time-...

  13. Adaptation of sensor morphology: an integrative view of perception from biologically inspired robotics perspective

    Science.gov (United States)

    Nurzaman, Surya G.

    2016-01-01

    Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perception. PMID:27499843

  14. Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Tuvshinjargal, Doopalam; Lee, Deok Jin [Kunsan National University, Gunsan (Korea, Republic of)

    2015-06-15

    In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments.

  15. Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments

    International Nuclear Information System (INIS)

    Tuvshinjargal, Doopalam; Lee, Deok Jin

    2015-01-01

    In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments

  16. Accurate multi-robot targeting for keyhole neurosurgery based on external sensor monitoring.

    Science.gov (United States)

    Comparetti, Mirko Daniele; Vaccarella, Alberto; Dyagilev, Ilya; Shoham, Moshe; Ferrigno, Giancarlo; De Momi, Elena

    2012-05-01

    Robotics has recently been introduced in surgery to improve intervention accuracy, to reduce invasiveness and to allow new surgical procedures. In this framework, the ROBOCAST system is an optically surveyed multi-robot chain aimed at enhancing the accuracy of surgical probe insertion during keyhole neurosurgery procedures. The system encompasses three robots, connected as a multiple kinematic chain (serial and parallel), totalling 13 degrees of freedom, and it is used to automatically align the probe onto a desired planned trajectory. The probe is then inserted in the brain, towards the planned target, by means of a haptic interface. This paper presents a new iterative targeting approach to be used in surgical robotic navigation, where the multi-robot chain is used to align the surgical probe to the planned pose, and an external sensor is used to decrease the alignment errors. The iterative targeting was tested in an operating room environment using a skull phantom, and the targets were selected on magnetic resonance images. The proposed targeting procedure allows about 0.3 mm to be obtained as the residual median Euclidean distance between the planned and the desired targets, thus satisfying the surgical accuracy requirements (1 mm), due to the resolution of the diffused medical images. The performances proved to be independent of the robot optical sensor calibration accuracy.

  17. Perancangan Kendali Robot pada Smartphone Menggunakan Sensor Accelerometer Berbasis Metode Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Mohamad Agung Prawira Negara

    2017-08-01

    Full Text Available Telecommunications and robotics technology is being developed to assist and facilitate the work of a human. In the field of telecommunications particularly smartphone has reached the planting of operating systems like android until planting sensors such as an accelerometer, gyro, proximity, etc. We would like to take advantage of the accelerometer sensor on a smartphone as robot control. We will compare the use of Sugeno Fuzzy Logic and Mamdani Fuzzy Logic to determine the best control method. The basic components of the robot are the Bluetooth module HC-05 as a medium of communication with the android, arduino as the control system and actuators such as DC motors drive the rear wheels to adjust the speed of the robot, and servo motor drives the front wheels to adjust the degree of turn robot. In robot’s movement test, 4 of 8 trials or approximately 50% stated better Sugeno Fuzzy Logic than Mamdani Fuzzy Logic in terms of linearity. In robot's controller response test, for Sugeno Fuzzy Logic method the average delay is 0.41 seconds, and for Mamdani Fuzzy Logic method the average delay is 10.80 seconds.

  18. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  19. Sensor-driven, fault-tolerant control of a maintenance robot

    International Nuclear Information System (INIS)

    Moy, M.M.; Davidson, W.M.

    1987-01-01

    A robot system has been designed to do routine maintenance tasks on the Sandia Pulsed Reactor (SPR). The use of this Remote Maintenance Robot (RMR) is expected to significantly reduce the occupational radiation exposure of the reactor operators. Reactor safety was a key issue in the design of the robot maintenance system. Using sensors to detect error conditions and intelligent control to recover from the errors, the RMR is capable of responding to error conditions without creating a hazard. This paper describes the design and implementation of a sensor-driven, fault-tolerant control for the RMR. Recovery from errors is not automatic; it does rely on operator assistance. However, a key feature of the error recovery procedure is that the operator is allowed to reenter the programmed operation after the error has been corrected. The recovery procedure guarantees that the moving components of the system will not collide with the reactor during recovery

  20. A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Su; Moon, Woo Sung; Seo, Woo Jin; Baek, Kwang Ryul [Pusan National University, Busan (Korea, Republic of)

    2011-11-15

    Inertial navigation systems (INS) are composed of inertial sensors, such as accelerometers and gyroscopes. An INS updates its orientation and position automatically; it has an acceptable stability over the short term, however this stability deteriorates over time. Odometry, used to estimate the position of a mobile robot, employs encoders attached to the robot's wheels. However, errors occur caused by the integrative nature of the rotating speed and the slippage between the wheel and the ground. In this paper, we discuss mobile robot position estimation without using external signals in indoor environments. In order to achieve optimal solutions, a Kalman filter that estimates the orientation and velocity of mobile robots has been designed. The proposed system combines INS and odometry and delivers more accurate position information than standalone odometry.

  1. Combining a Novel Computer Vision Sensor with a Cleaning Robot to Achieve Autonomous Pig House Cleaning

    DEFF Research Database (Denmark)

    Andersen, Nils Axel; Braithwaite, Ian David; Blanke, Mogens

    2005-01-01

    condition based cleaning. This paper describes how a novel sensor, developed for the purpose, and algorithms for classification and learning are combined with a commercial robot to obtain an autonomous system which meets the necessary quality attributes. These include features to make selective cleaning...

  2. Finger-Shaped GelForce: Sensor for Measuring Surface Traction Fields for Robotic Hand.

    Science.gov (United States)

    Sato, K; Kamiyama, K; Kawakami, N; Tachi, S

    2010-01-01

    It is believed that the use of haptic sensors to measure the magnitude, direction, and distribution of a force will enable a robotic hand to perform dexterous operations. Therefore, we develop a new type of finger-shaped haptic sensor using GelForce technology. GelForce is a vision-based sensor that can be used to measure the distribution of force vectors, or surface traction fields. The simple structure of the GelForce enables us to develop a compact finger-shaped GelForce for the robotic hand. GelForce that is developed on the basis of an elastic theory can be used to calculate surface traction fields using a conversion equation. However, this conversion equation cannot be analytically solved when the elastic body of the sensor has a complicated shape such as the shape of a finger. Therefore, we propose an observational method and construct a prototype of the finger-shaped GelForce. By using this prototype, we evaluate the basic performance of the finger-shaped GelForce. Then, we conduct a field test by performing grasping operations using a robotic hand. The results of this test show that using the observational method, the finger-shaped GelForce can be successfully used in a robotic hand.

  3. Attention-based navigation in mobile robots using a reconfigurable sensor

    NARCIS (Netherlands)

    Maris, M.

    2001-01-01

    In this paper, a method for visual attentional selection in mobile robots is proposed, based on amplification of the selected stimulus. Attention processing is performed on the vision sensor, which is integrated on a silicon chip and consists of a contrast sensitive retina with the ability to change

  4. A Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics.

    Science.gov (United States)

    Ashok, Praveen C; Giardini, Mario E; Dholakia, Kishan; Sibbett, Wilson

    2014-01-01

    We report the development of a fiber-based Raman sensor to be used in tumour margin identification during endoluminal robotic surgery. Although this is a generic platform, the sensor we describe was adapted for the ARAKNES (Array of Robots Augmenting the KiNematics of Endoluminal Surgery) robotic platform. On such a platform, the Raman sensor is intended to identify ambiguous tissue margins during robot-assisted surgeries. To maintain sterility of the probe during surgical intervention, a disposable sleeve was specially designed. A straightforward user-compatible interface was implemented where a supervised multivariate classification algorithm was used to classify different tissue types based on specific Raman fingerprints so that it could be used without prior knowledge of spectroscopic data analysis. The protocol avoids inter-patient variability in data and the sensor system is not restricted for use in the classification of a particular tissue type. Representative tissue classification assessments were performed using this system on excised tissue. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. AT89S52 microcontroller Based A Fire Extinguisher Robot Using Ultrasonic and Ultraviolet Sensor

    Directory of Open Access Journals (Sweden)

    Wahyu Sapto Aji

    2009-12-01

    Full Text Available The fire often takes many victims. Fire detection system sometime can not prevent this from happening. Therefore, it is essential to develop a robot that can detect the present of fire as well as extinguish it. This research aimed to design a fire extinguisher robot using AT89S52 microcontroller as its controller. A DC fan controlled by a relay is utilized to put out the fire and a fire sensor (UV-Tron is used to detect the presence of fire. The movement of the robot is driven by motor DC. The robot can detect the surrounding obstacles and possess an ultrasound-based navigation system. If the ultrasound system detects an obstacle, the robot will automatically turn without colliding the obstacle or other things around it. The result has shown that this fire extinguisher robot can be built using hardware and software controlled by an AT89S52 microcontroller. It can be concluded from the tests that the robot can detect fire as far as 5 meter distance and able to successfully put out the fire.

  6. Visualization of Robotic Sensor Data with Augmented Reality

    OpenAIRE

    Thorstensen, Mathias Ciarlo

    2017-01-01

    To understand a robot's intent and behavior, a robot engineer must analyze data at the input and output, but also at all intermediary steps. This might require looking at a specific subset of the system, or a single data node in isolation. A range of different data formats can be used in the systems, and require visualization in different mediums; some are text based, and best visualized in a terminal, while other types must be presented graphically, in 2D or 3D. This often makes understandin...

  7. Optimized Charging Scheduling with Single Mobile Charger for Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qihua Wang

    2017-11-01

    Full Text Available Due to the rapid development of wireless charging technology, the recharging issue in wireless rechargeable sensor network (WRSN has been a popular research problem in the past few years. The weakness of previous work is that charging route planning is not reasonable. In this work, a dynamic optimal scheduling scheme aiming to maximize the vacation time ratio of a single mobile changer for WRSN is proposed. In the proposed scheme, the wireless sensor network is divided into several sub-networks according to the initial topology of deployed sensor networks. After comprehensive analysis of energy states, working state and constraints for different sensor nodes in WRSN, we transform the optimized charging path problem of the whole network into the local optimization problem of the sub networks. The optimized charging path with respect to dynamic network topology in each sub-network is obtained by solving an optimization problem, and the lifetime of the deployed wireless sensor network can be prolonged. Simulation results show that the proposed scheme has good and reliable performance for a small wireless rechargeable sensor network.

  8. Scheduling policies of intelligent sensors and sensor/actuators in flexible structures

    Science.gov (United States)

    Demetriou, Michael A.; Potami, Raffaele

    2006-03-01

    In this note, we revisit the problem of actuator/sensor placement in large civil infrastructures and flexible space structures within the context of spatial robustness. The positioning of these devices becomes more important in systems employing wireless sensor and actuator networks (WSAN) for improved control performance and for rapid failure detection. The ability of the sensing and actuating devices to possess the property of spatial robustness results in reduced control energy and therefore the spatial distribution of disturbances is integrated into the location optimization measures. In our studies, the structure under consideration is a flexible plate clamped at all sides. First, we consider the case of sensor placement and the optimization scheme attempts to produce those locations that minimize the effects of the spatial distribution of disturbances on the state estimation error; thus the sensor locations produce state estimators with minimized disturbance-to-error transfer function norms. A two-stage optimization procedure is employed whereby one first considers the open loop system and the spatial distribution of disturbances is found that produces the maximal effects on the entire open loop state. Once this "worst" spatial distribution of disturbances is found, the optimization scheme subsequently finds the locations that produce state estimators with minimum transfer function norms. In the second part, we consider the collocated actuator/sensor pairs and the optimization scheme produces those locations that result in compensators with the smallest norms of the disturbance-to-state transfer functions. Going a step further, an intelligent control scheme is presented which, at each time interval, activates a subset of the actuator/sensor pairs in order provide robustness against spatiotemporally moving disturbances and minimize power consumption by keeping some sensor/actuators in sleep mode.

  9. The research of autonomous obstacle avoidance of mobile robot based on multi-sensor integration

    Science.gov (United States)

    Zhao, Ming; Han, Baoling

    2016-11-01

    The object of this study is the bionic quadruped mobile robot. The study has proposed a system design plan for mobile robot obstacle avoidance with the binocular stereo visual sensor and the self-control 3D Lidar integrated with modified ant colony optimization path planning to realize the reconstruction of the environmental map. Because the working condition of a mobile robot is complex, the result of the 3D reconstruction with a single binocular sensor is undesirable when feature points are few and the light condition is poor. Therefore, this system integrates the stereo vision sensor blumblebee2 and the Lidar sensor together to detect the cloud information of 3D points of environmental obstacles. This paper proposes the sensor information fusion technology to rebuild the environment map. Firstly, according to the Lidar data and visual data on obstacle detection respectively, and then consider two methods respectively to detect the distribution of obstacles. Finally fusing the data to get the more complete, more accurate distribution of obstacles in the scene. Then the thesis introduces ant colony algorithm. It has analyzed advantages and disadvantages of the ant colony optimization and its formation cause deeply, and then improved the system with the help of the ant colony optimization to increase the rate of convergence and precision of the algorithm in robot path planning. Such improvements and integrations overcome the shortcomings of the ant colony optimization like involving into the local optimal solution easily, slow search speed and poor search results. This experiment deals with images and programs the motor drive under the compiling environment of Matlab and Visual Studio and establishes the visual 2.5D grid map. Finally it plans a global path for the mobile robot according to the ant colony algorithm. The feasibility and effectiveness of the system are confirmed by ROS and simulation platform of Linux.

  10. Development of sensor system built into a robot hand toward environmental monitoring

    International Nuclear Information System (INIS)

    Kaneko, Kenji; Ueshiba, Toshio; Yoshimi, Takashi; Kawai, Yoshihiro; Morisawa, Mitsuharu; Kanehiro, Fumio; Yokoi, Kazuhito

    2015-01-01

    The development of sensor system that is built into a hand of a humanoid robot toward environmental monitoring is presented in this paper. The developed system consists of a color C-MOS camera, a laser projector with a lens distributing a laser light, and a LED projector. The sensor system can activate/disable these components according to the purpose. This paper introduces the design process, pre-experimental results for evaluating components, and the specifications of the developed sensor system together with experimental results. (author)

  11. A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish.

    Science.gov (United States)

    Liu, Guijie; Wang, Anyi; Wang, Xinbao; Liu, Peng

    2016-01-01

    Lateral line is a system of sense organs that can aid fishes to maneuver in a dark environment. Artificial lateral line (ALL) imitates the structure of lateral line in fishes and provides invaluable means for underwater-sensing technology and robot fish control. This paper reviews ALL, including sensor fabrication and applications to robot fish. The biophysics of lateral line are first introduced to enhance the understanding of lateral line structure and function. The design and fabrication of an ALL sensor on the basis of various sensing principles are then presented. ALL systems are collections of sensors that include carrier and control circuit. Their structure and hydrodynamic detection are reviewed. Finally, further research trends and existing problems of ALL are discussed.

  12. A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish

    Directory of Open Access Journals (Sweden)

    Guijie Liu

    2016-01-01

    Full Text Available Lateral line is a system of sense organs that can aid fishes to maneuver in a dark environment. Artificial lateral line (ALL imitates the structure of lateral line in fishes and provides invaluable means for underwater-sensing technology and robot fish control. This paper reviews ALL, including sensor fabrication and applications to robot fish. The biophysics of lateral line are first introduced to enhance the understanding of lateral line structure and function. The design and fabrication of an ALL sensor on the basis of various sensing principles are then presented. ALL systems are collections of sensors that include carrier and control circuit. Their structure and hydrodynamic detection are reviewed. Finally, further research trends and existing problems of ALL are discussed.

  13. Pressure Sensor: State of the Art, Design, and Application for Robotic Hand

    Directory of Open Access Journals (Sweden)

    Ahmed M. Almassri

    2015-01-01

    Full Text Available We survey the state of the art in a variety of force sensors for designing and application of robotic hand. Most of the force sensors are examined based on tactile sensing. For a decade, many papers have widely discussed various sensor technologies and transducer methods which are based on microelectromechanical system (MEMS and silicon used for improving the accuracy and performance measurement of tactile sensing capabilities especially for robotic hand applications. We found that transducers and materials such as piezoresistive and polymer, respectively, are used in order to improve the sensing sensitivity for grasping mechanisms in future. This predicted growth in such applications will explode into high risk tasks which requires very precise purposes. It shows considerable potential and significant levels of research attention.

  14. Scheduling with Group Dynamics: a Multi-Robot Task Allocation Algorithm based on Vacancy Chains

    National Research Council Canada - National Science Library

    Dahl, Torbjorn S; Mataric, Maja J; Sukhatme, Gaurav S

    2002-01-01

    .... We present a multi-robot task allocation algorithm that is sensitive to group dynamics. Our algorithm is based on vacancy chains, a resource distribution process common in human and animal societies...

  15. Energy efficient distributed cluster head scheduling scheme for two tiered wireless sensor network

    Directory of Open Access Journals (Sweden)

    G. Kannan

    2015-07-01

    Full Text Available Wireless Sensor Network (WSN provides a significant contribution in the emerging fields such as ambient intelligence and ubiquitous computing. In WSN, optimization and load balancing of network resources are critical concern to provide the intelligence for long duration. Since clustering the sensor nodes can significantly enhance overall system scalability and energy efficiency this paper presents a distributed cluster head scheduling (DCHS algorithm to achieve the network longevity in WSN. The major novelty of this work is that the network is divided into primary and secondary tiers based on received signal strength indication of sensor nodes from the base station. The proposed DCHS supports for two tier WSN architecture and gives suggestion to elect the cluster head nodes and gateway nodes for both primary and secondary tiers. The DCHS mechanism satisfies an ideal distribution of the cluster head among the sensor nodes and avoids frequent selection of cluster head, based on Received Signal Strength Indication (RSSI and residual energy level of the sensor nodes. Since the RSSI is the key parameter for this paper, the practical experiment was conducted to measure RSSI value by using MSP430F149 processor and CC2500 transceiver. The measured RSSI values were given input to the event based simulator to test the DCHS mechanism. The real time experimental study validated the proposed scheme for various scenarios.

  16. Dynamics, control and sensor issues pertinent to robotic hands for the EVA retriever system

    Science.gov (United States)

    Mclauchlan, Robert A.

    1987-01-01

    Basic dynamics, sensor, control, and related artificial intelligence issues pertinent to smart robotic hands for the Extra Vehicular Activity (EVA) Retriever system are summarized and discussed. These smart hands are to be used as end effectors on arms attached to manned maneuvering units (MMU). The Retriever robotic systems comprised of MMU, arm and smart hands, are being developed to aid crewmen in the performance of routine EVA tasks including tool and object retrieval. The ultimate goal is to enhance the effectiveness of EVA crewmen.

  17. Experimental Robot Model Adjustments Based on Force–Torque Sensor Information

    Directory of Open Access Journals (Sweden)

    Santiago Martinez

    2018-03-01

    Full Text Available The computational complexity of humanoid robot balance control is reduced through the application of simplified kinematics and dynamics models. However, these simplifications lead to the introduction of errors that add to other inherent electro-mechanic inaccuracies and affect the robotic system. Linear control systems deal with these inaccuracies if they operate around a specific working point but are less precise if they do not. This work presents a model improvement based on the Linear Inverted Pendulum Model (LIPM to be applied in a non-linear control system. The aim is to minimize the control error and reduce robot oscillations for multiple working points. The new model, named the Dynamic LIPM (DLIPM, is used to plan the robot behavior with respect to changes in the balance status denoted by the zero moment point (ZMP. Thanks to the use of information from force–torque sensors, an experimental procedure has been applied to characterize the inaccuracies and introduce them into the new model. The experiments consist of balance perturbations similar to those of push-recovery trials, in which step-shaped ZMP variations are produced. The results show that the responses of the robot with respect to balance perturbations are more precise and the mechanical oscillations are reduced without comprising robot dynamics.

  18. Precise Localization and Formation Control of Swarm Robots via Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Han Wu

    2014-01-01

    Full Text Available Precise localization and formation control are one of the key technologies to achieve coordination and control of swarm robots, which is also currently a bottleneck for practical applications of swarm robotic systems. Aiming at overcoming the limited individual perception and the difficulty of achieving precise localization and formation, a localization approach combining dead reckoning (DR with wireless sensor network- (WSN- based methods is proposed in this paper. Two kinds of WSN localization technologies are adopted in this paper, that is, ZigBee-based RSSI (received signal strength indication global localization and electronic tag floors for calibration of local positioning. First, the DR localization information is combined with the ZigBee-based RSSI position information using the Kalman filter method to achieve precise global localization and maintain the robot formation. Then the electronic tag floors provide the robots with their precise coordinates in some local areas and enable the robot swarm to calibrate its formation by reducing the accumulated position errors. Hence, the overall performance of localization and formation control of the swarm robotic system is improved. Both of the simulation results and the experimental results on a real schematic system are given to demonstrate the success of the proposed approach.

  19. Improved tactile resonance sensor for robotic assisted surgery

    Science.gov (United States)

    Oliva Uribe, David; Schoukens, Johan; Stroop, Ralf

    2018-01-01

    This paper presents an improved tactile sensor using a piezoelectric bimorph able to differentiate soft materials with similar mechanical characteristics. The final aim is to develop intelligent surgical tools for brain tumour resection using integrated sensors in order to improve tissue tumour delineation and tissue differentiation. The bimorph sensor is driven using a random phase multisine and the properties of contact between the sensor's tip and a certain load are evaluated by means of the evaluation of the nonparametric FRF. An analysis of the nonlinear contributions is presented to show that the use of a linear model is feasible for the measurement conditions. A series of gelatine phantoms were tested. The tactile sensor is able to identify minimal differences in the consistency of the measured samples considering viscoelastic behaviour. A variance analysis was performed to evaluate the reliability of the sensors and to identify possible error sources due to inconsistencies in the preparation method of the phantoms. The results of the variance analysis are discussed showing that ability of the proposed tactile sensor to perform high quality measurements.

  20. Energy Efficient Real-Time Scheduling Using DPM on Mobile Sensors with a Uniform Multi-Cores

    Directory of Open Access Journals (Sweden)

    Youngmin Kim

    2017-12-01

    Full Text Available In wireless sensor networks (WSNs, sensor nodes are deployed for collecting and analyzing data. These nodes use limited energy batteries for easy deployment and low cost. The use of limited energy batteries is closely related to the lifetime of the sensor nodes when using wireless sensor networks. Efficient-energy management is important to extending the lifetime of the sensor nodes. Most effort for improving power efficiency in tiny sensor nodes has focused mainly on reducing the power consumed during data transmission. However, recent emergence of sensor nodes equipped with multi-cores strongly requires attention to be given to the problem of reducing power consumption in multi-cores. In this paper, we propose an energy efficient scheduling method for sensor nodes supporting a uniform multi-cores. We extend the proposed T-Ler plane based scheduling for global optimal scheduling of a uniform multi-cores and multi-processors to enable power management using dynamic power management. In the proposed approach, processor selection for a scheduling and mapping method between the tasks and processors is proposed to efficiently utilize dynamic power management. Experiments show the effectiveness of the proposed approach compared to other existing methods.

  1. Distributed Sleep Scheduling in Wireless Sensor Networks via Fractional Domatic Partitioning

    Science.gov (United States)

    Schumacher, André; Haanpää, Harri

    We consider setting up sleep scheduling in sensor networks. We formulate the problem as an instance of the fractional domatic partition problem and obtain a distributed approximation algorithm by applying linear programming approximation techniques. Our algorithm is an application of the Garg-Könemann (GK) scheme that requires solving an instance of the minimum weight dominating set (MWDS) problem as a subroutine. Our two main contributions are a distributed implementation of the GK scheme for the sleep-scheduling problem and a novel asynchronous distributed algorithm for approximating MWDS based on a primal-dual analysis of Chvátal's set-cover algorithm. We evaluate our algorithm with ns2 simulations.

  2. Optical Three-Axis Tactile Sensor for Robotic Fingers

    OpenAIRE

    Ohka, Masahiro; Takata, Jumpei; Kobayashi, Hiroaki; Suzuki, Hirofumi; Morisawa, Nobuyuki; Yussof, Hanafiah Bin

    2008-01-01

    A new three-axis tactile sensor to be mounted on multi-fingered hands is developed based on the principle of an optical waveguide-type tactile sensor comprised of an acrylic hemispherical dome, a light source, an array of rubber sensing elements, and a CCD camera. The sensing element of the present tactile sensor includes one columnar feeler and eight conical feelers. A three-axis force applied to the tip of the sensing element is detected by the contact areas of the conical feelers, which ma...

  3. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    Science.gov (United States)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  4. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    International Nuclear Information System (INIS)

    1991-06-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity

  5. Direct training of robots using a positional deviation sensor

    OpenAIRE

    Dessen, Fredrik

    1988-01-01

    A device and system for physically guiding a manipulator through its task is described. The device consists of inductive, contact-free positional deviation sensors, enabling the rcbot to track a motion marker. Factors limiting the tracking performance are the kinematics of the sensor device and the bartdwidth of the servo system. Means for improving it includes the use of optimal motion coordination and force and velocity feedback. This enables real-time manual training o...

  6. Miniaturized robotically deployed sensor systems for in-situ characterization of hazardous waste

    International Nuclear Information System (INIS)

    Fischer, G.J.

    1996-01-01

    A series of ''MiniLab'' end effectors are currently being designed for robotic deployment in hazardous areas such as waste storage tanks at Idaho National Engineering Laboratories (INEL) and Oak Ridge National Laboratory (ORNL). These MiniLabs will be the first ever multichannel hazardous waste characterization end effectors deployed in underground high level waste storage tanks. They consist of a suite of chemical, radiological, and physical properties sensors integrated into a compact package mounted on the end of a robotic arm and/or vehicle. Most of the sensors are commercially available thus reducing the overall cost of design and maintenance. Sensor configurations can be customized depending on site/customer needs. This paper will address issues regarding the cost of field sampling verses MiniLab in-situ measurements and a brief background of the Light Duty utility Arm (LDUA) program. Topics receiving in depth attention will include package size parameters/constraints, design specifications, and investigations of currently available sensor technology. Sensors include radiological, gas, chemical, electrolytic, visual, temperature, and ranging. The effects of radiation on the life of the systems/sensors will also be discussed. Signal processing, control, display, and data acquisition methods will be described. The paper will conclude with an examination of possible applications for MiniLabs

  7. Rancang Bangun Robot 6WD Dengan Sensor Gas TGS2600 Menggunakan Metode Wall Following Berbasis Arduino Mega 2560

    Directory of Open Access Journals (Sweden)

    I Made Arya Budhana

    2017-07-01

    Full Text Available Intisari— Perkembangan teknologi khususnya dibidang robotika saat ini sangat pesat, Salah satu bentuk aplikasi dari teknologi robotika yang erat kaitannya dengan sistem kontrol adalah wheel mobile robot. Beberapa metode dapat dilakukan untuk mendistribusikan gas alam salah satunya dengan pipa. Distribusi gas alam dengan menggunakan pipa sering mengalami kendala kebocoran yang disebabkan usia dari pipa distribusi yang sudah cukup tua. Untuk mempermudah pemantauan pipa gas yang berada di bawah tanah digunakan robot 6 WD (wheel drive yang memiliki 6 roda dan penggerak pada setiap rodanya untuk mengatasi medan yang berat. Pergerakan dari robot 6 WD mengacu pada sensor ultrasonik SRF HC-SR04, metode ini dinamakan wall following. Sensor gas tipe TGS dari figaro dimanfaatkan untuk mengetahui adanya kebocoran gas  pada pipa atau tidak. Selain itu, robot ini juga dilengkapi dengan kamera untuk mengirim gambar kerusakan pipa pada user agar dapat segera dilakukan perbaikan. Arduino Mega 2560 digunakan sebagai otak pada robot 6 WD yang bertugas untuk mengolah data yang masuk dan memberikan instruksi pada robot 6WD. Pengiriman data dari robot 6 WD pada pengguna meliputi, data sensor gas, data sensor kompas, data sensor jarak dan gambar kerusakan pada pipa. Seluruh data dapat dilihat pada GCS (Ground Control Station.   [TRUNITIN CHECK 20%, 26042017

  8. Development of sensor augmented robotic weld systems for aerospace propulsion system fabrication

    Science.gov (United States)

    Jones, C. S.; Gangl, K. J.

    1986-01-01

    In order to meet stringent performance goals for power and reuseability, the Space Shuttle Main Engine was designed with many complex, difficult welded joints that provide maximum strength and minimum weight. To this end, the SSME requires 370 meters of welded joints. Automation of some welds has improved welding productivity significantly over manual welding. Application has previously been limited by accessibility constraints, requirements for complex process control, low production volumes, high part variability, and stringent quality requirements. Development of robots for welding in this application requires that a unique set of constraints be addressed. This paper shows how robotic welding can enhance production of aerospace components by addressing their specific requirements. A development program at the Marshall Space Flight Center combining industrial robots with state-of-the-art sensor systems and computer simulation is providing technology for the automation of welds in Space Shuttle Main Engine production.

  9. Brain Computer Interface for Micro-controller Driven Robot Based on Emotiv Sensors

    Directory of Open Access Journals (Sweden)

    Parth Gargava

    2017-08-01

    Full Text Available A Brain Computer Interface (BCI is developed to navigate a micro-controller based robot using Emotiv sensors. The BCI system has a pipeline of 5 stages- signal acquisition, pre-processing, feature extraction, classification and CUDA inter- facing. It shall aid in serving a prototype for physical movement of neurological patients who are unable to control or operate on their muscular movements. All stages of the pipeline are designed to process bodily actions like eye blinks to command navigation of the robot. This prototype works on features learning and classification centric techniques using support vector machine. The suggested pipeline, ensures successful navigation of a robot in four directions in real time with accuracy of 93 percent.

  10. Structural design and output characteristic analysis of magnetostrictive tactile sensor for robotic applications

    Science.gov (United States)

    Zheng, Wendong; Wang, Bowen; Liu, Huaping; Li, Yunkai; Zhao, Ran; Weng, Ling; Zhang, Changgeng

    2018-05-01

    A novel magnetostrictive tactile sensor has been designed according to the transduction mechanism of cilia and Villari effect of iron-gallium alloy. The tactile sensor consists of a Galfenol beam, a pair of permanent magnets, a Hall sensor and a signal processing system. Compared with the conventional tactile sensor, our proposed tactile sensor can not only detect the contact-force, but also sense stiffness of an object. The performance and measurement range of tactile sensor have theoretically been analyzed and experimentally investigated. The results have revealed that the sensibility of tactile sensor for sensing force is up to 22.81mV/N at applied bias magnetic field of 2.56kA/m. Moreover, the sensor can effectively discriminate objects with different stiffness. The sensor is characterized by high sensitivity, good linearity, and quick response. It has the potential of being miniaturized and integrated into the finger of a robotic hand to realize force sensing and object recognition in real-time.

  11. Gain-scheduling control of a monocular vision-based human-following robot

    CSIR Research Space (South Africa)

    Burke, Michael G

    2011-08-01

    Full Text Available , R. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge University Press, 2nd edition. Hutchinson, S., Hager, G., and Corke, P. (1996). A tutorial on visual servo control. IEEE Trans. on Robotics and Automation, 12... environment, in a passive manner, at relatively high speeds and low cost. The control of mobile robots using vision in the feed- back loop falls into the well-studied field of visual servo control. Two primary approaches are used: image-based visual...

  12. Design, implementation and evaluation of an independent real-time safety layer for medical robotic systems using a force-torque-acceleration (FTA) sensor.

    Science.gov (United States)

    Richter, Lars; Bruder, Ralf

    2013-05-01

    Most medical robotic systems require direct interaction or contact with the robot. Force-Torque (FT) sensors can easily be mounted to the robot to control the contact pressure. However, evaluation is often done in software, which leads to latencies. To overcome that, we developed an independent safety system, named FTA sensor, which is based on an FT sensor and an accelerometer. An embedded system (ES) runs a real-time monitoring system for continuously checking of the readings. In case of a collision or error, it instantaneously stops the robot via the robot's external emergency stop. We found that the ES implementing the FTA sensor has a maximum latency of [Formula: see text] ms to trigger the robot's emergency stop. For the standard settings in the application of robotized transcranial magnetic stimulation, the robot will stop after at most 4 mm. Therefore, it works as an independent safety layer preventing patient and/or operator from serious harm.

  13. An Intelligent Robot Programing

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Yong

    2012-01-15

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  14. An Intelligent Robot Programing

    International Nuclear Information System (INIS)

    Hong, Seong Yong

    2012-01-01

    This book introduces an intelligent robot programing with background of the begging, introduction of VPL, and SPL, building of environment for robot platform, starting of robot programing, design of simulation environment, robot autonomy drive control programing, simulation graphic. Such as SPL graphic programing graphical image and graphical shapes, and graphical method application, application of procedure for robot control, robot multiprogramming, robot bumper sensor programing, robot LRF sencor programing and robot color sensor programing.

  15. Hybrid Control of Long-Endurance Aerial Robotic Vehicles for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Deok-Jin Lee

    2011-06-01

    Full Text Available This paper presents an effective hybrid control approach for building stable wireless sensor networks between heterogeneous unmanned vehicles using long‐ endurance aerial robotic vehicles. For optimal deployment of the aerial vehicles in communication networks, a gradient climbing based self‐estimating control algorithm is utilized to locate the aerial platforms to maintain maximum communication throughputs between distributed multiple nodes. The autonomous aerial robots, which function as communication relay nodes, extract and harvest thermal energy from the atmospheric environment to improve their flight endurance within specified communication coverage areas. The rapidly‐deployable sensor networks with the high‐endurance aerial vehicles can be used for various application areas including environment monitoring, surveillance, tracking, and decision‐making support. Flight test and simulation studies are conducted to evaluate the effectiveness of the proposed hybrid control technique for robust communication networks.

  16. The KCLBOT: Exploiting RGB-D Sensor Inputs for Navigation Environment Building and Mobile Robot Localization

    Directory of Open Access Journals (Sweden)

    Evangelos Georgiou

    2011-09-01

    Full Text Available This paper presents an alternative approach to implementing a stereo camera configuration for SLAM. The approach suggested implements a simplified method using a single RGB-D camera sensor mounted on a maneuverable non-holonomic mobile robot, the KCLBOT, used for extracting image feature depth information while maneuvering. Using a defined quadratic equation, based on the calibration of the camera, a depth computation model is derived base on the HSV color space map. Using this methodology it is possible to build navigation environment maps and carry out autonomous mobile robot path following and obstacle avoidance. This paper presents a calculation model which enables the distance estimation using the RGB-D sensor from Microsoft .NET micro framework device. Experimental results are presented to validate the distance estimation methodology.

  17. Online Phase Detection Using Wearable Sensors for Walking with a Robotic Prosthesis

    Directory of Open Access Journals (Sweden)

    Maja Goršič

    2014-02-01

    Full Text Available This paper presents a gait phase detection algorithm for providing feedback in walking with a robotic prosthesis. The algorithm utilizes the output signals of a wearable wireless sensory system incorporating sensorized shoe insoles and inertial measurement units attached to body segments. The principle of detecting transitions between gait phases is based on heuristic threshold rules, dividing a steady-state walking stride into four phases. For the evaluation of the algorithm, experiments with three amputees, walking with the robotic prosthesis and wearable sensors, were performed. Results show a high rate of successful detection for all four phases (the average success rate across all subjects >90%. A comparison of the proposed method to an off-line trained algorithm using hidden Markov models reveals a similar performance achieved without the need for learning dataset acquisition and previous model training.

  18. Global Coverage Measurement Planning Strategies for Mobile Robots Equipped with a Remote Gas Sensor

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Arain

    2015-03-01

    Full Text Available The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions.

  19. Extreme Mechanics in Soft Pneumatic Robots and Soft Microfluidic Electronics and Sensors

    Science.gov (United States)

    Majidi, Carmel

    2012-02-01

    In the near future, machines and robots will be completely soft, stretchable, impact resistance, and capable of adapting their shape and functionality to changes in mission and environment. Similar to biological tissue and soft-body organisms, these next-generation technologies will contain no rigid parts and instead be composed entirely of soft elastomers, gels, fluids, and other non-rigid matter. Using a combination of rapid prototyping tools, microfabrication methods, and emerging techniques in so-called ``soft lithography,'' scientists and engineers are currently introducing exciting new families of soft pneumatic robots, soft microfluidic sensors, and hyperelastic electronics that can be stretched to as much as 10x their natural length. Progress has been guided by an interdisciplinary collection of insights from chemistry, life sciences, robotics, microelectronics, and solid mechanics. In virtually every technology and application domain, mechanics and elasticity have a central role in governing functionality and design. Moreover, in contrast to conventional machines and electronics, soft pneumatic systems and microfluidics typically operate in the finite deformation regime, with materials stretching to several times their natural length. In this talk, I will review emerging paradigms in soft pneumatic robotics and soft microfluidic electronics and highlight modeling and design challenges that arise from the extreme mechanics of inflation, locomotion, sensor operation, and human interaction. I will also discuss perceived challenges and opportunities in a broad range of potential application, from medicine to wearable computing.

  20. Infrared Range Sensor Array for 3D Sensing in Robotic Applications

    Directory of Open Access Journals (Sweden)

    Yongtae Do

    2013-04-01

    Full Text Available This paper presents the design and testing of multiple infrared range detectors arranged in a two-dimensional (2D array. The proposed system can collect the sparse three-dimensional (3D data of objects and surroundings for robotics applications. Three kinds of tasks are considered using the system: detecting obstacles that lie ahead of a mobile robot, sensing the ground profile for the safe navigation of a mobile robot, and sensing the shape and position of an object on a conveyor belt for pickup by a robot manipulator. The developed system is potentially a simple alternative to high-resolution (and expensive 3D sensing systems, such as stereo cameras or laser scanners. In addition, the system can provide shape information about target objects and surroundings that cannot be obtained using simple ultrasonic sensors. Laboratory prototypes of the system were built with nine infrared range sensors arranged in a 3×3 array and test results confirmed the validity of system.

  1. Obstacle avoidance test using a sensor-based autonomous robotic system

    International Nuclear Information System (INIS)

    Fujii, Yoshio; Suzuki, Katsuo

    1998-12-01

    From a viewpoint of reducing personnel radiation exposure of plant staffs working in the high radiation area of nuclear facilities, it is often said to be necessary to develop remote robotic systems, which have great potential of performing various tasks in nuclear facilities. Hence, we developed an advanced remote robotic system, consisting of redundant manipulator and environment-sensing systems, which can be applied to complicated handling tasks under unstructured environment. In the robotic system, various types of sensors for environment-sensing are mounted on the redundant manipulator and sensor-based autonomous capabilities are incorporated. This report describes the results of autonomous obstacle avoidance test which was carried out as follows: manipulating valves at the rear-side of wall, through a narrow window of the wall, with the redundant manipulator mounted on an x-axis driving mechanism. From this test, it is confirmed that the developed robotic system can autonomously achieve handling tasks in limited space as avoiding obstacles, which is supposed to be difficult by a non-redundant manipulator. (author)

  2. Brain Computer Interface for Micro-controller Driven Robot Based on Emotiv Sensors

    OpenAIRE

    Parth Gargava; Krishna Asawa

    2017-01-01

    A Brain Computer Interface (BCI) is developed to navigate a micro-controller based robot using Emotiv sensors. The BCI system has a pipeline of 5 stages- signal acquisition, pre-processing, feature extraction, classification and CUDA inter- facing. It shall aid in serving a prototype for physical movement of neurological patients who are unable to control or operate on their muscular movements. All stages of the pipeline are designed to process bodily actions like eye blinks to command naviga...

  3. Command Recognition of Robot with Low Dimension Whole-Body Haptic Sensor

    Science.gov (United States)

    Ito, Tatsuya; Tsuji, Toshiaki

    The authors have developed “haptic armor”, a whole-body haptic sensor that has an ability to estimate contact position. Although it is developed for safety assurance of robots in human environment, it can also be used as an interface. This paper proposes a command recognition method based on finger trace information. This paper also discusses some technical issues for improving recognition accuracy of this system.

  4. Fuzzy mobile-robot positioning in intelligent spaces using wireless sensor networks.

    Science.gov (United States)

    Herrero, David; Martínez, Humberto

    2011-01-01

    This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using wireless sensor networks (WSNs). The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  5. Study on robot motion control for intelligent welding processes based on the laser tracking sensor

    Science.gov (United States)

    Zhang, Bin; Wang, Qian; Tang, Chen; Wang, Ju

    2017-06-01

    A robot motion control method is presented for intelligent welding processes of complex spatial free-form curve seams based on the laser tracking sensor. First, calculate the tip position of the welding torch according to the velocity of the torch and the seam trajectory detected by the sensor. Then, search the optimal pose of the torch under constraints using genetic algorithms. As a result, the intersection point of the weld seam and the laser plane of the sensor is within the detectable range of the sensor. Meanwhile, the angle between the axis of the welding torch and the tangent of the weld seam meets the requirements. The feasibility of the control method is proved by simulation.

  6. RoCoMAR: Robots' Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    Science.gov (United States)

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2013-01-01

    In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134

  7. Research on robot navigation vision sensor based on grating projection stereo vision

    Science.gov (United States)

    Zhang, Xiaoling; Luo, Yinsheng; Lin, Yuchi; Zhu, Lei

    2016-10-01

    A novel visual navigation method based on grating projection stereo vision for mobile robot in dark environment is proposed. This method is combining with grating projection profilometry of plane structured light and stereo vision technology. It can be employed to realize obstacle detection, SLAM (Simultaneous Localization and Mapping) and vision odometry for mobile robot navigation in dark environment without the image match in stereo vision technology and without phase unwrapping in the grating projection profilometry. First, we research the new vision sensor theoretical, and build geometric and mathematical model of the grating projection stereo vision system. Second, the computational method of 3D coordinates of space obstacle in the robot's visual field is studied, and then the obstacles in the field is located accurately. The result of simulation experiment and analysis shows that this research is useful to break the current autonomous navigation problem of mobile robot in dark environment, and to provide the theoretical basis and exploration direction for further study on navigation of space exploring robot in the dark and without GPS environment.

  8. Mechatronic sensor system for robots and automated machines

    CSIR Research Space (South Africa)

    Shaik, AA

    2007-01-01

    Full Text Available machine makes a calculated estimate of where the tool-head should be. This is often achieved by monitoring sensors on axes that track linear translation and rotations of shafts or gears. For low precision applications this system is appropriate. However...

  9. Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors.

    Science.gov (United States)

    Spiers, Adam J; Liarokapis, Minas V; Calli, Berk; Dollar, Aaron M

    2016-01-01

    Classical robotic approaches to tactile object identification often involve rigid mechanical grippers, dense sensor arrays, and exploratory procedures (EPs). Though EPs are a natural method for humans to acquire object information, evidence also exists for meaningful tactile property inference from brief, non-exploratory motions (a 'haptic glance'). In this work, we implement tactile object identification and feature extraction techniques on data acquired during a single, unplanned grasp with a simple, underactuated robot hand equipped with inexpensive barometric pressure sensors. Our methodology utilizes two cooperating schemes based on an advanced machine learning technique (random forests) and parametric methods that estimate object properties. The available data is limited to actuator positions (one per two link finger) and force sensors values (eight per finger). The schemes are able to work both independently and collaboratively, depending on the task scenario. When collaborating, the results of each method contribute to the other, improving the overall result in a synergistic fashion. Unlike prior work, the proposed approach does not require object exploration, re-grasping, grasp-release, or force modulation and works for arbitrary object start positions and orientations. Due to these factors, the technique may be integrated into practical robotic grasping scenarios without adding time or manipulation overheads.

  10. Recognition and automatic tracking of weld line in fringe welding by autonomous mobile robot with visual sensor

    International Nuclear Information System (INIS)

    Suga, Yasuo; Saito, Keishin; Ishii, Hideaki.

    1994-01-01

    An autonomous mobile robot with visual sensor and four driving axes for welding of pipe and fringe was constructed. The robot can move along a pipe, and detect the weld line to be welded by visual sensor. Moreover, in order to perform welding automatically, the tip of welding torch can track the weld line of the joint by rotating the robot head. In the case of welding of pipe and fringe, the robot can detect the contact angle between the two base metals to be welded, and the torch angle changes according to the contact angle. As the result of tracking test by the robot system, it was made clear that the recognition of geometry of the joint by the laser lighting method and automatic tracking of weld line were possible. The average tracking error was ±0.3 mm approximately and the torch angle could be always kept at the optimum angle. (author)

  11. Sensors Fusion based Online Mapping and Features Extraction of Mobile Robot in the Road Following and Roundabout

    International Nuclear Information System (INIS)

    Ali, Mohammed A H; Yussof, Wan Azhar B.; Hamedon, Zamzuri B; Yussof, Zulkifli B.; Majeed, Anwar P P; Mailah, Musa

    2016-01-01

    A road feature extraction based mapping system using a sensor fusion technique for mobile robot navigation in road environments is presented in this paper. The online mapping of mobile robot is performed continuously in the road environments to find the road properties that enable the robot to move from a certain start position to pre-determined goal while discovering and detecting the roundabout. The sensors fusion involving laser range finder, camera and odometry which are installed in a new platform, are used to find the path of the robot and localize it within its environments. The local maps are developed using camera and laser range finder to recognize the roads borders parameters such as road width, curbs and roundabout. Results show the capability of the robot with the proposed algorithms to effectively identify the road environments and build a local mapping for road following and roundabout. (paper)

  12. Dynamic Compensation for Two-Axis Robot Wrist Force Sensors

    Directory of Open Access Journals (Sweden)

    Junqing Ma

    2013-01-01

    Full Text Available To improve the dynamic characteristic of two-axis force sensors, a dynamic compensation method is proposed. The two-axis force sensor system is assumed to be a first-order system. The operation frequency of the system is expanded by a digital filter with backward difference network. To filter high-frequency noises, a low-pass filter is added after the dynamic compensation network. To avoid overcompensation, parameters of the proposed dynamic compensation method are defined by trial and error. Step response methods are utilized in dynamic calibration experiments. Compared to experiment data without compensation, the response time of the dynamic compensated data is reduced by 30%~40%. Experiments results demonstrate the effectiveness of our method.

  13. Towards the Robotic “Avatar”: An Extensive Survey of the Cooperation between and within Networked Mobile Sensors

    Directory of Open Access Journals (Sweden)

    Aydan M. Erkmen

    2010-09-01

    Full Text Available Cooperation between networked mobile sensors, wearable and sycophant sensor networks with parasitically sticking agents, and also having human beings involved in the loop is the “Avatarization” within the robotic research community, where all networks are connected and where you can connect/disconnect at any time to acquire data from a vast unstructured world. This paper extensively surveys the networked robotic foundations of this robotic biological “Avatar” that awaits us in the future. Cooperation between networked mobile sensors as well as cooperation of nodes within a network are becoming more robust, fault tolerant and enable adaptation of the networks to changing environment conditions. In this paper, we survey and comparatively discuss the current state of networked robotics via their critical application areas and their design characteristics. We conclude by discussing future challenges.

  14. Energy-Saving Traffic Scheduling in Hybrid Software Defined Wireless Rechargeable Sensor Networks.

    Science.gov (United States)

    Wei, Yunkai; Ma, Xiaohui; Yang, Ning; Chen, Yijin

    2017-09-15

    Software Defined Wireless Rechargeable Sensor Networks (SDWRSNs) are an inexorable trend for Wireless Sensor Networks (WSNs), including Wireless Rechargeable Sensor Network (WRSNs). However, the traditional network devices cannot be completely substituted in the short term. Hybrid SDWRSNs, where software defined devices and traditional devices coexist, will last for a long time. Hybrid SDWRSNs bring new challenges as well as opportunities for energy saving issues, which is still a key problem considering that the wireless chargers are also exhaustible, especially in some rigid environment out of the main supply. Numerous energy saving schemes for WSNs, or even some works for WRSNs, are no longer suitable for the new features of hybrid SDWRSNs. To solve this problem, this paper puts forward an Energy-saving Traffic Scheduling (ETS) algorithm. The ETS algorithm adequately considers the new characters in hybrid SDWRSNs, and takes advantage of the Software Defined Networking (SDN) controller's direct control ability on SDN nodes and indirect control ability on normal nodes. The simulation results show that, comparing with traditional Minimum Transmission Energy (MTE) protocol, ETS can substantially improve the energy efficiency in hybrid SDWRSNs for up to 20-40% while ensuring feasible data delay.

  15. Energy-Saving Traffic Scheduling in Hybrid Software Defined Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yunkai Wei

    2017-09-01

    Full Text Available Software Defined Wireless Rechargeable Sensor Networks (SDWRSNs are an inexorable trend for Wireless Sensor Networks (WSNs, including Wireless Rechargeable Sensor Network (WRSNs. However, the traditional network devices cannot be completely substituted in the short term. Hybrid SDWRSNs, where software defined devices and traditional devices coexist, will last for a long time. Hybrid SDWRSNs bring new challenges as well as opportunities for energy saving issues, which is still a key problem considering that the wireless chargers are also exhaustible, especially in some rigid environment out of the main supply. Numerous energy saving schemes for WSNs, or even some works for WRSNs, are no longer suitable for the new features of hybrid SDWRSNs. To solve this problem, this paper puts forward an Energy-saving Traffic Scheduling (ETS algorithm. The ETS algorithm adequately considers the new characters in hybrid SDWRSNs, and takes advantage of the Software Defined Networking (SDN controller’s direct control ability on SDN nodes and indirect control ability on normal nodes. The simulation results show that, comparing with traditional Minimum Transmission Energy (MTE protocol, ETS can substantially improve the energy efficiency in hybrid SDWRSNs for up to 20–40% while ensuring feasible data delay.

  16. A New Localization System for Indoor Service Robots in Low Luminance and Slippery Indoor Environment Using Afocal Optical Flow Sensor Based Sensor Fusion

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Yi

    2018-01-01

    Full Text Available In this paper, a new localization system utilizing afocal optical flow sensor (AOFS based sensor fusion for indoor service robots in low luminance and slippery environment is proposed, where conventional localization systems do not perform well. To accurately estimate the moving distance of a robot in a slippery environment, the robot was equipped with an AOFS along with two conventional wheel encoders. To estimate the orientation of the robot, we adopted a forward-viewing mono-camera and a gyroscope. In a very low luminance environment, it is hard to conduct conventional feature extraction and matching for localization. Instead, the interior space structure from an image and robot orientation was assessed. To enhance the appearance of image boundary, rolling guidance filter was applied after the histogram equalization. The proposed system was developed to be operable on a low-cost processor and implemented on a consumer robot. Experiments were conducted in low illumination condition of 0.1 lx and carpeted environment. The robot moved for 20 times in a 1.5 × 2.0 m square trajectory. When only wheel encoders and a gyroscope were used for robot localization, the maximum position error was 10.3 m and the maximum orientation error was 15.4°. Using the proposed system, the maximum position error and orientation error were found as 0.8 m and within 1.0°, respectively.

  17. A New Localization System for Indoor Service Robots in Low Luminance and Slippery Indoor Environment Using Afocal Optical Flow Sensor Based Sensor Fusion.

    Science.gov (United States)

    Yi, Dong-Hoon; Lee, Tae-Jae; Cho, Dong-Il Dan

    2018-01-10

    In this paper, a new localization system utilizing afocal optical flow sensor (AOFS) based sensor fusion for indoor service robots in low luminance and slippery environment is proposed, where conventional localization systems do not perform well. To accurately estimate the moving distance of a robot in a slippery environment, the robot was equipped with an AOFS along with two conventional wheel encoders. To estimate the orientation of the robot, we adopted a forward-viewing mono-camera and a gyroscope. In a very low luminance environment, it is hard to conduct conventional feature extraction and matching for localization. Instead, the interior space structure from an image and robot orientation was assessed. To enhance the appearance of image boundary, rolling guidance filter was applied after the histogram equalization. The proposed system was developed to be operable on a low-cost processor and implemented on a consumer robot. Experiments were conducted in low illumination condition of 0.1 lx and carpeted environment. The robot moved for 20 times in a 1.5 × 2.0 m square trajectory. When only wheel encoders and a gyroscope were used for robot localization, the maximum position error was 10.3 m and the maximum orientation error was 15.4°. Using the proposed system, the maximum position error and orientation error were found as 0.8 m and within 1.0°, respectively.

  18. Robotics

    International Nuclear Information System (INIS)

    Scheide, A.W.

    1983-01-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS

  19. HURON (HUman and Robotic Optimization Network) Multi-Agent Temporal Activity Planner/Scheduler

    Science.gov (United States)

    Hua, Hook; Mrozinski, Joseph J.; Elfes, Alberto; Adumitroaie, Virgil; Shelton, Kacie E.; Smith, Jeffrey H.; Lincoln, William P.; Weisbin, Charles R.

    2012-01-01

    HURON solves the problem of how to optimize a plan and schedule for assigning multiple agents to a temporal sequence of actions (e.g., science tasks). Developed as a generic planning and scheduling tool, HURON has been used to optimize space mission surface operations. The tool has also been used to analyze lunar architectures for a variety of surface operational scenarios in order to maximize return on investment and productivity. These scenarios include numerous science activities performed by a diverse set of agents: humans, teleoperated rovers, and autonomous rovers. Once given a set of agents, activities, resources, resource constraints, temporal constraints, and de pendencies, HURON computes an optimal schedule that meets a specified goal (e.g., maximum productivity or minimum time), subject to the constraints. HURON performs planning and scheduling optimization as a graph search in state-space with forward progression. Each node in the graph contains a state instance. Starting with the initial node, a graph is automatically constructed with new successive nodes of each new state to explore. The optimization uses a set of pre-conditions and post-conditions to create the children states. The Python language was adopted to not only enable more agile development, but to also allow the domain experts to easily define their optimization models. A graphical user interface was also developed to facilitate real-time search information feedback and interaction by the operator in the search optimization process. The HURON package has many potential uses in the fields of Operations Research and Management Science where this technology applies to many commercial domains requiring optimization to reduce costs. For example, optimizing a fleet of transportation truck routes, aircraft flight scheduling, and other route-planning scenarios involving multiple agent task optimization would all benefit by using HURON.

  20. Slip detection with accelerometer and tactile sensors in a robotic hand model

    Science.gov (United States)

    Al-Shanoon, Abdulrahman Abdulkareem S.; Anom Ahmad, Siti; Hassan, Mohd. Khair b.

    2015-11-01

    Grasp planning is an interesting issue in studies that dedicated efforts to investigate tactile sensors. This study investigated the physical force interaction between a tactile pressure sensor and a particular object. It also characterized object slipping during gripping operations and presented secure regripping of an object. Acceleration force was analyzed using an accelerometer sensor to establish a completely autonomous robotic hand model. An automatic feedback control system was applied to regrip the particular object when it commences to slip. Empirical findings were presented in consideration of the detection and subsequent control of the slippage situation. These findings revealed the correlation between the distance of the object slipping and the required force to regrip the object safely. This approach is similar to Hooke's law formula.

  1. Calibration of a flexible measurement system based on industrial articulated robot and structured light sensor

    Science.gov (United States)

    Mu, Nan; Wang, Kun; Xie, Zexiao; Ren, Ping

    2017-05-01

    To realize online rapid measurement for complex workpieces, a flexible measurement system based on an articulated industrial robot with a structured light sensor mounted on the end-effector is developed. A method for calibrating the system parameters is proposed in which the hand-eye transformation parameters and the robot kinematic parameters are synthesized in the calibration process. An initial hand-eye calibration is first performed using a standard sphere as the calibration target. By applying the modified complete and parametrically continuous method, we establish a synthesized kinematic model that combines the initial hand-eye transformation and distal link parameters as a whole with the sensor coordinate system as the tool frame. According to the synthesized kinematic model, an error model is constructed based on spheres' center-to-center distance errors. Consequently, the error model parameters can be identified in a calibration experiment using a three-standard-sphere target. Furthermore, the redundancy of error model parameters is eliminated to ensure the accuracy and robustness of the parameter identification. Calibration and measurement experiments are carried out based on an ER3A-C60 robot. The experimental results show that the proposed calibration method enjoys high measurement accuracy, and this efficient and flexible system is suitable for online measurement in industrial scenes.

  2. Recognition of flow in everyday life using sensor agent robot with laser range finder

    Science.gov (United States)

    Goshima, Misa; Mita, Akira

    2011-04-01

    In the present paper, we suggest an algorithm for a sensor agent robot with a laser range finder to recognize the flows of residents in the living spaces in order to achieve flow recognition in the living spaces, recognition of the number of people in spaces, and the classification of the flows. House reform is or will be demanded to prolong the lifetime of the home. Adaption for the individuals is needed for our aging society which is growing at a rapid pace. Home autonomous mobile robots will become popular in the future for aged people to assist them in various situations. Therefore we have to collect various type of information of human and living spaces. However, a penetration in personal privacy must be avoided. It is essential to recognize flows in everyday life in order to assist house reforms and aging societies in terms of adaption for the individuals. With background subtraction, extra noise removal, and the clustering based k-means method, we got an average accuracy of more than 90% from the behavior from 1 to 3 persons, and also confirmed the reliability of our system no matter the position of the sensor. Our system can take advantages from autonomous mobile robots and protect the personal privacy. It hints at a generalization of flow recognition methods in the living spaces.

  3. High Resolution Tactile Sensors for Curved Robotic Fingertips

    DEFF Research Database (Denmark)

    Drimus, Alin; Jankovics, Vince; Gorsic, Matija

    2014-01-01

    Tactile sensing is a key element for various animals that interact with the environment and surrounding objects. Touch provides information about contact forces, torques and pressure distribution and by the means of exploration it provides object properties such as geometry, stiffness and texture...... trivial to obtain, dealing with limited accuracy, occlusions and calibration problems. In terms of sensors for static stimuli, such as pressure, there are a range of technologies that can be used to manufacture transducers with various results[5].......Tactile sensing is a key element for various animals that interact with the environment and surrounding objects. Touch provides information about contact forces, torques and pressure distribution and by the means of exploration it provides object properties such as geometry, stiffness and texture[5...

  4. Energy Efficient Routing and Node Activity Scheduling in the OCARI Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Saoucene Mahfoudh

    2010-08-01

    Full Text Available Sensor nodes are characterized by a small size, a low cost, an advanced communication technology, but also a limited amount of energy. Energy efficient strategies are required in such networks to maximize network lifetime. In this paper, we focus on a solution integrating energy efficient routing and node activity scheduling. The energy efficient routing we propose, called EOLSR, selects the route and minimizes the energy consumed by an end-to-end transmission, while avoiding nodes with low residual energy. Simulation results show that EOLSR outperforms the solution selecting the route of minimum energy as well as the solution based on node residual energy. Cross-layering allows EOLSR to use information from the application layer or the MAC layer to reduce its overhead and increase network lifetime. Node activity scheduling is based on the following observation: the sleep state is the least power consuming state. So, to schedule node active and sleeping periods, we propose SERENA that colors all network nodes using a small number of colors, such that two nodes with the same color can transmit without interfering. The node color is mapped into a time slot during which the node can transmit. Consequently, each node is awake during its slot and the slots of its one-hop neighbors, and sleeps in the remaining time. We evaluate SERENA benefits obtained in terms of bandwidth, delay and energy. We also show how cross-layering with the application layer can improve the end-to-end delays for data gathering applications.

  5. An Inexpensive Method for Kinematic Calibration of a Parallel Robot by Using One Hand-Held Camera as Main Sensor

    Directory of Open Access Journals (Sweden)

    Ricardo Carelli

    2013-08-01

    Full Text Available This paper presents a novel method for the calibration of a parallel robot, which allows a more accurate configuration instead of a configuration based on nominal parameters. It is used, as the main sensor with one camera installed in the robot hand that determines the relative position of the robot with respect to a spherical object fixed in the working area of the robot. The positions of the end effector are related to the incremental positions of resolvers of the robot motors. A kinematic model of the robot is used to find a new group of parameters, which minimizes errors in the kinematic equations. Additionally, properties of the spherical object and intrinsic camera parameters are utilized to model the projection of the object in the image and thereby improve spatial measurements. Finally, several working tests, static and tracking tests are executed in order to verify how the robotic system behaviour improves by using calibrated parameters against nominal parameters. In order to emphasize that, this proposed new method uses neither external nor expensive sensor. That is why new robots are useful in teaching and research activities.

  6. RGB-D, Laser and Thermal Sensor Fusion for People following in a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Loreto Susperregi

    2013-06-01

    Full Text Available Detecting and tracking people is a key capability for robots that operate in populated environments. In this paper, we used a multiple sensor fusion approach that combines three kinds of sensors in order to detect people using RGB-D vision, lasers and a thermal sensor mounted on a mobile platform. The Kinect sensor offers a rich data set at a significantly low cost, however, there are some limitations to its use in a mobile platform, mainly that the Kinect algorithms for people detection rely on images captured by a static camera. To cope with these limitations, this work is based on the combination of the Kinect and a Hokuyo laser and a thermopile array sensor. A real-time particle filter system merges the information provided by the sensors and calculates the position of the target, using probabilistic leg and thermal patterns, image features and optical flow to this end. Experimental results carried out with a mobile platform in a Science museum have shown that the combination of different sensory cues increases the reliability of the people following system.

  7. Textile Pressure Mapping Sensor for Emotional Touch Detection in Human-Robot Interaction

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    2017-11-01

    Full Text Available In this paper, we developed a fully textile sensing fabric for tactile touch sensing as the robot skin to detect human-robot interactions. The sensor covers a 20-by-20 cm 2 area with 400 sensitive points and samples at 50 Hz per point. We defined seven gestures which are inspired by the social and emotional interactions of typical people to people or pet scenarios. We conducted two groups of mutually blinded experiments, involving 29 participants in total. The data processing algorithm first reduces the spatial complexity to frame descriptors, and temporal features are calculated through basic statistical representations and wavelet analysis. Various classifiers are evaluated and the feature calculation algorithms are analyzed in details to determine each stage and segments’ contribution. The best performing feature-classifier combination can recognize the gestures with a 93 . 3 % accuracy from a known group of participants, and 89 . 1 % from strangers.

  8. Textile Pressure Mapping Sensor for Emotional Touch Detection in Human-Robot Interaction.

    Science.gov (United States)

    Zhou, Bo; Altamirano, Carlos Andres Velez; Zurian, Heber Cruz; Atefi, Seyed Reza; Billing, Erik; Martinez, Fernando Seoane; Lukowicz, Paul

    2017-11-09

    In this paper, we developed a fully textile sensing fabric for tactile touch sensing as the robot skin to detect human-robot interactions. The sensor covers a 20-by-20 cm 2 area with 400 sensitive points and samples at 50 Hz per point. We defined seven gestures which are inspired by the social and emotional interactions of typical people to people or pet scenarios. We conducted two groups of mutually blinded experiments, involving 29 participants in total. The data processing algorithm first reduces the spatial complexity to frame descriptors, and temporal features are calculated through basic statistical representations and wavelet analysis. Various classifiers are evaluated and the feature calculation algorithms are analyzed in details to determine each stage and segments' contribution. The best performing feature-classifier combination can recognize the gestures with a 93 . 3 % accuracy from a known group of participants, and 89 . 1 % from strangers.

  9. Robotics

    Energy Technology Data Exchange (ETDEWEB)

    Lorino, P; Altwegg, J M

    1985-05-01

    This article, which is aimed at the general reader, examines latest developments in, and the role of, modern robotics. The 7 main sections are sub-divided into 27 papers presented by 30 authors. The sections are as follows: 1) The role of robotics, 2) Robotics in the business world and what it can offer, 3) Study and development, 4) Utilisation, 5) Wages, 6) Conditions for success, and 7) Technological dynamics.

  10. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Youngmin Kim

    2016-07-01

    Full Text Available Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM. Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.

  11. Virtual Sensor for Kinematic Estimation of Flexible Links in Parallel Robots.

    Science.gov (United States)

    Bengoa, Pablo; Zubizarreta, Asier; Cabanes, Itziar; Mancisidor, Aitziber; Pinto, Charles; Mata, Sara

    2017-08-23

    The control of flexible link parallel manipulators is still an open area of research, endpoint trajectory tracking being one of the main challenges in this type of robot. The flexibility and deformations of the limbs make the estimation of the Tool Centre Point (TCP) position a challenging one. Authors have proposed different approaches to estimate this deformation and deduce the location of the TCP. However, most of these approaches require expensive measurement systems or the use of high computational cost integration methods. This work presents a novel approach based on a virtual sensor which can not only precisely estimate the deformation of the flexible links in control applications (less than 2% error), but also its derivatives (less than 6% error in velocity and 13% error in acceleration) according to simulation results. The validity of the proposed Virtual Sensor is tested in a Delta Robot, where the position of the TCP is estimated based on the Virtual Sensor measurements with less than a 0.03% of error in comparison with the flexible approach developed in ADAMS Multibody Software.

  12. 25th anniversary article: A soft future: from robots and sensor skin to energy harvesters.

    Science.gov (United States)

    Bauer, Siegfried; Bauer-Gogonea, Simona; Graz, Ingrid; Kaltenbrunner, Martin; Keplinger, Christoph; Schwödiauer, Reinhard

    2014-01-08

    Scientists are exploring elastic and soft forms of robots, electronic skin and energy harvesters, dreaming to mimic nature and to enable novel applications in wide fields, from consumer and mobile appliances to biomedical systems, sports and healthcare. All conceivable classes of materials with a wide range of mechanical, physical and chemical properties are employed, from liquids and gels to organic and inorganic solids. Functionalities never seen before are achieved. In this review we discuss soft robots which allow actuation with several degrees of freedom. We show that different actuation mechanisms lead to similar actuators, capable of complex and smooth movements in 3d space. We introduce latest research examples in sensor skin development and discuss ultraflexible electronic circuits, light emitting diodes and solar cells as examples. Additional functionalities of sensor skin, such as visual sensors inspired by animal eyes, camouflage, self-cleaning and healing and on-skin energy storage and generation are briefly reviewed. Finally, we discuss a paradigm change in energy harvesting, away from hard energy generators to soft ones based on dielectric elastomers. Such systems are shown to work with high energy of conversion, making them potentially interesting for harvesting mechanical energy from human gait, winds and ocean waves. © 2013 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks

    Science.gov (United States)

    Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng

    2016-01-01

    In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical data, and then all nodes in each grid of the target area can be classified into several categories. Secondly, the redundancy degree of a node is calculated according to its sensing area being covered by the neighboring sensors. Finally, a centralized approximation algorithm based on the partition of the target area is designed to obtain the approximate minimum set of nodes, which can retain the sufficient coverage of the target region and ensure the connectivity of the network at the same time. The simulation results show that the proposed CPCSS can balance the energy consumption and optimize the coverage performance of the sensor network. PMID:27754405

  14. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks.

    Science.gov (United States)

    Shi, Binbin; Wei, Wei; Wang, Yihuai; Shu, Wanneng

    2016-10-14

    In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS) based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical data, and then all nodes in each grid of the target area can be classified into several categories. Secondly, the redundancy degree of a node is calculated according to its sensing area being covered by the neighboring sensors. Finally, a centralized approximation algorithm based on the partition of the target area is designed to obtain the approximate minimum set of nodes, which can retain the sufficient coverage of the target region and ensure the connectivity of the network at the same time. The simulation results show that the proposed CPCSS can balance the energy consumption and optimize the coverage performance of the sensor network.

  15. A Novel Energy Efficient Topology Control Scheme Based on a Coverage-Preserving and Sleep Scheduling Model for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Binbin Shi

    2016-10-01

    Full Text Available In high-density sensor networks, scheduling some sensor nodes to be in the sleep mode while other sensor nodes remain active for monitoring or forwarding packets is an effective control scheme to conserve energy. In this paper, a Coverage-Preserving Control Scheduling Scheme (CPCSS based on a cloud model and redundancy degree in sensor networks is proposed. Firstly, the normal cloud model is adopted for calculating the similarity degree between the sensor nodes in terms of their historical data, and then all nodes in each grid of the target area can be classified into several categories. Secondly, the redundancy degree of a node is calculated according to its sensing area being covered by the neighboring sensors. Finally, a centralized approximation algorithm based on the partition of the target area is designed to obtain the approximate minimum set of nodes, which can retain the sufficient coverage of the target region and ensure the connectivity of the network at the same time. The simulation results show that the proposed CPCSS can balance the energy consumption and optimize the coverage performance of the sensor network.

  16. Hierarchical Self Organizing Map for Novelty Detection using Mobile Robot with Robust Sensor

    International Nuclear Information System (INIS)

    Sha'abani, M N A H; Miskon, M F; Sakidin, H

    2013-01-01

    This paper presents a novelty detection method based on Self Organizing Map neural network using a mobile robot. Based on hierarchical neural network, the network is divided into three networks; position, orientation and sensor measurement network. A simulation was done to demonstrate and validate the proposed method using MobileSim. Three cases of abnormal events; new, missing and shifted objects are employed for performance evaluation. The result of detection was then filtered for false positive detection. The result shows that the inspection produced less than 2% false positive detection at high sensitivity settings

  17. Development of a platform to combine sensor networks and home robots to improve fall detection in the home environment.

    Science.gov (United States)

    Della Toffola, Luca; Patel, Shyamal; Chen, Bor-rong; Ozsecen, Yalgin M; Puiatti, Alessandro; Bonato, Paolo

    2011-01-01

    Over the last decade, significant progress has been made in the development of wearable sensor systems for continuous health monitoring in the home and community settings. One of the main areas of application for these wearable sensor systems is in detecting emergency events such as falls. Wearable sensors like accelerometers are increasingly being used to monitor daily activities of individuals at a risk of falls, detect emergency events and send alerts to caregivers. However, such systems tend to have a high rate of false alarms, which leads to low compliance levels. Home robots can enable caregivers with the ability to quickly make an assessment and intervene if an emergency event is detected. This can provide an additional layer for detecting false positives, which can lead to improve compliance. In this paper, we present preliminary work on the development of a fall detection system based on a combination sensor networks and home robots. The sensor network architecture comprises of body worn sensors and ambient sensors distributed in the environment. We present the software architecture and conceptual design home robotic platform. We also perform preliminary characterization of the sensor network in terms of latencies and battery lifetime.

  18. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots.

    Science.gov (United States)

    Jung, Jun-Young; Heo, Wonho; Yang, Hyundae; Park, Hyunsub

    2015-10-30

    An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX)) are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases.

  19. Shape-estimation of human hand using polymer flex sensor and study of its application to control robot arm

    International Nuclear Information System (INIS)

    Lee, Jin Hyuck; Kim, Dae Hyun

    2015-01-01

    Ultrasonic inspection robot systems have been widely researched and developed for the real-time monitoring of structures such as power plants. However, an inspection robot that is operated in a simple pattern has limitations in its application to various structures in a plant facility because of the diverse and complicated shapes of the inspection objects. Therefore, accurate control of the robot is required to inspect complicated objects with high-precision results. This paper presents the idea that the shape and movement information of an ultrasonic inspector's hand could be profitably utilized for the accurate control of robot. In this study, a polymer flex sensor was applied to monitor the shape of a human hand. This application was designed to intuitively control an ultrasonic inspection robot. The movement and shape of the hand were estimated by applying multiple sensors. Moreover, it was successfully shown that a test robot could be intuitively controlled based on the shape of a human hand estimated using polymer flex sensors.

  20. Shape-estimation of human hand using polymer flex sensor and study of its application to control robot arm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hyuck; Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2015-02-15

    Ultrasonic inspection robot systems have been widely researched and developed for the real-time monitoring of structures such as power plants. However, an inspection robot that is operated in a simple pattern has limitations in its application to various structures in a plant facility because of the diverse and complicated shapes of the inspection objects. Therefore, accurate control of the robot is required to inspect complicated objects with high-precision results. This paper presents the idea that the shape and movement information of an ultrasonic inspector's hand could be profitably utilized for the accurate control of robot. In this study, a polymer flex sensor was applied to monitor the shape of a human hand. This application was designed to intuitively control an ultrasonic inspection robot. The movement and shape of the hand were estimated by applying multiple sensors. Moreover, it was successfully shown that a test robot could be intuitively controlled based on the shape of a human hand estimated using polymer flex sensors.

  1. Micro intelligence robot

    International Nuclear Information System (INIS)

    Jeon, Yon Ho

    1991-07-01

    This book gives descriptions of micro robot about conception of robots and micro robot, match rules of conference of micro robots, search methods of mazes, and future and prospect of robots. It also explains making and design of 8 beat robot like making technique, software, sensor board circuit, and stepping motor catalog, speedy 3, Mr. Black and Mr. White, making and design of 16 beat robot, such as micro robot artist, Jerry 2 and magic art of shortening distances algorithm of robot simulation.

  2. A Deadline-Aware Scheduling and Forwarding Scheme in Wireless Sensor Networks.

    Science.gov (United States)

    Dao, Thi-Nga; Yoon, Seokhoon; Kim, Jangyoung

    2016-01-05

    Many applications in wireless sensor networks (WSNs) require energy consumption to be minimized and the data delivered to the sink within a specific delay. A usual solution for reducing energy consumption is duty cycling, in which nodes periodically switch between sleep and active states. By increasing the duty cycle interval, consumed energy can be reduced more. However, a large duty cycle interval causes a long end-to-end (E2E) packet delay. As a result, the requirement of a specific delay bound for packet delivery may not be satisfied. In this paper, we aim at maximizing the duty cycle while still guaranteeing that the packets arrive at the sink with the required probability, i.e., the required delay-constrained success ratio (DCSR) is achieved. In order to meet this objective, we propose a novel scheduling and forwarding scheme, namely the deadline-aware scheduling and forwarding (DASF) algorithm. In DASF, the E2E delay distribution with the given network model and parameters is estimated in order to determine the maximum duty cycle interval, with which the required DCSR is satisfied. Each node independently selects a wake-up time using the selected interval, and packets are forwarded to a node in the potential forwarding set, which is determined based on the distance between nodes and the sink. DASF does not require time synchronization between nodes, and a node does not need to maintain neighboring node information in advance. Simulation results show that the proposed scheme can satisfy a required delay-constrained success ratio and outperforms existing algorithms in terms of E2E delay and DCSR.

  3. A Deadline-Aware Scheduling and Forwarding Scheme in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Thi-Nga Dao

    2016-01-01

    Full Text Available Many applications in wireless sensor networks (WSNs require energy consumption to be minimized and the data delivered to the sink within a specific delay. A usual solution for reducing energy consumption is duty cycling, in which nodes periodically switch between sleep and active states. By increasing the duty cycle interval, consumed energy can be reduced more. However, a large duty cycle interval causes a long end-to-end (E2E packet delay. As a result, the requirement of a specific delay bound for packet delivery may not be satisfied. In this paper, we aim at maximizing the duty cycle while still guaranteeing that the packets arrive at the sink with the required probability, i.e., the required delay-constrained success ratio (DCSR is achieved. In order to meet this objective, we propose a novel scheduling and forwarding scheme, namely the deadline-aware scheduling and forwarding (DASF algorithm. In DASF, the E2E delay distribution with the given network model and parameters is estimated in order to determine the maximum duty cycle interval, with which the required DCSR is satisfied. Each node independently selects a wake-up time using the selected interval, and packets are forwarded to a node in the potential forwarding set, which is determined based on the distance between nodes and the sink. DASF does not require time synchronization between nodes, and a node does not need to maintain neighboring node information in advance. Simulation results show that the proposed scheme can satisfy a required delay-constrained success ratio and outperforms existing algorithms in terms of E2E delay and DCSR.

  4. Design and research of intelligent mobile robot environment detection system based on multi-sensor technology

    International Nuclear Information System (INIS)

    Chen Yu; Wen Xinling

    2007-01-01

    The intelligent mobile robot environment detection system is researched based on SCM MC68HC908GP3 as core of control system. The four groups of detection systems constituted by ultrasonic sensors and infrared sensors gather information of forward, behind, left and right different directions, solve the problem of blind spot, and make up each other shortage. The distance measurement precision is improved rapidly and the detection precision is less than ±1% through using the way of the pulse shooting, the signal chooses circuit, and the temperature compensation. The system design method and the hardware circuit are introduced in detail. Simultaneity, the system adopts the single chip control technology, it makes the system possess favorable expansibility and gains the practicability in engineering field. (authors)

  5. Fuzzy Mobile-Robot Positioning in Intelligent Spaces Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    David Herrero

    2011-11-01

    Full Text Available This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using Wireless Sensor Networks (WSNs. The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  6. An on-time power-aware scheduling scheme for medical sensor SoC-based WBAN systems.

    Science.gov (United States)

    Hwang, Tae-Ho; Kim, Dong-Sun; Kim, Jung-Guk

    2012-12-27

    The focus of many leading technologies in the field of medical sensor systems is on low power consumption and robust data transmission. For example, the implantable cardioverter-defibrillator (ICD), which is used to maintain the heart in a healthy state, requires a reliable wireless communication scheme with an extremely low duty-cycle, high bit rate, and energy-efficient media access protocols. Because such devices must be sustained for over 5 years without access to battery replacement, they must be designed to have extremely low power consumption in sleep mode. Here, an on-time, energy-efficient scheduling scheme is proposed that performs power adjustments to minimize the sleep-mode current. The novelty of this scheduler is that it increases the determinacy of power adjustment and the predictability of scheduling by employing non-pre-emptible dual priority scheduling. This predictable scheduling also guarantees the punctuality of important periodic tasks based on their serialization, by using their worst case execution time) and the power consumption optimization. The scheduler was embedded into a system on chip (SoC) developed to support the wireless body area network-a wakeup-radio and wakeup-timer for implantable medical devices. This scheduling system is validated by the experimental results of its performance when used with life-time extensions of ICD devices.

  7. An On-Time Power-Aware Scheduling Scheme for Medical Sensor SoC-Based WBAN Systems

    Science.gov (United States)

    Hwang, Tae-Ho; Kim, Dong-Sun; Kim, Jung-Guk

    2013-01-01

    The focus of many leading technologies in the field of medical sensor systems is on low power consumption and robust data transmission. For example, the implantable cardioverter-defibrillator (ICD), which is used to maintain the heart in a healthy state, requires a reliable wireless communication scheme with an extremely low duty-cycle, high bit rate, and energy-efficient media access protocols. Because such devices must be sustained for over 5 years without access to battery replacement, they must be designed to have extremely low power consumption in sleep mode. Here, an on-time, energy-efficient scheduling scheme is proposed that performs power adjustments to minimize the sleep-mode current. The novelty of this scheduler is that it increases the determinacy of power adjustment and the predictability of scheduling by employing non-pre-emptible dual priority scheduling. This predictable scheduling also guarantees the punctuality of important periodic tasks based on their serialization, by using their worst case execution time) and the power consumption optimization. The scheduler was embedded into a system on chip (SoC) developed to support the wireless body area network—a wakeup-radio and wakeup-timer for implantable medical devices. This scheduling system is validated by the experimental results of its performance when used with life-time extensions of ICD devices. PMID:23271602

  8. An On-Time Power-Aware Scheduling Scheme for Medical Sensor SoC-Based WBAN Systems

    Directory of Open Access Journals (Sweden)

    Jung-Guk Kim

    2012-12-01

    Full Text Available The focus of many leading technologies in the field of medical sensor systems is on low power consumption and robust data transmission. For example, the implantable cardioverter-defibrillator (ICD, which is used to maintain the heart in a healthy state, requires a reliable wireless communication scheme with an extremely low duty-cycle, high bit rate, and energy-efficient media access protocols. Because such devices must be sustained for over 5 years without access to battery replacement, they must be designed to have extremely low power consumption in sleep mode. Here, an on-time, energy-efficient scheduling scheme is proposed that performs power adjustments to minimize the sleep-mode current. The novelty of this scheduler is that it increases the determinacy of power adjustment and the predictability of scheduling by employing non-pre-emptible dual priority scheduling. This predictable scheduling also guarantees the punctuality of important periodic tasks based on their serialization, by using their worst case execution time and the power consumption optimization. The scheduler was embedded into a system on chip (SoC developed to support the wireless body area network—a wakeup-radio and wakeup-timer for implantable medical devices. This scheduling system is validated by the experimental results of its performance when used with life-time extensions of ICD devices.

  9. Integration of Fiber-Optic Sensor Arrays into a Multi-Modal Tactile Sensor Processing System for Robotic End-Effectors

    Directory of Open Access Journals (Sweden)

    Peter Kampmann

    2014-04-01

    Full Text Available With the increasing complexity of robotic missions and the development towards long-term autonomous systems, the need for multi-modal sensing of the environment increases. Until now, the use of tactile sensor systems has been mostly based on sensing one modality of forces in the robotic end-effector. The use of a multi-modal tactile sensory system is motivated, which combines static and dynamic force sensor arrays together with an absolute force measurement system. This publication is focused on the development of a compact sensor interface for a fiber-optic sensor array, as optic measurement principles tend to have a bulky interface. Mechanical, electrical and software approaches are combined to realize an integrated structure that provides decentralized data pre-processing of the tactile measurements. Local behaviors are implemented using this setup to show the effectiveness of this approach.

  10. A new approach to self-localization for mobile robots using sensor data fusion

    International Nuclear Information System (INIS)

    Moshiri, B.; Asharif, M.; Hoseim Nezhad, R.

    2002-01-01

    This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMB mark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such as ultrasonic or laser range finders for automatic calibration. Manual measurement is necessary in the case of the robots that are not equipped with long-range detectors or such smart encoder trailer. Our proposed approach uses an environment map that is created by fusion of proximity data, in order to calibrate the odometry error automatically. In the new approach, the systematic part of the error is adaptively estimated and compensated by an efficient and incremental maximum likelihood algorithm. Actually, environment map data are fused with the odometry and current sensory data in order to acquire the maximum likelihood estimation. The advantages of the proposed approach are demonstrated in some experiments with Khepera robot. It is shown that the amount of pose estimation error is reduced by a percentage of more than 80%

  11. Fabrication of a thin-film capacitive force sensor array for tactile feedback in robotic surgery.

    Science.gov (United States)

    Paydar, Omeed H; Wottawa, Christopher R; Fan, Richard E; Dutson, Erik P; Grundfest, Warren S; Culjat, Martin O; Candler, Rob N

    2012-01-01

    Although surgical robotic systems provide several advantages over conventional minimally invasive techniques, they are limited by a lack of tactile feedback. Recent research efforts have successfully integrated tactile feedback components onto surgical robotic systems, and have shown significant improvement to surgical control during in vitro experiments. The primary barrier to the adoption of tactile feedback in clinical use is the unavailability of suitable force sensing technologies. This paper describes the design and fabrication of a thin-film capacitive force sensor array that is intended for integration with tactile feedback systems. This capacitive force sensing technology could provide precise, high-sensitivity, real-time responses to both static and dynamic loads. Capacitive force sensors were designed to operate with optimal sensitivity and dynamic range in the range of forces typical in minimally invasive surgery (0-40 N). Initial results validate the fabrication of these capacitive force-sensing arrays. We report 16.3 pF and 146 pF for 1-mm(2) and 9-mm(2) capacitive areas, respectively, whose values are within 3% of theoretical predictions.

  12. A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    2015-08-01

    Full Text Available Internet of Things (IoT is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN k-Nearest Neighbor (KNN algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University’s datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy.

  13. A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor.

    Science.gov (United States)

    Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing

    2015-08-14

    Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University's datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy.

  14. Dense range map reconstruction from a versatile robotic sensor system with an active trinocular vision and a passive binocular vision.

    Science.gov (United States)

    Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck

    2008-04-10

    One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.

  15. A State-of-the-Art Review on Mapping and Localization of Mobile Robots Using Omnidirectional Vision Sensors

    Directory of Open Access Journals (Sweden)

    L. Payá

    2017-01-01

    Full Text Available Nowadays, the field of mobile robotics is experiencing a quick evolution, and a variety of autonomous vehicles is available to solve different tasks. The advances in computer vision have led to a substantial increase in the use of cameras as the main sensors in mobile robots. They can be used as the only source of information or in combination with other sensors such as odometry or laser. Among vision systems, omnidirectional sensors stand out due to the richness of the information they provide the robot with, and an increasing number of works about them have been published over the last few years, leading to a wide variety of frameworks. In this review, some of the most important works are analysed. One of the key problems the scientific community is addressing currently is the improvement of the autonomy of mobile robots. To this end, building robust models of the environment and solving the localization and navigation problems are three important abilities that any mobile robot must have. Taking it into account, the review concentrates on these problems; how researchers have addressed them by means of omnidirectional vision; the main frameworks they have proposed; and how they have evolved in recent years.

  16. A Non-linear Model for Predicting Tip Position of a Pliable Robot Arm Segment Using Bending Sensor Data

    Directory of Open Access Journals (Sweden)

    Elizabeth I. SKLAR

    2016-04-01

    Full Text Available Using pliable materials for the construction of robot bodies presents new and interesting challenges for the robotics community. Within the EU project entitled STIFFness controllable Flexible & Learnable manipulator for surgical Operations (STIFF-FLOP, a bendable, segmented robot arm has been developed. The exterior of the arm is composed of a soft material (silicone, encasing an internal structure that contains air-chamber actuators and a variety of sensors for monitoring applied force, position and shape of the arm as it bends. Due to the physical characteristics of the arm, a proper model of robot kinematics and dynamics is difficult to infer from the sensor data. Here we propose a non-linear approach to predicting the robot arm posture, by training a feed-forward neural network with a structured series of pressures values applied to the arm's actuators. The model is developed across a set of seven different experiments. Because the STIFF-FLOP arm is intended for use in surgical procedures, traditional methods for position estimation (based on visual information or electromagnetic tracking will not be possible to implement. Thus the ability to estimate pose based on data from a custom fiber-optic bending sensor and accompanying model is a valuable contribution. Results are presented which demonstrate the utility of our non-linear modelling approach across a range of data collection procedures.

  17. Analysis and experimental kinematics of a skid-steering wheeled robot based on a laser scanner sensor.

    Science.gov (United States)

    Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng

    2015-04-24

    Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient , the path curvature variable and robot speed ), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model's stationary response for the vehicle shows a qualitative relationship for the specified parameters and . Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient and two physical factors is studied, i.e., the radius of the path curvature and the robot speed . An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid-steering robot.

  18. Autonomous Wheeled Robot Platform Testbed for Navigation and Mapping Using Low-Cost Sensors

    Science.gov (United States)

    Calero, D.; Fernandez, E.; Parés, M. E.

    2017-11-01

    This paper presents the concept of an architecture for a wheeled robot system that helps researchers in the field of geomatics to speed up their daily research on kinematic geodesy, indoor navigation and indoor positioning fields. The presented ideas corresponds to an extensible and modular hardware and software system aimed at the development of new low-cost mapping algorithms as well as at the evaluation of the performance of sensors. The concept, already implemented in the CTTC's system ARAS (Autonomous Rover for Automatic Surveying) is generic and extensible. This means that it is possible to incorporate new navigation algorithms or sensors at no maintenance cost. Only the effort related to the development tasks required to either create such algorithms needs to be taken into account. As a consequence, change poses a much small problem for research activities in this specific area. This system includes several standalone sensors that may be combined in different ways to accomplish several goals; that is, this system may be used to perform a variety of tasks, as, for instance evaluates positioning algorithms performance or mapping algorithms performance.

  19. An FPGA-Based Omnidirectional Vision Sensor for Motion Detection on Mobile Robots

    Directory of Open Access Journals (Sweden)

    Jones Y. Mori

    2012-01-01

    Full Text Available This work presents the development of an integrated hardware/software sensor system for moving object detection and distance calculation, based on background subtraction algorithm. The sensor comprises a catadioptric system composed by a camera and a convex mirror that reflects the environment to the camera from all directions, obtaining a panoramic view. The sensor is used as an omnidirectional vision system, allowing for localization and navigation tasks of mobile robots. Several image processing operations such as filtering, segmentation and morphology have been included in the processing architecture. For achieving distance measurement, an algorithm to determine the center of mass of a detected object was implemented. The overall architecture has been mapped onto a commercial low-cost FPGA device, using a hardware/software co-design approach, which comprises a Nios II embedded microprocessor and specific image processing blocks, which have been implemented in hardware. The background subtraction algorithm was also used to calibrate the system, allowing for accurate results. Synthesis results show that the system can achieve a throughput of 26.6 processed frames per second and the performance analysis pointed out that the overall architecture achieves a speedup factor of 13.78 in comparison with a PC-based solution running on the real-time operating system xPC Target.

  20. WALS: A sensor-based robotic system for handling nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Kimberly, H.; Wapman, W.

    1997-01-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system to enhance system safety, flexibility, and robustness and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and too release mechanisms were designed to prevent payload mishandling. An extensive failure modes and effects analysis (FMEA) of the automation system was developed as a safety design analysis tool

  1. A Study of Mobile Robot Control using EEG Emotiv Epoch Sensor

    Directory of Open Access Journals (Sweden)

    Victorio Yasin Timothius

    2018-01-01

    Full Text Available The study was using an EEG Emotiv Epoc+ sensor to recognize brain activity for controlling a mobile robot's movement. The study used Emotiv Control Panel software for EEG command identification. The commands will be interfaced inside Mind Your OSCs software and processing software which processed inside an Arduino Controller. The output of the Arduino is a movement command (ie. forward, backward, turn left, and turn right. The training methods of the system composed of three sets of thinking mode. First, thinking with doing facial expressions. Second, thinking with visual help. Third, thinking mentally without any help. In the first set, there are two configurations thinking with facial expression help as command of the mobile robot. Final results of the system are the second facial expressions configuration as the best facial expressions method with success rate 88.33 %. The second facial expression configuration has overall response time 1.60175 s faster than the first facial expressions configuration. In these two methods have dominant signals on the frontal lobe. The second facial expressions method have overall respond time 6.12 and 9.53 s faster than thinking with visual, and thinking without help respectively.

  2. "I spy, with my little sensor": fair data handling practices for robots between privacy, copyright and security

    Science.gov (United States)

    Schafer, Burkhard; Edwards, Lilian

    2017-07-01

    The paper suggests an amendment to Principle 4 of ethical robot design, and a demand for "transparency by design". It argues that while misleading vulnerable users as to the nature of a robot is a serious ethical issue, other forms of intentionally deceptive or unintentionally misleading aspects of robotic design pose challenges that are on the one hand more universal and harmful in their application, on the other more difficult to address consistently through design choices. The focus will be on transparent design regarding the sensory capacities of robots. Intuitive, low-tech but highly efficient privacy preserving behaviour is regularly dependent on an accurate understanding of surveillance risks. Design choices that hide, camouflage or misrepresent these capacities can undermine these strategies. However, formulating an ethical principle of "sensor transparency" is not straightforward, as openness can also lead to greater vulnerability and with that security risks. We argue that the discussion on sensor transparency needs to be embedded in a broader discussion of "fair data handling principles" for robots that involve issues of privacy, but also intellectual property rights such as copyright.

  3. Sleep Scheduling Schemes Based on Location of Mobile User in Sensor-Cloud

    OpenAIRE

    N. Mahendran; R. Priya

    2016-01-01

    The mobile cloud computing (MCC) with wireless sensor networks (WSNs) technology gets more attraction by research scholars because its combines the sensors data gathering ability with the cloud data processing capacity. This approach overcomes the limitation of data storage capacity and computational ability of sensor nodes. Finally, the stored data are sent to the mobile users when the user sends the request. The most of the integrated sensor-cloud schemes fail to observe the following crite...

  4. A novel method of range measuring for a mobile robot based on multi-sensor information fusion

    International Nuclear Information System (INIS)

    Zhang Yi; Luo Yuan; Wang Jifeng

    2005-01-01

    The traditional measuring range for a mobile robot is based on a sonar sensor. Because of different working environments, it is very difficult to obtain high precision by using just one single method of range measurement. So, a hybrid sonar sensor and laser scanner method is put forward to overcome these shortcomings. A novel fusion model is proposed based on basic theory and a method of information fusion. An optimal measurement result has been obtained with information fusion from different sensors. After large numbers of experiments and performance analysis, a conclusion can be drawn that the laser scanner and sonar sensor method with multi-sensor information fusion have a higher precision than the single method of sonar. It can also be the same with different environments

  5. Multi-Purpose Anthropomorphic Robotic Hand Design for Extra-Vehicular Activity Manipulation Tasks using Embedded Fiber Optic Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — IFOS proposes to design and build fiber-optically sensorized robotic fingers that can sense force and, objects using only tactile feedback, similar to the skin on a...

  6. A Flexible Temperature Sensor Based on Reduced Graphene Oxide for Robot Skin Used in Internet of Things.

    Science.gov (United States)

    Liu, Guanyu; Tan, Qiulin; Kou, Hairong; Zhang, Lei; Wang, Jinqi; Lv, Wen; Dong, Helei; Xiong, Jijun

    2018-05-02

    Flexible electronics, which can be distributed on any surface we need, are highly demanded in the development of Internet of Things (IoT), robot technology and electronic skins. Temperature is a fundamental physical parameter, and it is an important indicator in many applications. Therefore, a flexible temperature sensor is required. Here, we report a simple method to fabricate three lightweight, low-cost and flexible temperature sensors, whose sensitive materials are reduced graphene oxide (r-GO), single-walled carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs). By comparing linearity, sensitive and repeatability, we found that the r-GO temperature sensor had the most balanced performance. Furthermore, the r-GO temperature sensor showed good mechanical properties and it could be bent in different angles with negligible resistance change. In addition, the performance of the r-GO temperature sensor remained stable under different kinds of pressure and was unaffected by surrounding environments, like humidity or other gases, because of the insulating layer on its sensitive layer. The easy-fabricated process and economy, together with the remarkable performance of the r-GO temperature sensor, suggest that it is suitable for use as a robot skin or used in the environment of IoT.

  7. A Flexible Temperature Sensor Based on Reduced Graphene Oxide for Robot Skin Used in Internet of Things

    Directory of Open Access Journals (Sweden)

    Guanyu Liu

    2018-05-01

    Full Text Available Flexible electronics, which can be distributed on any surface we need, are highly demanded in the development of Internet of Things (IoT, robot technology and electronic skins. Temperature is a fundamental physical parameter, and it is an important indicator in many applications. Therefore, a flexible temperature sensor is required. Here, we report a simple method to fabricate three lightweight, low-cost and flexible temperature sensors, whose sensitive materials are reduced graphene oxide (r-GO, single-walled carbon nanotubes (SWCNTs and multi-wall carbon nanotubes (MWCNTs. By comparing linearity, sensitive and repeatability, we found that the r-GO temperature sensor had the most balanced performance. Furthermore, the r-GO temperature sensor showed good mechanical properties and it could be bent in different angles with negligible resistance change. In addition, the performance of the r-GO temperature sensor remained stable under different kinds of pressure and was unaffected by surrounding environments, like humidity or other gases, because of the insulating layer on its sensitive layer. The easy-fabricated process and economy, together with the remarkable performance of the r-GO temperature sensor, suggest that it is suitable for use as a robot skin or used in the environment of IoT.

  8. Sleep/wake scheduling scheme for minimizing end-to-end delay in multi-hop wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Madani Sajjad

    2011-01-01

    Full Text Available Abstract We present a sleep/wake schedule protocol for minimizing end-to-end delay for event driven multi-hop wireless sensor networks. In contrast to generic sleep/wake scheduling schemes, our proposed algorithm performs scheduling that is dependent on traffic loads. Nodes adapt their sleep/wake schedule based on traffic loads in response to three important factors, (a the distance of the node from the sink node, (b the importance of the node's location from connectivity's perspective, and (c if the node is in the proximity where an event occurs. Using these heuristics, the proposed scheme reduces end-to-end delay and maximizes the throughput by minimizing the congestion at nodes having heavy traffic load. Simulations are carried out to evaluate the performance of the proposed protocol, by comparing its performance with S-MAC and Anycast protocols. Simulation results demonstrate that the proposed protocol has significantly reduced the end-to-end delay, as well as has improved the other QoS parameters, like average energy per packet, average delay, packet loss ratio, throughput, and coverage lifetime.

  9. Experiences with Implementing a Distributed and Self-Organizing Scheduling Algorithm for Energy-Efficient Data Gathering on a Real-Life Sensor Network Platform

    NARCIS (Netherlands)

    Zhang, Y.; Chatterjea, Supriyo; Havinga, Paul J.M.

    2007-01-01

    We report our experiences with implementing a distributed and self-organizing scheduling algorithm designed for energy-efficient data gathering on a 25-node multihop wireless sensor network (WSN). The algorithm takes advantage of spatial correlations that exist in readings of adjacent sensor nodes

  10. Proficient Node Scheduling Protocol for Homogeneous and Heterogeneous Wireless Sensor Networks

    OpenAIRE

    R. Saravanakumar; N. Mohankumar; J. Raja

    2013-01-01

    Recent communications in wireless sensor networks (WSNs) have much new energy-efficient protocols specifically designed, where energy awareness is an essential consideration. In WSNs, large numbers of tiny sensor nodes are used as an effective way of data gathering in various environments. Since the sensor nodes operate on battery of limited power, it is a great challenging aim to design an energy-efficient routing protocol, which can minimize the delay while offering high-energy efficiency a...

  11. Low Cost Multi-Sensor Robot Laser Scanning System and its Accuracy Investigations for Indoor Mapping Application

    Science.gov (United States)

    Chen, C.; Zou, X.; Tian, M.; Li, J.; Wu, W.; Song, Y.; Dai, W.; Yang, B.

    2017-11-01

    In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.

  12. A ToF-Camera as a 3D Vision Sensor for Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Sobers Lourdu Xavier Francis

    2015-11-01

    Full Text Available The aim of this paper is to deploy a time-of-flight (ToF based photonic mixer device (PMD camera on an Autonomous Ground Vehicle (AGV whose overall target is to traverse from one point to another in hazardous and hostile environments employing obstacle avoidance without human intervention. The hypothesized approach of applying a ToF Camera for an AGV is a suitable approach to autonomous robotics because, as the ToF camera can provide three-dimensional (3D information at a low computational cost, it is utilized to extract information about obstacles after their calibration and ground testing and is mounted and integrated with the Pioneer mobile robot. The workspace is a two-dimensional (2D world map which has been divided into a grid/cells, where the collision-free path defined by the graph search algorithm is a sequence of cells the AGV can traverse to reach the target. PMD depth data is used to populate traversable areas and obstacles by representing a grid/cells of suitable size. These camera data are converted into Cartesian coordinates for entry into a workspace grid map. A more optimal camera mounting angle is needed and adopted by analysing the camera's performance discrepancy, such as pixel detection, the detection rate and the maximum perceived distances, and infrared (IR scattering with respect to the ground surface. This mounting angle is recommended to be half the vertical field-of-view (FoV of the PMD camera. A series of still and moving tests are conducted on the AGV to verify correct sensor operations, which show that the postulated application of the ToF camera in the AGV is not straightforward. Later, to stabilize the moving PMD camera and to detect obstacles, a tracking feature detection algorithm and the scene flow technique are implemented to perform a real-time experiment.

  13. Modelling and precision of the localization of the robotic mobile platforms for constructions with laser tracker and SmartTrack sensor

    Science.gov (United States)

    Dima, M.; Francu, C.

    2016-08-01

    This paper presents a way to expand the field of use of the laser tracker and SmartTrack sensor localization device used in lately for the localisation of the end effector of the industrial robots to the localization of the mobile construction robots. The research paper presents the equipment along with its characteristics, determines the relationships for the localization coordinates by comparison to the forward kinematics of the industrial robot's spherical arm (positioning mechanism in spherical coordinates) and the orientation mechanism with three revolute axes. In the end of the paper the accuracy of the mobile robot's localization is analysed.

  14. Robot vision

    International Nuclear Information System (INIS)

    Hall, E.L.

    1984-01-01

    Almost all industrial robots use internal sensors such as shaft encoders which measure rotary position, or tachometers which measure velocity, to control their motions. Most controllers also provide interface capabilities so that signals from conveyors, machine tools, and the robot itself may be used to accomplish a task. However, advanced external sensors, such as visual sensors, can provide a much greater degree of adaptability for robot control as well as add automatic inspection capabilities to the industrial robot. Visual and other sensors are now being used in fundamental operations such as material processing with immediate inspection, material handling with adaption, arc welding, and complex assembly tasks. A new industry of robot vision has emerged. The application of these systems is an area of great potential

  15. Temporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Gang Li

    2016-09-01

    Full Text Available The spatial–temporal correlation is an important feature of sensor data in wireless sensor networks (WSNs. Most of the existing works based on the spatial–temporal correlation can be divided into two parts: redundancy reduction and anomaly detection. These two parts are pursued separately in existing works. In this work, the combination of temporal data-driven sleep scheduling (TDSS and spatial data-driven anomaly detection is proposed, where TDSS can reduce data redundancy. The TDSS model is inspired by transmission control protocol (TCP congestion control. Based on long and linear cluster structure in the tunnel monitoring system, cooperative TDSS and spatial data-driven anomaly detection are then proposed. To realize synchronous acquisition in the same ring for analyzing the situation of every ring, TDSS is implemented in a cooperative way in the cluster. To keep the precision of sensor data, spatial data-driven anomaly detection based on the spatial correlation and Kriging method is realized to generate an anomaly indicator. The experiment results show that cooperative TDSS can realize non-uniform sensing effectively to reduce the energy consumption. In addition, spatial data-driven anomaly detection is quite significant for maintaining and improving the precision of sensor data.

  16. A Method for Improving the Pose Accuracy of a Robot Manipulator Based on Multi-Sensor Combined Measurement and Data Fusion

    Science.gov (United States)

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua

    2015-01-01

    An improvement method for the pose accuracy of a robot manipulator by using a multiple-sensor combination measuring system (MCMS) is presented. It is composed of a visual sensor, an angle sensor and a series robot. The visual sensor is utilized to measure the position of the manipulator in real time, and the angle sensor is rigidly attached to the manipulator to obtain its orientation. Due to the higher accuracy of the multi-sensor, two efficient data fusion approaches, the Kalman filter (KF) and multi-sensor optimal information fusion algorithm (MOIFA), are used to fuse the position and orientation of the manipulator. The simulation and experimental results show that the pose accuracy of the robot manipulator is improved dramatically by 38%∼78% with the multi-sensor data fusion. Comparing with reported pose accuracy improvement methods, the primary advantage of this method is that it does not require the complex solution of the kinematics parameter equations, increase of the motion constraints and the complicated procedures of the traditional vision-based methods. It makes the robot processing more autonomous and accurate. To improve the reliability and accuracy of the pose measurements of MCMS, the visual sensor repeatability is experimentally studied. An optimal range of 1 × 0.8 × 1 ∼ 2 × 0.8 × 1 m in the field of view (FOV) is indicated by the experimental results. PMID:25850067

  17. Soil capacitance sensors and stem dendrometers. Useful tools for irrigation scheduling of commercial orchards?

    Energy Technology Data Exchange (ETDEWEB)

    Bonet, L.; Ferrer, P.; Castel, J. R.; Intrigliolo, D. S.

    2010-07-01

    Irrigation scheduling is often performed based on a soil water balance, where orchard evapotranspiration is estimated using the reference evapotranspiration (ETo) times the crop coefficient (Kc). This procedure, despite being widely spread, has some uncertainties. Because of this, plant and soil water status monitoring could be alternatively or complementarity used to schedule irrigation. The usefulness of capacitance probes was evaluated during several seasons in large irrigation districts where irrigation practices were changed over years from the ETo * Kc model to the analysis of soil water status trend. This area corresponds to drip irrigated orchards planted with citrus, peach, nectarine and persimmon. Around 25% less irrigation was applied with no substantial yield penalty when the information provided by capacitance probes was correctly applied for irrigation management. On the other hand, the usefulness of stem dendrometers for continuously monitoring plant water status was evaluated in a young plum experimental orchard. Over two years, irrigation was scheduled using exclusively trunk shrinkage via the signal intensity approach by means of a baseline equation previously obtained in the orchard. Results showed that it was not always possible to schedule irrigation based on the trunk shrinkage signal intensity due to the temporal changes in the reference values that occurred as trees aged. Overall, results obtained are discussed in terms of the possible extrapolation at field level of both capacitance probes and stem dendrometers. Advantages and drawbacks of each technique are analyzed and discussed. (Author) 34 refs.

  18. Multi-sensors multi-baseline mapping system for mobile robot using stereovision camera and laser-range device

    Directory of Open Access Journals (Sweden)

    Mohammed Faisal

    2016-06-01

    Full Text Available Countless applications today are using mobile robots, including autonomous navigation, security patrolling, housework, search-and-rescue operations, material handling, manufacturing, and automated transportation systems. Regardless of the application, a mobile robot must use a robust autonomous navigation system. Autonomous navigation remains one of the primary challenges in the mobile-robot industry; many control algorithms and techniques have been recently developed that aim to overcome this challenge. Among autonomous navigation methods, vision-based systems have been growing in recent years due to rapid gains in computational power and the reliability of visual sensors. The primary focus of research into vision-based navigation is to allow a mobile robot to navigate in an unstructured environment without collision. In recent years, several researchers have looked at methods for setting up autonomous mobile robots for navigational tasks. Among these methods, stereovision-based navigation is a promising approach for reliable and efficient navigation. In this article, we create and develop a novel mapping system for a robust autonomous navigation system. The main contribution of this article is the fuse of the multi-baseline stereovision (narrow and wide baselines and laser-range reading data to enhance the accuracy of the point cloud, to reduce the ambiguity of correspondence matching, and to extend the field of view of the proposed mapping system to 180°. Another contribution is the pruning the region of interest of the three-dimensional point clouds to reduce the computational burden involved in the stereo process. Therefore, we called the proposed system multi-sensors multi-baseline mapping system. The experimental results illustrate the robustness and accuracy of the proposed system.

  19. A Secure Automated Elevator Management System and Pressure Sensor based Floor Estimation for Indoor Mobile Robot Transportation

    Directory of Open Access Journals (Sweden)

    Ali Abduljalil Abdulla

    2017-08-01

    Full Text Available In this paper, a secure elevator handling system is presented to enable a flexible movement of wheeled mobile robots among laboratories distributed in different floors. The automated handling system consists mainly of an ADAM module which has the ability to call the elevator to the robot’s current floor and to request the destination floor. The LPS25HP pressure sensor attached to an STM32F411 microcontroller is utilized as a height measurement system to estimate the robot’s current floor inside the elevator. The ultrasonic sensor is used to recognize the elevator’s door status. Many challenges have to be solved to realize a stable height measurement system based on pressure sensor readings. The difference of the pressure sensor readings before and after soldering is realized by comparing the reading after soldering with an accurate barometric reading. In addition, the sensor output signal shows oscillation and wide variation of the same floor pressure sensor readings at different times. The oscillation in the output signal has been handled using a first order FIR smoothing filter. The first order filter was selected to balance between the stability and the elapsed time to receive the updated values. An auto-calibration stage is established to maintain the wide variation in the atmospheric pressure readings by calibrating the sensor readings with the robot’s current floor before entering the elevator. An error handling management system is utilized to guarantee a stable automated elevator management system performance. Many experiments to assess and verify the performance of the automated elevator management system and robot’s current floor estimation are reported. The experimental results show that the proposed methods and sub-systems developed for the mobile robot are effective and efficient in providing a transportation service in multiple-floor life sciences laboratories.

  20. Precise 3D Lug Pose Detection Sensor for Automatic Robot Welding Using a Structured-Light Vision System

    Directory of Open Access Journals (Sweden)

    Il Jae Lee

    2009-09-01

    Full Text Available In this study, we propose a precise 3D lug pose detection sensor for automatic robot welding of a lug to a huge steel plate used in shipbuilding, where the lug is a handle to carry the huge steel plate. The proposed sensor consists of a camera and four laser line diodes, and its design parameters are determined by analyzing its detectable range and resolution. For the lug pose acquisition, four laser lines are projected on both lug and plate, and the projected lines are detected by the camera. For robust detection of the projected lines against the illumination change, the vertical threshold, thinning, Hough transform and separated Hough transform algorithms are successively applied to the camera image. The lug pose acquisition is carried out by two stages: the top view alignment and the side view alignment. The top view alignment is to detect the coarse lug pose relatively far from the lug, and the side view alignment is to detect the fine lug pose close to the lug. After the top view alignment, the robot is controlled to move close to the side of the lug for the side view alignment. By this way, the precise 3D lug pose can be obtained. Finally, experiments with the sensor prototype are carried out to verify the feasibility and effectiveness of the proposed sensor.

  1. Energy Efficient Sensor Scheduling with a Mobile Sink Node for the Target Tracking Application

    Directory of Open Access Journals (Sweden)

    Malin Premaratne

    2009-01-01

    Full Text Available Measurement losses adversely affect the performance of target tracking. The sensor network’s life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node’s path. First, we assume that the mobile sink node’s position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods’ performance.

  2. Node Scheduling Strategies for Achieving Full-View Area Coverage in Camera Sensor Networks

    Science.gov (United States)

    Wu, Peng-Fei; Xiao, Fu; Sha, Chao; Huang, Hai-Ping; Wang, Ru-Chuan; Xiong, Nai-Xue

    2017-01-01

    Unlike conventional scalar sensors, camera sensors at different positions can capture a variety of views of an object. Based on this intrinsic property, a novel model called full-view coverage was proposed. We study the problem that how to select the minimum number of sensors to guarantee the full-view coverage for the given region of interest (ROI). To tackle this issue, we derive the constraint condition of the sensor positions for full-view neighborhood coverage with the minimum number of nodes around the point. Next, we prove that the full-view area coverage can be approximately guaranteed, as long as the regular hexagons decided by the virtual grid are seamlessly stitched. Then we present two solutions for camera sensor networks in two different deployment strategies. By computing the theoretically optimal length of the virtual grids, we put forward the deployment pattern algorithm (DPA) in the deterministic implementation. To reduce the redundancy in random deployment, we come up with a local neighboring-optimal selection algorithm (LNSA) for achieving the full-view coverage. Finally, extensive simulation results show the feasibility of our proposed solutions. PMID:28587304

  3. Node Scheduling Strategies for Achieving Full-View Area Coverage in Camera Sensor Networks

    Directory of Open Access Journals (Sweden)

    Peng-Fei Wu

    2017-06-01

    Full Text Available Unlike conventional scalar sensors, camera sensors at different positions can capture a variety of views of an object. Based on this intrinsic property, a novel model called full-view coverage was proposed. We study the problem that how to select the minimum number of sensors to guarantee the full-view coverage for the given region of interest (ROI. To tackle this issue, we derive the constraint condition of the sensor positions for full-view neighborhood coverage with the minimum number of nodes around the point. Next, we prove that the full-view area coverage can be approximately guaranteed, as long as the regular hexagons decided by the virtual grid are seamlessly stitched. Then we present two solutions for camera sensor networks in two different deployment strategies. By computing the theoretically optimal length of the virtual grids, we put forward the deployment pattern algorithm (DPA in the deterministic implementation. To reduce the redundancy in random deployment, we come up with a local neighboring-optimal selection algorithm (LNSA for achieving the full-view coverage. Finally, extensive simulation results show the feasibility of our proposed solutions.

  4. OPS: Opportunistic pipeline scheduling in long-strip wireless sensor networks with unreliable links

    NARCIS (Netherlands)

    Guo, Peng; Meratnia, Nirvana; Havinga, Paul J.M.; Jiang, He; Zhang, Kui

    2015-01-01

    Being deployed in narrow but long area, strip wireless sensor networks (SWSNs) have drawn much attention in applications such as coal mines, pipeline and structure monitoring. One of typical characteristics of SWSNs is the large hop counts, which leads to long end-to-end delivery delay in

  5. Soil water sensors:Problems, advances and potential for irrigation scheduling

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands, while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and so...

  6. Echoes from the deep - Communication scheduling, localization and time-synchronization in underwater acoustic sensor networks.

    NARCIS (Netherlands)

    van Kleunen, W.A.P.

    2014-01-01

    Wireless Sensor Networks (WSNs) caused a shift in the way things are monitored. While traditional monitoring was coarse-grained and offline, using WSNs allows fine-grained and real-time monitoring. While radio-based WSNs are growing out of the stage of research to commercialization and widespread

  7. Integration of wireless sensor networks into automatic irrigation scheduling of a center pivot

    Science.gov (United States)

    A six-span center pivot system was used as a platform for testing two wireless sensor networks (WSN) of infrared thermometers. The cropped field was a semi-circle, divided into six pie shaped sections of which three were irrigated manually and three were irrigated automatically based on the time tem...

  8. Energy Efficient Medium Access Control Protocol for Clustered Wireless Sensor Networks with Adaptive Cross-Layer Scheduling.

    Science.gov (United States)

    Sefuba, Maria; Walingo, Tom; Takawira, Fambirai

    2015-09-18

    This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols.

  9. Supporting drivable region detection by minimising salient pixels generated through robot sensors

    CSIR Research Space (South Africa)

    Falola, O

    2010-11-01

    Full Text Available The role of robots, automatically guided machines able to perform tasks on their own cannot be over emphasized. In particular, if robotic vehicles are to work effectively, the way they are required to perform their jobs and their ability to reach...

  10. Scheduling whole-air samples above the Trade Wind Inversion from SUAS using real-time sensors

    Science.gov (United States)

    Freer, J. E.; Greatwood, C.; Thomas, R.; Richardson, T.; Brownlow, R.; Lowry, D.; MacKenzie, A. R.; Nisbet, E. G.

    2015-12-01

    Small Unmanned Air Systems (SUAS) are increasingly being used in science applications for a range of applications. Here we explore their use to schedule the sampling of air masses up to 2.5km above ground using computer controlled bespoked Octocopter platforms. Whole-air sampling is targeted above, within and below the Trade Wind Inversion (TWI). On-board sensors profiled the TWI characteristics in real time on ascent and, hence, guided the altitudes at which samples were taken on descent. The science driver for this research is investigation of the Southern Methane Anomaly and, more broadly, the hemispheric-scale transport of long-lived atmospheric tracers in the remote troposphere. Here we focus on the practical application of SUAS for this purpose. Highlighting the need for mission planning, computer control, onboard sensors and logistics in deploying such technologies for out of line-of-sight applications. We show how such a platform can be deployed successfully, resulting in some 60 sampling flights within a 10 day period. Challenges remain regarding the deployment of such platforms routinely and cost-effectively, particularly regarding training and support. We present some initial results from the methane sampling and its implication for exploring and understanding the Southern Methane Anomaly.

  11. Allothetic and idiothetic sensor fusion in rat-inspired robot localization

    Science.gov (United States)

    Weitzenfeld, Alfredo; Fellous, Jean-Marc; Barrera, Alejandra; Tejera, Gonzalo

    2012-06-01

    We describe a spatial cognition model based on the rat's brain neurophysiology as a basis for new robotic navigation architectures. The model integrates allothetic (external visual landmarks) and idiothetic (internal kinesthetic information) cues to train either rat or robot to learn a path enabling it to reach a goal from multiple starting positions. It stands in contrast to most robotic architectures based on SLAM, where a map of the environment is built to provide probabilistic localization information computed from robot odometry and landmark perception. Allothetic cues suffer in general from perceptual ambiguity when trying to distinguish between places with equivalent visual patterns, while idiothetic cues suffer from imprecise motions and limited memory recalls. We experiment with both types of cues in different maze configurations by training rats and robots to find the goal starting from a fixed location, and then testing them to reach the same target from new starting locations. We show that the robot, after having pre-explored a maze, can find a goal with improved efficiency, and is able to (1) learn the correct route to reach the goal, (2) recognize places already visited, and (3) exploit allothetic and idiothetic cues to improve on its performance. We finally contrast our biologically-inspired approach to more traditional robotic approaches and discuss current work in progress.

  12. Developing sensor-based robots with utility to waste management applications

    International Nuclear Information System (INIS)

    Trivedi, M.M.; Abidi, M.A.; Gonzalez, R.C.

    1990-01-01

    There are several Environmental Restoration and Waste Management (ER and WM) application areas where autonomous or teleoperated robotic systems can be utilized to improve personnel safety and reduce operation costs. In this paper the authors describe continuing research undertaken by their group in intelligent robotics area which should have a direct relevance to a number of ER and WM applications. The authors' current research is sponsored by the advanced technology division of the U.S. Department of Energy. It is part of a program undertaken at four universities (Florida, Michigan, Tennessee, and Texas) and the Oak ridge National Laboratory directed towards the development of advanced robotic systems for use in nuclear environments. The primary motivation for using robotic (autonomous and/or teleoperated) technology in such hazardous environments is to reduce exposure and costs associated with performing tasks such as surveillance, maintenance and repair. The main focus of the authors' research a the University of Tennessee has been to contribute to the development of autonomous inspection and manipulation systems which utilize a wide array of sensory inputs in controlling the actions of a stationary robot. The authors' experimental research effort is directed towards design and evaluation of new methodologies using a laboratory based robotic testbed. A unique feature of this testbed is a multisensor module useful in the characterization of the robot workspace. In this paper, the authors describe the development of a robot vision system for automatic spill detection, localization and clean-up verification; and the development of efficient techniques for analyzing range images using a parallel computer. The 'simulated spill cleanup' scenario allows us to show the applicability of robotic systems to problems encountered in nuclear environments

  13. International Advanced Robotics Programme. First workshop on manipulators, sensors and steps towards mobility

    International Nuclear Information System (INIS)

    Martin, T.

    1987-09-01

    This Workshop was held within the framework of the international collaboration in the area of advanced robotics, formerly initiated by the Economic Summit, called the International Advanced Robotics Programme (IARP). It was hosted by the Nuclear Research Center Karlsruhe on May 11-13, 1987. Ninety scientists of eight countries presented and discussed 32 R+D projects. The Proceedings contain full papers of most contributions (and summaries of the remaining ones) and summary reports on all of the eight sessions. The material presented reflects well the present endeavor to integrate advanced robotics and teleoperation techniques for difficult applications in harsh, demanding or dangerous conditions or environment. (orig.) [de

  14. Automated Mounting of Pole-Shoe Wedges in Linear Wave Power Generators—Using Industrial Robotics and Proximity Sensors

    Directory of Open Access Journals (Sweden)

    Tobias Kamf

    2017-03-01

    Full Text Available A system for automatic mounting of high tolerance wedges inside a wave power linear generator is proposed. As for any renewable energy concept utilising numerous smaller generation units, minimising the production cost per unit is vital for commercialization. The linear generator in question uses self-locking wedges, which are challenging to mount using industrial robots due to the high tolerances used, and because of the fact that any angular error remaining after calibration risks damaging the equipment. Using two types of probes, mechanical touch probes and inductive proximity sensors, combined with a flexible robot tool and iterative calibration routines, an automatic mounting system that overcomes the challenges of high tolerance wedge mounting is presented. The system is experimentally verified to work at mounting speeds of up to 50mm/s, and calibration accuracies of 0.25mmand 0.1 ∘ are achieved. The use of a flexible robot tool, able to move freely in one Cartesian plane, was found to be essential for making the system work.

  15. A Sensor Based Navigation Algorithm for a Mobile Robot using the DVFF Approach

    Directory of Open Access Journals (Sweden)

    A. OUALID DJEKOUNE

    2009-06-01

    Full Text Available Often autonomous mobile robots operate in environment for which prior maps are incomplete or inaccurate. They require the safe execution for a collision free motion to a goal position. This paper addresses a complete navigation method for a mobile robot that moves in unknown environment. Thus, a novel method called DVFF combining the Virtual Force Field (VFF obstacle avoidance approach and global path planning based on D* algorithm is proposed. While D* generates global path information towards a goal position, the VFF local controller generates the admissible trajectories that ensure safe robot motion. Results and analysis from a battery of experiments with this new method implemented on a ATRV2 mobile robot are shown.

  16. Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

    Directory of Open Access Journals (Sweden)

    Luis Pallarés Puerto

    2011-05-01

    Full Text Available The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems.

  17. Extending an Industrial Robot Controller-Implementation and Applications of a Fast Open Sensor Interface

    OpenAIRE

    Blomdell, Anders; Bolmsjö, Gunnar; Brogårdh, Torgny; Cederberg, Per; Isaksson, Mats; Johansson, Rolf; Haage, Mathias; Nilsson, Klas; Olsson, Magnus; Olsson, Tomas; Robertsson, Anders; Wang, Jianjun

    2005-01-01

    Many promising robotics research results were obtained during the late 1970s and early 1980s. Some examples include Cartesian force control and advanced motion planning. Now, 20 years and many research projects later, many technologies still have not reached industrial usage. An important question to consider is how this situation can be improved for future deployment of necessary technologies. Today, modern robot control systems used in industry provide highly optimized motion control that w...

  18. Kinematic analysis and simulation of a substation inspection robot guided by magnetic sensor

    Science.gov (United States)

    Xiao, Peng; Luan, Yiqing; Wang, Haipeng; Li, Li; Li, Jianxiang

    2017-01-01

    In order to improve the performance of the magnetic navigation system used by substation inspection robot, the kinematic characteristics is analyzed based on a simplified magnetic guiding system model, and then the simulation process is executed to verify the reasonability of the whole analysis procedure. Finally, some suggestions are extracted out, which will be helpful to guide the design of the inspection robot system in the future.

  19. Devices for measuring the capacitance of micromechanical sensors of mobile robots navigation systems and its deviation from the nominal value

    Directory of Open Access Journals (Sweden)

    Rudyk A.V.

    2016-12-01

    Full Text Available The article describes methods of constructing devices for measuring the capacitance of micromechanical sensors (accelerometers and gyros mobile robots navigation systems and its deviation from the nominal value. A modified diagram of a sigma-delta modulator is offered. It realizes a direct connection capacitive sensor connection to the sigma-delta converter, as a result increased resolution, accuracy and linearity of the conversion. This interface is insensitive to the value of capacitance between the sensor leads and common wire or leakage current to a common wire. Variants of expansion as the nominal of the test capacity and the range of conversion of the relative deviation of the nominal capacity using two integrators are offered. The versions of circuit implementation devices for measuring the capacitance deviation of a micromechanical sensor from the nominal value are designed on the basis of the completed integrated circuit AD7745 / AD7746 and AD7747 of Analog Devices, CAV414 / 424 firm Analog Microelectronics and precision analog microcontroller ADuCM360 / CM361 company ARM Limited.

  20. EVOLUTION OF THE ROBOT DESIGN

    Directory of Open Access Journals (Sweden)

    POPA Marina Andreea

    2011-11-01

    Full Text Available This paper presents the construction of a robot used at a national robot competition in Romania. The robot consists of datasheet sensors (2 long distance measuring sensors, 4 reflective object sensors, 4 engines, 4 gears, a battery and the plates with microcontrollers

  1. Sensors Expand the Capabilities of Robot Devices. Resources in Technology and Engineering

    Science.gov (United States)

    Deal, Walter F., III; Hsiung, Steve C.

    2017-01-01

    Sensors of all kinds play significant roles in the way that we use and interact with technological devices today. Smartphones, household appliances, automobiles, and other products that we use every day incorporate many different kinds of sensors. While the sensors are hidden from view in the products, appliances, and tools that we use, they…

  2. Robotized transcranial magnetic stimulation

    CERN Document Server

    Richter, Lars

    2014-01-01

    Presents new, cutting-edge algorithms for robot/camera calibration, sensor fusion and sensor calibration Explores the main challenges for accurate coil positioning, such as head motion, and outlines how active robotic motion compensation can outperform hand-held solutions Analyzes how a robotized system in medicine can alleviate concerns with a patient's safety, and presents a novel fault-tolerant algorithm (FTA) sensor for system safety

  3. TU-AB-201-03: A Robot for the Automated Delivery of An Electromagnetic Tracking Sensor for the Localization of Brachytherapy Catheters

    International Nuclear Information System (INIS)

    Don, S; Cormack, R; Viswanathan, A; Damato, A

    2015-01-01

    Purpose: To present a programmable robotic system for the accurate and fast deployment of an electromagnetic (EM) sensor for brachytherapy catheter localization. Methods: A robotic system for deployment of an EM sensor was designed and built. The system was programmed to increment the sensor position at specified time and space intervals. Sensor delivery accuracy was measured in a phantom using the localization of the EM sensor and tested in different environmental conditions. Accuracy was tested by measuring the distance between the physical locations reached by the sensor (measured by the EM tracker) and the intended programmed locations. Results: The system consisted of a stepper motor connected to drive wheels (that grip the cable to move the sensor) and a series of guides to connect to a brachytherapy transfer tube, all controlled by a programmable Arduino microprocessor. The total cost for parts was <$300. The positional accuracy of the sensor location was within 1 mm of the expected position provided by the motorized guide system. Acquisition speed to localize a brachytherapy catheter with 20 cm of active length was 10 seconds. The current design showed some cable slip and warping depending on environment temperature. Conclusion: The use of EM tracking for the localization of brachytherapy catheters has been previously demonstrated. Efficient data acquisition and artifact reduction requires fast and accurate deployment of an EM sensor in consistent, repeatable patterns, which cannot practically be achieved manually. The design of an inexpensive, programmable robot allowing for the precise deployment of stepping patterns was presented, and a prototype was built. Further engineering is necessary to ensure that the device provides efficient independent localization of brachytherapy catheters. This research was funded by the Kaye Family Award

  4. TU-AB-201-03: A Robot for the Automated Delivery of An Electromagnetic Tracking Sensor for the Localization of Brachytherapy Catheters

    Energy Technology Data Exchange (ETDEWEB)

    Don, S; Cormack, R; Viswanathan, A; Damato, A [Dana-Farber Cancer Institute / Brigham and Women’s Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: To present a programmable robotic system for the accurate and fast deployment of an electromagnetic (EM) sensor for brachytherapy catheter localization. Methods: A robotic system for deployment of an EM sensor was designed and built. The system was programmed to increment the sensor position at specified time and space intervals. Sensor delivery accuracy was measured in a phantom using the localization of the EM sensor and tested in different environmental conditions. Accuracy was tested by measuring the distance between the physical locations reached by the sensor (measured by the EM tracker) and the intended programmed locations. Results: The system consisted of a stepper motor connected to drive wheels (that grip the cable to move the sensor) and a series of guides to connect to a brachytherapy transfer tube, all controlled by a programmable Arduino microprocessor. The total cost for parts was <$300. The positional accuracy of the sensor location was within 1 mm of the expected position provided by the motorized guide system. Acquisition speed to localize a brachytherapy catheter with 20 cm of active length was 10 seconds. The current design showed some cable slip and warping depending on environment temperature. Conclusion: The use of EM tracking for the localization of brachytherapy catheters has been previously demonstrated. Efficient data acquisition and artifact reduction requires fast and accurate deployment of an EM sensor in consistent, repeatable patterns, which cannot practically be achieved manually. The design of an inexpensive, programmable robot allowing for the precise deployment of stepping patterns was presented, and a prototype was built. Further engineering is necessary to ensure that the device provides efficient independent localization of brachytherapy catheters. This research was funded by the Kaye Family Award.

  5. Sensor based robot laser welding - based on feed forward and gain sceduling algorithms

    DEFF Research Database (Denmark)

    Andersen, Henrik John

    2001-01-01

    A real-time control system forlaser welding of thick steel plates are developed and tested in a industrial environment. The robotic execution of the laser welding process is based on measure weld joint geometry and impirically established welding procedures. The influence of industrial production...

  6. A New Terrain Classification Framework Using Proprioceptive Sensors for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    2017-01-01

    Full Text Available Mobile robots that operate in real-world environments interact with the surroundings to generate complex acoustics and vibration signals, which carry rich information about the terrain. This paper presents a new terrain classification framework that utilizes both acoustics and vibration signals resulting from the robot-terrain interaction. As an alternative to handcrafted domain-specific feature extraction, a two-stage feature selection method combining ReliefF and mRMR algorithms was developed to select optimal feature subsets that carry more discriminative information. As different data sources can provide complementary information, a multiclassifier combination method was proposed by considering a priori knowledge and fusing predictions from five data sources: one acoustic data source and four vibration data sources. In this study, four conceptually different classifiers were employed to perform the classification, each with a different number of optimal features. Signals were collected using a tracked robot moving at three different speeds on six different terrains. The new framework successfully improved classification performance of different classifiers using the newly developed optimal feature subsets. The greater improvement was observed for robot traversing at lower speeds.

  7. Robot path Planning Using  SIFT and Sonar Sensor Fusion

    DEFF Research Database (Denmark)

    Plascencia, Alfredo; Raposo, Hector

    2007-01-01

    and evidential grid maps, respectively. The approach is illustrated using actual measurements from a laboratory robot. The sensory information is obtained from a sonar array and the Scale Invariant Feature Transform (SIFT) algorithm. Finally, the resulting two evidential maps based on Bayes and Dempster theories...

  8. A silicon-based flexible tactile sensor for ubiquitous robot companion applications

    International Nuclear Information System (INIS)

    Kim, Kunnyun; Lee, Kang Ryeol; Lee, Dae Sung; Cho, Nam-Kyu; Kim, Won Hyo; Park, Kwang-Bum; Park, Hyo-Derk; Kim, Yong Kook; Park, Yon-Kyu; Kim, Jong-Ho

    2006-01-01

    We present the fabrication process and characteristics of a 3-axes flexible tactile sensor available for normal and shear mode fabricated using Si micromachining and packaging technologies. The fabrication processes for the 3 axes flexible tactile sensor were classified in the fabrication of sensor chips and their packaging on the flexible PCB. The variation rate of resistance was about 2.1%/N and 0.5%/N in applying normal and shear force, respectively. Because this tactile sensor can measure the variations of resistance of the semiconductor strain gauge for normal and shear force, it can be used to sense touch, pressure, hardness, and slip

  9. Soft Robotics.

    Science.gov (United States)

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Neuro-Inspired Spike-Based Motion: From Dynamic Vision Sensor to Robot Motor Open-Loop Control through Spike-VITE

    Directory of Open Access Journals (Sweden)

    Fernando Perez-Peña

    2013-11-01

    Full Text Available In this paper we present a complete spike-based architecture: from a Dynamic Vision Sensor (retina to a stereo head robotic platform. The aim of this research is to reproduce intended movements performed by humans taking into account as many features as possible from the biological point of view. This paper fills the gap between current spike silicon sensors and robotic actuators by applying a spike processing strategy to the data flows in real time. The architecture is divided into layers: the retina, visual information processing, the trajectory generator layer which uses a neuroinspired algorithm (SVITE that can be replicated into as many times as DoF the robot has; and finally the actuation layer to supply the spikes to the robot (using PFM. All the layers do their tasks in a spike-processing mode, and they communicate each other through the neuro-inspired AER protocol. The open-loop controller is implemented on FPGA using AER interfaces developed by RTC Lab. Experimental results reveal the viability of this spike-based controller. Two main advantages are: low hardware resources (2% of a Xilinx Spartan 6 and power requirements (3.4 W to control a robot with a high number of DoF (up to 100 for a Xilinx Spartan 6. It also evidences the suitable use of AER as a communication protocol between processing and actuation.

  11. Neuro-Inspired Spike-Based Motion: From Dynamic Vision Sensor to Robot Motor Open-Loop Control through Spike-VITE

    Science.gov (United States)

    Perez-Peña, Fernando; Morgado-Estevez, Arturo; Linares-Barranco, Alejandro; Jimenez-Fernandez, Angel; Gomez-Rodriguez, Francisco; Jimenez-Moreno, Gabriel; Lopez-Coronado, Juan

    2013-01-01

    In this paper we present a complete spike-based architecture: from a Dynamic Vision Sensor (retina) to a stereo head robotic platform. The aim of this research is to reproduce intended movements performed by humans taking into account as many features as possible from the biological point of view. This paper fills the gap between current spike silicon sensors and robotic actuators by applying a spike processing strategy to the data flows in real time. The architecture is divided into layers: the retina, visual information processing, the trajectory generator layer which uses a neuroinspired algorithm (SVITE) that can be replicated into as many times as DoF the robot has; and finally the actuation layer to supply the spikes to the robot (using PFM). All the layers do their tasks in a spike-processing mode, and they communicate each other through the neuro-inspired AER protocol. The open-loop controller is implemented on FPGA using AER interfaces developed by RTC Lab. Experimental results reveal the viability of this spike-based controller. Two main advantages are: low hardware resources (2% of a Xilinx Spartan 6) and power requirements (3.4 W) to control a robot with a high number of DoF (up to 100 for a Xilinx Spartan 6). It also evidences the suitable use of AER as a communication protocol between processing and actuation. PMID:24264330

  12. Sensor-coupled fractal gene regulatory networks for locomotion control of a modular snake robot

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Katebi, Serajeddin

    2013-01-01

    in the coordination system of the module. The modules are controlled locally and there is no explicit communication between them. So, they can synchronize implicitly using their sensors, and coordination of their behavior takes place through the environment. In one of our experiments, all the three tilt sensors...

  13. Vision servo of industrial robot: A review

    Science.gov (United States)

    Zhang, Yujin

    2018-04-01

    Robot technology has been implemented to various areas of production and life. With the continuous development of robot applications, requirements of the robot are also getting higher and higher. In order to get better perception of the robots, vision sensors have been widely used in industrial robots. In this paper, application directions of industrial robots are reviewed. The development, classification and application of robot vision servo technology are discussed, and the development prospect of industrial robot vision servo technology is proposed.

  14. On detection and automatic tracking of butt weld line in thin wall pipe welding by a mobile robot with visual sensor

    International Nuclear Information System (INIS)

    Suga, Yasuo; Ishii, Hideaki; Muto, Akifumi

    1992-01-01

    An automatic pipe welding mobile robot system with visual sensor was constructed. The robot can move along a pipe, and detect the weld line to be welded by visual sensor. Moreover, in order to make an automatic welding, the welding torch can track the butt weld line of the pipes at a constant speed by rotating the robot head. Main results obtained are summarized as follows: 1) Using a proper lighting fixed in front of the CCD camera, the butt weld line of thin wall pipes can be recongnized stably. In this case, the root gap should be approximately 0.5 mm. 2) In order to detect the weld line stably during moving along the pipe, a brightness distribution measured by the CCD camera should be subjected to smoothing and differentiating and then the weld line is judged by the maximum and minimum values of the differentials. 3) By means of the basic robot system with a visual sensor controlled by a personal computer, the detection and in-process automatic tracking of a weld line are possible. The average tracking error was approximately 0.2 mm and maximum error 0.5 mm and the welding speed was held at a constant value with error of about 0.1 cm/min. (author)

  15. A neuromorphic controller for a robotic vehicle equipped with a dynamic vision sensor

    OpenAIRE

    Blum, Hermann; Dietmüller, Alexander; Milde, Moritz; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic electronic systems exhibit advantageous characteristics, in terms of low energy consumption and low response latency, which can be useful in robotic applications that require compact and low power embedded computing resources. However, these neuromorphic circuits still face significant limitations that make their usage challenging: these include low precision, variability of components, sensitivity to noise and temperature drifts, as well as the currently limited number of neuron...

  16. Toward an Autonomous Telescope Network: the TBT Scheduler

    Science.gov (United States)

    Racero, E.; Ibarra, A.; Ocaña, F.; de Lis, S. B.; Ponz, J. D.; Castillo, M.; Sánchez-Portal, M.

    2015-09-01

    Within the ESA SSA program, it is foreseen to deploy several robotic telescopes to provide surveillance and tracking services for hazardous objects. The TBT project will procure a validation platform for an autonomous optical observing system in a realistic scenario, consisting of two telescopes located in Spain and Australia, to collect representative test data for precursor SSA services. In this context, the planning and scheduling of the night consists of two software modules, the TBT Scheduler, that will allow the manual and autonomous planning of the night, and the control of the real-time response of the system, done by the RTS2 internal scheduler. The TBT Scheduler allocates tasks for both telescopes without human intervention. Every night it takes all the inputs needed and prepares the schedule following some predefined rules. The main purpose of the scheduler is the distribution of the time for follow-up of recently discovered targets and surveys. The TBT Scheduler considers the overall performance of the system, and combine follow-up with a priori survey strategies for both kind of objects. The strategy is defined according to the expected combined performance for both systems the upcoming night (weather, sky brightness, object accessibility and priority). Therefore, TBT Scheduler defines the global approach for the network and relies on the RTS2 internal scheduler for the final detailed distribution of tasks at each sensor.

  17. A High Precision Approach to Calibrate a Structured Light Vision Sensor in a Robot-Based Three-Dimensional Measurement System

    Directory of Open Access Journals (Sweden)

    Defeng Wu

    2016-08-01

    Full Text Available A robot-based three-dimensional (3D measurement system is presented. In the presented system, a structured light vision sensor is mounted on the arm of an industrial robot. Measurement accuracy is one of the most important aspects of any 3D measurement system. To improve the measuring accuracy of the structured light vision sensor, a novel sensor calibration approach is proposed to improve the calibration accuracy. The approach is based on a number of fixed concentric circles manufactured in a calibration target. The concentric circle is employed to determine the real projected centres of the circles. Then, a calibration point generation procedure is used with the help of the calibrated robot. When enough calibration points are ready, the radial alignment constraint (RAC method is adopted to calibrate the camera model. A multilayer perceptron neural network (MLPNN is then employed to identify the calibration residuals after the application of the RAC method. Therefore, the hybrid pinhole model and the MLPNN are used to represent the real camera model. Using a standard ball to validate the effectiveness of the presented technique, the experimental results demonstrate that the proposed novel calibration approach can achieve a highly accurate model of the structured light vision sensor.

  18. Use of Pattern Classification Algorithms to Interpret Passive and Active Data Streams from a Walking-Speed Robotic Sensor Platform

    Science.gov (United States)

    Dieckman, Eric Allen

    In order to perform useful tasks for us, robots must have the ability to notice, recognize, and respond to objects and events in their environment. This requires the acquisition and synthesis of information from a variety of sensors. Here we investigate the performance of a number of sensor modalities in an unstructured outdoor environment, including the Microsoft Kinect, thermal infrared camera, and coffee can radar. Special attention is given to acoustic echolocation measurements of approaching vehicles, where an acoustic parametric array propagates an audible signal to the oncoming target and the Kinect microphone array records the reflected backscattered signal. Although useful information about the target is hidden inside the noisy time domain measurements, the Dynamic Wavelet Fingerprint process (DWFP) is used to create a time-frequency representation of the data. A small-dimensional feature vector is created for each measurement using an intelligent feature selection process for use in statistical pattern classification routines. Using our experimentally measured data from real vehicles at 50 m, this process is able to correctly classify vehicles into one of five classes with 94% accuracy. Fully three-dimensional simulations allow us to study the nonlinear beam propagation and interaction with real-world targets to improve classification results.

  19. An Automated Sensing System for Steel Bridge Inspection Using GMR Sensor Array and Magnetic Wheels of Climbing Robot

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2016-01-01

    Full Text Available Corrosion is one of the main causes of deterioration of steel bridges. It may cause metal loss and fatigue cracks in the steel components, which would lead to the collapse of steel bridges. This paper presents an automated sensing system to detect corrosion, crack, and other kinds of defects using a GMR (Giant Magnetoresistance sensor array. Defects will change the relative permeability and electrical conductivity of the material. As a result, magnetic field density generated by ferromagnetic material and the magnetic wheels will be changed. The defects are able to be detected by using GMR sensor array to measure the changes of magnetic flux density. In this study, magnetic wheels are used not only as the adhesion device of the robot, but also as an excitation source to provide the exciting magnetic field for the sensing system. Furthermore, compared to the eddy current method and the MFL (magnetic flux leakage method, this sensing system suppresses the noise from lift-off value fluctuation by measuring the vertical component of induced magnetic field that is perpendicular to the surface of the specimen in the corrosion inspection. Simulations and experimental results validated the feasibility of the system for the automated defect inspection.

  20. A flexible dual-mode proximity sensor based on cooperative sensing for robot skin applications

    Science.gov (United States)

    Huang, Ying; Cai, Xia; Kan, Wenqing; Qiu, Shihua; Guo, Xiaohui; Liu, Caixia; Liu, Ping

    2017-08-01

    A flexible dual-mode proximity sensor has been designed and implemented, which is capable of combining capacitive-resistive detection in this paper. The capacitive type proximity sensor detecting is defined as mode-C, and the resistive type proximity sensor detecting is defined as mode-R. The characteristics of the proximity sensor are as follows: (1) the theoretical mode is developed which indicates that this proximity sensor can reflect proximity information accurately; (2) both sensing modes are vertically integrated into a sandwich-like chip with an 8 mm × 12 mm unit area. The thickness of a mode-R sensing material (graphene nanoplatelets) and mode-C dielectric (the mixture of carbon black and silicone rubber) is 1 mm and 2.5 mm, respectively; (3) for mode-R, the linearity of temperature-resistance curve can achieve 0.998 in the temperature range from 25°C to 65°C. And for mode-C, various materials can be successfully detected with fast response and high reversibility. Meanwhile, the study compensated the influence of object temperature to ensure mode-C properly works. A cooperative sensing test shows that R-C dual modes sense effectively which can enlarge the sensing distance compared with the single mode proximity sensor. The fabrication of this sensor is convenient, and the integrity of a flexible sandwich-like structure based on dual modes is beneficial to form arrays, which is suitable to be used in skin-like sensing applications.

  1. Remote controlled data collector robot

    Directory of Open Access Journals (Sweden)

    Jozsef Suto

    2012-06-01

    Full Text Available Today a general need for robots assisting different human activities rises. The goal of the present project is to develop a prototyping robot, which provides facilities for attaching and fitting different kinds of sensors and actuators. This robot provides an easy way to turn a general purpose robot into a special function one.

  2. Trends in Robotic Sensor Technologies for Fruit Harvesting: 2010-2015

    DEFF Research Database (Denmark)

    Zujevs, Andrejs; Osadcuks, Vitalijs; Ahrendt, Peter

    2015-01-01

    of the density and energy effectiveness of computing power, it has also become possible to use open source libraries to incorporate complex signal processing, object detection and machine learning into embedded applications. These factors have led to a situation where designs of commercially successful robotic......In the modern world processes and technologies tend to be automated, autonomous and precise. The world population is constantly growing and thus food production technologies should be brought to a qualitatively new level. Quality requirements for food products also tend to increase and become more...

  3. Micro robot bible

    International Nuclear Information System (INIS)

    Yoon, Jin Yeong

    2000-08-01

    This book deals with micro robot, which tells of summary of robots like entertainment robots and definition of robots, introduction of micro mouse about history, composition and rules, summary of micro controller with its history, appearance and composition, introduction of stepping motor about types, structure, basic characteristics, and driving ways, summary of sensor section, power, understanding of 80C196KC micro controller, basic driving program searching a maze algorithm, smooth turn and making of tracer line.

  4. Two Legged Walking Robot

    OpenAIRE

    Kraus, V.

    2015-01-01

    The aim of this work is to construct a two-legged wirelessly controlled walking robot. This paper describes the construction of the robot, its control electronics, and the solution of the wireless control. The article also includes a description of the application to control the robot. The control electronics of the walking robot are built using the development kit Arduino Mega, which is enhanced with WiFi module allowing the wireless control, a set of ultrasonic sensors for detecting obstacl...

  5. Micro robot bible

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin Yeong

    2000-08-15

    This book deals with micro robot, which tells of summary of robots like entertainment robots and definition of robots, introduction of micro mouse about history, composition and rules, summary of micro controller with its history, appearance and composition, introduction of stepping motor about types, structure, basic characteristics, and driving ways, summary of sensor section, power, understanding of 80C196KC micro controller, basic driving program searching a maze algorithm, smooth turn and making of tracer line.

  6. Short-Range Sensor for Underwater Robot Navigation using Line-lasers and Vision

    DEFF Research Database (Denmark)

    Hansen, Peter Nicholas; Nielsen, Mikkel Cornelius; Christensen, David Johan

    2015-01-01

    This paper investigates a minimalistic laser-based range sensor, used for underwater inspection by Autonomous Underwater Vehicles (AUV). This range detection system system comprise two lasers projecting vertical lines, parallel to a camera’s viewing axis, into the environment. Using both lasers...

  7. Robust Agent Control of an Autonomous Robot with Many Sensors and Actuators

    Science.gov (United States)

    1993-05-01

    and suggests areas of future work. 13 Chapter 2 Hannibal This chapter presents the physical, sensing, and computing aspects of Hanni - bal. Hannibal, and...of sensor faults on the left front leg (the same pro- cesses run on the rest of the legs). The tests were performed while Hanni - bal walked over flat

  8. Hybrid piezoresistive-optical tactile sensor for simultaneous measurement of tissue stiffness and detection of tissue discontinuity in robot-assisted minimally invasive surgery

    Science.gov (United States)

    Bandari, Naghmeh M.; Ahmadi, Roozbeh; Hooshiar, Amir; Dargahi, Javad; Packirisamy, Muthukumaran

    2017-07-01

    To compensate for the lack of touch during minimally invasive and robotic surgeries, tactile sensors are integrated with surgical instruments. Surgical tools with tactile sensors have been used mainly for distinguishing among different tissues and detecting malignant tissues or tumors. Studies have revealed that malignant tissue is most likely stiffer than normal. This would lead to the formation of a sharp discontinuity in tissue mechanical properties. A hybrid piezoresistive-optical-fiber sensor is proposed. This sensor is investigated for its capabilities in tissue distinction and detection of a sharp discontinuity. The dynamic interaction of the sensor and tissue is studied using finite element method. The tissue is modeled as a two-term Mooney-Rivlin hyperelastic material. For experimental verification, the sensor was microfabricated and tested under the same conditions as of the simulations. The simulation and experimental results are in a fair agreement. The sensor exhibits an acceptable linearity, repeatability, and sensitivity in characterizing the stiffness of different tissue phantoms. Also, it is capable of locating the position of a sharp discontinuity in the tissue. Due to the simplicity of its sensing principle, the proposed hybrid sensor could also be used for industrial applications.

  9. Integrated multi-sensor fusion for mapping and localization in outdoor environments for mobile robots

    Science.gov (United States)

    Emter, Thomas; Petereit, Janko

    2014-05-01

    An integrated multi-sensor fusion framework for localization and mapping for autonomous navigation in unstructured outdoor environments based on extended Kalman filters (EKF) is presented. The sensors for localization include an inertial measurement unit, a GPS, a fiber optic gyroscope, and wheel odometry. Additionally a 3D LIDAR is used for simultaneous localization and mapping (SLAM). A 3D map is built while concurrently a localization in a so far established 2D map is estimated with the current scan of the LIDAR. Despite of longer run-time of the SLAM algorithm compared to the EKF update, a high update rate is still guaranteed by sophisticatedly joining and synchronizing two parallel localization estimators.

  10. Practical Use Technique of Sensor

    International Nuclear Information System (INIS)

    Hwang, Gyu Seop

    1985-11-01

    This book tells of practical use technology of sensor, introducing the recent trend of sensor for electronic industry, IC temperature sensor, radiation temperature sensor of surface acoustic wave, optical fiber temperature sensor, a polyelectrolyte film humidity sensor, semiconductor pressure sensor for industrial instrumentation, silicon integration pressure sensor, thick film humidity sensor and its application, photo sensor reflection type, and color sensor. It also deals with sensor for FA, sensor for a robot and sensor for the chemical industry.

  11. Practical Use Technique of Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gyu Seop

    1985-11-15

    This book tells of practical use technology of sensor, introducing the recent trend of sensor for electronic industry, IC temperature sensor, radiation temperature sensor of surface acoustic wave, optical fiber temperature sensor, a polyelectrolyte film humidity sensor, semiconductor pressure sensor for industrial instrumentation, silicon integration pressure sensor, thick film humidity sensor and its application, photo sensor reflection type, and color sensor. It also deals with sensor for FA, sensor for a robot and sensor for the chemical industry.

  12. The Application of Virtex-II Pro FPGA in High-Speed Image Processing Technology of Robot Vision Sensor

    International Nuclear Information System (INIS)

    Ren, Y J; Zhu, J G; Yang, X Y; Ye, S H

    2006-01-01

    The Virtex-II Pro FPGA is applied to the vision sensor tracking system of IRB2400 robot. The hardware platform, which undertakes the task of improving SNR and compressing data, is constructed by using the high-speed image processing of FPGA. The lower level image-processing algorithm is realized by combining the FPGA frame and the embedded CPU. The velocity of image processing is accelerated due to the introduction of FPGA and CPU. The usage of the embedded CPU makes it easily to realize the logic design of interface. Some key techniques are presented in the text, such as read-write process, template matching, convolution, and some modules are simulated too. In the end, the compare among the modules using this design, using the PC computer and using the DSP, is carried out. Because the high-speed image processing system core is a chip of FPGA, the function of which can renew conveniently, therefore, to a degree, the measure system is intelligent

  13. The Application of Virtex-II Pro FPGA in High-Speed Image Processing Technology of Robot Vision Sensor

    Science.gov (United States)

    Ren, Y. J.; Zhu, J. G.; Yang, X. Y.; Ye, S. H.

    2006-10-01

    The Virtex-II Pro FPGA is applied to the vision sensor tracking system of IRB2400 robot. The hardware platform, which undertakes the task of improving SNR and compressing data, is constructed by using the high-speed image processing of FPGA. The lower level image-processing algorithm is realized by combining the FPGA frame and the embedded CPU. The velocity of image processing is accelerated due to the introduction of FPGA and CPU. The usage of the embedded CPU makes it easily to realize the logic design of interface. Some key techniques are presented in the text, such as read-write process, template matching, convolution, and some modules are simulated too. In the end, the compare among the modules using this design, using the PC computer and using the DSP, is carried out. Because the high-speed image processing system core is a chip of FPGA, the function of which can renew conveniently, therefore, to a degree, the measure system is intelligent.

  14. Estimation of Human Arm Joints Using Two Wireless Sensors in Robotic Rehabilitation Tasks

    Directory of Open Access Journals (Sweden)

    Arturo Bertomeu-Motos

    2015-12-01

    Full Text Available This paper presents a novel kinematic reconstruction of the human arm chain with five degrees of freedom and the estimation of the shoulder location during rehabilitation therapy assisted by end-effector robotic devices. This algorithm is based on the pseudoinverse of the Jacobian through the acceleration of the upper arm, measured using an accelerometer, and the orientation of the shoulder, estimated with a magnetic angular rate and gravity (MARG device. The results show a high accuracy in terms of arm joints and shoulder movement with respect to the real arm measured through an optoelectronic system. Furthermore, the range of motion (ROM of 50 healthy subjects is studied from two different trials, one trying to avoid shoulder movements and the second one forcing them. Moreover, the shoulder movement in the second trial is also estimated accurately. Besides the fact that the posture of the patient can be corrected during the exercise, the therapist could use the presented algorithm as an objective assessment tool. In conclusion, the joints’ estimation enables a better adjustment of the therapy, taking into account the needs of the patient, and consequently, the arm motion improves faster.

  15. Reprogramming the articulated robotic arm for glass handling by using Arduino microcontroller

    Science.gov (United States)

    Razali, Zol Bahri; Kader, Mohamed Mydin M. Abdul; Kadir, Mohd Asmadi Akmal; Daud, Mohd Hisam

    2017-09-01

    The application of articulated robotic arm in industries is raised due to the expansion of using robot to replace human task, especially for the harmful tasks. However a few problems happen with the program use to schedule the arm, Thus the purpose of this project is to design, fabricate and integrate an articulated robotic arm by using Arduino microcontroller for handling glass sorting system. This project was designed to segregate glass and non-glass waste which would be pioneer step for recycling. This robotic arm has four servo motors to operate as a whole; three for the body and one for holding mechanism. This intelligent system is controlled by Arduino microcontroller and build with optical sensor to provide the distinguish objects that will be handled. Solidworks model was used to produce the detail design of the robotic arm and make the mechanical properties analysis by using a CAD software.

  16. A comprehensive remote automated mobile robot framework for deployment of compact radiation sensors and campaign management

    International Nuclear Information System (INIS)

    Mukherjee, J.K.

    2005-01-01

    Remote controlled on-line sensing with compact radiation sensors for interactive, fast contamination mapping and source localization needs integrated command control and machine intelligence supported operation. The combination of remote operation capability and automation of sensing needs a comprehensive framework encompassing precision real-time remote controlled agent, reliable remote communication techniques for unified command and sensory data exchange with optimized bandwidth allocation between the real time low volume as well as moderate speed bulk data transfer and data abstraction for seamless multi-domain abstraction in single environment. The paper describes an indigenously developed comprehensive framework that achieves vertical integration of layered services complex functions, explains its implementation and details its operation with examples of on-line application sessions. Several important features like precise remote control of sensor trajectory generation in real time by digital signal processing, prediction and visualization of remote agent locus and attitude, spatial modeling of fixed features of the monitored region and localization of activity source over mapped region have been dealt with. (author)

  17. Conference on Space and Military Applications of Automation and Robotics

    Science.gov (United States)

    1988-01-01

    Topics addressed include: robotics; deployment strategies; artificial intelligence; expert systems; sensors and image processing; robotic systems; guidance, navigation, and control; aerospace and missile system manufacturing; and telerobotics.

  18. Design and Implementation of Fire Extinguisher Robot with Robotic Arm

    Directory of Open Access Journals (Sweden)

    Memon Abdul Waris

    2018-01-01

    Full Text Available Robot is a device, which performs human task or behave like a human-being. It needs expertise skills and complex programming to design. For designing a fire fighter robot, many sensors and motors were used. User firstly send robot to an affected area, to get live image of the field with the help of mobile camera via Wi-Fi using IP camera application to laptop. If any signs of fire shown in image, user direct robot in that particular direction for confirmation. Fire sensor and temperature sensor detects and measures the reading, after confirmation robot sprinkle water on affected field. During extinguish process if any obstacle comes in between the prototype and the affected area the ultrasonic sensor detects the obstacle, in response the robotic arm moves to pick and place that obstacle to another location for clearing the path. Meanwhile if any poisonous gas is present, the gas sensor detects and indicates by making alarm.

  19. Inspection of Pipe Inner Surface using Advanced Pipe Crawler Robot with PVDF Sensor based Rotating Probe

    Directory of Open Access Journals (Sweden)

    Vimal AGARWAL

    2011-04-01

    Full Text Available Due to corrosive environment, pipes used for transportation of water and gas at the plants often get damaged. Defects caused by corrosion and cracking may cause serious accidents like leakage, fire and blasts. It also reduces the life of the transportation system substantially. In order to inspect such defects, a Polyvinyledene Fluoride (PVDF based cantilever smart probe is developed to scan the surface quality of the pipes. The smart probe, during rotation, touches the inner surface of the pipe and experience a broad-band excitation in the absence of surface features. On the other hand, whenever the probe comes across any surface projection, there is a change in vibration pattern of the probe, which causes a high voltage peak/pulse. Such peaks/pulses could give useful information about the location and nature of a defect. Experiments are carried out on different patterns, sizes and shapes of surface projections artificially constructed inside the pipe. The sensor system has reliably predicted the presence and distribution of projections in every case. It is envisaged that the new sensing system could be used effectively for pipe health monitoring.

  20. Grasping in Robotics

    CERN Document Server

    2013-01-01

    Grasping in Robotics contains original contributions in the field of grasping in robotics with a broad multidisciplinary approach. This gives the possibility of addressing all the major issues related to robotized grasping, including milestones in grasping through the centuries, mechanical design issues, control issues, modelling achievements and issues, formulations and software for simulation purposes, sensors and vision integration, applications in industrial field and non-conventional applications (including service robotics and agriculture).   The contributors to this book are experts in their own diverse and wide ranging fields. This multidisciplinary approach can help make Grasping in Robotics of interest to a very wide audience. In particular, it can be a useful reference book for researchers, students and users in the wide field of grasping in robotics from many different disciplines including mechanical design, hardware design, control design, user interfaces, modelling, simulation, sensors and hum...

  1. Assessment Study on Sensors and Automation in the Industries of the Future. Reports on Industrial Controls, Information Processing, Automation, and Robotics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Bonnie [Adventium Labs; Boddy, Mark [Adventium Labs; Doyle, Frank [Univ. of California, Santa Barbara, CA (United States); Jamshidi, Mo [Univ. of New Mexico, Albuquerque, NM (United States); Ogunnaike, Tunde [Univ. of Delaware, Newark, DE (United States)

    2004-11-01

    This report presents the results of an expert study to identify research opportunities for Sensors & Automation, a sub-program of the U.S. Department of Energy (DOE) Industrial Technologies Program (ITP). The research opportunities are prioritized by realizable energy savings. The study encompasses the technology areas of industrial controls, information processing, automation, and robotics. These areas have been central areas of focus of many Industries of the Future (IOF) technology roadmaps. This report identifies opportunities for energy savings as a direct result of advances in these areas and also recognizes indirect means of achieving energy savings, such as product quality improvement, productivity improvement, and reduction of recycle.

  2. Fable: Socially Interactive Modular Robot

    DEFF Research Database (Denmark)

    Magnússon, Arnþór; Pacheco, Moises; Moghadam, Mikael

    2013-01-01

    Modular robots have a significant potential as user-reconfigurable robotic playware, but often lack sufficient sensing for social interaction. We address this issue with the Fable modular robotic system by exploring the use of smart sensor modules that has a better ability to sense the behavior...

  3. An On-Time Power-Aware Scheduling Scheme for Medical Sensor SoC-Based WBAN Systems

    OpenAIRE

    Hwang, Tae-Ho; Kim, Dong-Sun; Kim, Jung-Guk

    2012-01-01

    The focus of many leading technologies in the field of medical sensor systems is on low power consumption and robust data transmission. For example, the implantable cardioverter-defibrillator (ICD), which is used to maintain the heart in a healthy state, requires a reliable wireless communication scheme with an extremely low duty-cycle, high bit rate, and energy-efficient media access protocols. Because such devices must be sustained for over 5 years without access to battery replacement, the...

  4. The Design and Implementation of a Semi-Autonomous Surf-Zone Robot Using Advanced Sensors and a Common Robot Operating System

    Science.gov (United States)

    2011-06-01

    effective way- point navigation algorithm that interfaced with a Java based graphical user interface (GUI), written by Uzun, for a robot named Bender [2...the angular acceleration, θ̈, or angular rate, θ̇. When considering a joint driven by an electric motor, the inertia and friction can be divided into...interactive simulations that can receive input from user controls, scripts , and other applications, such as Excel and MATLAB. One drawback is that the

  5. Constrained VPH+: a local path planning algorithm for a bio-inspired crawling robot with customized ultrasonic scanning sensor.

    Science.gov (United States)

    Rao, Akshay; Elara, Mohan Rajesh; Elangovan, Karthikeyan

    This paper aims to develop a local path planning algorithm for a bio-inspired, reconfigurable crawling robot. A detailed description of the robotic platform is first provided, and the suitability for deployment of each of the current state-of-the-art local path planners is analyzed after an extensive literature review. The Enhanced Vector Polar Histogram algorithm is described and reformulated to better fit the requirements of the platform. The algorithm is deployed on the robotic platform in crawling configuration and favorably compared with other state-of-the-art local path planning algorithms.

  6. Implementing real-time robotic systems using CHIMERA II

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1990-01-01

    A description is given of the CHIMERA II programming environment and operating system, which was developed for implementing real-time robotic systems. Sensor-based robotic systems contain both general- and special-purpose hardware, and thus the development of applications tends to be a time-consuming task. The CHIMERA II environment is designed to reduce the development time by providing a convenient software interface between the hardware and the user. CHIMERA II supports flexible hardware configurations which are based on one or more VME-backplanes. All communication across multiple processors is transparent to the user through an extensive set of interprocessor communication primitives. CHIMERA II also provides a high-performance real-time kernel which supports both deadline and highest-priority-first scheduling. The flexibility of CHIMERA II allows hierarchical models for robot control, such as NASREM, to be implemented with minimal programming time and effort.

  7. Exploratorium: Robots.

    Science.gov (United States)

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  8. Focus on image sensors

    NARCIS (Netherlands)

    Jos Gunsing; Daniël Telgen; Johan van Althuis; Jaap van de Loosdrecht; Mark Stappers; Peter Klijn

    2013-01-01

    Robots need sensors to operate properly. Using a single image sensor, various aspects of a robot operating in its environment can be measured or monitored. Over the past few years, image sensors have improved a lot: frame rate and resolution have increased, while prices have fallen. As a result,

  9. Robotic hand project

    OpenAIRE

    Karaçizmeli, Cengiz; Çakır, Gökçe; Tükel, Dilek

    2014-01-01

    In this work, the mechatronic based robotic hand is controlled by the position data taken from the glove which has flex sensors mounted to capture finger bending of the human hand. The angular movement of human hand’s fingers are perceived and processed by a microcontroller, and the robotic hand is controlled by actuating servo motors. It has seen that robotic hand can simulate the movement of the human hand that put on the glove, during tests have done. This robotic hand can be used not only...

  10. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  11. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  12. Robotics On-Board Trainer (ROBoT)

    Science.gov (United States)

    Johnson, Genevieve; Alexander, Greg

    2013-01-01

    ROBoT is an on-orbit version of the ground-based Dynamics Skills Trainer (DST) that astronauts use for training on a frequent basis. This software consists of two primary software groups. The first series of components is responsible for displaying the graphical scenes. The remaining components are responsible for simulating the Mobile Servicing System (MSS), the Japanese Experiment Module Remote Manipulator System (JEMRMS), and the H-II Transfer Vehicle (HTV) Free Flyer Robotics Operations. The MSS simulation software includes: Robotic Workstation (RWS) simulation, a simulation of the Space Station Remote Manipulator System (SSRMS), a simulation of the ISS Command and Control System (CCS), and a portion of the Portable Computer System (PCS) software necessary for MSS operations. These components all run under the CentOS4.5 Linux operating system. The JEMRMS simulation software includes real-time, HIL, dynamics, manipulator multi-body dynamics, and a moving object contact model with Tricks discrete time scheduling. The JEMRMS DST will be used as a functional proficiency and skills trainer for flight crews. The HTV Free Flyer Robotics Operations simulation software adds a functional simulation of HTV vehicle controllers, sensors, and data to the MSS simulation software. These components are intended to support HTV ISS visiting vehicle analysis and training. The scene generation software will use DOUG (Dynamic On-orbit Ubiquitous Graphics) to render the graphical scenes. DOUG runs on a laptop running the CentOS4.5 Linux operating system. DOUG is an Open GL-based 3D computer graphics rendering package. It uses pre-built three-dimensional models of on-orbit ISS and space shuttle systems elements, and provides realtime views of various station and shuttle configurations.

  13. Situation Assessment for Mobile Robots

    DEFF Research Database (Denmark)

    Beck, Anders Billesø

    Mobile robots have become a mature technology. The first cable guided logistics robots were introduced in the industry almost 60 years ago. In this time the market for mobile robots in industry has only experienced a very modest growth and only 2.100 systems were sold worldwide in 2011. In recent...... years, many other domains have adopted the mobile robots, such as logistics robots at hospitals and the vacuum robots in our homes. However, considering the achievements in research the last 15 years within perception and operation in natural environments together with the reductions of costs in modern...... sensor systems, the growth potential for mobile robot applications are enormous. Many new technological components are available to move the limits of commercial mobile robot applications, but a key hindrance is reliability. Natural environments are complex and dynamic, and thus the risk of robots...

  14. State estimation for a hexapod robot

    CSIR Research Space (South Africa)

    Lubbe, Estelle

    2015-09-01

    Full Text Available This paper introduces a state estimation methodology for a hexapod robot that makes use of proprioceptive sensors and a kinematic model of the robot. The methodology focuses on providing reliable full pose state estimation for a commercially...

  15. Controller design for Robotic hand through Electroencephalogram

    OpenAIRE

    Pandelidis P.; Kiriazis N.; Orgianelis K.; Koulios N.

    2016-01-01

    - This paper deals with the designing, the construction and the control of a robotic hand via an electroencephalogram sensor. First a robotic device that is able to mimic a real human hand is constructed. A PID controller is designed in order to improve the performance of the robotic arm for grabbing objects. Furthermore, a novel design approach is presented for controlling the motion of the robotic arm using signals produced from an innovative electroencephalogram sensor that detects the con...

  16. Sensory Robot Gripper

    DEFF Research Database (Denmark)

    Drimus, Alin

    The project researches and proposes a tactile sensor system for equipping robotic grippers, thus giving them a sense of touch. We start by reviewing work that covers the building of tactile sensors and we focus on the flexible sensors with multiple sensing elements. As the piezoresistive, capacit......The project researches and proposes a tactile sensor system for equipping robotic grippers, thus giving them a sense of touch. We start by reviewing work that covers the building of tactile sensors and we focus on the flexible sensors with multiple sensing elements. As the piezoresistive......, such as establishing of contact, release of contact or slip. The proposed applications are just a few examples of the advantages of equipping robotic grippers with such a tactile sensor system, that is robust, fast, affordable, adaptable to any kind of gripper and has properties similar to the human sense of touch....... Based on experimental validation, we are confident that our proposed tactile sensor solution can be successfully employed in other application areas like reactive grasping, exploration of unknown objects, slip avoidance, dexterous manipulation or service robotics....

  17. Rapid 3D Modeling and Parts Recognition on Automotive Vehicles Using a Network of RGB-D Sensors for Robot Guidance

    Directory of Open Access Journals (Sweden)

    Alberto Chávez-Aragón

    2013-01-01

    Full Text Available This paper presents an approach for the automatic detection and fast 3D profiling of lateral body panels of vehicles. The work introduces a method to integrate raw streams from depth sensors in the task of 3D profiling and reconstruction and a methodology for the extrinsic calibration of a network of Kinect sensors. This sensing framework is intended for rapidly providing a robot with enough spatial information to interact with automobile panels using various tools. When a vehicle is positioned inside the defined scanning area, a collection of reference parts on the bodywork are automatically recognized from a mosaic of color images collected by a network of Kinect sensors distributed around the vehicle and a global frame of reference is set up. Sections of the depth information on one side of the vehicle are then collected, aligned, and merged into a global RGB-D model. Finally, a 3D triangular mesh modelling the body panels of the vehicle is automatically built. The approach has applications in the intelligent transportation industry, automated vehicle inspection, quality control, automatic car wash systems, automotive production lines, and scan alignment and interpretation.

  18. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  19. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  20. Integration of Haptics in Agricultural Robotics

    Science.gov (United States)

    Kannan Megalingam, Rajesh; Sreekanth, M. M.; Sivanantham, Vinu; Sai Kumar, K.; Ghanta, Sriharsha; Surya Teja, P.; Reddy, Rajesh G.

    2017-08-01

    Robots can differentiate with open loop system and closed loop system robots. We face many problems when we do not have a feedback from robots. In this research paper, we are discussing all possibilities to achieve complete closed loop system for Multiple-DOF Robotic Arm, which is used in a coconut tree climbing and cutting robot by introducing a Haptic device. We are working on various sensors like tactile, vibration, force and proximity sensors for getting feedback. For monitoring the robotic arm achieved by graphical user interference software which simulates the working of the robotic arm, send the feedback of all the real time analog values which are produced by various sensors and provide real-time graphs for estimate the efficiency of the Robot.

  1. Mobile app for human-interaction with sitter robots

    Science.gov (United States)

    Das, Sumit Kumar; Sahu, Ankita; Popa, Dan O.

    2017-05-01

    Human environments are often unstructured and unpredictable, thus making the autonomous operation of robots in such environments is very difficult. Despite many remaining challenges in perception, learning, and manipulation, more and more studies involving assistive robots have been carried out in recent years. In hospital environments, and in particular in patient rooms, there are well-established practices with respect to the type of furniture, patient services, and schedule of interventions. As a result, adding a robot into semi-structured hospital environments is an easier problem to tackle, with results that could have positive benefits to the quality of patient care and the help that robots can offer to nursing staff. When working in a healthcare facility, robots need to interact with patients and nurses through Human-Machine Interfaces (HMIs) that are intuitive to use, they should maintain awareness of surroundings, and offer safety guarantees for humans. While fully autonomous operation for robots is not yet technically feasible, direct teleoperation control of the robot would also be extremely cumbersome, as it requires expert user skills, and levels of concentration not available to many patients. Therefore, in our current study we present a traded control scheme, in which the robot and human both perform expert tasks. The human-robot communication and control scheme is realized through a mobile tablet app that can be customized for robot sitters in hospital environments. The role of the mobile app is to augment the verbal commands given to a robot through natural speech, camera and other native interfaces, while providing failure mode recovery options for users. Our app can access video feed and sensor data from robots, assist the user with decision making during pick and place operations, monitor the user health over time, and provides conversational dialogue during sitting sessions. In this paper, we present the software and hardware framework that

  2. Refinery scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Marcus V.; Fraga, Eder T. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Shah, Nilay [Imperial College, London (United Kingdom)

    2004-07-01

    This work addresses the refinery scheduling problem using mathematical programming techniques. The solution adopted was to decompose the entire refinery model into a crude oil scheduling and a product scheduling problem. The envelope for the crude oil scheduling problem is composed of a terminal, a pipeline and the crude area of a refinery, including the crude distillation units. The solution method adopted includes a decomposition technique based on the topology of the system. The envelope for the product scheduling comprises all tanks, process units and products found in a refinery. Once crude scheduling decisions are Also available the product scheduling is solved using a rolling horizon algorithm. All models were tested with real data from PETROBRAS' REFAP refinery, located in Canoas, Southern Brazil. (author)

  3. Robotic Tactile Sensors Fabricated from a Monolithic Silicon Integrated Circuit and a Piezoelectric Polyvinylidene Fluoride Thin Film

    Science.gov (United States)

    1991-12-01

    thi efecs could be accounted for. A high impedance switch network resulted in the aityto etally apply a fix&. ,zw the entire electrode array structure...sesrCmnipo-wil (if a I wo-itmetsitiial array of clusely spared : axels should be cajpable -it fundmental image seivsinm and thius. renile: iii ,fbIot Willh...is said to be piezoresistive. Piezoresistive tactile sensors incorporate this principle in tile design of tile sensor as the transducing material

  4. Implementation and Reconfiguration of Robot Operating System on Human Follower Transporter Robot

    Directory of Open Access Journals (Sweden)

    Addythia Saphala

    2015-10-01

    Full Text Available Robotic Operation System (ROS is an im- portant platform to develop robot applications. One area of applications is for development of a Human Follower Transporter Robot (HFTR, which  can  be  considered  as a custom mobile robot utilizing differential driver steering method and equipped with Kinect sensor. This study discusses the development of the robot navigation system by implementing Simultaneous Localization and Mapping (SLAM.

  5. Robot engineering

    International Nuclear Information System (INIS)

    Jung, Seul

    2006-02-01

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  6. Robot engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seul

    2006-02-15

    This book deals with robot engineering, giving descriptions of robot's history, current tendency of robot field, work and characteristic of industrial robot, essential merit and vector, application of matrix, analysis of basic vector, expression of Denavit-Hartenberg, robot kinematics such as forward kinematics, inverse kinematics, cases of MATLAB program, and motion kinematics, robot kinetics like moment of inertia, centrifugal force and coriolis power, and Euler-Lagrangian equation course plan, SIMULINK position control of robots.

  7. Teleautonomous Control on Rescue Robot Prototype

    Directory of Open Access Journals (Sweden)

    Son Kuswadi

    2012-12-01

    Full Text Available Robot application in disaster area can help responder team to save victims. In order to finish task, robot must have flexible movement mechanism so it can pass through uncluttered area. Passive linkage can be used on robot chassis so it can give robot flexibility. On physical experiments, robot is succeeded to move through gravels and 5 cm obstacle. Rescue robot also has specialized control needs. Robot must able to be controlled remotely. It also must have ability to move autonomously. Teleautonomous control method is combination between those methods. It can be concluded from experiments that on teleoperation mode, operator must get used to see environment through robot’s camera. While on autonomous mode, robot is succeeded to avoid obstacle and search target based on sensor reading and controller program. On teleautonomous mode, robot can change control mode by using bluetooth communication for data transfer, so robot control will be more flexible.

  8. Developmental Robots - A New Paradigm

    National Research Council Canada - National Science Library

    Weng, Juyang; Zhang, Yilu

    2005-01-01

    .... This is especially true for a humanoid robot due to the very large number of redundant degrees of freedom and large number of sensors that are required for a humanoid to work safely and effectively...

  9. Sensor

    OpenAIRE

    Gleeson, Helen; Dierking, Ingo; Grieve, Bruce; Woodyatt, Christopher; Brimicombe, Paul

    2015-01-01

    An electrical temperature sensor (10) comprises a liquid crystalline material (12). First and second electrically conductive contacts (14), (16), having a spaced relationship there between, contact the liquid crystalline material (12). An electric property measuring device is electrically connected to the first and second contacts (14), (16) and is arranged to measure an electric property of the liquid crystalline material (12). The liquid crystalline material (12) has a transition temperatur...

  10. Schedule Analytics

    Science.gov (United States)

    2016-04-30

    Warfare, Naval Sea Systems Command Acquisition Cycle Time : Defining the Problem David Tate, Institute for Defense Analyses Schedule Analytics Jennifer...research was comprised of the following high- level steps :  Identify and review primary data sources 1...research. However, detailed reviews of the OMB IT Dashboard data revealed that schedule data is highly aggregated. Program start date and program end date

  11. Vision-Based Robot Following Using PID Control

    Directory of Open Access Journals (Sweden)

    Chandra Sekhar Pati

    2017-06-01

    Full Text Available Applications like robots which are employed for shopping, porter services, assistive robotics, etc., require a robot to continuously follow a human or another robot. This paper presents a mobile robot following another tele-operated mobile robot based on a PID (Proportional–Integral-Differential controller. Here, we use two differential wheel drive robots; one is a master robot and the other is a follower robot. The master robot is manually controlled and the follower robot is programmed to follow the master robot. For the master robot, a Bluetooth module receives the user’s command from an android application which is processed by the master robot’s controller, which is used to move the robot. The follower robot receives the image from the Kinect sensor mounted on it and recognizes the master robot. The follower robot identifies the x, y positions by employing the camera and the depth by using the Kinect depth sensor. By identifying the x, y, and z locations of the master robot, the follower robot finds the angle and distance between the master and follower robot, which is given as the error term of a PID controller. Using this, the follower robot follows the master robot. A PID controller is based on feedback and tries to minimize the error. Experiments are conducted for two indigenously developed robots; one depicting a humanoid and the other a small mobile robot. It was observed that the follower robot was easily able to follow the master robot using well-tuned PID parameters.

  12. Laser speckle velocimetry for robot manufacturing

    Science.gov (United States)

    Charrett, Thomas O. H.; Bandari, Yashwanth K.; Michel, Florent; Ding, Jialuo; Williams, Stewart W.; Tatam, Ralph P.

    2017-06-01

    A non-contact speckle correlation sensor for the measurement of robotic tool speed is presented for use in robotic manufacturing and is capable of measuring the in-plane relative velocities between a robot end-effector and the workpiece or other surface. The sensor performance was assessed in the laboratory with the sensor accuracies found to be better than 0:01 mm/s over a 70 mm/s velocity range. Finally an example of the sensors application to robotic manufacturing is presented where the sensor was applied to tool speed measurement for path planning in the wire and arc additive manufacturing process using a KUKA KR150 L110/2 industrial robot.

  13. Hexapod Robot

    Science.gov (United States)

    Begody, Ericka

    2016-01-01

    The project I am working on at NASA-Johnson Space Center in Houston, TX is a hexapod robot. This project was started by various engineers at the Trick Lab. The goal of this project is to have the hexapod track a yellow ball or possibly another object from left to right and up/down. The purpose is to have it track an object like a real creature. The project will consist of using software and hardware. This project started with a hexapod robot which uses a senor bar to track a yellow ball but with a limited field of vision. The sensor bar acts as the robots "head." Two servos will be added to the hexapod to create flexion and extension of the head. The neck and head servos will have to be programmed to be added to the original memory map of the existing servos. I will be using preexisting code. The main programming language that will be used to add to the preexisting code is C++. The trick modeling and simulation software will also be used in the process to improve its tracking and movement. This project will use a trial and error approach, basically seeing what works and what does not. The first step is to initially understand how the hexapod works. To get a general understanding of how the hexapod maneuvers and plan on how to had a neck and head servo which works with the rest of the body. The second step would be configuring the head and neck servos with the leg servos. During this step, limits will be programmed specifically for the each servo. By doing this, the servo is limited to how far it can rotate both clockwise and counterclockwise and this is to prevent hardware damage. The hexapod will have two modes in which it works in. The first mode will be if the sensor bar does not detect an object. If the object it is programmed to look for is not in its view it will automatically scan from left to right 3 times then up and down once. The second mode will be if the sensor bar does detect the object. In this mode the hexapod will track the object from left to

  14. Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation

    Directory of Open Access Journals (Sweden)

    Olivier Michel

    2004-03-01

    Full Text Available Cyberbotics Ltd. develops Webots™, a mobile robotics simulation software that provides you with a rapid prototyping environment for modelling, programming and simulating mobile robots. The provided robot libraries enable you to transfer your control programs to several commercially available real mobile robots. Webots™ lets you define and modify a complete mobile robotics setup, even several different robots sharing the same environment. For each object, you can define a number of properties, such as shape, color, texture, mass, friction, etc. You can equip each robot with a large number of available sensors and actuators. You can program these robots using your favorite development environment, simulate them and optionally transfer the resulting programs onto your real robots. Webots™ has been developed in collaboration with the Swiss Federal Institute of Technology in Lausanne, thoroughly tested, well documented and continuously maintained for over 7 years. It is now the main commercial product available from Cyberbotics Ltd.

  15. WebotsTM: Professional Mobile Robot Simulation

    Directory of Open Access Journals (Sweden)

    Olivier Michel

    2008-11-01

    Full Text Available Cyberbotics Ltd. develops WebotsTM, a mobile robotics simulation software that provides you with a rapid prototyping environment for modelling, programming and simulating mobile robots. The provided robot libraries enable you to transfer your control programs to several commercially available real mobile robots. WebotsTM lets you define and modify a complete mobile robotics setup, even several different robots sharing the same environment. For each object, you can define a number of properties, such as shape, color, texture, mass, friction, etc. You can equip each robot with a large number of available sensors and actuators. You can program these robots using your favorite development environment, simulate them and optionally transfer the resulting programs onto your real robots. WebotsTM has been developed in collaboration with the Swiss Federal Institute of Technology in Lausanne, thoroughly tested, well documented and continuously maintained for over 7 years. It is now the main commercial product available from Cyberbotics Ltd.

  16. Tank-automotive robotics

    Science.gov (United States)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  17. Robotic Art for Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2010-01-01

    on “simple” plug-and-play circuits, ranging from pure sensors-actuators schemes to artefacts with a smaller level of elaboration complexity. Indeed, modular robotic wearable focuses on enhancing the body perception and proprioperception by trying to substitute all of the traditional exoskeletons perceptive...

  18. A ROBOT AND A METHOD OF CONTROLLING A ROBOT

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to a robot comprising a horizontal or horizontally slanted transparent experiment layer being adapted to support items at arbitrary positions on or in the experiment layer, and a moveable sensor arranged below the transparent experimental layer said sensor being...

  19. Manned spacecraft automation and robotics

    Science.gov (United States)

    Erickson, Jon D.

    1987-01-01

    The Space Station holds promise of being a showcase user and driver of advanced automation and robotics technology. The author addresses the advances in automation and robotics from the Space Shuttle - with its high-reliability redundancy management and fault tolerance design and its remote manipulator system - to the projected knowledge-based systems for monitoring, control, fault diagnosis, planning, and scheduling, and the telerobotic systems of the future Space Station.

  20. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  1. Robot Aesthetics

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... in robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  2. Filigree Robotics

    DEFF Research Database (Denmark)

    Tamke, Martin; Evers, Henrik Leander; Clausen Nørgaard, Esben

    2016-01-01

    Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture.......Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture....

  3. Line and Circle Formation of Distributed Physical Mobile Robots

    OpenAIRE

    Yun, Xiaoping; Alptekin, Gokhan; Albayrak, Okay

    1997-01-01

    The formation problem of distributed mobile robots was studied in the literature for idealized robots. Idealized robots are able to instantaneously move in any directions, and are equipped with perfect range sensors. In this study, we address the formation problem of distributed mobile robots that are subject to physical constraints. Mobile robots considered in this study have physical dimensions and their motions are governed by physical laws. They are equipped with sonar and ...

  4. Vision Guided Intelligent Robot Design And Experiments

    Science.gov (United States)

    Slutzky, G. D.; Hall, E. L.

    1988-02-01

    The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.

  5. RIPE [robot independent programming environment]: A robot independent programming environment

    International Nuclear Information System (INIS)

    Miller, D.J.; Lennox, R.C.

    1990-01-01

    Remote manual operations in radiation environments are typically performed very slowly. Sensor-based computer-controlled robots hold great promise for increasing the speed and safety of remote operations; however, the programming of robotic systems has proven to be expensive and difficult. Generalized approaches to robot programming that reuse available software modules and employ programming languages which are independent of the specific robotic and sensory devices being used are needed to speed software development and increase overall system reliability. This paper discusses the robot independent programming environment (RIPE) developed at Sandia National Laboratories (SNL). The RIPE is an object-oriented approach to robot system architectures; it is a software environment that facilitates rapid design and implementation of complex robot systems for diverse applications. An architecture based on hierarchies of distributed multiprocessors provides the computing platform for a layered programming structure that models applications using software objects. These objects are designed to support model-based automated programming of robotic and machining devices, real-time sensor-based control, error handling, and robust communication

  6. Robotic Software Integration Using MARIE

    Directory of Open Access Journals (Sweden)

    Carle Côté

    2006-03-01

    Full Text Available This paper presents MARIE, a middleware framework oriented towards developing and integrating new and existing software for robotic systems. By using a generic communication framework, MARIE aims to create a flexible distributed component system that allows robotics developers to share software programs and algorithms, and design prototypes rapidly based on their own integration needs. The use of MARIE is illustrated with the design of a socially interactive autonomous mobile robot platform capable of map building, localization, navigation, tasks scheduling, sound source localization, tracking and separation, speech recognition and generation, visual tracking, message reading and graphical interaction using a touch screen interface.

  7. Localization of Wheeled Mobile Robot Based on Extended Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Li Guangxu

    2015-01-01

    Full Text Available A mobile robot localization method which combines relative positioning with absolute orientation is presented. The code salver and gyroscope are used for relative positioning, and the laser radar is used to detect absolute orientation. In this paper, we established environmental map, multi-sensor information fusion model, sensors and robot motion model. The Extended Kalman Filtering (EKF is adopted as multi-sensor data fusion technology to realize the precise localization of wheeled mobile robot.

  8. Self-Inhibiting Modules Can Self-Organize as a Brain of a Robot: A Conjecture

    Directory of Open Access Journals (Sweden)

    J. Negrete-Martínez

    2006-01-01

    Full Text Available In this article we describe a new robot control architecture on the basis of self-organization of self-inhibiting modules. The architecture can generate a complex behaviour repertoire. The repertoire can be performance-enhanced or increased by modular poly-functionality and/or by addition of new modules. This architecture is illustrated in a robot consisting of a car carrying an arm with a grasping tool. In the robot, each module drives either a joint motor or a pair of wheel motors. Every module estimates the distance from a sensor placed in the tool to a beacon. If the distance is smaller than a previously measured distance, the module drives its motor in the same direction of its prior movement. If the distance is larger, the next movement will be in the opposite direction; but, if the movement produces no significant change in distance, the module self-inhibits. A self-organization emerges: any module can be the next to take control of the motor activity of the robot once one module self-inhibits. A single module is active at a given time. The modules are implemented as computer procedures and their turn for participation scheduled by an endless program. The overall behaviour of the robot corresponds to a reaching attention behaviour. It is easily switched to a running-away attention behaviour by changing the sign of the same parameter in each module. The addition of a “sensor-gain attenuation reflex” module and of a “light-orientation reflex” module provides an increase of the behavioural attention repertoire and performance enhancement. Since scheduling a module does not necessarily produce its sustained intervention, the architecture of the “brain” is actually providing action induction rather than action selection.

  9. Controller design for Robotic hand through Electroencephalogram

    Directory of Open Access Journals (Sweden)

    Pandelidis P.

    2016-01-01

    Full Text Available - This paper deals with the designing, the construction and the control of a robotic hand via an electroencephalogram sensor. First a robotic device that is able to mimic a real human hand is constructed. A PID controller is designed in order to improve the performance of the robotic arm for grabbing objects. Furthermore, a novel design approach is presented for controlling the motion of the robotic arm using signals produced from an innovative electroencephalogram sensor that detects the concentration of the brain

  10. Simulation of robot manipulators

    International Nuclear Information System (INIS)

    Kress, R.L.; Babcock, S.M.; Bills, K.C.; Kwon, D.S.; Schoenwald, D.A.

    1995-01-01

    This paper describes Oak Ridge National Laboratory's development of an environment for the simulation of robotic manipulators. Simulation includes the modeling of kinematics, dynamics, sensors, actuators, control systems, operators, and environments. Models will be used for manipulator design, proposal evaluation, control system design and analysis, graphical preview of proposed motions, safety system development, and training. Of particular interest is the development of models for robotic manipulators having at least one flexible link. As a first application, models have been developed for the Pacific Northwest Laboratories' Flexible Beam Testbed which is a one-Degree-Of-Freedom, flexible arm with a hydraulic base actuator. Initial results show good agreement between model and experiment

  11. Magnetic Nanocomposite Cilia Sensors

    KAUST Repository

    Alfadhel, Ahmed

    2016-01-01

    Recent progress in the development of artificial skin concepts is a result of the increased demand for providing environment perception such as touch and flow sensing to robots, prosthetics and surgical tools. Tactile sensors are the essential

  12. Robotic environments

    NARCIS (Netherlands)

    Bier, H.H.

    2011-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic architectural environments to be implemented and tested in the last decade in virtual and physical prototypes. These prototypes are incorporating sensing-actuating

  13. AssistMe robot, an assistance robotic platform

    Directory of Open Access Journals (Sweden)

    A. I. Alexan

    2012-06-01

    Full Text Available This paper presents the design and implementation of a full size assistance robot. Its main purpose it to assist a person and eventually avoid a life threatening situation. Its implementation revolves around a chipKIT Arduino board that interconnects a robotic base controller with a 7 inch TABLET PC and various sensors. Due to the Android and Arduino combination, the robot can interact with the person and provide an easy development platform for future improvement and feature adding. The TABLET PC is Webcam, WIFI and Bluetooth enabled, offering a versatile platform that is able to process data and in the same time provide the user a friendly interface.

  14. Healthcare Robotics

    OpenAIRE

    Riek, Laurel D.

    2017-01-01

    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key sta...

  15. Industrial Robots.

    Science.gov (United States)

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  16. A focused bibliography on robotics

    Science.gov (United States)

    Mergler, H. W.

    1983-08-01

    The present bibliography focuses on eight robotics-related topics believed by the author to be of special interest to researchers in the field of industrial electronics: robots, sensors, kinematics, dynamics, control systems, actuators, vision, economics, and robot applications. This literature search was conducted through the 1970-present COMPENDEX data base, which provides world-wide coverage of nearly 3500 journals, conference proceedings and reports, and the 1969-1981 INSPEC data base, which is the largest for the English language in the fields of physics, electrotechnology, computers, and control.

  17. Scheduling the scheduling task : a time management perspective on scheduling

    NARCIS (Netherlands)

    Larco Martinelli, J.A.; Wiers, V.C.S.; Fransoo, J.C.

    2013-01-01

    Time is the most critical resource at the disposal of schedulers. Hence, an adequate management of time from the schedulers may impact positively on the scheduler’s productivity and responsiveness to uncertain scheduling environments. This paper presents a field study of how schedulers make use of

  18. Robot Mechanisms

    CERN Document Server

    Lenarcic, Jadran; Stanišić, Michael M

    2013-01-01

    This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.

  19. Analysis of flat terrain for the Atlas robot

    NARCIS (Netherlands)

    de Waard, M.; Inja, M.; Visser, A.; Mousakhani, M.; Ataei, M.; Jamzad, M.

    2013-01-01

    This paper gives a description of an approach to analyze the sensor information of the surroundings to select places where the foot of a humanoid can be placed. This will allow apply such robot in a rescue scenario, as foreseen in the DARPA Robotics Challenge, where a robot is forced to traverse

  20. Robot Futures

    DEFF Research Database (Denmark)

    Christoffersen, Anja; Grindsted Nielsen, Sally; Jochum, Elizabeth Ann

    Robots are increasingly used in health care settings, e.g., as homecare assistants and personal companions. One challenge for personal robots in the home is acceptance. We describe an innovative approach to influencing the acceptance of care robots using theatrical performance. Live performance...... is a useful testbed for developing and evaluating what makes robots expressive; it is also a useful platform for designing robot behaviors and dialogue that result in believable characters. Therefore theatre is a valuable testbed for studying human-robot interaction (HRI). We investigate how audiences...... perceive social robots interacting with humans in a future care scenario through a scripted performance. We discuss our methods and initial findings, and outline future work....

  1. Robotics education

    International Nuclear Information System (INIS)

    Benton, O.

    1984-01-01

    Robotics education courses are rapidly spreading throughout the nation's colleges and universities. Engineering schools are offering robotics courses as part of their mechanical or manufacturing engineering degree program. Two year colleges are developing an Associate Degree in robotics. In addition to regular courses, colleges are offering seminars in robotics and related fields. These seminars draw excellent participation at costs running up to $200 per day for each participant. The last one drew 275 people from Texas to Virginia. Seminars are also offered by trade associations, private consulting firms, and robot vendors. IBM, for example, has the Robotic Assembly Institute in Boca Raton and charges about $1,000 per week for course. This is basically for owners of IBM robots. Education (and training) can be as short as one day or as long as two years. Here is the educational pattern that is developing now

  2. Robotics for mining control

    Energy Technology Data Exchange (ETDEWEB)

    1986-11-01

    In 1982 surveys of the mining industry revealed no applications of robotics existed and none were planned. This report provides a general overview of automation in the mining industry since this point in time. Roof control electronics, gas monitoring, jumbo drill automation, remote and sensor- controlled continuous miners, automated trolley trucks, roof bolting and screening machines are examples of technology available today. The report concludes with recommendations as to six potential research areas. 25 refs.

  3. Method and System for Controlling a Dexterous Robot Execution Sequence Using State Classification

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Platt, Robert J., Jr. (Inventor); Quillin, Nathaniel (Inventor); Permenter, Frank Noble (Inventor); Pfeiffer, Joseph (Inventor)

    2014-01-01

    A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.

  4. Control algorithms for autonomous robot navigation

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1985-01-01

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced

  5. Next-generation robotic surgery--from the aspect of surgical robots developed by industry.

    Science.gov (United States)

    Nakadate, Ryu; Arata, Jumpei; Hashizume, Makoto

    2015-02-01

    At present, much of the research conducted worldwide focuses on extending the ability of surgical robots. One approach is to extend robotic dexterity. For instance, accessibility and dexterity of the surgical instruments remains the largest issue for reduced port surgery such as single port surgery or natural orifice surgery. To solve this problem, a great deal of research is currently conducted in the field of robotics. Enhancing the surgeon's perception is an approach that uses advanced sensor technology. The real-time data acquired through the robotic system combined with the data stored in the robot (such as the robot's location) provide a major advantage. This paper aims at introducing state-of-the-art products and pre-market products in this technological advancement, namely the robotic challenge in extending dexterity and hopefully providing the path to robotic surgery in the near future.

  6. Modular robotic applications in nuclear power plant maintenance

    International Nuclear Information System (INIS)

    Glass, S.W.; Ranson, C.C.; Reinholtz, C.F.; Calkins, J.M.

    1996-01-01

    General-purpose factory automation robots have experienced limited use in nuclear maintenance and hazardous-environment work spaces due to demanding requirements on size, weight, mobility and adaptability. Robotic systems in nuclear power plants are frequently custom designed to meet specific space and performance requirements. Examples of these custom configurations include Framatome Technologies COBRA trademark Steam Generator Manipulator and URSULA trademark Reactor Vessel Inspection Manipulator. The use of custom robots in nuclear plants has been limited because of the lead time and expense associated with custom design. Developments in modular robotics and advanced robot control software coupled with more powerful low-cost computers, however, are helping to reduce the cost and schedule for deploying custom robots. A modular robotic system allows custom robot configurations to be implemented using standard (modular) joints and adaptable controllers. This paper discusses Framatome Technologies (FTI) current and planned developments in the area of modular robot system design

  7. Embedded mobile farm robot for identification of diseased plants

    Science.gov (United States)

    Sadistap, S. S.; Botre, B. A.; Pandit, Harshavardhan; Chandrasekhar; Rao, Adesh

    2013-07-01

    This paper presents the development of a mobile robot used in farms for identification of diseased plants. It puts forth two of the major aspects of robotics namely automated navigation and image processing. The robot navigates on the basis of the GPS (Global Positioning System) location and data obtained from IR (Infrared) sensors to avoid any obstacles in its path. It uses an image processing algorithm to differentiate between diseased and non-diseased plants. A robotic platform consisting of an ARM9 processor, motor drivers, robot mechanical assembly, camera and infrared sensors has been used. Mini2440 microcontroller has been used wherein Embedded linux OS (Operating System) is implemented.

  8. HUMAN FOLLOWING ON ROS FRAMEWORK A MOBILE ROBOT

    Directory of Open Access Journals (Sweden)

    Gigih Priyandoko

    2018-06-01

    Full Text Available Service mobile robot is playing a more critical role in today's society as more people such as a disabled person or the elderly are in need of mobile robot assistance. An autonomous person following ability shows great importance to the overall role of service mobile robot in assisting human. The objective of this paper focuses on developing a robot follow a person. The robot is equipped with the necessary sensors such as a Microsoft Kinect sensor and a Hokuyo laser sensor. Four suitable tracking methods are introduced in this project which is implemented and tested on the person following algorithm. The tracking methods implemented are face detection, leg detection, color detection and person blob detection. All of the algorithms implementations in this project is performed using Robot Operating System (ROS. The result showed that the mobile robot could track and follow the target person based on the person movement.

  9. Mobile robot navigation in unknown static environments using ANFIS controller

    Directory of Open Access Journals (Sweden)

    Anish Pandey

    2016-09-01

    Full Text Available Navigation and obstacle avoidance are the most important task for any mobile robots. This article presents the Adaptive Neuro-Fuzzy Inference System (ANFIS controller for mobile robot navigation and obstacle avoidance in the unknown static environments. The different sensors such as ultrasonic range finder sensor and sharp infrared range sensor are used to detect the forward obstacles in the environments. The inputs of the ANFIS controller are obstacle distances obtained from the sensors, and the controller output is a robot steering angle. The primary objective of the present work is to use ANFIS controller to guide the mobile robot in the given environments. Computer simulations are conducted through MATLAB software and implemented in real time by using C/C++ language running Arduino microcontroller based mobile robot. Moreover, the successful experimental results on the actual mobile robot demonstrate the effectiveness and efficiency of the proposed controller.

  10. Novel sensors for underground robotics

    CSIR Research Space (South Africa)

    Green, JJ

    2012-08-01

    Full Text Available The end state of an autonomous system in South Africa’s deep mines is a “fait accompli”. The current unacceptable safety records, and the increasing dangers as the mines get deeper, necessitate the removal of miners from the dangerous stope areas...

  11. Robotic buildings(s)

    NARCIS (Netherlands)

    Bier, H.H.

    2014-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic building to be in the last decade prototypically implemented. In this context, robotic building implies both physically built robotic environments and robotically

  12. Prototype Robot Pemadam Api Beroda Menggunakan Teknik Navigasi Wall Follower

    OpenAIRE

    Safrianti, Ery; Amri, Rahyul; Budiman, Septian

    2012-01-01

    Fire Robot serves to detect and extinguish the fire. The robot is controlled by the microcontroller ATMEGA8535 automatically. This robot contains of several sensors, such as 5 sets of ping parallax as a robot navigator, a set UVTron equipped with fire-detecting driver, DC motor driver L298 with two DC servo motors. The robot was developed from a prototype that has been studied previously with the addition on the hardware side of the sound activation and two sets of line detector. The robot wi...

  13. Hydraulic bilateral construction robot; Yuatsushiki bilateral kensetsu robot

    Energy Technology Data Exchange (ETDEWEB)

    Maehata, K.; Mori, N. [Kayaba Industry Co. Ltd., Tokyo (Japan)

    1999-05-15

    Concerning a hydraulic bilateral construction robot, its system constitution, structures and functions of important components, and the results of some tests are explained, and the researches conducted at Gifu University are described. The construction robot in this report is a servo controlled system of a version developed from the mini-shovel now available in the market. It is equipped, in addition to an electrohydraulic servo control system, with various sensors for detecting the robot attitude, vibration, and load state, and with a camera for visualizing the surrounding landscape. It is also provided with a bilateral joy stick which is a remote control actuator capable of working sensation feedback and with a rocking unit that creates robot movements of rolling, pitching, and heaving. The construction robot discussed here, with output increased and response faster thanks to the employment of a hydraulic driving system for the aim of building a robot system superior in performance to the conventional model designed primarily for heavy duty, proves after tests to be a highly sophisticated remotely controlled robot control system. (NEDO)

  14. Human Robot Interaction for Hybrid Collision Avoidance System for Indoor Mobile Robots

    Directory of Open Access Journals (Sweden)

    Mazen Ghandour

    2017-06-01

    Full Text Available In this paper, a novel approach for collision avoidance for indoor mobile robots based on human-robot interaction is realized. The main contribution of this work is a new technique for collision avoidance by engaging the human and the robot in generating new collision-free paths. In mobile robotics, collision avoidance is critical for the success of the robots in implementing their tasks, especially when the robots navigate in crowded and dynamic environments, which include humans. Traditional collision avoidance methods deal with the human as a dynamic obstacle, without taking into consideration that the human will also try to avoid the robot, and this causes the people and the robot to get confused, especially in crowded social places such as restaurants, hospitals, and laboratories. To avoid such scenarios, a reactive-supervised collision avoidance system for mobile robots based on human-robot interaction is implemented. In this method, both the robot and the human will collaborate in generating the collision avoidance via interaction. The person will notify the robot about the avoidance direction via interaction, and the robot will search for the optimal collision-free path on the selected direction. In case that no people interacted with the robot, it will select the navigation path autonomously and select the path that is closest to the goal location. The humans will interact with the robot using gesture recognition and Kinect sensor. To build the gesture recognition system, two models were used to classify these gestures, the first model is Back-Propagation Neural Network (BPNN, and the second model is Support Vector Machine (SVM. Furthermore, a novel collision avoidance system for avoiding the obstacles is implemented and integrated with the HRI system. The system is tested on H20 robot from DrRobot Company (Canada and a set of experiments were implemented to report the performance of the system in interacting with the human and avoiding

  15. Learning for intelligent mobile robots

    Science.gov (United States)

    Hall, Ernest L.; Liao, Xiaoqun; Alhaj Ali, Souma M.

    2003-10-01

    Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots. During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot"s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application. To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is "beyond the adaptive critic." A

  16. SMARBot: a modular miniature mobile robot platform

    Science.gov (United States)

    Meng, Yan; Johnson, Kerry; Simms, Brian; Conforth, Matthew

    2008-04-01

    Miniature robots have many advantages over their larger counterparts, such as low cost, low power, and easy to build a large scale team for complex tasks. Heterogeneous multi miniature robots could provide powerful situation awareness capability due to different locomotion capabilities and sensor information. However, it would be expensive and time consuming to develop specific embedded system for different type of robots. In this paper, we propose a generic modular embedded system architecture called SMARbot (Stevens Modular Autonomous Robot), which consists of a set of hardware and software modules that can be configured to construct various types of robot systems. These modules include a high performance microprocessor, a reconfigurable hardware component, wireless communication, and diverse sensor and actuator interfaces. The design of all the modules in electrical subsystem, the selection criteria for module components, and the real-time operating system are described. Some proofs of concept experimental results are also presented.

  17. Mobile robot for hazardous environments

    International Nuclear Information System (INIS)

    Bains, N.

    1995-01-01

    This paper describes the architecture and potential applications of the autonomous robot for a known environment (ARK). The ARK project has developed an autonomous mobile robot that can move around by itself in a complicated nuclear environment utilizing a number of sensors for navigation. The primary sensor system is computer vision. The ARK has the intelligence to determine its position utilizing open-quotes natural landmarks,close quotes such as ordinary building features at any point along its path. It is this feature that gives ARK its uniqueness to operate in an industrial type of environment. The prime motivation to develop ARK was the potential application of mobile robots in radioactive areas within nuclear generating stations and for nuclear waste sites. The project budget is $9 million over 4 yr and will be completed in October 1995

  18. New development in robot vision

    CERN Document Server

    Behal, Aman; Chung, Chi-Kit

    2015-01-01

    The field of robotic vision has advanced dramatically recently with the development of new range sensors.  Tremendous progress has been made resulting in significant impact on areas such as robotic navigation, scene/environment understanding, and visual learning. This edited book provides a solid and diversified reference source for some of the most recent important advancements in the field of robotic vision. The book starts with articles that describe new techniques to understand scenes from 2D/3D data such as estimation of planar structures, recognition of multiple objects in the scene using different kinds of features as well as their spatial and semantic relationships, generation of 3D object models, approach to recognize partially occluded objects, etc. Novel techniques are introduced to improve 3D perception accuracy with other sensors such as a gyroscope, positioning accuracy with a visual servoing based alignment strategy for microassembly, and increasing object recognition reliability using related...

  19. Robots, systems, and methods for hazard evaluation and visualization

    Science.gov (United States)

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.; Hartley, Robert S.; Gertman, David I.; Kinoshita, Robert A.; Whetten, Jonathan

    2013-01-15

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.

  20. Expert robots in nuclear plants

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.; DeVries, K.R.; Martin, T.P.

    1987-01-01

    Expert robots enhance a safety and operations in nuclear plants. E.I. du Pont de Nemours and Company, Savannah River Laboratory, is developing expert mobile robots for deployment in nuclear applications at the Savannah River Plant. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation and manipulation functions, and to analyze sensory information. Development work using two research vehicles is underway to demonstrate semiautonomous, intelligence, expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being used to allow mobile robots to autonomously navigate and perform tasks in known environments without the need for large computer systems

  1. YARP: Yet Another Robot Platform

    Directory of Open Access Journals (Sweden)

    Lorenzo Natale

    2008-11-01

    Full Text Available We describe YARP, Yet Another Robot Platform, an open-source project that encapsulates lessons from our experience in building humanoid robots. The goal of YARP is to minimize the effort devoted to infrastructure-level software development by facilitating code reuse, modularity and so maximize research-level development and collaboration. Humanoid robotics is a "bleeding edge" field of research, with constant flux in sensors, actuators, and processors. Code reuse and maintenance is therefore a significant challenge. We describe the main problems we faced and the solutions we adopted. In short, the main features of YARP include support for inter-process communication, image processing as well as a class hierarchy to ease code reuse across different hardware platforms. YARP is currently used and tested on Windows, Linux and QNX6 which are common operating systems used in robotics.

  2. Drum inspection robots: Application development

    International Nuclear Information System (INIS)

    Hazen, F.B.; Warner, R.D.

    1996-01-01

    Throughout the Department of Energy (DOE), drums containing mixed and low level stored waste are inspected, as mandated by the Resource Conservation and Recovery Act (RCRA) and other regulations. The inspections are intended to prevent leaks by finding corrosion long before the drums are breached. The DOE Office of Science and Technology (OST) has sponsored efforts towards the development of robotic drum inspectors. This emerging application for mobile and remote sensing has broad applicability for DOE and commercial waste storage areas. Three full scale robot prototypes have been under development, and another project has prototyped a novel technique to analyze robotically collected drum images. In general, the robots consist of a mobile, self-navigating base vehicle, outfitted with sensor packages so that rust and other corrosion cues can be automatically identified. They promise the potential to lower radiation dose and operator effort required, while improving diligence, consistency, and documentation

  3. Expert robots in nuclear plants

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.; DeVries, K.R.; Martin, T.P.

    1987-01-01

    Expert robots will enhance safety and operations in nuclear plants. E. I. du Pont de Nemours and Company, Savannah River Laboratory, is developing expert mobile robots for deployment in nuclear applications at the Savannah River Plant. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation and manipulation functions, and to analyze sensory information. Development work using two research vehicles is underway to demonstrate semiautonomous, intelligent, expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being used to allow mobile robots to autonomously navigate and perform tasks in known environments without the need for large computer systems

  4. Biomimetic vibrissal sensing for robots.

    Science.gov (United States)

    Pearson, Martin J; Mitchinson, Ben; Sullivan, J Charles; Pipe, Anthony G; Prescott, Tony J

    2011-11-12

    Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to build a physical platform on which to model, and therefore test, recent neuroethological hypotheses about vibrissal touch; second, to exploit the control strategies and morphology observed in the biological analogue to maximize the quality and quantity of tactile sensory information derived from the artificial whisker array. We describe the design of a new whiskered robot, Shrewbot, endowed with a biomimetic array of individually controlled whiskers and a neuroethologically inspired whisking pattern generation mechanism. We then present results showing how the morphology of the whisker array shapes the sensory surface surrounding the robot's head, and demonstrate the impact of active touch control on the sensory information that can be acquired by the robot. We show that adopting bio-inspired, low latency motor control of the rhythmic motion of the whiskers in response to contact-induced stimuli usefully constrains the sensory range, while also maximizing the number of whisker contacts. The robot experiments also demonstrate that the sensory consequences of active touch control can be usefully investigated in biomimetic robots.

  5. Intelligent robot trends for 1998

    Science.gov (United States)

    Hall, Ernest L.

    1998-10-01

    An intelligent robot is a remarkably useful combination of a manipulator, sensors and controls. The use of these machines in factory automation can improve productivity, increase product quality and improve competitiveness. This paper presents a discussion of recent technical and economic trends. Technically, the machines are faster, cheaper, more repeatable, more reliable and safer. The knowledge base of inverse kinematic and dynamic solutions and intelligent controls is increasing. More attention is being given by industry to robots, vision and motion controls. New areas of usage are emerging for service robots, remote manipulators and automated guided vehicles. Economically, the robotics industry now has a 1.1 billion-dollar market in the U.S. and is growing. Feasibility studies results are presented which also show decreasing costs for robots and unaudited healthy rates of return for a variety of robotic applications. However, the road from inspiration to successful application can be long and difficult, often taking decades to achieve a new product. A greater emphasis on mechatronics is needed in our universities. Certainly, more cooperation between government, industry and universities is needed to speed the development of intelligent robots that will benefit industry and society.

  6. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  7. Robotics 101

    Science.gov (United States)

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  8. Vitruvian Robot

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    2017-01-01

    future. A real version of Ava would not last long in a human world because she is basically a solipsist, who does not really care about humans. She cannot co-create the line humans walk along. The robots created as ‘perfect women’ (sex robots) today are very far from the ideal image of Ava...

  9. Robotics Technology Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ''needs-driven'' effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE's Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination ampersand Dismantlement (D ampersand D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D ampersand D and CC ampersand AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas

  10. Robot Teachers

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft; Ess, Charles Melvin; Bhroin, Niamh Ni

    The world's first robot teacher, Saya, was introduced to a classroom in Japan in 2009. Saya, had the appearance of a young female teacher. She could express six basic emotions, take the register and shout orders like 'be quiet' (The Guardian, 2009). Since 2009, humanoid robot technologies have...... developed. It is now suggested that robot teachers may become regular features in educational settings, and may even 'take over' from human teachers in ten to fifteen years (cf. Amundsen, 2017 online; Gohd, 2017 online). Designed to look and act like a particular kind of human; robot teachers mediate human...... existence and roles, while also aiming to support education through sophisticated, automated, human-like interaction. Our paper explores the design and existential implications of ARTIE, a robot teacher at Oxford Brookes University (2017, online). Drawing on an initial empirical exploration we propose...

  11. Social Robots

    DEFF Research Database (Denmark)

    Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us as indiv......Social robotics is a cutting edge research area gathering researchers and stakeholders from various disciplines and organizations. The transformational potential that these machines, in the form of, for example, caregiving, entertainment or partner robots, pose to our societies and to us...... as individuals seems to be limited by our technical limitations and phantasy alone. This collection contributes to the field of social robotics by exploring its boundaries from a philosophically informed standpoint. It constructively outlines central potentials and challenges and thereby also provides a stable...

  12. Robotic seeding

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Fountas, Spyros; Sørensen, Claus Aage Grøn

    2017-01-01

    Agricultural robotics has received attention for approximately 20 years, but today there are only a few examples of the application of robots in agricultural practice. The lack of uptake may be (at least partly) because in many cases there is either no compelling economic benefit......, or there is a benefit but it is not recognized. The aim of this chapter is to quantify the economic benefits from the application of agricultural robots under a specific condition where such a benefit is assumed to exist, namely the case of early seeding and re-seeding in sugar beet. With some predefined assumptions...... with regard to speed, capacity and seed mapping, we found that among these two technical systems both early seeding with a small robot and re-seeding using a robot for a smaller part of the field appear to be financially viable solutions in sugar beet production....

  13. Message Encryption in Robot Operating System: Collateral Effects of Hardening Mobile Robots

    Directory of Open Access Journals (Sweden)

    Francisco J. Rodríguez-Lera

    2018-03-01

    Full Text Available In human–robot interaction situations, robot sensors collect huge amounts of data from the environment in order to characterize the situation. Some of the gathered data ought to be treated as private, such as medical data (i.e., medication guidelines, personal, and safety information (i.e., images of children, home habits, alarm codes, etc.. However, most robotic software development frameworks are not designed for securely managing this information. This paper analyzes the scenario of hardening one of the most widely used robotic middlewares, Robot Operating System (ROS. The study investigates a robot’s performance when ciphering the messages interchanged between ROS nodes under the publish/subscribe paradigm. In particular, this research focuses on the nodes that manage cameras and LIDAR sensors, which are two of the most extended sensing solutions in mobile robotics, and analyzes the collateral effects on the robot’s achievement under different computing capabilities and encryption algorithms (3DES, AES, and Blowfish to robot performance. The findings present empirical evidence that simple encryption algorithms are lightweight enough to provide cyber-security even in low-powered robots when carefully designed and implemented. Nevertheless, these techniques come with a number of serious drawbacks regarding robot autonomy and performance if they are applied randomly. To avoid these issues, we define a taxonomy that links the type of ROS message, computational units, and the encryption methods. As a result, we present a model to select the optimal options for hardening a mobile robot using ROS.

  14. Sensor Failure Detection through Introspection

    National Research Council Canada - National Science Library

    Smeltz, Jeremy; Valerius, Andrew

    2007-01-01

    .... One area of research being done is simultaneous localization and mapping (SLAM). SLAM uses a robot's sensors to generate a map of the area while maintaining its current position within that map...

  15. Playful Interaction with Voice Sensing Modular Robots

    DEFF Research Database (Denmark)

    Heesche, Bjarke; MacDonald, Ewen; Fogh, Rune

    2013-01-01

    This paper describes a voice sensor, suitable for modular robotic systems, which estimates the energy and fundamental frequency, F0, of the user’s voice. Through a number of example applications and tests with children, we observe how the voice sensor facilitates playful interaction between child...... children and two different robot configurations. In future work, we will investigate if such a system can motivate children to improve voice control and explore how to extend the sensor to detect emotions in the user’s voice....

  16. Calibration technology in application of robot-laser scanning system

    Science.gov (United States)

    Ren, YongJie; Yin, ShiBin; Zhu, JiGui

    2012-11-01

    A system composed of laser sensor and 6-DOF industrial robot is proposed to obtain complete three-dimensional (3-D) information of the object surface. Suitable for the different combining ways of laser sensor and robot, a new method to calibrate the position and pose between sensor and robot is presented. By using a standard sphere with known radius as a reference tool, the rotation and translation matrices between the laser sensor and robot are computed, respectively in two steps, so that many unstable factors introduced in conventional optimization methods can be avoided. The experimental results show that the accuracy of the proposed calibration method can be achieved up to 0.062 mm. The calibration method is also implemented into the automated robot scanning system to reconstruct a car door panel.

  17. On Throughput Maximization in Constant Travel-Time Robotic Cells

    OpenAIRE

    Milind Dawande; Chelliah Sriskandarajah; Suresh Sethi

    2002-01-01

    We consider the problem of scheduling operations in bufferless robotic cells that produce identical parts. The objective is to find a cyclic sequence of robot moves that minimizes the long-run average time to produce a part or, equivalently, maximizes the throughput rate. The robot can be moved in simple cycles that produce one unit or, in more complicated cycles, that produce multiple units. Because one-unit cycles are the easiest to understand, implement, and control, they are widely used i...

  18. Robotics at Savannah River site: activity report

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1984-09-01

    The objectives of the Robotics Technology Group at the Savannah River Laboratory are to employ modern industrial robots and to develop unique automation and robotic systems to enhance process operations at the Savannah River site (SRP and SRL). The incentives are to improve safety, reduce personnel radiation exposure, improve product quality and productivity, and to reduce operating costs. During the past year robotic systems have been installed to fill chemical dilution vials in a SRP laboratory at 772-F and remove radioactive waste materials in the SRL Californium Production Facility at 773-A. A robotic system to lubricate an extrusion press has been developed and demonstrated in the SRL robotics laboratory and is scheduled for installation at the 321-M fuel fabrication area. A mobile robot was employed by SRP for a radiation monitoring task at a waste tank top in H-Area. Several other robots are installed in the SRL robotics laboratories and application development programs are underway. The status of these applications is presented in this report

  19. High Resolution Flexible Tactile Sensors

    DEFF Research Database (Denmark)

    Drimus, Alin; Bilberg, Arne

    2011-01-01

    both spatial distribution of pressure and dynamic events such as contact, release of contact and slip. Data acquisition and object recognition applications are described and it is proposed that such a sensor could be used in robotic grippers to improve object recognition, manipulation of objects......This paper describes the development of a tactile sensor for robotics inspired by the human sense of touch. It consists of two parts: a static tactile array sensor based on piezoresistive rubber and a dynamic sensor based on piezoelectric PVDF film. The combination of these two layers addresses...

  20. Serendipitous Offline Learning in a Neuromorphic Robot

    Directory of Open Access Journals (Sweden)

    Terrence C Stewart

    2016-02-01

    Full Text Available We demonstrate a hybrid neuromorphic learning paradigm that learns complex sensorimotor mappings based on a small set of hard-coded reflex behaviours. A mobile robot is first controlled by a basic set of reflexive hand-designed behaviours. All sensor data is provided via a spike-based silicon retina camera (eDVS, and all control is implemented via spiking neurons simulated on neuromorphic hardware (SpiNNaker. Given this control system, the robot is capable of simple obstacle avoidance and random exploration. To train the robot to perform more complex tasks, we observe the robot and find instances where he robot accidentally performs the desired action. Data recorded from the robot during these times is then used to update the neural control system, increasing the likelihood of the robot performing that task in the future, given a similar sensor state. As an example application of this general-purpose method of training, we demonstrate the robot learning to respond to novel sensory stimuli (a mirror by turning right if it is present at an intersection, and otherwise turning left. In general, this system can learn arbitrary relations between sensory input and motor behaviour.

  1. Space Robotics Challenge

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Robotics Challenge seeks to infuse robot autonomy from the best and brightest research groups in the robotics community into NASA robots for future...

  2. Robotic arm

    International Nuclear Information System (INIS)

    Kwech, H.

    1989-01-01

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube is disclosed. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel. 23 figs

  3. Robotic surgery

    Science.gov (United States)

    ... with this type of surgery give it some advantages over standard endoscopic techniques. The surgeon can make ... Elsevier Saunders; 2015:chap 87. Muller CL, Fried GM. Emerging technology in surgery: Informatics, electronics, robotics. In: ...

  4. Robotic parathyroidectomy.

    Science.gov (United States)

    Okoh, Alexis Kofi; Sound, Sara; Berber, Eren

    2015-09-01

    Robotic parathyroidectomy has recently been described. Although the procedure eliminates the neck scar, it is technically more demanding than the conventional approaches. This report is a review of the patients' selection criteria, technique, and outcomes. © 2015 Wiley Periodicals, Inc.

  5. Light Robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    Light Robotics - Structure-Mediated Nanobiophotonics covers the latest means of sculpting of both light and matter for achieving bioprobing and manipulation at the smallest scales. The synergy between photonics, nanotechnology and biotechnology spans the rapidly growing field of nanobiophotonics...

  6. Robotic arm

    Science.gov (United States)

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  7. Rugged Walking Robot

    Science.gov (United States)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.

    1990-01-01

    Proposed walking-beam robot simpler and more rugged than articulated-leg walkers. Requires less data processing, and uses power more efficiently. Includes pair of tripods, one nested in other. Inner tripod holds power supplies, communication equipment, computers, instrumentation, sampling arms, and articulated sensor turrets. Outer tripod holds mast on which antennas for communication with remote control site and video cameras for viewing local and distant terrain mounted. Propels itself by raising, translating, and lowering tripods in alternation. Steers itself by rotating raised tripod on turntable.

  8. Not such a dumb robot

    Energy Technology Data Exchange (ETDEWEB)

    Owen, L N

    1983-03-01

    The author discusses second generation robots. The second generation is attempting to overcome unawareness by equipping machines with senses and applying artificial intelligence techniques in order that the senses may be used in a human-like manner. The most critical element in robotics is the interface with the environment, both in sensing (input) and manipulating (output). Until recently the curent technology offered much on the output side but was lacking considerably on the input interface. Obviously the direction for research and development is in the application of sensors, the question therefore is how.

  9. Mobility Systems For Robotic Vehicles

    Science.gov (United States)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  10. Navigasi Berbasis Behavior dan Fuzzy Logic pada Simulasi Robot Bergerak Otonom

    Directory of Open Access Journals (Sweden)

    Rendyansyah

    2016-03-01

    Full Text Available Mobile robot is the robotic mechanism that is able to moved automatically. The movement of the robot automatically require a navigation system. Navigation is a method for determining the robot motion. In this study, using a method developed robot navigation behavior with fuzzy logic. The behavior of the robot is divided into several modules, such as walking, avoid obstacles, to follow walls, corridors and conditions of u-shape. In this research designed mobile robot simulation in a visual programming. Robot is equipped with seven distance sensor and divided into several groups to test the behavior that is designed, so that the behavior of the robot generate speed and steering control. Based on experiments that have been conducted shows that mobile robot simulation can run smooth on many conditions. This proves that the implementation of the formation of behavior and fuzzy logic techniques on the robot working well

  11. Research on the attitude detection technology of the tetrahedron robot

    Science.gov (United States)

    Gong, Hao; Chen, Keshan; Ren, Wenqiang; Cai, Xin

    2017-10-01

    The traditional attitude detection technology can't tackle the problem of attitude detection of the polyhedral robot. Thus we propose a novel algorithm of multi-sensor data fusion which is based on Kalman filter. In the algorithm a tetrahedron robot is investigated. We devise an attitude detection system for the polyhedral robot and conduct the verification of data fusion algorithm. It turns out that the minimal attitude detection system we devise could capture attitudes of the tetrahedral robot in different working conditions. Thus the Kinematics model we establish for the tetrahedron robot is correct and the feasibility of the attitude detection system is proven.

  12. Multi-robots to micro-surgery: Selected robotic applications at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center

    1996-11-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories is a multi-program organization, pursuing research, development and applications in a wide range of field. Activities range from large-scale applications such as nuclear facility dismantlement for the US Department of Energy (DOE), to aircraft inspection and refurbishment, to automated script and program generation for robotic manufacturing and assembly, to miniature robotic devices and sensors for remote sensing and micro-surgery. This paper describes six activities in the large and small scale that are underway and either nearing technology transfer stage or seeking industrial partners to continue application development. The topics of the applications include multiple arm coordination for intuitively maneuvering large, ungainly work pieces; simulation, analysis and graphical training capability for CP-5 research reactor dismantlement; miniature robots with volumes of 16 cubic centimeters and less developed for inspection and sensor deployment; and biomedical sensors to enhance automated prosthetic device production and fill laparoscopic surgery information gap.

  13. Recent advances in robotics

    International Nuclear Information System (INIS)

    Beni, G.; Hackwood, S.

    1984-01-01

    Featuring 10 contributions, this volume offers a state-of-the-art report on robotic science and technology. It covers robots in modern industry, robotic control to help the disabled, kinematics and dynamics, six-legged walking robots, a vector analysis of robot manipulators, tactile sensing in robots, and more

  14. Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2011-02-01

    Full Text Available Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN. Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability.

  15. Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search

    Science.gov (United States)

    Song, Kai; Liu, Qi; Wang, Qi

    2011-01-01

    Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE) and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN). Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability. PMID:22319401

  16. Development of haptic system for surgical robot

    Science.gov (United States)

    Gang, Han Gyeol; Park, Jiong Min; Choi, Seung-Bok; Sohn, Jung Woo

    2017-04-01

    In this paper, a new type of haptic system for surgical robot application is proposed and its performances are evaluated experimentally. The proposed haptic system consists of an effective master device and a precision slave robot. The master device has 3-DOF rotational motion as same as human wrist motion. It has lightweight structure with a gyro sensor and three small-sized MR brakes for position measurement and repulsive torque generation, respectively. The slave robot has 3-DOF rotational motion using servomotors, five bar linkage and a torque sensor is used to measure resistive torque. It has been experimentally demonstrated that the proposed haptic system has good performances on tracking control of desired position and repulsive torque. It can be concluded that the proposed haptic system can be effectively applied to the surgical robot system in real field.

  17. Laboratory experiments in mobile robot navigation

    International Nuclear Information System (INIS)

    Kar, Asim; Pal, Prabir K.

    1997-01-01

    Mobile robots have potential applications in remote surveillance and operation in hazardous areas. To be effective, they must have the ability to navigate on their own to desired locations. Several experimental navigational runs of a mobile robot developed have been conducted. The robot has three wheels of which the front wheel is steered and the hind wheels are driven. The robot is equipped with an ultrasonic range sensor, which is turned around to get range data in all directions. The range data is fed to the input of a neural net, whose output steers the robot towards the goal. The robot is powered by batteries (12V 10Ah). It has an onboard stepper motor controller for driving the wheels and the ultrasonic setup. It also has an onboard computer which runs the navigation program NAV. This program sends the range data and configuration parameters to the operator''s console program OCP, running on a stationary PC, through radio communication on a serial line. Through OCP, an operator can monitor the progress of the robot from a distant control room and intervene if necessary. In this paper the control modules of the mobile robot, its ways of operation and also results of some of the experimental runs recorded are reported. It is seen that the trained net guides the mobile robot through gaps of 1m and above to its destination with about 84% success measured over a small sample of 38 runs

  18. Reasoning robots the art and science of programming robotic agents

    CERN Document Server

    Thielscher, Michael

    2005-01-01

    The book provides an in-depth and uniform treatment of a mathematical model for reasoning robotic agents. The book also contains an introduction to a programming method and system based on this model. The mathematical model, known as the "Fluent Calculus,'' describes how to use classical first-order logic to set up symbolic models of dynamic worlds and to represent knowledge of actions and their effects. Robotic agents use this knowledge and their reasoning facilities to make decisions when following high-level, long-term strategies. The book covers the issues of reasoning about sensor input, acting under incomplete knowledge and uncertainty, planning, intelligent troubleshooting, and many other topics. The mathematical model is supplemented by a programming method which allows readers to design their own reasoning robotic agents. The usage of this method, called "FLUX,'' is illustrated by many example programs. The book includes the details of an implementation of FLUX using the standard programming language...

  19. Durable Tactile Glove for Human or Robot Hand

    Science.gov (United States)

    Butzer, Melissa; Diftler, Myron A.; Huber, Eric

    2010-01-01

    A glove containing force sensors has been built as a prototype of tactile sensor arrays to be worn on human hands and anthropomorphic robot hands. The force sensors of this glove are mounted inside, in protective pockets; as a result of this and other design features, the present glove is more durable than earlier models.

  20. HYBRID COMMUNICATION NETWORK OF MOBILE ROBOT AND QUAD-COPTER

    Directory of Open Access Journals (Sweden)

    Moustafa M. Kurdi

    2017-01-01

    Full Text Available This paper introduces the design and development of QMRS (Quadcopter Mobile Robotic System. QMRS is a real-time obstacle avoidance capability in Belarus-132N mobile robot with the cooperation of quadcopter Phantom-4. The function of QMRS consists of GPS used by Mobile Robot and image vision and image processing system from both robot and quad-copter and by using effective searching algorithm embedded inside the robot. Having the capacity to navigate accurately is one of the major abilities of a mobile robot to effectively execute a variety of jobs including manipulation, docking, and transportation. To achieve the desired navigation accuracy, mobile robots are typically equipped with on-board sensors to observe persistent features in the environment, to estimate their pose from these observations, and to adjust their motion accordingly. Quadcopter takes off from Mobile Robot, surveys the terrain and transmits the processed Image terrestrial robot. The main objective of research paper is to focus on the full coordination between robot and quadcopter by designing an efficient wireless communication using WIFI. In addition, it identify the method involving the use of vision and image processing system from both robot and quadcopter; analyzing path in real-time and avoiding obstacles based-on the computational algorithm embedded inside the robot. QMRS increases the efficiency and reliability of the whole system especially in robot navigation, image processing and obstacle avoidance due to the help and connection among the different parts of the system.

  1. A System for Complex Robotic Welding

    DEFF Research Database (Denmark)

    Madsen, Ole; Sørensen, Carsten Bro; Olsen, Birger

    2002-01-01

    This paper presents the architecture of a system for robotic welding of complex tasks. The system integrates off-line programming, control of redundant robots, collision-free motion planning and sensor-based control. An implementation for pipe structure welding made at Odense Steel Shipyard Ltd......., Denmark, demonstrates the system can be used for automatic welding of complex products in one-of-a-kind production....

  2. Conceptual spatial representations for indoor mobile robots

    OpenAIRE

    Zender, Henrik; Mozos, Oscar Martinez; Jensfelt, Patric; Kruijff, Geert-Jan M.; Wolfram, Burgard

    2008-01-01

    We present an approach for creating conceptual representations of human-made indoor environments using mobile robots. The concepts refer to spatial and functional properties of typical indoor environments. Following findings in cognitive psychology, our model is composed of layers representing maps at different levels of abstraction. The complete system is integrated in a mobile robot endowed with laser and vision sensors for place and object recognition. The system also incorporate...

  3. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  4. 9th International Robotic Sailing Conference

    CERN Document Server

    Cruz, Nuno

    2017-01-01

    This book contains selected papers that address a variety of topics related to the design, development and operation of unmanned and fully autonomous sailing boats. These papers were presented in the 9th International Robotic Sailing Conference, in association with the 9th World Robotic Sailing Championship that took place in Viana do Castelo, Portugal from the 5th to 10th of September 2016. The book is divided in three parts, each focusing on key aspects of robotic sailing. The first part addresses the design, construction and validation of autonomous sailboat platforms, including their rigs, appendages and control mechanisms. The second part is devoted to the development of sensors and algorithms to enhance the performance of robotic sailing boats, in terms of their speed, course control and manoeuvring ability. Finally, the papers in the last part are dedicated to the improvement of behaviours required for the accomplishment of complex autonomous missions. Robotic sailing is a relatively new multidisciplin...

  5. Deployment of Remotely-Accessible Robotics Laboratory

    Directory of Open Access Journals (Sweden)

    Richard Balogh

    2012-03-01

    Full Text Available Robotnacka is an autonomous drawing mobile robot, designed for eaching beginners in the Logo programming language. It can also be used as an experimental platform, in our case in a remotely accessible robotic laboratory with the possibility to control the robots via the Internet. In addition to a basic version of the robot a version equipped with a gripper is available too, one with a wireless camera, and one with additional ultrasonic distance sensors. The laboratory is available on-line permanently and provides a simple way to incorporate robotics in teaching mathematics, programming and other subjects. The laboratory has been in use several years. We provide description of its functionality and summarize our experience.

  6. Rehabilitation robotics.

    Science.gov (United States)

    Krebs, H I; Volpe, B T

    2013-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Medical robotics.

    Science.gov (United States)

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.

  8. Generic robot architecture

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  9. Robotics in space-age manufacturing

    Science.gov (United States)

    Jones, Chip

    1991-01-01

    Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.

  10. Automated robotic workcell for waste characterization

    International Nuclear Information System (INIS)

    Dougan, A.D.; Gustaveson, D.K.; Alvarez, R.A.; Holliday, M.

    1993-01-01

    The authors have successfully demonstrated an automated multisensor-based robotic workcell for hazardous waste characterization. The robot within this workcell uses feedback from radiation sensors, a metal detector, object profile scanners, and a 2D vision system to automatically segregate objects based on their measured properties. The multisensor information is used to make segregation decisions of waste items and to facilitate the grasping of objects with a robotic arm. The authors used both sodium iodide and high purity germanium detectors as a two-step process to maximize throughput. For metal identification and discrimination, the authors are investigating the use of neutron interrogation techniques

  11. 'Filigree Robotics'

    DEFF Research Database (Denmark)

    2016-01-01

    -scale 3D printed ceramics accompanied by prints, videos and ceramic probes, which introduce the material and design processes of the project.'Filigree Robotics' experiments with a combination of the traditional ceramic technique of ‘Overforming’ with 3d Laserscan and Robotic extrusion technique...... application of reflectivity after an initial 3d print. The consideration and integration of this material practice into a digital workflow took place in an interdisciplinary collaboration of Ceramicist Flemming Tvede Hansen from KADK Superformlab and architectural researchers from CITA (Martin Tamke, Henrik...... to the creation of the form and invites for experimentation. In Filigree Robotics we combine the crafting of the mold with a parallel running generative algorithm, which is fed by a constant laserscan of the 3d surface. This algorithm, analyses the topology of the mold, identifies high and low points and uses...

  12. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    Science.gov (United States)

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  13. The Robots for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Chang Hwan; Kim, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil; Shin, Ho Cheol; Lee, Sung Uk; Jung, Kyung Min; Jung, Seung Ho; Choi, Young So

    2005-01-01

    Nuclear energy becomes a major energy source worldwide even though the debating environmental and safety dispute. In order to cope with the issues related to the nuclear power plant, the uncertain human factors need to be minimized by automating the inspection and maintenance work done by human workers. The demands of robotic system in nuclear industry have been growing to ensure the safety of nuclear facilities, to detect early unusual condition of it through an inspection, to protect the human workers from irradiation, and to maintain it efficiently. NRL (Nuclear Robotics Laboratory) in KAERI has been developing robotic systems to inspect and maintain nuclear power plants in stead of human workers for over thirteen years. In order to carry out useful tasks, a nuclear robot generally requires the followings. First, the robot should be protected against radiation. Second, a mobile system is required to access to the work place. Third, a kind of manipulator is required to complete the tasks such as handling radioactive wastes and other contaminated objects, etc. Fourth, a sensing system such as cameras, ultrasonic sensors, temperature sensors, dosimetry equipments etc., are required for operators to observe the work place. Lastly, a control system to help the operators control the robots. The control system generally consists of a supervisory control part and remote control part. The supervisory control part consists of a man-machine interface such as 3D graphics and a joystick. The remote control part manages the robot so that it follow the operator's command

  14. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  15. Terpsichore. ENEA's autonomous robotics project; Progetto Tersycore, la robotica autonoma

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S; Zanela, S; Santini, A; Nanni, V [ENEA, Centro Ricerche Casaccia, Rome (Italy). Div. Robotica e Informatica Avanzata

    1999-10-01

    The article presents some of the Terpsichore project's results aimed to developed and test algorithms and applications for autonomous robotics. Four applications are described: dynamic mapping of a building's interior through the use of ultrasonic sensors; visual drive of an autonomous robot via a neural network controller; a neural network-based stereo vision system that steers a robot through unknown indoor environments; and the evolution of intelligent behaviours via the genetic algorithm approach.

  16. Survey of advanced general-purpose software for robot manipulators

    International Nuclear Information System (INIS)

    Latombe, J.C.

    1983-01-01

    Computer-controlled sensor-based robots will more and more common in industry. This paper attempts to survey the main trends of the development of advanced general-purpose software for robot manipulators. It is intended to make clear that robots are not only mechanical devices. They are truly programmable machines, and their programming, which occurs in an imperfectly modelled world,is somewhat different from conventional computer programming. (orig.)

  17. Medical robotics

    CERN Document Server

    Troccaz, Jocelyne

    2013-01-01

    In this book, we present medical robotics, its evolution over the last 30 years in terms of architecture, design and control, and the main scientific and clinical contributions to the field. For more than two decades, robots have been part of hospitals and have progressively become a common tool for the clinician. Because this domain has now reached a certain level of maturity it seems important and useful to provide a state of the scientific, technological and clinical achievements and still open issues. This book describes the short history of the domain, its specificity and constraints, and

  18. Service Robots

    DEFF Research Database (Denmark)

    Clemmensen, Torkil; Nielsen, Jeppe Agger; Andersen, Kim Normann

    The position presented in this paper is that in order to understand how service robots shape, and are being shaped by, the physical and social contexts in which they are used, we need to consider both work/organizational analysis and interaction design. We illustrate this with qualitative data...... and personal experiences to generate discussion about how to link these two traditions. This paper presents selected results from a case study that investigated the implementation and use of robot vacuum cleaners in Danish eldercare. The study demonstrates interpretive flexibility with variation...

  19. Robot Choreography

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Heath, Damith

    2016-01-01

    We propose a robust framework for combining performance paradigms with human robot interaction (HRI) research. Following an analysis of several case studies that combine the performing arts with HRI experiments, we propose a methodology and “best practices” for implementing choreography and other...... performance paradigms in HRI experiments. Case studies include experiments conducted in laboratory settings, “in the wild”, and live performance settings. We consider the technical and artistic challenges of designing and staging robots alongside humans in these various settings, and discuss how to combine...

  20. New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots

    Science.gov (United States)

    Gonzalez-de-Soto, Mariano; Pajares, Gonzalo

    2014-01-01

    Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis. PMID:25143976