WorldWideScience

Sample records for scheduled wastes final

  1. Schedulability Analysis for Java Finalizers

    DEFF Research Database (Denmark)

    Bøgholm, Thomas; Hansen, Rene Rydhof; Søndergaard, Hans

    2010-01-01

    Java finalizers perform clean-up and finalisation of objects at garbage collection time. In real-time Java profiles the use of finalizers is either discouraged (RTSJ, Ravenscar Java) or even disallowed (JSR-302), mainly because of the unpredictability of finalizers and in particular their impact...... on the schedulability analysis. In this paper we show that a controlled scoped memory model results in a structured and predictable execution of finalizers, more reminiscent of C++ destructors than Java finalizers. Furthermore, we incorporate finalizers into a (conservative) schedulability analysis for Predictable Java...... programs. Finally, we extend the SARTS tool for automated schedulability analysis of Java bytecode programs to handle finalizers in a fully automated way....

  2. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  3. Integrated test schedule for buried waste integrated demonstration

    International Nuclear Information System (INIS)

    Brown, J.T.; McDonald, J.K.

    1992-05-01

    The Integrated Test Schedule incorporates the various schedules the Buried Waste Integrated Demonstration (BWID) supports into one document. This document contains the Federal Facilities Agreement and Consent Order schedules for the Idaho National Engineering Laboratory, Hanford Reservation, Oak Ridge Reservation, and Fernald Environmental Materials Center. Included in the Integrated Test Schedule is the Buried Waste Integrated Demonstration ''windows of opportunity'' schedule. The ''windows of opportunity'' schedule shows periods of time in which Buried Waste Integrated Demonstration Program-sponsored technology demonstrations could support key decisions in the Federal Facilities Agreement and Consent Order. Schedules for the Buried Waste Integrated Demonstration-sponsored technology task plans are categorized by technology area and divided by current fiscal year and out-year. Total estimated costs for Buried Waste Integrated Demonstration-sponsored Technology Task Plans for FY-92 through FY-97 are $74.756M

  4. Final disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kroebel, R [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Projekt Wiederaufarbeitung und Abfallbehandlung; Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Abt. zur Behandlung Radioaktiver Abfaelle

    1978-08-01

    This paper discusses the final disposal possibilities for radioactive wastes in the Federal Republic of Germany and the related questions of waste conditioning, storage methods and safety. The programs in progress in neighbouring CEC countries and in the USA are also mentioned briefly. The autors conclude that the existing final disposal possibilities are sufficiently well known and safe, but that they could be improved still further by future development work. The residual hazard potential of radioactive wastes from fuel reprocessing after about 1000 years of storage is lower that of known inorganic core deposits.

  5. Waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Egede Rasmussen, Anja

    2004-06-15

    This prepatory thesis is a literature study on the incineration of waste. It deals with the concepts of municipal solid waste, the composition and combustion of it. A main focus is on the European emission regulations and the formation of dioxins, as well as a big effort is put into the treatment of solid residues from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical and chemical separations, solidification and stabilization techniques, thermal methods, and extraction methods have been discussed. Evaluation of possible methods of treatment has been done, but no conclusions made of which is the best. Though, indications exist that especially two methods have shown positive qualities and must be further investigated. These methods are the acid extraction and sulfide stabilization (AES) process and the phosphate stabilization method of WES-PHix. Economic potentials of the two methods have been evaluated, and with the information obtained, it seems that the price for treatment and later landfilling of a material with improved leaching characteristics, will be approximately the same as the presently most used solution of export to Norway. However, more tests, investigations and economic evaluations are necessary in order for support of the findings in this work. (au)

  6. Integrated scheduled waste management system in Kuala Lumpur ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... Over the past decade, Malaysia has enjoyed tremendous growth in its economy. This has brought about a population growth together with a great influx of foreign workforce to the cities. This resulted in an increase in the amount of scheduled waste generated. Furthermore, scheduled waste management ...

  7. Final disposal of nuclear waste. An investigated issue

    International Nuclear Information System (INIS)

    Palmu, J.; Nikula, A.

    1996-01-01

    Since 1978, the nuclear power companies have co-ordinated joint studies of nuclear waste disposal through the Nuclear Waste Commission of Finnish Power Companies. The studies are done primarily to gather basic data, with a view to implementing nuclear waste management in a safe, economical and timely way. The power companies' research, development and design work with regard to nuclear waste has been progressing according to the schedule set by the Government, and Finland has received international recognition for its advanced nuclear waste management programme. Last year, the nuclear power companies set up a joint company, Posiva Oy, to manage the final disposal of spent uranium fuel. (orig.)

  8. Final storage of radioactive waste

    International Nuclear Information System (INIS)

    Ziehm, Cornelia

    2015-01-01

    As explained in the present article, operators of nuclear power plants are responsible for the safe final disposal of the radioactive wastes they produce on the strength of the polluter pays principle. To shift the burden of responsibility for safe disposal to society as a whole would violate this principle and is therefore not possible. The polluter pays principle follows from more general principles of the fair distribution of benefits and burdens. Instances of its implementation are to be found in the national Atomic Energy Law as well as in the European Radioactive Waste and Spent Fuel Management Directive. The polluters in this case are in particular responsible for financing the installation and operation of final disposal sites. The reserves accumulated so far for the decommissioning and dismantling of nuclear power plants and disposal of radioactive wastes, including the installation and operation of final disposal sites, should be transferred to a public-law fund. This fund should be supplemented by the polluters to cover further foreseeable costs not covered by the reserves accumulated so far, including a realistic cost increase factor, appropriate risk reserves as well as the costs of the site selection procedure and a share in the costs for the safe closure of the final disposal sites of Morsleben and Asse II. This would merely be implementing in the sphere of atomic law that has long been standard practice in other areas of environmental law involving environmental hazards.

  9. TSA waste stream and final waste form composition

    International Nuclear Information System (INIS)

    Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

    1993-01-01

    A final vitrified waste form composition, based upon the chemical compositions of the input waste streams, is recommended for the transuranic-contaminated waste stored at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The quantities of waste are large with a considerable uncertainty in the distribution of various waste materials. It is therefore impractical to mix the input waste streams into an ''average'' transuranic-contaminated waste. As a result, waste stream input to a melter could vary widely in composition, with the potential of affecting the composition and properties of the final waste form. This work examines the extent of the variation in the input waste streams, as well as the final waste form under conditions of adding different amounts of soil. Five prominent Rocky Flats Plant 740 waste streams are considered, as well as nonspecial metals and the ''average'' transuranic-contaminated waste streams. The metals waste stream is the most extreme variation and results indicate that if an average of approximately 60 wt% of the mixture is soil, the final waste form will be predominantly silica, alumina, alkaline earth oxides, and iron oxide. This composition will have consistent properties in the final waste form, including high leach resistance, irrespective of the variation in waste stream. For other waste streams, much less or no soil could be required to yield a leach resistant waste form but with varying properties

  10. Final closure of a low level waste disposal facility

    International Nuclear Information System (INIS)

    Potier, J.M.

    1995-01-01

    The low-level radioactive waste disposal facility operated by the Agence Nationale pour la Gestion des Dechets Radioactifs near La Hague, France was opened in 1969 and is scheduled for final closure in 1996. The last waste package was received in June 1994. The total volume of disposed waste is approximately 525,000 m 3 . The site closure consists of covering the disposal structures with a multi-layer impervious cap system to prevent rainwater from infiltrating the waste isolation system. A monitoring system has been set up to verify the compliance of infiltration rates with hydraulic performance objectives (less than 10 liters per square meter and per year)

  11. Final storage of radioactive waste

    International Nuclear Information System (INIS)

    Albrecht, E.; Kolditz, H.; Thielemann, K.; Duerr, K.; Klarr, K.; Kuehn, K.; Staupendahl, G.; Uerpmann, E.P.; Bechthold, W.; Diefenbacher, W.

    1974-12-01

    The present report - presented by the Gesellschaft fuer Strahlen- und Umweltforschung mbH, Muenchen in cooperation with the Gesellschaft fuer Kernforschung mbH, Karlsruhe - gives a survey of the 1973 work in the field of final storage of radioactive wastes. The mining and constructional work carried out aboveground and underground in the saline of Asse near Remlingen with a view to repair, maintenance and expansion for future tasks is discussed. Storage of slightly active wastes on the 750 m floor and the tentative storage of medium-activity wastes on the 490 m floor were continued in the time under review. In September, the multiple transport container S 7 V, developped in the GfK for transports of 7 200 l iron-hooped drums containing medium activity wastes, were employed in Asse for the first time. With two transports a week between Karlsruhe Nuclear Research Centre and the Asse mine, 14 drums were stored per week with a total of 233 drums at the end of the year. The report also gives information on the present state of research in the fields of mountain engineering geology and hydrology, and its results. In addition, new storage methods are mentioned which are still in the planning stage. (orig./AK) [de

  12. TRU Waste Management Program. Cost/schedule optimization analysis

    International Nuclear Information System (INIS)

    Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.; Hastings, G.A.

    1985-10-01

    This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office Rockwell International (JIO/RI) during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance development, task monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short-term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. Systems models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions

  13. Waste management, final waste disposal, fuel cycle

    International Nuclear Information System (INIS)

    Rengeling, H.W.

    1991-01-01

    Out of the legal poblems that are currently at issue, individual questions from four areas are dealt with: privatization of ultimate waste disposal; distribution of responsibilities for tasks in the field of waste disposal; harmonization and systematization of regulations; waste disposal - principles for making provisions for waste disposal - proof of having made provisions for waste disposal; financing and fees. A distinction has to be made between that which is legally and in particular constitutionally imperative or, as the case may be, permissible, and issues where there is room for political decision-making. Ultimately, the deliberations on the amendment are completely confined to the sphere of politics. (orig./HSCH) [de

  14. Final disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1995-10-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK).

  15. Final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK)

  16. Specified radioactive waste final disposal act

    International Nuclear Information System (INIS)

    Yasui, Masaya

    2001-01-01

    Radioactive wastes must be finally and safely disposed far from human activities. Disposal act is a long-range task and needs to be understood and accepted by public for site selection. This paper explains basic policy of Japanese Government for final disposal act of specified radioactive wastes, examination for site selection guidelines to promote residential understanding, general concept of multi-barrier system for isolating the specific radioactive wastes, and research and technical development for radioactive waste management. (S. Ohno)

  17. Radioactive Waste Management System: Draft Project Decision Schedule. Revision

    International Nuclear Information System (INIS)

    1985-07-01

    The Nuclear Waste Policy Act (NWPA) of 1982 (Pub. L. 97-425) requires that the Secretary of Energy prepare, in cooperation with affected Federal agencies, a Project Decision Schedule that portrays the optimum way to attain the operation of geologic repositories. The Draft Project Decision Schedule portrays the major milestones of the Radioactive Waste Management System. It also depicts the set of activities for which Federal agencies have responsibility and the deadlines for taking the required action that are associated with the activities. The NWPA also requires that Federal agencies having determined that they: (1) cannot comply with a deadline for taking a required action; or (2) fail to comply with a deadline contained in the Project Decision Schedule; submit a comprehensive report to the Secretary of Energy and Congress to explain their failure or expected failure. The Secretary, in turn, is required to submit to Congress a response to the agency's report. 7 figs., 13 tabs

  18. Double-shell tank waste system assessment status and schedule

    International Nuclear Information System (INIS)

    Walter, E.J.

    1995-01-01

    The integrated program for completing the integrity assessments of the dangerous waste tank systems managed by the Tank Waste Remediation System (TWRS) Division of Westinghouse Hanford Company is presented in the Tank Waste Remediation System Tank System Integrity Assessments Program Plan, WHC-SD-AP017, Rev. 1. The program plan identified the assessment requirements and the general scope to which these requirements applied. Some of these assessment requirements have been met and others are either in process of completion or scheduled to be worked. To define the boundary of the double-shell tank (DST) system and the boundaries of the DST system components (or system parts) for the purpose of performing integrity assessment activities; To identify the planned activities to meet the assessment requirements for each component; Provide the status of the assessment activities; and Project a five year assessment activity schedule

  19. Final treatment of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Svolik, S.

    2004-01-01

    Final treatment of liquid radioactive wastes which are produced by 1 st and 2 nd bloc of the Mochovce NPP, prepares the NPP in its natural range. The purpose of the equipment is liquidation of wastes, which are formed at production. Wastes are warehoused in the building of active auxiliary plants in the present time, where are reservoirs in which they are deposited. Because they are already feeling and in 2006 year they should be filled definitely, it is necessary to treat them in that manner, so as they may be liquidated. Therefore the Board of directors of the Slovenske elektrarne has disposed about construction of final treatment of liquid radioactive wastes in the Mochovce NPP. Because of transport the wastes have to be treated in the locality of power plant. Technically, the final treatment of the wastes will be interconnected with building of active operation by bridges. These bridges will transport the wastes for treatment into processing centre

  20. Schedules of controlled substances: temporary placement of three synthetic cannabinoids into Schedule I. Final order.

    Science.gov (United States)

    2013-05-16

    The Deputy Administrator of the Drug Enforcement Administration (DEA) is issuing this final order to temporarily schedule three synthetic cannabinoids under the Controlled Substances Act (CSA) pursuant to the temporary scheduling provisions of 21 U.S.C. 811(h). The substances are (1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone (UR-144), [1-(5-fluoro-pentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone (5-fluoro-UR-144, XLR11) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA, AKB48). This action is based on a finding by the Deputy Administrator that the placement of these synthetic cannabinoids and their salts, isomers and salts of isomers into Schedule I of the CSA is necessary to avoid an imminent hazard to the public safety. As a result of this order, the full effect of the CSA and the Controlled Substances Import and Export Act (CSIEA) and their implementing regulations including criminal, civil and administrative penalties, sanctions and regulatory controls of Schedule I substances will be imposed on the manufacture, distribution, possession, importation, and exportation of these synthetic cannabinoids.

  1. NWTS waste package program plan. Volume I. Program strategy, description, and schedule

    International Nuclear Information System (INIS)

    1981-10-01

    This document describes the work planned for developing the technology to design, test and produce packages used for the long-term isolation of nuclear waste in deep geologic repositories. Waste forms considered include spent fuel and high-level waste. The testing and selection effort for barrier materials for radionuclide containment is described. The NWTS waste package program is a design-driven effort; waste package conceptual designs are used as input for preliminary designs, which are upgraded to a final design as materials and testing data become available. Performance assessment models are developed and validated. Milestones and a detailed schedule are given for the waste package development effort. Program logic networks defining work flow, interfaces among the NWTS Projects, and interrelationships of specific activities are presented. Detailed work elements are provided for the Waste Package Program Plan subtasks - design and development, waste form, barrier materials, and performance evaluation - for salt and basalt, host rocks for which the state of waste package knowledge and the corresponding data base are advanced

  2. 75 FR 11002 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Science.gov (United States)

    2010-03-10

    ... Waste Management System; Identification and Listing of Hazardous Waste; Final Rule AGENCY: Environmental... and specific types of management of the petitioned waste, the quantities of waste generated, and waste... wastes. This final rule responds to a petition submitted by Valero to delist F037 waste. The F037 waste...

  3. A NEW APPROACH TO CLASS SCHEDULING. FINAL REPORT.

    Science.gov (United States)

    CANTER, JOHN; AND OTHERS

    AN INVESTIGATION OF THE USE OF A PROTOTYPE DEVICE FOR CLASS SCHEDULING WAS MADE. THE BEEKLEY INSITE DEVICE THAT WAS STUDIED USES THE "PEEK-A-BOO" PRINCIPLE OF MATCHING COMPUTER TAPES. A TEST GROUP OF 149 GRADUATE STUDENTS WAS USED. THEIR DESIRED SCHEDULES WERE MATCHED AUTOMATICALLY AGAINST A PROPOSED MASTER SCHEDULE TO EVALUATE THE…

  4. 76 FR 16534 - Hazardous Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-03-24

    ... Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion AGENCY...) on a one-time basis from the lists of hazardous waste, a certain solid waste generated at its Mt... waste is [[Page 16535

  5. Energy utilization: municipal waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  6. Radioactive waste products - suitability for final disposal

    International Nuclear Information System (INIS)

    Merz, E.; Odoj, R.; Warnecke, E.

    1985-06-01

    48 papers were read at the conference. Separate records are available for all of them. The main problem in radioactive waste disposal was the long-term sealing to prevent pollution of the biosphere. Problems of conditioning, acceptance, and safety measures were discussed. Final disposal models and repositories were presented. (PW) [de

  7. Schedule for Rating Disabilities; the Endocrine System. Final rule.

    Science.gov (United States)

    2017-11-02

    This document amends the Department of Veterans Affairs (VA) Schedule for Rating Disabilities (VASRD) by revising the portion of the Schedule that addresses endocrine conditions and disorders of the endocrine system. The effect of this action is to ensure that the VASRD uses current medical terminology and to provide detailed and updated criteria for evaluation of endocrine disorders.

  8. Medical waste irradiation study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adler, R.J.; Stein, J. [North Star Research Corp., Albuquerque, NM (United States); Nygard, J. [Advance Bio-Control (United States)

    1998-07-25

    The North Star Research Corporation Medical Waste project is described in this report, with details of design, construction, operation, and results to date. The project began with preliminary design of the accelerator. The initial design was for a single accelerator chamber with a vacuum tube cavity driver built into the chamber itself, rather than using a commercial tube separate from the RF accelerator. The authors believed that this would provide more adjustability and permit better coupling to be obtained. They did not have sufficient success with that approach, and finally completed the project using a DC accelerator with a unique new scanning system to irradiate the waste.

  9. Medical waste irradiation study. Final report

    International Nuclear Information System (INIS)

    Adler, R.J.; Stein, J.; Nygard, J.

    1998-01-01

    The North Star Research Corporation Medical Waste project is described in this report, with details of design, construction, operation, and results to date. The project began with preliminary design of the accelerator. The initial design was for a single accelerator chamber with a vacuum tube cavity driver built into the chamber itself, rather than using a commercial tube separate from the RF accelerator. The authors believed that this would provide more adjustability and permit better coupling to be obtained. They did not have sufficient success with that approach, and finally completed the project using a DC accelerator with a unique new scanning system to irradiate the waste

  10. SMART operational field test evaluation : scheduler survey report : final report

    Science.gov (United States)

    1997-06-01

    The Suburban Mobility Authority for Regional Transportation (SMART) has installed an automatic scheduling and dispatch system (ASD) in Southeast Michigan in accordance with their plans to implement ITS as a site for an operational field test. The pur...

  11. Final vegetative cover for closed waste sites

    International Nuclear Information System (INIS)

    Cook, J.R.; Salvo, S.K.

    1993-01-01

    Low-level, hazardous, and mixed waste disposal sites normally require some form of plant material to prevent erosion of the final closure cap. Waste disposal sites are closed and capped in a complex scientific manner to minimize water infiltration and percolation into and through the waste material. Turf type grasses are currently being used as an interim vegetative cover for most sites. This coverage allows for required monitoring of the closure cap for settlement and maintenance activities. The purpose of this five year study was to evaluate plant materials for use on wastes sites after the post-closure care period that are quickly and easily established and economically maintained, retard water infiltration, provide maximum year-round evapotranspiration, are ecologically acceptable and do not harm the closure cap. The results of the study suggest that two species of bamboo (Phyllostachys (P.) bissetii and P. rubromarginata) can be utilized to provide long lived, low maintenance, climax vegetation for the waste sites after surveillance and maintenance requirements have ceased

  12. 75 FR 60632 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule

    Science.gov (United States)

    2010-10-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Direct Final Rule AGENCY... management and treatment of several F- and K-waste codes. These waste codes are F037, F038, K048, K049, K051... released from the waste, plausible and specific types of management of the petitioned waste, the quantities...

  13. Development of a central final repository management for the coordination of the waste for Schacht Konrad from public authorities

    International Nuclear Information System (INIS)

    Graffunder, Iris; Dominke-Bendix, Carola; Waldek, Achim

    2012-01-01

    The central final repository management is supposed to fulfill the following tasks: active collaboration of Konrad contract draft, signing of internal contracts and agreements, cooperation contract with GNS, cooperation with coordination authorities, inventory taking of wastes (existing inventory and prognosis) and interim storage capacities of public authorities, development of planning and management software, optimization of the final repository documentation, container management, logistics concept, long-term disposal planning and prognosis, planning and coordination of the annual waste amount, management and documentation of disposed waste allocation, coordination of transport schedules, consulting service for waste obligations (final repository requirements, product control, documentation).

  14. Identification of the recommended waste management systems and system development schedules: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    This report describes the evaluations of alternatives for low-level waste treatment and disposal leading to the selection of four disposal methods and two treatment alternatives (including the alternative of only continuing current methods of waste treatment used by the waste generators) that were used to form candidate waste management systems. The subsequent evaluation of waste management systems and schedules for the development of the regional waste management system under four different scenarios are also included. The report also describes the consequences to the member states and their waste generators of the four scenarios and presents insights into preferred courses of action that arise from the scheduling exercise. 13 refs., 14 figs., 2 tabs

  15. Treatment and final disposal of nuclear waste

    International Nuclear Information System (INIS)

    1992-09-01

    The present background report to RD and D-programme 93 'Detailed R and D-programme 1993-1998' gives a detailed description of the state-of-the-art and future plans for safety assessments and supportive research. The technical development that is required for the construction of the encapsulation station and the deep repository for demonstration deposition is described. The report describes the need for performance and safety assessments occasioned by the above plans for activities. Against the background of the time schedule for safety reports etc., an account is given of the state-of-the-art, goals and planned work during the period with regard to the engineered barriers of spent nuclear fuel, canister material and buffer and backfill material. State-of-the-art, goals and planned work within the geosciences for groundwater movements, bedrock stability and geohydrological and rock mechanical calculation models are presented as well as the situation within the chemistry programme, with separate sections on groundwater and geochemistry, radionuclide chemistry and validation of processes in transport model and radionuclide migration. The study of such natural conditions as constitute analogues in certain respects to important chemical sorption and transport processes in a deep repository is presented. The state of knowledge concerning radionuclide transport in the biosphere and modelling of the same, as well as resulting doese to man, are described. R and D efforts associated with the development of technology that is required for repository construction, excavation of tunnels, deposition of waste and possibly necessary retrieval of canisters, as well as backfilling and sealing of the repository are presented

  16. A linear program for assessing the assignment and scheduling of radioactive wastes for disposal to sea

    International Nuclear Information System (INIS)

    Hutchinson, W.

    1983-04-01

    The report takes the form of a user guide to a computer program using linear programming techniques to aid the assignment and scheduling of radioactive wastes for disposal to sea. The program is aimed at the identification of 'optimum' amounts of each waste stream for disposal to sea without violating specific constraints values and/or fairness parameters. (author)

  17. Safety in the final disposal of radioactive waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K.; Carugati, S.; Brodersen, K. [and others

    1997-12-01

    During 1994-1997 a project on the disposal of radioactive waste was carried out as part of the NKS program. The objective of the project was to give authorities and waste producers in the Nordic countries background material for determinations about the management and disposal of radioactive waste. The project NKS/AFA-1 was divided into three sub-projects: AFA-1.1, AFA-1.2 and AFA-1.3. AFA-1.1 dealt with waste characterisation, AFA-1.2 dealt with performance assessment for repositories and AFA-1.3 dealt with Environmental Impact Assessment (EIA). The studies mainly focused on the management of long-lived low- and intermediate-level radioactive waste from research, hospitals and industry. The AFA-1.1 study included an overview on waste categories in the Nordic countries and methods to determine or estimate the waste content. The results from the AFA-1.2 study include a short overview of different waste management systems existing and planned in the Nordic countries. However, the main emphasis of the study was a general discussion of methodologies developed and employed for performance assessments of waste repositories. Some of the phenomena and interactions relevant for generic types of repository were discussed as well. Among the different approaches for the development of scenarios for safety and performance assessments one particular method, the Rock Engineering System (RES), was chosen to be tested by demonstration. The possible interactions and their safety significance were discussed, employing a simplified and generic Nordic repository system as the reference system. New regulations for the inventory of a repository may demand new assessments of old radioactive waste packages. The existing documentation of a waste package is then the primary information source although additional measurements may be necessary. (EG) 33 refs.

  18. Safety in the final disposal of radioactive waste. Final report

    International Nuclear Information System (INIS)

    Broden, K.; Carugati, S.; Brodersen, K.

    1997-12-01

    During 1994-1997 a project on the disposal of radioactive waste was carried out as part of the NKS program. The objective of the project was to give authorities and waste producers in the Nordic countries background material for determinations about the management and disposal of radioactive waste. The project NKS/AFA-1 was divided into three sub-projects: AFA-1.1, AFA-1.2 and AFA-1.3. AFA-1.1 dealt with waste characterisation, AFA-1.2 dealt with performance assessment for repositories and AFA-1.3 dealt with Environmental Impact Assessment (EIA). The studies mainly focused on the management of long-lived low- and intermediate-level radioactive waste from research, hospitals and industry. The AFA-1.1 study included an overview on waste categories in the Nordic countries and methods to determine or estimate the waste content. The results from the AFA-1.2 study include a short overview of different waste management systems existing and planned in the Nordic countries. However, the main emphasis of the study was a general discussion of methodologies developed and employed for performance assessments of waste repositories. Some of the phenomena and interactions relevant for generic types of repository were discussed as well. Among the different approaches for the development of scenarios for safety and performance assessments one particular method, the Rock Engineering System (RES), was chosen to be tested by demonstration. The possible interactions and their safety significance were discussed, employing a simplified and generic Nordic repository system as the reference system. New regulations for the inventory of a repository may demand new assessments of old radioactive waste packages. The existing documentation of a waste package is then the primary information source although additional measurements may be necessary. (EG)

  19. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    International Nuclear Information System (INIS)

    Pierce, G.D.; Wolaver, R.W.; Carson, P.H.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part of this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs

  20. Expedited demonstration of molten salt mixed waste treatment technology. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    This final report discusses the molten salt mixed waste project in terms of the various subtasks established. Subtask 1: Carbon monoxide emissions; Establish a salt recycle schedule and/or a strategy for off-gas control for MWMF that keeps carbon monoxide emission below 100 ppm on an hourly averaged basis. Subtask 2: Salt melt viscosity; Experiments are conducted to determine salt viscosity as a function of ash composition, ash concentration, temperature, and time. Subtask 3: Determine that the amount of sodium carbonate entrained in the off-gas is minimal, and that any deposited salt can easily be removed form the piping using a soot blower or other means. Subtask 4: The provision of at least one final waste form that meets the waste acceptance criteria of a landfill that will take the waste. This report discusses the progress made in each of these areas

  1. Schedules of Controlled Substances: Placement of UR-144, XLR11, and AKB48 into Schedule I. Final rule.

    Science.gov (United States)

    2016-05-11

    With the issuance of this final rule, the Drug Enforcement Administration places (1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone (UR-144), [1-(5-fluoro-pentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone (5-fluoro-UR-144, XLR11), and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA, AKB48), including their salts, isomers, and salts of isomers whenever the existence of such salts, isomers, and salts of isomers is possible, into schedule I of the Controlled Substances Act. This scheduling action is pursuant to the Controlled Substances Act which requires that such actions be made on the record after opportunity for a hearing through formal rulemaking. This action imposes the regulatory controls and administrative, civil, and criminal sanctions applicable to schedule I controlled substances on persons who handle (manufacture, distribute, reverse distribute, import, export, engage in research, conduct instructional activities or chemical analysis, or possess), or propose to handle UR-144, XLR11, or AKB48.

  2. Regulatory criteria for final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Petraitis, E.; Ciallella, N.; Siraky, G.

    1998-01-01

    This paper describes briefly the legislative and regulatory framework in which the final disposal of radioactive wastes is carried out in Argentina. It also presents the criteria developed by the Nuclear Regulatory Authority (ARN) to assess the long-term safety of final disposal systems for high level radioactive wastes. (author)

  3. Schedule goals for civilian radioactive waste management - Can we have confidence?

    International Nuclear Information System (INIS)

    Bartlett, John W.

    1992-01-01

    The schedule goals for the Civilian Radioactive Waste Management Program are to begin spent fuel receipt from reactors in 1998 and to begin waste disposal in 2010. Although there are various reasons for these goals, the most important is to set demanding goals and be responsible for achieving them. Meeting these goals requires taking into account an array of facilitators and potential inhibitors that affect schedule confidence. Facilitators include actions to prioritize the program, and make its operations efficient. These include actions to baseline activities, emphasize communications with constituencies, use help from others, and facilitate the licensing process. Inhibitors include problems in monitored storage facilities negotiations, obstruction by the State of Nevada, funding deficiencies, and technical uncertainties at Yucca Mountain. At the present time, the program can, in principle meet its schedule goals. In the near-term, the linchpin of schedule confidence is Congressional action to match the Administration's commitment to progress. (author)

  4. Final waste classification and waste form technical position papers

    International Nuclear Information System (INIS)

    1983-05-01

    The waste classification technical position paper describes overall procedures acceptable to NRC staff which may be used by licensees to determine the presence and concentrations of the radionuclides listed in section 61.55, and thereby classifying waste for near-surface disposal. This technical position paper also provides guidance on the types of information which should be included in shipment manifests accompanying waste shipments to near-surface disposal facilities. The technical position paper on waste form provides guidance to waste generators on test methods and results acceptable to NRC staff for implementing the 10 CFR Part 61 waste form requirements. It can be used as an acceptable approach for demonstrating compliance with the 10 CFR Part 61 waste structural stability criteria. This technical position paper includes guidance on processing waste into an acceptable stable form, designing acceptable high-integrity containers, packaging cartridge filters, and minimizing radiation effects on organic ion-exchange resins. The guidance in the waste form technical position paper may be used by licensees as the basis for qualifying process control programs to meet the waste form stability requirements, including tests which can be used to demonstrate resistance to degradation arising from the effects of compression, moisture, microbial activity, radiation, and chemical changes. Generic test data (e.g., topical reports prepared by vendors who market solidification technology) may be used for process control program qualification where such generic data is applicable to the particular types of waste generated by a licensee

  5. Liquid waste treatment system. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1999-01-01

    Pretreatment of high-level liquid radioactive waste (HLW) at the West Valley Demonstration Project (WVDP) involved three distinct processing operations: decontamination of liquid HLW in the Supernatant Treatment System (STS); volume reduction of decontaminated liquid in the Liquid Waste Treatment System (LWTS); and encapsulation of resulting concentrates into an approved cement waste form in the Cement Solidification System (CSS). Together, these systems and operations made up the Integrated Radwaste Treatment System (IRTS)

  6. Medicare program; revisions to payment policies under the physician fee schedule, clinical laboratory fee schedule & other revisions to Part B for CY 2014. Final rule with comment period.

    Science.gov (United States)

    2013-12-10

    This major final rule with comment period addresses changes to the physician fee schedule, clinical laboratory fee schedule, and other Medicare Part B payment policies to ensure that our payment systems are updated to reflect changes in medical practice and the relative value of services. This final rule with comment period also includes a discussion in the Supplementary Information regarding various programs. (See the Table of Contents for a listing of the specific issues addressed in the final rule with comment period.)

  7. The potential application of military fleet scheduling tools to the Federal Waste Management System Transportation System

    International Nuclear Information System (INIS)

    Harrison, I.G.; Pope, R.B.; Kraemer, R.D.; Hilliard, M.R.

    1991-01-01

    This paper discusses the feasibility of adapting concepts and tools that were developed for the US military's transportation management systems to the management of the Federal Waste Management System's (FWMS) Transportation System. Many of the lessons in the development of the planning and scheduling software for the US military are applicable to the development of similar software for the FWMS Transportation System. The resulting system would be invaluable to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM), both initially, for long-range planning, and later, in day-to-day scheduling and management activities

  8. Waste reduction through consumer education. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, E.Z.

    1996-05-01

    The Waste Reduction through Consumer Education research project was conducted to determine how environmental educational strategies influence purchasing behavior in the supermarket. The objectives were to develop, demonstrate, and evaluate consumer education strategies for waste reduction. The amount of waste generated by packaging size and form, with an adjustment for local recyclability of waste, was determined for 14 product categories identified as having more waste generating and less waste generating product choices (a total of 484 products). Using supermarket scan data and shopper identification numbers, the research tracked the purchases of shoppers in groups receiving different education treatments for 9 months. Statistical tests applied to the purchase data assessed patterns of change between the groups by treatment period. Analysis of the data revealed few meaningful statistical differences between study groups or changes in behavior over time. Findings suggest that broad brush consumer education about waste reduction is not effective in changing purchasing behaviors in the short term. However, it may help create a general awareness of the issues surrounding excess packaging and consumer responsibility. The study concludes that the answer to waste reduction in the future may be a combination of voluntary initiatives by manufacturers and retailers, governmental intervention, and better-informed consumers.

  9. Scheduling Production Orders, Taking into Account Delays and Waste

    Directory of Open Access Journals (Sweden)

    Dylewski Robert

    2014-09-01

    Full Text Available The article addresses the problem of determining the sequence of entering orders for production in a flexible manufacturing system implementing technological operations of cutting sheet metal. Adopting a specific ranking of production orders gives rise to the vector of delays and waste in the form of incompletely used sheets. A new method was postulated for determining the optimal sequence of orders in terms of two criteria: the total cost of delays and the amount of production waste. The examples illustrate the advantages of the proposed method compared with the popular heuristic principles.

  10. Low-level waste workshops. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    The Low-Level Radioactive Waste Policy Act of 1980 specifies that each state is responsible for the disposal of the low-level waste which is generated within its boundaries. The Act states that such wastes can be most safely and efficiently managed on a regional basis through compacts. It also defines low-level waste as waste which is not classified as high-level radioactive waste, transuranic waste, spent nuclear fuel, or by-product material as defined in the Atomic Energy Act of 1954. The Policy Act also stipulates that regional agreements or compacts shall not be applicable to the transportation, management, or disposal of low-level radioactive waste from atomic energy defense activities or federal research and development activities. It also specifies that agreements or compacts shall take affect on January 1, 1986, upon Congressional approval. In February 1983, the US Department of Energy awarded a grant to the Council of State Governments' Midwestern Office. The grant was to be used to fund workshops for legislation on low-level radioactive waste issues. The purpose of the workshops was to provide discussion specifically on the Midwest Interstate Compact on Low-Level Radioactive Waste. Legislators from the states which were eligible to join the compact were invited: Delaware, Illinois, Indiana, Iowa, Kentucky, Maryland, Michigan, Minnesota, Missouri, North Dakota, Ohio, South Dakota and Wisconsin. Virginia, Kansas and Nebraska were also eligible but had joined other compacts. Consequently, they weren't invited to the workshops. The Governor's office of West Virginia expressed interest in the compact, and its legislators were invited to attend a workshop. Two workshops were held in March. This report is a summary of the proceedings which details the concerns of the compact and expresses the reasoning behind supporting or not supporting the compact

  11. Integrated scheduled waste management system in Kuala Lumpur ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... application of artificial intelligence (AI) is still in its early stages in Kuala ... by waste generators is being practiced at large scale due to lack of proper ... the need of expertise, in the form of human expert or a written program such ... the engineer's knowledge upon which quality of the expert system depends.

  12. Residues from waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, T.; Juul Pedersen, A.; Hyks, J.; Frandsen, F.J.

    2009-08-15

    The overall objective of the project was to improve the understanding of the formation and characteristics of residues from waste incineration. This was done focusing on the importance of the waste input and the operational conditions of the furnace. Data and results obtained from the project have been discussed in this report according to the following three overall parts: i) mass flows and element distribution, ii) flue gas/particle partitioning and corrosion/deposition aspects, and iii) residue leaching. This has been done with the intent of structuring the discussion while tacitly acknowledging that these aspects are interrelated and cannot be separated. Overall, it was found that the waste input composition had significant impact of the characteristics of the generated residues. A similar correlation between operational conditions and residue characteristics could not be observed. Consequently, the project recommend that optimization of residue quality should focus on controlling the waste input composition. The project results showed that including specific waste materials (and thereby also excluding the same materials) may have significant effects on the residue composition, residue leaching, aerosol and deposit formation.It is specifically recommended to minimize Cl in the input waste. Based on the project results, it was found that a significant potential for optimization of waste incineration exist. (author)

  13. Phosphate bonded ceramics as candidate final-waste-form materials

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Cunnane, J.; Sutaria, M.; Kurokawa, S.; Mayberry, J.

    1994-04-01

    Room-temperature setting phosphate-bonded ceramics were studied as candidate materials for stabilization of DOE low-level problem mixed wastes which cannot be treated by other established stabilization techniques. Phosphates of Mg, Mg-Na, Al and Zr were studied to stabilize ash surrogate waste containing RCRA metals as nitrates and RCRA organics. We show that for a typical loading of 35 wt.% of the ash waste, the phosphate ceramics pass the TCLP test. The waste forms have high compression strength exceeding ASTM recommendations for final waste forms. Detailed X-ray diffraction studies and differential thermal analyses of the waste forms show evidence of chemical reaction of the waste with phosphoric acid and the host matrix. The SEM studies show evidence of physical bonding. The excellent performance in the leaching tests is attributed to a chemical solidification and physical as well as chemical bonding of ash wastes in these phosphate ceramics

  14. Optimization of municipal waste collection scheduling and routing using vehicle assignment problem (case study of Surabaya city waste collection)

    Science.gov (United States)

    Ramdhani, M. N.; Baihaqi, I.; Siswanto, N.

    2018-04-01

    Waste collection and disposal become a major problem for many metropolitan cities. Growing population, limited vehicles, and increased road traffic make the waste transportation become more complex. Waste collection involves some key considerations, such as vehicle assignment, vehicle routes, and vehicle scheduling. In the scheduling process, each vehicle has a scheduled departure that serve each route. Therefore, vehicle’s assignments should consider the time required to finish one assigment on that route. The objective of this study is to minimize the number of vehicles needed to serve all routes by developing a mathematical model which uses assignment problem approach. The first step is to generated possible routes from the existing routes, followed by vehicle assignments for those certain routes. The result of the model shows fewer vehicles required to perform waste collection asa well as the the number of journeys that the vehicle to collect the waste to the landfill. The comparison of existing conditions with the model result indicates that the latter’s has better condition than the existing condition because each vehicle with certain route has an equal workload, all the result’s model has the maximum of two journeys for each route.

  15. Optimal routes scheduling for municipal waste disposal garbage trucks using evolutionary algorithm and artificial immune system

    Directory of Open Access Journals (Sweden)

    Bogna MRÓWCZYŃSKA

    2011-01-01

    Full Text Available This paper describes an application of an evolutionary algorithm and an artificial immune systems to solve a problem of scheduling an optimal route for waste disposal garbage trucks in its daily operation. Problem of an optimisation is formulated and solved using both methods. The results are presented for an area in one of the Polish cities.

  16. Office of Civilian Radioactive Waste Management Program Cost and Schedule Baseline

    International Nuclear Information System (INIS)

    1992-09-01

    The purpose of this document is to establish quantitative expressions of proposed costs and schedule to serve as a basis for measurement of program performance. It identifies the components of the Program Cost and Schedule Baseline (PCSB) that will be subject to change control by the Executive (Level 0) and Program (Level 1) Change Control Boards (CCBS) and establishes their baseline values. This document also details PCSB reporting, monitoring, and corrective action requirements. The Program technical baseline contained in the Waste Management System Description (WMSD), the Waste Management System Requirements (WMSR), and the Physical System Requirements documents provide the technical basis for the PCSB. Changes to the PCSB will be approved by the Pregrain Change Control Board (PCCB)In addition to the PCCB, the Energy System Acquisition Advisory Board Baseline CCB (ESAAB BCCB) will perform control functions relating to Total Project Cost (TPC) and major schedule milestones for the Yucca Mountain Site Characterization Project and the Monitored Retrievable Storage (MRS) Project

  17. Radiaoctive waste packaging for transport and final disposal

    International Nuclear Information System (INIS)

    Suarez, A.A.

    1989-01-01

    Prior and after the conditioning of radioactive wastes is the packaging design of uppermost importance since it will be the first barrier against water and human intrusion. The choice of the proper package according waste category as well criteria utilized for final disposal are shown. (author) [pt

  18. Mixed waste focus area integrated master schedule (current as of May 6, 1996)

    International Nuclear Information System (INIS)

    1996-01-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) is to provide acceptable treatment systems, developed in partnership with users and with the participation of stakeholders, tribal governments, and regulators, that are capable of treating the Department of Energy's (DOE's) mixed wastes. In support of this mission, the MWTA produced the Mixed Waste Focus Area Integrated Technical Baseline Report, Phase I Volume 1, January 16, 1996, which identified a prioritized list of 30 national mixed waste technology deficiencies. The MWFA is targeting funding toward technology development projects that address the current list of deficiencies. A clear connection between the technology development projects and the EM-30 and EM-40 treatment systems that they support is essential for optimizing the MWFA efforts. The purpose of the Integrated Master Schedule (IMS) is to establish and document these connections and to ensure that all technology development activities performed by the MWFA are developed for timely use in those treatment systems. The IMS is a list of treatment systems from the Site Treatment Plans (STPs)/Consent Orders that have been assigned technology development needs with associated time-driven schedules, Technology deficiencies and associated technology development (TD) needs have been identified for each treatment system based on the physical, chemical, and radiological characteristics of the waste targeted for the treatment system. The schedule, the technology development activities, and the treatment system have been verified through the operations contact from the EM-30 organization at the site

  19. Multiple encapsulation of LANL waste using polymers. Final report

    International Nuclear Information System (INIS)

    Schwartz, R.L.

    1994-01-01

    Polymer encapsulation of lead shielding/blasting grit (surrogate) mixed waste was optimized at bench scale using melamine formaldehyde, polyurethane, and butadiene thermosetting polymers. Three pellet-based intermediate waste forms, and a final waste form, were prepared, each providing an additional level of integrity. Encapsulated waste integrity was measured by chemical and physical techniques. Compliance was established using the Toxicity Characteristic Leaching Procedure. Equipment appropriate to pilot-scale demonstration of program techniques was investigated. A preliminary equipment list and layout, and process block flow diagram were prepared

  20. Costs of the final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Drasdo, P.

    2001-01-01

    The study on the costs of radioactive waste disposal covers the topic of national concepts for the countries Germany, France, United Kingdom, Sweden, Switzerland and Unites States of America. The introduction into the topic of radioactive waste disposal is concerned with the classification of radioactive wastes, the safety of final repositories and the different concepts of final disposal. The used methods of data acquisition and data processing are described. The study compares the national final disposal concepts in order to identify the reasons for the differences in capital costs and annuity costs in the respective countries. The final chapter is concerned with the optimum timing for the start-up of operation of final repositories

  1. Buried waste containment system materials. Final Report

    International Nuclear Information System (INIS)

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers

  2. Classifying decommissioning wastes for allocation to appropriate final repositories

    International Nuclear Information System (INIS)

    Alder, J.C.; Tunaboylu, K.

    1982-01-01

    For the safe disposal of radioactive wastes in different repositories, it is of advantage to classify them in well-defined conditioned categories, appropriate for final disposal. These categories, the so-called waste sorts are characterized by similar radionuclide distribution, similar nuclide-specific activity concentrations and similar waste matrix. A methodology is presented for classifying decommissioning wastes and is applied to the decommissioning wastes arising from a Swiss program of 6 GWe. The amounts and nuclide-specific activity inventories of the decommissioning waste sorts have been estimated. A first allocation into two different repository types has been performed. Such a classification enables one to define the source parameters for repository safety analysis and allows one to allocate the different waste categories into appropriate final repositories. This work presents a first iteration to determine which waste sorts belong to which repository type. The characteristics of waste sorts have to be better defined and the protective strength of the repository barriers has to be optimized. 7 references, 2 figures, 4 tables

  3. 75 FR 50932 - Massachusetts: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2010-08-18

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental...-1990. FOR FURTHER INFORMATION CONTACT: Robin Biscaia, RCRA Waste Management Section, Office of Site... final [[Page 50933

  4. Waste package/repository impact study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs.

  5. Waste package/repository impact study: Final report

    International Nuclear Information System (INIS)

    1985-09-01

    The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs

  6. The effect of dynamic scheduling and routing in a solid waste management system

    International Nuclear Information System (INIS)

    Johansson, Ola M.

    2006-01-01

    Solid waste collection and hauling account for the greater part of the total cost in modern solid waste management systems. In a recent initiative, 3300 Swedish recycling containers have been fitted with level sensors and wireless communication equipment, thereby giving waste collection operators access to real-time information on the status of each container. In this study, analytical modeling and discrete-event simulation have been used to evaluate different scheduling and routing policies utilizing the real-time data. In addition to the general models developed, an empirical simulation study has been performed on the downtown recycling station system in Malmoe, Sweden. From the study, it can be concluded that dynamic scheduling and routing policies exist that have lower operating costs, shorter collection and hauling distances, and reduced labor hours compared to the static policy with fixed routes and pre-determined pick-up frequencies employed by many waste collection operators today. The results of the analytical model and the simulation models are coherent, and consistent with experiences of the waste collection operators

  7. Simultaneous personnel and vehicle shift scheduling in the waste management sector.

    Science.gov (United States)

    Ghiani, Gianpaolo; Guerriero, Emanuela; Manni, Andrea; Manni, Emanuele; Potenza, Agostino

    2013-07-01

    Urban waste management is becoming an increasingly complex task, absorbing a huge amount of resources, and having a major environmental impact. The design of a waste management system consists in various activities, and one of these is related to the definition of shift schedules for both personnel and vehicles. This activity has a great incidence on the tactical and operational cost for companies. In this paper, we propose an integer programming model to find an optimal solution to the integrated problem. The aim is to determine optimal schedules at minimum cost. Moreover, we design a fast and effective heuristic to face large-size problems. Both approaches are tested on data from a real-world case in Southern Italy and compared to the current practice utilized by the company managing the service, showing that simultaneously solving these problems can lead to significant monetary savings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Management, treatment and final disposal of solid hazardous hospital wastes

    International Nuclear Information System (INIS)

    Sebiani Serrano, T.

    2000-01-01

    Medical Waste is characterized by its high risk to human health and the environment. The main risk is biological, due to the large amount of biologically contaminated materials present in such waste. However, this does not mean that the chemical and radioactive wastes are less harmful just because they represent a smaller part of the total waste. Hazardous wastes from hospitals can be divided in 3 main categories: Solid Hazardous Hospital Wastes (S.H.H.W.), Liquid Hazardous Hospital Wastes (L.H.H.W.) and Gaseous Hazardous Hospital Wastes (G.H.H.W.) Most gaseous and liquid hazardous wastes are discharged to the environment without treatment. Since this inappropriate disposal practice, however, is not visible to society, there is no societal reaction to such problem. On the contrary, hazardous solid wastes (S.H.H.W.) are visible to society and create worries in the population. As a result, social and political pressures arise, asking for solutions to the disposal problems of such wastes. In response to such pressures and legislation approved by Costa Rica on waste handling and disposal, the Caja Costarricense de Seguro Social developed a plan for the handling, treatment, and disposal of hazardous solid wastes at the hospitals and clinics of its system. The objective of the program is to reduce the risk to society of such wastes. In this thesis a cost-effectiveness analysis was conducted to determine the minimum cost at which it is possible to reach a maximum level of reduction in hazardous wastes, transferring to the environment the least possible volume of solid hazardous wastes, and therefore, reducing risk to a minimum. It was found that at the National Children's Hospital the internal handling of hazard solid wastes is conducted with a high level of effectiveness. However, once out of the hospital area, the handling is not effective, because hazardous and common wastes are all mixed together creating a larger amount of S.H.H.W. and reducing the final efficiency

  9. Mixed Waste Salt Encapsulation Using Polysiloxane - Final Report

    International Nuclear Information System (INIS)

    Miller, C.M.; Loomis, G.G.; Prewett, S.W.

    1997-01-01

    A proof-of-concept experimental study was performed to investigate the use of Orbit Technologies polysiloxane grouting material for encapsulation of U.S. Department of Energy mixed waste salts leading to a final waste form for disposal. Evaporator pond salt residues and other salt-like material contaminated with both radioactive isotopes and hazardous components are ubiquitous in the DOE complex and may exceed 250,000,000 kg of material. Current treatment involves mixing low waste percentages (less than 10% by mass salt) with cement or costly thermal treatment followed by cementation to the ash residue. The proposed technology involves simple mixing of the granular salt material (with relatively high waste loadings-greater than 50%) in a polysiloxane-based system that polymerizes to form a silicon-based polymer material. This study involved a mixing study to determine optimum waste loadings and compressive strengths of the resultant monoliths. Following the mixing study, durability testing was performed on promising waste forms. Leaching studies including the accelerated leach test and the toxicity characteristic leaching procedure were also performed on a high nitrate salt waste form. In addition to this testing, the waste form was examined by scanning electron microscope. Preliminary cost estimates for applying this technology to the DOE complex mixed waste salt problem is also given

  10. Final environmental impact statement. Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described

  11. Final environmental impact statement. Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)

  12. Repository documentation rethought. A comprehensive approach from untreated waste to waste packages for final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Anthofer, Anton Philipp; Schubert, Johannes [VPC GmbH, Dresden (Germany)

    2017-11-15

    The German Act on Reorganization of Responsibility for Nuclear Disposal (Entsorgungsuebergangsgesetz (EntsorgUebG)) adopted in June 2017 provides the energy utilities with the new option of transferring responsibility for their waste packages to the Federal Government. This is conditional on the waste packages being approved for delivery to the Konrad final repository. A comprehensive approach starts with the dismantling of nuclear facilities and extends from waste disposal and packaging planning to final repository documentation. Waste package quality control measures are planned and implemented as early as in the process qualification stage so that the production of waste packages that are suitable for final deposition can be ensured. Optimization of cask and loading configuration can save container and repository volume. Workflow planning also saves time, expenditure and exposure time for personnel at the facilities. VPC has evaluated this experience and developed it into a comprehensive approach.

  13. Final processing vessel for radioactive waste

    International Nuclear Information System (INIS)

    Tejima, Takaya; Hiraki, Akimitsu.

    1989-01-01

    An inorganic inner layer comprising dense inorganic material such as organic polymer-impregnated concretes is formed to about 10 - 50 mm in average thickness at the inside of a metal vessel. Further, the surface of the vessel is formed as a flat surface with no or only small reinforcing protrusions. Thus, if the final processing vessel should be dropped during transportation or handling by mistake, since impact shocks do not concentrate to protrusions as usual, no local stress concentration occurs to the inorganic inner liner layer. Accordingly, the risk of rapture can be reduced greatly. Further, since impact shock resistance layer put between the metal vessel and the inorganic inner liner layer absorbs shocks, a further sufficient strength can be obtained against dropping accident. (T.M.)

  14. Managing low-level radioactive waste in Massachusetts. Final report

    International Nuclear Information System (INIS)

    Bander, S.R.; Goldstein, M.E.

    1983-12-01

    As one of the country's largest generators of low-level radioactive waste, Massachusetts has begun independently seeking solutions to the questions surrounding low-level waste management issues. The Massachusetts Department of Public Health, Radiation Control Program, obtained funding from the U.S. Department ofEnergy through EG and G, Idaho, Inc. to develop a low-level waste management strategy for the Commonwealth. The Working Group was made up of individuals from various waste generating industries, environmental and public interest groups, medical and academic institutions, and affected state agencies. This final report document contains the following staff project reports: Proposed Low-Level Radioactive Waste Management Plan for The Commonwealth of Massachusetts, February 1983 and Low-Level Radioactive Waste Management in Massachusetts - Actions to be Considered for Implementation in 1984-1986, December 1983. These two staff reports represent the completion of the Massachusetts Low-Level Radioactive Waste Management Project. The first report provides some of the background material to the issues and some of the alternative courses of action which can be considered by state policy-makers. The second report provides the next phase in the process by delineating specific steps which may be taken before 1986 in order to address the low-level waste problem, and the estimated amount of time needed to complete each step

  15. 76 FR 72721 - Galvanized Steel Wire From China and Mexico; Scheduling of the Final Phase of Countervailing Duty...

    Science.gov (United States)

    2011-11-25

    ...)] Galvanized Steel Wire From China and Mexico; Scheduling of the Final Phase of Countervailing Duty and... galvanized steel wire, provided for in subheading 7217.20 of the Harmonized Tariff Schedule of the United... merchandise as galvanized steel wire which is a cold- drawn carbon quality steel product in coils, of solid...

  16. 75 FR 51678 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2010-08-23

    ...: Environmental Protection Agency. ACTION: Final rule. SUMMARY: Environmental Protection Agency (EPA) is granting.... How much waste did OxyChem propose to delist? C. How did OxyChem sample and analyze the waste data in... proposed rule? V. Statutory and Executive Order Reviews I. Overview Information A. What action is EPA...

  17. Final Rule: 2013 Conditional Exclusions From Solid Waste and Hazardous Waste for Solvent-Contaminated Wipes

    Science.gov (United States)

    This is a regulation page for the final rule EPA issued on July 31, 2013 that modifies the hazardous waste management regulations for solvent-contaminated wipes under the Resource Conservation and Recovery Act (RCRA).

  18. Final disposal of high levels waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Gelin, R.

    1984-05-01

    Foreign and international activities on the final disposal of high-level waste and spent nuclear fuel have been reviewed. A considerable research effort is devoted to development of acceptable disposal options. The different technical concepts presently under study are described in the report. Numerous studies have been made in many countries of the potential risks to future generations from radioactive wastes in underground disposal repositories. In the report the safety assessment studies and existing performance criteria for geological disposal are briefly discussed. The studies that are being made in Canada, the United States, France and Switzerland are the most interesting for Sweden as these countries also are considering disposal into crystalline rocks. The overall time-tables in different countries for realisation of the final disposal are rather similar. Normally actual large-scale disposal operations for high-level wastes are not foreseen until after year 2000. In the United States the Congress recently passed the important Nuclear Waste Policy Act. It gives a rather firm timetable for site-selection and construction of nuclear waste disposal facilities. According to this act the first repository for disposal of commercial high-level waste must be in operation not later than in January 1998. (Author)

  19. The characterization of cement waste form for final disposal of decommissioning concrete wastes

    International Nuclear Information System (INIS)

    Lee, Yoon-ji; Lee, Ki-Won; Min, Byung-Youn; Hwang, Doo-Seong; Moon, Jei-Kwon

    2015-01-01

    Highlights: • Decommissioning concrete waste recycling and disposal. • Compressive strength of cement waste form. • Characteristic of thermal resistance and leaching of cement waste form. - Abstract: In Korea, the decontamination and decommissioning of KRR-1, 2 at KAERI have been under way. The decommissioning of the KRR-2 was finished completely by 2011, whereas the decommissioning of KRR-1 is currently underway. A large quantity of slightly contaminated concrete waste has been generated from the decommissioning projects. The concrete wastes, 83ea of 200 L drums, and 41ea of 4 m 3 containers, were generated in the decommissioning projects. The conditioning of concrete waste is needed for final disposal. Concrete waste is conditioned as follows: mortar using coarse and fine aggregates is filled with a void space after concrete rubble pre-placement into 200 L drums. Thus, this research developed an optimizing mixing ratio of concrete waste, water, and cement, and evaluated the characteristics of a cement waste form to meet the requirements specified in the disposal site specific waste acceptance criteria. The results obtained from a compressive strength test, leaching test, and thermal cycling test of cement waste forms conclude that the concrete waste, water, and cement have been suggested as an optimized mixing ratio of 75:15:10. In addition, the compressive strength of the cement waste form was satisfied, including a fine powder up to a maximum of 40 wt% in concrete debris waste of about 75%. According to the scale-up test, the mixing ratio of concrete waste, water, and cement is 75:10:15, which meets the satisfied compressive strength because of an increase in the particle size in the waste

  20. Nuclear waste. DOE's program to prepare high-level radioactive waste for final disposal

    International Nuclear Information System (INIS)

    Bannerman, Carl J.; Owens, Ronald M.; Dowd, Leonard L.; Herndobler, Christopher S.; Purvine, Nancy R.; Stenersen, Stanley G.

    1989-11-01

    In summary, as of December 1988, the four sites collectively stored about 95 million gallons of high-level waste in underground tanks and bins. Approximately 57 million gallons are stored at Hanford, 34 million gallons at Savannah River, 3 million gallons at INEL, and 6 million gallons at West Valley. The waste is in several forms, including liquid, sludge, and dry granular materials, that make it unsuitable for permanent storage in its current state at these locations. Leaks from the tanks, designed for temporary storage, can pose an environmental hazard to surrounding land and water for thousands of years. DOE expects that when its waste processes at Savannah River, West Valley, and Hanford become operational, the high-level radioactive waste stored at these sites will be blended with other materials to immobilize it by forming a glass-like substance. The glass form will minimize the risk of environmental damage and make the waste more acceptable for permanent disposal in a geologic repository. At INEL, DOE is still considering various other immobilization and permanent disposal approaches. In July 1989, DOE estimated that it would cost about $13 billion (in fiscal year 1988 dollars) to retrieve, process, immobilize, and store the high-level waste until it can be moved to a permanent disposal site: about $5.3 billion is expected to be spent at Savannah River, $0.9 billion at West Valley, $2.8 billion at Hanford, and $4.0 billion at INEL. DOE has started construction at Savannah River and West Valley for facilities that will be used to transform the waste into glass (a process known as vitrification). These sites have each encountered schedule delays, and one has encountered a significant cost increase over earlier estimates. More specifically, the Savannah River facility is scheduled to begin high-level waste vitrification in 1992; the West Valley project, based on a January 1989 estimate, is scheduled to begin high-level waste vitrification in 1996, about 8

  1. The characterization of cement waste form for final disposal of decommissioned concrete waste

    International Nuclear Information System (INIS)

    Lee, K.W.; Lee, Y.J.; Hwang, D.S.; Moon, J.K.

    2015-01-01

    Since the decommissioning of nuclear plants and facilities, large quantities of slightly contaminated concrete waste have been generated. In Korea, the decontamination and decommissioning of the KRR-1, 2 at the KAERI have been under way. In addition, 83 drums of 200 l, and 41 containers of 4 m 3 of concrete waste were generated. Conditioning of concrete waste is needed for final disposal. Concrete waste is conditioned as follows: mortar using coarse and fine aggregates is filled into a void space after concrete rubble pre-placement into 200 l drums. Thus, this research developed an optimizing mixing ratio of concrete waste, water, and cement, and evaluated the characteristics of a cement waste form to meet the requirements specified in the disposal site specific waste acceptance criteria. The results obtained from compressive strength test, leaching test, and thermal cycling test of cement waste forms conclude that the concrete waste, water, and cement have been suggested to have 75:15:10 as the optimized mixing ratio. In addition, the compressive strength of cement waste form was satisfied, including fine powder up to a maximum 40 wt% in concrete debris waste of about 75%. (authors)

  2. Schedules of controlled substances: extension of temporary placement of UR-144, XLR11, and AKB48 in schedule I of the Controlled Substances Act. Final order.

    Science.gov (United States)

    2015-05-15

    The Administrator of the Drug Enforcement Administration (DEA) is issuing this final order to extend the temporary placement of (1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone (UR-144), [1-(5-fluoro-pentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone (5-fluoro-UR-144, XLR11) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA, AKB48), including their salts, isomers, and salts of isomers whenever the existence of such salts, isomers, and salts of isomers is possible, in schedule I of the Controlled Substances Act. The current final order temporarily placing UR-144, XLR11, and AKB48 in schedule I is due to expire on May 15, 2015. This final order will extend the temporary scheduling of UR-144, XLR11, and AKB48 to May 15, 2016, or until the permanent scheduling action for these three substances is completed, whichever occurs first.

  3. Final repositories for high-level radioactive waste; Endlagerung hochradioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-10-15

    The brochure on final repositories for high-level radioactive waste covers the following issues: What is the origin of radioactive wastes? How large are the waste amounts? What is going to happen with the wastes? What is the solution for the Waste disposal? A new site search is started. Safety requirements for the final disposal of high-level radioactive wastes. Comparison of host rocks. Who is responsible and who will pay? Final disposal of high-level radioactive wastes worldwide. Short summary: History of the search for a final repository for high-level radioactive wastes in Germany.

  4. Protective barrier systems for final disposal of Hanford Waste Sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Hartley, J.N.

    1986-01-01

    A protecting barrier system is being developed for potential application in the final disposal of defense wastes at the Hanford Site. The functional requirements for the protective barrier are control of water infiltration, wind erosion, and plant and animal intrusion into the waste zone. The barrier must also be able to function without maintenance for the required time period (up to 10,000 yr). This paper summarizes the progress made and future plans in this effort to design and test protective barriers at the Hanford Site

  5. Medicare program; replacement of reasonable charge methodology by fee schedules for parenteral and enteral nutrients, equipment, and supplies. Final rule.

    Science.gov (United States)

    2001-08-28

    This final rule implements fee schedules for payment of parenteral and enteral nutrition (PEN) items and services furnished under the prosthetic device benefit, defined in section 1861(s)(8) of the Social Security Act. The authority for establishing these fee schedules is provided by the Balanced Budget Act of 1997, which amended the Social Security Act at section 1842(s). Section 1842(s) of the Social Security Act specifies that statewide or other area wide fee schedules may be implemented for the following items and services still subject to the reasonable charge payment methodology: medical supplies; home dialysis supplies and equipment; therapeutic shoes; parenteral and enteral nutrients, equipment, and supplies; electromyogram devices; salivation devices; blood products; and transfusion medicine. This final rule describes changes made to the proposed fee schedule payment methodology for these items and services and provides that the fee schedules for PEN items and services are effective for all covered items and services furnished on or after January 1, 2002. Fee schedules will not be implemented for electromyogram devices and salivation devices at this time since these items are not covered by Medicare. In addition, fee schedules will not be implemented for medical supplies, home dialysis supplies and equipment, therapeutic shoes, blood products, and transfusion medicine at this time since the data required to establish these fee schedules are inadequate.

  6. Final storage of radioactive waste; Endlagerung radioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Ziehm, Cornelia [Redaktion ZNER, Bochum (Germany)

    2015-07-15

    As explained in the present article, operators of nuclear power plants are responsible for the safe final disposal of the radioactive wastes they produce on the strength of the polluter pays principle. To shift the burden of responsibility for safe disposal to society as a whole would violate this principle and is therefore not possible. The polluter pays principle follows from more general principles of the fair distribution of benefits and burdens. Instances of its implementation are to be found in the national Atomic Energy Law as well as in the European Radioactive Waste and Spent Fuel Management Directive. The polluters in this case are in particular responsible for financing the installation and operation of final disposal sites. The reserves accumulated so far for the decommissioning and dismantling of nuclear power plants and disposal of radioactive wastes, including the installation and operation of final disposal sites, should be transferred to a public-law fund. This fund should be supplemented by the polluters to cover further foreseeable costs not covered by the reserves accumulated so far, including a realistic cost increase factor, appropriate risk reserves as well as the costs of the site selection procedure and a share in the costs for the safe closure of the final disposal sites of Morsleben and Asse II. This would merely be implementing in the sphere of atomic law that has long been standard practice in other areas of environmental law involving environmental hazards.

  7. Technical area status report for low-level mixed waste final waste forms

    International Nuclear Information System (INIS)

    Mayberry, J.L.; Huebner, T.L.; Ross, W.; Nakaoka, R.; Schumacher, R.; Cunnane, J.; Singh, D.; Darnell, R.; Greenhalgh, W.

    1993-08-01

    This report presents information on low-level mixed waste forms.The descriptions of the low-level mixed waste (LLMW) streams that are considered by the Mixed Waste Integrated Program (MWIP) are given in Appendix A. This information was taken from descriptions generated by the Mixed Waste Treatment Program (MWTP). Appendix B provides a list of characteristic properties initially considered by the Final Waste Form (FWF) Working Group (WG). A description of facilities available to test the various FWFs discussed in Volume I of DOE/MWIP-3 are given in Appendix C. Appendix D provides a summary of numerous articles that were reviewed on testing of FWFS. Information that was collected by the tests on the characteristic properties considered in this report are documented in Appendix D. The articles reviewed are not a comprehensive list, but are provided to give an indication of the data that are available

  8. Economic appraisal of deployment schedules for high-level radioactive waste repositories

    Directory of Open Access Journals (Sweden)

    Doan Phuong Hoai Linh

    2017-01-01

    Full Text Available The deep geological repository (DGR is considered as the definitive management solution for high-level waste (HLW. Countries defined different DGR implementation schedules, depending on their national context and political choices. We raise the question of the economic grounds of such political decisions by providing an economic analysis of different DGR schedules. We investigate the optimal timing for DGR commissioning based on available Nuclear Energy Agency (NEA data (2013. Two scenarios are considered: (1 rescheduling the deployment of a DGR with the same initial operational period, and (2 rescheduling the deployment of a DGR with a shorter operational period, i.e. initial closure date. Given the long timescales of such projects, we also take into account the discounting effect. The first finding is that it appears more economically favorable to extend the interim storage than to dispose of the HLW immediately. Countries which chose “immediate” disposal are willing to accept higher costs to quickly solve the problem. Another interesting result is that there is an optimal solution with respect to the length of DGR operational period and the waste flow for disposal. Based on data provided by the Organisation for Economic Cooperation and Development (OECD/Nuclear Energy Agency (NEA, we find an optimal operating period of about 15 years with a flow of 2000 tHM/year.

  9. Economic appraisal of deployment schedules for high-level radioactive waste repositories

    International Nuclear Information System (INIS)

    Hoai Linh Doan, Phuong; Duquesnoy, T.; Devezeaux de Lavergne, J.G.

    2017-01-01

    The deep geological repository (DGR) is considered as the definitive management solution for high-level radioactive waste (HLW). Countries defined different DGR implementation schedules, depending on their national context and political choices. We raise the question of the economic grounds of such political decisions by providing an economic analysis of different DGR schedules. We investigate the optimal timing for DGR commissioning based on available Nuclear Energy Agency (NEA) data (2013). Two scenarios are considered: -1) rescheduling the deployment of a DGR with the same initial operational period, and -2) rescheduling the deployment of a DGR with a shorter operational period, i.e. initial closure date. Given the long timescales of such projects, we also take into account the discounting effect. The first finding is that it appears more economically favorable to extend the interim storage than to dispose of the HLW immediately. Countries which chose 'immediate' disposal are willing to accept higher costs to quickly solve the problem. Another interesting result is that there is an optimal solution with respect to the length of DGR operational period and the waste flow for disposal. Based on data provided by the Organisation for Economic Cooperation and Development (OECD)/Nuclear Energy Agency (NEA), we find an optimal operating period of about 15 years with a flow of 2000 tHM/year. (authors)

  10. 77 FR 47302 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-08-08

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... EPA proposed to authorize South Dakota's State Hazardous waste management Program revisions published... to the hazardous waste program revisions submitted by South Dakota. The Agency published a Proposed...

  11. 77 FR 15273 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-03-15

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... hazardous waste management program. We authorized the following revisions: Oklahoma received authorization... its program revision in accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management Act...

  12. System study of alternative waste management techniques: Final report

    International Nuclear Information System (INIS)

    1986-01-01

    This report summarizes the important results achieved in conjunction with the Research and Development Priority ''Alternative Waste Management Techniques'' sponsored by the Federal Ministry of Research and Technology from 1981 to 1984. The subject of these studies was solely ''direct disposal'' of spent fuel elements. For this purpose a reference concept was selected from a variety of possible processes and engineered in detailed form by firms in the nuclear industry. Those who worked on the engineering concepts consider this waste management method technically feasible. Several disposal casks have been fabricated. The basic licensability of direct disposal can be evaluated on the basis of the documentation developed by the companies. The direct disposal method was compared with the ''integrated waste management concept'' using reference fuel cycles with respect to the following criteria: radiological safety and nuclear material safeguards and, in addition, economic and energy-policy aspects. It was found that with respect to radiological safety, including the long-term safety of the final repository, there are no significant differences between the two fuel cycles with and without reprocessing. With respect to the nuclear material safeguards of a final repository containing spent fuel elements, there are still a number of unanswered questions. From an economic standpoint, direct disposal will be more economical in the foreseeable future than integrated waste management. Quantification of the effects of one or the other waste management method on the national economy is not necessarily possible. Reprocessing is supported primarily by technological and energy-policy considerations. On the basis of the results, the conclusion is reached that reprocessing should be pursued further, but that at the same time direct disposal should be developed to the point of practical maturity

  13. Microbial degradation of low-level radioactive waste. Final report

    International Nuclear Information System (INIS)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

    1996-06-01

    The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented

  14. Problem trap final repository. Social challenges concerning nuclear waste

    International Nuclear Information System (INIS)

    Brunnengraeber, Achim

    2016-01-01

    How is it possible that there is still no final storage facility in the entire world for highly radioactive waste from nuclear power stations? How is it possible that electricity has been generated by industrial-scale nuclear installations for decades without the issue of the disposal of nuclear waste having been resolved? The events in Chernobyl in 1986 and Fukushima in 2011 have made it blatantly obvious how risky this technology is and how important it is to keep humans and the environment at a safe distance from radioactivity. This anthology examines the technological, political, social and economic dimensions of the permanent disposal of nuclear waste. It provides an insight into the emergence of the problem and the people involved and their interests. It describes and analyses the changes that are taking place in Germany (for instance, in relation to the government's commission on nuclear repositories) and other countries with regard to how they handle nuclear waste. The book deals with both questions related to socio-technical aspects of the permanent disposal of nuclear waste and calls for the democratic need for participation and new ways of doing so, without which the search for a permanent disposal site will not bear fruit. This anthology presents a comprehensive discussion of the disposal of nuclear waste and the search for a permanent repository for it. Not only will students and teachers find it extremely useful, but so will any readers who are interested in its subject matter and wish to gain a more in-depth insight into it.

  15. 76 FR 6564 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2011-02-07

    ... hazardous pharmaceutical waste to the list of wastes that may be managed under the Universal Waste rule...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act...

  16. Capacitated vehicle-routing problem model for scheduled solid waste collection and route optimization using PSO algorithm.

    Science.gov (United States)

    Hannan, M A; Akhtar, Mahmuda; Begum, R A; Basri, H; Hussain, A; Scavino, Edgar

    2018-01-01

    Waste collection widely depends on the route optimization problem that involves a large amount of expenditure in terms of capital, labor, and variable operational costs. Thus, the more waste collection route is optimized, the more reduction in different costs and environmental effect will be. This study proposes a modified particle swarm optimization (PSO) algorithm in a capacitated vehicle-routing problem (CVRP) model to determine the best waste collection and route optimization solutions. In this study, threshold waste level (TWL) and scheduling concepts are applied in the PSO-based CVRP model under different datasets. The obtained results from different datasets show that the proposed algorithmic CVRP model provides the best waste collection and route optimization in terms of travel distance, total waste, waste collection efficiency, and tightness at 70-75% of TWL. The obtained results for 1 week scheduling show that 70% of TWL performs better than all node consideration in terms of collected waste, distance, tightness, efficiency, fuel consumption, and cost. The proposed optimized model can serve as a valuable tool for waste collection and route optimization toward reducing socioeconomic and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Wet oxidative degradation of cellulosic wastes 5- chemical and thermal properties of the final waste forms

    International Nuclear Information System (INIS)

    Eskander, S.B.; Saleh, H.M.

    2002-01-01

    In this study, the residual solution arising from the wet oxidative degradation of solid organic cellulosic materials, as one of the component of radioactive solid wastes, using hydrogen peroxide as oxidant. Were incorporated into ordinary Portland cement matrix. Leaching as well as thermal characterizations of the final solidified waste forms were evaluated to meet the final disposal requirements. Factors, such as the amount of the residual solution incorporated, types of leachant. Release of different radionuclides and freezing-thaw treatment, that may affect the leaching characterization. Were studied systematically from the data obtained, it was found that the final solid waste from containing 35% residual solution in tap water is higher than that in ground water or sea water. Based on the data obtained from thermal analysis, it could be concluded that incorporating the residual solution form the wet oxidative degradation of cellulosic materials has no negative effect on the hydration of cement materials and consequently on the thermal stability of the final solid waste from during the disposal process

  18. Final flotation waste kinetics of sintering at different heating regimes

    Directory of Open Access Journals (Sweden)

    Cocić Mira

    2016-01-01

    Full Text Available In the copper extraction, especially during the process of flotation enrichment and the pyrometallurgical processing, the waste materials that represent huge polluters of environment are being generated. In order to examine the application of Final flotation waste (FFW in the manufacturing of new materials from the glass-ceramic group phase and mineral composition were examined as well as thermal properties. FFW kinetics of sintering has been tested at different dyamics (1°C/min, 29°C/min and 43°C/min, in order to find the optimum conditions for sintering with a minimum amount of energy and time consumption. The samples were examined using: X-ray diffraction, X-ray fluorescence analysis, SEM (Scanning Electron Microscopy and thermal microscopy. The best results for the production of glass ceramic materials were obtained during the sintering at heating regime of 29°C/min. [Projekat Ministarstva nauke Republike Srbije, br. 176010

  19. Technical area status report for low-level mixed waste final waste forms

    International Nuclear Information System (INIS)

    Mayberry, J.L.; DeWitt, L.M.; Darnell, R.

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA's Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities

  20. Technical area status report for low-level mixed waste final waste forms. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

  1. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposl of radioactive and hazardous waste. Volume II

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Volume II is an integral part of the Office of Environmental Management''s (EM''s) Waste Management Programmatic Environmental Impact Statement (WM PEIS), which portrays the impacts of EM''s waste management activities at each of the 17 major DOE sites evaluated in the WM PEIS

  2. The defense waste processing facility: the final processing step for defense high-level waste disposal

    International Nuclear Information System (INIS)

    Cowan, S.P.; Sprecher, W.M.; Walton, R.D.

    1983-01-01

    The policy of the U.S. Department of Energy is to pursue an aggressive and credible waste management program that advocates final disposal of government generated (defense) high-level nuclear wastes in a manner consistent with environmental, health, and safety responsibilities and requirements. The Defense Waste Processing Facility (DWPF) is an essential component of the Department's program. It is the first project undertaken in the United States to immobilize government generated high-level nuclear wastes for geologic disposal. The DWPF will be built at the Department's Savannah River Plant near Aiken, South Carolina. When construction is complete in 1989, the DWPF will begin processing the high-level waste at the Savannah River Plant into a borosilicate glass form, a highly insoluble and non-dispersable product, in easily handled canisters. The immobilized waste will be stored on site followed by transportation to and disposal in a Federal repository. The focus of this paper is on the DWPF. The paper discusses issues which justify the project, summarizes its technical attributes, analyzes relevant environmental and insitutional factors, describes the management approach followed in transforming technical and other concepts into concrete and steel, and concludes with observations about the future role of the facility

  3. 77 FR 35425 - Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of...

    Science.gov (United States)

    2012-06-13

    ... Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of Countervailing Duty... silicon photovoltaic cells and modules, provided for in subheadings 8501.31.80, 8501.61.00, 8507.20.80... photovoltaic cells, and modules, laminates, and panels, consisting of crystalline silicon photovoltaic cells...

  4. 76 FR 72719 - Certain Stilbenic Optical Brightening Agents From China and Taiwan; Scheduling of the Final Phase...

    Science.gov (United States)

    2011-11-25

    ... Optical Brightening Agents From China and Taiwan; Scheduling of the Final Phase of Antidumping... whether an industry in the United States is materially injured or threatened with material injury, or the establishment of an industry in the United States is materially retarded, by reason of less-than-fair-value...

  5. 77 FR 50160 - Steel Wire Garment Hangers From Taiwan and Vietnam; Scheduling of the Final Phase of...

    Science.gov (United States)

    2012-08-20

    ...)] Steel Wire Garment Hangers From Taiwan and Vietnam; Scheduling of the Final Phase of Countervailing Duty...(b) of the Act (19 U.S.C. 1673d(b)) to determine whether an industry in the United States is materially injured or threatened with material injury, or the establishment of an industry in the United...

  6. 77 FR 50713 - Steel Wire Garment Hangers From Taiwan and Vietnam; (Corrected Notice) Scheduling of the Final...

    Science.gov (United States)

    2012-08-22

    ...)] Steel Wire Garment Hangers From Taiwan and Vietnam; (Corrected Notice) Scheduling of the Final Phase of...) under section 735(b) of the Act (19 U.S.C. 1673d(b)) to determine whether an industry in the United States is materially injured or threatened with material injury, or the establishment of an industry in...

  7. 77 FR 3281 - High Pressure Steel Cylinders From China; Scheduling of the Final Phase of Countervailing Duty...

    Science.gov (United States)

    2012-01-23

    ...)] High Pressure Steel Cylinders From China; Scheduling of the Final Phase of Countervailing Duty and... retarded, by reason of subsidized and less-than-fair-value imports from China of high pressure steel... (``high pressure steel cylinders''). High pressure steel cylinders are fabricated of chrome alloy steel...

  8. High level radioactive wastes: Considerations on final disposal

    International Nuclear Information System (INIS)

    Ciallella, Norberto R.

    2000-01-01

    When at the beginnings of the decade of the 80 the National Commission on Atomic Energy (CNEA) in Argentina decided to study the destination of the high level radioactive wastes, was began many investigations, analysis and multidisciplinary evaluations that be origin to a study of characteristics never before carried out in Argentina. For the first time in the country was faced the study of an environmental eventual problem, several decades before that the problem was presented. The elimination of the high level radioactive wastes in the technological aspects was taken in advance, avoiding to transfer the problems to the future generations. The decision was based, not only in technical evaluations but also in ethical premises, since it was considered that the future generations may enjoy the benefits of the nuclear energy and not should be solve the problem. The CNEA in Argentina in 1980 decided to begin a feasibility study and preliminary engineering project for the construction of the final disposal of high level radioactive wastes

  9. Comparative evaluation of radioactive waste management options. Final report

    International Nuclear Information System (INIS)

    Appel, D.; Kreusch, J.; Neumann, W.

    2001-05-01

    A comprehensive presentation of the various radioactive waste options under debate has not been made so far, let alone a comparative evaluation of the options with respect to their substantiated or assumed advantages or drawbacks. However, any appropriate discussion about the pros and cons of the specific options for final decision making has to be based on a comprehensive knowledge base drawn from profound comparative evaluation of essential options. Therefore, the study reported in this publication was to serve three major purposes: Presentation of the conditions and waste management policies and approaches in selected countries, in order to compile information about the various policy goals and the full scope of argumentation, as well as the range of individual arguments used for or against specific options. - Derivation of a methodology for evaluation, including development of criteria for a comparative and qualitative evaluation of options. - Identification of possible implications for a waste management strategy for Germany, derived from the results of the comparative evaluation and the examination of the reasonings and argumentation used in the various countries. (orig./CB) [de

  10. Catalytic combustion of gasified waste - Experimental part. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jaeraas, Sven; Kusar, Henrik [Royal Institute of Technology, Stockholm (Sweden). Chemical Engineering and Technology

    2003-08-01

    This final report covers the work that has been performed within the project P 10547-2, 'Catalytic combustion of gasified waste - system analysis ORWARE'. This project is part of the research programme 'Energy from Waste' financed by the Swedish National Energy Administration. The project has been carried out at the division of Industrial Ecology and at the division of Chemical Technology at Royal Inst. of Technology. The aim of the project has been to study the potentials for catalytic combustion of gasified waste. The supposed end user of the technique is a smaller community in Sweden with 15,000-20,000 inhabitants. The project contains of two sub projects: an experimental part carried out at Chemical Technology and a system analysis carried out at Industrial Ecology. This report covers the experimental part of the project carried out at Chemical Technology. The aim for the experimental part has been to develop and test catalysts with long life-time and a high performance, to reduce the thermal-NO{sub x} below 5 ppm and to significantly reduce NO{sub x} formed from fuel-bound nitrogen. Different experimental studies have been carried out within the project: a set-up of catalytic materials have been tested over a synthetic mixture of the gasified waste, the influence of sulfur present in the gas stream, NO{sub x} formation from fuel bound nitrogen, kinetic studies of CO and H{sub 2} with and without the presence of water and the effects of adding a co-metal to palladium catalysts Furthermore a novel annular reactor design has been used to carry out experiments for kinetic measurements. Real gasification tests of waste pellets directly coupled to catalytic combustion have successfully been performed. The results obtained from the experiments, both the catalytic combustion and from the gasification, have been possible to use in the system analysis. The aim of the system analysis of catalytic combustion of gasified waste takes into consideration

  11. 76 FR 56708 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-09-14

    ... Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed..., 1989 (54 FR 27170) to implement the RCRA hazardous waste management program. We granted authorization... December 7, 2004. Waste Combustors; Final Rule; Checklist 198. Hazardous Waste Management March 13, 2002...

  12. 77 FR 15966 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-03-19

    ... Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Final..., 1989 (54 FR 27170) to implement the RCRA hazardous waste management program. We granted authorization... Combustors; Final Rule, Checklist 198, February 14, 2002 (67 FR 6968); Hazardous Waste Management System...

  13. 76 FR 37021 - Louisiana: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-06-24

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... implement its base Hazardous Waste Management Program. We granted authorization for changes to their program... opportunity to apply for final authorization to operate all aspects of their hazardous waste management...

  14. Development of a central final repository management for the coordination of the waste for Schacht Konrad from public authorities; Aufbau des zentralen Endlagerungsmanagements fuer die Koordination der Konrad-Abfaelle aus der oeffentlichen Hand

    Energy Technology Data Exchange (ETDEWEB)

    Graffunder, Iris; Dominke-Bendix, Carola; Waldek, Achim [Energiewerke Nord GmbH (EWN), Eggenstein-Leopoldshafen (Germany). Betriebsstaette Karlsruhe; Wunn, Christoph [admoVa Consulting GmbH, Bad Camberg (Germany)

    2012-11-01

    The central final repository management is supposed to fulfill the following tasks: active collaboration of Konrad contract draft, signing of internal contracts and agreements, cooperation contract with GNS, cooperation with coordination authorities, inventory taking of wastes (existing inventory and prognosis) and interim storage capacities of public authorities, development of planning and management software, optimization of the final repository documentation, container management, logistics concept, long-term disposal planning and prognosis, planning and coordination of the annual waste amount, management and documentation of disposed waste allocation, coordination of transport schedules, consulting service for waste obligations (final repository requirements, product control, documentation).

  15. Acceptability criteria for final underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1984-01-01

    Specialists now generally agree that the underground disposal of suitably immobilized radioactive waste offers a means of attaining the basic objective of ensuring the immediate and long-term protection of man and the environment throughout the requisite period of time and in all foreseeable circumstances. Criteria of a more general as well as a more specific nature are practical means through which this basic protection objective can be reached. These criteria, which need not necessarily be quantified, enable the authorities to gauge the acceptability of a given project and provide those responsible for waste management with a basis for making decisions. In short, these principles constitute the framework of a suitably safety-oriented waste management policy. The more general criteria correspond to the protection objectives established by the national authorities on the basis of principles and recommendations formulated by international organizations, in particular the ICRP and the IAEA. They apply to any underground disposal system considered as a whole. The more specific criteria provide a means of evaluating the degree to which the various components of the disposal system meet the general criteria. They must also take account of the interaction between these components. As the ultimate aim is the overall safety of the disposal system, individual components can be adjusted to compensate for the performance of others with respect to the criteria. This is the approach adopted by the international bodies and national authorities in developing acceptability criteria for the final underground radioactive disposal systems to be used during the operational and post-operational phases respectively. The main criteria are reviewed and an attempt is made to assess the importance of the specific criteria according to the different types of disposal systems. (author)

  16. 78 FR 25678 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-05-02

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... Gwendolyn Gleaton, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA...

  17. Bibliography on ocean waste disposal. second edition. Final report 1976

    International Nuclear Information System (INIS)

    Stanley, H.G.; Kaplanek, D.W.

    1976-09-01

    This research bibliography is restricted to documents relevant to the field of ocean waste disposal. It is primarily limited to recent publications in the categories of: ocean waste disposal; criteria; coastal zone management; monitoring; pollution control; dredge spoil; dredge spoin disposal; industrial waste disposal; radioactive waste; oil spills; bioassay; fisheries resources; ocean incineration; water chemistry; and, Water pollution

  18. Classification of two steroids, prostanozol and methasterone, as Schedule III anabolic steroids under the Controlled Substance Act. Final rule.

    Science.gov (United States)

    2012-07-30

    With the issuance of this Final Rule, the Administrator of the DEA classifies the following two steroids as "anabolic steroids'' under the Controlled Substances Act (CSA): prostanozol (17[beta]-hydroxy-5[alpha]-androstano[3,2-c]pyrazole) and methasterone (2[alpha],17[alpha]-dimethyl-5[alpha]-androstan-17[beta]-ol-3-one). These steroids and their salts, esters, and ethers are Schedule III controlled substances subject to the regulatory control provisions of the CSA.

  19. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility

  20. Qualification of old wastes for finale disposal; Qualifizierung von Altabfaellen fuer die Endlagerung

    Energy Technology Data Exchange (ETDEWEB)

    Dullau, R.; Kloeckner, J. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany); Uekoetter, S. [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2010-05-15

    In the frame of the interim storage and final disposal of radioactive waste forms until now about 1200 barrels filled with old radioactive waste had to be requalified. The process of requalification is described in this contribution. The storage casks contained mainly high-pressure compacted and loose mixed waste, cemented waste and casting molds, building waste and combustion residuals, conditioned in the 1980ies. In the final repository Morsleben 80% of the waste forms were cleared for final disposal in Morsleben, 20% were qualified for interim storage and final disposal in the Schachtanlage Konrad. Based on these experiences the authors summarize recommendations for further requalification of old waste forms for the disposal in the Schachtanlage Konrad.

  1. 75 FR 43478 - Rhode Island: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2010-07-26

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental.... Mail: Robin Biscaia, RCRA Waste Management Section, Office of Site Remediation and Restoration (OSRR 07... Delivery or Courier: Deliver your comments to: Robin Biscaia, RCRA Waste Management Section, Office of Site...

  2. 76 FR 18927 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-04-06

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... hazardous waste management program. We authorized the following revisions: Oklahoma received authorization... accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management Act (``OHWMA'') provides the ODEQ with...

  3. 77 FR 61326 - Indiana: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-10-09

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... RCRA hazardous waste management program. We granted authorization for changes to their program on... 202. Hazardous Waste Management July 30, 2003; 68 329 IAC 3.1-6-2(16); System; Identification and FR...

  4. 78 FR 15299 - New York: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2013-03-11

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental... Waste program as addressed by the federal used oil management regulations that were published on..., New York Codes, Rules and Regulations (6 NYCRR), Volume A-2A, Hazardous Waste Management System...

  5. 76 FR 6561 - North Carolina: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2011-02-07

    ... Carolina: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... December 31, 1984 (49 FR 48694) to implement its base hazardous waste management program. EPA granted... XV are from the North Carolina Hazardous Waste Management Rules 15A NCAC 13A, effective April 23...

  6. 75 FR 35720 - Massachusetts: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2010-06-23

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental...: Robin Biscaia, RCRA Waste Management Section, Office of Site Remediation and Restoration (OSRR 07-1... Courier: Deliver your comments to: Robin Biscaia, RCRA Waste Management Section, Office of Site...

  7. 78 FR 15338 - New York: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-03-11

    ... authorization of changes to its hazardous waste program under the Solid Waste Disposal Act, as amended, commonly... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R02-RCRA-2013-0144; FRL-9693-3] New York: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental...

  8. 75 FR 81187 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2010-12-27

    ...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed Rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly... Agency (EPA) to authorize states to operate their hazardous waste management programs in lieu of the...

  9. 78 FR 25579 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-05-02

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... adopted these requirements by reference at Georgia Hazardous Waste Management Rule 391-3-11-.07(1), EPA... authorization of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA...

  10. 77 FR 60919 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-10-05

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental..., Division of Solid Waste Management, 5th Floor, L & C Tower, 401 Church Street, Nashville, Tennessee 37243... RCRA hazardous waste management program. We granted authorization for changes to Tennessee's program on...

  11. 78 FR 9111 - Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Final Amendments...

    Science.gov (United States)

    2013-02-07

    ... impacts? 2. What are the water and solid waste impacts? 3. What are the energy impacts? 4. What are the.... Pulp and Paper Sludge 4. Rulemaking Petition Process for Other Categorical Non-Waste Determinations (40... and 241 Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Final Amendments...

  12. Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes - FY-98 Final Report for LDRD 2349

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, Glen Frank; Nelson, Lee Orville; Grandy, Jon Drue; Zuck, Larry Douglas; Kong, Peter Chuen Sun; Anderson, Gail

    1999-08-01

    The purpose of LDRD #2349, Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes, was to develop a set of tools that would allow the user to, based on the chemical composition of a waste stream to be immobilized, predict the durability (leach behavior) of the final waste form and the phase assemblages present in the final waste form. The objectives of the project were: • investigation, testing and selection of thermochemical code • development of auxiliary thermochemical database • synthesis of materials for leach testing • collection of leach data • using leach data for leach model development • thermochemical modeling The progress toward completion of these objectives and a discussion of work that needs to be completed to arrive at a logical finishing point for this project will be presented.

  13. An alternative waste form for the final disposal of high-level radioactive waste (HLW) on the basis of a survey of solidification and final disposal of HLW

    International Nuclear Information System (INIS)

    Bauer, C.

    1982-01-01

    The dissertation comprises two separate parts. The first part presents the basic conditions and concepts of the process leading to the development of a waste form, such as:origin, composition and characteristics of the high-level radioactive waste; evaluation of the methods available for the final disposal of radioactive waste, especially the disposal in a geological formation, including the resulting consequences for the conditions of state in the surroundings of the waste package; essential option for the conception of a waste form and presentation of the waste forms developed and examined on an international level up to now. The second part describes the production of a waste form on TiO 2 basis, in which calcined radioactive waste particles in the submillimeter range are embedded in a rutile matrix. That waste form is produced by uniaxial pressure sintering in the temperature range of 1223 K to 1423 K and pressures between 5 MPa and 20 MPa. Microstructure, mechanical properties and leaching rates of the waste form are presented. Moreover, a method is explained allowing compacting of the rutile matrix and also integration of a wasteless overpack of titanium or TiO 2 into the waste form. (orig.) [de

  14. Appendix 4. Documentation of sufficient capacity facility for spent nuclear fuel and radioactive waste management and its compliance with the decommissioning strategy and schedule

    International Nuclear Information System (INIS)

    2007-01-01

    In this chapter the documentation of sufficient capacity facility for spent nuclear fuel and radioactive waste management and its compliance with the decommissioning strategy and schedule of the NPP A-1 are presented.

  15. 78 FR 70255 - West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-11-25

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R03-RCRA-2013-0571; FRL-9903-07-Region 3] West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY... final authorization of revisions to its hazardous waste program under the Resource Conservation and...

  16. Problems of the final storage of radioactive waste in salt formations

    International Nuclear Information System (INIS)

    Hofrichter, E.

    1977-01-01

    The geological conditions for the final storage of radioactive waste, the occurrence of salt formations, and the tectonics of salt domes are discussed. The safety of salt rocks, the impermeability of the rocks, and the thermal problems in the storage of high-activity waste are dealt with. Possibilities and preconditions of final storage in West Germany are discussed. (HPH) [de

  17. Final disposal of radioactive wastes. Site selection criteria. Technical and economical factors

    International Nuclear Information System (INIS)

    Granero, J.J.

    1984-01-01

    General considerations, geological and socioeconomical criteria for final disposal of radioactive wastes in geological formations are treated. More attention is given to the final disposal of high level radioactive wastes and different solutions searched abroad which seems of interest for Spain. (author)

  18. Final Regulatory Determination for Special Wastes From Mineral Processing (Mining Waste Exclusion) - Federal Register Notice, June 13, 1991

    Science.gov (United States)

    This action presents the Agency's final regulatory determination required by section 3001(b)(3)(C) of the Resource Conservation and Recovery Act (RCRA) for 20 special wastes from the processing of ores and minerals.

  19. Characterization of voic volume VOC concentration in vented TRU waste drums. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.J.

    1994-12-01

    A test program has been conducted at the Idaho National Engineering Laboratory to demonstrate that the concentration of volatile organic compounds within the innermost layer of confinement in a vented waste drum can be estimated using a model incorporating diffusion and permeation transport principles and limited waste drum sampling data. This final report summarizes the experimental measurements and model predictions for transuranic waste drums containing solidified sludges and solid waste.

  20. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    The report gives a general summary of the Swedish KBS-project on management and disposal of vitrified reprocessed waste. Its final aim is to demostrate that the means of processing and managing power reactor waste in an absolutely safe way, as stipulated in the Swedish so called Conditions Act, already exist. Chapters on Storage facility for spent fuel, Intermidiate storage of reprocessed waste, Geology, Final repository, Transportation, Protection, and Siting. (L.E.)

  1. Cement encapsulation of low-level waste liquids. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1999-01-01

    Pretreatment of liquid high-level radioactive waste at the West Valley Demonstration Project (WVDP) was essential to ensuring the success of high-level waste (HLW) vitrification. By chemically separating the HLW from liquid waste, it was possible to achieve a significant reduction in the volume of HLW to be vitrified. In addition, pretreatment made it possible to remove sulfates, which posed several processing problems, from the HLW before vitrification took place

  2. Frequent Questions about the Hazardous Waste Export-Import Revisions Final Rule

    Science.gov (United States)

    Answers questions such as: What new requirements did EPA finalize in the Hazardous Waste Export-Import Revisions Final Rule? Why did EPA implement these changes now? What are the benefits of the final rule? What are the compliance dates for the final rule?

  3. Final report on cermet high-level waste forms

    International Nuclear Information System (INIS)

    Kobisk, E.H.; Quinby, T.C.; Aaron, W.S.

    1981-08-01

    Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures

  4. Final Report - Dynamic Path Scheduling through Extensions to Generalized Multiprotocol Label Switching (GMPLS)

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator: Dr. Abdella Battou

    2009-05-22

    The major accomplishments of the project are the successful software implementation of the Phase I scheduling algorithms for GMPLS Label Switched Paths (LSPs) and the extension of the IETF Path Computation Element (PCE) Protocol to support scheduling extensions. In performing this work, we have demonstrated the theoretical work of Phase I, analyzed key issues, and made relevant extensions. Regarding the software implementation, we developed a proof of concept prototype as part of our Algorithm Evaluation System (AES). This implementation uses the Linux operating system to provide software portability and will be the foundation for our commercial software. To demonstrate proof of concept, we have implemented LSP scheduling algorithms to support two of the key GMPLS switching technologies (Lambda and Packet) and support both Fixed Path (FP) and Switched Path (SP) routing. We chose Lambda and Packet because we felt it was essential to include both circuit and packet switching technologies as well as to address all-optical switching in the study. As conceptualized in Phase I, the FP algorithms use a traditional approach where the LSP uses the same physical path for the entire service duration while the innovative SP algorithms allow the physical path to vary during the service duration. As part of this study, we have used the AES to conduct a performance analysis using metro size networks (up to 32 nodes) that showed that these algorithms are suitable for commercial implementation. Our results showed that the CPU time required to compute an LSP schedule was small compared to expected inter-arrival time between LSP requests. Also, when the network size increased from 7 to 15 to 32 nodes with 10, 26, and 56 TE links, the CPU processing time showed excellent scaling properties. When Fixed Path and Switched Path routing were compared, SP provided only modestly better performance with respect to LSP completion rate, service duration, path length, and start time deviation

  5. Cementitious Composites for Immobilization of Radioactive Waste into Final Wasteform

    International Nuclear Information System (INIS)

    Varlakov, A.P.

    2013-01-01

    Research and development works are important on universal cementation technological processes to achieve maximal conditioning efficiency for various type wastes such as saline liquid radioactive waste (LRW), where the variants of cement composition formulations, modes of cement compounds preparation and types of equipment are minimised. This work presents the results of development of multi-component cement compositions for the complex of technological processes of different types of radioactive waste (RAW) cementation: concentrated saline LRW, concentrated boron-containing saline LRW, LRW with high surface active substances content, with residues, liquid organic radioactive waste, spent ion-exchange resins and filter-perlite powder, ash residues from solid radioactive waste (SRW) combustion, mixed closely packed and large-fragmented SRW. The research has found technological parameters of equipment and cement compositions providing reliable RAW cementation. Continuous and periodic cycle plants were developed for LRW cementation by mixing. Pouring and penetration methods were developed for SRW cementation. Based on compliance with equipment parameters, methods and cement grouts were selected for most effective technological processes of cementation. Formulations of cement compositions were developed to provide reliable preparation of cement compounds with maximal waste loading at required cement compound quality. The complex of technological processes of cementation using multi-component cement compositions allows highly efficient treatment of the wide range of RAW including problematic waste streams and wastes generated in small amounts. Rational reduction of cementation variants significantly increases economical efficiency of immobilisation. (author)

  6. Waste-wood resource supply assessment. Final report

    International Nuclear Information System (INIS)

    1991-08-01

    The report documents and analyzes the availability and supply of wood waste in New York State to determine the type and amount currently generated to estimate its potential future use as a fuel. Detailed, current information is included on the availability, quantity and price of wood waste. Topics include wood waste markets; the harvesting and supply infrastructure; current and project prices; competing markets; environmental impacts of harvesting, processing and burning wood waste for fuel; and factors affecting long-term availability and supply. New York State's waste wood resource was evaluated to complete the Energy Authority's recent investigation of the potential role of wood in producing electric power. In 1989 approximately 11.8 million tons of wood waste were generated in New York State. More than 8 million tons or 68 percent, were disposed of by municipal solid waste and construction and demolition debris facilities. Just under 3.8 million tons or 32 percent, were reused and/or recycled. More than 25.7 million tons of wood waste could be available annually for fuel. Of the amount, more than 17.2 million tons per year, or 67 percent, could be produced by silvicultural activities that improve the health and productivity of forests

  7. Savannah River Site waste management. Final environmental impact statement - addendum

    International Nuclear Information System (INIS)

    1995-07-01

    The purpose of this environmental impact statement is to help DOE decide how to manage over the next 30 years liquid high-level radioactive, low-level radioactive, mixed, hazardous, and transuranic wastes generated during 40 years of past operations and on-going activities (including management of wastes received from offsite) at Savannah River Site (SRS) in southwestern South Carolina. The wastes are currently stored at SRS. DOE seeks to dispose of the wastes in a cost-effective manner that protects human health and the environment. In this document, DOE assesses the cumulative environmental impacts of storing, treating, and disposing of the wastes, examines the impacts of alternatives, and identifies measures available to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socio-economics, and the health and safety of onsite workers and the public are included in the assessment

  8. Savannah River Site Waste Management Final Environmental Impact Statement Addendum

    International Nuclear Information System (INIS)

    1995-07-01

    The purpose of this environmental impact statement is to help DOE decide how to manage over the next 30 years liquid high-level radioactive, low-level radioactive, mixed, hazardous, and transuranic wastes generated during 40 years of past operations and on-going activities (including management of wastes received from offsite) at Savannah River Site (SRS) in southwestern South Carolina. The wastes are currently stored at SRS. DOE seeks to dispose of the wastes in a cost-effective manner that protects human health and the environment. In this document, DOE assesses the cumulative environmental impacts of storing, treating, and disposing of the wastes, examines the impacts of alternatives, and identifies measures available to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socio-economic, and the health and safety of onsite workers and the public are included in the assessment

  9. Residues from waste incineration. Final report. Rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, T.; Juul Pedersen, A.; Hyks, J.; Frandsen, F.J.

    2010-04-15

    The overall objective of the project was to improve the understanding of the formation and characteristics of residues from waste incineration. This was done focusing on the importance of the waste input and the operational conditions of the furnace. Data and results obtained from the project have been discussed in this report according to the following three overall parts: i) mass flows and element distribution, ii) flue gas/particle partitioning and corrosion/deposition aspects, and iii) residue leaching. This has been done with the intent of structuring the discussion while tacitly acknowledging that these aspects are interrelated and cannot be separated. Overall, it was found that the waste input composition had significant impact of the characteristics of the generated residues. A similar correlation between operational conditions and residue characteristics could not be observed. Consequently, the project recommend that optimization of residue quality should focus on controlling the waste input composition. The project results showed that including specific waste materials (and thereby also excluding the same materials) may have significant effects on the residue composition, residue leaching, aerosol and deposit formation.It is specifically recommended to minimize Cl in the input waste. Based on the project results, it was found that a significant potential for optimization of waste incineration exist. (Author)

  10. Final environmental impact statement. Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1980-10-01

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text

  11. Solidification of high-level radioactive wastes. Final report

    International Nuclear Information System (INIS)

    1979-06-01

    A panel on waste solidification was formed at the request of the Nuclear Regulatory Commission to study the scientific and technological problems associated with the conversion of liquid and semiliquid high-level radioactive wastes into a stable form suitable for transportation and disposition. Conclusions reached and recommendations made are as follows. Many solid forms described in this report could meet standards as stringent as those currently applied to the handling, storage, and transportation of spent fuel assemblies. Solid waste forms should be selected only in the context of the total radioactive waste management system. Many solid forms are likely to be satisfactory for use in an appropriately designed system, The current United States policy of deferring the reprocessing of commercial reactor fuel provides additional time for R and D solidification technology for this class of wastes. Defense wastes which are relatively low in radioactivity and thermal power density can best be solidified by low-temperature processes. For solidification of fresh commercial wastes that are high in specific activity and thermal power density, the Panel recommends that, in addition to glass, the use of fully-crystalline ceramics and metal-matrix forms be actively considered. Preliminary analysis of the characteristics of spent fuel pins indicates that they may be eligible for consideration as a waste form. Because the differences in potential health hazards to the public resulting from the use of various solid form and disposal options are likely to be small, the Panel concludes that cost, reliability, and health hazards to operating personnel will be major considerations in choosing among the options that can meet safety requiremens. The Panel recommends that responsibility for all radioactive waste management operations (including solidification R and D) should be centralized

  12. Final environmental impact statement. Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text.

  13. Swiss projects for the final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    McCombie, C.

    1987-01-01

    At present, the major part of the discussion does not focus on technical assessment methodology and data, but rather on interpretation of the available geologic data for high-level waste disposal planning. Meanwhile, plans for the implementation of repositories have to be developed. Accordingly, the longer-term studies on high-level waste disposal are proceeding at a pace appropriate for their relatively far-future timescales, and intensified efforts are being put into projects for design, siting, safety assessment and construction of the more urgently required repository for low and intermediate level waste. (orig./PW) [de

  14. Treatment and final conditioning of solid radioactive wastes

    International Nuclear Information System (INIS)

    Cerre, J.

    1960-01-01

    The storage of solid radioactive wastes on a site is so cumbersome and dangerous that we have developed a method of treatment and conditioning by means of which the volume of waste is considerably reduced and very long-lasting shielding can be provided. This paper describes the techniques adopted at Saclay, where the wastes are sheared, compressed and enveloped in concrete of variable thickness. The main part of the report is devoted to a description of the corresponding remote handling installation. (author) [fr

  15. Determination of the Rate of Formation of Hydroceramic Waste Forms made with INEEL Calcined Wastes; FINAL

    International Nuclear Information System (INIS)

    Barry Scheetz; Johnson Olanrewaju

    2001-01-01

    The formulation, synthesis, characterization and hydration kinetics of hydroceramic waste forms designed as potential hosts for existing INEEL calcine high-level wastes have been established as functions of temperature and processing time. Initial experimentations were conducted with several aluminosilicate pozzolanic materials, ranging from fly ash obtained from various power generating coal and other combustion industries to reactive alumina, natural clays and ground bottled glass powders. The final selection criteria were based on the ease of processing, excellent physical properties and chemical durability (low-leaching) determined from the PCT test produced in hydroceramic. The formulation contains vermiculite, Sr(NO32), CsC1, NaOH, thermally altered (calcined natural clay) and INEEL simulated calcine high-level nuclear wastes and 30 weight percent of fluorinel blend calcine and zirconia calcine. Syntheses were carried out at 75-200 degree C at autogeneous water pressure (100% relative humidity) at various time intervals. The resulting monolithic compact products were hard and resisted breaking when dropped from a 5 ft height. Hydroceramic host mixed with fluorinel blend calcine and processed at 75 degree C crumbled into rice hull-side grains or developed scaly flakes. However, the samples equally possessed the same chemical durability as their unbroken counterparts. Phase identification by XRD revealed that hydroceramic host crystallized type zeolite at 75-150 degree C and NaP1 at 175-200 degree C in addition to the presence of quartz phase originating from the clay reactant. Hydroceramic host mixed with either fluorinel blend calcine or zirconia calcine crystallized type A zeolite at 75-95 degree C, formed a mixture of type A zeolite and hydroxysodalite at 125-150 degree C and hydroxysodalite at 175-200 degree C. Quartz, calcium fluoride and zirconia phases from the clay reactant and the two calcine wastes were also detected. The PCT test solution

  16. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Lensa, Werner von; Nabbi, Rahim; Rossbach, Matthias (eds.) [Forschungszentrum Juelich GmbH (Germany)

    2008-07-01

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides.

  17. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    International Nuclear Information System (INIS)

    Lensa, Werner von; Nabbi, Rahim; Rossbach, Matthias

    2008-01-01

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides

  18. Does geology help in the final disposal of radioactive wastes?

    International Nuclear Information System (INIS)

    Schaer, U.

    1987-01-01

    High-level radioactive wastes have to be stored safely for thousands of years in deep geological formations. The question discussed is whether or not a geological prognosis over this span of time is possible. The main problem is groundwater

  19. Next generation of high-efficient waste incinerators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jappe Frandsen, F.

    2010-11-15

    Modern society produces increasing amounts of combustible waste which may be utilized for heat and power production, at a lower emission of CO{sub 2}, e.g. by substituting a certain fraction of energy from fossil fuel-fired power stations. In 2007, 20.4 % of the district heating and 4.5 % of the power produced in Denmark came from thermal conversion of waste, and waste is a very important part of a future sustainable, and independent, Danish energy supply [Frandsen et al., 2009; Groen Energi, 2010]. In Denmark, approx 3.3 Mtons of waste was produced in 2005, an amount predicted to increase to 4.4 Mtons by the year 2030. According to Affald Danmark, 25 % of the current WtE plant capacity in Denmark is older than 20 years, which is usually considered as the technical and economical lifetime of WtE plants. Thus, there is a need for installation of a significant fraction of new waste incineration capacity, preferentially with an increased electrical efficiency, within the next few years. Compared to fossil fuels, waste is difficult to handle in terms of pre-treatment, combustion, and generation of reusable solid residues. In particular, the content of inorganic species (S, Cl, K, Na, etc.) is problematic, due to enhanced deposition and corrosion - especially at higher temperatures. This puts severe constraints on the electrical efficiency of grate-fired units utilizing waste, which seldom exceeds 26-27%, campared to 46-48 % for coal combustion in suspension. The key parameters when targeting higher electrical efficiency are the pressure and temperature in the steam cycle, which are limited by high-temperature corrosion, boiler- and combustion-technology. This report reviews some of the means that can be applied in order to increase the electrical efficiency in plants firing waste on a grate. (Author)

  20. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    International Nuclear Information System (INIS)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27 C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully ''gettered'' by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  1. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  2. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume II

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 2, provides the inventory of waste addressed in this Final Environmental Impact Statement (EIS) for the Tank Waste Remediation System, Hanford Site, Richland, Washington. The inventories consist of waste from the following four groups: (1) Tank waste; (2) Cesium (Cs) and Strontium (Sr) capsules; (3) Inactive miscellaneous underground storage tanks (MUSTs); and (4) Anticipated future tank waste additions. The major component by volume of the overall waste is the tank waste inventory (including future tank waste additions). This component accounts for more than 99 percent of the total waste volume and approximately 70 percent of the radiological activity of the four waste groups identified previously. Tank waste data are available on a tank-by-tank basis, but the accuracy of these data is suspect because they primarily are based on historical records of transfers between tanks rather than statistically based sampling and analyses programs. However, while the inventory of any specific tank may be suspect, the overall inventory for all of the tanks combined is considered more accurate. The tank waste inventory data are provided as the estimated overall chemical masses and radioactivity levels for the single-shell tanks (SSTs) and double-shell tanks (DSTs). The tank waste inventory data are broken down into tank groupings or source areas that were developed for analyzing groundwater impacts

  3. Faigue Avoidance Scheduling Tool (FAST) Phase II SBIR Final Report, Part 1

    Science.gov (United States)

    2006-05-01

    Report No. AFRL-HE-BR-TR-2004-0015. 56 FASTTM Final Report NTI, Inc. F33615-00-C-6013 APPENDECES Appendix 1: Research Protocol entitled, "The Relative...stored in the testing facility. In the case of a true emergency, San Antonio Emergency Medical Service (EMS) will be called for acute cardiac life

  4. Treatment and final storage of radioactive wastes from the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H [Kernforschungszentrum Karlsruhe (Germany, F.R.)

    1977-05-01

    Types, amounts and activity concentrations of the radioactive wastes arising from the different sections of the fuel cycle are described as well as the methods of their treatment and final disposal. By conversion to glass products, highly active fission product solutions can be transferred into a form well suited for final disposal. Low and medium level waste waters are purified so far that safe discharge or reuse is possible. The concentrates thus produced are incorporated into concrete or bitumen. Baling lends itself for treatment of non-combustible solid wastes. Combustible wastes can be incinerated, the residues are incorporated into concrete. For final storage of the conditioned wastes, salt formations in the deep underground are chosen in the Federal Republic of Germany. They offer a series of favourable preconditions for this purpose and guarantee the isolation of the radionuclides from the biocycle over secular periods of time.

  5. Safety and radiation protection in waste management. Final report

    International Nuclear Information System (INIS)

    Broden, K.; Carugati, S.; Brodersen, K.; Lipponen, M.; Vuori, S.; Ruokola, E.; Palsson, S.E.; Sekse, T.; Ramsoey, T.

    2001-12-01

    During 1998-2001, a project on the management of radioactive waste was carried out as part of the NKS programme. The project was called NKS/SOS-3 and was divided into three sub-projects: SOS-3.1 (Environmental Impact Assessment; EIA), SOS-3.2 (Intermediate storage) and SOS-3.3 (Contamination levels in metals). SOS-3.1 included four EIA seminars on the use of EIA in the Nordic countries. The seminars were held in Norway in 1998, Denmark in 1999, Iceland in 2000 and Finland in 2001. (The last seminar was performed in co-operation with the NKS project SOS-1.) The seminars focused on experiences from EIA procedures for the disposal of radioactive waste, and other experiences from EIA processes. SOS-3.2 included a study on intermediate storage of radioactive waste packages in the Nordic countries. An overview of experiences was compiled and recommendations were made regarding different intermediate storage options as well as control and supervision. SOS-3.3 included investigation of contamination levels in steel, aluminium and magnesium samples from smelting facilities and an overview of current practice for clearance in the Nordic countries. Clearance, clearance levels, naturally occurring radioactive materials, radioactive waste, radioactive material, intermediate storage, waste disposal, environmental impact assessment, gamma spectrometric measurements, beta measurements, neutron activation analyses. (au)

  6. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume III of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type

  7. Final disposal of spent fuels and high activity waste: status and trends in the world

    International Nuclear Information System (INIS)

    Herscovich de Pahissa, Marta

    2007-01-01

    Geological disposal of spent nuclear fuel and high level waste from reprocessing, properly conditioned, is described. This issue is a major challenge related to radioactive waste management. Several options are analyzed, such as application of separation and transmutation to high level waste before final disposal; need of multinational repositories; a phased approach to deep geological disposal and long term surface storage. Bearing in mind this information, a future article will report the state of art in the world. (author) [es

  8. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2010-08-23

    .... facility produces high-carbon steel tire cord for use in radial tire manufacturing. The steel cord is... delisted waste. Lists of Subjects in 40 CFR Part 261 Environmental protection, Hazardous waste, Recycling...

  9. 76 FR 6594 - North Carolina: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2011-02-07

    ... Carolina: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act... Section, RCRA Programs and Materials Management Branch, RCRA Division, U.S. Environmental Protection...

  10. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume IV

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 4, describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington

  11. Radiation protection and safety for final disposal of radioactive wastes stored in Abadia de Goias, Brazil

    International Nuclear Information System (INIS)

    1991-01-01

    This standard aims to satisfy the radiation protection and safety conditions required by Brazilian Nuclear Energy Commission (CNEN) for final disposal of radioactive wastes stored in Abadia de Goias. These wastes are products of the accident happened in 1987 caused by the Cs-137 source violation. (M.V.M.)

  12. 77 FR 47797 - Arkansas: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-08-10

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R06-RCRA-2010-0307; FRL-9713-2] Arkansas: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act...

  13. 76 FR 19004 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2011-04-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R06-RCRA-2010-0307; FRL-9290-9] Oklahoma: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act...

  14. 78 FR 32223 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-05-29

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R06-RCRA-2012-0821; 9817-5] Oklahoma: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental Protection Agency (EPA... changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). EPA...

  15. 76 FR 6594 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2011-02-07

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of the changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... and State Programs Section, RCRA Programs and Materials Management Branch, RCRA Division, U.S...

  16. 77 FR 38566 - Louisiana: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-06-28

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA--R06-RCRA-2012-0367; FRL-9692-6] Louisiana: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act...

  17. 78 FR 54200 - Virginia: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-09-03

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R03-RCRA-2012-0294; FRL-9900-37-Region3] Virginia: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of revisions to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA...

  18. 76 FR 37048 - Louisiana; Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2011-06-24

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R06-RCRA-2010-0307; FRL-9323-8] Louisiana; Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act...

  19. 77 FR 15343 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-03-15

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R06-RCRA-2012-0054; FRL-9647-8] Oklahoma: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act...

  20. 77 FR 60963 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-10-05

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of the changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... Johnson, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA Division...

  1. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  2. The Swedish final repository for reactor waste (SFR). A summary of the SFR project with special emphasis on the near-field assessments

    International Nuclear Information System (INIS)

    Carlsson, J.

    1988-01-01

    The first phase of the final repository for reactor waste (SFR) is scheduled for operation in April 1988. The construction work is finished and preoperational tests are in progress. Impact on the environment from SFR is analysed in a final safety report. This paper gives a summary of the design and performance of SFR. Assessments, made for the analysises of the long term safety, are given with special emphasis on the near-field. As a conclusion from the analysises, the dose commitment to the most affected individual during the post-closure period, has proved to constitute only an insignificant contribution to the natural radioactive environment of the area

  3. 75 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final...

    Science.gov (United States)

    2010-09-24

    ... landfill. The scrubber water blowdown will be managed in the waste water treatment plant (WWTP). The sludge... waste streams included in the petition were: the RKI fly ash, RKI bottom ash and RKI scrubber water... water blowdown waste resulting from the operations of the rotary kiln incinerator at its facility. B...

  4. 76 FR 74709 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-12-01

    ..., including any sludge, spill residue, ash, emission control dust, or leachate, remains a hazardous waste... water for use as a cleaning agent. The slop oil waste is thereby diluted and hazardous constituents are... separation sludges that are listed as hazardous wastes due to benzene, benzo(a)pyrene, chrysene, lead and...

  5. The 2016-2018 National Plan of Management of Radioactive Materials and Wastes. Final report

    International Nuclear Information System (INIS)

    2017-01-01

    A first document contains the final version of the French National Plan of Management of Radioactive Materials and Wastes (PNGMDR) for the period 2016-2018: principles and objectives (presentation of radioactive materials and wastes, principles to be taken into account to define pathways of management of radioactive wastes, legal and institutional framework, information transparency), the management of radioactive materials (context and challenges, management pathways, works on fast breeder reactors of fourth generation), assessment and perspectives of existing pathways of management of radioactive wastes (management of historical situations, management of residues of mining and sterile processing, management of waste with a high natural radioactivity, management of very short life waste, of very low activity wastes, and low and medium activity wastes), needs and perspectives regarding management processes to be implemented for the different types of radioactive wastes. Appendices to this document contain: a recall of the content of previous PNGMDR since 2007, a synthesis of realisations and researches performed abroad, research orientations for the concerned period, and international agreement on spent fuel and radioactive waste management. A second document, released by the ASN, proposes an environmental and strategic assessment of the plan. A third one and a fourth one contain the opinion of the Environmental Authority on the plan preliminary focus and the answer to the Environmental Authority by the ASN. Finally, a synthesis of the remarks made by the public about the PNGMDR and the answers to these remarks conclude the document

  6. Steam reforming of low-level mixed waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  7. Waste Management's LNG Truck Fleet: Final Results

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Laboratory (US); Clark, N. [West Virginia University (US)

    2001-01-25

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  8. Remote mining for in-situ waste containment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, D.; Banta, L.; Peng, S. [and others

    1995-10-01

    This document presents the findings of a study conducted at West Virginia University to determine the feasibility of using a combination of longwall mining and standard landfill lining technologies to mitigate contamination of groundwater supplies by leachates from hazardous waste sites.

  9. Final storage site for radioactive waste. Gorleben mine

    International Nuclear Information System (INIS)

    1995-02-01

    Out of more than 20 salt stocks, the Gorleben salt stock was chosen. In addition to the preliminary information available on its size and depth, detailed exploratory investigations were carried out in order to test its suitability as a site for ultimate storage of all types of radioactive waste. (orig.) [de

  10. Remote mining for in-situ waste containment. Final report

    International Nuclear Information System (INIS)

    Martinelli, D.; Banta, L.; Peng, S.

    1995-10-01

    This document presents the findings of a study conducted at West Virginia University to determine the feasibility of using a combination of longwall mining and standard landfill lining technologies to mitigate contamination of groundwater supplies by leachates from hazardous waste sites

  11. Steam reforming of low-level mixed waste. Final report

    International Nuclear Information System (INIS)

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies

  12. From waste to traffic fuel -projects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rasi, S; Lehtonen, E; Aro-Heinilae, E [and others

    2012-11-01

    The main objective of the project was to promote biogas production and its use as traffic fuel. The aims in the four Finnish and two Estonian case regions were to reduce the amount and improve the sustainable use of waste and sludge, to promote biogas production, to start biogas use as traffic fuel and to provide tools for implementing the aims. The results of this study show that achieving the food waste prevention target will decrease greenhouse gas emissions by 415 000 CO{sub 2}-eq tons and result in monetary savings for the waste generators amounting to almost 300 euro/ capita on average in all case regions in 2020. The results show that waste prevention should be the first priority in waste management and the use of waste materials as feedstock for energy production the second priority. In total 3 TWh energy could be produced from available biomass in the studied case regions. This corresponds to the fuel consumption of about 300 000 passenger cars. When a Geographical Information System (GIS) was used to identify suitable biogas plant site locations with particular respect to the spatial distribution of available biomass, it was found that a total of 50 biogas plants with capacity varying from 2.1 to 14.5 MW could be built in the case regions. This corresponds to 2.2 TWh energy and covers from 5 to 40% of the passenger car fuel consumption in these regions. Using all produced biogas (2.2 TWh energy) for vehicle fuel GHG emissions would lead to a 450 000 t CO{sub 2}-eq reduction. The same effect on emissions would be gained if more than 100 000 passenger cars were to be taken off the roads. On average, the energy consumed by biogas plants represents approximately 20% of the produced energy. The results also show that biomethane production from waste materials is profitable. In some cases the biomethane production costs can be covered with the gained gate fees. The cost of biomethane production from agricultural materials is less than 96 euro/MWh{sub th

  13. Energy implications of integrated solid waste management systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  14. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

  15. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    International Nuclear Information System (INIS)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board's view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program

  16. Final report for the Iowa Livestock Industry Waste Characterization and Methane Recovery Information Dissemination Project; FINAL

    International Nuclear Information System (INIS)

    Garrison, M.V.; Richard, Thomas L

    2001-01-01

    This report summarizes analytical methods, characterizes Iowa livestock wastes, determines fossil fuel displacement by methane use, assesses the market potential, and offers recommendations for the implementation of methane recovery technologies

  17. Detailed leak detection test plan and schedule for Oak Ridge National Laboratory liquid low-level waste active tanks

    International Nuclear Information System (INIS)

    1995-01-01

    This document provides a plan and schedule for leak testing a portion of the Liquid Low-Level Waste (LLLW) system at the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. It is a concise version of a more general leak testing plan that was prepared in response to the requirements of the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). This plan includes a schedule for the initial reporting of the leak test results from the various tanks that will be tested. The FFA distinguishes four categories of tank and pipeline systems: new systems (Category A), doubly contained systems (Category B), singly contained systems (Category C), and inactive systems (Category D). The FFA specifically requires leak testing of the Category C systems; there are 14 such tanks addressed in this plan, plus one tank (W-12) that has been temporarily returned to service based on EPA and TDEC concurrence. A schedule for testing these tanks is also included. The plan and schedule also addresses an additional 15 Category B tanks have been demonstrated to meet secondary containment requirements. While these 15 tanks are addressed in this plan for the sake of completeness, they have been removed from the leak testing program based on the design demonstrations that show secondary containment. It is noted that the general plan included 42 tanks. Since that report was issued, 26 of those tanks have passed secondary containment design demonstrations and subsequently have been removed from this leak testing plan. In addition, one tank (LA-104) has been removed from service. Accordingly, this document addresses 15 of the LLLW tanks in the system; plans for testing the pipelines will be described in a separate document

  18. Detailed leak detection test plan and schedule for Oak Ridge National Laboratory liquid low-level waste active tanks

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    This document provides a plan and schedule for leak testing a portion of the Liquid Low-Level Waste (LLLW) system at the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. It is a concise version of a more general leak testing plan that was prepared in response to the requirements of the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). This plan includes a schedule for the initial reporting of the leak test results from the various tanks that will be tested. The FFA distinguishes four categories of tank and pipeline systems: new systems (Category A), doubly contained systems (Category B), singly contained systems (Category C), and inactive systems (Category D). The FFA specifically requires leak testing of the Category C systems; there are 14 such tanks addressed in this plan, plus one tank (W-12) that has been temporarily returned to service based on EPA and TDEC concurrence. A schedule for testing these tanks is also included. The plan and schedule also addresses an additional 15 Category B tanks have been demonstrated to meet secondary containment requirements. While these 15 tanks are addressed in this plan for the sake of completeness, they have been removed from the leak testing program based on the design demonstrations that show secondary containment. It is noted that the general plan included 42 tanks. Since that report was issued, 26 of those tanks have passed secondary containment design demonstrations and subsequently have been removed from this leak testing plan. In addition, one tank (LA-104) has been removed from service. Accordingly, this document addresses 15 of the LLLW tanks in the system; plans for testing the pipelines will be described in a separate document.

  19. Probabilistic safety considerations for the final disposal of radioactive waste

    International Nuclear Information System (INIS)

    Berg, H.P.; Gruendler, D.; Wurtinger, W.

    1992-01-01

    In order to demonstrate the safety-related balanced concept of the plant design with respect to the operational phase, probabilistic safety considerations were made for the planned German repository for radioactive wastes, the Konrad repository. These considerations are described with respect to the handling and transfer system in the above-ground and underground facility. The operational sequences and the features of a repository are similar to those of conventional transportation and loading facilities and mining techniques. Hence, failure sequences and probability data were derived from these conventional areas. Incidents taken into consideration are e. g. collision of vehicles, fires, drop of waste packages due to failures of lifting equipment. The statistical data used were made available by authorities, insurance companies, and expert organizations. These data have been converted into probability data which were used for the determination of the frequencies for all radiologically relevant incidents. (author)

  20. RTR spent fuel treatment and final waste storage

    International Nuclear Information System (INIS)

    Thomasson, J.

    2000-01-01

    A number of RTR operators have chosen in the past to send their spent fuel to the US in the framework of the US take back program. However, this possibility ends as of May 12th, 2006. 3 different strategies are left for managing RTR spent fuel: extended storage, direct disposal and treatment-conditioning through reprocessing. Whilst former strategies raise a number of uncertainties, the latter already offers a management solution. It features two advantages. It benefits from the long experience of existing flexible industrial facilities from countries like France. Secondly, it offers a dramatic volume reduction of the ultimate waste to be stored under well-characterized, stable and durable forms. RTR spent fuel management through reprocessing-conditioning offers a durable management solution that can be fully integrated in whatever global radioactive waste management policy, including ultimate disposal

  1. Project Guarantee 1985. Radioactive wastes: Properties and allocation to final repository types

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    An overview of waste-specific data, as input into constructional engineering studies and safety analyses of Project Guarantee, is presented which describes the activity inventory of the radioactive waste to be disposed of, classified according to origin, the quantitative spezifications of the waste, the concept of classifying waste into appropriate categories, grouping into major categories and distribution of these between the different repository types, and finally, control measures which ensure observance of the specifications of the waste to be disposed of. It is expedient, for conceptional considerations and for the operational phase of the repository, to split the waste up into several suitably specified waste categories according to the practical aspects of origin and conditioning. This can be done in such a way that the waste within a specific category is sufficiently homogeneous with regard to its radiological properties and chemical composition for the requirements of safety analysis. The present volume contains base-data for around 30 waste types. Two waste types are documented with more detailed data as an example of the practicability of the comprehensive waste characterisation contained in reference report NTB 84-47. It is shown that waste-specific data which go into safety analysis and constructional engineering project studies are available in an appropriate degree of detail. The method of distributing the waste between repositories with differing degrees of protection and procedures for controlling adherence to admission specifications are developed and documented. It can be ensured that no waste with an impermissibly high radiotoxicity level will later be emplaced in a repository for low- and intermediate-level waste

  2. Mixing Processes in High-Level Waste Tanks - Final Report

    International Nuclear Information System (INIS)

    Peterson, P.F.

    1999-01-01

    The mixing processes in large, complex enclosures using one-dimensional differential equations, with transport in free and wall jets is modeled using standard integral techniques. With this goal in mind, we have constructed a simple, computationally efficient numerical tool, the Berkeley Mechanistic Mixing Model, which can be used to predict the transient evolution of fuel and oxygen concentrations in DOE high-level waste tanks following loss of ventilation, and validate the model against a series of experiments

  3. Gravity packaging final waste recovery based on gravity separation and chemical imaging control.

    Science.gov (United States)

    Bonifazi, Giuseppe; Serranti, Silvia; Potenza, Fabio; Luciani, Valentina; Di Maio, Francesco

    2017-02-01

    Plastic polymers are characterized by a high calorific value. Post-consumer plastic waste can be thus considered, in many cases, as a typical secondary solid fuels according to the European Commission directive on End of Waste (EoW). In Europe the practice of incineration is considered one of the solutions for waste disposal waste, for energy recovery and, as a consequence, for the reduction of waste sent to landfill. A full characterization of these products represents the first step to profitably and correctly utilize them. Several techniques have been investigated in this paper in order to separate and characterize post-consumer plastic packaging waste fulfilling the previous goals, that is: gravity separation (i.e. Reflux Classifier), FT-IR spectroscopy, NIR HyperSpectralImaging (HSI) based techniques and calorimetric test. The study demonstrated as the proposed separation technique and the HyperSpectral NIR Imaging approach allow to separate and recognize the different polymers (i.e. PolyVinyl Chloride (PVC), PolyStyrene (PS), PolyEthylene (PE), PoliEtilene Tereftalato (PET), PolyPropylene (PP)) in order to maximize the removal of the PVC fraction from plastic waste and to perform the full quality control of the resulting products, can be profitably utilized to set up analytical/control strategies finalized to obtain a low content of PVC in the final Solid Recovered Fuel (SRF), thus enhancing SRF quality, increasing its value and reducing the "final waste". Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Solid low level waste management guidelines: Final report

    International Nuclear Information System (INIS)

    Castagnacci, A.; Dalton, D.; Genoa, P.

    1994-11-01

    Since 1989, the nuclear industry has been moving in the direction of greater minimization of low level radioactive waste (LLW). This has been driven in part by increasing regulatory attention, but it also is in response to the desire on the part of nuclear utilities to be more cost efficient and to be environmentally responsive. Over the past half-dozen years, LLW disposal costs have increased dramatically. In addition, improvements in LLW volume reduction technologies have substantially reduced the volume of LLW that is disposed. At the same time, utilities are implementing aggressive source reduction programs and programs to reuse materials so as to extend the useful life of many materials. Thus, there has been a dramatic change in LLW economics and LLW management practices in just the past few years. This report was developed by utility nuclear experts to provide guidance to all utilities on mechanisms for integrating the program economics, advanced volume reduction techniques, and approaches to source reduction. Thus, utilizes will be able to use this report as a guide to optimizing their LLW program economics and minimizing LLW disposal volumes to the smallest reasonable fraction. This report discusses the implementation of these guidelines, management support, waste materials and waste inventory, radioactive tool and equipment management, protective clothing management, processing and volume reduction, solid LLW tracking, outage LLW management, and interim storage of LLW

  5. Separation of technetium from nuclear waste stream simulants. Final report

    International Nuclear Information System (INIS)

    Strauss, S.H.

    1995-01-01

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering 99 TcO 4 - from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO 4 - ), a stable (non-radioactive) chemical surrogate for 99 TcO 4 - . Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO 4 - and TcO 4 -

  6. Imaging data analyses for hazardous waste applications. Final report

    International Nuclear Information System (INIS)

    David, N.; Ginsberg, I.W.

    1995-12-01

    The paper presents some examples of the use of remote sensing products for characterization of hazardous waste sites. The sites are located at the Los Alamos National Laboratory (LANL) where materials associated with past weapons testing are buried. Problems of interest include delineation of strata for soil sampling, detection and delineation of buried trenches containing contaminants, seepage from capped areas and old septic drain fields, and location of faults and fractures relative to hazardous waste areas. Merging of site map and other geographic information with imagery was found by site managers to produce useful products. Merging of hydrographic and soil contaminant data aided soil sampling strategists. Overlays of suspected trench on multispectral and thermal images showed correlation between image signatures and trenches. Overlays of engineering drawings on recent and historical photos showed error in trench location and extent. A thermal image showed warm anomalies suspected to be areas of water seepage through an asphalt cap. Overlays of engineering drawings on multispectral and thermal images showed correlation between image signatures and drain fields. Analysis of aerial photography and spectral signatures of faults/fractures improved geologic maps of mixed waste areas

  7. Defense High-Level Waste Leaching Mechanisms Program. Final report

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1984-08-01

    The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90 0 C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations

  8. Northeast Waste Management Enterprise (NEWME) 1996 annual/final report

    International Nuclear Information System (INIS)

    Goland, A.; Kaplan, E.; Palmedo, P. Wortman, J.

    1997-01-01

    The Northeast Waste Management Enterprise was created in response to Dr. Clyde Frank's vision of a new partnership between research, industrial, and financial sectors, with the goal of speeding development and use (particularly at U.S. Department of Energy [DOE] facilities) of environmental remediation technologies. It was anticipated that this partnership would also strengthen the international competitiveness of the U.S. environmental industry. Brookhaven National Laboratory's (BNL) response to Dr. Frank was a proposal to create the Northeast Waste Management Alliance, later renamed the Northeast Waste Management Enterprise (NEWME). Recognizing the need to supplement its own technical expertise with acumen in business, financial management, and venture capital development, BNL joined forces with the Long Island Research Institute (LIRI). Since its inception at the end of FY 1993, NEWME has achieved several significant accomplishments in pursuing its original business and strategic plans. However, its successes have been constrained by a fundamental mismatch between the time scales required for technology commercialization, and the immediate need for available environmental technologies of those involved with ongoing environmental remediations at DOE facilities

  9. Defense High-Level Waste Leaching Mechanisms Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, J.E. (compiler)

    1984-08-01

    The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90/sup 0/C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations.

  10. Separation of technetium from nuclear waste stream simulants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, S.H. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Chemistry

    1995-09-11

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering {sup 99}TcO{sub 4}{sup {minus}} from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO{sub 4}{sup {minus}}), a stable (non-radioactive) chemical surrogate for {sup 99}TcO{sub 4}{sup {minus}}. Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO{sub 4}{sup {minus}} and TcO{sub 4}{sup {minus}}.

  11. Waste Isolation Pilot Plant: Final supplement environmental impact statement

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this Supplement Environmental Impact Statement (SEIS) is to update the environmental record established in 1980 by evaluating the environmental impacts associated with new information, new circumstances, and proposal modifications. This SEIS evaluates and compares the Proposed Action and two alternatives. This final SEIS for the WIPP project is a revision of the draft SEIS published in April 1989. It includes responses to the public comments received in writing and at the public hearings and revisions of the draft SEIS in response to the public comments. Revisions of importance have been identified in this final SEIS by vertical lines in the margins to highlight changes made in response to comments. Volumes 1 through 3 of the final SEIS contain the text, appendices, and the summary comments and responses, respectively. Volumes 6 through 13 of the final SEIS contain reproductions of all of the comments received on the draft SEIS, and Volumes 4 and 5 contain the indices to Volumes 6 through 13. An Executive Summary and/or Volumes 1 through 5 of the final SEIS have been distributed to those who received the draft SEIS or requested a copy of the final SEIS. Volume 5 contains indices to public comments

  12. Loviisa Power Station - final disposal of reactor waste

    International Nuclear Information System (INIS)

    Vaajasaari, Marja

    1987-01-01

    This report is based on the earlier published results of research into the properties and function of the candidate backfill materials. The results of the backfill material research, and the sealing concepts presented in the literature have been evaluatedand applied to sealing the Loviisa Reactor Waste Repository taking into consideration the local rock and groundwater conditions. It is emphasised that the applicability of the presented backfill materials and plugs to repository sealing must still be carefully evaluated on the basis of detailed studies and the local environment. 24 refs

  13. Biohydrogen production by anaerobic fermentation of waste. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Karakashev, D.; Angelidaki, I.

    2009-01-15

    The objective of this project was to investigate and increase dark fermentative hydrogen production from organic wastes by optimizing important process parameters (reactor type, pH, temperature, organic loading, retention time, inoculation strategy, microbial composition). Labscale experiments were carried out at the Department of Environmental Engineering, Technical University of Denmark. A two steps process for hydrogen production in the first step and methane production in the second step in serial connected fully mixed reactors was developed and could successfully convert organic matter to approx. 20-25 % hydrogen and 15-80 % to methane. Sparging with methane produced in the second stage could significantly increase the hydrogen production. Additionally it was shown that upflow anaerobic sludge blanket (UASB) reactor system was very promising for high effective biohydrogen production from glucose at 70 deg C. Glucose-fed biofilm reactors filled with plastic carriers demonstrated high efficient extreme thermophilic biohydrogen production with mixed cultures. Repeated batch cultivations via exposure of the cultures to increased concentrations of household solid waste was found to be most useful method to enhance hydrogen production rate and reduce lag phase of extreme thermophilic fermentation process. Low level of pH (5.5) at 3-day HRT was enough to inhibit completely the methanogenesis and resulted in stable extreme thermophilic hydrogen production. Homoacetogenisis was proven to be an alternative competitor to biohydrogen production from organic acids under thermophilic (55 deg. C) conditions. With respect to microbiology, 16S rRNA targeted oligonucleotide probes were designed to monitor the spatial distribution of hydrogen producing bacteria in sludge and granules from anaerobic reactors. An extreme thermophilic (70 deg. C), strict anaerobic, mixed microbial culture with high hydrogen producing potential was enriched from digested household waste. Culture

  14. Basalt Waste Isolation Project exploratory shaft site: Final reclamation report

    International Nuclear Information System (INIS)

    Brandt, C.A.; Rickard, W.H. Jr.

    1990-06-01

    The restoration of areas disturbed by activities of the Basalt Waste Isolation Project (BWIP) constitutes a unique operation at the US Department of Energy's (DOE) Hanford Site, both from the standpoint of restoration objectives and the time frame for accomplishing these objectives. The BWIP reclamation program comprises three separate projects: borehole reclamation, Near Surface Test Facility (NSTF) reclamation, and Exploratory Shaft Facility (ESF) reclamation. The main focus of this report is on determining the success of the revegetation effort 1 year after work was completed. This report also provides a brief overview of the ESF reclamation program. 21 refs., 7 figs., 14 tabs

  15. 77 FR 47779 - Arkansas: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-08-10

    ... Protection Agency (EPA). ACTION: Direct final rule. SUMMARY: Arkansas has applied to the EPA for Final..., Arkansas Department of Pollution Control and Ecology (ADPC&E), revised its Regulation Number 23 from one of... Ecology Commission Regulation Number 23 (Hazardous Waste Management), adopted on April 25, 2008 and April...

  16. Final storage of radioactive waste in deep boreholes

    International Nuclear Information System (INIS)

    Eichmeyer, H.; Wolff, H.

    1985-01-01

    The plans of the Danish Atomic Energy Authority expect the storage of 4500 containers with high activity waste each weighing 15 tonnes in deep boreholes in rock salt over a period of 30 years. The Danish plans are concerned with the storage medium salt in one of the many salt mines in North Germany and Denmark with a depth of 1200 metres, because of the high plasticity, good thermal conductivity and non-permeability to liquids and gases. Eight deep boreholes with a diameter of 750 mm are provided in a circle of radius r=250 metres. With a deviation of 0 , the boreholes will be piped down to 1000 metres and after completion, will be filled with clay slurry and barium sulphate. At the start of storage of the waste in containers 6.8 metres long, the clay slurry is replaced by cement slurry with saturated NaCl solution. Another possibility is to fill the borehole volume with saturated NaCl solution, in order to let the convergence act on the annular space between the container and the borehole wall. After filling the borehole, the open borehole should be sealed over a distance of 200 metres with rock salt and over 50 metres with a concrete stopper. It is planned to provide a dense and corrosion-proof seal with bitumen above the concrete. (orig./GB) [de

  17. Radionuclides difficult to measure in waste packages. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thierfeldt, S; Deckert, A [Brenk Systemplanung, Aachen (Germany)

    1995-11-01

    In this study nuclide specific correlation analyses between key nuclides that can be easily measured and nuclides that are difficult to measure are presented. Data are taken from studies and data compilations from various countries. The results of this study can serve to perform assays of the nuclide specific radionuclide contents in waste packages by gamma measurements of {sup 60}Co and {sup 137}Cs and calculation of the contents of other nuclides via the correlation analyses, sometimes referred to as `scaling factor method`. It can thus be avoided to have to take samples from the waste for separate analysis. An attempt is made to also investigate the physical and chemical backgrounds behind the proposed correlations. For example, a formation pathway common to the two nuclides to be correlated can be regarded as an explanation, if a good correlation is found. On the other hand, if the observed correlation is of poor quality, reasons may possibly lie in different behaviour of the two nuclides in the water system of the nuclear plant. This implies not only chemical solubility, transfer constants etc. in the water system, which would not only affect the proportionality between the two nuclides, but a different behavior in different parts of the water system must be assumed (e.g. different filter efficiencies etc). 47 refs, 57 figs, 40 tabs.

  18. F/H Area high level waste removal plan ampersand schedule as required by the Federal Facility Agreement for the Savannah River Site

    International Nuclear Information System (INIS)

    Hunter, M.A.

    1993-11-01

    The F and H-area HLW Tank Farms are one component of a larger integrated waste treatment system consisting of facilities designed for the overall processing of several radioactive waste streams resulting from nuclear material processing. Section IX.E of the SRS Federal Facility Agreement requires the DOE to submit to the EPA and SCDHEC for review and approval, a plan(s) and schedule(s) for the removal from service of waste tank systems(s)/component(s) that do not meet secondary containment standards, or that leak or have leaked. The Plan and Schedule for removal from service of these waste tanks is shown in Appendices A and B, respectively. Other portions of this package which include schedule dates are provided for information only. The SRS intends to remove systems from service as opposed to providing secondary containment for non-compliant systems. The systems that do not meet secondary containment requirements or that have leaked (as determined by tank assessment reports) include High Level Waste Tanks No. 1--24 along with corresponding ancillary equipment

  19. Waste Isolation Pilot Plant RH TRU waste preoperational checkout: Final report

    International Nuclear Information System (INIS)

    1988-06-01

    This report documents the results of the Waste Isolation Pilot Plant (WIPP) Remote-Handled Transuranic (RH TRU) Waste Preoperational Checkout. The primary objective of this checkout was to demonstrate the process of handling RH TRU waste packages, from receipt through emplacement underground, using equipment, personnel, procedures, and methods to be used with actual waste packages. A further objective was to measure operational time lines to provide bases for confirming the WIPP design through put capability and for projecting operator radiation doses. Successful completion of this checkout is a prerequisite to the receipt of actual RH TRU waste. This checkout was witnessed in part by members of the Environmental Evaluation Group (EEG) of the state of New Mexico. Further, this report satisfies a key milestone contained in the Agreement for Consultation and Cooperation with the state of New Mexico. 4 refs., 26 figs., 4 tabs

  20. Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet

    International Nuclear Information System (INIS)

    Abotsi, G.M.K.; Bostick, D.T.; Beck, D.E.

    1996-05-01

    The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere

  1. Analysis of low-level wastes. Review of hazardous waste regulations and identification of radioactive mixed wastes. Final report

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.; Piciulo, P.L.

    1985-12-01

    Regulations governing the management and disposal of hazardous wastes have been promulgated by the US Environmental Protection Agency under authority of the Resource Conservation and Recovery Act. These were reviewed and compared with the available information on the properties and characteristics of low-level radioactive wastes (LLW). In addition, a survey was carried out to establish a data base on the nature and composition of LLW in order to determine whether some LLW streams could also be considered hazardous as defined in 40 CFR Part 261. For the survey, an attempt was made to obtain data on the greatest volume of LLW; hence, as many large LLW generators as possible were contacted. The list of 238 generators contacted was based on information obtained from NRC and other sources. The data base was compiled from completed questionnaires which were returned by 97 reactor and non-reactor facilities. The waste volumes reported by these respondents corresponded to approximately 29% of all LLW disposed of in 1984. The analysis of the survey results indicated that three broad categories of LLW may be radioactive mixed wastes. They include: waste containing organic liquids, disposed of by all types of generators; wastes containing lead metal, i.e., discarded shielding or lead containers; wastes containing chromates, i.e., nuclear power plant process wastes where chromates are used as corrosion inhibitors. Certain wastes, specific to particular generators, were identified as potential mixed wastes as well. 8 figs., 48 tabs

  2. Final storage of radioactive waste in Germany - progress enforced

    International Nuclear Information System (INIS)

    Roesel, H.

    1995-01-01

    In the past few years, the peaceful utilization of nuclear power, spent fuel and waste management included, has been severely hampered in Germany out of concern about technical safety. Ultimately, however, the objective is an opt-out nuclear power on political grounds. Advancing the projects to ensure the back end of the fuel cycle must be returned to the responsibility of science and technology and should not be left exclusively in the hands of politicians and lawyers. In the period between 1991 and 1994, the German Federal Government had to issue a total of 24 instructions to federal states seeking to opt-out of nuclear power; only in this way was it possible to continue project work. (orig.) [de

  3. Waste acceptance criteria study: Volume 2, Appendixes: Final report

    International Nuclear Information System (INIS)

    Johnson, E.R.; McLeod, N.B.; McBride, J.A.

    1988-09-01

    These appendices to the report on Waste Acceptance Criteria have been published as a separate volume for the convenience of the reader. They consist of the text of the 10CFR961 Contract for disposal of spent fuel, estimates of the cost (savings) to the DOE system of accepting different forms of spent fuel, estimates of costs of acceptance testing/inspection of spent fuel, illustrative specifications and procedures, and the resolution of comments received on a preliminary draft of the report. These estimates of costs contained herein preliminary and are intended only to demonstrate the trends in costs, the order of magnitude involved, and the methodology used to develop the costs. The illustrative specifications and procedures included herein have been developed for the purpose of providing a starting point for the development of a consensus on such matters between utilities and DOE

  4. Physical Properties of Hanford Transuranic Waste. Final Report

    International Nuclear Information System (INIS)

    Berg, John C.

    2010-01-01

    The research described herein was undertaken to provide needed physical property descriptions of the Hanford transuranic tank sludges under conditions that might exist during retrieval, treatment, packaging and transportation for disposal. The work addressed the development of a fundamental understanding of the types of systems represented by these sludge suspensions through correlation of the macroscopic rheological properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of the work have advanced existing understanding of the sedimentation and aggregation properties of complex colloidal suspensions. Bench scale models were investigated with respect to their structural, colloidal and rheological properties that should be useful for the development and optimization of techniques to process the wastes at various DOE sites.

  5. Effects of brine migration on waste storage systems. Final report

    International Nuclear Information System (INIS)

    Gaffney, E.S.; Nickell, R.E.

    1979-01-01

    Processes which can lead to mobilization of brine adjacent to spent fuel or nuclear waste canisters and some of the thermomechanical consequences have been investigated. Velocities as high as 4 x 10 -7 m s -1 (13 m y -1 ) are calculated at the salt/canister boundary. As much as 40 liters of pure NaCl brine could accumulate around each canister during a 10-year storage period. Accumulations of bittern brines would probably be less, in the range of 2 to 5 liters. With 0.5% water, NaCl brine accumulation over a 10-year storage cycle around a spent fuel canister producing 0.6 kW of heat is expected to be less than 1 liter for centimeter-size inclusions and less than 0.5 liter for millimeter-size inclusions. For bittern brines, about 25 years would be required to accumulate 0.4 liter. The most serious mechanical consequence of brine migration would be the increased mobility of the waste canister due to pressure solution. In pressure solution enhanced deformation, the existence of a thin film of fluid either between grains or between media (such as between a canister and the salt) provides a pathway by which the salt can be redistributed leading to a marked increase in strain rates in wet rock relative to dry rock. In salt, intergranular water will probably form discontinuous layers rather than films so that they would dominate pressure solution. A mathematical model of pressure solution indicates that pressure solution will not lead to appreciable canister motions except possibly in fine grained rocks (less than 10 -4 m). In fine grained salts, details of the contact surface between the canister and the salt bed may lead to large pressure solution motions. A numerical model indicates that heat transfer in the brine layer surrounding a spent fuel canister is not conduction dominated but has a significant convective component

  6. Rural electrification: Waste biomass Russian northern territories. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adamian, S. [ECOTRADE, Inc., Glendale, CA (United States)

    1998-02-01

    The primary objective of this pre-feasibility evaluation is to examine the economic and technical feasibility of replacing distillate fuel with local waste biomass in the village of Verkhni-Ozerski, Arkhangelsk Region, Russia. This village is evaluated as a pilot location representing the off-grid villages in the Russian Northern Territories. The U.S. Department of Energy (DOE) has agreed to provide technical assistance to the Ministry of Fuel and Energy (MFE). MFE has identified the Northern Territories as a priority area requiring NREL`s assistance. The program initially affects about 900 off-grid villages. Biomass and wind energy, and to a lesser extent small hydro (depending on resource availability) are expected to play the dominant role in the program, Geothermal energy may also have a role in the Russian Far East. The Arkhangelsk, Kariela, and Krasnoyarsk Regions, all in the Russian Northern Territories, have abundant forest resources and forest products industries, making them strong candidates for implementation of small-scale waste biomass-to-energy projects. The 900 or so villages included in the renewable energy program span nine administrative regions and autonomous republics. The regional authorities in the Northern Territories proposed these villages to MFE for consideration in the renewable energy program according to the following selection criteria: (a) Remote off-grid location, (b) high cost of transporting fuel, old age of existing power generation equipment, and (d) preliminary determination as to availability of alternative energy resources. Inclusion of indigenous minorities in the program was also heavily emphasized. The prefeasibility study demonstrates that the project merits continuation and a full feasibility analysis. The demonstrated rate of return and net positive cash flow, the willingness of Onegales and local/regional authorities to cooperate, and the immense social benefits are all good reasons to continue the project.

  7. Detailed Leak Detection Test Plan and schedule for the Oak Ridge National Laboratory liquid low-level waste active pipelines

    International Nuclear Information System (INIS)

    1994-08-01

    This document provides a detailed leak detection test plan and schedule for the pipelines that comprise the active, singly contained, portion of the liquid low-level waste (LLLW) system at the Oak Ridge National Laboratory (ORNL). This plan was prepared in response to the requirements of the Federal Facility Agreement for the Oak Ridge Reservation (FFA) between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC). The LLLW system is an interconnected complex of tanks and pipelines. The FFA distinguishes four categories of tank and pipeline systems within this complex: new or replacement tank systems with secondary containment (Category A), existing tank systems with secondary containment (Category B), existing tank systems without secondary containment (Category C), and tank systems that have been removed from service (Category D). The FFA specifically requires that DOE demonstrate that the Category C systems are not leaking. This plan and schedule addresses testing of the Category C pipelines and the pipelines which are part of Category B tank systems that do not fully meet the requirements for secondary containment as listed in the FFA. A key feature of the plan is that it is based on the use of performance standards for the conduct of release detection testing, and on the use of methods whose performance has been evaluated and shown to meet those standards. Another feature of the plan is that it is based in part on relevant portions of current federal EPA regulations applicable to underground storage tanks and pipelines (UST systems) that store and transfer petroleum products and other hazardous substances. While the FFA does not require that the testing at ORNL follow these regulations, the regulations do provide industry- and regulator-accepted performance standards, as well as a schedule for repeated testing of UST components

  8. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program

  9. Handling and final disposal of nuclear waste. Hard Rock Laboratory

    International Nuclear Information System (INIS)

    1989-09-01

    The purpose of the Hard Rock Laboratory is to provide an opportunity for research and development in a realistic and undisturbed underground rock environment down to the depth planned for the future repository. The R and D work in the underground laboratory has the following main goals: To test the quality and appropriateness of different methods for characterizing the bedrock with respect to conditions of importance for a final repository. To refine and demonstrate methods for how to adapt a repository to the local properties of the rock in connection with planning and construction. And, finally, to collect material and data of importance for the safety of the future repository and for confidence in the quality of the safety assessments 13 figs, 3 tabs

  10. Project Management Support and Services for the Environmental Restoration and Waste Management. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    The Los Alamos National Laboratory (LANL) Environmental Restoration Technical Support Office (ERTSO) contracted Project Time ampersand Cost, Inc. (PT ampersand C) on 16 November 1992 to provide support services to the US Department of Energy (DOE). ERTSO had traditionally supported the DOE Albuquerque office in the Environmental Restoration and Waste Management Programs and had also supported the Office of Waste Management (EM-30) at DOE Headquarters in Germantown, Maryland. PT ampersand C was requested to provide project management and support services for the DOE as well as liaison and coordination of responses and efforts between various agencies. The primary objective of this work was to continue LANL's technical support role to EM-30 and assist in the development of the COE Cost and Schedule Estimating (CASE) Guide for EM-30. PT ampersand C's objectives, as specified in Section B of the contract, were well met during the duration of the project through the review and comment of various draft documents, trips to DOE sites providing program management support and participating in the training for the EM-30 Cost and Schedule Estimating Guide, drafting memos and scheduling future projects, attending numerous meetings with LANL, DOE and other subcontractors, and providing written observations and recommendations.he results obtained were determined to be satisfactory by both the LANL ERTSO and DOE EM-30 organizations. The objective to further the support from LANL and their associated subcontractor (PT ampersand C) was met. The contract concluded with no outstanding issues

  11. Schedules of Controlled Substances: Placement of FDA-Approved Products of Oral Solutions Containing Dronabinol [(-)-delta-9-transtetrahydrocannabinol (delta-9-THC)] in Schedule II. Interim final rule, with request for comments.

    Science.gov (United States)

    2017-03-23

    On July 1, 2016, the U.S. Food and Drug Administration (FDA) approved a new drug application for Syndros, a drug product consisting of dronabinol [(-)-delta-9-trans-tetrahydrocannabinol (delta-9-THC)] oral solution. Thereafter, the Department of Health and Human Services (HHS) provided the Drug Enforcement Administration (DEA) with a scheduling recommendation that would result in Syndros (and other oral solutions containing dronabinol) being placed in schedule II of the Controlled Substances Act (CSA). In accordance with the CSA, as revised by the Improving Regulatory Transparency for New Medical Therapies Act, DEA is hereby issuing an interim final rule placing FDA-approved products of oral solutions containing dronabinol in schedule II of the CSA.

  12. Final report, Task 2: alternative waste management options, Nuclear Fuel Services, Inc., high level waste

    International Nuclear Information System (INIS)

    1978-01-01

    Of the alternatives considered for disposal of the high-level waste in tanks 8D2 and 8D4, the following process is recommended: homogenization of the contents of tank 8D2, centrifugation of the sludge and supernate, mixing of the 8D4 acid waste with the centrifuged sludge, and converting the mixture to a borosilicate glass using the Hanford spray calciner/in-can melter

  13. Waste paper recycling opportunities for government action. Vol. 4, corrugated waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.; Love, P.

    1978-01-01

    This study analyzes current and expected corrugated waste market conditions in Canada, with the objective of identifying government initiatives which could permanently increase recovery levels. Short-term, practical measures are featured. National and regional demand, generation and recovery levels are examined, along with imports and exports to the USA. Over 70% of corrugated waste is consumed in Ontario and Quebec, and most of this waste is generated in those two provinces. Average recovery rates in most major urban areas are estimated at 30-40%. Future demand, generation, and recovery are estimated, and it is suggested that there will be enough domestic demand to permit reclamation of nearly 35% of Canada's total corrugated wastes. This potential level is not expected to change significantly, and new demand opportunities appear minimal. Examination of the potential for future imports from the USA indicates that availability will tighten over the medium term, necessitating a search for new corrugated waste supply sources. Possible sources include supermakets, retail chains and large assembly manufacturing establishments; one of the most promising of these sources is shopping malls, and a study is appended which examines the feasibility of a corrugated waste source separation program within a hypothetical mall. Possible government actions are outlined to improve reclamation and recycling of corrugated waste in Canada, including the improvement of local recovery capabilities in British Columbia, Ontario and Quebec, and the reduction of freight costs for moving corrugated waste from low-recovery areas to high-demand areas. 26 refs., 9 figs., 31 tabs.

  14. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    A summary of the planning of transportation and plant design in the Swedish KBS project on management and disposal reprocessed radioactive waste. It describes a transportation system, a central storage facility for used fuel elements, a plant for intermediate storage and encapsulation and a final repository for the vitrified waste. Accounts are given for the reprocessing and vitrification. The safety of the entire system is discussed

  15. Operational experience from SFR - Final repository for low- and intermediate level waste in Sweden

    International Nuclear Information System (INIS)

    Skogsberg, Marie; Ingvarsson, Roger

    2006-01-01

    SFR, the Swedish Final Repository for Radioactive Waste, has been in operation since April 1988. It was designed for short lived LLW/ILW from the operation and maintenance of all Swedish Nuclear Power Plants. The first stage was constructed for 63 000 m 3 which was assumed to give a margin and flexibility for the preliminary operational period. Today this volume represents the whole prediction of operational waste. Until the end of 2005 SFR has received 30 930 m 3 waste. In average it has been 2-3 derivations per year at the repository. The most derivations happened in the years 1993-1995, and that was also the years when the repository received the most volume of waste. The most of the derivations those years was related to the waste packages. The dose rate to the personal has always been very low in the latest years the collective dose has been under 0,1 mmanSv/year. (author)

  16. Chemical and mechanical performance properties for various final waste forms -- PSPI scoping study

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Larsen, E.D.; Sears, J.W.; Eddy, T.L.; Anderson, G.L.

    1996-09-01

    The US DOE is obtaining data on the performance properties of the various final waste forms that may be chosen as primary treatment products for the alpha-contaminated low-level and transuranic waste at the INEL's Transuranic Storage Area. This report collects and compares selected properties that are key indicators of mechanical and chemical durability for Portland cement concrete, concrete formed under elevated temperature and pressure, sulfur polymer cement, borosilicate glass, and various forms of alumino-silicate glass, including in situ vitrification glass and various compositions of iron-enriched basalt (IEB) and iron-enriched basalt IV (IEB4). Compressive strength and impact resistance properties were used as performance indicators in comparative evaluation of the mechanical durability of each waste form, while various leachability data were used in comparative evaluation of each waste form's chemical durability. The vitrified waste forms were generally more durable than the non-vitrified waste forms, with the iron-enriched alumino-silicate glasses and glass/ceramics exhibiting the most favorable chemical and mechanical durabilities. It appears that the addition of zirconia and titania to IEB (forming IEB4) increases the leach resistance of the lanthanides. The large compositional ranges for IEB and IEB4 more easily accommodate the compositions of the waste stored at the INEL than does the composition of borosilicate glass. It appears, however, that the large potential variation in IEB and IEB4 compositions resulting from differing waste feed compositions can impact waste form durability. Further work is needed to determine the range of waste stream feed compositions and rates of waste form cooling that will result in acceptable and optimized IEB or IEB4 waste form performance. 43 refs

  17. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 2: Appendices

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy's (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE's Environmental Management Program. This volume contains the following appendices: Waste inventory; Summary of the waste management programmatic environmental impact statement and its use in determining human health impacts at treatment sites; Air quality; Life-cycle costs and economic impacts; Transportation; Human health; Facility accidents; Long-term consequence analysis for proposed action and action alternatives; Long-term consequence analysis for no action alternative 2; and Updated estimates of the DOE's transuranic waste volumes

  18. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume IV of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Transportation is an integral component of the alternatives being considered for each type of radioactive waste in the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The types of radioactive waste considered in Part I are high-level waste (HLW), low-level waste (LLW), transuranic waste (TRUW), and low-level mixed waste (LLMW). For some alternatives, radioactive waste would be shipped among the DOE sites at various stages of the treatment, storage, and disposal (TSD) process. The magnitude of the transportation-related activities varies with each alternative, ranging from minimal transportation for decentralized approaches to significant transportation for some centralized approaches. The human health risks associated with transporting various waste materials were assessed to ensure a complete appraisal of the impacts of each PEIS alternative being considered

  19. Determining ''Best Practicable Environmental Options'' for final waste disposal of radioactive waste

    International Nuclear Information System (INIS)

    Smith, Graham

    1999-01-01

    This presentation discusses some ideas on what the Best Practical Environmental Option (BPEO) process should include. A BPEO study to help develop a radioactive waste management strategy should not only look at post-closure safety of a facility. In the UK there was a 1986 Study of BPEOs for management of low and intermediate level radioactive wastes. This study tried to answer important questions such as (1) What are the practical options, (2) Which wastes should go to shallow burial, (3) Which wastes should go to sea disposal, (4) How does storage compare with disposal and (5) What are the cost and environmental trade-offs. The presentation discusses what was done to answer the questions. The BPEO Study resulted in major improved effort to characterise waste, much greater quantitative understanding of where and when the real costs, and environmental and radiological impacts arise. All options would be useful within a national strategy. But there was clearly a need for resolution of political acceptance problems, integration of policy with other hazardous waste management, and stronger legal framework

  20. Radioactive waste package assay facility. Final report - V. A

    International Nuclear Information System (INIS)

    Molesworth, T.V.; Strachan, N.R.; Findlay, D.J.S.; Wise, M.O.; Forrest, K.R.; Rogers, J.D.

    1993-01-01

    This report provides a summary of research work carried out in support of the development of an integrated assay system for the quality checking of Intermediate Level Waste encapsulated in cement. Four non-destructive techniques were originally identified as being viable methods for obtaining radiometric inventory data from a cemented 500 litre ILW package. The major part of the programme was devoted to the development of two interrogation techniques; active neutron for measuring the total fissile content and active gamma for measuring the total actinide content. An electron linear accelerator was used to supply the interrogating beam for these two methods. In addition the linear accelerator beam could be used for high energy radiography. The results of this work are described and the performances and limitations of the non-destructive methods are summarised. The main engineering and operational features which influence the design of an integrated assay facility are outlined and a conceptual layout for a facility to inspect 750 ILW drums a year is described. Details of the detection methods, data processing and potential application of the assay facility are given in three associated HMIP reports. (Author)

  1. Final storage of radioactive waste and radiological protection

    International Nuclear Information System (INIS)

    Metivier, H.

    2008-01-01

    For operational effectiveness, ICRP built a dosimetric system based on the additivity of the effects whatever are the nature of the radiation and the origin of the exposure, external or internal. This system fulfilled the assigned role; the assessment of the protection against radiation is good. Today, the challenge to overcome with regard of the nuclear energy is to make the demonstration that the management of disposed wastes in geological formations will be without risk to the future generations. The scenario considered is related to the return towards the biosphere and an internal contamination by ingestion of long-lived radionuclides. Is the current radiological protection system adapted to this situation? What means irradiation alpha? What does one really know in dosimetric and risk terms for the chronicity of internal exposures? As many questions for which we always do not have the answer and that it is thus necessary to consider at the time when one recommends a dialogue with the stakeholders and that recent scientific observations call into question many certainties. New research programmes in radio toxicology appear absolutely necessary to answer these legitimate questions. The example of the step of pharmaceutical industry for obtaining the marketing authorizations of the drugs is to be meditated. (author)

  2. Safe, secure, and clean disposal of final nuclear wastes using 'PyroGreen' strategies

    International Nuclear Information System (INIS)

    Jung, HyoSook; Choi, Sungyeol; Hwang, Il Soon

    2011-01-01

    Spent nuclear fuels (SNFs) present global challenges that must be overcome to pave way for safe, secure, peaceful and clean nuclear energy. As one of innovative solutions, we have proposed an innovative partitioning, transmutation, and disposal approach named as 'PyroGreen' that is designed to eliminate the need for high-level waste repositories. A flowsheet of pyrochemical partitioning process with technically achievable values of decontamination factors on long-living radionuclides has been established to enable all the final wastes to be disposed of as low and intermediate level wastes. The long-term performance of a geological repository was assessed by SAFE-ROCK code for the final wastes from the PyroGreen processing of entire 26,000 MTHM of SNFs arising from lifetime operation of 24 pressurized water reactors. The assessment results agree well with an earlier study in the fact that most harmful radionuclides dominating groundwater migration risk are shown to be long-living fission products including C-14, Cl-36, Se-79, I-129, and Cs-135, whereas most actinides including U, Pu, Np, Am, and Cm are shown to remain near the repository. It is shown that the final wastes can meet the radiological dose limit of current Korean regulation on the low and intermediate level waste repository. Long-living actinide concentration in wastes is comparable with those in wastes in Waste Isolation Pilot Plant that has proved adequately low risk of human intrusion. Overall decontamination factors required for PyroGreen are finally determined as 20,000 for uranium and all transuranic elements whereas much lower values in the range of 10-50 are required for important fission products including Se, Tc, I, Sr, and Cs in order to eliminate the need for any high-level waste repository. It has been shown that experimentally demonstrated recovery rate data for key process steps positively support the feasibility of PyroGreen. SAFE-ROCK code was used to evaluate the long-term performance

  3. Handling of spent nuclear fuel and final storage of nitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    The following stages of handling and transport of the fuel on its way to final storage are dealt with in the report. 1) The spent nuclear fuel is stored at the power station or in the central fuel storage facility awaiting reprocessing. 2) The fuel is reprocessed, i.e. uranium, plutonium and waste are separated from each other. Reprocessing does not take place in Sweden. The highlevel waste is vitrified and can be sent back to Sweden in the 1990s. 3) Vitrified waste is stored for about 30 years awaiting deposition in the final repository. 4) The waste is encapsulated in highly durable materials to prevent groundwater from coming into contact with the waste glass while the radioactivity of the waste is still high. 5) The canisters are emplaced in a final repository which is built at a depth of 500 m in rock of low permeability. 6) All tunnels and shafts are filled with a mixture of clay and sand of low permeability. A detailed analysis of possible harmful effects resulting from normal acitivties and from conceivable accidents is presented in a special section. (author)

  4. Final disposal of the rad waste materials - question of the nuclear energy implementation and application perspectives

    International Nuclear Information System (INIS)

    Plecas, I.

    1995-01-01

    Two main problems that are denying and slowing down the development of nuclear energy are safe work of the nuclear power facilities (NEF) and disposal of the radioactive waste materials, produced from the NEF and infrastructure facilities of the nuclear fuel cycle (NFC). Although nowadays worldwide knowledge, based on the 45 year of experiences in handling the radioactive waste materials, do not treat the problems of final disposal of the rad waste materials as a task of the primary importance in NFC, this subject still engage experts from this field of investigations, especially in the countries that developed all aspects of the nuclear fuel cycle. Techniques for final disposal of low and intermediate level rad waste materials, are well known and are in state of implementation. The importance of the fundamental safety principles, implemented in the IAEA documents, concerning handling, treatment and final disposal of the rad waste materials, is presented. Future usage of nuclear energy, taking into account all the facts that are dealing with problems of the rad waste materials produced in the NFC, can be a reality. (author.)

  5. Technical and logistic provisions for the delivery of radioactive wastes in the final repository Konrad

    International Nuclear Information System (INIS)

    Poeppinghaus, Jens

    2013-01-01

    The beginning of radioactive waste delivery to the final repository Konrad is planned for 2019. The main issue for the technical and logistic provisions is the development of a concept for the transport of the licensed radioactive waste containers to the site, including a turning concept for cylindrical waste forms and planning, construction and manufacture of transport equipment. Further issues include a logistic concept considering specific boundary conditions as administrative processes, priorities, special features of the delivering institutions and technical requirements of the repository.

  6. SKB`s planning of the EIA in connection with the final disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Thegerstroem, C.; Forsstroem, H. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1995-12-01

    The plans for the final disposal of Swedish nuclear waste are summarized. The legal requirements on Environmental Impact Statements (EIS) and their role in the program for the final disposal of nuclear waste are described. SKB`s view of the purpose of the Environmental Impact Assessment is described in the light of the experience which now exists from the work on an encapsulation facility and a deep repository. In order to obtain an adequate basis for decision-making, the EIS is of central importance. In SKB`s view, with regard to the final disposal of nuclear waste in Sweden, there is a very good possibility of fulfilling the requirements on the EIS which should be made within modern environmental protection work. 8 refs, 5 figs.

  7. Active and passive computed tomography mixed waste focus area final report

    International Nuclear Information System (INIS)

    Becker, G K; Camp, D C; Decman, D J; Jackson, J A; Martz, H E; Roberson, G P.

    1998-01-01

    The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy s (DOE) mixed-waste, low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are based in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user or customer technology selection. The active and passive computed tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory (LLNL) has developed the active and passive computed tomography (A ampersand XT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of their classification-low level, transuranic or mixed. Mixed waste contains radioactivity and hazardous organic species. The scope of our technology is to develop a non-invasive waste-drum scanner that

  8. Preliminary environmental impact assessment for the final disposal of vanadium hazardous wastes

    International Nuclear Information System (INIS)

    Leyva Bombuse, D.; Peralta, J.L.; Gil Castillo, R.

    2006-01-01

    The aim of the present paper is the environmental impact assessment for the final management of vanadium wastes. The assessed practice is proposed as a final solution for a real problem in Cuba, related with the combustion fossil fuel burn in the electric generation. The study case, embrace the interim storage of hazardous wastes with high vanadium contents (5.08 T) and other heavy metals traces (Cr, Zn). According to the Cuban conditions (tacking into account the environmental regulations and infrastructure lack for the hazardous wastes disposal), it was decided the terrestrial dilution as a final disposal way. The environmental impact assessment methodology used, take into account, in the analyzed management practice, the actions, factors and environmental impacts. The positives and more relevant impacts were obtained for the socioeconomic means. The negative and irrelevant impacts were associated to the biotic and abiotic means. Socioeconomic factors were the most affected and the biotic and abiotic factors were less affected. The waste handling was the most relevant environmental action. According to the evaluated conditions, the obtained results showed that is feasible the terrestrial dilution as a sustainability way for the final disposal of vanadium hazardous wastes

  9. Loviisa power station - final disposal of reactor waste

    International Nuclear Information System (INIS)

    Kankainen, Tuovi

    1986-10-01

    This study forms a part of the research done to assess the suitability of the rapakivi granitic bedrock of the island of Haestholmen, southern Finland, for the management of reactor waste. The aim is to assess the residence time and the origin of the groundwater. In addition, microfossil analyses and conservative ion data were used in deciphering the origin of the groundwater. Fracture mineral studies were limeted to 13 C determinations on two fracture calcites. Groundwater was sampled at several levels of four drill holes, reaching to a depth of some 200 m. The isotopic results were compared with those of water from a percussion drill hole, shallow dug wells, and the Gulf of Finland. The main conclusions are based on 3 H bundances in groundwater, mean residence time of groundwater deduced from 14 C analyses, and stabile isotope content of groundwater, combined with conservative ion data. Additional information was gained from activity ratios of uranium, and sulphur isotope ratios of sulphate. The groundwater of Haestholmen consists of a surface layer of fresh water, and deeper down, of saline water. The fresh water flows and changes rapidly; most of it has precipitated and infiltrated less than 30 years ago. It intermixes with saline water only at the fresh-saline groundwater interface. The saline water underneath the intermediate zone is relatively stagnant. It mainly consists of sea water from the Litorina Sea stage, intermixed with less than 20% glacial melt water. The evolution of the Haestholmen groundwater towards its present stage began during the melting phase of the Weichselian glaciation. Then the groundwater conditions chanced, and infiltration of melt water along open fractures in the bedrock occured. During the Litorian Sea stage heavy saline Litorina sea water slowly infiltrated in the bedrock and displaced the fresh water almost totally. The Haestholmen island rose above the sea level more than 4000 years ago. Then formation of the surficial layer

  10. Electrochemical processing of nitrate waste solutions. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Genders, D.; Weinberg, N.; Hartsough, D. [Electrosynthesis Co., Inc., Cheektowaga, NY (US)

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F{sup {minus}} ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions.

  11. Retail sales of scheduled listed chemical products; self-certification of regulated sellers of scheduled listed chemical products. Interim final rule with request for comment.

    Science.gov (United States)

    2006-09-26

    In March 2006, the President signed the Combat Methamphetamine Epidemic Act of 2005, which establishes new requirements for retail sales of over-the-counter (nonprescription) products containing the List I chemicals ephedrine, pseudoephedrine, and phenylpropanolamine. The three chemicals can be used to manufacture methamphetamine illegally. DEA is promulgating this rule to incorporate the statutory provisions and make its regulations consistent with the new requirements. This action establishes daily and 30-day limits on the sales of scheduled listed chemical products to individuals and requires recordkeeping on most sales.

  12. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 3: Comment response document

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program. This volume provides responses to public comments on the Draft SEIS-II. Comments are related to: Alternatives; TRU waste; DOE credibility; Editorial; Endorsement/opposition; Environmental justice; Facility accidents; Generator site operations; Health and safety; Legal and policy issues; NEPA process; WIPP facilities; WIPP waste isolation performance; Purpose and need; WIPP operations; Site characterization; Site selection; Socioeconomics; and Transportation

  13. Problems related to final disposal of high-level radioactive waste in Russia

    International Nuclear Information System (INIS)

    Velichkin, Vasily I.

    1999-01-01

    According to this presentation, the radioactivity of the total amount of radioactive waste accumulated in Russia to date is 1.5*10 9 Ci and of spent fuel 4.5*10 9 Ci. A table is given that shows the source, type, volume activity and storage type under the responsibility of the different departments and enterprises. 99.9% of the wastes are accumulated at the enterprises of Minatom of the Russian Federation. Some companies inject their liquid wastes from ionisation sources and intermediate liquid waste from the nuclear power industry into deep-seated reliably isolated aquifers. The Mayak plant has released liquid low-level and intermediate wastes into artificial reservoirs and Lake Karachay. Liquid high-level wastes are always stored in special tanks at interim storage facilities. A large number of nuclear submarines are laid up in North-Western Russia and East Russia, with spent fuel still in place as the interim storages in these regions are filled up and there are no conditioning plants. Underground disposal is considered the best way of isolating radioactive waste for as long as it is hazardous to the environment. Two new technologies are discussed. One involves including long-lived isotopes in high-stable mineral matrices, the other uses selective separation from the bulk of wastes. The matrices should be disposed of deep in the Earth's crust, at least 2-3 km down. Liquid waste of caesium-strontium fraction must be transformed into glass-like form and stored underground at a depth of a few hundred metres. Short-lived low level and intermediate level wastes should be conditioned and then deposited in subsurface ferroconcrete repositories constructed in clays. Finally, the presentation discusses the selection of sites and conditions for radioactive waste disposal. Two sites are discussed, the Mayak plant and a possible site at Mining Chemical Combine in Krasnoyarsk-26

  14. NEW SOLID FUELS FROM COAL AND BIOMASS WASTE; FINAL

    International Nuclear Information System (INIS)

    Hamid Farzan

    2001-01-01

    Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable

  15. Final storage of radioactive waste in Germany. Are administrative structures in need of modification?

    International Nuclear Information System (INIS)

    Schneider, Horst

    2011-01-01

    Delays in commissioning the Konrad Mine as a repository for radioactive waste not generating heat, and in exploring the Gorleben salt dome for suitability as a repository for high-level waste generating heat, invite the question whether the legal regulations in place, especially administration and funding of the repository, are suitable for solving current problems or whether they are in need of improvement. The key principles of the back end of the nuclear fuel cycle, final storage included, were laid down as rules in 1976. Execution of the necessary waste management steps, from radioactive waste arisings to their final disposal, was split between private responsibilities and government competences. Final storage, to this day, has been of prime importance. Pursuant to the Atomic Energy Act, the federal government is required to set up facilities for final storage of radioactive waste. The waste management duties incumbent upon private parties, from radioactive waste arisings to delivery, are mainly subject to safety criteria under the Atomic Energy Act and the Radiation Protection Ordinance. As far as administration is concerned, the private parties are free in the way they comply with regulatory requirements. They are required to bear the cost in accordance with the polluter-pays-principle. In the light of the sluggish execution of government tasks from 1976 to this day, the question of improvements has become more acute than ever. This is where assignment offers an approach towards better administration which can be taken at short notice, as assignment implies a reduction in the number of interfaces and clearer responsibilities. However, even the best administration is unable to lead to the repositories required by law if those responsible in government fail to act in accordance with the spirit and letter of the law. (orig.)

  16. Project study for the final disposal of intermediate toxicity radioactive wastes (low- and intermediate-level radioactive wastes) in geological formations

    International Nuclear Information System (INIS)

    1980-08-01

    The present report aimed to show variations in the construction- and operation-technical feasibility of a final repository for low- and intermediate-level radioactive wastes. This report represents the summary of a project study given under contract by Nagra with a view to informing a broader public of the technical conception of a final repository. Particular stress was laid on the treatment of the individual system elements of a repository concept during the construction, operation and sealing phases. The essential basis for the project study is the origin, composition and quantity of the wastes to be disposed. The final repository described in this report is foreseen for the reception of the following low- and intermediate-level solid radioactive wastes: wastes from the nuclear power plant operation; secondary wastes from the reprocessing of nuclear fuels; wastes from the decommissioning of nuclear power plants; wastes from research, medicine and industry

  17. Storage fee analysis for a nuclear waste terminal storage facility. Final report

    International Nuclear Information System (INIS)

    1976-09-01

    A model was developed for determining a pricing schedule designed to recover federal government costs incurred in the development, design, construction, operation, decommissioning, and surveillance of a federal repository for high-level waste generated by the commercial nuclear power industry. As currently constructed, the model computes current dollar prices on a yearly basis for a single unit charge or a split fee based upon two user-provided quantity flows. Over the period of facility operation, the computed-cost schedule shows variability on a year-to-year basis only within specified ranges. The model uses as basic input data: cost schedule for the federal repository; quantity flow schedule for each factor to be charged; schedule for escalation rate, discount rate, and interest rate; and fraction of costs to be recovered on each quantity flow if the split-fee option is used. The model allows testing of these variables in order to determine the relative significance of each component with regard to cost to, and impact on, the nuclear power industry. Another feature of the model is its versatility. Not only is the user able to specify the percent of total costs to be covered by each method of fee assessment listed above but also the user can specify a revenue-cost ratio, an option that would prove useful in trying to assess the general uncertainty involved when dealing in the future. In addition, the model accepts either current-dollar or constant-dollar cost measures, and in the case of the latter escalates the costs with user-provided assumptions

  18. Waste Isolation Pilot Plant contact-handled transuranic waste preoperational checkout: Final report

    International Nuclear Information System (INIS)

    1988-07-01

    This report documents the results of the WIPP CH TRU Preoperational Checkout which was completed between June 8 and June 14, 1988 during which period, a total of 10 TRUPACT shipping containers were processed from site receipt through emplacement of the simulated waste packages in the underground storage area. Since the design of WIPP includes provisions to unload an internally contaminated TRUPACT, in the controlled environment of the Overpack and Repair Room, one TRUPACT was partially processed through this sequence of operations to verify this portion of the waste handling process as part of the checkout. The successful completion of the CH TRU Preoperational Checkout confirmed the acceptability of WIPP operating procedures, personnel, equipment, and techniques. Extrapolation of time-line data using a computer simulation model of the waste handling process has confirmed that WIPP operations can achieve the design throughput capability of 500,000 ft 3 /year, if required, using two waste handling shifts. The single shift throughput capability of 273,000 ft 3 /year exceeds the anticipated operating receival rate of about 230,000 ft 3 /year. At the 230,000 ft 3 /year rate, the combined CH TRU annual operator dose and the average individual dose (based on minimum crew size) is projected to be 13.7 rem and 0.7 rem, respectively. 6 refs., 27 figs., 3 tabs

  19. 76 FR 72311 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-11-23

    ..., subject to certain continued verification and monitoring conditions; and (2) to use the Delisting Risk... wastes, EPA has already made the determination based on lengthy and thorough LDR rulemakings that... ash. Response 8. The Delisting Program and the LDR program serve different purposes and because they...

  20. Final disposal of decommissioning wastes in the Federal Republic of Germany

    Energy Technology Data Exchange (ETDEWEB)

    Brewitz, W; Stippler, R

    1981-01-01

    The waste disposal concept of the Federal Republic of Germany for nuclear power plants provides for the final disposal of radioactive waste in deep geological formations and mines. The radiological safety of such a repository depends on a system of multiple barriers of which the geological barrier is the most important one. The isolation concept must guarantee the waste to decay below the limiting values of the German Radiation Protection Regulation within the repository. The expected total decommissioning waste masses from 12 nuclear power plants operating in the Federal Republic of Germany amounts to approxiametly 85000 Mg. For the final disposal of these wastes there are, under present aspects, two mines being considered as repositories. The pilot repository in the Asse II salt mine is in the state of licensing. The adandoned iron ore mine Konrad is being investigated for its feasibility and licensing will probably be initiated in 1982. Capacity and efficiency calculations have proved that both mines have got the technical requirements needed for the disposal of decommissioning and operating wastes from existent as well as from future built nuclear power plants.

  1. Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-03-01

    Although the Federal Facility Agreement (FFA) addresses the entire Oak Ridge Reservation, specific requirements are set forth for the liquid low-level radioactive waste (LLLW) storage tanks and their associated piping and equipment, tank systems, at ORNL. The stated objected of the FFA as it relates to these tank systems is to ensure that structural integrity, containment and detection of releases, and source control are maintained pending final remedial action at the site. The FFA requires that leaking LLLW tank systems be immediately removed from service. It also requires the LLLW tank systems that do not meet the design and performance requirements established for secondary containment and leak detection be either upgraded or replaced. The FFA establishes a procedural framework for implementing the environmental laws. For the LLLW tank systems, this framework requires the specified plans and schedules be submitted to EPA and TDEC for approval within 60 days, or in some cases, within 90 days, of the effective date of the agreement

  2. Heat transfer enhanced microwave process for stabilization of liquid radioactive waste slurry. Final report

    International Nuclear Information System (INIS)

    White, T.L.

    1995-01-01

    The objectve of this CRADA is to combine a polymer process for encapsulation of liquid radioactive waste slurry developed by Monolith Technology, Inc. (MTI), with an in-drum microwave process for drying radioactive wastes developed by Oak Ridge National Laboratory (ORNL), for the purpose of achieving a fast, cost-effectve commercial process for solidification of liquid radioactive waste slurry. Tests performed so far show a four-fold increase in process throughput due to the direct microwave heating of the polymer/slurry mixture, compared to conventional edge-heating of the mixer. We measured a steady-state throughput of 33 ml/min for 1.4 kW of absorbed microwave power. The final waste form is a solid monolith with no free liquids and no free particulates

  3. Argentine project for the final disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Palacios, E.; Ciallella, N.R.; Petraitis, E.J.

    1989-01-01

    From 1980 Argentina is carrying out a research program on the final disposal of high level radioactive wastes. The quantity of wastes produced will be significant in next century. However, it was decided to start with the studies well in advance in order to demonstrate that the high level wastes could be disposed in a safety way. The option of the direct disposal of irradiated fuel elements was discarded, not only by the energetic value of the plutonium, but also for ecological reasons. In fact, the presence of a total inventory of actinides in the non-processed fuel would imply a more important radiological impact than that caused if the plutonium is recycled to produce energy. The decision to solve the technological aspects connected with the elimination of high-level radioactive wastes well in advance, was made to avoid transfering the problem to future generations. This decision is based not only on technical evaluations but also on ethic premises. (Author)

  4. Cost analysis for final disposal of double-shell tank waste

    International Nuclear Information System (INIS)

    Seifert, T.W.; Markillie, K.D.

    1996-01-01

    The Cost Analysis For Final Disposal of Double-Shell Tank Waste provides the Department of Energy (DOE) and DOE contractors with a better understanding of costs associated with the transfer, storage, and treatment of liquid mixed wasted within the Double-Shell Tank System (DST). In order to evaluate waste minimization/pollution prevention ideas, it is necessary to have reliable cost data that can be used in cost/benefit analyses; preparation of funding requests and/or proposals; and provide a way for prioritizing and allocating limited resources. This cost per gallon rate will be used by DST waste generators to assess the feasibility of Pollution Prevention Opportunity Assessments (P20A) and to determine the cost avoidances or savings associated with the implementation of those P20As

  5. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    International Nuclear Information System (INIS)

    Collins, M.S.; Borgstrom, C.M.

    2004-01-01

    offsite facilities; and to certify TRU waste onsite using a combination of existing, upgraded, and mobile facilities. DOE issued the Notice of Intent to prepare the HSW EIS on October 27, 1997, and held public meetings during the scoping period that extended through January 30, 1998. In April 2002, DOE issued the initial draft of the EIS. During the public comment period that extended from May through August 2002, DOE received numerous comments from regulators, tribal nations, and other stakeholders. In March 2003, DOE issued a revised draft of the HSW EIS to address those comments, and to incorporate disposal of ILAW and other alternatives that had been under consideration since the first draft was published. Comments on the revised draft were received from April 11 through June 11, 2003. This final EIS responds to comments on the revised draft and includes updated analyses to incorporate information developed since the revised draft was published. DOE will publish the ROD(s) in the ''Federal Register'' no sooner than 30 days after publication of the Environmental Protection Agency's Notice of Availability of the final HSW EIS

  6. Data Quality Objectives for Regulatory Requirements for Dangerous Waste Sampling and Analysis; FINAL

    International Nuclear Information System (INIS)

    MULKEY, C.H.

    1999-01-01

    This document describes sampling and analytical requirements needed to meet state and federal regulations for dangerous waste (DW). The River Protection Project (RPP) is assigned to the task of storage and interim treatment of hazardous waste. Any final treatment or disposal operations, as well as requirements under the land disposal restrictions (LDRs), fall in the jurisdiction of another Hanford organization and are not part of this scope. The requirements for this Data Quality Objective (DQO) Process were developed using the RPP Data Quality Objective Procedure (Banning 1996), which is based on the U.S. Environmental Protection Agency's (EPA) Guidance for the Data Quality Objectives Process (EPA 1994). Hereafter, this document is referred to as the DW DQO. Federal and state laws and regulations pertaining to waste contain requirements that are dependent upon the composition of the waste stream. These regulatory drivers require that pertinent information be obtained. For many requirements, documented process knowledge of a waste composition can be used instead of analytical data to characterize or designate a waste. When process knowledge alone is used to characterize a waste, it is a best management practice to validate the information with analytical measurements

  7. Role of the Nuclear Regulatory Authority in the final disposal of radioactive wastes in Argentina

    International Nuclear Information System (INIS)

    Petraitis, E.J.; Siraky, G.; Novo, R.G.

    1998-01-01

    This paper describes briefly the legislative and regulatory framework in which the final disposal of radioactive wastes is carried out in Argentina. The activities of the Nuclear Regulatory Authority (ARN) and the applied approaches in relation to inspection of facilities, safety assessments of associated systems and collaboration in the matter with international agencies are also exposed. (author) [es

  8. Ethical questions within the context of final storage of radioactive wastes

    International Nuclear Information System (INIS)

    Gundelach, H.

    1994-01-01

    This work deals with some ethical questions within the context of final storage of radioactive wastes. The questions concern particularly the hazard or safety in general, the relationship between the protection of present and future generation and the necessary limitation of burdens on future generations. (O.L.)

  9. Phase V storage (Project W-112) Central Waste Complex operational readiness review, final report

    International Nuclear Information System (INIS)

    Wight, R.H.

    1997-01-01

    This document is the final report for the RFSH conducted, Contractor Operational Readiness Review (ORR) for the Central Waste Complex (CWC) Project W-112 and Interim Safety Basis implementation. As appendices, all findings, observations, lines of inquiry and the implementation plan are included

  10. The Michigan high-level radioactive waste program: Final technical progress report

    International Nuclear Information System (INIS)

    1987-01-01

    This report comprises the state of Michigan's final technical report on the location of a proposed high-level radioactive waste disposal site. Included are a list of Michigan's efforts to review the DOE proposal and a detailed report on the application of geographic information systems analysis techniques to the review process

  11. Phase 5 storage (Project W-112) Central Waste Complex operational readiness review, final report

    Energy Technology Data Exchange (ETDEWEB)

    Wight, R.H.

    1997-05-30

    This document is the final report for the RFSH conducted, Contractor Operational Readiness Review (ORR) for the Central Waste Complex (CWC) Project W-112 and Interim Safety Basis implementation. As appendices, all findings, observations, lines of inquiry and the implementation plan are included.

  12. Argentina Nuclear Regulatory Authority and the final disposition gives to radioactive wastes

    International Nuclear Information System (INIS)

    Petraits, E.; Siraky, G.; Novo, R.

    1998-01-01

    This work describes the alignment legislative and regulator in which is carried out the final disposition the radioactive wastes in the Argentina Republic . Timbers the activities are presented the Authority Nuclear Regulator (RNA) and the applied focuses in connection with the inspections to the facilities, the evaluations security the associate systems and the collaboration with the international organizations in this matter

  13. 77 FR 65314 - Missouri: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2012-10-26

    ... application, subject to the limitations of the Hazardous and Solid Waste Amendments of 1984 (HSWA). New... RCRA Cluster XI NESHAPS: Final Standards for 65 FR 42292, 07/10/ 10 CSR 25- Hazardous Air Pollutants 00... 66 FR 35087, 7/ *10 CSR 25- Checklist 188. 03/01. 7.7270(2)(D)6 is excluded from the authorization...

  14. Project Guarantee 1985. Final repository for high-level radioactive wastes: The system of safety barriers

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Final disposal of radioactive waste involves preventing the waste from returning from the repository location into the biosphere by means of successively arranged containment measures known as safety barriers. In the present volume NGB 85-04 of the series of reports for Project 'Guarantee' 1985, the safety barrier system for the type C repository for high-level waste is described. The barrier parameters which are relevant for safety analysis are quantified and associated error limits and data scatter are given. The aim of the report is to give a summary documentation of the safety analysis input data and their scientific background. For secure containment of radioactive waste safety barriers are used which effectively limit the release of radioactive material from the repository (release barriers) and effectively retard the entry of the original radioactive material into the biosphere (time barriers). Safety barriers take the form of both technically constructed containment measures and the siting of the repository in suitable geological formations. The technical safety barrier system in the case of high-level waste comprises: the waste solidification matrix (borosilicate glass), massive steel canisters, encasement of the waste canisters, encasement of the waste canisters in highly compacted bentonite, sealing of vacant storage space and access routes on repository closure. The natural geological safety barriers - the host rock and overlying formations provide sufficiently long deep groundwater flow times from the repository location to the earth's surface and for additional lengthening of radionuclide migration times by means of various chemical and physical retardation mechanisms. The stability of the geological formations is so great that hydrogeological system is protected for a sufficient length of time from deterioration caused, in particular, by erosion. Observations in the final section of the report indicate that input data for the type C repository safety

  15. Comparative overview of dangers, protective measures and risks for the final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-10-01

    The purpose of this report is to present an overview of the anticipated risks of geological disposal of radioactive wastes and to compare these to 'conventional' risks, which voluntarily or involuntarily are associated with human activities and have accompanied mankind for long times. Radioactive wastes which result from the generation of electricity by commercial nuclear reactors as well as those originating from research, industrial and medical applications necessitate prolonged isolation from the biosphere to their long-lived, although decaying, toxicity. Chapter 2 of this report contains a survey of the nature and extent of the potential hazard of radioactive waste, drawing attention to the fact that the toxicity of radionuclides is comparable to that of nonradioactive chemical compounds. The possibility of adverse effects on the public cannot be ruled out for either kind of waste. Current plans aim at the safe and effective disposal of radioactive wastes in deep and stable geological formations which should serve as hosts for engineered final repositories. For a final repository to be suitable, the site chosen should be free from circulating groundwater or the free movement of the groundwater must be strongly restricted. In order to prevent radioactive substances migrating away from the final repository in which they have been placed, it is planned to utilise natural and man-made barriers which function largely independently from each other. Thorough knowledge of the properties of man-made barriers, is as important as knowledge of the natural barriers, which are determined by the geology and hydrogeology of the site of the final repository. This principle of protection is known as a 'multiple-barrier concept' and is considered capable of providing safe disposal of radioactive wastes

  16. 77 FR 56558 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Science.gov (United States)

    2012-09-13

    ... metals (SW-846 Method 6010B except for mercury--SW-846 Method 7471A and selenium--SW-846 Method 7010...- 846 Method 8270C) and metals (SW-846 Method 6010B except for mercury-- SW-846 Method 7470 and selenium...; Chromium--5.0; Lead--5.0; Mercury--0.2; and, Nickel--32.4. 2. Waste Handling and Holding: (A) IBM must...

  17. Evaluation of final waste forms and recommendations for baseline alternatives to group and glass

    Energy Technology Data Exchange (ETDEWEB)

    Bleier, A.

    1997-09-01

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT&E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidate alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT&E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the remaining

  18. Evaluation of final waste forms and recommendations for baseline alternatives to grout and glass

    International Nuclear Information System (INIS)

    Bleier, A.

    1997-09-01

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT ampersand E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidate alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT ampersand E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the

  19. Transport logistics for the transport of radioactive waste form public authorities to the final repository Konrad. Presentation of a simulation model

    International Nuclear Information System (INIS)

    Graffunder, Iris; Karbstein, Lutz

    2012-01-01

    The final repository Konrad will start operation in 2019. The licensed disposal amount of 303.000 m 3 is planned with 10.000 m 3 per year. The waste delivery can be performed by road or rail transport. The infrastructure boundary conditions have to be considered with the transport planning. The transport logistics concept is presented using the examples of the interim storage facilities Lubmin and Karlsruhe. The planned disposal regime for low- and intermediate-level wastes requires a comprehensive logistics concept that provides a delivery according to the schedule. The experience values from transport simulation experiments will be considered in the frame of the planning software EPALKO development as control function and optimization parameters.

  20. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume V of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear energy research and the development, production, and testing of nuclear weapons at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives, which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for created (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the No Action Alternative, which includes only existing of approved waste management facilities, the alternatives for each of the waste-type configurations include Decentralized, Regionalized, and Centralized Alternatives for using existing and operating new waste management facilities. However, the siting, construction, and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  1. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume I of V

    International Nuclear Information System (INIS)

    1997-05-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for treated (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the no action alternative, which includes only existing or approved waste management facilities, the alternatives for each of the waste type configurations include decentralized, regionalized, and centralized alternatives for using existing and operating new waste management facilities. However, the siting, construction and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  2. Final radioactive waste disposal: A European comparison of organization and costs

    International Nuclear Information System (INIS)

    Drasdo, P.

    2000-01-01

    The investigation is aimed to the comparison of organization structures of operators (plants) and governmental institutions concerned with the final disposal of radioactive waste. The study is covering Germany, France, United Kingdom and Sweden. The capital amount of total final disposal costs are the highest in Germany, the lowest in Sweden. This is also true for the final disposal costs that have to be financed by electricity production from nuclear power plants. The reasons for the differences with respect to economic efficiencies, political decisions and technical concepts are discussed

  3. Medicare program; payment policies under the physician fee schedule, five-year review of work relative value units, clinical laboratory fee schedule: signature on requisition, and other revisions to part B for CY 2012. Final rule with comment period.

    Science.gov (United States)

    2011-11-28

    This final rule with comment period addresses changes to the physician fee schedule and other Medicare Part B payment policies to ensure that our payment systems are updated to reflect changes in medical practice and the relative value of services. It also addresses, implements or discusses certain statutory provisions including provisions of the Patient Protection and Affordable Care Act, as amended by the Health Care and Education Reconciliation Act of 2010 (collectively known as the Affordable Care Act) and the Medicare Improvements for Patients and Providers Act (MIPPA) of 2008. In addition, this final rule with comment period discusses payments for Part B drugs; Clinical Laboratory Fee Schedule: Signature on Requisition; Physician Quality Reporting System; the Electronic Prescribing (eRx) Incentive Program; the Physician Resource-Use Feedback Program and the value modifier; productivity adjustment for ambulatory surgical center payment system and the ambulance, clinical laboratory, and durable medical equipment prosthetics orthotics and supplies (DMEPOS) fee schedules; and other Part B related issues.

  4. Issues related to the licensing of final disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Medici, M.A.; Alvarez, D.E.; Lee Gonzales, H.; Piumetti, E.H.; Palacios, E.

    2010-01-01

    The licensing process of a final disposal facility for radioactive waste involves the design, construction, pre-operation, operation, closure and post closure stages. While design and pre-operational stages are, to a reasonable extent, similar to other kind of nuclear or radioactive facilities, construction, operation, closure and post-closure of a radioactive waste disposal facility have unique meanings. As consequence of that, the licensing process should incorporate these particularities. Considering the long timeframes involved at each stage of a waste disposal facility, it is convenient that the development of the project being implemented in and step by step process, be flexible enough as to adapt to new requirements that would arise as a consequence of technology improvements or due to variations in the socio-economical and political conditions. In Argentina, the regulatory Standard AR 0.1.1 establishes the general guideline for the 'Licensing of Class I facilities (relevant facilities)'. Nevertheless, for radioactive waste final disposal facilities a new specific guidance should be developed in addition to the Basic Standard mentioned. This paper describes the particularities of final disposal facilities indicating that a specific licensing system for this type of facilities should be foreseen. (authors) [es

  5. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume I

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 1 of the Final Environmental Impact Statement, analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  6. Organic tanks safety program waste aging studies. Final report, Revision 1

    International Nuclear Information System (INIS)

    Camaioni, D.M.; Samuels, W.D.; Linehan, J.C.

    1998-09-01

    Uranium and plutonium production at the Hanford Site produced large quantities of radioactive byproducts and contaminated process chemicals that are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of saltcakes, metal oxide sludges, and aqueous brine solutions. Tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes might be at risk for fuel-nitrate combustion accidents. This project started in fiscal year 1993 to provide information on the chemical fate of stored organic wastes. While historical records had identified the organic compounds originally purchased and potentially present in wastes, aging experiments were needed to identify the probable degradation products and evaluate the current hazard. The determination of the rates and pathways of degradation have facilitated prediction of how the hazard changes with time and altered storage conditions. Also, the work with aged simulated waste contributed to the development of analytical methods for characterizing actual wastes. Finally, the results for simulants provide a baseline for comparing and interpreting tank characterization data

  7. Organic tanks safety program waste aging studies. Final report, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Camaioni, D.M.; Samuels, W.D.; Linehan, J.C. [and others

    1998-09-01

    Uranium and plutonium production at the Hanford Site produced large quantities of radioactive byproducts and contaminated process chemicals that are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of saltcakes, metal oxide sludges, and aqueous brine solutions. Tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes might be at risk for fuel-nitrate combustion accidents. This project started in fiscal year 1993 to provide information on the chemical fate of stored organic wastes. While historical records had identified the organic compounds originally purchased and potentially present in wastes, aging experiments were needed to identify the probable degradation products and evaluate the current hazard. The determination of the rates and pathways of degradation have facilitated prediction of how the hazard changes with time and altered storage conditions. Also, the work with aged simulated waste contributed to the development of analytical methods for characterizing actual wastes. Finally, the results for simulants provide a baseline for comparing and interpreting tank characterization data.

  8. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Summary

    International Nuclear Information System (INIS)

    1997-05-01

    This Waste Management Programmatic Environmental Impact Statement (WM PEIS) is a nationwide study examining the environmental impacts of managing five types of radioactive and hazardous wastes generated by past and future nuclear defense and research activities at a variety of sites located around the United States. The five waste types are low-level mixed waste (LLMW), low-level waste (LLW), transuranic waste (TRUW), high-level waste (HLW), and hazardous waste (HW)

  9. Publicly administrated nuclear waste management research programme 1994-1996. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vuori, S. [ed.] [VTT Energy, Espoo (Finland)

    1997-09-01

    The main objective of the JYT-programme has been to provide the authorities with independent information and research results relevant for the safety of nuclear waste management. The main emphasis in this research programme has been devoted to the final disposal of spent fuel. The whole area of the research programme has been subdivided into following main topic areas: (1) bedrock structure and stability, rock investigation methods and characteristics and flow of ground water, (2) release of radionuclides from a repository and subsequent transport in the bedrock, (3) performance and safety assessment of repositories and other phases of nuclear waste management, (4) natural analogue studies, (5) waste management technology and costs and (6) socio political and other societal issues and environmental impact assessment.

  10. Publicly administrated nuclear waste management research programme 1994-1996. Final report

    International Nuclear Information System (INIS)

    Vuori, S.

    1997-09-01

    The main objective of the JYT-programme has been to provide the authorities with independent information and research results relevant for the safety of nuclear waste management. The main emphasis in this research programme has been devoted to the final disposal of spent fuel. The whole area of the research programme has been subdivided into following main topic areas: (1) bedrock structure and stability, rock investigation methods and characteristics and flow of ground water, (2) release of radionuclides from a repository and subsequent transport in the bedrock, (3) performance and safety assessment of repositories and other phases of nuclear waste management, (4) natural analogue studies, (5) waste management technology and costs and (6) socio political and other societal issues and environmental impact assessment

  11. Financial compensation for municipalities hosting interim or final disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Barboza, Alex; Vicente, Roberto

    2005-01-01

    Brazilian Law No. 10308 issued November 20, 2001, establishes in its 34th article that 'those municipalities hosting interim or final disposal facilities for radioactive waste are eligible to receive a monthly payment as compensation'. The values of due payments depend on parameters such as volume of wastes and activity and half-lives of the radionuclides. The method to calculating those values was established by the National Commission on Nuclear Energy, the Brazilian regulatory authority, by Resolution No. 10, issued in the August 18, 2003. In this paper we report the application of that method to a low- and intermediate-level radioactive waste interim storage facility at the Nuclear Energy Research Institute. (author)

  12. A product designed for final disposal of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Baboescu, E.; Popescu, I. V.

    2001-01-01

    The product 'metallic barrel - concrete - low level radioactive wastes - 1' (ABBD - 1) was certified according to the company's standard SF ICN/1994, updated 1. The product ABBD -1 is produced according to the following certified technologies: - technology for processing and conditioning of low level radioactive solid wastes; - technology for processing and conditioning of waste ion exchangers from the TRIGA reactor; - technology for conditioning the β - γ radioactive compacts. The product is constituted of a protection shield, the concrete block - radioactive waste, securing high mechanical strength and a high degree of radionuclides retaining, thus ensuring the necessary condition for long time disposal and, finally, the metallic container fulfilling the National Standards of Nuclear Safety for Radioactive Materials Transportation. The metallic container is made of pickled slab, with a 220 l capacity, according to STAS 7683/88 standards. The main characteristics of the product 'ABBD - 1' are: - size: height, 915 ± 10 mm, diameter, 600 ± 5 mm; - mass, 300 - 600 kg; - maximum permissible activity, 6 x 10 9 Bq/ barrel (0.164 Ci/barrel); - equivalent dose rate for gamma radiation at barrel's wall, max. 1 mSv/h (200 mrem/h); - unfixed external contamination, 2 ; - compression strength of concrete block alone, > 5 x 10 6 N/m 2 ; - lixiviation rate, -3 cm/day; - the compact concrete block-radioactive waste is leak-proof and crack-free. The final product is transferred from INR Pitesti to National Repository for Radioactive Waste by railway and road transportation according to the provisions of the National Commission for Nuclear Activity Control as stipulated in the National Standards of Nuclear Safety of Radioactive Materials Transportation

  13. Focal points of future FuE work concerning the final disposal of radioactive wastes (2011-2014)

    International Nuclear Information System (INIS)

    2012-07-01

    The present Federal support concept is the basis for applied fundamental research concerning final disposal of heat generating radioactive wastes. The use-oriented fundamental research is aimed to the development of a scientific-technical basis for the realization of a final repository for heat-generating radioactive wastes and spent nuclear fuel, to the continuous advancement of the state of science and technology with respect to final waste disposal and a substantial contribution to the constitution, development and preservation of scientific-technological competence in the field of nuclear waste management in Germany. The concept includes research and development work concerning final disposal in the host rock salt, clays and crystalline rocks (granite). The research and development main issues are the final disposal system, the system behavior, further topics in relation to final disposal and nuclear materials surveillance.

  14. The final disposal of radioactive wastes as social, political and scientific project - an introduction

    International Nuclear Information System (INIS)

    Brunnengraeber, Achim

    2015-01-01

    The nuclear power production that was productive for two generations produces radioactive wastes that will be a hazardous and financial burden for many future generations. Science, politics, industry and the society are responsible to find a successful solution for the project of final disposal of radioactive wastes. With the fast development of renewable energies with the perspectives of sustainability and other advantages nuclear power will not have a remarkable future. The search for a final repository site is a tremendous governmental, economic and public challenge but can also be seen as a social chance. Democracy could be enforced by this process, public commitment, transparency, co-determination, confidence in political processes are indispensible premises.

  15. Place of the final disposal of short lived dismantling waste; Plats foer slutfoervaring av kortlivat rivningsavfall

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    This report deals with the short-lived low and intermediate level radioactive waste, which will mainly arise from the dismantling of the Swedish nuclear power plants, but also the dismantling of other nuclear facilities. For these installations to be dismantled, there must be the capacity to receive and dispose of dismantling waste. SKB plans to expand the existing final repository for short-lived radioactive waste (SFR) in Forsmark for this purpose. The legislation requires alternatives to the chosen location. The alternate location for the disposal of decommissioning waste SKB has chosen to compare with is a location in the Simpevarp area outside Oskarshamn. There are currently Oskarshamn nuclear power plant and SKB between stock 'CLAB'. The choice of Simpevarp as alternative location is based on that it's one of the places in the country where data on the bedrock is available to an extent that allows an assessment of the prospects for long-term security, such an assessment is actually showing good potential, and that the location provide realistic opportunities to put into practice the disposal of decommissioning waste. At a comparison between the disposal of short-lived decommissioning waste in an extension of SFR with the option to build a separate repository for short-lived decommissioning waste in Simpevarp, the conclusion is that both options offer potentially good prospects for long-term security. The differences still indicated speaks to the Forsmark advantage. Similar conclusions were obtained when comparing the factors of environment, health and social aspects.

  16. The production of fuels and chemicals from food processing wastes & cellulosics. Final research report

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Okos, M.; Burgos, N. [and others

    1997-06-15

    High strength food wastes of about 15-20 billion pounds solids are produced annually by US food producers. Low strength food wastes of 5-10 billion pounds/yr. are produced. Estimates of the various components of these waste streams are shown in Table 1. Waste paper/lignocellulosic crops could produce 2 to 5 billion gallons of ethanol per year or other valuable chemicals. Current oil imports cost the US about $60 billion dollars/yr. in out-going balance of trade costs. Many organic chemicals that are currently derived from petroleum can be produced through fermentation processes. Petroleum based processes have been preferred over biotechnology processes because they were typically cheaper, easier, and more efficient. The technologies developed during the course of this project are designed to allow fermentation based chemicals and fuels to compete favorably with petroleum based chemicals. Our goals in this project have been to: (1) develop continuous fermentation processes as compared to batch operations; (2) combine separation of the product with the fermentation, thus accomplishing the twin goals of achieving a purified product from a fermentation broth and speeding the conversion of substrate to product in the fermentation broth; (3) utilize food or cellulosic waste streams which pose a current cost or disposal problem as compared to high cost grains or sugar substrates; (4) develop low energy recovery methods for fermentation products; and finally (5) demonstrate successful lab scale technologies on a pilot/production scale and try to commercialize the processes. The scale of the wastes force consideration of {open_quotes}bulk commodity{close_quotes} type products if a high fraction of the wastes are to be utilized.

  17. Final waste forms project: Performance criteria for phase I treatability studies

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Hutchins, D.A.; Chodak, P. III

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide open-quotes proof-of-principleclose quotes data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.)

  18. Final waste forms project: Performance criteria for phase I treatability studies

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M. [Oak Ridge National Lab., TN (United States); Hutchins, D.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Chodak, P. III [Massachusetts Institute of Technology (United States)

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide {open_quotes}proof-of-principle{close_quotes} data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.).

  19. ALMA. Calculations of diffusion and radiation doses in connection with final storage of radioactive wastes

    International Nuclear Information System (INIS)

    Gelin, R.; Kjellbert, N.; Stenquist, C.

    1978-09-01

    Calculations of diffusion and radiation doses in connection with final storage of low-lavel and intermediate-level radioactive wastes. The results show that the doses obtained with realistic values of parameters used in the calculations are very low. However, substantially simplified assumption have been applied in the calculations. Thus more detailed models for the description of the diffusion process have to be developed. (E.R.)

  20. Report of comment to the Nuclear Power Inspectorate concerning the final waste repository at Forsmark (SFR)

    International Nuclear Information System (INIS)

    1983-04-01

    The institute gives its support to the construction of the final depository of low and medium level radioactive waste at Forsmark. The main outline has been presented by the Swedish Nuclear Fuel Supply Company in their application. Prior to putting into operation necessary instructions have to be issued and prior to closing the depository its impact on the environment is to be examined. (G.B.)

  1. Treatment and final disposal of nuclear waste. Siting of a deep repository

    International Nuclear Information System (INIS)

    1992-09-01

    Systems and facilities in the program for demonstration deposition of nuclear waste are presented. The siting process is described, from the general studies to the ultimate goal, where a permit to start demonstration deposition has been obtained. National and foreign experiences of siting issues are accounted for. Finally, the structure and plan for work for 1993-98 are outlined. 46 refs, 15 figs, 5 tabs

  2. Codisposal of diminimus levels of low-level radioactive waste and sanitary waste: Final report

    International Nuclear Information System (INIS)

    Chian, E.S.K.; Ghosh, S.B.; Kahn, B.; Giabbai, M.; Pohland, F.G.

    1986-02-01

    Codisposal of low-level radioactive waste (LLRW) with municipal refuse was investigated in two pilot-scale controlled concrete lysimeters; 3.05 m x 3.05 m x 4.28 m that were lined with 0.762 mm (30-mil) HDA Gundline liner, elastomeric polyolefin alloy based high density polyethylene, and had provisions for leachate collection and recirculation. Shredded municipal refuse was placed within the landfills and spiked with radionuclides (Co-58, Sr-85, and Ce-141) at a level of 28 nCi/gm to simulate codisposal of LLRW with municipal refuse. Water was added to simulate normal rainfall events; the extent to which radionuclides and organics were leached from both landfills was recorded. To compare the effect of leachate recirculation on the indicator parameters, leachate recycle was practiced in one of the landfills, while the other was operated as a single-pass system. Analyses on leachate samples, collected from both landfills, included detection of Co-58, Sr-85, and Ce-141 along with pH, ORP, conductivity, total alkalinity, COD, BOD 5 , TOC, volatile fatty acids (acetic, propionic, isobutyric, butyric, and valeric), sulfide, chloride, iron, manganese, zinc, nickel, and cobalt. 113 refs., 47 figs., 23 tabs

  3. Final Treatment Center Project for Liquid and Wet Radioactive Waste in Slovakia

    International Nuclear Information System (INIS)

    Kravarik, K.; Stubna, M.; Pekar, A.; Krajc, T.; Zatkulak, M.; Holicka, Z.; Slezak, M.

    2006-01-01

    The Final Treatment Center (FTC) for Mochovce nuclear power plant (NPP) is designed for treatment and final conditioning of radioactive liquid and wet waste produced from plant operation. Mochovce NNP uses a Russian VVER-440 type reactor. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia has been chosen as main contractor for technological part of FTC. This paper describes the capacity, flow chart, overall waste flow and parameters of the main components in the FTC. The initial project was submitted for approval to the Slovak Electric plc. in 2003. The design and manufacture of main components were performed in 2004 and 2005. FTC construction work started early in 2004. Initial non-radioactive testing of the system is planned for summer 2006 and then radioactive tests are to be followed. A one-year trial operation of facility is planned for completion in 2007. SE - VYZ will be operates the FTC during trial operation and after its completion. SE - VYZ is subsidiary company of Slovak Electric plc. and it is responsible for treatment with radioactive waste and spent fuel in the Slovak republic. SE - VYZ has, besides of other significant experience with operation of Jaslovske Bohunice Treatment Centre. The overall capacity of the FTC is 870 m 3 /year of concentrates and 40 m 3 /year of spent resin and sludge. Bituminization and cementation were provided as main technologies for treatment of these wastes. Treatment of concentrate is performed by bituminization. Concentrate and bitumen are metered into a thin film evaporator with rotating wiping blades. Surplus water is evaporated and concentrate salts are embedded in bitumen. Bitumen product is discharged into 200 l steel drums. Spent resin and sludge are decanted, dried and mixed with bitumen. These mixtures are also discharged into 200 l steel drums. Drums are moved along bituminization line on a roller

  4. Destructive and non-destructive tests for radioactive waste packages Task 3 Characterization of radioactive waste forms. A series of final reports (1985-89) No 43

    International Nuclear Information System (INIS)

    Odoj, R.

    1991-01-01

    On the basis of preliminary waste acceptance requirements quality control of radioactive waste has to be performed prior to interim storage or final disposal. The quality control can either be achieved by random tests on conditioned radioactive waste packages or by process qualification of the conditioning processes. One of the most important criteria is the activity of the radioactive waste product or packages. To get some first information on the waste package γ-spectrometric measurement is performed as non-destructive test. Besides the γ-emitting nuclides the α and β-emitting nuclides can be estimated by calculation if the waste was generated in nuclear power plants and the nuclide relations are known. If the non-destructive determination of nuclides is not sufficient or the non-radioactive content of the waste packages has to be identified sampling from the waste packages has to be performed. This can best be done by core drilling. To avoid the need of water for cooling the drill head, air cooled core drilling is investigated. As mixed wastes is not allowed for final disposal the determination of possible organic toxic materials like PCB, dioxin and furane-compounds in cemented wastes is conducted by GC-MS-investigations. For getting more knowledge in the field of process qualification concerning super compaction, instrumentation of the super compaction process is investigated and tested

  5. Final disposal of radioactive wastes in Switzerland: concept and overview of Project Guarantee 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The validity of the operational licences of the existing Swiss nuclear power plants (NPP) Beznau I and II, Muehleberg, Goesgen and Leibstadt after 31st. December 1985 is, because of official requirements, dependent on the demonstration of permanent, safe management and final disposal of radioactive waste. For this purpose, the NPP companies have to prepare a so-called guarantee project and present this to the Bundesrat for review. The appropriate investigations and research have been carried out by Nagra (National Cooperative for the Storage of Radioactive Waste). The 1985 Project Gewaehr (Guarantee) is described in an eight volume report NGB 85-01 to 85-08 and individual research projects are reported on in separate NTB-series reference reports. The present volume NGB 85-01 takes the form of a self-contained project overview in which the concepts for nuclear waste management are described, the contents of the remaining volumes NGB 85-02 to 85-08 are summarized and Project conclusions are drawn from Project Gewaehr 1985. Project Gewaehr 1985 covers two repository types: Type C repository for high-level and certain alpha-containing intermediate-level waste, and Type B repository for all remaining intermediate- and low-level waste. The Project shows in detail that technical feasibility of final disposal can be assumed given presently available methods, that the technical safety barriers show a high level of efficiency and that suitable geological options are available to ensure long-term safety in Switzerland as the concept is defined by official requirements. The Project safety analyses show that the chosen disposal concepts assure the protection of mankind and the environment under all realistically anticipated conditions

  6. Improved electrical efficiency and bottom ash quality on waste combustion plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Peter A.; Nesterov, I.; Boejer, M.; Hyks, J.; Astrup, T.; Kloeft, H.; Dam-Johansen, K.; Lundtorp, K.; Hedegaard Madsen, O.; Frandsen, F. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. (Author)

  7. Program reference schedule baseline

    International Nuclear Information System (INIS)

    1986-07-01

    This Program Reference Schedule Baseline (PRSB) provides the baseline Program-level milestones and associated schedules for the Civilian Radioactive Waste Management Program. It integrates all Program-level schedule-related activities. This schedule baseline will be used by the Director, Office of Civilian Radioactive Waste Management (OCRWM), and his staff to monitor compliance with Program objectives. Chapter 1 includes brief discussions concerning the relationship of the PRSB to the Program Reference Cost Baseline (PRCB), the Mission Plan, the Project Decision Schedule, the Total System Life Cycle Cost report, the Program Management Information System report, the Program Milestone Review, annual budget preparation, and system element plans. Chapter 2 includes the identification of all Level 0, or Program-level, milestones, while Chapter 3 presents and discusses the critical path schedules that correspond to those Level 0 milestones

  8. 1995 Baseline solid waste management system description

    International Nuclear Information System (INIS)

    Anderson, G.S.; Konynenbelt, H.S.

    1995-09-01

    This provides a detailed solid waste system description that documents the treatment, storage, and disposal (TSD) strategy for managing Hanford's solid low-level waste, low-level mixed waste, transuranic and transuranic mixed waste, and greater-than-Class III waste. This system description is intended for use by managers of the solid waste program, facility and system planners, as well as system modelers. The system description identifies the TSD facilities that constitute the solid waste system and defines these facilities' interfaces, schedules, and capacities. It also provides the strategy for treating each of the waste streams generated or received by the Hanford Site from generation or receipt through final destination

  9. Gamma-ray spectrometry method used for radioactive waste drums characterization for final disposal at National Repository for Low and Intermediate Radioactive Waste--Baita, Romania.

    Science.gov (United States)

    Done, L; Tugulan, L C; Dragolici, F; Alexandru, C

    2014-05-01

    The Radioactive Waste Management Department from IFIN-HH, Bucharest, performs the conditioning of the institutional radioactive waste in concrete matrix, in 200 l drums with concrete shield, for final disposal at DNDR - Baita, Bihor county, in an old exhausted uranium mine. This paper presents a gamma-ray spectrometry method for the characterization of the radioactive waste drums' radionuclides content, for final disposal. In order to study the accuracy of the method, a similar concrete matrix with Portland cement in a 200 l drum was used. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.

  10. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes. Final Report

    International Nuclear Information System (INIS)

    Lidstrom, Mary E.

    2003-01-01

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions

  11. Low-level waste disposal site performance assessment with the RQ/PQ methodology. Final report

    International Nuclear Information System (INIS)

    Rogers, V.C.; Grant, M.W.; Sutherland, A.A.

    1982-12-01

    A methodology called RQ/PQ (retention quotient/performance quotient) has been developed for relating the potential hazard of radioactive waste to the natural and man-made barriers provided by a disposal facility. The methodology utilizes a systems approach to quantify the safety of low-level waste disposed in a near-surface facility. The main advantages of the RQ/PQ methodology are its simplicity of analysis and clarity of presentation while still allowing a comprehensive set of nuclides and pathways to be treated. Site performance and facility designs for low-level waste disposal can be easily investigated with relatively few parameters needed to define the problem. Application of the methodology has revealed that the key factor affecting the safety of low-level waste disposal in near surface facilities is the potential for intrusion events. Food, inhalation and well water pathways dominate in the analysis of such events. While the food and inhalation pathways are not strongly site-dependent, the well water pathway is. Finally, burial at depths of 5 m or more was shown to reduce the impacts from intrusion events

  12. Safety analysis of the transportation of radioactive waste to the Konrad final repository

    International Nuclear Information System (INIS)

    Sentuc, F.N.; Bruecher, W.

    2010-01-01

    A transport risk assessment study has been conducted for transport of radioactive waste with negligible heat-generation to the German final repository Konrad. This study is a revision of the former Konrad Transport Study performed by GRS in 1991 implementing updated waste data among other improved methods and assumptions for the purpose of a more realistic approach to risk assessment. The first part of the transport risk assessment study concerns the radiological consequences from normal (accident-free) transportation of radioactive material, i.e. the radiation exposure of transport personnel and the public. Based on the assessed detailed information on transport arrangements and on the average number and radiological characteristics of waste packages the maximum annual effective doses for the representative persons were estimated. The risk associated with transport incidents and accidents has been quantified for the area within a radius of 25 km around the repository site. The probabilistic method adopted in this study considers parameters as the frequency and severity of railway or road accidents, characteristics of radioactive waste and transport packagings and the frequency of atmospheric dispersion conditions. From a large set of parameter combinations the spectrum of potential radiological consequences and of the associated probability of occurrence was assessed. (orig.)

  13. Radiant energy dissipation during final storage of high-level radioactive waste in rock salt

    International Nuclear Information System (INIS)

    Ramthun, H.

    1981-08-01

    A final disposal concept is assumed where the high-active waste from 1400 t of uranium, remaining after conditioning, is solidified in borosilicate glass and distributed in 1.760 waste casks. These containers 1.2 m in height and 0.3 m in diameter are to be buried 10 years after the fuel is removed from the reactor in the 300 m deep boreholes of a salt dome. For this design the mean absorbed dose rates are calculated in the glass die (3.9 Gy/s), the steel mantle (0.26 Gy/s) and in the salt rock (0.12 Gy/s at a distance of 1 cm and 0.034 Gy/s at a distance of 9 cm from the container surface) valid at the beginning of disposal. The risk involved with these amounts of stored lattice energy is shortly discussed. (orig.) [de

  14. GTS Duratek, phase I Hanford low-level waste melter tests: Final report

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense waste stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the final report on testing performed by GTS Duratek Inc. in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The report contains description of the tests, observations, test data and some analysis of the data as it pertains to application of this technology for LLW vitrification. The document also contains summaries of the melter offgas reports issued as separate documents for the 100 kg melter (WHC-SD-WM-VI-028) and for the 1000 kg melter (WHC-SD-WM-VI-029)

  15. Temperature loading and rocks mechanics at final storage of radioactive waste

    International Nuclear Information System (INIS)

    Leijon, B.; Stephansson, O.

    1979-01-01

    This report describes the rock mechanical effects - in the far field - from the thermal loading at a final storage of radioactive waste in crystalline rocks. The stress distribution of a two-storey storage is described in more details. The temperature rise in a final storage of radiactive waste will create thermal stresses which may cause a failure of the rock mass, and thereby an increase of its permeability. However, the state of stress in the Earth's crust is able to neutralize the thermal stresses. By this analysis we have been able to demonstrate that the thermal stresses due to heat conduction from the final storage are compensated by the state of stress in the upper part of the crust. The absolute stress, which is the superposition of thermal stress and virgin rock stress, is in all cases found to be below the limit of failure due to frictional resistance between surfaces of constituent blocks in the rock mass. Failure by sliding friction is the most conservative failure criterion for a rock mass. (author)

  16. Final report of the project performance assessment and economic evaluation of nuclear waste management

    International Nuclear Information System (INIS)

    Rasilainen, K.; Anttila, M.; Hautojaervi, A.

    1993-05-01

    The publication is the final report of project Performance Assessment and Economic Evaluation of Nuclear Waste Management (TOKA) at the Nuclear Engineering Laboratory of VTT (Technical Research Centre of Finland), forming part of the Publicly Financed Nuclear Waste Management Research Programme (JYT). The project covers safety and cost aspects of all phases of nuclear waste management. The main emphasis has been on developing an integrated system of models for performance assessment of nuclear waste repositories. During the four years the project has so far been in progress, the total amount of work has been around 14 person-years. Computer codes are the main tools in the project, they are either developed by the project team or acquired from abroad. In-house model development has been especially active in groundwater flow, near-field and migration modelling. The quantitative interpretation of Finnish tracer experiments in the laboratory and natural analogue studies at Palmottu support performance assessments via increased confidence in the migration concepts used. The performance assessment philosophy adopted by the team consists of deterministic modelling and pragmatic scenario analysis. This is supported by the long-term experience in practical performance assessment of the team, and in theoretical probabilistic modelling exercises. The radiological risks of spent fuel transportation from the Loviisa nuclear power plant to Russia have been analysed using a probabilistic computer code and Finnish traffic accident statistics. The project assists the authorities in the annual assessment of utility estimates of funding needs for future nuclear waste management operations. The models and methods used within the project are tested in international verification/validation projects

  17. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits, Area 5 Waste Management Division, Nevada National Security Site, Final CQA Report

    International Nuclear Information System (INIS)

    2012-01-01

    The report is the Final Construction Quality Assurance (CQA) Report for the 92-Acrew Evapotranspiration Cover, Area 5 Waste Management Division Retired Mixed Waste Pits, Nevada National Security Site, Nevada, for the period of January 20, 2011, to January 31, 2012 The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.

  18. Radiation damage and waste management options for the sombrero final focus system and neutron dumps

    International Nuclear Information System (INIS)

    Reyes, S.; Latkowski, J.F.; Meier, W.R.; Reyes, S.

    2000-01-01

    Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were not addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three-dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view. (authors)

  19. Combined methods for liquid radioactive waste treatment. Final report of a co-ordinated research project 1997-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    The report contains 13 papers presented at the final research co-ordination meeting of the CRP. The subjects covered include processes and technologies for treatment and conditioning of liquid radioactive wastes. It quite often includes the application of several steps, such as filtration, precipitation, sorption, ion exchange, evaporation and/or membrane separation to meet the requirements both for the release of decontaminated effluents into the environment and the conditioning of waste concentrates for disposal. Combination of the processes and their consecutive or simultaneous application is also described. It results in an improved decontamination, waste volume reduction, safety and overall cost effectiveness in the treatment, conditioning and disposal of these wastes.

  20. Combined methods for liquid radioactive waste treatment. Final report of a co-ordinated research project 1997-2001

    International Nuclear Information System (INIS)

    2003-02-01

    The report contains 13 papers presented at the final research co-ordination meeting of the CRP. The subjects covered include processes and technologies for treatment and conditioning of liquid radioactive wastes. It quite often includes the application of several steps, such as filtration, precipitation, sorption, ion exchange, evaporation and/or membrane separation to meet the requirements both for the release of decontaminated effluents into the environment and the conditioning of waste concentrates for disposal. Combination of the processes and their consecutive or simultaneous application is also described. It results in an improved decontamination, waste volume reduction, safety and overall cost effectiveness in the treatment, conditioning and disposal of these wastes

  1. Development of safety-relevant components for the transport and handling of final storage casks for waste from decommissioning

    International Nuclear Information System (INIS)

    Bruening, D.; Geiser, H.; Kloeckner, F.; Rittscher, D.; Schlesinger, H.J.

    1992-10-01

    The aim of the study was the development, construction and testing of a transportation system that is able to transport cylindrical waste containers as well as containers from the deliverer to the 'KONRAD' final repository. A transport palette has been developed that can carry two cylindrical waste containers with type B requirement or classification II. An Open-All-Container for the transport of palettes and 'KONRAD' containers has been developed. A storage of cylindrical waste containers and containers in the final repository is possible with the newly developed transportation system. Safety specifications of the transportation system have been passed successfully. (orig.). 30 refs., 8 tabs., 74 figs [de

  2. The role of barriers in the final storage of alpha-contaminated waste

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1981-01-01

    The long-term safety of the final storage of waste, for which durations of the order of 10 4 -10 5 years may reasonably be foreseen, is based on the use of various barriers. The first barrier, which is essential in intermediate storage, should have the lowest possible leaching rate in order to play its part in final storage. The role of the second barrier is to provide protection to the first or to serve as a constituent of the overall protection system. The third barrier is expected to be the artificial barrier with the longest lifetime, and should be combined with the fourth so as to add to its effectiveness. The safety analysis should thus study the overall behaviour of the barriers as a whole, which should ensure a very high degree of safety, and also take into account the hazard of intrusion, intentional or otherwise, by future generations. (author)

  3. The formation of aerosol particles during combustion of biomass and waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hjerrild Zeuthen, J

    2007-05-15

    This thesis describes the formation of aerosol particles during combustion of biomass and waste. The formation of aerosol particles is investigated by studying condensation of alkali salts from synthetic flue gasses in a laboratory tubular furnace. In this so-called laminar flow aerosol condenser-furnace gaseous alkali chlorides are mixed with sulphur dioxide, water vapour and oxygen. At high temperatures the alkali chloride reacts with sulphur dioxide to form alkali sulphate. During subsequent cooling of the synthetic flue gas the chlorides and sulphates condense either as deposits on walls or on other particles or directly from the gas phase by homogenous nucleation. A previously developed computer code for simulation of one-component nucleation of particles in a cylindrical laminar flow is extended to include a homogeneous gas phase reaction to produce gaseous alkali sulphate. The formation of aerosol particles during full-scale combustion of wheat straw is investigated in a 100 MW grate-fired boiler. Finally, aerosols from incineration of waste are investigated during full-scale combustion of municipal waste in a 22 MW grate-fired unit. (BA)

  4. Process integration and waste heat recovery in Lithuanian and Danish industry. Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The present document forms the Final Report for the first phase of the project `Process Integration and Waste Heat Recovery in Lithuanian and Danish Industry`. The project is carried out in the period 1995-1998 in a co-operation between the COWI offices in Lyngby and Vilnius, The Technical University of Denmark (Institute for Energetics), Kaunas University of Technology (CIPAI) and Vilnius Technical University, financed by The Danish Ministry of Energy`s EFP-95-programme, Lithuanian Energy Agency as well as the participants. The first phase of the project has comprised the establishment of the CIPAI centre (Centre for Industrial Process Analysis and Integration) at Kaunas University of Technology, training and knowledge transfer as well as elaboration of 6 industrial case-studies within the area of `Process Integration and waste Heat Recovery`. The second phase of the project has comprised R and D activities in this area in order to present general conclusions from the project as well as to present new and improved methods and tools for PI-analysis. The aim of the Final Report for the first phase of the project is to summarise project activities and the achieved results from case-studies and from the operation of the CIPAI-centre in general. (au)

  5. Responsibility, safety and certainty. A new consensus on nuclear waste disposal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-05-25

    With the consent of all parties represented in the Bundestag, the Federal Republic of Germany resolved to properly end the use of nuclear energy for power generation. The legal framework for the energy transition is provided by the consensus reached on nuclear energy in 2001 and the Nuclear Power Phase-Out Act (Atomgesetz, hereinafter: Atomic Energy Act) passed in 2002 and amended in 2011, together with the Renewable Energy Sources Act (Erneuerbare-Energien-Gesetz, hereinafter: Renewable Energy Act), the Energy Industry Act (Energiewirtschaftsgesetz) and extensive provisions on accelerating the construction of power lines in Germany. Nuclear energy plants will have gradually phased out their power generation operations by the end of the year 2022. The decision to phase out nuclear power plants has entailed major changes in radioactive waste management - dismantling, packaging spent fuel in containers, and interim storage and final disposal. For one thing, the amount of radioactive waste requiring final storage is now easier to calculate and to limit, in contrast with periods of indefinite operation. Limiting the operating lives of nuclear plants also shortens the period in which assets can be generated for the decreased amounts of high-level, intermediate-level and low-level waste. Along with the phase-out, the rapidly expanding renewable energy market and continued integration into the European Single Market has changed market conditions for nuclear power plant operators. Not only have new market participants joined the competition for power generation - due to a surplus and, ultimately, to price erosion in the international fuel markets, stock market prices for power have dropped dramatically. This has affected nuclear power plant operators in particular, because of their large share in conventional power generation.

  6. The suitability of Finnish bedrock to the final disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Vuorela, P.; Hakkarainen, V.

    1982-12-01

    A regional investigation of the suitability of Finnish bedrock to the final disposal of high-level radioactive waste is described. International geological criteria are applied to Finnish bedrock conditions. The main bedrock units are classified into different areas as concerning to recommendations for further site selection investigations. The Pre-Cambrian crystalline rocks are generally of tight and strong composition and a major problem from the standpoint of waste disposal is fracturing. On the other hand, fractures are quite unevenly distributed in Finland and the bedrock seems to consist of stabile blocks surrounded by fracture zones. Crustal movements between the different bedrock blocks are in Finland at most only tenths of millimeters a year, and the movements are concentrated in the fracture zones. The fracture pattern also controls the hydrogeological system of the bedrock as the main groundwater flow occurs along the fractures. The fracturing thus has an influence on the stability as well as the hydrogeological conditions of the bedrock. The regional recommendations for further site selection studies are based on geological criteria, such as fracturing, seismisity and economic resources. Other criteria, such as topography and erosion, are less significant in comparison. A number of different criteria are likely to prove significant later in more detailed local site investigation studies. The most favorable regions for more detailed investigations contain the granitic rocks of Central Finland and some of them are also to be found in northern and eastern parts of the country. Almost none of the main bedrock units can be classified as completely unsuitable for site selection investigations. Massifs large enough for the final disposal of high-level radioactive waste can be found through detailed surveys in most parts of Finland because of the heterogeneity of the bedrock

  7. α-waste conditioning concepts on the basis of waste arisings, actinide distribution and their influence on final disposal products

    International Nuclear Information System (INIS)

    Krause, H.; Scheffler, K.

    1978-01-01

    Among the wastes arising from the reprocessing and Pu-fuel element fabrication plants, only seven waste streams contain the major part of the actinides going into the radioactive waste. It is shown that the liquid α-waste from fuel element fabrication, the high level liquid waste, and the active fraction of the medium level liquid waste can be incorporated into borosilicate glass. Wet combustion of solid burnable waste allows a relatively easy and complete recovery of plutonium. Leached hulls, sludges from feed clarification and solid non-combustible wastes can be incorporated into concrete. These treatment methods guarantee that only relatively small amounts of high quality α-bearing residues have to be disposed of

  8. WasteChem Corporation's Volume Reduction and Solidification (VRS) system for low-level radwaste treatment: Final report

    International Nuclear Information System (INIS)

    1988-01-01

    Since 1965, low and medium level radwastes from nuclear power stations, reprocessing plants and nuclear research centers have been stabilized using the Volume Reduction and Solidification (VRS) system. The VRS system uses an extruder/evaporator to evaporate the liquids from waste influents, while simultaneously incorporating the remaining radioactive solids in an asphalt binder. In the period 1965 to 1986 a minimum of 700,000 cubic feet of wastes have been processed with the VRS system. This report provides current operating data from various systems including the volume reduction factors achieved, and the progress of start-ups in the US. The report also provides previously unpublished experience with mixed wastes including uranium raffinate and nitrate-bearing sludges from surface impoundments. VRS systems in the US are currently operating at the Palisades and Hope Creek nuclear stations. These systems produce a variety of waste types including boric acid, bead resin, sodium sulfate and powdered resins. There are three start-ups of VRS systems scheduled in the US in 1987. These systems are at Fermi 2, Seabrook, and Nine Mile Point 2. Overseas, the startup of new systems continues with three VRS process lines coming on-line at the LaHague Reprocessing Center in France in 1986 and a start-up scheduled for 1987 at the Laguna Verde plant in Mexico. The US systems are operating continuously and with little required maintenance. Data on maintenance and the operator exposure are provided in this report. 6 refs., 11 figs., 13 tabs

  9. Radioactive waste from non-licensed activities - identification of waste, compilation of principles and guidance, and proposed system for final management

    International Nuclear Information System (INIS)

    Jones, C.; Pers, K.

    2001-07-01

    Presently national guidelines for the handling of radioactive waste from non-licensed activities are lacking in Sweden. Results and information presented in this report are intended to form a part of the basis for decisions on further work within the Swedish Radiation Protection Institute on regulations or other guidelines on final management and final disposal of this type of waste. An inventory of radioactive waste from non-licensed activities is presented in the report. In addition, existing rules and principles used in Sweden - and internationally - on the handling of radioactive and toxic waste and non-radioactive material are summarized. Based on these rules and principles a system is suggested for the final management of radioactive material from non-licensed activities. A model is shown for the estimation of dose as a consequence of leaching of radio-nuclides from different deposits. The model is applied on different types of waste, e.g. peat ashes, light concrete and low-level waste from a nuclear installation

  10. Transport of radioactive wastes to the planned final waste repository Konrad: Radiation exposure resulting from normal transport and radiological risks from transport accidents

    International Nuclear Information System (INIS)

    Lange, F.; Fett, H.J.; Gruendler, D.; Schwarz, G.

    1993-01-01

    Radiation exposures of members of critical groups of the general population and of transport personnel resulting from normal transport of radioactive wastes to the planned final waste repository Konrad have been evaluated in detail. By applying probabilistic safety assessment techniques radiological risks from transport accidents have been analysed by quantifying potential radiation exposures and contaminations of the biosphere in connection with their expected frequencies of occurrence. The Konrad transport study concentrates on the local region of the waste repository, where all transports converge. (orig.) [de

  11. Start of Final Assembly of the CMS Barrel Yoke on schedule at P5 the 1st august, 2000. I

    CERN Multimedia

    Hubert Gerwig, CERN/ EP-CMI

    2000-01-01

    The Barrel Yoke and the vacuumtank weigh 6500 tonnes. The barrel Yoke consists of 5 rings eacu one weighing 1200 tonnes. The vacuum tank is a stainless steel structure weighing 270 tonnes (length = 13 m , outer diamter 7.6 m) The final assembly of these items will take approximately 1 year from now on.

  12. 76 FR 72438 - Certain Steel Nails From the United Arab Emirates; Scheduling of the Final Phase of Antidumping...

    Science.gov (United States)

    2011-11-23

    ..., shaft lengths and shaft diameters. Finishes include, but are not limited to, coating in vinyl, zinc...://www.usitc.gov ). The public record for this investigation may be viewed on the Commission's electronic... prehearing staff report in the final phase of this investigation will be placed in the nonpublic record on...

  13. 77 FR 74472 - Notice of Availability of the Final Tank Closure and Waste Management Environmental Impact...

    Science.gov (United States)

    2012-12-14

    ... operations, including disposal of low-level radioactive waste and mixed low-level radioactive waste. The... production activities. These activities created a wide variety of chemical and radioactive wastes. Hanford's... of the mission includes the retrieval and treatment of waste from 177 underground radioactive waste...

  14. Crystallization behavior of nuclear waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.; Lokken, R.O.; May, R.P.; Wald, J.W.

    1981-09-01

    Several waste form options have been or are being developed for the immobilization of high-level wastes. The final selection of a waste form must take into consideration both waste form product as well as process factors. Crystallization behavior has an important role in nuclear waste form technology. For glass or vitreous waste forms, crystallization is generally controlled to a minimum by appropriate glass formulation and heat treatment schedules. With glass ceramic waste forms, crystallization is essential to convert glass products to highly crystalline waste forms with a minimum residual glass content. In the case of ceramic waste forms, additives and controlled sintering schedules are used to contain the radionuclides in specific tailored crystalline phases

  15. Where are the differences between France and the Federal Republic of Germany in the final storage of radioactive waste?

    International Nuclear Information System (INIS)

    Kuehn, K.

    1990-01-01

    Given similar points of departure in the two countries compared here, the differences in the goals of final storage do not seem to be too marked. The state is responsible and executes the projects by working through state organizations. The practical execution of theses tasks, however, is characterized by major discrepancies. While most of the radioactive waste in France is disposed of by shallow land burial, all radioactive waste in the Federal Republic from the outset had been planned for final storage in an underground repository. Different waste categories result from this difference between the two countries. Other differences can be found in the progress attained in final storage. In France, shallow land burial of waste has been practiced since 1969, while low level radioactive waste was disposed of by repository storage for only one decade in the Federal Republic of Germany; since then, there has only been intermediate storage. Both countries have decided in favor of deep geologic formations to be used for the final storage of high level radioactive waste. The Federal Republic has opted for salt, while France has not yet decided on the type of rock to be used. The main differences, however, are of a political, organizational and administrative nature. In France, nuclear power is accepted by all political parties and receives neutral treatment in most of the media. Neither is true of the Federal Republic of Germany. (orig.) [de

  16. Final Hanford Site Transuranic (TRU) Waste Characterization Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP

  17. Pre-feasibility study for final disposal of radioactive waste. Disposal concepts. Main report

    International Nuclear Information System (INIS)

    Andersen, L.; Skov, C.; Kueter, A.; Schepper, L.; Gottberg Roemer, H.; Refsgaard, A.; Utko, M.; Kristiansen, Torben

    2011-05-01

    This prefeasibility study is part of the overall process related to the decision on placement and design of a repository for the Danish low and medium level radioactive waste primarily from the facilities at Risoe. The prefeasibility study encompasses the preliminary design of a number of repository types based on the overall types set out in the 'Parliamentary decision' together with a preliminary safety assessment of these repository types based on their possible placement in a set of typical Danish geologies. The report consists of three parts. Part I is the descriptive part containing information on the waste to be disposed of, the potential conditioning (packaging) possibilities for the waste before placement in a repository, the suggested preliminary design of the different repository types, and the suggested visual appearance of the repository. Part II is the assessment part. It contains an introduction to the concepts used in the preliminary safety assessment, which encompasses: the assessment of potential long term impact and the assessment of possible accidental incidents. The division of the preliminary safety assessment in to these two categories has several reasons. One is that the criteria to which impact is to be compared are different for the two types of impact, another is that while the possible variation in the long term impact is primarily due to the possible variation in the parameters influencing the impact, the impact from accidental incidents is governed by the probability of the occurrence of these incidents and the potential consequence of the impact, which calls for a different assessment approach. Since the suggestions for packaging of the different waste types is a result of both types of assessments, part II also contains a description of these suggestions based on the preliminary safety assessments. Finally part II contains the costs related to the different types of repositories and the suggested packaging. Part III of the report

  18. Pre-feasibility study for final disposal of radioactive waste. Disposal concepts. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, L.; Skov, C.; Kueter, A.; Schepper, L.; Gottberg Roemer, H.; Refsgaard, A.; Utko, M.; Kristiansen, Torben (COWI A/S, Kgs. Lyngby (Denmark))

    2011-05-15

    This prefeasibility study is part of the overall process related to the decision on placement and design of a repository for the Danish low and medium level radioactive waste primarily from the facilities at Risoe. The prefeasibility study encompasses the preliminary design of a number of repository types based on the overall types set out in the 'Parliamentary decision' together with a preliminary safety assessment of these repository types based on their possible placement in a set of typical Danish geologies. The report consists of three parts. Part I is the descriptive part containing information on the waste to be disposed of, the potential conditioning (packaging) possibilities for the waste before placement in a repository, the suggested preliminary design of the different repository types, and the suggested visual appearance of the repository. Part II is the assessment part. It contains an introduction to the concepts used in the preliminary safety assessment, which encompasses: the assessment of potential long term impact and the assessment of possible accidental incidents. The division of the preliminary safety assessment in to these two categories has several reasons. One is that the criteria to which impact is to be compared are different for the two types of impact, another is that while the possible variation in the long term impact is primarily due to the possible variation in the parameters influencing the impact, the impact from accidental incidents is governed by the probability of the occurrence of these incidents and the potential consequence of the impact, which calls for a different assessment approach. Since the suggestions for packaging of the different waste types is a result of both types of assessments, part II also contains a description of these suggestions based on the preliminary safety assessments. Finally part II contains the costs related to the different types of repositories and the suggested packaging. Part III of the

  19. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 1, Chapters 1--6

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy's (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE's Environmental Management Program. Chapters 1--6 include an introduction, background information, description of the proposed action and alternatives, description of the affected environments, environmental impacts, and consultations and permits

  20. Solid waste containing persistent organic pollutants in Serbia: From precautionary measures to the final treatment (case study).

    Science.gov (United States)

    Stevanovic-Carapina, Hristina; Milic, Jelena; Curcic, Marijana; Randjelovic, Jasminka; Krinulovic, Katarina; Jovovic, Aleksandar; Brnjas, Zvonko

    2016-07-01

    Sustainable solid waste management needs more dedicated attention in respect of environmental and human health protection. Solid waste containing persistent organic pollutants is of special concern, since persistent organic pollutants are persistent, toxic and of high risk to human health and the environment. The objective of this investigation was to identify critical points in the Serbian system of solid waste and persistent organic pollutants management, to assure the life cycle management of persistent organic pollutants and products containing these chemicals, including prevention and final destruction. Data were collected from the Serbian competent authorities, and led us to identify preventive actions for solid waste management that should reduce or minimise release of persistent organic pollutants into the environment, and to propose actions necessary for persistent organic pollutants solid waste. The adverse impact of persistent organic pollutants is multidimensional. Owing to the lack of treatment or disposal plants for hazardous waste in Serbia, the only option at the moment to manage persistent organic pollutants waste is to keep it in temporary storage and when conditions are created (primarily financial), such waste should be exported for destruction in hazardous waste incinerators. Meanwhile, it needs to be assured that any persistent organic pollutants management activity does not negatively impact recycling flows or disturb progress towards a more circular economy in Serbia. © The Author(s) 2016.

  1. Outline of a method for final storage of low- and medium-active waste from possible Danish power reactors

    International Nuclear Information System (INIS)

    Brodersen, K.; Jensen, J.; Oestergaard, K.

    1977-02-01

    A method is outlined for the final storage of Danish low-and medium-active power reactor waste. The waste drums are contained in large concretre blocks placed just below the ground surface. A plant for storing waste by means of this method is sketched. It consists of a system of reinforced concrete pits with the top level with the ground surface. Each pit measures c. 5 x 5 m and is c. 6 m deep. The pits are envisaged cast with a permanent inside, step-like shuttering of thin steel plates. The volume between the drums will be cast with concrete when a pit is filled. Calculations are given of the construction and running costs. It is estimated that the final storage of reactor wastes is only a small problem regarding economy and space, and also that there is hardly doubt that full safety can be achieved. (B.P.)

  2. Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-06-01

    The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the Department of Energy Oak Ridge Field Office (DOE-OR), the US Environmental Protection Agency (EPA)-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA was January 1, 1992. Section 9 and Appendix F of the agreement impose design and operating requirements on the Oak Ridge National Laboratory (ORNL) liquid low-level radioactive waste (LLLW) tank systems and identify several plans, schedules, and assessments that must be submitted to EPA/TDEC for review or approval. The initial issue of this document in March 1992 transmitted to EPA/TDEC those plans and schedules that were required within 60 to 90 days of the FFA effective date. The current revision of this document updates the plans, schedules, and strategy for achieving compliance with the FFA, and it summarizes the progress that has been made over the past year. Chapter 1 describes the history and operation of the ORNL LLLW System, the objectives of the FFA, the organization that has been established to bring the system into compliance, and the plans for achieving compliance. Chapters 2 through 7 of this report contain the updated plans and schedules for meeting FFA requirements. This document will continue to be periodically reassessed and refined to reflect newly developed information and progress

  3. Final disposal options for mercury/uranium mixed wastes from the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Gorin, A.H.; Leckey, J.H.; Nulf, L.E.

    1994-01-01

    Laboratory testing was completed on chemical stabilization and physical encapsulation methods that are applicable (to comply with federal and state regulations) to the final disposal of both hazardous and mixed hazardous elemental mercury waste that is in either of the following categories: (1) waste generated during decontamination and decommissioning (D and D) activities on mercury-contaminated buildings, such as Building 9201-4 at the Oak Ridge Y-12 Plant, or (2) waste stored and regulated under either the Federal Facilities Compliance Agreement or the Federal Facilities Compliance Act. Methods were used that produced copper-mercury, zinc-mercury, and sulfur-mercury materials at room temperature by dry mixing techniques. Toxicity Characteristic Leaching Procedure (TCLP) results for mercury on batches of both the copper-mercury and the sulfur-mercury amalgams consistently produced leachates with less than the 0.2-mg/L Resource Conservation and Recovery Act (RCRA) regulatory limit for mercury. The results clearly showed that the reaction of mercury with sulfur at room temperature produces black mercuric sulfide, a material that is well suited for land disposal. The results also showed that the copper-mercury and zinc-mercury amalgams had major adverse properties that make them undesirable for land disposal. In particular, they reacted readily in air to form oxides and liberate elemental mercury. Another major finding of this study is that sulfur polymer cement is potentially useful as a physical encapsulating agent for mercuric sulfide. This material provides a barrier in addition to the chemical stabilization that further prevents mercury, in the form of mercuric sulfide, from migrating into the environment

  4. Utilization of logging waste from mechanical spruce dominated final cuttings; Koneellisen puunkorjuun hakkuutaehteiden hyoedyntaeminen biopolttoaineena

    Energy Technology Data Exchange (ETDEWEB)

    Ebeling, J [Jaakko Poeyry Consulting Oy, Vantaa (Finland)

    1997-12-01

    The aim of the project has been to improve the economy of collecting logging waste from spruce dominated mechanised final felling. This section of the biomass is regarded as the most promising alternative biofuel source. The project compared different systems of collecting this raw material and concluded, that the most economical way to do this was (1) to integrate the transport of logging waste from the forest to the road side with the transport of logs using the equipment already at the site. The use of a separate tractor proved uneconomical compared to the integrated system. (2) Chip the logging waste at the road side with an integrated chipping and transport lorry (truck) equipped with three 20 feet standard or modified containers. The total cargo space in the lorry is thus around 100 m{sup 3} loose volume. The economical transport distance of this equipment is around under 100 km one way distance. The report contains also detailed drawings of the technical solution arrived at. The main idea is to use a module structure, where the chipper - the Bruks 803CT - is located together with most of the hydraulics, crane and the control equipment. The only outside connections needed are the hydraulic pressure from the pump and the operational unit with the necessary electrical panel. Thus the assembly and installation of the module on the lorry is rapid and the quality of the work can be maintained high. The operation is designed on the basis of one man operation and in such away that the need to for the driver-operator to step down from the controls is minimised. In normal situation the operation can be fully accomplished from the drivers cab - even when changing the containers

  5. Projection of Environmental Pollutant Emissions From Different Final Waste Disposal Methods Based on Life Cycle Assessment Studies in Qazvin City

    Directory of Open Access Journals (Sweden)

    Javad Torkashvand

    2015-12-01

    Full Text Available In the current study, the life cycle assessment (LCA method was used to expect the emissions of different environmental pollutants through qualitative and quantitative analyses of solid wastes of Qazvin city in different final disposal methods. Therefore, four scenarios with the following properties considering physical analysis of Qazvin’s solid wastes, the current status of solid waste management in Iran, as well as the future of solid waste management of Qazvin were described. In order to detect the quantity of the solid wastes, the volume-weighted analysis was used and random sampling method was used for physical analysis. Of course, regarding the method of LCA, it contains all stages from solid wastes generation to its disposal. However, since the main aim of this study was final disposal stage, the emissions of pollutants of these stages were ignored. Next, considering the mixture of the solid waste, the amount of pollution stemming from each of final disposal methods from other cities having similar conditions was estimated. The findings of the study showed that weight combination of Qazvin solid wastes is entirely similar to that of other cities. Thus, the results of this study can be applied by decision makers around the country. In scenarios 1 and 2, emission of leachate containing high amounts of COD and BOD is high and also the highest content of nitrate, which can contaminate water and soil resulting in high costs for their management. In scenarios 3 and 4, the amounts of gaseous pollutants, particularly CO2, as well as nitrogen oxides are very high. In conclusion, the LCA methods can effectively contribute to the management of municipal solid wastes (MSW to control environmental pollutants with least expenses.

  6. Management of C&D waste from generation to final sink - do we forget the volatile harmful substances?

    DEFF Research Database (Denmark)

    Kjeldsen, Peter

    extremely slowly during use. Therefore, the insulation material will still contain large quantities of CFC when the buildings reach the endof-life and are demolished. The management of C&D waste in relation to controlling the CFC releases is basically unregulated in contrast to end-of-life refrigerators...... activities and obtaining CFC destruction either through foam waste incineration or by controlled microbial processes in landfills receiving the foam waste. There are still a lot of unknown processes and factors that need to be investigated before cost-efficient strategies and technologies are finally......Large quantities of construction and demolition waste (C&D waste) are produced. Buildings in many countries are thermally insulated by insulation foam containing large amounts of CFCs (chlorofluorocarbons), which are both strong ozone depleting substances and greenhouse gases. The CFCs are released...

  7. Natural analogues to the conditions around a final repository for high-level radioactive waste

    International Nuclear Information System (INIS)

    Smellie, J.A.T.

    1984-12-01

    This report documents the proceedings resulting from a Workshop held at Lake Geneva, Wisconsin, USA, from 1-3 October, 1984. The theme of the Workshop was entitled 'Natural analogues to the conditions around a final repository for high-level radioactive waste', and was restricted to ultimate disposal in a crystalline bedrock environment. The Workshop provided an important first step in co-ordinating and focussing different national and individual interests and approaches towards natural analogue studies. One of the points highlighted at the concluding forum of the meeting was the necessity to first define the geochemical processes which are assumed to occur after disposal of the radioactive waste, and then locate suitable analogue systems which can be used to test the mechanisms of one, or a simple combination of these geochemical processes. Even accepting that the choice of which geochemical process(es) to be selected for validation will be sensitive to individual national disposal strategies, farfield radionuclide retardation mechanisms in the geosphere were considered to be a central topic of importance, and should therefore be given high priority. At this early stage in the development of natural analogue studies it was not possible to cover all the important aspects. In retrospect, the role of the models should have received more attention; bridging the gap between geoscientists and the modellers was seen as being of prime importance in future meetings of this nature. (author)

  8. Transuranic-contaminated solid waste Treatment Development Facility. Final safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Warner, C.L. (comp.)

    1979-07-01

    The Final Safety Analysis Report (FSAR) for the Transuranic-Contaminated Solid-Waste Treatment Facility has been prepared in compliance with the Department of Energy (DOE) Manual Chapter 0531, Safety of Nonreactor Nuclear Facilities. The Treatment Development Facility (TDF) at the Los Alamos Scientific Laboratory is a research and development facility dedicated to the study of radioactive-waste-management processes. This analysis addresses site assessment, facility design and construction, and the design and operating characteristics of the first study process, controlled air incineration and aqueous scrub off-gas treatment with respect to both normal and accident conditions. The credible accidents having potentially serious consequences relative to the operation of the facility and the first process have been analyzed and the consequences of each postulated credible accident are presented. Descriptions of the control systems, engineered safeguards, and administrative and operational features designed to prevent or mitigate the consequences of such accidents are presented. The essential features of the operating and emergency procedures, environmental protection and monitoring programs, as well as the health and safety, quality assurance, and employee training programs are described.

  9. Transuranic-contaminated solid waste Treatment Development Facility. Final safety analysis report

    International Nuclear Information System (INIS)

    Warner, C.L.

    1979-07-01

    The Final Safety Analysis Report (FSAR) for the Transuranic-Contaminated Solid-Waste Treatment Facility has been prepared in compliance with the Department of Energy (DOE) Manual Chapter 0531, Safety of Nonreactor Nuclear Facilities. The Treatment Development Facility (TDF) at the Los Alamos Scientific Laboratory is a research and development facility dedicated to the study of radioactive-waste-management processes. This analysis addresses site assessment, facility design and construction, and the design and operating characteristics of the first study process, controlled air incineration and aqueous scrub off-gas treatment with respect to both normal and accident conditions. The credible accidents having potentially serious consequences relative to the operation of the facility and the first process have been analyzed and the consequences of each postulated credible accident are presented. Descriptions of the control systems, engineered safeguards, and administrative and operational features designed to prevent or mitigate the consequences of such accidents are presented. The essential features of the operating and emergency procedures, environmental protection and monitoring programs, as well as the health and safety, quality assurance, and employee training programs are described

  10. Final status of the salt repository project waste package program experimental database

    International Nuclear Information System (INIS)

    Thornton, B.M.; Reimus, P.W.

    1988-03-01

    This report describes the final status of the Salt Repository Project Waste Package Program Experimental Database. The data base serves as a clearinghouse for all data collected within the Waste Package Program (WPP) and its predecessor programs at Pacific Northwest Laboratory (PNL). The database was maintained using RS/1 database management software. Documented assurance that the entries in the database were consistent with experimental records was provided by having each experimentalist inspect the entries and signify that they were in agreement with the records. The inspection and signoff were done per PNL technical procedures. Data for which it was impossible to obtain the experimentalist's inspection and signature were segregated from the rest of the database, although they could still be accessed by WPP staff. The WPPED contains two groups of subdirectories. One group contains data taken prior to the installation of quality assurance procedures at PNL. The other group of subdirectories contains data taken under the NQA-1 procedures since their installation in April 1985. As part of closeout activities in the Salt Repository Project, the WPP database has been archived onto magnetic media. The data in the database are available by request on magnetic media or in hardcopy form. 2 refs

  11. Evaluating public involvement in the national low-level radioactive-waste-management program. Final report

    International Nuclear Information System (INIS)

    1982-01-01

    An extensive public involvement approach has been developed to obtain the views and assistance of state and local governments, citizen groups, industry, professional societies and other organizations in the preparation and review of a national strategy document on low-level radioactive wastes. Six evaluators who have a wide diversity of backgrounds were selected to evaluate the effectiveness of this approach. This final report presents findings discussed under the headings: Introduction to the Recent History of Low-level Waste Policy Development (LLWMP) and the Role of Public Participation; Public Participation Mechanisms Employed in Preparing the National Strategy Document; the Keystone's Evaluation Process; and Findings. The overall evaluation of the process was very positive. It was clear that the LLWMP staff was seriously committed to building a credible public participation process. The evaluation team was provided rough cost figures for the various components of the LLWMP effort and concluded that, in its opinion, the public participation process provided benefits to the federal government that exceeded its costs. Moreover, the costs of the individual components were not out of line with each one's usefulness and contribution to the overall effort

  12. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  13. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume VI

    International Nuclear Information System (INIS)

    1996-08-01

    The U.S. Department Of Energy and the Washington State Department of Ecology added Appendix L (Volume 6), Response to Public Comments, to the Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington, to fully address and respond to public comments on the Draft EIS. In addition, DOE considered public comments, along with other factors such as programmatic need, short- and long-term impacts, technical feasibility, and cost, in arriving at DOE's preferred alternative. During the public comment period for the Draft EIS, more than 350 individuals, agencies, Tribal Nations, and organizations provided comments. This volume represents a broad spectrum of private citizens; businesses; local, State, and Federal officials; Tribal Nations; and public interest groups

  14. Seminar on R + D work and studies on the disposal and final storage of radioactive waste

    International Nuclear Information System (INIS)

    1979-10-01

    The Seminar had following goals: The research- and development works for safeguarding and final storage of waste are discussed and gone through with regard to their complete processing in due time. A survey on possible co-operation in R+D work is to be set up. The PTB (Physical-technical federal organisation) can normally not order any R+D work nor can it financially support them; it will, however support necessary R+D works with all possibilities it has, for example by sending letters of recommendation and agreement to ministries and other competent institutions. For special investigations relevant for the permission, there are also own means in restricted volume available. (orig./HP) 891 HP/orig.- 892 HIS [de

  15. Shaft seals for final high-level radioactive waste repositories. ELSA. Pt. 1

    International Nuclear Information System (INIS)

    Kudla, W.; Schreiter, F.; Gruner, M.

    2013-01-01

    The state of the art in science and technology fir shaft seals with long-term stability is summarized regarding their applicability for high-level waste repository in Germany. The concepts and drafts for the shaft sealing systems ERAM, Asse, Konrad, the WIPP side, the RESEAL concept, the NAGRA concept and the project LASA are reviewed. The methodology of applying partial factors in a safety analysis is summarized and the applicability of this method for geotechnical sealing structures is confirmed. To establish geomechanical boundary conditions of the host rocks and clay stone the stress-strain behavior of the rock mass adjoining the shaft has to be identified including time-dependent thermo-mechanical processes. The general and special requirements for the design of shaft sealing systems, especially in salt rock and clay formations are described, derived from the safety requirements (BMU 2010). Finally general information needs were identified.

  16. Assessments of the thermal evolution for a radioactive waste final repository using analytical methods

    International Nuclear Information System (INIS)

    Radut, A. C.; Roman, M. R.; Florea, S.; Ionescu, D. V.; Olteanu, G.; Valeca, S.

    2016-01-01

    In the designing process for a radioactive final repository concept, the temperature evolution over time is a significant issue for the stability and long-term safety of entire emplacement. In particular, the maximum value of temperature in the whole structure, during time, must not exceed a certain safety value which depends, beside other criteria, on the bulk material of the repository. A computer code TEMPROC, based on analytical model for the transient thermal heat conduction, described in this paper, was developed inside ''Fuel Performance''Department from ICN Pitesti, in order to evaluate the waste repository's temperature distribution. The program was developed under ''Microsoft FORTRAN Power Station''platform that provides IMSL subroutines library support for numeric algorithm. So the program is relative small, with a good calculus speed. The numerical results obtained with TEMPROC computer code, have been acceptably compared with similar existing data from scientific literature [1]. (authors)

  17. The undersea location of the Swedish Final Repository for reactor waste, SFR - human intrusion aspects

    International Nuclear Information System (INIS)

    Eng, T.

    1989-01-01

    The Swedish Final Repository for reactor waste, SFR, is built under the Baltic sea close to the Forsmark nuclear power plant. Sixty metres of rock cover the repository caverns under the seabed. The depth of the Baltic sea is about 5-6 m at this location. A human intrusion scenario that in normal inland locations has shown to be of great importance, is a well that is drilled through or in the close vicinity of the repository. Since the land uplift in the SFR area is about 6 mm/year the undersea location of SFR ensures that no well will be drilled at this location for a considerable time while the area is covered by the Baltic sea

  18. Study of materials for use in final deposits of radioactive waste

    International Nuclear Information System (INIS)

    Amaral, A.F.; Tello, C.C.O.

    2011-01-01

    Clays are used in repositories (final deposits of radioactive waste) due to their radionuclide sorption and soil waterproofing capacities. The objectives of this work are to research and develop tests of characterization relevant to the use of clays in repositories, to characterize national clays and to assemble a database with information on the suppliers and the tests that were done. Results are shown for the mineral identification test, for the determination of the normal Proctor compaction curve, size distribution, cationic exchange capacity, specific surface, and others, for two materials. Such information will allow the selection of the best among these materials for use in the backfill and in other applications, besides indicating the most reliable test for estimating characteristics of different materials. (author)

  19. NASA scheduling technologies

    Science.gov (United States)

    Adair, Jerry R.

    1994-01-01

    This paper is a consolidated report on ten major planning and scheduling systems that have been developed by the National Aeronautics and Space Administration (NASA). A description of each system, its components, and how it could be potentially used in private industry is provided in this paper. The planning and scheduling technology represented by the systems ranges from activity based scheduling employing artificial intelligence (AI) techniques to constraint based, iterative repair scheduling. The space related application domains in which the systems have been deployed vary from Space Shuttle monitoring during launch countdown to long term Hubble Space Telescope (HST) scheduling. This paper also describes any correlation that may exist between the work done on different planning and scheduling systems. Finally, this paper documents the lessons learned from the work and research performed in planning and scheduling technology and describes the areas where future work will be conducted.

  20. Risk perspective on final disposal of nuclear waste. Individuals, society and communication

    International Nuclear Information System (INIS)

    Lindblad, Inga-Britt

    2007-01-01

    This report tries to evaluate the importance of the risk perspective in connection with final storage of nuclear waste. The concept 'risk' has different importance for experts and general public, within different research directions and among stakeholders in the nuclear waste issue. The report has been published in order to give an interdisciplinary scientific perspective on the risk concept. The authors have their background in different disciplines: radiation physics, psychology, media- and communications-science. The report treats four different themes: The first theme concerns perspectives on the risk concept and describes various principles for how risks can be handled in the society. The next theme is about comparing various risks. This section shows that risk comparisons can to be done within the framework of a scientific attitude and during certain given conditions. The third theme elucidates results from research about subjective risk, and shows that a large number of factors influence how risks are considered by individuals, and can influence his risk behavior and also how the individual means that the society will make decisions in risk-related questions. The fourth and last theme is about risk communication. Since the risk concept contains many different aspects it is clear that risk should not only be informed about, but also communicated. If a purely mathematical definition of risk was the only valid form, such information, from experts to the citizens, would possibly be sufficient. But since there are other relevant factors to take into consideration (t.ex the individual's own values), a communicative process must take place, i.e. the citizens should have influence on how risks are compared and managed. In the final theme, the authors have chosen to reflect around the themes above, i.e. different perspectives on the risk concept, risk comparisons, subjective risk view and risk communication are discussed

  1. A concept for a station for the encapsulation of vitrified highly radioactive waste into containers for final disposal

    International Nuclear Information System (INIS)

    Anon

    1984-09-01

    The report presents a concept and plans for a station for the encapsulation of vitrified highly radioactive waste into containers for final disposal. The process steps, the layout of the station, the main components of equipment and the sequence of operations under normal conditions are described. The station is designed for vitrified waste from reprocessing. The volume of the waste packages is 150 l, and each package contains the equivalent of 1.33 tonne HM of fuel. The radionuclide activity of the waste corresponds to spent fuel with a decay time of 40 years from discharge from the reactor. It is assumed that after transport under normal conditions the steel shell enclosing the waste is gastight and its surface is free of contamination. The containers for final disposal are made of cast steel and have the form of hollow cylinders with hemispherical ends; their overall length is 2 m and their overall diameter 0.94 m. The station is so designed that the whole procedure, from supply of the transport containers containing the waste to the delivery of the full final disposal containers, is carried out by remote control behind radiation screens in an area isolated from the environment. Containers that do not fulfill the quality control requirements can be improved or repaired in a special rework cell without interfering with the further normal operation of the plant. (author)

  2. Comparison of the salt domes Asse and Gorleben with regard to their suitability for the final storage of radoactive wastes

    International Nuclear Information System (INIS)

    Deisenroth, Norbert; Kokorsch, Rudolf

    2012-01-01

    In Germany, the search for a proper solution to the issue of final disposal of radioactive wastes is complicated by political leaders. The Gorleben moratorium from October 2000 delayed the proper solution unnecessary to ten years. Asse proves that salt domes such as Gorleben do not offer a permanent partitioning of the waste over the biosphere. With this in mind, the authors of the contribution under consideration compare the two salt domes Gorleben and Asse from a mining and geological point of view based on publicly available data with regard to their suitability for the disposal of radioactive waste.

  3. Plans and schedules for implementation of US Nuclear Regulatory Commission responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985 (P.L. 99-240)

    International Nuclear Information System (INIS)

    Dunkelman, M.M.

    1987-08-01

    This document makes available the plans and schedules for the US Nuclear Regulatory Commission's (NRC's) implementation of its responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). The present document identifies the provisions of the LLRWPAA that affect the programs of the NRC, identifies what the NRC must do to fulfill each of its requirements under the LLRWPAA, and establishes schedules for carrying out these requirements

  4. Final storage high-level radioactive waste in Sweden - the way to the 2009 siting decision

    International Nuclear Information System (INIS)

    Schneider, Horst

    2010-01-01

    In Sweden, high-level radioactive waste producing heat, i.e. spent fuel, is to be emplaced for final storage on the site of Forsmark, which also holds three reactor units. The siting decision was taken in June 2009. A 100 percent private company, a merger of the commercial nuclear power plant operators as producers of the waste, is responsible for the siting decision as well as for waste storage. Major impulses were given to the back-end fuel cycle policy in the early 1970s. Sweden practically gave up the reprocessing option very soon, but kept on pursuing final storage in deep geologic formations. Between 1977, when legislation was adopted with conditions relating to repository storage, and 2009, when the decision in favour of the Forsmark site was taken, the path followed was not always a straight line. The boundary conditions, such as the organization of the repository and procedural and safety criteria established by the government, are interesting with regard to their influence on the siting decision, if any. For this reason, the approaches chosen and their connections with government criteria and with geological conditions in Sweden, including their impacts on the repository concept chosen, will be examined. After a summary review of developments in Sweden, filing of the licensing application and the accompanying documents up to commissioning of the repository, a short comparison will be made with the situation in Germany, especially the status reached of the Gorleben salt dome, highlighting and evaluating important criteria and parameters. Sweden as a model is important especially in these respects: A repository site was found by a private company in consensus with the local government within the framework of government criteria, and with ultimate responsibility resting with the government; the local government of a place not winning the siting decision is disappointed although it will have the conditioning plant and receive higher grants; it was not only

  5. Final Disposal of Nuclear Waste. The Swedish National Council for Nuclear Waste's Review of the Swedish Nuclear Fuel and Waste Management Co's (SKB's) RDandD Programme 2007

    International Nuclear Information System (INIS)

    2009-01-01

    The Swedish National Council for Nuclear Waste finds that the RDandD programme 2007 fulfils the requirements set forth in the Nuclear Activities Act. However, the Council has identified a number of questions and deficiencies to which the Council wishes to draw attention. The Council finds that there are many unclear points regarding buffer, backfill and closure at this stage. The most important properties of the buffer material should be specified and limit values should be determined with respect to swelling potential, retention capacity for radionuclides, chemical stability, hydraulic diffusion, resistance to erosion and level of impurities. Mechanical strength and chemical stability must be guaranteed for compacted components in the buffer. Models should be set up for transport of the most important radioactive isotopes through the bentonite. SKB must also be able to show that the buffer and backfill conform to the initial states assumed by the safety assessment. Special research is required on the interfaces between backfill and buffer and between backfill and rock. SKB needs to consider the problems that can arise during the expected climate change, probably already during the construction period. The final design of the closure should be determined by the properties of the rock with respect to e.g. fractures at different depths and salinity. However, this presumes knowledge of what properties different materials - and mixtures of materials - have and how they can interact to best effect. The Swedish National Council for Nuclear Waste considers it imperative that SKB give a clear account of the judgements underlying site selection. The Council is troubled by the fact that successful rock stress measurements performed so far in Forsmark are too few in number and uncertain at planned repository depth. The Council would also like to emphasize the internal role of safety assessment within SKB as a tool for both following up repository safety during construction

  6. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1997-08-01

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values

  7. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B.M.

    1997-08-01

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.

  8. Lessons learned in demonstration projects regarding operational safety during final disposal of vitrified waste and spent fuel

    International Nuclear Information System (INIS)

    Filbert, Wolfgang; Herold, Philipp

    2015-01-01

    The paper summarizes the lessons learned in demonstration projects regarding operational safety during the final disposal of vitrified waste and spent fuel. The three demonstration projects for the direct disposal of vitrified waste and spent fuel are described. The first two demonstration projects concern the shaft transport of heavy payloads of up to 85 t and the emplacement operations in the mine. The third demonstration project concerns the borehole emplacement operation. Finally, open issues for the next steps up to licensing of the emplacement and disposal systems are summarized.

  9. Characterization of low and medium-level radioactive waste forms. Final report - 2nd Programme 1980-84

    International Nuclear Information System (INIS)

    Pottier, P.E.; Glasser, F.P.

    1986-01-01

    The European Communities Second R and D Programme 1980-84 'Management and Disposal of Radioactive Waste (Shared cost action)' included a closely coordinated research activity for the 'Characterization of low and medium-level radioactive waste forms'. This report summarizes the main results obtained during the five years of the programme by laboratories in seven European countries participating in the coordinated RandD efforts. Ten reference waste forms have been selected, based on the most important types of low and medium-level waste arisings and the three commonly used immobilization matrices: cement, bitumen and polymers. The investigated properties were mainly: waste-matrix compatibility, radiation effects, leaching behaviour, leached radionuclides speciation, microbiological resistance and thermal as well as mechanical properties. Extensive experimental results relevant for the qualification of waste products and for application in performance analysis are presented in this final report. The main conclusions are drawn for the confinement properties of these different waste forms. These conclusions have also shown the necessity of selecting several other reference waste forms for the continuation of this RandD action now being launched in the Third EC Programme 1985-89

  10. Plans and schedules for implementation of US Nuclear Regulatory Commission responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985 (P.L. 99-240)

    International Nuclear Information System (INIS)

    Dunkelman, M.M.; Kearney, M.S.; MacDougall, R.D.

    1986-07-01

    The purpose of this document is to make available to the states and other interested parties, the plans and schedules for the US Nuclear Regulatory Commission's (NRC's) implementation of its responsibilities under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). This document identifies the provisions of the LLRWPAA which affect the programs of the NRC, identifies what the NRC must do to fulfill each of its requirements under the LLRWPAA, and establishes schedules for carrying out these requirements. The plans and schedules are current as of June 1986

  11. Tank waste processing analysis: Database development, tank-by-tank processing requirements, and examples of pretreatment sequences and schedules as applied to Hanford Double-Shell Tank Supernatant Waste - FY 1993

    International Nuclear Information System (INIS)

    Colton, N.G.; Orth, R.J.; Aitken, E.A.

    1994-09-01

    This report gives the results of work conducted in FY 1993 by the Tank Waste Processing Analysis Task for the Underground Storage Tank Integrated Demonstration. The main purpose of this task, led by Pacific Northwest Laboratory, is to demonstrate a methodology to identify processing sequences, i.e., the order in which a tank should be processed. In turn, these sequences may be used to assist in the development of time-phased deployment schedules. Time-phased deployment is implementation of pretreatment technologies over a period of time as technologies are required and/or developed. The work discussed here illustrates how tank-by-tank databases and processing requirements have been used to generate processing sequences and time-phased deployment schedules. The processing sequences take into account requirements such as the amount and types of data available for the tanks, tank waste form and composition, required decontamination factors, and types of compact processing units (CPUS) required and technology availability. These sequences were developed from processing requirements for the tanks, which were determined from spreadsheet analyses. The spreadsheet analysis program was generated by this task in FY 1993. Efforts conducted for this task have focused on the processing requirements for Hanford double-shell tank (DST) supernatant wastes (pumpable liquid) because this waste type is easier to retrieve than the other types (saltcake and sludge), and more tank space would become available for future processing needs. The processing requirements were based on Class A criteria set by the U.S. Nuclear Regulatory Commission and Clean Option goals provided by Pacific Northwest Laboratory

  12. Town of Hague landfill reclamation study: Research ways to increase waste heating value and reduce waste volume. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Salerni, E. [SSB Environmental Inc., Albany, NY (United States)

    1997-01-01

    Monitored composing was studied as a method for reducing the quantity of waste requiring disposed from a landfill reclamation project. After each of two re-screening steps, composted {open_quotes}soil{close_quotes} from a single long windrow of varying depths and moisture content was subjected to analytical testing to determine its suitability to remain as backfill in a reclaimed landfill site. The remaining uncomposted waste was combusted at a waste-to-energy facility to determine if Btu values were improved. Results indicate that a full-scale composting operation could result in a net decrease of approximately 11 percent in disposal costs. The Btu value of the reclaimed waste was calculated to be 4,500 to 5,000 Btu/lb. The feasibility of composting reclaimed waste at other landfill reclamation projects will depend upon site-specific technical and economic factors, including size and nature of the organic fraction of the waste mass, local processing costs, and the cost of waste disposal alternatives.

  13. Concept and Idea-Project for Yugoslav Low and Intermediate level Radioactive Waste Materials Final Disposal Facility

    International Nuclear Information System (INIS)

    Peric, A.

    1997-01-01

    Encapsulation of rad waste in a mortar matrix and displacement of such solidified waste forms into the shallow land burial system, engineered trench system type is suggested concept for the final disposal of low and intermediate level rad waste. The mortar-rad waste mixtures are cured in containers of either concrete or metal for an appropriate period of time, after which solidified rad waste-mortar monoliths are then placed in the engineered trench system, parallelepiped honeycomb structure. Trench consists of vertical barrier-walls, bottom barrier-floors, surface barrier-caps and permeable-reactive walls. Surroundings of the trench consists of buffer barrier materials, mainly clay. Each segment of the trench is equipped with the independent drainage system, as a part of the main drainage. Encapsulation of each filled trench honeycomb segment is performed with concrete cap. Completed trench is covered with impermeable plastic foil and soil leaner, preferably clay. Paper presents an overview of the final disposal facility engineered trench system type. Advantages in comparison with other types of final disposal system are given. (author)

  14. Project Guarantee 1985. Final repository for low- and intermediate level radioactive wastes: Safety report

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Storage of radioactive waste must delay the return of radionuclides to the biosphere for a long period of time and must maintain the release rates at a sufficiently low level for all time. This is achieved with the aid of a series of safety barriers which consist, on the one hand, of technical barriers in the repository and, on the other hand , of natural geological barriers as they occur at the repository location. In order to assess the efficiency of the barriers, the working methods of the technical barriers and the host rock must be understood. This understanding is transferred into quantitative models in order to calculate the safety of the repository. The individual barriers and the methods used to modelling their functions were described in volume NGB 85-07 of the Project Guarantee 1985 report series and the data necessary for modelling were given. The models and data are used in the safety analysis, the results of which are contained in the present report. Safety considerations show that models are available in Switzerland which allow, in principle, an assessment of the long-term behaviour of a repository for low- and intermediate-level waste. The evaluation of earlier studies and experimental work, suitable laboratory measurements and results from field research enable compilation of a representative data-set so that the requirements for quantitative statements on safety of final disposal are met from this side also. The safety calculations show that the radiation doses calculated for a base case scenario with realistic/conservative parameter values are negligibly low. Also, radiation doses which are clearly under the protection standard of 10 mrem per year result for conservative values and the cumulation of several conservative assumptions. Even assuming exposure of the repository by erosion, a radiotoxicity of the soil formed results which is under natural values

  15. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  16. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION. FINAL REPORT 08R1360-1

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.; Pegg, I.L.; Joseph, I.; Bardakci, T.; Gan, H.; Gong, W.; Chaudhuri, M.

    2010-01-01

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  17. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    Energy Technology Data Exchange (ETDEWEB)

    Wildi, Walter; Dermange, Francois [Univ. of Geneva, CH-1211 Geneva (Switzerland); Appel, Detlef [PanGeo, Hannover (Germany); Buser, Marcos [Buser and Finger, Zurich (Switzerland); Eckhardt, Anne [Basler and Hofmann, Zurich (Switzerland); Hufschmied, Peter [Emch and Berger, Bern (Switzerland); Keusen, Hans-Rudolf [Geotest, Zollikofen (Switzerland); Aebersold, Michael [Swiss Federal Office of Energy (BFE), CH-3003 Bern (Switzerland)

    2000-01-15

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA.

  18. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    International Nuclear Information System (INIS)

    Wildi, Walter; Dermange, Francois; Appel, Detlef; Buser, Marcos; Eckhardt, Anne; Hufschmied, Peter; Keusen, Hans-Rudolf; Aebersold, Michael

    2000-01-01

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA

  19. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes. Final Report

    International Nuclear Information System (INIS)

    Dabbs, Daniel M.; Aksay, Ilhan A.

    2009-01-01

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations. The principal focus of our research was to maintain the fluidity of aluminum- or silicon-containing suspensions and solutions during transport, whether by preventing particle formation, stabilizing colloidal particles in suspension, or by combining partial dissolution with particle stabilization. We have found that all of these can be effected in aluminum-containing solutions using the simple organic, citric acid. Silicon-containing solutions were found to be less tractable, but we have strong indications that chemistries similar to the citric acid/aluminum suspensions can be effective in maintaining silicon suspensions at high alkalinities. In the first phase of our study, we focused on the use of simple organics to raise the solubility of aluminum oxyhydroxides in high alkaline aqueous solvents. In a limited survey of common organic acids, we determined that citric acid had the highest potential to achieve our goal. However, our subsequent investigation revealed that the citric acid appeared to play two roles in the solutions: first, raising the concentration of aluminum in highly alkaline solutions by breaking up or inhibiting 'seed' polycations and thereby delaying the nucleation and growth of particles; and second, stabilizing nanometer-sized particles in suspension when nucleation did occur. The second phase of our work involved the solvation of silicon, again in solutions of high alkalinity. Here, the use of polyols was determined to be effective in

  20. Hazard and socioenvironmental weakness: radioactive waste final disposal in the perception of the Abadia de Goias residents, GO, Brazil

    International Nuclear Information System (INIS)

    Pereira, Elaine Campos

    2005-01-01

    The work searches into the hazard and the weakness which involves the community around the radioactive waste final disposal, localized in Abadia de Goias municipality, Goias state, Brazil. In order to obtain a deep knowledge on the characteristic hazards of the modernity, the sociological aspects under discussion has been researched in the Anthony Giddens and Ulrich Beck works. The phenomenon was analyzed based on the the subjective experiences of the residents, which live there for approximately 16 years. This temporal analysis is related to the social impact suffered by the residents due to the radioactive wastes originated from the radiation accident with 137 cesium in Goiania, GO, Brazil, in 1987. In spite of the local security, they identified the disposal as a hazard source, although the longer time residents have been better adaptation. The weakness of the local is significant by the proximity of residences near the area of the radioactive waste final disposal. (author)

  1. Research project for the determination of the suitability of the mine ''Konrad'' as a final repository for radioactive waste products

    International Nuclear Information System (INIS)

    1984-01-01

    A feasibility study of the Konrad mine for its use as a final repository for radioactive waste products was performed in 1978, 1979 and 1980. The report summarizes the most important results gained in the fields of geosciences and technical aspects of disposal operations

  2. New system for the container conditioning of liquid waste in the German future finale repository 'Schacht Konrad'

    International Nuclear Information System (INIS)

    Starke, H.

    2012-01-01

    The full text of publication follows. On-site the NPP Gundremmingen liquid radioactive waste from the NPP water treatment plant is stored in resin or concentrate collecting tanks. These liquid wastes are cemented in containers in order to temporarily store them in the Bavarian interim storage Mitterteich until they are transported into final repository in 'Schacht Konrad'. With this new system liquid radioactive waste is for the first time conditioned directly into containers destined for final repository in 'Schacht Konrad'. Thus, a very secure and sustainable procedure was developed which also provides high profitability. The conditioning plant for resins and concentrate extracts the liquid waste from the respective collecting tank and transports the waste to the separation tank. This separation tank is dimensioned to ensure complete filling of a Konrad container with only one batch. Within the tank there is the option to adjust the suspensions solids content by either extracting supernatant water or by adding de-ionised water. The specific activity is analysed and after the radiologic data and the solids content are available, the containers are cemented. The required amount of cement is based on the solids content and is automatically added. In the mixer, cement and primary waste suspension are mixed. This mixture is filled into the Konrad container via the allocator. The allocator is a funnel-shaped inlet equipped with a movable tube which makes sure the mixture is evenly spread and also ensures optimal filling of the Konrad container. While filling is ongoing, the container is covered by a lowerable splash guard to avoid contamination. The room situation in Gundremmingen and the specific activities of the primary waste suspension make it necessary to disperse the plant to several rooms. Main components such as separation tanks and pumps are installed in shielded rooms. All activities are conducted remotely controlled and are supervised from the central

  3. Final Hanford Site Transuranic (TRU) Waste Characterization Qualit Assurance Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP)

  4. 78 FR 75913 - Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site...

    Science.gov (United States)

    2013-12-13

    ... site, including the disposal of Hanford's low-level radioactive waste (LLW) and mixed low-level... would be processed for disposal in Low- Level Radioactive Waste Burial Grounds (LLBGs) Trenches 31 and... treating radioactive waste from 177 underground storage tanks (149 Single-Shell Tanks [SSTs] and 28 Double...

  5. 78 FR 32161 - Oklahoma: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2013-05-29

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... waste management program. We authorized the following revisions: Oklahoma received authorization for... authorization of its program revision in accordance with 40 CFR 271.21. The Oklahoma Hazardous Waste Management...

  6. 76 FR 62303 - California: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-10-07

    ... State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION... the revisions to California's hazardous waste management program shall be effective at 1 p.m. on... implement the RCRA hazardous waste management program. EPA granted authorization for changes to California's...

  7. 75 FR 918 - Oregon: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2010-01-07

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... hazardous waste management program under the Resource Conservation and Recovery Act, as amended (RCRA). On... has decided that the revisions to the Oregon hazardous waste management program satisfy all of the...

  8. 77 FR 13200 - Texas: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-03-06

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... December 26, 1984 (49 FR 48300), to implement its Base Hazardous Waste Management Program. This... Waste 53478, September Annotated Sections Management facilities. 8, 2005. 5.103 and 5.105 (Checklist 210...

  9. Final storage of radioactive waste in Germany. Waste arisings and availability of a repository as seen by an electricity utility

    International Nuclear Information System (INIS)

    Broeskamp, H.; Brammer, K.J.; Graf, R.

    2004-01-01

    The management of waste arising in the operation of nuclear power plants has been taken into account since the beginnings of the peaceful uses of nuclear power in Germany. As early as in 1957, a memorandum of the German Advisory Committee on Atomic Energy contains a reference to the need for safe disposal of radioactive waste. Legislation adopted the suggestion and laid down some provisions on the safe utilization of radioactive materials as early as in the Atomic Energy Act of December 23, 1959. In connection with the nuclear waste management center, the Federal Republic also looked for a suitable site for a repository. After thorough site selection proceedings by the federal government and the state of Lower Saxony, the Lower Saxony state government in 1977 defined Gorleben as the site. The decision has been preceded by a three-stage selection process in which more than 140 sites had been investigated. Exploration of the Gorleben site began in 1979 and was interrupted on October 1, 2000 to clarify conceptual and safety-related doubts of the federal government. The German Federal Ministry for the Environment (BMU) seeks to make a repository (for high-level waste) available in 2030. Technically, it is still possible to commission a repository for waste generating heat at Gorleben after 2025 if the salt dome is found to be suitable after speedy conclusion of the exploration work. Reference is made to foreseeable problem areas. Another project pursued by the federal government is the use of the Konrad mine as a repository for low and medium-level radioactive waste. After well over twenty years, the plans approval decision was made in May 2002 and is at present the subject of litigation. On the basis of the data presented about the expected arisings of waste generating no heat in combination with the possible start of emplacement in Konrad in 2013, detailed results are presented. (orig.) [de

  10. Nuclear waste management in Finland. Final report of public sector's research programme JYT2001 (1997-2001)

    International Nuclear Information System (INIS)

    Rasilainen, K.

    2002-05-01

    According to Finnish nuclear energy legislation, each producer of nuclear waste is responsible for the safe handling, management, and disposal of its waste, as well as for the costs arising. The Posiva company, owned by the nuclear energy-producing power companies, is in charge of spent nuclear fuel management in Finland. The authorities supervise the management of nuclear waste and issue regulations for this purpose. In these demanding tasks the authorities have been supported by the Public Sector's Research Programme on Nuclear Waste Management (JYT2001). The objective of JYT2001 was to provide the authorities with independent expertise and research results relevant to the safety of nuclear waste management. Emphasis was placed on the geological disposal of spent nuclear fuel. The research area was divided into (1) technical studies on the safety of spent fuel disposal, and (2) social science studies related to nuclear waste management. The technical studies covered bedrock behaviour, the hydrogeology and geochemistry of the bedrock, the stability of the bentonite buffer, and the migration of radionuclides in the bedrock. In addition, performance assessment methodology was covered, as well as waste management technologies and costs. The social science studies were focussed on observing the Decision in Principle (DiP) process including the Environmental Impact Assessment (EIA), and media issues related to the spent fuel disposal facility. JYT2001 provided considerable support to the authorities in helping them deal with technical and social science questions. The Government's positive Decision in Principle (DiP) on Posiva's application for a spent fuel disposal facility in Eurajoki was ratified by Parliament in May 2001. The existence of a credible JYT2001 programme, independent of Posiva, obviously contributed to the high level of public confidence in the Finnish nuclear waste management programme. According to the schedule of the Finnish nuclear waste management

  11. Treatability studies for polyethylene encapsulation of INEL low-level mixed wastes. Final report

    International Nuclear Information System (INIS)

    Lageraaen, P.R.; Patel, B.R.; Kalb, P.D.; Adams, J.W.

    1995-10-01

    Treatability studies for polyethylene encapsulation of Idaho National Engineering Laboratory (INEL) low-level mixed wastes were conducted at Brookhaven National Laboratory. The treatability work, which included thermal screening and/or processibility testing, was performed on priority candidate wastes identified by INEL to determine the applicability of polyethylene encapsulation for the solidification and stabilization of these mixed wastes. The candidate wastes selected for this preliminary study were Eutectic Salts, Ion Exchange Resins, Activated Carbons, Freon Contaminated Rags, TAN TURCO Decon 4502, ICPP Sodium Bearing Liquid Waste, and HTRE-3 Acid Spill Clean-up. Thermal screening was conducted for some of these wastes to determine the thermal stability of the wastes under expected pretreatment and processing conditions. Processibility testing to determine whether the wastes were amenable to extrusion processing included monitoring feed consistency, extruder output consistency, waste production homogeneity, and waste form performance. Processing parameters were not optimized within the scope of this study. However, based on the treatability results, polyethylene encapsulation does appear applicable as a primary or secondary treatment for most of these wastes

  12. Transparency and Public Participation in Radioactive Waste Management. RISCOM II Final report

    International Nuclear Information System (INIS)

    Andersson, Kjell; Westerling, Magnus; Atherton, Elizabeth

    2003-10-01

    involvement requires that the experts are truly open-minded and willing to include issues of concern into their assessments. As a consequence they must be prepared to let go of some of their control over the process. One should strive for clarification about the factual versus the value-laden domain of an issue. This will increase transparency and set limits on the experts' professional area e.g. by revealing hidden values in expert investigations. It is essential that the performance assessment can keep its identity as a scientific and engineering enterprise. Engaging in public dialogue must not dilute the science and steer experts away too much from their core activity. It may not be possible to make an objective assessment of the true risk of final disposal, but stakeholders may be able to compare the consequences of alternative actions. Such comparisons can be made using value-laden considerations and ethical principles rather than performance assessment in detail. After all, decision-makers will need to choose between alternatives on the basis of incomplete and uncertain knowledge. Sometimes there may be unrealistic expectations that public participation should lead to consensus about radioactive waste management solutions. This project has addressed this issue from the perspective of how transparency may, or may not, relate to consensus building: Transparency leads to a higher level of awareness of all aspects of the issue, which should benefit the quality of decision-making. In that respect, transparency is more important than consensus. It must be understood that world-views are deeply rooted in society and its individuals. Often decisions need to be taken in spite of different values but the quality of decisions is increased if the decision-makers and the public are aware of the different values, as well as the factual issues. There is a close relationship between transparency and public participation. One of the major issues addressed in the study has been the

  13. Application of the final flotation waste for obtaining the glass-ceramic materials

    Directory of Open Access Journals (Sweden)

    Cocić Mira

    2017-01-01

    Full Text Available This work describes the investigation of the final flotation waste (FFW, originating from the RTB Bor Company (Serbia, as the main component for the production of glass-ceramic materials. The glass-ceramics was synthesized by the sintering of FFW, mixtures of FFW with basalt (10%, 20%, and 40%, and mixtures of FFW with tuff (20% and 40%. The sintering was conducted at the different temperatures and with the different time duration in order to find the optimal composition and conditions for crystallization. The increase of temperature, from 1100 to 1480°C, and sintering time, from 4 to 6h resulted in a higher content of hematite crystal in the obtained glass-ceramic (up to 44%. The glass-ceramics sintered from pure FFW (1080°C/36h has good mechanical properties, such as high propagation speed (4500 m/s and hardness (10800 MPa, as well as very good thermal stability. The glass-ceramics obtained from mixtures shows weaker mechanical properties compared to that obtained from pure FFW. The mixtures of FFW with tuff have a significantly lower bulk density compared to other obtained glass-ceramics. Our results indicate that FFW can be applied as a basis for obtaining the construction materials. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 176010: Composition, genesis, application, and contribution to the environmental sustainability

  14. Effects of tuff waste package components on release from 76-68 simulated waste glass: Final report

    International Nuclear Information System (INIS)

    McVay, G.L.; Robinson, G.R.

    1984-04-01

    An experimental matrix has been conducted that will allow evaluation of the effects of waste package constituents on the waste form release behavior in a tuff repository environment. Tuff rock and groundwater were used along with 304L, 316, and 1020M ferrous metals to evaluate release from uranium-doped MCC 76-68 simulated waste glass. One of the major findings was that in the absence of 1020M mild steel, tuff rock powder dominates the system. However, when 1020M mild steel is present, it appears to dominate the system. The rock-dominated system results in suppressed glass-water reaction and leaching while the 1020M-dominated system results in enhanced leaching - but the metal effectively scavenges uranium from solution. The 300-series stainless steels play no significant role in affecting glass leaching characteristics. 6 refs., 28 figs., 5 tabs

  15. Adsorption/Membrane Filtration as a Contaminant Concentration and Separation Process for Mixed Wastes and Tank Wastes - Final Report

    International Nuclear Information System (INIS)

    Benjamin, M.M.

    1999-01-01

    This project was conducted to evaluate novel approaches for removing radioactive strontium (Sr) and cesium (Cs) from the tank wastes. The bulk of the Sr removal research conducted as part of this project investigated adsorption of Sr onto a novel adsorbent known as iron-oxide-coated sand. The second major focus of the work was on the removal of cesium. Since the chemistries of strontium and cesium have little commonality, different materials (namely, cesium scavengers known as hexacyanoferrates, HCFs) were employed in these tests. This study bridged several scientific areas and yielded valuable knowledge for implementing new technological processes. The applicability of the results extends beyond the highly specialized application niches investigated experimentally to other issues of potential interest for EMSP programs (e.g., separation of chromium from a variety of wastes using IOCS, separation of Cs from neutral and acidic wastes with EC-controlled HCFs)

  16. Final Report for Crucible -Scale Radioactive Vitrification and Product Test of Waste Envelope B (AZ-102) Low-Activity Waste Glass

    International Nuclear Information System (INIS)

    CRAWFORD, CHARLES

    2004-01-01

    A proof-of-technology demonstration for the Hanford River Protection Project (RPP) Waste treatment and Immobilization Plant (WTP) was performed by the Savannah River Technology Center (SRTC). As part of this demonstration, treated AZ-102 Low-Activity Waste supernate was vitrified using a crucible-scale furnace. Initial glass samples were quench-cooled and characterized for metals and radionuclides. The glass was also durability tested using the American Society for Testing and Materials (ASTM) Product Consistency Test (PCT) protocol. These tests used the AZ-102 glass formulation Low Activity Waste (LAW) B88 that targeted AZ-102 waste loading at 5 wt% Na2O. After these initial results were obtained with the quench-cooled LAWB88 glass, a prototypical container centerline cooling (CCC) program was supplied to SRTC by WTP. A portion of the quench-cooled LAWB88 glass was remelted and centerline cooled. Samples from the CCC low-activity AZ-102 glass waste form were durability tested using the PCT and characterized for crystalline phase identification.This final report documents the characterization and durability of this AZ-102 glass

  17. Physical chemistry of portland-cement hydrate, radioactive-waste hosts: Final report, January 16, 1987--December 31, 1987

    International Nuclear Information System (INIS)

    Grutzeck, M.W.

    1989-01-01

    This is a final report summarizing the results of a study of the physical and crystal chemistry of potential hydroxylated radioactive waste hosts compatible with portland cement. Research has focussed on the identification and evaluation of hydrated host phases for four ions: cesium, strontium, iodine and boron. These ions were chosen because they are among the most long lived of the radioactive waste ions as well as the most difficult to immobilize with cement-based materials. Results show that such phases do indeed exist, and that they are excellent host phases for the above ions

  18. Transparency and Public Participation in Radioactive Waste Management. RISCOM II Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kjell [Karinta-Konsult, Taeby (Sweden); Westerling, Magnus [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Atherton, Elizabeth [UK Nirex Ltd (United Kingdom)] [and others

    2003-10-01

    involvement requires that the experts are truly open-minded and willing to include issues of concern into their assessments. As a consequence they must be prepared to let go of some of their control over the process. One should strive for clarification about the factual versus the value-laden domain of an issue. This will increase transparency and set limits on the experts' professional area e.g. by revealing hidden values in expert investigations. It is essential that the performance assessment can keep its identity as a scientific and engineering enterprise. Engaging in public dialogue must not dilute the science and steer experts away too much from their core activity. It may not be possible to make an objective assessment of the true risk of final disposal, but stakeholders may be able to compare the consequences of alternative actions. Such comparisons can be made using value-laden considerations and ethical principles rather than performance assessment in detail. After all, decision-makers will need to choose between alternatives on the basis of incomplete and uncertain knowledge. Sometimes there may be unrealistic expectations that public participation should lead to consensus about radioactive waste management solutions. This project has addressed this issue from the perspective of how transparency may, or may not, relate to consensus building: Transparency leads to a higher level of awareness of all aspects of the issue, which should benefit the quality of decision-making. In that respect, transparency is more important than consensus. It must be understood that world-views are deeply rooted in society and its individuals. Often decisions need to be taken in spite of different values but the quality of decisions is increased if the decision-makers and the public are aware of the different values, as well as the factual issues. There is a close relationship between transparency and public participation. One of the major issues addressed in the study has been the

  19. Transparency and Public Participation in Radioactive Waste Management. RISCOM II Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kjell [Karinta-Konsult, Taeby (Sweden); Westerling, Magnus [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Atherton, Elizabeth [UK Nirex Ltd (United Kingdom); and others

    2003-10-01

    involvement requires that the experts are truly open-minded and willing to include issues of concern into their assessments. As a consequence they must be prepared to let go of some of their control over the process. One should strive for clarification about the factual versus the value-laden domain of an issue. This will increase transparency and set limits on the experts' professional area e.g. by revealing hidden values in expert investigations. It is essential that the performance assessment can keep its identity as a scientific and engineering enterprise. Engaging in public dialogue must not dilute the science and steer experts away too much from their core activity. It may not be possible to make an objective assessment of the true risk of final disposal, but stakeholders may be able to compare the consequences of alternative actions. Such comparisons can be made using value-laden considerations and ethical principles rather than performance assessment in detail. After all, decision-makers will need to choose between alternatives on the basis of incomplete and uncertain knowledge. Sometimes there may be unrealistic expectations that public participation should lead to consensus about radioactive waste management solutions. This project has addressed this issue from the perspective of how transparency may, or may not, relate to consensus building: Transparency leads to a higher level of awareness of all aspects of the issue, which should benefit the quality of decision-making. In that respect, transparency is more important than consensus. It must be understood that world-views are deeply rooted in society and its individuals. Often decisions need to be taken in spite of different values but the quality of decisions is increased if the decision-makers and the public are aware of the different values, as well as the factual issues. There is a close relationship between transparency and public participation. One of the major issues addressed in the study has been the

  20. CONCRETE CONTAINERS FOR LONG TERM STORAGE AND FINAL DISPOSAL OF TRU WASTE AND LONG LIVED ILW

    International Nuclear Information System (INIS)

    Sakamoto, H.; Asano, H.; Tunaboylu, K.; Mayer, G.; Klubertanz, G.; Kobayashi, S.; Komuro, T.; Wagner, E.

    2003-01-01

    Transuranic (TRU) waste packaging development has been conducted since 1998 by the Radioactive Waste Management Funding and Research Centre (RWMC) to support the TRU waste disposal concept in Japan. In this paper, the overview of development status of the reinforced concrete package is introduced. This package has been developed in order to satisfy the Japanese TRU waste disposal concept based on current technology and to provide a low cost package. Since 1998, the basic design work (safety evaluation, manufacturing and handling procedure, economic evaluation, elemental tests etc.) have been carried out. As a result, the basic specification of the package was decided. This report presents the concept as well as the results of basic design, focused on safety analysis and handling procedure of the package. Two types of the packages exist: - Package-A: for non-heat generating TRU waste from reprocessing in 200 l drums and - Package-B: for heat generating TRU-waste from reprocessing

  1. Waste Isolation Pilot Plant Title I operator dose calculations. Final report, LATA report No. 90

    International Nuclear Information System (INIS)

    Hughes, P.S.; Rigdon, L.D.

    1980-02-01

    The radiation exposure dose was estimated for the Waste Isolation Pilot Plant (WIPP) operating personnel who do the unloading and transporting of the transuranic contact-handled waste. Estimates of the radiation source terms for typical TRU contact-handled waste were based on known composition and properties of the waste. The operations sequence for waste movement and storage in the repository was based upon the WIPP Title I data package. Previous calculations had been based on Conceptual Design Report data. A time and motion sequence was developed for personnel performing the waste handling operations both above and below ground. Radiation exposure calculations were then performed in several fixed geometries and folded with the time and motion studies for individual workers in order to determine worker exposure on an annual basis

  2. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials. Final Report

    International Nuclear Information System (INIS)

    Lindle, Dennis W.

    2011-01-01

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate 'real' waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  3. Safety studies project on waste management. Final report. Chapters 2 and 3

    International Nuclear Information System (INIS)

    1985-01-01

    The report presents, in summary form, a mode of procedure for accident analysis in nuclear waste management facilities. New instruments for safety analysis have been developed and tested. The report describes exemplary safety analyses with the new instrumentation. The safety analyses were carried out in surface systems, i.e. reprocessing and waste treatment systems, and in underground nuclear waste storage road and rail transport of radioactive materials have been investigated. (EF) [de

  4. Macroencapsulation of mixed waste debris at the Hanford Nuclear Reservation -- Final project report by AST Environmental Services, LLC

    International Nuclear Information System (INIS)

    Baker, T.L.

    1998-01-01

    This report summarizes the results of a full-scale demonstration of a high density polyethylene (HDPE) package, manufactured by Arrow Construction, Inc. of Montgomery, Alabama. The HDPE package, called ARROW-PAK, was designed and patented by Arrow as both a method to macroencapsulation of radioactively contaminated lead and as an improved form of waste package for treatment and interim and final storage and/or disposal of drums of mixed waste. Mixed waste is waste that is radioactive, and meets the criteria established by the United States Environmental Protection Agency (US EPA) for a hazardous material. Results from previous testing conducted for the Department of Energy (DOE) at the Idaho National Engineering Laboratory in 1994 found that the ARROW-PAK fabrication process produces an HDPE package that passes all helium leak tests and drop tests, and is fabricated with materials impervious to the types of environmental factors encountered during the lifetime of the ARROW-PAK, estimated to be from 100 to 300 years. Arrow Construction, Inc. has successfully completed full-scale demonstration of its ARROW-PAK mixed waste macroencapsulation treatment unit at the DOE Hanford Site. This testing was conducted in accordance with Radiological Work Permit No. T-860, applicable project plans and procedures, and in close consultation with Waste Management Federal Services of Hanford, Inc.'s project management, health and safety, and quality assurance representatives. The ARROW-PAK field demonstration successfully treated 880 drums of mixed waste debris feedstock which were compacted and placed in 149 70-gallon overpack drums prior to macroencapsulation in accordance with the US EPA Alternate Debris Treatment Standards, 40 CFR 268.45. Based on all of the results, the ARROW-PAK process provides an effective treatment, storage and/or disposal option that compares favorably with current mixed waste management practices

  5. Development of biological and chemical methods for environmental monitoring of DOE waste disposal and storage facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    Hazardous chemicals in the environment have received ever increasing attention in recent years. In response to ongoing problems with hazardous waste management, Congress enacted the Resource Conservation and Recovery Act (RCRA) in 1976. In 1980, Congress adopted the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA), commonly called Superfund to provide for emergency spill response and to clean up closed or inactive hazardous waste sites. Scientists and engineers have begun to respond to the hazardous waste challenge with research and development on treatment of waste streams as well as cleanup of polluted areas. The magnitude of the problem is just now beginning to be understood. The U.S. Environmental Protection Agency (USEPA) National Priorities List as of September 13 1985, contained 318 proposed sites and 541 final sites (USEPA, 1985). Estimates of up to 30,000 sites containing hazardous wastes (1,200 to 2,000 of which present a serious threat to public health) have been made (Public Law 96-150). In addition to the large number of sites, the costs of cleanup using available technology are phenomenal. For example, a 10-acre toxic waste site in Ohio is to be cleaned up by removing chemicals from the site and treating the contaminated groundwater. The federal government has already spent more than $7 million to remove the most hazardous wastes and the groundwater decontamination alone is expected to take at least 10 years and cost $12 million. Another example of cleanup costs comes from the State of California Commission for Economic Development which predicts a bright economic future for the state except for the potential outlay of $40 billion for hazardous waste cleanup mandated by federal and state laws.

  6. Long term governance for radioactive waste management. Final report of Cowan2 - work package 4

    International Nuclear Information System (INIS)

    Schneider, Th.; Schieber, C.; Lavele, S.

    2006-12-01

    This report aims at identifying key features for the long term governance of radioactive waste. It is proposed by the COWAN2 Work Package 4 the purpose of which was to identify, discuss and analyse the institutional, ethical, economic and legal considerations raised by long term radioactive waste storage or disposal on the three interrelated issues of: responsibility and ownership of radioactive waste on the long term, continuity of local dialogue between stakeholders and monitoring of radioactive waste management facilities, and compensation and sustainable development. The aim is also to propose guidelines in order to better address long term issues in decision-making processes and start long term governance

  7. Regional analysis of potential energy production from agricultural wastes: technical and economic study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Have, H

    1981-01-01

    The possibilities for utilization of agricultural wastes for energy production are analyzed in two Danish counties, Ringkoebing and Vestsjaelland, which have different agricultural production patterns. The quantitative analysis shows that the major waste products, surplus straw, waste wood and animal waste, in total with present technique can cover about 28% of the demand for heat energy (mostly space heating) in both counties. The potential coverage from straw, wood and animal waste is about 3, 3 and 22% in Ringkoebing and 18, 2 and 8% in Vestsjaelland respectively. A technical analysis indicates that direct combustion is the most favorable conversion method for straw and wood while biological conversion at present is best suited for animal waste. An economic analysis based on costs of collection, storage, transport and conversion of wastes and costs of corresponding oil and oil conversion were made. From a community point of view only straw and wood are found to be competitive to the expensive gas fuel oil when burned in automatically stoked furnaces. From a heating station point of view waste utilization is more attractive because of the sales tax on oil products. Here straw and wood are competitive fuels to both gas and heavy fuel oil in all the analyzed systems except from the small manually stoked furnaces. Animal waste seems to be competitive only when replacing gas fuel oil in medium size (500 kW) well utilized aerobic fermenters.

  8. 300 Area dangerous waste tank management system: Compliance plan approach. Final report

    International Nuclear Information System (INIS)

    1996-03-01

    In its Dec. 5, 1989 letter to DOE-Richland (DOE-RL) Operations, the Washington State Dept. of Ecology requested that DOE-RL prepare ''a plant evaluating alternatives for storage and/or treatment of hazardous waste in the 300 Area...''. This document, prepared in response to that letter, presents the proposed approach to compliance of the 300 Area with the federal Resource Conservation and Recovery Act and Washington State's Chapter 173-303 WAC, Dangerous Waste Regulations. It also contains 10 appendices which were developed as bases for preparing the compliance plan approach. It refers to the Radioactive Liquid Waste System facilities and to the radioactive mixed waste

  9. ICPP radioactive liquid and calcine waste technologies evaluation final report and recommendation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Using a formalized Systems Engineering approach, the Latched Idaho Technologies Company developed and evaluated numerous alternatives for treating, immobilizing, and disposing of radioactive liquid and calcine wastes at the Idaho Chemical Processing Plant. Based on technical analysis data as of March, 1995, it is recommended that the Department of Energy consider a phased processing approach -- utilizing Radionuclide Partitioning for radioactive liquid and calcine waste treatment, FUETAP Grout for low-activity waste immobilization, and Glass (Vitrification) for high-activity waste immobilization -- as the preferred treatment and immobilization alternative.

  10. Long term governance for radioactive waste management. Final report of Cowan2 - work package 4

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Th.; Schieber, C.; Lavele, S.

    2006-12-15

    This report aims at identifying key features for the long term governance of radioactive waste. It is proposed by the COWAN2 Work Package 4 the purpose of which was to identify, discuss and analyse the institutional, ethical, economic and legal considerations raised by long term radioactive waste storage or disposal on the three interrelated issues of: responsibility and ownership of radioactive waste on the long term, continuity of local dialogue between stakeholders and monitoring of radioactive waste management facilities, and compensation and sustainable development. The aim is also to propose guidelines in order to better address long term issues in decision-making processes and start long term governance

  11. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains appendices of supplementary data on waste management systems, geologic disposal, radiological standards, radiation dose calculation models, related health effects, baseline ecology, socio-economic conditions, hazard indices, comparison of defense and commercial wastes, design considerations, and wastes from thorium-based fuel cycle alternatives. (DMC)

  12. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains appendices of supplementary data on waste management systems, geologic disposal, radiological standards, radiation dose calculation models, related health effects, baseline ecology, socio-economic conditions, hazard indices, comparison of defense and commercial wastes, design considerations, and wastes from thorium-based fuel cycle alternatives

  13. Chemotoxic materials in a final repository for high-level radioactive wastes. CHEMOTOX concept for defence in depth concerning ground water protection from chemotoxic materials in a final high-level waste repository

    International Nuclear Information System (INIS)

    Alt, Stefan; Sailer, Michael; Schmidt, Gerhard; Herbert, Horst-Juergen; Krone, Juergen; Tholen, Marion

    2009-01-01

    The disposal of high-level radioactive wastes in a final repository includes chemotoxic materials. The chemotoxic materials are either part of the radioactive material or part of the packaging material, or the structures within the repository. In the frame of the licensing procedure it has to be demonstrated that no hazardous pollution of the ground water or other disadvantageous changes can occur. The report describes the common project of the Oeko-Institut e.V., the DBE Technology GmbH and the GRS mbH concerning the possible demonstration of a systematic protection of the groundwater against chemotoxic materials in case of a final high-level-radioactive waste repository in the host materials salt and clay stone.

  14. Medicare Program; Revisions to Payment Policies Under the Physician Fee Schedule and Other Revisions to Part B for CY 2018; Medicare Shared Savings Program Requirements; and Medicare Diabetes Prevention Program. Final rule.

    Science.gov (United States)

    2017-11-15

    This major final rule addresses changes to the Medicare physician fee schedule (PFS) and other Medicare Part B payment policies such as changes to the Medicare Shared Savings Program, to ensure that our payment systems are updated to reflect changes in medical practice and the relative value of services, as well as changes in the statute. In addition, this final rule includes policies necessary to begin offering the expanded Medicare Diabetes Prevention Program model.

  15. Refinery scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Marcus V.; Fraga, Eder T. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Shah, Nilay [Imperial College, London (United Kingdom)

    2004-07-01

    This work addresses the refinery scheduling problem using mathematical programming techniques. The solution adopted was to decompose the entire refinery model into a crude oil scheduling and a product scheduling problem. The envelope for the crude oil scheduling problem is composed of a terminal, a pipeline and the crude area of a refinery, including the crude distillation units. The solution method adopted includes a decomposition technique based on the topology of the system. The envelope for the product scheduling comprises all tanks, process units and products found in a refinery. Once crude scheduling decisions are Also available the product scheduling is solved using a rolling horizon algorithm. All models were tested with real data from PETROBRAS' REFAP refinery, located in Canoas, Southern Brazil. (author)

  16. High Temperature Air/Steam Gasification of Biomass Wastes - Stage 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Blasiak, Wlodzimierz; Szewczyk, Dariusz; Lucas, Carlos; Rafidi, Nabil; Abeyweera Ruchira; Jansson, Anna; Bjoerkman, Eva [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Science and Engineering

    2003-05-01

    In Jan 2002 the Division of Energy and Furnace Technology started the project High Temperature Air an Steam Gasification (HTAG) of biomass wastes, following the approval made by Swedish Energy Agency. The research proved successful; with the fixed bed updraft gasifier coupled to the highly regenerative preheater equipment able to produce a fuel gas not only from wood pellets but also from wood chips, bark and charcoal with considerably reduced amount of tar. This report provides information on solid biomass conversion into fuel gas as a result of air and steam gasification process performed in a fixed bed updraft gasifier. The first chapter of the report presents the overall objectives and the specific objectives of the work. Chapter 2 summarizes state-of-the-art on the gasification field stating some technical differences between low and high temperature gasification processes. Description and schemes of the experimental test rig are provided in Chapter 3. The equipment used to perform measurements of different sort and that installed in the course of the work is described in Chapter 4. Chapter 5 describes the methodology of experiments conducted whose results were processed and evaluated with help of the scheme of equations presented in Chapter 6, called raw data evaluation. Results of relevant experiments are presented and discussed in Chapter 7. A summary discussion of the tar analysis is presented in Chapter 8. Chapter 9 summarizes the findings of the research work conducted and identifies future efforts to ensure the development of next stage. Final chapter provides a summary of conclusions and recommendations of the work. References are provided at the end of the report. Aimed to assist the understanding of the work done, tables and graphs of experiments conducted, irrespective to their quality, are presented in appendices.

  17. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline

  18. Radioactive Demonstration Of Final Mineralized Waste Forms For Hanford Waste Treatment Plant Secondary Waste By Fluidized Bed Steam Reforming Using The Bench Scale Reformer Platform

    International Nuclear Information System (INIS)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-01-01

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137 Cs, 129 I, 99 Tc, Cl, F, and SO 4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form

  19. Medicare program; revisions to payment policies under the Physician Fee Schedule, Clinical Laboratory Fee Schedule, access to identifiable data for the Center for Medicare and Medicaid Innovation Models & other revisions to Part B for CY 2015. Final rule with comment period.

    Science.gov (United States)

    2014-11-13

    This major final rule with comment period addresses changes to the physician fee schedule, and other Medicare Part B payment policies to ensure that our payment systems are updated to reflect changes in medical practice and the relative value of services, as well as changes in the statute. See the Table of Contents for a listing of the specific issues addressed in this rule.

  20. Approaches and practices related to hazardous waste management, processing and final disposal in germany and Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Passos, J.A.L.; Pereira, F.A.; Tomich, S. [CETREL S.A., Camacari, BA (Brazil)

    1993-12-31

    A general overview of the existing management and processing of hazardous wastes technologies in Germany and Brazil is presented in this work. Emphasis has been given to the new technologies and practices adopted in both countries, including a comparison of the legislation, standards and natural trends. Two case studies of large industrial hazardous waste sites are described. 9 refs., 2 figs., 9 tabs.

  1. 76 FR 2618 - Minnesota: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-01-14

    ... Contaminated Cadmium-, Mercury-, and Silver-Containing Batteries Checklist 201. Hazardous Waste Management June... Restrictions May 26, 1998, 63 MR 7045.1390; Phase IV; Hazardous Soils FR 28556. Effective June 22, Treatment...); Effective February 14, 2005. Hazardous Remediation Waste November 30, MR 7001.0060; Management Requirements...

  2. 77 FR 38530 - Louisiana: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2012-06-28

    ...- 2, 108.E.2 Comment, 108.F intro, 108.F.2, 108.Gintro, 108.G.2, 4105.A.2, 4105.A.2, 4105.A.2.b, 4105... Business Regulatory Enforcement Fairness Act of 1996, generally provides that before a rule may take effect..., Confidential business information, Hazardous waste, Hazardous waste transportation, Indian lands...

  3. Wood products in the waste stream: Characterization and combustion emissions. Volume 1. Final report

    International Nuclear Information System (INIS)

    1992-11-01

    Waste wood is wood separated from the solid-waste stream and processed into a uniform-sized product that is reused for other purposes such as fuel. As an alternative to the combustion of fossil fuels, it has raised concerns that if it is 'contaminated' with paints, resins, preservatives, etc., unacceptable environmental impacts may be generated during combustion. Given the difficulty of separating contaminated materials from waste wood and the large energy potential existing in the resource, it is important to identify possible problems associated with contaminated waste wood combustion. The study describes research about technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. The project's purpose was to provide environmental regulators, project developers, and others with data to make informed decisions on the use of waste wood materials as a combustion resource. Potential environmental problems and solutions were identified. A specific project result was the identification of combustion system operation parameters and air pollution control technologies that can minimize emissions of identified air and solid waste contaminants from combustion of wood waste

  4. Treatment and final disposal of nuclear waste. Programme for research, development, demonstration and other measures

    International Nuclear Information System (INIS)

    1992-09-01

    The swedish program for R,D and D on disposal of radioactive waste in an underground repository is presented. Main topics are: Radioactive waste management, storage and disposal; encapsulation; environmental impacts; risk assessment; radionuclide migration; decommissioning; cost and international cooperation. 129 refs, 43 figs, 10 tabs

  5. Storage and final disposal of low and intermediate level radioactive waste materials in Europe

    International Nuclear Information System (INIS)

    Plecas, I.

    1997-01-01

    As of the end of 1995, 18 countries in Europe had electricity-generating nuclear power reactors in operation or under construction. There are currently 217 operating units, with a total capacity of about 165 GW e. In addition, there are 26 units under construction, which would bring the total electrical generating capacity to about 190 GW e.The management of radioactive waste is not a new concept. It has been safely practised for low and intermediate level wastes for almost 40 years. Today, after decades of research, development and industrial applications, it can be stated confidently that safe technological solutions for radioactive waste management exist. However, waste disposal as a whole waste management system is no longer a matter for scientists but requires co-operation with politicians, licensing authorities, industry and ultimately general public. The goal is unique: the protection of human health and the global environment against possible short term and (very) long term effects of radioactive materials. Disposal of waste materials in a repository without the intention of retrieval, whereas storage, as previously discussed, is done with the intention that the waste will be retrieved at a later time. If disposed waste is abandoned, the repository site is not abandoned, but surveillance should not be necessary beyond some expected period of institutional control. (author)

  6. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1996-01-01

    Much of the US Department of Energy's (DOE's) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL's main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers

  7. Approaches and practices related to hazardous waste management, processing and final disposal in germany and Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Passos, J A.L.; Pereira, F A; Tomich, S [CETREL S.A., Camacari, BA (Brazil)

    1994-12-31

    A general overview of the existing management and processing of hazardous wastes technologies in Germany and Brazil is presented in this work. Emphasis has been given to the new technologies and practices adopted in both countries, including a comparison of the legislation, standards and natural trends. Two case studies of large industrial hazardous waste sites are described. 9 refs., 2 figs., 9 tabs.

  8. 75 FR 43409 - Rhode Island: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2010-07-26

    ...--Statistical Methods for Evaluating Ground-Water Monitoring Data from Hazardous Waste Facilities, 53 FR 39720... Refining Primary and Secondary Oil/Water/Solids Separation Sludge Listings, 56 FR 21955, May 13, 1991: Rule... handle hazardous sludges as hazardous wastes when they leave the zero discharge unit. Whether this...

  9. Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal: Final Act

    International Nuclear Information System (INIS)

    1989-03-01

    The Conference on Plenipotentiaries on the Global Convention on the Control of Transboundary Movements of Hazardous Wastes was convened by the Executive Director of the United Nations Environment Programme (UNEP) pursuant to decision 14/30, adopted by the Governing Council of UNEP on 17 June 1987. The Conference adopted the Global Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal. In the 29 articles of this Convention the definitions of hazardous wastes, the scope of the Convention, general obligations of the signatory parties, transboundary waste movement between Parties as well as through states which are not parties, illegal traffic, international control, liabilities, financial aspects, verification, accession and withdrawal of the Parties are defined in detail. There are 6 Annexes, including specifications of hazardous wastes, information requirements, notification rules, etc

  10. Batch-wise final disposal made feasible by long-term interim storage of waste: the choice of the Netherlands

    International Nuclear Information System (INIS)

    Codee, Hans D.K.; Vrijen, Jan

    1991-01-01

    Radioactive waste produced in the Netherlands is managed by COVRA, the Central Organisation for Radioactive Waste. All kinds and categories of radwaste generated in the next 50-100 years will be stored in above ground engineered structures which allow retrieval at all times. After this long-term storage, the wastes will finally be disposed of in a deep geologic repository. At the political level no firm decisions have yet been taken with respect to the final disposal. Disposal in rock salt, which is available in the Netherlands, is explored as an option. Immediate disposal requires the availability of a large amount of money as well as a site. Neither of the two are available at present in the Netherlands, nor are they required at this time. Based on economic considerations, immediate disposal into a rock salt facility in not an acceptable option for the wastes presently produced in the Netherlands. Only after sufficient capital has been generated through an interest bearing fund can this option be considered for implementation

  11. The final disposal of radioactive wastes. Are we nearing a solution to a decade-old conflict?

    International Nuclear Information System (INIS)

    Koenig, Wolfram

    2013-01-01

    The present article describes how the recent decision to phase out nuclear energy has created an opportunity to gain public acceptance of a nuclear waste repository in Germany. Now that the phase-out has been finalised the amount of radioactive waste requiring disposal has become quantifiable. This has created clarity as to the magnitude of the environmental problem waiting to be solved. The longer it takes to get the final storage of radioactive wastes underway the greater will be the risk that in the end nobody is prepared to assume responsibility and the cheapest solution - in the literal sense of the word - is adopted, which is to export the wastes abroad. Since more than a year the political leadership has been struggling to work out the details of a law governing the search for a final repository. The recent approval given by the government of the federal state of Lower Saxony has come in time to throw the door wide open ahead of the federal elections for a procedure that can count on broad support among the political leadership. The chances are now good for a lasting resolution to a dispute that has been carried on in the German Federal Republic for decades, sometimes with ferocity, over the risks associated with the use of nuclear energy, and they must be grabbed.

  12. Final storage of radioactive waste - how soon will we be able to catch up again with international developments?

    International Nuclear Information System (INIS)

    Kuehn, K.

    2006-01-01

    In Germany, the final storage of radioactive waste from the beginning has been a topic very much influenced by the political debate, especially by party politics. The development initiated after the 1998 change in government has greatly contributed to Germany clearly losing contact with cutting edge international developments in final storage. Here are some proposals for improving the present situation: - The political demand for a single-repository concept should be given up. - Preparatory work on the Konrad repository should be started. - Underground exploration of the Gorleben salt dome should be resumed without any strings attached. - A TSPA should be conducted for the Gorleben project. - After completion of the TSPA, an international peer review should be carried out of the Gorleben project. - An underground laboratory in salt should be established in Germany. - Repository activities should be transferred to a company organized and operating along industrial lines. - Competence for licensing radioactive waste repositories should be concentrated on a national level. (orig.)

  13. Special feature of the facilities for final disposal of radioactive waste and its potential impact on the licensing process

    International Nuclear Information System (INIS)

    Lee Gonzales, Horacio M.; Medici, Marcela A.; Alvarez, Daniela E.; Biaggio, Alfredo L.

    2009-01-01

    During the lifetime of a radioactive waste disposal facility it is possible to identify five stages: design, construction, operation, closure and post-closure. While the design, and pre-operation stages are, to some extent, similar to other kind of nuclear or radioactive facilities; construction, operation, closure and post-closure have quite special meanings in the case of radioactive waste disposal systems. For instance, the 'closure' stage of a final disposal facility seems to be equivalent to the commissioning stage of a conventional nuclear or radioactive facility. This paper describes the unique characteristics of these stages of final disposal systems, that lead to concluded that their licensing procedure can not be assimilated to the standard licensing procedures in use for other nuclear or radioactive facilities, making it necessary to develop a tailored license system. (author)

  14. Search for a final repository site. How is the status of the preparation of final radioactive waste disposal in Germany?; Endlagersuche. Wie steht es um die Vorbereitung der Entsorgung radioaktiver Abfaelle in Deutschland?

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Monika C.M. (ed.) [Evangelische Akademie Loccum, Rehburg-Loccum (Germany). Arbeitsbereich Naturwissenschaften, Oekologie und Umweltpolitik

    2017-07-01

    During the workshop on the status of the preparation of final radioactive waste disposal in Germany the following issues were discussed: socio-economic challenges two years after the final report of the commission for final disposal of radioactive wastes; the question of public participation - the difficult search for a repository site, experiences and intents of public participation during the work of the commission, interim storage of hear generating radioactive wastes, extended interim-storage, long-term interim storage facilities - opinion of the concerned public, how to establish a controlling and correcting surveillance of the process?.

  15. Long-term integrity of waste package final closure for HLW geological disposal, (2). Applicability of TIG welding method to overpack final closure

    International Nuclear Information System (INIS)

    Asano, Hidekazu; Sawa, Shuusuke; Aritomi, Masanori

    2005-01-01

    Overpack, a high-level radioactive waste package for geological disposal, seals vitrified waste and in line with Japan's waste management program is required to isolate it from contact with groundwater for 1,000 years. In this study, TIG (Tungsten Inert Gas) welding method, a typical arc welding method and widely used in various industries, was examined for its applicability to seal a carbon steel overpack lid with a thickness of 190 mm. Welding conditions and welding parameters were examined for multi-layer welding in a narrow gap for four different groove depths. Weld joint tests were conducted and weld flaws, macro- and microstructure, and mechanical properties were assessed within tentatively applied criteria for weld joints. Measurement and numerical calculation for residual stress were also conducted and the tendency of residual stress distribution was discussed. These test results were compared with the basic requirements of the welding method for overpack which were pointed out in our first report. It is assessed that the TIG welding method has the potential to provide the necessary requirements to complete the final closure of overpack with a maximum thickness of 190 mm. (author)

  16. Project Guarantee 1985. Final repository for low- and intermediate-level radioactive wastes: The system of safety barriers

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The safety barrier system for the type B repository for low- and intermediate-level waste is described. The barrier parameters which are relevant for safety analysis are quantified and associated error limits and data scatter are given. The aim of the report is to give a summary documentation of the safety analysis input data and their scientific background. For secure containment of radioactive waste safety barriers are used which effectively limit the release of radioactive material from the repository (release barriers) and effectively retard the entry of the original radioactive material into the biosphere (time barriers). In the case of low- and intermediate-level waste the technical safety barrier system comprises: waste solidification matrix (cement, bitumen and resin), immobilisation of the waste packages in containers using liquid cement, concrete repository containers, backfilling of remaining vacant storage space with special concrete, concrete lining of the repository caverns, sealing of access tunnels on final closure of the repository. Natural geological safety barriers - host rock and overlying formations - have the following important functions. Because of its stability, the host rock in the repository zone protects the technical safety barrier system from destruction caused by climatic effects and erosion for a sufficient length of time. It also provides for low water flow and favourable chemistry (reducing conditions)

  17. Selection and cultivation of final vegetative cover for closed waste sites at the Savannah River Site, SC

    International Nuclear Information System (INIS)

    Cook, J.R.; Salvo, S.K.

    1992-01-01

    Low-level, hazardous, and mixed waste disposal sites normally require some form of plant material to prevent erosion of the final closure cap. Waste disposal sites are closed and capped in a complex scientific manner to minimize water infiltration and percolation into and through the waste material. Turf type grasses are currently being used as a vegetative cover for most sites. Consequently, the sites require periodic mowing and other expensive annual maintenance practices. The purpose of this five year study was to evaluate alternative plant material for use on wastes sites that is quickly and easily established and economically maintained, retards water infiltration, provides maximum year-round evapotranspiration, is ecologically acceptable and does not harm the closure cap. The results of the study are described in this report and suggest that two species of bamboo (Phyllostachys bissetii and P. rubromarainata) can be utilized to provide long lived, low maintenance, climax vegetation for the waste sites. These large species of bamboo will also reduce the probability of intrusion by humans, animals and deeply rooted plant species

  18. APPLICATIONS OF THERMAL ENERGY STORAGE TO WASTE HEAT RECOVERY IN THE FOOD PROCESSING INDUSTRY, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.

    1979-07-31

    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  19. Handling and final disposal of nuclear waste. Programme for research development and other measures

    International Nuclear Information System (INIS)

    1989-09-01

    The report is divided into two parts. Part 1 presents the premises for waste management in Sweden and the waste types that are produced in Sweden. A brief description is then provided of the measures required for the handling and disposal of the various waste forms. An account of measures for decommissioning of nuclear power plants is also included. Part 2 describes the research program for 1990-1995, which includes plans for siting, repository design; studies of rock properties and chemistry, biosphere, technological barriers. Activities within two large projects, the Stripa laboratory and Natural analogues are also described. 240 refs. 40 figs

  20. Final remediation of the provisional storage near Zavratec. Separation of waste, decontamination and radiological measurements

    International Nuclear Information System (INIS)

    Stepisnik, M.; Zeleznik, N.; Mele, I.

    2000-01-01

    This paper presents remedial activities in Zavratec during winter 1999 - 2000. The difficult and slow process of separation radioactive from non-radioactive waste is explained, and the measuring techniques and equipment for separation are presented. The measurements of storage contamination and its decontamination, involving different practical problems, are described in detail. As a result, the initial volume of the waste was reduced to 50%, in spite of the extended decontamination works. The waste has been relocated to the Brinje storage facility. Measurements inside and outside the Zavratec facility after decontamination showed that no radioactivity higher than the natural background was present. The facility was released for unrestricted use. (author)

  1. Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes. Final Report

    International Nuclear Information System (INIS)

    Wasan, Darsh T.

    2007-01-01

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study

  2. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  3. Solid waste and the water environment in the new European Union perspective. Process analysis related to storage and final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Marcia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2000-11-01

    Processes that occur during storage and final disposal of solid waste were studied, with emphasis on physical and chemical aspects and their effects on the water environment, within the New European Union perspective for landfilling (Council Directive 1999/31/EC of 26 April 1999). In the new scenario, landfilling is largely restricted; waste treatments such as incineration, composting, recycling, storage and transportation of materials are intensified. Landfill sites are seen as industrial facilities rather than merely final disposal sites. Four main issues were investigated within this new scenario, in field- and full-scale, mostly at Spillepeng site, southern Sweden. (1) Adequacy of storage piles: Regarding the increasing demand for waste storage as fuel, the adequacy of storage in piles was investigated by monitoring industrial waste (IND) fuel compacted piles. Intense biodegradation activity, which raised the temperature into the optimum range for chemical oxidation reactions, was noticed during the first weeks. After about six months of storage, self-ignition occurred in one IND pile and one refuse derived fuel (RDF) pile. Heat, O{sub 2} and CO{sub 2} distribution at different depths of the monitored IND pile suggested that natural convection plays an important role in the degradation process by supplying oxygen and releasing heat. Storage techniques that achieve a higher degree of compaction, such as baling, are preferable to storage in piles. ( 2) Discharge from landfill for special waste: Regarding changes in the composition of the waste sent to landfills and the consequences for its hydrological performance in active and capped landfills, discharge from a full-scale landfill for special/hazardous waste (predominantly fly ash from municipal solid waste (MSW) incineration) was modelled using the U.S. EPA HELP model. Hydraulic properties of the special waste were compared with those from MSW. Lower practical field capacity and higher hydraulic conductivity at

  4. Solid waste and the water environment in the new European Union perspective. Process analysis related to storage and final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Marcia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2000-11-01

    Processes that occur during storage and final disposal of solid waste were studied, with emphasis on physical and chemical aspects and their effects on the water environment, within the New European Union perspective for landfilling (Council Directive 1999/31/EC of 26 April 1999). In the new scenario, landfilling is largely restricted; waste treatments such as incineration, composting, recycling, storage and transportation of materials are intensified. Landfill sites are seen as industrial facilities rather than merely final disposal sites. Four main issues were investigated within this new scenario, in field- and full-scale, mostly at Spillepeng site, southern Sweden. (1) Adequacy of storage piles: Regarding the increasing demand for waste storage as fuel, the adequacy of storage in piles was investigated by monitoring industrial waste (IND) fuel compacted piles. Intense biodegradation activity, which raised the temperature into the optimum range for chemical oxidation reactions, was noticed during the first weeks. After about six months of storage, self-ignition occurred in one IND pile and one refuse derived fuel (RDF) pile. Heat, O{sub 2} and CO{sub 2} distribution at different depths of the monitored IND pile suggested that natural convection plays an important role in the degradation process by supplying oxygen and releasing heat. Storage techniques that achieve a higher degree of compaction, such as baling, are preferable to storage in piles. ( 2) Discharge from landfill for special waste: Regarding changes in the composition of the waste sent to landfills and the consequences for its hydrological performance in active and capped landfills, discharge from a full-scale landfill for special/hazardous waste (predominantly fly ash from municipal solid waste (MSW) incineration) was modelled using the U.S. EPA HELP model. Hydraulic properties of the special waste were compared with those from MSW. Lower practical field capacity and higher hydraulic conductivity at

  5. Simplified method of checking the observance of maximum permissible activity of waste forms to be placed in the Konrad shaft for final waste storage

    International Nuclear Information System (INIS)

    Berg, H.P.; Piefke, F.

    1986-10-01

    The requirements to be met by waste forms destined for final storage in the Konrad shaft among others define maximum permissible activity levels which have been determined from the various parts of the safety analyses. For waste forms with very low activity levels, it is suitable to compile all the very specific requirements in one checking list, and to perform the checking as simply as adequate. On the basis of the compilation of requirements defined for normal operation of the storage facility, hypothetical accidents, thermal loads affecting the host rock, and criticality safety, the maximum permissible activities are derived that are to be checked by the simplified control measures explained. The report explains the computer programs for the ANKONA code. (orig.) [de

  6. Use of waste cellophane in the control of sediment : Final report.

    Science.gov (United States)

    1978-01-01

    Based on laboratory flume tests, it was concluded that waste cellophane could be used effectively for trapping and filtering waterborne sediment. It was also priced competitively and, like straw and burlap, it was found to be biodegradable in a soil ...

  7. 78 FR 33986 - Indiana: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2013-06-06

    ... Coating of Automobiles and Light-Duty Trucks, Checklist 205, April 26, 2004 (69 FR 22601) Hazardous Waste--Nonwastewaters From Production of Dyes, Pigments and Food, Drug and Cosmetic Colorants; Mass Loadings-Based...

  8. Technical Exchange on Improved Design and Performance of High Level Waste Melters - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    SK Sundaram; ML Elliott; D Bickford

    1999-11-19

    SIA Radon is responsible for management of low- and intermediate-level radioactive waste (LILW) produced in Central Russia. In cooperation with Minatom organizations Radon carries out R and D programs on treatment of simulated high level waste (HLW) as well. Radon scientists deal with a study of materials for LILW, HLW, and Nuclear Power Plants (NPP) wastes immobilization, and development and testing of processes and technologies for waste treatment and disposal. Radon is mostly experienced in LILW vitrification. This experience can be carried over to HLW vitrification especially in field of melting systems. The melter chosen as a basic unit for the vitrification plant is a cold crucible. Later on Radon experience in LILW vitrification as well as our results on simulated HLW vitrification are briefly described.

  9. 76 FR 36879 - Minnesota: Final Authorization of State Hazardous Waste Management Program Revision

    Science.gov (United States)

    2011-06-23

    ... Treatment Subcategories for Radioactively Contaminated Cadmium-, Mercury-, and Silver- Containing Batteries..., 1998 (63 FR 28556) Land Disposal Restrictions Phase IV; Hazardous Soils Treatment Standards and..., October 22, 1998 (63 FR 56710) Hazardous Remediation Waste Management Requirements (HWIR-Media), Checklist...

  10. Numerical modeling of rock stresses within a basaltic nuclear waste repository. Final report

    International Nuclear Information System (INIS)

    Hardy, M.P.; Hocking, G.

    1978-01-01

    The modeling undertaken during this project incorporated a wide range of problems that impact the design of the waste repository. Interaction of groundwater, heat and stress were considered on a regional scale, whereas on the room and canister scale thermo-mechanical analyses were undertaken. In the Phase II report, preliminary guidelines for waste densities were established based primarily on short-term stress criteria required to maintain stability during the retrievability period. Additional analyses are required to evaluate the effect of joints, borehole linings, room support and ventilation on these preliminary waste loading densities. The regional analyses did not indicate any adverse effect that could control the allowable waste loading densities. However, further refinements of geologic structure, hydrologic models, seismicity and possible induced seismicity are required before firm estimates of the loading densities can be made

  11. Final technical position on documentation of computer codes for high-level waste management

    International Nuclear Information System (INIS)

    Silling, S.A.

    1983-06-01

    Guidance is given for the content of documentation of computer codes which are used in support of a license application for high-level waste disposal. The guidelines cover theoretical basis, programming, and instructions for use of the code

  12. Technical Exchange on Improved Design and Performance of High Level Waste Melters - Final Report

    International Nuclear Information System (INIS)

    Sundaram, S.K.; Elliott, M.L.; Bickford, D.

    1999-01-01

    SIA Radon is responsible for management of low- and intermediate-level radioactive waste (LILW) produced in Central Russia. In cooperation with Minatom organizations Radon carries out R and D programs on treatment of simulated high level waste (HLW) as well. Radon scientists deal with a study of materials for LILW, HLW, and Nuclear Power Plants (NPP) wastes immobilization, and development and testing of processes and technologies for waste treatment and disposal. Radon is mostly experienced in LILW vitrification. This experience can be carried over to HLW vitrification especially in field of melting systems. The melter chosen as a basic unit for the vitrification plant is a cold crucible. Later on Radon experience in LILW vitrification as well as our results on simulated HLW vitrification are briefly described

  13. Infrastructure support for a waste management institute. Final project report, September 12, 1994--September 11, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    North Carolina A and T State University has completed the development of an infrastructure for the interdisciplinary Waste Management Institute (WMI). The Interdisciplinary Waste Management Institute (WMI) was approved in June, 1994 by the General Administration of the University of North Carolina as an academic support unit with research and public service functions. The mission of the WMI is to enhance awareness and understanding of waste management issues and to provide instructional support including research and outreach. The goals of WMI are as follows: increase the number of minority professionals who will work in waste management fields; develop cooperative and exchange programs involving faculty, students, government, and industry; serve as institutional sponsor of public awareness workshops and lecture series; and support interdisciplinary research programs. The vision of the WMI is to provide continued state-of-the art environmental educational programs, research, and outreach.

  14. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    International Nuclear Information System (INIS)

    TOMASZEWSKI, T.A.

    2000-01-01

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management

  15. Final report for the Iowa Livestock Industry Waste Characterization and Methane Recovery Information Dissemination Project

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, M.V.; Richard, Thomas L

    2001-11-13

    This report summarizes analytical methods, characterizes Iowa livestock wastes, determines fossil fuel displacement by methane use, assesses the market potential, and offers recommendations for the implementation of methane recovery technologies.

  16. Ferrocyanide tank safety program: Cesium uptake capacity of simulated ferrocyanide tank waste. Final report

    International Nuclear Information System (INIS)

    Burgeson, I.E.; Bryan, S.A.

    1995-07-01

    The objective of this project is to determine the capacity for 137 Cs uptake by mixed metal ferrocyanides present in Hanford Site waste tanks, and to assess the potential for aggregation of these 137 Cs-exchanged materials to form ''hot-spots'' in the tanks. This research, performed at Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company, stems from concerns regarding possible localized radiolytic heating within the tanks. After ferrocyanide was added to 18 high-level waste tanks in the 1950s, some of the ferrocyanide tanks received considerable quantities of saltcake waste that was rich in 137 Cs. If radioactive cesium was exchanged and concentrated by the nickel ferrocyanide present in the tanks, the associated heating could cause tank temperatures to rise above the safety limits specified for the ferrocyanide-containing tanks, especially if the supernate in the tanks is pumped out and the waste becomes drier

  17. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    Energy Technology Data Exchange (ETDEWEB)

    TOMASZEWSKI, T.A.

    2000-04-25

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  18. High-Level Waste Salt Disposition Systems Engineering Team Final Report, Volumes I, II, and III

    International Nuclear Information System (INIS)

    Piccolo, S.F.

    1999-01-01

    This report describes the process used and results obtained by the High Level Waste Salt Disposition Systems Engineering Team to select a primary and backup alternative salt disposition method for the Savannah River Site

  19. Follow-up of foreign safety studies of final storage of nuclear fuel waste

    International Nuclear Information System (INIS)

    Gelin, R.

    1985-04-01

    The development of mathematical models and calculation programs for estimating radionuclide migration from radioactive waste storage is continuing. Detailed site studies are in progress in the United States. The Swiss investigation which has been recently published, recommends waste storage in granite at the depth of 1200 m. The safety analysis is similar to the one of the Swedish KBS-3 study. 68 references. (G.B.)

  20. Solidification Technologies for Radioactive and Chemical Liquid Waste Treatment - Final CRADA Report

    International Nuclear Information System (INIS)

    Castiglioni, Andrew J.; Gelis, Artem V.

    2016-01-01

    This project, organized under DOE/NNSA's Global Initiatives for Proliferation Prevention program, joined Russian and DOE scientists in developing more effective solidification and storage technologies for liquid radioactive waste. Several patent applications were filed by the Russian scientists (Russia only) and in 2012, the technology developed was approved by Russia's Federal State Unitary Enterprise RADON for application throughout Russia in cleaning up and disposing of radioactive waste.

  1. Incineration of hazardous and low-level radioactive waste by a small generator. Final report

    International Nuclear Information System (INIS)

    Dwight, C.C.

    1984-10-01

    The results from Arizona State University's study of the feasibility of a small generator incinerating low-level radioactive waste in a pathological incinerator are reported. The research included various aspects of environmental impact, public relations, cost versus benefit, and licensing procedures. Three years of work resulted in a license amendment authorizing the University to incinerate certain hazardous and low-level radioactive wastes. 13 references, 6 figures, 16 tables

  2. Radioactive and hazardous chemical wastes: A challenge for the future: [Final report

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1986-01-01

    The author focuses attention on serious and widespread problems of environmental pollution, and points out that there are worthwhile problems to work on which are both important and professionally rewarding. A major opportunity exists to reduce the amounts of the wastes or to eliminate them at their sources by changing manufacturing methods or by developing new processes or products. However, there will always be wastes of some sort, and they must be dealt with

  3. Sedimentation technique of waste bituminization and thermogravimetric characteristics of the final products

    International Nuclear Information System (INIS)

    Zeger, J.; Knotik, K.; Jakusch, H.

    1976-01-01

    In the research centre of the Oesterreichische Studiengesellschaft fuer Atomenergie GmbH a semi-technical plant has been installed for waste bituminization, which has been tested inactively since 1973. This plant uses a new technological process for embedding. One of the important features of this new process is that the solution water, which is normally inactive, is distilled off before embedding, resulting in dry and powdery salts. The second important feature is that these dry salts are mixed with the thin fluid bitumen by sedimentation. A special feature is that there is no mechanical aid used for mixing. Thermogravimetric analysis of samples which simulated the final products of this pilot plant was carried out to verify the best working parameters and to study the possible chemical damage to the bitumen. It was shown that only nitrate and nitrite, especially in combination with Fe(III)-ions, are of negative influence on the thermostability of bitumen. They lead to a sudden and quick weight loss of the samples between 370 and 410 0 C (above the melting point of both NaNO 2 and NaNO 3 ). The Fe-ions have a catalytic influence, as it could be shown that a 1% addition of Fe(NO 3 ) 3 to NaNO 3 leads to a considerable acceleration of the incineration. This influence of the Fe(III)-ion can be suppressed to some extent by a hydrolysis before the embedding. There is, however, no danger to the embedding process from these effects since the process temperature of maximum 200 0 C is well below the ignition temperatures. A method of measuring the dose rate of an unknown radioactive salt mixture at any point of this mixture has been developed. This is done by making two measurements with glass dose-meters, one with a beta-absorber to get a pure gamma dose and the other without it to get the combined beta and gamma dose. During the first measurement the dose-meters were protected against contamination by a thin layer of rubber

  4. Sedimentation technique of waste bituminization and thermogravimetric characteristics of the final products

    Energy Technology Data Exchange (ETDEWEB)

    Zeger, J; Knotik, K; Jakusch, H

    1976-01-01

    In the research centre of the Oesterreichische Studiengesellschaft fuer Atomenergie GesmbH a semitechnical plant has been installed for waste bituminization, which has been tested inactively since 1973. This plant is using a new technological process for embedding. One of the important features of this new process is that the, normally inactive solution water is distilled off prior to the embedding, resulting in dry and powdery salts. The second important feature is that the mixing of these dry salts with the thin fluid bitumen is done by sedimentation. Expecially there is no mechanical aid used for mixing. Thermogravimetric analysis of samples which simulated the final products of this pilot plant, were carried out to verify the best working parameters and to study the possible chemical damage to the bitumen. Analysis was performed by heating the samples, consisting of various mixtures of bitumen and inorganic salts, in a METTLER-Thermoanalyzer up to 500/sup 0/C using different atmospheres (air, nitrogen). It could be shown that only nitrate and nitrite especially in combination with Fe(III)-ions are of negative influence on the thermostability of bitumen. They lead to a sudden and quick weight loss of the samples between 370 and 410/sup 0/C (above the melting point of both NaNO/sub 2/ and NaNO/sub 3/). The Fe-ions hava a catalytic influence, as it could be shown that 1 1% addiation of Fe(NO/sub 3/)/sub 3/ to NaNO/sub 3/ leads to a considerable acceleration of the incineration. This influence of the Fe(III)-ion can be suppressed to some extend by a hydrolysis prior to the embedding. In preparation of further studies concerning the behaviour of radiation damaged bitumen there has been developed a method of measuring the dose rate of an unknown radioactive salt mixture at any point of this mixture. This is done by making two measurements with glass dosimeters. One with a beta-absorber to get a pure gamma-dose and the other without it to get the combined beta and

  5. Coolside waste management demonstration OCDO grant agreement No. CDO/D-902-9. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Winschel, R.A. [CONSOL Inc., Library, PA (United States). Research & Development

    1997-10-01

    The objectives of this project were to evaluate the potential utilization in road construction of wastes produced from the Coolside, LIMB (limestone injection multi-stage burner) and FBC (fluidized-bed combustion) processes, and to specify criteria for landfill disposal of waste from the Coolside process. These three processes are considered to be clean coal technologies. The Coolside process involves injecting an aqueous slurry of hydrated lime into the ductwork downstream of the air preheater in a coal-fired boiler. The hydrated lime captures sulfur dioxide from the flue gas producing anhydrous calcium sulfite and calcium sulfate, which are collected along with the unused hydrated lime and fly ash. The LIMB process involves injection of lime or hydrated lime directly into the furnace to capture sulfur dioxide. The waste consists principally of anhydrous calcium sulfate, lime, and fly ash. Both processes were demonstrated successfully at the Edgewater Station of Ohio Edison in Lorrain, OH, from 1989 to 1992. Circulating fluidized-bed combustion (FBC) is a commercial technology which combines steam generation with SO{sub 2} control by burning coal in a circulating bed of limestone. The waste, chemically similar to LIMB waste, is produced by bleed-off of the bed material and by collection of the flue dust. All three processes produce a dry solid waste, which must either be used or disposed of and managed to ensure environmental compliance and economic feasibility. The project was completed in June 1996.

  6. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  7. Recovery and removal of mercury from mixed wastes. Final report, September 1994--June 1995

    International Nuclear Information System (INIS)

    Sutton, W.F.; Weyand, T.E.; Koshinski, C.J.

    1995-06-01

    In recognition of the major environmental problem created by mercury contamination of wastes and soils at an estimated 200,000 sites along US natural gas and oil pipelines and at a number of government facilities, including Oak Ridge, Savannah River, Hanford, and Rocky Flats, the US Department of Energy (DOE) is seeking an effective and economical process for removing mercury from various DOE waste streams in order to allow the base waste streams to be treated by means of conventional technologies. In response to the need for Unproved mercury decontamination technology, Mercury Recovery Services (MRS) has developed and commercialized a thermal treatment process for the recovery of mercury from contaminated soils and industrial wastes. The objectives of this program were to: demonstrate the technical and economic feasibility of the MRS process to successfully remove and recover mercury from low-level mixed waste containing mercury compounds (HgO, HgS, HgCl 2 ) and selected heavy metal compounds (PbO, CdO); determine optimum processing conditions required to consistently reduce the residual total mercury content to 1 mg/kg while rendering the treated product nontoxic as determined by TCLP methods; and provide an accurate estimate of the capital and operating costs for a commercial processing facility designed specifically to remove and recovery mercury from various waste streams of interest at DOE facilities. These objectives were achieved in a four-stage demonstration program described within with results

  8. Preliminary parametric performance assessment of potential final waste forms for alpha low-level waste at the Idaho National Engineering Laboratory. Revision 1

    International Nuclear Information System (INIS)

    Smith, T.H.; Sussman, M.E.; Myers, J.; Djordjevic, S.M.; DeBiase, T.A.; Goodrich, M.T.; DeWitt, D.

    1995-08-01

    This report presents a preliminary parametric performance assessment (PA) of potential waste disposal systems for alpha-contaminated, mixed, low-level waste (ALLW) currently stored at the Transuranic Storage Area of INEL. The ALLW, which contains from 10 to 100 nCi/g of transuranic (TRU) radionuclides, is awaiting treatment and disposal. The purpose of this study was to examine the effects of several parameters on the radiological-confinement performance of potential disposal systems for the ALLW. The principal emphasis was on the performance of final waste forms (FWFs). Three categories of FWF (cement, glass, and ceramic) were addressed by evaluating the performance of two limiting FWFs for each category. Performance at five conceptual disposal sites was evaluated to illustrate the effects of site characteristics on the performance of the total disposal system. Other parameters investigated for effects on receptor dose included inventory assumptions, TRU radionuclide concentration, FWF fracture, disposal depth, water infiltration rates, subsurface-transport modeling assumptions, receptor well location, intrusion scenario assumptions, and the absence of waste immobilization. These and other factors were varied singly and in some combinations. The results indicate that compliance of the treated and disposed ALLW with the performance objectives depends on the assumptions made, as well as on the FWF and the disposal site. Some combinations result in compliance, while others do not. The implications of these results for decision making relative to treatment and disposal of the INEL ALLW are discussed. The report compares the degree of conservatism in this preliminary parametric PA against that in four other PAs and one risk assessment. All of the assessments addressed the same disposal site, but different wastes. The report also presents a qualitative evaluation of the uncertainties in the PA and makes recommendations for further study

  9. Prestudy of final disposal of long-lived low and intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Wiborgh, M [ed.; Kemakta Konsult AB., Stockholm (Sweden)

    1995-01-01

    The repository for long-lived low and intermediate level waste, SFL 3-5, is foreseen to be located adjacent to the deep repository for spent encapsulated fuel, SFL 2. The SFL 3-5 repository comprises of three repository parts which will be used for the different categories of waste. In this report the work performed within a pre-study of the SFL 3-5 repository concept is summarised. The aim was to make a first preliminary and simplified assessment of the near-field as a barrier to radionuclide dispersion. A major task has been to compile information on the waste foreseen to be disposed of in SFL 3-5. The waste comprises of; low and intermediate level waste from Studsvik, operational waste from the central interim storage for spent fuel, CLAB, and the encapsulation plant, decommissioning waste from these facilities, and core components and internal parts from the reactors. The total waste volume has been estimated to about 25000 m{sup 3}. The total activity content at repository closure is estimated to be about 1 {center_dot}10{sup 17} Bq in SFL 3-5. At repository closure the short-lived radionuclides, for example Co-60 and Fe-55, have decayed considerably and the activity is dominated by nickel isotopes in the metallic waste from the reactors, to be disposed of in SFL 5. However, other radionuclides may be more or equally important from a safety point of view, e.g cesium-isotopes and actinides which are found in largest amounts in the SFL 3 waste. A first evaluation of the long term performance or the SFL 3-5 repository has been made. A systematic methodology for scenario formulation was tested. The near-field release of contaminants was calculated for a selected number of radionuclides and chemo-toxic elements. The radionuclide release calculations revealed that Cs-137 and Ni-63 would dominate the annual release from all repository parts during the first 1000 years after repository closure and that Ni-59 would dominate at longer times.

  10. Prestudy of final disposal of long-lived low and intermediate level waste

    International Nuclear Information System (INIS)

    Wiborgh, M.

    1995-01-01

    The repository for long-lived low and intermediate level waste, SFL 3-5, is foreseen to be located adjacent to the deep repository for spent encapsulated fuel, SFL 2. The SFL 3-5 repository comprises of three repository parts which will be used for the different categories of waste. In this report the work performed within a pre-study of the SFL 3-5 repository concept is summarised. The aim was to make a first preliminary and simplified assessment of the near-field as a barrier to radionuclide dispersion. A major task has been to compile information on the waste foreseen to be disposed of in SFL 3-5. The waste comprises of; low and intermediate level waste from Studsvik, operational waste from the central interim storage for spent fuel, CLAB, and the encapsulation plant, decommissioning waste from these facilities, and core components and internal parts from the reactors. The total waste volume has been estimated to about 25000 m 3 . The total activity content at repository closure is estimated to be about 1 ·10 17 Bq in SFL 3-5. At repository closure the short-lived radionuclides, for example Co-60 and Fe-55, have decayed considerably and the activity is dominated by nickel isotopes in the metallic waste from the reactors, to be disposed of in SFL 5. However, other radionuclides may be more or equally important from a safety point of view, e.g cesium-isotopes and actinides which are found in largest amounts in the SFL 3 waste. A first evaluation of the long term performance or the SFL 3-5 repository has been made. A systematic methodology for scenario formulation was tested. The near-field release of contaminants was calculated for a selected number of radionuclides and chemo-toxic elements. The radionuclide release calculations revealed that Cs-137 and Ni-63 would dominate the annual release from all repository parts during the first 1000 years after repository closure and that Ni-59 would dominate at longer times

  11. Problem trap final repository. Social challenges concerning nuclear waste; Problemfalle Endlager. Gesellschaftliche Herausforderungen im Umgang mit Atommuell

    Energy Technology Data Exchange (ETDEWEB)

    Brunnengraeber, Achim (ed.)

    2016-07-01

    How is it possible that there is still no final storage facility in the entire world for highly radioactive waste from nuclear power stations? How is it possible that electricity has been generated by industrial-scale nuclear installations for decades without the issue of the disposal of nuclear waste having been resolved? The events in Chernobyl in 1986 and Fukushima in 2011 have made it blatantly obvious how risky this technology is and how important it is to keep humans and the environment at a safe distance from radioactivity. This anthology examines the technological, political, social and economic dimensions of the permanent disposal of nuclear waste. It provides an insight into the emergence of the problem and the people involved and their interests. It describes and analyses the changes that are taking place in Germany (for instance, in relation to the government's commission on nuclear repositories) and other countries with regard to how they handle nuclear waste. The book deals with both questions related to socio-technical aspects of the permanent disposal of nuclear waste and calls for the democratic need for participation and new ways of doing so, without which the search for a permanent disposal site will not bear fruit. This anthology presents a comprehensive discussion of the disposal of nuclear waste and the search for a permanent repository for it. Not only will students and teachers find it extremely useful, but so will any readers who are interested in its subject matter and wish to gain a more in-depth insight into it.

  12. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This EIS reflects the public review of and comments offered on the draft statement. Included are descriptions of the characteristics of nuclear waste, the alternative disposal methods under consideration, and potential environmental impacts and costs of implementing these methods. Because of the programmatic nature of this document and the preliminary nature of certain design elements assumed in assessing the environmental consequences of the various alternatives, this study has been based on generic, rather than specific, systems. At such time as specific facilities are identified for particular sites, statements addressing site-specific aspects will be prepared for public review and comment.

  13. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 1 of 3

    International Nuclear Information System (INIS)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This EIS reflects the public review of and comments offered on the draft statement. Included are descriptions of the characteristics of nuclear waste, the alternative disposal methods under consideration, and potential environmental impacts and costs of implementing these methods. Because of the programmatic nature of this document and the preliminary nature of certain design elements assumed in assessing the environmental consequences of the various alternatives, this study has been based on generic, rather than specific, systems. At such time as specific facilities are identified for particular sites, statements addressing site-specific aspects will be prepared for public review and comment

  14. Minimum Additive Waste Stabilization (MAWS), Phase I: Soil washing final report

    International Nuclear Information System (INIS)

    1995-08-01

    As a result of the U.S. Department of Energy's environmental restoration and technology development activities, GTS Duratek, Inc., and its subcontractors have demonstrated an integrated thermal waste treatment system at Fernald, OH, as part the Minimum Additive Waste Stabilization (MAWS) Program. Specifically, MAWS integrates soil washing, vitrification of mixed waste streams, and ion exchange to recycle and remediate process water to achieve, through a synergistic effect, a reduction in waste volume, increased waste loading, and production of a durable, leach-resistant, stable waste form suitable for disposal. This report summarizes the results of the demonstration/testing of the soil washing component of the MAWS system installed at Fernald (Plant 9). The soil washing system was designed to (1) process contaminated soil at a rate of 0.25 cubic yards per hour; (2) reduce overall waste volume and provide consistent-quality silica sand and contaminant concentrates as raw material for vitrification; and (3) release clean soil with uranium levels below 35 pCi/g. Volume reductions expected ranged from 50-80 percent; the actual volume reduction achieved during the demonstration reached 66.5 percent. The activity level of clean soil was reduced to as low as 6 pCi/g from an initial average soil activity level of 17.6 pCi/g (the highest initial level of soil provided for testing was 41 pCi/g). Although the throughput of the soil washing system was inconsistent throughout the testing period, the system was online for sufficient periods to conclude that a rate equivalent to 0.25 cubic yards per hour was achieved

  15. Schedule Analytics

    Science.gov (United States)

    2016-04-30

    Warfare, Naval Sea Systems Command Acquisition Cycle Time : Defining the Problem David Tate, Institute for Defense Analyses Schedule Analytics Jennifer...research was comprised of the following high- level steps :  Identify and review primary data sources 1...research. However, detailed reviews of the OMB IT Dashboard data revealed that schedule data is highly aggregated. Program start date and program end date

  16. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-30

    The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

  17. Procedures for aggregating citizen preferences in the context of the nuclear waste management problem. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brock, H.W.; Sauer, G.L.

    1978-10-01

    The purpose of the present paper is to provide an introduction to the theory of social choice and related disciplines, and to relate this theory to the concrete problem of nuclear waste management. In Section I of this report, an overview of the problem is provided. In Section II, two candidate preference aggregation procedures that can be used to identify a socially optimal waste management policy are identified. In Section III, a somewhat lengthy defense of the use of these two aggregation procedures is presented. Each is shown to be compatible with four intuitively appealing criteria of collective decision-making. In Section IV the application of one of the procedures to the evaluation of waste management alternatives is discussed. In Section V the problem of inferring evaluation parameters from expert and laypersons' judgments is addressed.

  18. Waste paper recycling opportunities for government action. Vol. 1 summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J; Love, P

    1978-01-01

    This paper presents a summary of analyses of the current and expected waste paper market conditions in Canada with the objective of identifying government initiatives which could permanently increase recovery levels. Emphasis has been placed upon defining short-term, practical measures which take into account the variations in market conditions for each of the major types of secondary fiber: newsprint, fine paper, and corrugated cardboard. Demand, generation and recovery are analyzed for each of these types on a national and regional basis. The opportunities for increased recycling in each region are identified and recommendations are made regarding appropriate government actions. The principal benefits of increased waste paper reclamation and recycling are perceived as: reducing waste management costs, creating new industries, promoting the conserver ethic, conserving forest and energy resources, and reducing pollution. Includes glossary. 1 fig., 5 tabs.

  19. High-level waste canister storage final design, installation, and testing. Topical report

    International Nuclear Information System (INIS)

    Connors, B.J.; Meigs, R.A.; Pezzimenti, D.M.; Vlad, P.M.

    1998-04-01

    This report is a description of the West Valley Demonstration Project's radioactive waste storage facility, the Chemical Process Cell (CPC). This facility is currently being used to temporarily store vitrified waste in stainless steel canisters. These canisters are stacked two-high in a seismically designed rack system within the cell. Approximately 300 canisters will be produced during the Project's vitrification campaign which began in June 1996. Following the completion of waste vitrification and solidification, these canisters will be transferred via rail or truck to a federal repository (when available) for permanent storage. All operations in the CPC are conducted remotely using various handling systems and equipment. Areas adjacent to or surrounding the cell provide capabilities for viewing, ventilation, and equipment/component access

  20. High-level waste canister storage final design, installation, and testing. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Connors, B.J.; Meigs, R.A.; Pezzimenti, D.M.; Vlad, P.M.

    1998-04-01

    This report is a description of the West Valley Demonstration Project`s radioactive waste storage facility, the Chemical Process Cell (CPC). This facility is currently being used to temporarily store vitrified waste in stainless steel canisters. These canisters are stacked two-high in a seismically designed rack system within the cell. Approximately 300 canisters will be produced during the Project`s vitrification campaign which began in June 1996. Following the completion of waste vitrification and solidification, these canisters will be transferred via rail or truck to a federal repository (when available) for permanent storage. All operations in the CPC are conducted remotely using various handling systems and equipment. Areas adjacent to or surrounding the cell provide capabilities for viewing, ventilation, and equipment/component access.

  1. Earning public trust and confidence: Requisites for managing radioactive wastes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Task Force on Radioactive Waste Management was created in April 1991 by former Secretary James D. Watkins, who asked the group to analyze the critical institutional question of how the Department of Energy (DOE) might strengthen public trust and confidence in the civilian radioactive waste management program. The panel met eight times over a period of 27 months and heard formal presentations from nearly 100 representatives of state and local governments, non-governmental organizations, and senior DOE Headquarters and Field Office managers. The group also commissioned a variety of studies from independent experts, contracted with the National Academy of Sciences and the National Academy of Public Administration to hold workshops on designing and leading trust-evoking organizations, and carried out one survey of parties affected by the Department`s radioactive waste management activities and a second one of DOE employees and contractors.

  2. Procedures for aggregating citizen preferences in the context of the nuclear waste management problem. Final report

    International Nuclear Information System (INIS)

    Brock, H.W.; Sauer, G.L.

    1978-10-01

    The purpose of the present paper is to provide an introduction to the theory of social choice and related disciplines, and to relate this theory to the concrete problem of nuclear waste management. In Section I of this report, an overview of the problem is provided. In Section II, two candidate preference aggregation procedures that can be used to identify a socially optimal waste management policy are identified. In Section III, a somewhat lengthy defense of the use of these two aggregation procedures is presented. Each is shown to be compatible with four intuitively appealing criteria of collective decision-making. In Section IV the application of one of the procedures to the evaluation of waste management alternatives is discussed. In Section V the problem of inferring evaluation parameters from expert and laypersons' judgments is addressed

  3. A dose assessment for final low level waste disposal located at Cernavoda

    International Nuclear Information System (INIS)

    Moldoveanu, E.

    1995-01-01

    This paper presents the first step in the radiological effect evaluation of the low radioactive wastes disposal which will be located in Cernavoda's area. The calculations are done with some approximations based on pessimistic hypotheses. In this sense, the primary step of the accident scenario is a total failure of the wastes disposal and a total emission of radioactive wastes in the environment. The results are estimated versus the time in which radioisotopes migrate through geological formations until they arrive at the underground water. It is considered that for Cernavoda, a town situated in the vicinity of the disposal, the water is contaminated with all radioisotopes arising in this way, and people ingest this water (2 l/day). The results are presented in tables and figures. (author)

  4. Earning public trust and confidence: Requisites for managing radioactive wastes. Final report

    International Nuclear Information System (INIS)

    1993-11-01

    The Task Force on Radioactive Waste Management was created in April 1991 by former Secretary James D. Watkins, who asked the group to analyze the critical institutional question of how the Department of Energy (DOE) might strengthen public trust and confidence in the civilian radioactive waste management program. The panel met eight times over a period of 27 months and heard formal presentations from nearly 100 representatives of state and local governments, non-governmental organizations, and senior DOE Headquarters and Field Office managers. The group also commissioned a variety of studies from independent experts, contracted with the National Academy of Sciences and the National Academy of Public Administration to hold workshops on designing and leading trust-evoking organizations, and carried out one survey of parties affected by the Department's radioactive waste management activities and a second one of DOE employees and contractors

  5. Acoustic imaging of underground storage tank wastes: A feasibility study. Final report

    International Nuclear Information System (INIS)

    Turpening, R.; Zhu, Z.; Caravana, C.; Matarese, J.

    1995-01-01

    The objectives for this underground storage tank (UST) imaging investigation are: (1) to assess the feasibility of using acoustic methods in UST wastes, if shown to be feasible, develop and assess imaging strategies; (2) to assess the validity of using chemical simulants for the development of acoustic methods and equipment. This investigation examined the velocity of surrogates, both salt cake and sludge surrogates. In addition collected seismic cross well data in a real tank (114-TX) on the Hanford Reservation. Lastly, drawing on the knowledge of the simulants and the estimates of the velocities of the waste in tank 114-TX the authors generated a hypothetical model of waste in a tank and showed that non-linear travel time tomographic imaging would faithfully image that stratigraphy

  6. Immobilisation of MTR waste in cement (product evaluation). Final report. December 1987

    International Nuclear Information System (INIS)

    Howard, C.G.; Lee, D.J.

    1988-01-01

    The enriched uranium/aluminium fuel used in Material Testing Reactors is reprocessed at Dounreay Nuclear Power Development Establishment (DNE). The main chemical component of the liquid waste produced by this process is acid deficient aluminium nitrate. This is stored in stainless steel tanks at DNE. As a result of work carried out under the UKAEA radioactive waste management programme a decision was taken to immobilise the waste in cement. The programme had two main components, plant design and development of the cementation process. The plant for the cementation of MTR waste is under construction and will be commissioned in 1988/9. The primary objective of this project is to find a suitable process for changing the highly mobile radioactive waste into an inert stable solid. Work carried out on the development of the immobilisation process showed that a conditioning stage (neutralisation) is required to make the acid waste compatible with cement. Small scale experiments showed that adding Ordinary Portland Cement blended with ground granulated Blast Furnace Slag to Simulant MTR Liquor produces an acceptable product. The process has been demonstrated at full scale (200 litres) and the products have been subjected to an extensive programme of destructive and non-destructive testing. Specimens have been tested up to 1200 days after manufacture and show no significant signs of deterioration even when stored underwater or when subjected to freeze thaw cycling. Development work has also shown that the process can successfully immobilise simulant MTR liquor over a wide range of liquor concentrations. The programme therefore successfully produced a formulation that met all the requirements of both the process and product specification. (author)

  7. 60-Day waste compatibility safety issues and final results for AY-102 grab samples

    Energy Technology Data Exchange (ETDEWEB)

    Nuzum, J.L.

    1997-01-31

    Four grab samples (2AY-96-15, 2AY-96-16, 2AY-96-17, and 2AY-96-18) were taken from Riser 15D of Tank 241-AY-102 on October 8, 1996, and received by 222-S Laboratory on October 8, 1996. These samples were analyzed in accordance with Compatibility Grab Sampling and Analysis Plan (TSAP) and Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO) in support of the Waste Compatibility Program. No notifications were required based on sample results.

  8. A Research Needs Assessment for waste plastics recycling: Volume 1, Executive summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This first volume provides a summary of the entire project. The study utilized the talents of a large number of participants, including a significant number of peer reviewers from industrial companies, government agencies, and research institutes. in addition, an extensive analysis of relevant literature was carried out. In considering the attractiveness of recycling technologies that are alternatives to waste-to-energy combustion units, a systems approach was utilized. Collection of waste streams containing plastics, sortation, and reclamation of plastics and plastic mixtures, reprocessing or chemical conversion of the reclaimed polymers, and the applicability of the products to specific market segments have been analyzed in the study.

  9. National Hazardous Waste Management Plan. Volume 2. Main report. Export trade information (Final)

    International Nuclear Information System (INIS)

    1989-01-01

    The report is the result of a feasibility study conducted for the Office of the National Environment Board; Ministry of Science, Technology and Energy - Kingdom of Thailand. The overall goal of the study was to work towards implementing a comprehensive National Hazardous Waste Management Plan (NHWMP). The three main objectives of the study were to develop a National Hazardous Wastes Inventory, to develop Stop-Gap Measures for immediate and interim implementation until the NHWMP can be carried out, and to formulate the long range NHWMP with recommendations for its implementation

  10. High Level Waste plant operation and maintenance concepts. Final report, March 27, 1995

    International Nuclear Information System (INIS)

    Janicek, G.P.

    1995-01-01

    The study reviews and evaluates worldwide High Level Waste (HLW) vitrification operating and maintenance (O ampersand M) philosophies, plant design concepts, and lessons learned with an aim towards developing O ampersand M recommendations for either, similar implementation or further consideration in a HLW vitrification facility at Hanford. The study includes a qualitative assessment of alternative concepts for a variety of plant and process systems and subsystems germane to HLW vitrification, such as, feed materials handling, melter configuration, glass form, canister handling, failed equipment handling, waste handling, and process control. Concept evaluations and recommendations consider impacts to Capital Cost, O ampersand M Cost, ALARA, Availability, and Reliability

  11. Final report of the Department of Energy pilot internship program on radioactive waste at Vanderbilt University (September 1, 1993-08/31, 1994)

    Energy Technology Data Exchange (ETDEWEB)

    Frank Parker

    1999-08-31

    This final report summarizes Vanderbilt's ten year program in radioactive waste management. The report describes the interns selected for the program, the interns' course of study, and their assignments.

  12. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    International Nuclear Information System (INIS)

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1

  13. Safety requirements of the BMU to be met in final storage of heat-producing waste: An evaluation

    International Nuclear Information System (INIS)

    Thomauske, Bruno

    2009-01-01

    On August 12, 2008, The German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU) published a draft of July 29, 2008 of the ''Safety Requirements to Be Met in Final Storage of Heat-producing Radioactive Waste.'' As announced by the BMU, these safety requirements are to bring up to the state of the art the safety criteria of 1983. Over a couple of years, efforts had been made to adapt the criteria to the internationally accepted standard as demanded by the Advisory Committees on Reactor Safeguards (RSK) and Radiation Protection (SSK). There is no waste management concept underlying the safety requirements. As a consequence, the draft should be withdrawn by the Federal Ministry for the Environment and replaced by a version revised from scratch and offering assured quality. (orig./GL)

  14. Improved Hydrogen Gas Getters for TRU Waste Transuranic and Mixed Waste Focus Area - Phase 2 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Mark Lee

    2002-04-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission (NRC) limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB. It has the needed binding rate and capacity, but some of the chemical species that might be present in the containers could interfere with its ability to remove hydrogen. This project is focused upon developing a protective polymeric membrane coating for the DEB getter material, which comes in the form of small, irregularly shaped particles. This report summarizes the experimental results of the second phase of the development of the materials.

  15. Cost and schedule estimate to construct the tunnel and shaft remedial shielding concept, Los Alamos Meson Physics Facility, Los Alamos National Laboratory, Los Alamos, New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-30

    The report provides an estimate of the cost and associated schedule to construct the tunnel and shaft remedial shielding concept. The cost and schedule estimate is based on a preliminary concept intended to address the potential radiation effects on Line D and Line Facilities in event of a beam spill. The construction approach utilizes careful tunneling methods based on available excavation and ground support technology. The tunneling rates and overall productivity on which the cost and project schedule are estimated are based on conservative assumptions with appropriate contingencies to address the uncertainty associated with geological conditions. The report is intended to provide supplemental information which will assist in assessing the feasibility of the tunnel and shaft concept and justification for future development of this particular aspect of remedial shielding for Line D and Line D Facilities.

  16. Final disposal of high-level radioactive waste. State of knowledge and development for safety assessment

    International Nuclear Information System (INIS)

    Sato, Seichi; Muraoka, Susumu; Murano, Toru

    1995-01-01

    In Europe and USA, the formation disposal of high level radioactive waste entered the stage of doing the activities aiming at its execution. Also in Japan, the storage of high level waste began in the spring of 1995. Regarding the utilization of nuclear power, the establishment of the technology for disposing radioactive waste is the subject of fist priority, and the stage that requires its social recognition has set in. There are the features of formation disposal in that the disposal is in the state of confining extremely large amount of radioactivity, and that the assessment of long term safety exceeding tens of thousands years is demanded. The amount of occurrence and the main nuclides of high level radioactive waste, the disposal as seen in the Coady report and in the IAEA standard, the selection of dispersion or confinement and the selection of passive system or long term human participation, the reason why formation disposal is selected, the features of formation disposal and the way of advancing the research, the general techniques of safety assessment, artificial barriers and natural barriers for formation disposal, and the subjects of formation disposal are described. (K.I.) 57 refs

  17. Nye County, Nevada 1992 nuclear waste repository program: Program overview. Final report

    International Nuclear Information System (INIS)

    1998-01-01

    The purpose of this document is to provide an overview of the Nye County FY92 Nuclear Waste Repository Program (Program). Funds to pay for Program costs will come from the Federal Nuclear Waste Fund, which was established under the Nuclear Waste Policy Act of 1982 (NWPA). In early 1983, the Yucca Mountain was identified as a potentially suitable site for the nation's first geologic repository for spent reactor fuel and high-level radioactive waste. Later that year, the Nye County Board of County Commissioners (Board) established the capability to monitor the Federal effort to implement the NWPA and evaluate the potential impacts of repository-related activities on Nye County. Over the last eight years, the County's program has grown in complexity and cost in order to address DOE's evolving site characterization studies, and prepare for the potential for facility construction and operation. Changes were necessary as well, in response to Congress's redirection of the repository program specified in the amendments, to the NWPA approved in 1987. In early FY 1991, the County formally established a project office to plan and implement its program of work. The Repository Project Office's (RPO) mission and functions are provided in Section 2.0. The RPO organization structure is described in Section 3.0

  18. Polyoxometalates for Radioactive Waste Treatment - Final Report - 06/15/1996 - 09/14/2000

    International Nuclear Information System (INIS)

    Pope, Michael T.

    2000-01-01

    The research was directed primarily towards the use of polyoxometalate complexes for separation of lanthanide, actinide, and technetium species from aqueous waste solutions, such as the Hanford Tank Wastes. Selective binding of these species responsible for much of the high level waste (HWL) activity, can reduce the volume of material to be subsequently vitrified or otherwise converted for long-term storage. A secondary objective was to explore the direct conversion of the polyoxometalate complexes into possible waste forms, oxide bronzes, thereby avoiding additional handling and energy-intensive vitrification procedures. Although the advantages of polyoxometalate anions (POMs) lie in their high thermal and radiolytical stabilities, that has been no attempt to exploit the remarkable variety of these complexes beyond the use of the two anions mentioned above. Our broad knowledge of POM chemistry has allowed us to address and rectify this omission. The innovative aspects of the project are: (a) the selective sequestration of lanthanide and actinide cations by a POM system in the presence of excess alkali and transition metal cations; (b) the formation of the first examples of POM complexes of UO2-2+ and their extraction into nonaqueous solvents; (c) the thermal conversion of ammonium salts of lanthanide and actinide POM complexes into inert oxide bronzes at relatively low temperatures; and (d) the direct formation of highly thermally-robust niobate and tantalate complexes of Re (surrogate for Tc) in highly basic solutions

  19. Advanced waste forms research and development. Final report, October 1, 1978-September 30, 1979

    International Nuclear Information System (INIS)

    McCarthy, G.J.

    1979-08-01

    Research on supercalcine-ceramics was conducted with the objectives of characterizing the phases and of applying them to fluorine-containing Thorex wastes. This report is concerned with quantitative phase analysis of complex ceramics using x-ray powder diffraction methods and with scanning transmission electron microscopy of these ceramics and its correlation with fluorite structure solid solution phase diagrams

  20. Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report

    International Nuclear Information System (INIS)

    1996-03-01

    The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program