WorldWideScience

Sample records for scc soft computer

  1. Computational modelling of SCC flow

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Thrane, Lars Nyholm; Szabo, Peter

    2005-01-01

    To benefit from the full potential of self-compacting concrete (SCC) prediction tools are needed for the form filling of SCC. Such tools should take into account the properties of the concrete, the shape and size of the structural element, the position of rebars, and the casting technique. Examples...

  2. Engineering applications of soft computing

    CERN Document Server

    Díaz-Cortés, Margarita-Arimatea; Rojas, Raúl

    2017-01-01

    This book bridges the gap between Soft Computing techniques and their applications to complex engineering problems. In each chapter we endeavor to explain the basic ideas behind the proposed applications in an accessible format for readers who may not possess a background in some of the fields. Therefore, engineers or practitioners who are not familiar with Soft Computing methods will appreciate that the techniques discussed go beyond simple theoretical tools, since they have been adapted to solve significant problems that commonly arise in such areas. At the same time, the book will show members of the Soft Computing community how engineering problems are now being solved and handled with the help of intelligent approaches. Highlighting new applications and implementations of Soft Computing approaches in various engineering contexts, the book is divided into 12 chapters. Further, it has been structured so that each chapter can be read independently of the others.

  3. Hardware for soft computing and soft computing for hardware

    CERN Document Server

    Nedjah, Nadia

    2014-01-01

    Single and Multi-Objective Evolutionary Computation (MOEA),  Genetic Algorithms (GAs), Artificial Neural Networks (ANNs), Fuzzy Controllers (FCs), Particle Swarm Optimization (PSO) and Ant colony Optimization (ACO) are becoming omnipresent in almost every intelligent system design. Unfortunately, the application of the majority of these techniques is complex and so requires a huge computational effort to yield useful and practical results. Therefore, dedicated hardware for evolutionary, neural and fuzzy computation is a key issue for designers. With the spread of reconfigurable hardware such as FPGAs, digital as well as analog hardware implementations of such computation become cost-effective. The idea behind this book is to offer a variety of hardware designs for soft computing techniques that can be embedded in any final product. Also, to introduce the successful application of soft computing technique to solve many hard problem encountered during the design of embedded hardware designs. Reconfigurable em...

  4. Soft computing in computer and information science

    CERN Document Server

    Fray, Imed; Pejaś, Jerzy

    2015-01-01

    This book presents a carefully selected and reviewed collection of papers presented during the 19th Advanced Computer Systems conference ACS-2014. The Advanced Computer Systems conference concentrated from its beginning on methods and algorithms of artificial intelligence. Further future brought new areas of interest concerning technical informatics related to soft computing and some more technological aspects of computer science such as multimedia and computer graphics, software engineering, web systems, information security and safety or project management. These topics are represented in the present book under the categories Artificial Intelligence, Design of Information and Multimedia Systems, Information Technology Security and Software Technologies.

  5. Soft computing for business intelligence

    CERN Document Server

    Pérez, Rafael; Cobo, Angel; Marx, Jorge; Valdés, Ariel

    2014-01-01

    The book Soft Computing for Business Intelligence is the remarkable output of a program based on the idea of joint trans-disciplinary research as supported by the Eureka Iberoamerica Network and the University of Oldenburg. It contains twenty-seven papers allocated to three sections: Soft Computing, Business Intelligence and Knowledge Discovery, and Knowledge Management and Decision Making. Although the contents touch different domains they are similar in so far as they follow the BI principle “Observation and Analysis” while keeping a practical oriented theoretical eye on sound methodologies, like Fuzzy Logic, Compensatory Fuzzy Logic (CFL), Rough Sets and other softcomputing elements. The book tears down the traditional focus on business, and extends Business Intelligence techniques in an impressive way to a broad range of fields like medicine, environment, wind farming, social collaboration and interaction, car sharing and sustainability.

  6. Advance Trends in Soft Computing

    CERN Document Server

    Kreinovich, Vladik; Kacprzyk, Janusz; WCSC 2013

    2014-01-01

    This book is the proceedings of the 3rd World Conference on Soft Computing (WCSC), which was held in San Antonio, TX, USA, on December 16-18, 2013. It presents start-of-the-art theory and applications of soft computing together with an in-depth discussion of current and future challenges in the field, providing readers with a 360 degree view on soft computing. Topics range from fuzzy sets, to fuzzy logic, fuzzy mathematics, neuro-fuzzy systems, fuzzy control, decision making in fuzzy environments, image processing and many more. The book is dedicated to Lotfi A. Zadeh, a renowned specialist in signal analysis and control systems research who proposed the idea of fuzzy sets, in which an element may have a partial membership, in the early 1960s, followed by the idea of fuzzy logic, in which a statement can be true only to a certain degree, with degrees described by numbers in the interval [0,1]. The performance of fuzzy systems can often be improved with the help of optimization techniques, e.g. evolutionary co...

  7. Genetic networks and soft computing.

    Science.gov (United States)

    Mitra, Sushmita; Das, Ranajit; Hayashi, Yoichi

    2011-01-01

    The analysis of gene regulatory networks provides enormous information on various fundamental cellular processes involving growth, development, hormone secretion, and cellular communication. Their extraction from available gene expression profiles is a challenging problem. Such reverse engineering of genetic networks offers insight into cellular activity toward prediction of adverse effects of new drugs or possible identification of new drug targets. Tasks such as classification, clustering, and feature selection enable efficient mining of knowledge about gene interactions in the form of networks. It is known that biological data is prone to different kinds of noise and ambiguity. Soft computing tools, such as fuzzy sets, evolutionary strategies, and neurocomputing, have been found to be helpful in providing low-cost, acceptable solutions in the presence of various types of uncertainties. In this paper, we survey the role of these soft methodologies and their hybridizations, for the purpose of generating genetic networks.

  8. Soft computing techniques in engineering applications

    CERN Document Server

    Zhong, Baojiang

    2014-01-01

    The Soft Computing techniques, which are based on the information processing of biological systems are now massively used in the area of pattern recognition, making prediction & planning, as well as acting on the environment. Ideally speaking, soft computing is not a subject of homogeneous concepts and techniques; rather, it is an amalgamation of distinct methods that confirms to its guiding principle. At present, the main aim of soft computing is to exploit the tolerance for imprecision and uncertainty to achieve tractability, robustness and low solutions cost. The principal constituents of soft computing techniques are probabilistic reasoning, fuzzy logic, neuro-computing, genetic algorithms, belief networks, chaotic systems, as well as learning theory. This book covers contributions from various authors to demonstrate the use of soft computing techniques in various applications of engineering.  

  9. 4th World Conference on Soft Computing

    CERN Document Server

    Abbasov, Ali; Yager, Ronald; Shahbazova, Shahnaz; Reformat, Marek

    2016-01-01

    This book reports on advanced theories and cutting-edge applications in the field of soft computing. The individual chapters, written by leading researchers, are based on contributions presented during the 4th World Conference on Soft Computing, held May 25-27, 2014, in Berkeley. The book covers a wealth of key topics in soft computing, focusing on both fundamental aspects and applications. The former include fuzzy mathematics, type-2 fuzzy sets, evolutionary-based optimization, aggregation and neural networks, while the latter include soft computing in data analysis, image processing, decision-making, classification, series prediction, economics, control, and modeling. By providing readers with a timely, authoritative view on the field, and by discussing thought-provoking developments and challenges, the book will foster new research directions in the diverse areas of soft computing. .

  10. New Concepts and Applications in Soft Computing

    CERN Document Server

    Fodor, János; Várkonyi-Kóczy, Annamária

    2013-01-01

                  The book provides a sample of research on the innovative theory and applications of soft computing paradigms.             The idea of Soft Computing was initiated in 1981 when Professor Zadeh published his first paper on soft data analysis and constantly evolved ever since. Professor Zadeh defined Soft Computing as the fusion of the fields of fuzzy logic (FL), neural network theory (NN) and probabilistic reasoning (PR), with the latter subsuming belief networks, evolutionary computing including DNA computing, chaos theory and parts of learning theory into one multidisciplinary system. As Zadeh said the essence of soft computing is that unlike the traditional, hard computing, soft computing is aimed at an accommodation with the pervasive imprecision of the real world. Thus, the guiding principle of soft computing is to exploit the tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness, low solution cost and better rapport with reality. ...

  11. Practical applications of soft computing in engineering

    CERN Document Server

    2001-01-01

    Soft computing has been presented not only with the theoretical developments but also with a large variety of realistic applications to consumer products and industrial systems. Application of soft computing has provided the opportunity to integrate human-like vagueness and real-life uncertainty into an otherwise hard computer program. This book highlights some of the recent developments in practical applications of soft computing in engineering problems. All the chapters have been sophisticatedly designed and revised by international experts to achieve wide but in-depth coverage. Contents: Au

  12. Fuzzy logic, neural networks, and soft computing

    Science.gov (United States)

    Zadeh, Lofti A.

    1994-01-01

    The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial

  13. Hybrid soft computing approaches research and applications

    CERN Document Server

    Dutta, Paramartha; Chakraborty, Susanta

    2016-01-01

    The book provides a platform for dealing with the flaws and failings of the soft computing paradigm through different manifestations. The different chapters highlight the necessity of the hybrid soft computing methodology in general with emphasis on several application perspectives in particular. Typical examples include (a) Study of Economic Load Dispatch by Various Hybrid Optimization Techniques, (b) An Application of Color Magnetic Resonance Brain Image Segmentation by ParaOptiMUSIG activation Function, (c) Hybrid Rough-PSO Approach in Remote Sensing Imagery Analysis,  (d) A Study and Analysis of Hybrid Intelligent Techniques for Breast Cancer Detection using Breast Thermograms, and (e) Hybridization of 2D-3D Images for Human Face Recognition. The elaborate findings of the chapters enhance the exhibition of the hybrid soft computing paradigm in the field of intelligent computing.

  14. International Conference on Soft Computing Systems

    CERN Document Server

    Panigrahi, Bijaya

    2016-01-01

    The book is a collection of high-quality peer-reviewed research papers presented in International Conference on Soft Computing Systems (ICSCS 2015) held at Noorul Islam Centre for Higher Education, Chennai, India. These research papers provide the latest developments in the emerging areas of Soft Computing in Engineering and Technology. The book is organized in two volumes and discusses a wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.

  15. 6th International Workshop Soft Computing Applications

    CERN Document Server

    Jain, Lakhmi; Kovačević, Branko

    2016-01-01

    These volumes constitute the Proceedings of the 6th International Workshop on Soft Computing Applications, or SOFA 2014, held on 24-26 July 2014 in Timisoara, Romania. This edition was organized by the University of Belgrade, Serbia in conjunction with Romanian Society of Control Engineering and Technical Informatics (SRAIT) - Arad Section, The General Association of Engineers in Romania - Arad Section, Institute of Computer Science, Iasi Branch of the Romanian Academy and IEEE Romanian Section.                 The Soft Computing concept was introduced by Lotfi Zadeh in 1991 and serves to highlight the emergence of computing methodologies in which the accent is on exploiting the tolerance for imprecision and uncertainty to achieve tractability, robustness and low solution cost. Soft computing facilitates the use of fuzzy logic, neurocomputing, evolutionary computing and probabilistic computing in combination, leading to the concept of hybrid intelligent systems.        The combination of ...

  16. Discussion on Soft Computing at FLINS '96

    NARCIS (Netherlands)

    Ruan, D.; Wal, A.J. van der

    1998-01-01

    This is a report on the discussion about soft computing (SC) during FLINS'96. The discussion is based on the five questions formulated by X. Li, viz. (1) What is SC? (2) What are the characteristics of SC? (3) What are the principal achievements of SC? (4) What are the typical problems of SC and

  17. Phoneme-based speech segmentation using hybrid soft computing framework

    CERN Document Server

    Sarma, Mousmita

    2014-01-01

    The book discusses intelligent system design using soft computing and similar systems and their interdisciplinary applications. It also focuses on the recent trends to use soft computing as a versatile tool for designing a host of decision support systems.

  18. Soft Computing Methods for Disulfide Connectivity Prediction.

    Science.gov (United States)

    Márquez-Chamorro, Alfonso E; Aguilar-Ruiz, Jesús S

    2015-01-01

    The problem of protein structure prediction (PSP) is one of the main challenges in structural bioinformatics. To tackle this problem, PSP can be divided into several subproblems. One of these subproblems is the prediction of disulfide bonds. The disulfide connectivity prediction problem consists in identifying which nonadjacent cysteines would be cross-linked from all possible candidates. Determining the disulfide bond connectivity between the cysteines of a protein is desirable as a previous step of the 3D PSP, as the protein conformational search space is highly reduced. The most representative soft computing approaches for the disulfide bonds connectivity prediction problem of the last decade are summarized in this paper. Certain aspects, such as the different methodologies based on soft computing approaches (artificial neural network or support vector machine) or features of the algorithms, are used for the classification of these methods.

  19. Soft Computing Methods in Design of Superalloys

    Science.gov (United States)

    Cios, K. J.; Berke, L.; Vary, A.; Sharma, S.

    1996-01-01

    Soft computing techniques of neural networks and genetic algorithms are used in the design of superalloys. The cyclic oxidation attack parameter K(sub a), generated from tests at NASA Lewis Research Center, is modelled as a function of the superalloy chemistry and test temperature using a neural network. This model is then used in conjunction with a genetic algorithm to obtain an optimized superalloy composition resulting in low K(sub a) values.

  20. RNA secondary structure prediction using soft computing.

    Science.gov (United States)

    Ray, Shubhra Sankar; Pal, Sankar K

    2013-01-01

    Prediction of RNA structure is invaluable in creating new drugs and understanding genetic diseases. Several deterministic algorithms and soft computing-based techniques have been developed for more than a decade to determine the structure from a known RNA sequence. Soft computing gained importance with the need to get approximate solutions for RNA sequences by considering the issues related with kinetic effects, cotranscriptional folding, and estimation of certain energy parameters. A brief description of some of the soft computing-based techniques, developed for RNA secondary structure prediction, is presented along with their relevance. The basic concepts of RNA and its different structural elements like helix, bulge, hairpin loop, internal loop, and multiloop are described. These are followed by different methodologies, employing genetic algorithms, artificial neural networks, and fuzzy logic. The role of various metaheuristics, like simulated annealing, particle swarm optimization, ant colony optimization, and tabu search is also discussed. A relative comparison among different techniques, in predicting 12 known RNA secondary structures, is presented, as an example. Future challenging issues are then mentioned.

  1. 22nd International Conference on Soft Computing

    CERN Document Server

    2017-01-01

    This proceeding book contains a collection of selected accepted papers of the Mendel conference held in Brno, Czech Republic in June 2016. The proceedings book contains three chapters which present recent advances in soft computing including intelligent image processing. The Mendel conference was established in 1995 and is named after the scientist and Augustinian priest Gregor J. Mendel who discovered the famous Laws of Heredity. The main aim of the conference is to create a regular possibility for students, academics and researchers to exchange ideas and novel research methods on a yearly basis.

  2. Soft computing methods for geoidal height transformation

    Science.gov (United States)

    Akyilmaz, O.; Özlüdemir, M. T.; Ayan, T.; Çelik, R. N.

    2009-07-01

    Soft computing techniques, such as fuzzy logic and artificial neural network (ANN) approaches, have enabled researchers to create precise models for use in many scientific and engineering applications. Applications that can be employed in geodetic studies include the estimation of earth rotation parameters and the determination of mean sea level changes. Another important field of geodesy in which these computing techniques can be applied is geoidal height transformation. We report here our use of a conventional polynomial model, the Adaptive Network-based Fuzzy (or in some publications, Adaptive Neuro-Fuzzy) Inference System (ANFIS), an ANN and a modified ANN approach to approximate geoid heights. These approximation models have been tested on a number of test points. The results obtained through the transformation processes from ellipsoidal heights into local levelling heights have also been compared.

  3. Soft Computing Applications : Proceedings of the 5th International Workshop Soft Computing Applications

    CERN Document Server

    Fodor, János; Várkonyi-Kóczy, Annamária; Dombi, Joszef; Jain, Lakhmi

    2013-01-01

                    This volume contains the Proceedings of the 5thInternational Workshop on Soft Computing Applications (SOFA 2012).                                The book covers a broad spectrum of soft computing techniques, theoretical and practical applications employing knowledge and intelligence to find solutions for world industrial, economic and medical problems. The combination of such intelligent systems tools and a large number of applications introduce a need for a synergy of scientific and technological disciplines in order to show the great potential of Soft Computing in all domains.                   The conference papers included in these proceedings, published post conference, were grouped into the following area of research: ·         Soft Computing and Fusion Algorithms in Biometrics, ·         Fuzzy Theory, Control andApplications, ·         Modelling and Control Applications, ·         Steps towa...

  4. 6th International Conference on Soft Computing for Problem Solving

    CERN Document Server

    Bansal, Jagdish; Das, Kedar; Lal, Arvind; Garg, Harish; Nagar, Atulya; Pant, Millie

    2017-01-01

    This two-volume book gathers the proceedings of the Sixth International Conference on Soft Computing for Problem Solving (SocProS 2016), offering a collection of research papers presented during the conference at Thapar University, Patiala, India. Providing a veritable treasure trove for scientists and researchers working in the field of soft computing, it highlights the latest developments in the broad area of “Computational Intelligence” and explores both theoretical and practical aspects using fuzzy logic, artificial neural networks, evolutionary algorithms, swarm intelligence, soft computing, computational intelligence, etc.

  5. Recent developments and new directions in soft computing

    CERN Document Server

    Abbasov, Ali; Yager, Ronald; Shahbazova, Shahnaz; Reformat, Marek

    2014-01-01

    The book reports on the latest advances and challenges of soft computing. It  gathers original scientific contributions written by top scientists in the field and covering theories, methods and applications in a number of research areas related to soft-computing, such as decision-making, probabilistic reasoning, image processing, control, neural networks and data analysis.  

  6. SoftLab: A Soft-Computing Software for Experimental Research with Commercialization Aspects

    Science.gov (United States)

    Akbarzadeh-T, M.-R.; Shaikh, T. S.; Ren, J.; Hubbell, Rob; Kumbla, K. K.; Jamshidi, M

    1998-01-01

    SoftLab is a software environment for research and development in intelligent modeling/control using soft-computing paradigms such as fuzzy logic, neural networks, genetic algorithms, and genetic programs. SoftLab addresses the inadequacies of the existing soft-computing software by supporting comprehensive multidisciplinary functionalities from management tools to engineering systems. Furthermore, the built-in features help the user process/analyze information more efficiently by a friendly yet powerful interface, and will allow the user to specify user-specific processing modules, hence adding to the standard configuration of the software environment.

  7. Complex system modelling and control through intelligent soft computations

    CERN Document Server

    Azar, Ahmad

    2015-01-01

    The book offers a snapshot of the theories and applications of soft computing in the area of complex systems modeling and control. It presents the most important findings discussed during the 5th International Conference on Modelling, Identification and Control, held in Cairo, from August 31-September 2, 2013. The book consists of twenty-nine selected contributions, which have been thoroughly reviewed and extended before their inclusion in the volume. The different chapters, written by active researchers in the field, report on both current theories and important applications of soft-computing. Besides providing the readers with soft-computing fundamentals, and soft-computing based inductive methodologies/algorithms, the book also discusses key industrial soft-computing applications, as well as multidisciplinary solutions developed for a variety of purposes, like windup control, waste management, security issues, biomedical applications and many others. It is a perfect reference guide for graduate students, r...

  8. Advances in soft computing, intelligent robotics and control

    CERN Document Server

    Fullér, Robert

    2014-01-01

    Soft computing, intelligent robotics and control are in the core interest of contemporary engineering. Essential characteristics of soft computing methods are the ability to handle vague information, to apply human-like reasoning, their learning capability, and ease of application. Soft computing techniques are widely applied in the control of dynamic systems, including mobile robots. The present volume is a collection of 20 chapters written by respectable experts of the fields, addressing various theoretical and practical aspects in soft computing, intelligent robotics and control. The first part of the book concerns with issues of intelligent robotics, including robust xed point transformation design, experimental verification of the input-output feedback linearization of differentially driven mobile robot and applying kinematic synthesis to micro electro-mechanical systems design. The second part of the book is devoted to fundamental aspects of soft computing. This includes practical aspects of fuzzy rule ...

  9. 4th International Conference on Quantitative Logic and Soft Computing

    CERN Document Server

    Chen, Shui-Li; Wang, San-Min; Li, Yong-Ming

    2017-01-01

    This book is the proceedings of the Fourth International Conference on Quantitative Logic and Soft Computing (QLSC2016) held 14-17, October, 2016 in Zhejiang Sci-Tech University, Hangzhou, China. It includes 61 papers, of which 5 are plenary talks( 3 abstracts and 2 full length talks). QLSC2016 was the fourth in a series of conferences on Quantitative Logic and Soft Computing. This conference was a major symposium for scientists, engineers and practitioners to present their updated results, ideas, developments and applications in all areas of quantitative logic and soft computing. The book aims to strengthen relations between industry research laboratories and universities in fields such as quantitative logic and soft computing worldwide as follows: (1) Quantitative Logic and Uncertainty Logic; (2) Automata and Quantification of Software; (3) Fuzzy Connectives and Fuzzy Reasoning; (4) Fuzzy Logical Algebras; (5) Artificial Intelligence and Soft Computing; (6) Fuzzy Sets Theory and Applications.

  10. Thermal sensation prediction by soft computing methodology.

    Science.gov (United States)

    Jović, Srđan; Arsić, Nebojša; Vilimonović, Jovana; Petković, Dalibor

    2016-12-01

    Thermal comfort in open urban areas is very factor based on environmental point of view. Therefore it is need to fulfill demands for suitable thermal comfort during urban planning and design. Thermal comfort can be modeled based on climatic parameters and other factors. The factors are variables and they are changed throughout the year and days. Therefore there is need to establish an algorithm for thermal comfort prediction according to the input variables. The prediction results could be used for planning of time of usage of urban areas. Since it is very nonlinear task, in this investigation was applied soft computing methodology in order to predict the thermal comfort. The main goal was to apply extreme leaning machine (ELM) for forecasting of physiological equivalent temperature (PET) values. Temperature, pressure, wind speed and irradiance were used as inputs. The prediction results are compared with some benchmark models. Based on the results ELM can be used effectively in forecasting of PET. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Developing a multimodal biometric authentication system using soft computing methods.

    Science.gov (United States)

    Malcangi, Mario

    2015-01-01

    Robust personal authentication is becoming ever more important in computer-based applications. Among a variety of methods, biometric offers several advantages, mainly in embedded system applications. Hard and soft multi-biometric, combined with hard and soft computing methods, can be applied to improve the personal authentication process and to generalize the applicability. This chapter describes the embedded implementation of a multi-biometric (voiceprint and fingerprint) multimodal identification system based on hard computing methods (DSP) for feature extraction and matching, an artificial neural network (ANN) for soft feature pattern matching, and a fuzzy logic engine (FLE) for data fusion and decision.

  12. Fuzzy systems and soft computing in nuclear engineering

    International Nuclear Information System (INIS)

    Ruan, D.

    2000-01-01

    This book is an organized edited collection of twenty-one contributed chapters covering nuclear engineering applications of fuzzy systems, neural networks, genetic algorithms and other soft computing techniques. All chapters are either updated review or original contributions by leading researchers written exclusively for this volume. The volume highlights the advantages of applying fuzzy systems and soft computing in nuclear engineering, which can be viewed as complementary to traditional methods. As a result, fuzzy sets and soft computing provide a powerful tool for solving intricate problems pertaining in nuclear engineering. Each chapter of the book is self-contained and also indicates the future research direction on this topic of applications of fuzzy systems and soft computing in nuclear engineering. (orig.)

  13. Data mining in soft computing framework: a survey.

    Science.gov (United States)

    Mitra, S; Pal, S K; Mitra, P

    2002-01-01

    The present article provides a survey of the available literature on data mining using soft computing. A categorization has been provided based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model. The utility of the different soft computing methodologies is highlighted. Generally fuzzy sets are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and can provide approximate solutions faster. Neural networks are nonparametric, robust, and exhibit good learning and generalization capabilities in data-rich environments. Genetic algorithms provide efficient search algorithms to select a model, from mixed media data, based on some preference criterion/objective function. Rough sets are suitable for handling different types of uncertainty in data. Some challenges to data mining and the application of soft computing methodologies are indicated. An extensive bibliography is also included.

  14. Soft computing trends in nuclear energy system

    International Nuclear Information System (INIS)

    Paramasivan, B.

    2012-01-01

    In spite of so many advancements in the power and energy sector over the last two decades, its survival to cater quality power with due consideration for planning, coordination, marketing, safety, stability, optimality and reliability is still believed to remain critical. Though it appears simple from the outside, yet the internal structure of large scale power systems is so complex that event management and decision making requires a formidable preliminary preparation, which gets still worsened in the presence of uncertainties and contingencies. These aspects have attracted several researchers to carryout continued research in this field and their valued contributions have been significantly helping the newcomers in understanding the evolutionary growth in this sector, starting from phenomena, tools, methodologies to strategies so as to ensure smooth, stable, safe, reliable and economic operation. The usage of soft computing would accelerate interaction between the energy and technology research community with an aim to foster unified development in the next generation. Monitoring the mechanical impact of a loose (detached or drifting) part in the reactor coolant system of a nuclear power plant is one of the essential functions for operation and maintenance of the plant. Large data tables are generated during this monitoring process. This data can be 'mined' to reveal latent patterns of interest to operation and maintenance. Rough set theory has been applied successfully to data mining. It can be used in the nuclear power industry and elsewhere to identify classes in datasets, finding dependencies in relations and discovering rules which are hidden in databases. An important role may be played by nuclear energy, provided that major safety, waste and proliferation issues affecting current nuclear reactors are satisfactorily addressed. In this respect, a large effort is under way since a few years towards the development of advanced nuclear systems that would use

  15. Experimental and Computational Techniques in Soft Condensed Matter Physics

    Science.gov (United States)

    Olafsen, Jeffrey

    2010-09-01

    1. Microscopy of soft materials Eric R. Weeks; 2. Computational methods to study jammed Systems Carl F. Schrek and Corey S. O'Hern; 3. Soft random solids: particulate gels, compressed emulsions and hybrid materials Anthony D. Dinsmore; 4. Langmuir monolayers Michael Dennin; 5. Computer modeling of granular rheology Leonardo E. Silbert; 6. Rheological and microrheological measurements of soft condensed matter John R. de Bruyn and Felix K. Oppong; 7. Particle-based measurement techniques for soft matter Nicholas T. Ouellette; 8. Cellular automata models of granular flow G. William Baxter; 9. Photoelastic materials Brian Utter; 10. Image acquisition and analysis in soft condensed matter Jeffrey S. Olafsen; 11. Structure and patterns in bacterial colonies Nicholas C. Darnton.

  16. 4th International Conference on Soft Computing for Problem Solving

    CERN Document Server

    Deep, Kusum; Pant, Millie; Bansal, Jagdish; Nagar, Atulya

    2015-01-01

    This two volume book is based on the research papers presented at the 4th International Conference on Soft Computing for Problem Solving (SocProS 2014) and covers a variety of topics, including mathematical modelling, image processing, optimization methods, swarm intelligence, evolutionary algorithms, fuzzy logic, neural networks, forecasting, medical and healthcare, data mining, etc. Mainly the emphasis is on Soft Computing and its applications in diverse areas. The prime objective of this book is to familiarize the reader with the latest scientific developments in various fields of Science, Engineering and Technology and is directed to the researchers and scientists engaged in various real-world applications of ‘Soft Computing’.

  17. Soft computing integrating evolutionary, neural, and fuzzy systems

    CERN Document Server

    Tettamanzi, Andrea

    2001-01-01

    Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically. This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as

  18. The role of soft computing in intelligent machines.

    Science.gov (United States)

    de Silva, Clarence W

    2003-08-15

    An intelligent machine relies on computational intelligence in generating its intelligent behaviour. This requires a knowledge system in which representation and processing of knowledge are central functions. Approximation is a 'soft' concept, and the capability to approximate for the purposes of comparison, pattern recognition, reasoning, and decision making is a manifestation of intelligence. This paper examines the use of soft computing in intelligent machines. Soft computing is an important branch of computational intelligence, where fuzzy logic, probability theory, neural networks, and genetic algorithms are synergistically used to mimic the reasoning and decision making of a human. This paper explores several important characteristics and capabilities of machines that exhibit intelligent behaviour. Approaches that are useful in the development of an intelligent machine are introduced. The paper presents a general structure for an intelligent machine, giving particular emphasis to its primary components, such as sensors, actuators, controllers, and the communication backbone, and their interaction. The role of soft computing within the overall system is discussed. Common techniques and approaches that will be useful in the development of an intelligent machine are introduced, and the main steps in the development of an intelligent machine for practical use are given. An industrial machine, which employs the concepts of soft computing in its operation, is presented, and one aspect of intelligent tuning, which is incorporated into the machine, is illustrated.

  19. Hybrid soft computing systems for electromyographic signals analysis: a review

    Science.gov (United States)

    2014-01-01

    Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis. PMID:24490979

  20. Optical character recognition systems for different languages with soft computing

    CERN Document Server

    Chaudhuri, Arindam; Badelia, Pratixa; K Ghosh, Soumya

    2017-01-01

    The book offers a comprehensive survey of soft-computing models for optical character recognition systems. The various techniques, including fuzzy and rough sets, artificial neural networks and genetic algorithms, are tested using real texts written in different languages, such as English, French, German, Latin, Hindi and Gujrati, which have been extracted by publicly available datasets. The simulation studies, which are reported in details here, show that soft-computing based modeling of OCR systems performs consistently better than traditional models. Mainly intended as state-of-the-art survey for postgraduates and researchers in pattern recognition, optical character recognition and soft computing, this book will be useful for professionals in computer vision and image processing alike, dealing with different issues related to optical character recognition.

  1. Hybrid soft computing systems for electromyographic signals analysis: a review.

    Science.gov (United States)

    Xie, Hong-Bo; Guo, Tianruo; Bai, Siwei; Dokos, Socrates

    2014-02-03

    Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis.

  2. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery

    CERN Document Server

    2012-01-01

      This volume focuses on the biomechanical modeling of biological tissues in the context of Computer Assisted Surgery (CAS). More specifically, deformable soft tissues are addressed since they are the subject of the most recent developments in this field. The pioneering works on this CAS topic date from the 1980's, with applications in orthopaedics and biomechanical models of bones. More recently, however, biomechanical models of soft tissues have been proposed since most of the human body is made of soft organs that can be deformed by the surgical gesture. Such models are much more complicated to handle since the tissues can be subject to large deformations (non-linear geometrical framework) as well as complex stress/strain relationships (non-linear mechanical framework). Part 1 of the volume presents biomechanical models that have been developed in a CAS context and used during surgery. This is particularly new since most of the soft tissues models already proposed concern Computer Assisted Planning, with ...

  3. Intelligent systems and soft computing for nuclear science and industry

    International Nuclear Information System (INIS)

    Ruan, D.; D'hondt, P.; Govaerts, P.; Kerre, E.E.

    1996-01-01

    The second international workshop on Fuzzy Logic and Intelligent Technologies in Nuclear Science (FLINS) addresses topics related to intelligent systems and soft computing for nuclear science and industry. The proceedings contain 52 papers in different fields such as radiation protection, nuclear safety (human factors and reliability), safeguards, nuclear reactor control, production processes in the fuel cycle, dismantling, waste and disposal, decision making, and nuclear reactor control. A clear link is made between theory and applications of fuzzy logic such as neural networks, expert systems, robotics, man-machine interfaces, and decision-support techniques by using modern and advanced technologies and tools. The papers are grouped in three sections. The first section (Soft computing techniques) deals with basic tools to treat fuzzy logic, neural networks, genetic algorithms, decision-making, and software used for general soft-computing aspects. The second section (Intelligent engineering systems) includes contributions on engineering problems such as knowledge-based engineering, expert systems, process control integration, diagnosis, measurements, and interpretation by soft computing. The third section (Nuclear applications) focusses on the application of soft computing and intelligent systems in nuclear science and industry

  4. A Simulation-Based Soft Error Estimation Methodology for Computer Systems

    OpenAIRE

    Sugihara, Makoto; Ishihara, Tohru; Hashimoto, Koji; Muroyama, Masanori

    2006-01-01

    This paper proposes a simulation-based soft error estimation methodology for computer systems. Accumulating soft error rates (SERs) of all memories in a computer system results in pessimistic soft error estimation. This is because memory cells are used spatially and temporally and not all soft errors in them make the computer system faulty. Our soft-error estimation methodology considers the locations and the timings of soft errors occurring at every level of memory hierarchy and estimates th...

  5. The First International Conference on Soft Computing and Data Mining

    CERN Document Server

    Ghazali, Rozaida; Deris, Mustafa

    2014-01-01

    This book constitutes the refereed proceedings of the First International Conference on Soft Computing and Data Mining, SCDM 2014, held in Universiti Tun Hussein Onn Malaysia, in June 16th-18th, 2014. The 65 revised full papers presented in this book were carefully reviewed and selected from 145 submissions, and organized into two main topical sections; Data Mining and Soft Computing. The goal of this book is to provide both theoretical concepts and, especially, practical techniques on these exciting fields of soft computing and data mining, ready to be applied in real-world applications. The exchanges of views pertaining future research directions to be taken in this field and the resultant dissemination of the latest research findings makes this work of immense value to all those having an interest in the topics covered.    

  6. Soft computing for fault diagnosis in power plants

    International Nuclear Information System (INIS)

    Ciftcioglu, O.; Turkcan, E.

    1998-01-01

    Considering the advancements in the AI technology, there arises a new concept known as soft computing. It can be defined as the processing of uncertain information with the AI methods, that refers to explicitly the methods using neural networks, fuzzy logic and evolutionary algorithms. In this respect, soft computing is a new dimension in information processing technology where linguistic information can also be processed in contrast with the classical stochastic and deterministic treatments of data. On one hand it can process uncertain/incomplete information and on the other hand it can deal with non-linearity of large-scale systems where uncertainty is particularly relevant with respect to linguistic information and incompleteness is related to fault tolerance in fault diagnosis. In this perspective, the potential role of soft computing in power plant operation is presented. (author)

  7. A comparative analysis of soft computing techniques for gene prediction.

    Science.gov (United States)

    Goel, Neelam; Singh, Shailendra; Aseri, Trilok Chand

    2013-07-01

    The rapid growth of genomic sequence data for both human and nonhuman species has made analyzing these sequences, especially predicting genes in them, very important and is currently the focus of many research efforts. Beside its scientific interest in the molecular biology and genomics community, gene prediction is of considerable importance in human health and medicine. A variety of gene prediction techniques have been developed for eukaryotes over the past few years. This article reviews and analyzes the application of certain soft computing techniques in gene prediction. First, the problem of gene prediction and its challenges are described. These are followed by different soft computing techniques along with their application to gene prediction. In addition, a comparative analysis of different soft computing techniques for gene prediction is given. Finally some limitations of the current research activities and future research directions are provided. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Self-compacting concrete (SCC)

    DEFF Research Database (Denmark)

    Geiker, Mette Rica

    2008-01-01

    In many aspects Self-Compacting Concrete (SCC, “Self-Consolidating Concrete” in North America) can be considered the concrete of the future. SCC is a family of tailored concretes with special engineered properties in the fresh state. SCC flows into the formwork and around even complicated...... reinforcement arrangements under its own weight. Thus, SCC is not vibrated like conventional concrete. This drastically improves the working environment during construction, the productivity, and potentially improves the homogeneity and quality of the concrete. In addition SCC provides larger architectural...

  9. Soft computing in green and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, Kasthurirangan [Iowa State Univ., Ames, IA (United States). Iowa Bioeconomy Inst.; US Department of Energy, Ames, IA (United States). Ames Lab; Kalogirou, Soteris [Cyprus Univ. of Technology, Limassol (Cyprus). Dept. of Mechanical Engineering and Materials Sciences and Engineering; Khaitan, Siddhartha Kumar (eds.) [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Electrical Engineering and Computer Engineering

    2011-07-01

    Soft Computing in Green and Renewable Energy Systems provides a practical introduction to the application of soft computing techniques and hybrid intelligent systems for designing, modeling, characterizing, optimizing, forecasting, and performance prediction of green and renewable energy systems. Research is proceeding at jet speed on renewable energy (energy derived from natural resources such as sunlight, wind, tides, rain, geothermal heat, biomass, hydrogen, etc.) as policy makers, researchers, economists, and world agencies have joined forces in finding alternative sustainable energy solutions to current critical environmental, economic, and social issues. The innovative models, environmentally benign processes, data analytics, etc. employed in renewable energy systems are computationally-intensive, non-linear and complex as well as involve a high degree of uncertainty. Soft computing technologies, such as fuzzy sets and systems, neural science and systems, evolutionary algorithms and genetic programming, and machine learning, are ideal in handling the noise, imprecision, and uncertainty in the data, and yet achieve robust, low-cost solutions. As a result, intelligent and soft computing paradigms are finding increasing applications in the study of renewable energy systems. Researchers, practitioners, undergraduate and graduate students engaged in the study of renewable energy systems will find this book very useful. (orig.)

  10. Soft Computing Techniques in Vision Science

    CERN Document Server

    Yang, Yeon-Mo

    2012-01-01

    This Special Edited Volume is a unique approach towards Computational solution for the upcoming field of study called Vision Science. From a scientific firmament Optics, Ophthalmology, and Optical Science has surpassed an Odyssey of optimizing configurations of Optical systems, Surveillance Cameras and other Nano optical devices with the metaphor of Nano Science and Technology. Still these systems are falling short of its computational aspect to achieve the pinnacle of human vision system. In this edited volume much attention has been given to address the coupling issues Computational Science and Vision Studies.  It is a comprehensive collection of research works addressing various related areas of Vision Science like Visual Perception and Visual system, Cognitive Psychology, Neuroscience, Psychophysics and Ophthalmology, linguistic relativity, color vision etc. This issue carries some latest developments in the form of research articles and presentations. The volume is rich of contents with technical tools ...

  11. Soft Computing in Construction Information Technology

    NARCIS (Netherlands)

    Ciftcioglu, O.; Durmisevic, S.; Sariyildiz, S.

    2001-01-01

    The last decade, civil engineering has exercised a rapidly growing interest in the application of neurally inspired computing techniques. The motive for this interest was the promises of certain information processing characteristics, which are similar to some extend, to those of human brain. The

  12. Osteotomy simulation and soft tissue prediction using computer tomography scans

    International Nuclear Information System (INIS)

    Teschner, M.; Girod, S.; Girod, B.

    1999-01-01

    In this paper, a system is presented that can be used to simulate osteotomies of the skull and to estimate the resulting of tissue changes. Thus, the three-dimensional, photorealistic, postoperative appearance of a patient can be assessed. The system is based on a computer tomography scan and a photorealistic laser scan of the patient's face. In order to predict the postoperative appearance of a patient the soft tissue must follow the movement of the underlying bone. In this paper, a multi-layer soft tissue model is proposed that is based on springs. It incorporates features like skin turgor, gravity and sliding bone contact. The prediction of soft tissue changes due to bone realignments is computed using a very efficient and robust optimization method. The system can handle individual patient data sets and has been tested with several clinical cases. (author)

  13. 5th International Conference on Soft Computing for Problem Solving

    CERN Document Server

    Deep, Kusum; Bansal, Jagdish; Nagar, Atulya; Das, Kedar

    2016-01-01

    This two volume book is based on the research papers presented at the 5th International Conference on Soft Computing for Problem Solving (SocProS 2015) and covers a variety of topics, including mathematical modelling, image processing, optimization methods, swarm intelligence, evolutionary algorithms, fuzzy logic, neural networks, forecasting, medical and health care, data mining, etc. Mainly the emphasis is on Soft Computing and its applications in diverse areas. The prime objective of this book is to familiarize the reader with the latest scientific developments in various fields of Science, Engineering and Technology and is directed to the researchers and scientists engaged in various real-world applications of ‘Soft Computing’.

  14. Detecting Soft Errors in Stencil based Computations

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V. [Univ. of Utah, Salt Lake City, UT (United States); Gopalkrishnan, G. [Univ. of Utah, Salt Lake City, UT (United States); Bronevetsky, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-06

    Given the growing emphasis on system resilience, it is important to develop software-level error detectors that help trap hardware-level faults with reasonable accuracy while minimizing false alarms as well as the performance overhead introduced. We present a technique that approaches this idea by taking stencil computations as our target, and synthesizing detectors based on machine learning. In particular, we employ linear regression to generate computationally inexpensive models which form the basis for error detection. Our technique has been incorporated into a new open-source library called SORREL. In addition to reporting encouraging experimental results, we demonstrate techniques that help reduce the size of training data. We also discuss the efficacy of various detectors synthesized, as well as our future plans.

  15. Water demand forecasting: review of soft computing methods.

    Science.gov (United States)

    Ghalehkhondabi, Iman; Ardjmand, Ehsan; Young, William A; Weckman, Gary R

    2017-07-01

    Demand forecasting plays a vital role in resource management for governments and private companies. Considering the scarcity of water and its inherent constraints, demand management and forecasting in this domain are critically important. Several soft computing techniques have been developed over the last few decades for water demand forecasting. This study focuses on soft computing methods of water consumption forecasting published between 2005 and 2015. These methods include artificial neural networks (ANNs), fuzzy and neuro-fuzzy models, support vector machines, metaheuristics, and system dynamics. Furthermore, it was discussed that while in short-term forecasting, ANNs have been superior in many cases, but it is still very difficult to pick a single method as the overall best. According to the literature, various methods and their hybrids are applied to water demand forecasting. However, it seems soft computing has a lot more to contribute to water demand forecasting. These contribution areas include, but are not limited, to various ANN architectures, unsupervised methods, deep learning, various metaheuristics, and ensemble methods. Moreover, it is found that soft computing methods are mainly used for short-term demand forecasting.

  16. Darwinian Spacecraft: Soft Computing Strategies Breeding Better, Faster Cheaper

    Science.gov (United States)

    Noever, David A.; Baskaran, Subbiah

    1999-01-01

    Computers can create infinite lists of combinations to try to solve a particular problem, a process called "soft-computing." This process uses statistical comparables, neural networks, genetic algorithms, fuzzy variables in uncertain environments, and flexible machine learning to create a system which will allow spacecraft to increase robustness, and metric evaluation. These concepts will allow for the development of a spacecraft which will allow missions to be performed at lower costs.

  17. A new paradigm of knowledge engineering by soft computing

    CERN Document Server

    Ding, Liya

    2001-01-01

    Soft computing (SC) consists of several computing paradigms, including neural networks, fuzzy set theory, approximate reasoning, and derivative-free optimization methods such as genetic algorithms. The integration of those constituent methodologies forms the core of SC. In addition, the synergy allows SC to incorporate human knowledge effectively, deal with imprecision and uncertainty, and learn to adapt to unknown or changing environments for better performance. Together with other modern technologies, SC and its applications exert unprecedented influence on intelligent systems that mimic hum

  18. Prediction of Software Reliability using Bio Inspired Soft Computing Techniques.

    Science.gov (United States)

    Diwaker, Chander; Tomar, Pradeep; Poonia, Ramesh C; Singh, Vijander

    2018-04-10

    A lot of models have been made for predicting software reliability. The reliability models are restricted to using particular types of methodologies and restricted number of parameters. There are a number of techniques and methodologies that may be used for reliability prediction. There is need to focus on parameters consideration while estimating reliability. The reliability of a system may increase or decreases depending on the selection of different parameters used. Thus there is need to identify factors that heavily affecting the reliability of the system. In present days, reusability is mostly used in the various area of research. Reusability is the basis of Component-Based System (CBS). The cost, time and human skill can be saved using Component-Based Software Engineering (CBSE) concepts. CBSE metrics may be used to assess those techniques which are more suitable for estimating system reliability. Soft computing is used for small as well as large-scale problems where it is difficult to find accurate results due to uncertainty or randomness. Several possibilities are available to apply soft computing techniques in medicine related problems. Clinical science of medicine using fuzzy-logic, neural network methodology significantly while basic science of medicine using neural-networks-genetic algorithm most frequently and preferably. There is unavoidable interest shown by medical scientists to use the various soft computing methodologies in genetics, physiology, radiology, cardiology and neurology discipline. CBSE boost users to reuse the past and existing software for making new products to provide quality with a saving of time, memory space, and money. This paper focused on assessment of commonly used soft computing technique like Genetic Algorithm (GA), Neural-Network (NN), Fuzzy Logic, Support Vector Machine (SVM), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC). This paper presents working of soft computing

  19. Research Update: Computational materials discovery in soft matter

    Directory of Open Access Journals (Sweden)

    Tristan Bereau

    2016-05-01

    Full Text Available Soft matter embodies a wide range of materials, which all share the common characteristics of weak interaction energies determining their supramolecular structure. This complicates structure-property predictions and hampers the direct application of data-driven approaches to their modeling. We present several aspects in which these methods play a role in designing soft-matter materials: drug design as well as information-driven computer simulations, e.g., histogram reweighting. We also discuss recent examples of rational design of soft-matter materials fostered by physical insight and assisted by data-driven approaches. We foresee the combination of data-driven and physical approaches a promising strategy to move the field forward.

  20. Second International Conference on Soft Computing for Problem Solving

    CERN Document Server

    Nagar, Atulya; Deep, Kusum; Pant, Millie; Bansal, Jagdish; Ray, Kanad; Gupta, Umesh

    2014-01-01

    The present book is based on the research papers presented in the International Conference on Soft Computing for Problem Solving (SocProS 2012), held at JK Lakshmipat University, Jaipur, India. This book provides the latest developments in the area of soft computing and covers a variety of topics, including mathematical modeling, image processing, optimization, swarm intelligence, evolutionary algorithms, fuzzy logic, neural networks, forecasting, data mining, etc. The objective of the book is to familiarize the reader with the latest scientific developments that are taking place in various fields and the latest sophisticated problem solving tools that are being developed to deal with the complex and intricate problems that are otherwise difficult to solve by the usual and traditional methods. The book is directed to the researchers and scientists engaged in various fields of Science and Technology.

  1. Third International Conference on Soft Computing for Problem Solving

    CERN Document Server

    Deep, Kusum; Nagar, Atulya; Bansal, Jagdish

    2014-01-01

    The present book is based on the research papers presented in the 3rd International Conference on Soft Computing for Problem Solving (SocProS 2013), held as a part of the golden jubilee celebrations of the Saharanpur Campus of IIT Roorkee, at the Noida Campus of Indian Institute of Technology Roorkee, India. This book is divided into two volumes and covers a variety of topics including mathematical modelling, image processing, optimization, swarm intelligence, evolutionary algorithms, fuzzy logic, neural networks, forecasting, medical and health care, data mining etc. Particular emphasis is laid on soft computing and its application to diverse fields. The prime objective of the book is to familiarize the reader with the latest scientific developments that are taking place in various fields and the latest sophisticated problem solving tools that are being developed to deal with the complex and intricate problems, which are otherwise difficult to solve by the usual and traditional methods. The book is directed ...

  2. Soft computing techniques toward modeling the water supplies of Cyprus.

    Science.gov (United States)

    Iliadis, L; Maris, F; Tachos, S

    2011-10-01

    This research effort aims in the application of soft computing techniques toward water resources management. More specifically, the target is the development of reliable soft computing models capable of estimating the water supply for the case of "Germasogeia" mountainous watersheds in Cyprus. Initially, ε-Regression Support Vector Machines (ε-RSVM) and fuzzy weighted ε-RSVMR models have been developed that accept five input parameters. At the same time, reliable artificial neural networks have been developed to perform the same job. The 5-fold cross validation approach has been employed in order to eliminate bad local behaviors and to produce a more representative training data set. Thus, the fuzzy weighted Support Vector Regression (SVR) combined with the fuzzy partition has been employed in an effort to enhance the quality of the results. Several rational and reliable models have been produced that can enhance the efficiency of water policy designers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. International Conference on Soft Computing Techniques and Engineering Application

    CERN Document Server

    Li, Xiaolong

    2014-01-01

    The main objective of ICSCTEA 2013 is to provide a platform for researchers, engineers and academicians from all over the world to present their research results and development activities in soft computing techniques and engineering application. This conference provides opportunities for them to exchange new ideas and application experiences face to face, to establish business or research relations and to find global partners for future collaboration.

  4. 2nd International Conference on Soft Computing and Data Mining

    CERN Document Server

    Ghazali, Rozaida; Nawi, Nazri; Deris, Mustafa

    2017-01-01

    This book provides a comprehensive introduction and practical look at the concepts and techniques readers need to get the most out of their data in real-world, large-scale data mining projects. It also guides readers through the data-analytic thinking necessary for extracting useful knowledge and business value from the data. The book is based on the Soft Computing and Data Mining (SCDM-16) conference, which was held in Bandung, Indonesia on August 18th–20th 2016 to discuss the state of the art in soft computing techniques, and offer participants sufficient knowledge to tackle a wide range of complex systems. The scope of the conference is reflected in the book, which presents a balance of soft computing techniques and data mining approaches. The two constituents are introduced to the reader systematically and brought together using different combinations of applications and practices. It offers engineers, data analysts, practitioners, scientists and managers the insights into the concepts, tools and techni...

  5. SCC: Semantic Context Cascade for Efficient Action Detection

    KAUST Repository

    Heilbron, Fabian Caba; Barrios, Wayner; Escorcia, Victor; Ghanem, Bernard

    2017-01-01

    in videos. Existing approaches have mitigated the computational cost, but still, these methods lack rich high-level semantics that helps them to localize the actions quickly. In this paper, we introduce a Semantic Cascade Context (SCC) model that aims

  6. Soft Computing. Nové informatické paradigma, nebo módní slogan?

    Czech Academy of Sciences Publication Activity Database

    Hájek, Petr

    2000-01-01

    Roč. 79, č. 12 (2000), s. 683-685 ISSN 0042-4544 Institutional research plan: AV0Z1030915 Keywords : soft computing * fuzzy computing * neural computing * generic computing Subject RIV: BA - General Mathematics

  7. Soft Computing in Information Communication Technology Volume 2

    CERN Document Server

    2012-01-01

    This book is a collection of the accepted papers concerning soft computing in information communication technology. The resultant dissemination of the latest research results, and the exchanges of views concerning the future research directions to be taken in this field makes the work of immense value to all those having an interest in the topics covered. The present book represents a cooperative effort to seek out the best strategies for effecting improvements in the quality and the reliability of Fuzzy Logic, Machine Learning, Cryptography, Pattern Recognition, Bioinformatics, Biomedical Engineering, Advancements in ICT.

  8. Modeling soft factors in computer-based wargames

    Science.gov (United States)

    Alexander, Steven M.; Ross, David O.; Vinarskai, Jonathan S.; Farr, Steven D.

    2002-07-01

    Computer-based wargames have seen much improvement in recent years due to rapid increases in computing power. Because these games have been developed for the entertainment industry, most of these advances have centered on the graphics, sound, and user interfaces integrated into these wargames with less attention paid to the game's fidelity. However, for a wargame to be useful to the military, it must closely approximate as many of the elements of war as possible. Among the elements that are typically not modeled or are poorly modeled in nearly all military computer-based wargames are systematic effects, command and control, intelligence, morale, training, and other human and political factors. These aspects of war, with the possible exception of systematic effects, are individually modeled quite well in many board-based commercial wargames. The work described in this paper focuses on incorporating these elements from the board-based games into a computer-based wargame. This paper will also address the modeling and simulation of the systemic paralysis of an adversary that is implied by the concept of Effects Based Operations (EBO). Combining the fidelity of current commercial board wargames with the speed, ease of use, and advanced visualization of the computer can significantly improve the effectiveness of military decision making and education. Once in place, the process of converting board wargames concepts to computer wargames will allow the infusion of soft factors into military training and planning.

  9. Advanced soft computing diagnosis method for tumour grading.

    Science.gov (United States)

    Papageorgiou, E I; Spyridonos, P P; Stylios, C D; Ravazoula, P; Groumpos, P P; Nikiforidis, G N

    2006-01-01

    To develop an advanced diagnostic method for urinary bladder tumour grading. A novel soft computing modelling methodology based on the augmentation of fuzzy cognitive maps (FCMs) with the unsupervised active Hebbian learning (AHL) algorithm is applied. One hundred and twenty-eight cases of urinary bladder cancer were retrieved from the archives of the Department of Histopathology, University Hospital of Patras, Greece. All tumours had been characterized according to the classical World Health Organization (WHO) grading system. To design the FCM model for tumour grading, three experts histopathologists defined the main histopathological features (concepts) and their impact on grade characterization. The resulted FCM model consisted of nine concepts. Eight concepts represented the main histopathological features for tumour grading. The ninth concept represented the tumour grade. To increase the classification ability of the FCM model, the AHL algorithm was applied to adjust the weights of the FCM. The proposed FCM grading model achieved a classification accuracy of 72.5%, 74.42% and 95.55% for tumours of grades I, II and III, respectively. An advanced computerized method to support tumour grade diagnosis decision was proposed and developed. The novelty of the method is based on employing the soft computing method of FCMs to represent specialized knowledge on histopathology and on augmenting FCMs ability using an unsupervised learning algorithm, the AHL. The proposed method performs with reasonably high accuracy compared to other existing methods and at the same time meets the physicians' requirements for transparency and explicability.

  10. Verifying Stability of Dynamic Soft-Computing Systems

    Science.gov (United States)

    Wen, Wu; Napolitano, Marcello; Callahan, John

    1997-01-01

    Soft computing is a general term for algorithms that learn from human knowledge and mimic human skills. Example of such algorithms are fuzzy inference systems and neural networks. Many applications, especially in control engineering, have demonstrated their appropriateness in building intelligent systems that are flexible and robust. Although recent research have shown that certain class of neuro-fuzzy controllers can be proven bounded and stable, they are implementation dependent and difficult to apply to the design and validation process. Many practitioners adopt the trial and error approach for system validation or resort to exhaustive testing using prototypes. In this paper, we describe our on-going research towards establishing necessary theoretic foundation as well as building practical tools for the verification and validation of soft-computing systems. A unified model for general neuro-fuzzy system is adopted. Classic non-linear system control theory and recent results of its applications to neuro-fuzzy systems are incorporated and applied to the unified model. It is hoped that general tools can be developed to help the designer to visualize and manipulate the regions of stability and boundedness, much the same way Bode plots and Root locus plots have helped conventional control design and validation.

  11. Use of Soft Computing Technologies For Rocket Engine Control

    Science.gov (United States)

    Trevino, Luis C.; Olcmen, Semih; Polites, Michael

    2003-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that

  12. International Conference on Soft Computing in Information Communication Technology

    CERN Document Server

    Soft Computing in Information Communication Technology

    2012-01-01

      This is a collection of the accepted papers concerning soft computing in information communication technology. All accepted papers are subjected to strict peer-reviewing by 2 expert referees. The resultant dissemination of the latest research results, and the exchanges of views concerning the future research directions to be taken in this field makes the work of immense value to all those having an interest in the topics covered. The present book represents a cooperative effort to seek out the best strategies for effecting improvements in the quality and the reliability of Neural Networks, Swarm Intelligence, Evolutionary Computing, Image Processing Internet Security, Data Security, Data Mining, Network Security and Protection of data and Cyber laws. Our sincere appreciation and thanks go to these authors for their contributions to this conference. I hope you can gain lots of useful information from the book.

  13. Application of Soft Computing in Coherent Communications Phase Synchronization

    Science.gov (United States)

    Drake, Jeffrey T.; Prasad, Nadipuram R.

    2000-01-01

    The use of soft computing techniques in coherent communications phase synchronization provides an alternative to analytical or hard computing methods. This paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for phase synchronization in coherent communications systems utilizing Multiple Phase Shift Keying (MPSK) modulation. A brief overview of the M-PSK digital communications bandpass modulation technique is presented and it's requisite need for phase synchronization is discussed. We briefly describe the hybrid platform developed by Jang that incorporates fuzzy/neural structures namely the, Adaptive Neuro-Fuzzy Interference Systems (ANFIS). We then discuss application of ANFIS to phase estimation for M-PSK. The modeling of both explicit, and implicit phase estimation schemes for M-PSK symbols with unknown structure are discussed. Performance results from simulation of the above scheme is presented.

  14. Soft computing in design and manufacturing of advanced materials

    Science.gov (United States)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  15. Technical Development and Application of Soft Computing in Agricultural and Biological Engineering

    Science.gov (United States)

    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and...

  16. Development of Soft Computing and Applications in Agricultural and Biological Engineering

    Science.gov (United States)

    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and...

  17. Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing.

    Science.gov (United States)

    Rajan, Krishna; Garofalo, Erik; Chiolerio, Alessandro

    2018-01-27

    A recent trend in the development of high mass consumption electron devices is towards electronic textiles (e-textiles), smart wearable devices, smart clothes, and flexible or printable electronics. Intrinsically soft, stretchable, flexible, Wearable Memories and Computing devices (WMCs) bring us closer to sci-fi scenarios, where future electronic systems are totally integrated in our everyday outfits and help us in achieving a higher comfort level, interacting for us with other digital devices such as smartphones and domotics, or with analog devices, such as our brain/peripheral nervous system. WMC will enable each of us to contribute to open and big data systems as individual nodes, providing real-time information about physical and environmental parameters (including air pollution monitoring, sound and light pollution, chemical or radioactive fallout alert, network availability, and so on). Furthermore, WMC could be directly connected to human brain and enable extremely fast operation and unprecedented interface complexity, directly mapping the continuous states available to biological systems. This review focuses on recent advances in nanotechnology and materials science and pays particular attention to any result and promising technology to enable intrinsically soft, stretchable, flexible WMC.

  18. Microarray-based cancer prediction using soft computing approach.

    Science.gov (United States)

    Wang, Xiaosheng; Gotoh, Osamu

    2009-05-26

    One of the difficulties in using gene expression profiles to predict cancer is how to effectively select a few informative genes to construct accurate prediction models from thousands or ten thousands of genes. We screen highly discriminative genes and gene pairs to create simple prediction models involved in single genes or gene pairs on the basis of soft computing approach and rough set theory. Accurate cancerous prediction is obtained when we apply the simple prediction models for four cancerous gene expression datasets: CNS tumor, colon tumor, lung cancer and DLBCL. Some genes closely correlated with the pathogenesis of specific or general cancers are identified. In contrast with other models, our models are simple, effective and robust. Meanwhile, our models are interpretable for they are based on decision rules. Our results demonstrate that very simple models may perform well on cancerous molecular prediction and important gene markers of cancer can be detected if the gene selection approach is chosen reasonably.

  19. Vehicular traffic noise prediction using soft computing approach.

    Science.gov (United States)

    Singh, Daljeet; Nigam, S P; Agrawal, V P; Kumar, Maneek

    2016-12-01

    A new approach for the development of vehicular traffic noise prediction models is presented. Four different soft computing methods, namely, Generalized Linear Model, Decision Trees, Random Forests and Neural Networks, have been used to develop models to predict the hourly equivalent continuous sound pressure level, Leq, at different locations in the Patiala city in India. The input variables include the traffic volume per hour, percentage of heavy vehicles and average speed of vehicles. The performance of the four models is compared on the basis of performance criteria of coefficient of determination, mean square error and accuracy. 10-fold cross validation is done to check the stability of the Random Forest model, which gave the best results. A t-test is performed to check the fit of the model with the field data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Soft Real-Time PID Control on a VME Computer

    Science.gov (United States)

    Karayan, Vahag; Sander, Stanley; Cageao, Richard

    2007-01-01

    microPID (uPID) is a computer program for real-time proportional + integral + derivative (PID) control of a translation stage in a Fourier-transform ultraviolet spectrometer. microPID implements a PID control loop over a position profile at sampling rate of 8 kHz (sampling period 125microseconds). The software runs in a strippeddown Linux operating system on a VersaModule Eurocard (VME) computer operating in real-time priority queue using an embedded controller, a 16-bit digital-to-analog converter (D/A) board, and a laser-positioning board (LPB). microPID consists of three main parts: (1) VME device-driver routines, (2) software that administers a custom protocol for serial communication with a control computer, and (3) a loop section that obtains the current position from an LPB-driver routine, calculates the ideal position from the profile, and calculates a new voltage command by use of an embedded PID routine all within each sampling period. The voltage command is sent to the D/A board to control the stage. microPID uses special kernel headers to obtain microsecond timing resolution. Inasmuch as microPID implements a single-threaded process and all other processes are disabled, the Linux operating system acts as a soft real-time system.

  1. Role of Soft Computing Approaches in HealthCare Domain: A Mini Review.

    Science.gov (United States)

    Gambhir, Shalini; Malik, Sanjay Kumar; Kumar, Yugal

    2016-12-01

    In the present era, soft computing approaches play a vital role in solving the different kinds of problems and provide promising solutions. Due to popularity of soft computing approaches, these approaches have also been applied in healthcare data for effectively diagnosing the diseases and obtaining better results in comparison to traditional approaches. Soft computing approaches have the ability to adapt itself according to problem domain. Another aspect is a good balance between exploration and exploitation processes. These aspects make soft computing approaches more powerful, reliable and efficient. The above mentioned characteristics make the soft computing approaches more suitable and competent for health care data. The first objective of this review paper is to identify the various soft computing approaches which are used for diagnosing and predicting the diseases. Second objective is to identify various diseases for which these approaches are applied. Third objective is to categories the soft computing approaches for clinical support system. In literature, it is found that large number of soft computing approaches have been applied for effectively diagnosing and predicting the diseases from healthcare data. Some of these are particle swarm optimization, genetic algorithm, artificial neural network, support vector machine etc. A detailed discussion on these approaches are presented in literature section. This work summarizes various soft computing approaches used in healthcare domain in last one decade. These approaches are categorized in five different categories based on the methodology, these are classification model based system, expert system, fuzzy and neuro fuzzy system, rule based system and case based system. Lot of techniques are discussed in above mentioned categories and all discussed techniques are summarized in the form of tables also. This work also focuses on accuracy rate of soft computing technique and tabular information is provided for

  2. Understanding soft condensed matter via modeling and computation

    CERN Document Server

    Shi, An-Chang

    2011-01-01

    All living organisms consist of soft matter. For this reason alone, it is important to be able to understand and predict the structural and dynamical properties of soft materials such as polymers, surfactants, colloids, granular matter and liquids crystals. To achieve a better understanding of soft matter, three different approaches have to be integrated: experiment, theory and simulation. This book focuses on the third approach - but always in the context of the other two.

  3. Applications of the soft computing in the automated history matching

    Energy Technology Data Exchange (ETDEWEB)

    Silva, P.C.; Maschio, C.; Schiozer, D.J. [Unicamp (Brazil)

    2006-07-01

    Reservoir management is a research field in petroleum engineering that optimizes reservoir performance based on environmental, political, economic and technological criteria. Reservoir simulation is based on geological models that simulate fluid flow. Models must be constantly corrected to yield the observed production behaviour. The process of history matching is controlled by the comparison of production data, well test data and measured data from simulations. Parametrization, objective function analysis, sensitivity analysis and uncertainty analysis are important steps in history matching. One of the main challenges facing automated history matching is to develop algorithms that find the optimal solution in multidimensional search spaces. Optimization algorithms can be either global optimizers that work with noisy multi-modal functions, or local optimizers that cannot work with noisy multi-modal functions. The problem with global optimizers is the very large number of function calls, which is an inconvenience due to the long reservoir simulation time. For that reason, techniques such as least squared, thin plane spline, kriging and artificial neural networks (ANN) have been used as substitutes to reservoir simulators. This paper described the use of optimization algorithms to find optimal solution in automated history matching. Several ANN were used, including the generalized regression neural network, fuzzy system with subtractive clustering and radial basis network. The UNIPAR soft computing method was used along with a modified Hooke- Jeeves optimization method. Two case studies with synthetic and real reservoirs are examined. It was concluded that the combination of global and local optimization has the potential to improve the history matching process and that the use of substitute models can reduce computational efforts. 15 refs., 11 figs.

  4. Soft Computing Techniques for the Protein Folding Problem on High Performance Computing Architectures.

    Science.gov (United States)

    Llanes, Antonio; Muñoz, Andrés; Bueno-Crespo, Andrés; García-Valverde, Teresa; Sánchez, Antonia; Arcas-Túnez, Francisco; Pérez-Sánchez, Horacio; Cecilia, José M

    2016-01-01

    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.

  5. SCC: Semantic Context Cascade for Efficient Action Detection

    KAUST Repository

    Heilbron, Fabian Caba

    2017-11-09

    Despite the recent advances in large-scale video analysis, action detection remains as one of the most challenging unsolved problems in computer vision. This snag is in part due to the large volume of data that needs to be analyzed to detect actions in videos. Existing approaches have mitigated the computational cost, but still, these methods lack rich high-level semantics that helps them to localize the actions quickly. In this paper, we introduce a Semantic Cascade Context (SCC) model that aims to detect action in long video sequences. By embracing semantic priors associated with human activities, SCC produces high-quality class-specific action proposals and prune unrelated activities in a cascade fashion. Experimental results in ActivityNet unveils that SCC achieves state-of-the-art performance for action detection while operating at real time.

  6. What is Soft Computing? Bridging Gaps for 21st Century Science!

    Directory of Open Access Journals (Sweden)

    Rudolf Seising

    2010-06-01

    Full Text Available This contribution serves historical and philosophical reflecting cognitions on the role of Soft Computing in the 21st century. Referring to Magdalena's article in this issue, this paper considers the aspects of mixtures of techniques, the opposite pair qHard Computingq and qSoft Computingq, and Computational Intelligence. From the historical perspective the paper goes back to three articles by Warren Weaver that appeared after World War II. A concentrated study of these papers helps to understand that Soft Computing will be able to play a key role in the future development of science and technology.

  7. 17th Online World Conference on Soft Computing in Industrial Applications

    CERN Document Server

    Krömer, Pavel; Köppen, Mario; Schaefer, Gerald

    2014-01-01

    This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at WSC17, the 17th Online World Conference on Soft Computing in Industrial Applications, held from December 2012 to January 2013 on the Internet. WSC17 continues a successful series of scientific events started over a decade ago by the World Federation of Soft Computing. It brought together researchers from over the world interested in the ever advancing state of the art in the field. Continuous technological improvements make this online forum a viable gathering format for a world class conference. The aim of WSC17 was to disseminate excellent research results and contribute to building a global network of scientists interested in both theoretical foundations and practical applications of soft computing.   The 2012 edition of the Online World Conference on Soft Computing in Industrial Applications consisted of general track and special session on Continuous Features Discretization for Anomaly Intrusion Detectors...

  8. Optimal reliability allocation for large software projects through soft computing techniques

    DEFF Research Database (Denmark)

    Madsen, Henrik; Albeanu, Grigore; Popentiu-Vladicescu, Florin

    2012-01-01

    or maximizing the system reliability subject to budget constraints. These kinds of optimization problems were considered both in deterministic and stochastic frameworks in literature. Recently, the intuitionistic-fuzzy optimization approach was considered as a soft computing successful modelling approach....... Firstly, a review on existing soft computing approaches to optimization is given. The main section extends the results considering self-organizing migrating algorithms for solving intuitionistic-fuzzy optimization problems attached to complex fault-tolerant software architectures which proved...

  9. Relating microstructures to SCC in Inconel 718

    International Nuclear Information System (INIS)

    Sheth, N.K.; Sanchez, J.M.; Hendrix, B.C.; Ide, H.; Miglin, M.T.

    1993-01-01

    Inconel 718, a nickel-iron-base superalloy, is used for stressed applications in the nuclear and oil industries. A major concern facing the continued and expanding use of Inconel 718 in these applications has been their susceptibility to Inter-Granular Stress Corrosion Cracking (IGSCC). Efforts to reduce stress corrosion cracking (SCC) have been aimed at reducing the susceptibility in this alloy to the formation of the deleterious delta (Ni 3 Nb) phase. Microstructural evaluation of SCC test specimens of different thermo-mechanical histories shows that inhomogeneities of all types, including carbides, nitrides, and different morphologies of δ phase, worsen the SCC resistance of IN718. Here the authors study five samples of IN718 with measured hardness and SCC growth rates. A preliminary ranking of the factors mentioned above on SCC resistance finds that precipitation of a fine δ phase, due to over-aging, has the most profound effect on SCC susceptibility of IN718

  10. Exploiting short-term memory in soft body dynamics as a computational resource.

    Science.gov (United States)

    Nakajima, K; Li, T; Hauser, H; Pfeifer, R

    2014-11-06

    Soft materials are not only highly deformable, but they also possess rich and diverse body dynamics. Soft body dynamics exhibit a variety of properties, including nonlinearity, elasticity and potentially infinitely many degrees of freedom. Here, we demonstrate that such soft body dynamics can be employed to conduct certain types of computation. Using body dynamics generated from a soft silicone arm, we show that they can be exploited to emulate functions that require memory and to embed robust closed-loop control into the arm. Our results suggest that soft body dynamics have a short-term memory and can serve as a computational resource. This finding paves the way towards exploiting passive body dynamics for control of a large class of underactuated systems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Structural Studies Reveal the Functional Modularity of the Scc2-Scc4 Cohesin Loader

    Directory of Open Access Journals (Sweden)

    William C.H. Chao

    2015-08-01

    Full Text Available The remarkable accuracy of eukaryotic cell division is partly maintained by the cohesin complex acting as a molecular glue to prevent premature sister chromatid separation. The loading of cohesin onto chromosomes is catalyzed by the Scc2-Scc4 loader complex. Here, we report the crystal structure of Scc4 bound to the N terminus of Scc2 and show that Scc4 is a tetratricopeptide repeat (TPR superhelix. The Scc2 N terminus adopts an extended conformation and is entrapped by the core of the Scc4 superhelix. Electron microscopy (EM analysis reveals that the Scc2-Scc4 loader complex comprises three domains: a head, body, and hook. Deletion studies unambiguously assign the Scc2N-Scc4 as the globular head domain, whereas in vitro cohesin loading assays show that the central body and the hook domains are sufficient to catalyze cohesin loading onto circular DNA, but not chromatinized DNA in vivo, suggesting a possible role for Scc4 as a chromatin adaptor.

  12. The soft computing-based approach to investigate allergic diseases: a systematic review.

    Science.gov (United States)

    Tartarisco, Gennaro; Tonacci, Alessandro; Minciullo, Paola Lucia; Billeci, Lucia; Pioggia, Giovanni; Incorvaia, Cristoforo; Gangemi, Sebastiano

    2017-01-01

    Early recognition of inflammatory markers and their relation to asthma, adverse drug reactions, allergic rhinitis, atopic dermatitis and other allergic diseases is an important goal in allergy. The vast majority of studies in the literature are based on classic statistical methods; however, developments in computational techniques such as soft computing-based approaches hold new promise in this field. The aim of this manuscript is to systematically review the main soft computing-based techniques such as artificial neural networks, support vector machines, bayesian networks and fuzzy logic to investigate their performances in the field of allergic diseases. The review was conducted following PRISMA guidelines and the protocol was registered within PROSPERO database (CRD42016038894). The research was performed on PubMed and ScienceDirect, covering the period starting from September 1, 1990 through April 19, 2016. The review included 27 studies related to allergic diseases and soft computing performances. We observed promising results with an overall accuracy of 86.5%, mainly focused on asthmatic disease. The review reveals that soft computing-based approaches are suitable for big data analysis and can be very powerful, especially when dealing with uncertainty and poorly characterized parameters. Furthermore, they can provide valuable support in case of lack of data and entangled cause-effect relationships, which make it difficult to assess the evolution of disease. Although most works deal with asthma, we believe the soft computing approach could be a real breakthrough and foster new insights into other allergic diseases as well.

  13. Current Trend Towards Using Soft Computing Approaches to Phase Synchronization in Communication Systems

    Science.gov (United States)

    Drake, Jeffrey T.; Prasad, Nadipuram R.

    1999-01-01

    This paper surveys recent advances in communications that utilize soft computing approaches to phase synchronization. Soft computing, as opposed to hard computing, is a collection of complementary methodologies that act in producing the most desirable control, decision, or estimation strategies. Recently, the communications area has explored the use of the principal constituents of soft computing, namely, fuzzy logic, neural networks, and genetic algorithms, for modeling, control, and most recently for the estimation of phase in phase-coherent communications. If the receiver in a digital communications system is phase-coherent, as is often the case, phase synchronization is required. Synchronization thus requires estimation and/or control at the receiver of an unknown or random phase offset.

  14. Web mining in soft computing framework: relevance, state of the art and future directions.

    Science.gov (United States)

    Pal, S K; Talwar, V; Mitra, P

    2002-01-01

    The paper summarizes the different characteristics of Web data, the basic components of Web mining and its different types, and the current state of the art. The reason for considering Web mining, a separate field from data mining, is explained. The limitations of some of the existing Web mining methods and tools are enunciated, and the significance of soft computing (comprising fuzzy logic (FL), artificial neural networks (ANNs), genetic algorithms (GAs), and rough sets (RSs) are highlighted. A survey of the existing literature on "soft Web mining" is provided along with the commercially available systems. The prospective areas of Web mining where the application of soft computing needs immediate attention are outlined with justification. Scope for future research in developing "soft Web mining" systems is explained. An extensive bibliography is also provided.

  15. Problems and Issues in Using Computer- Based Support Tools to Enhance 'Soft' Systems Methodologies

    Directory of Open Access Journals (Sweden)

    Mark Stansfield

    2001-11-01

    Full Text Available This paper explores the issue of whether computer-based support tools can enhance the use of 'soft' systems methodologies as applied to real-world problem situations. Although work has been carried out by a number of researchers in applying computer-based technology to concepts and methodologies relating to 'soft' systems thinking such as Soft Systems Methodology (SSM, such attempts appear to be still in their infancy and have not been applied widely to real-world problem situations. This paper will highlight some of the problems that may be encountered in attempting to develop computer-based support tools for 'soft' systems methodologies. Particular attention will be paid to an attempt by the author to develop a computer-based support tool for a particular 'soft' systems method of inquiry known as the Appreciative Inquiry Method that is based upon Vickers' notion of 'appreciation' (Vickers, 196S and Checkland's SSM (Checkland, 1981. The final part of the paper will explore some of the lessons learnt from developing and applying the computer-based support tool to a real world problem situation, as well as considering the feasibility of developing computer-based support tools for 'soft' systems methodologies. This paper will put forward the point that a mixture of manual and computer-based tools should be employed to allow a methodology to be used in an unconstrained manner, but the benefits provided by computer-based technology should be utilised in supporting and enhancing the more mundane and structured tasks.

  16. Computer tomography for rare soft tissue tumours of the extremities

    International Nuclear Information System (INIS)

    Boettger, E.; Semerak, M.; Stoltze, D.; Rossak, K.

    1979-01-01

    Five patients with undiagnosed soft tissue masses in the extremities were examined and in two a pathological diagnosis could be made. One was an extensive, invasive fibroma (desmoid) 22 cm long which could be followed from the thigh almost into the pelvis. It was sharply demarkated form the surrounding muscles and of higher density. The second case was a 12 cm long cavernous haemangioma in the semi-membranosus muscle. This was originally hypo-dense, but showed marked increase in its density after the administration of contrast. (orig.) [de

  17. Performance characteristics of SCC radioimmunoassay and clinical significance serum SCC Ag assay in patients with malignancy

    International Nuclear Information System (INIS)

    Kim, Dong Youn

    1986-01-01

    To evaluate the performance characteristics of SCC RIV and the clinical significance of serum SCC Ag assay in patients with malignancy, serum SCC Ag levels were measured by SCC RIV kit in 40 normal controls and 35 percents with various untreated malignancy, who visited Chonju Presbyterian Medical Center. The results were as follows; 1. The SCC RIA was simple to perform and can be completed in two workday. And the standard curve and reproducibility were both good. 2. The mean serum SCC Ag level in normal controls was 1.64 ± 0.93 ng/mL and normal upper limit of serum SCC Ag was defined as 2.6 ng/mL. 3 out of 40 (7.5%) normal controls showed elevated SCC Ag levels above the normal upper limit. 3. In 35 patients with various untreated malignancy, 18 patients (51.4%) showed elevated serum SCC Ag levels, 59.1% of 22 patients with cervical cancer, 80% of 5 patients with lung cancer, 33% of 3 patients with esophageal cancer, 0% of 2 patients with rectal cancer and 0% of 3 patients with breast cancer showed elevated serum SCC Ag levels. Above results represent that SCC RIV is simple method to perform followed by good standard curve and reproducibility, and may be a useful indicator reflecting diagnostic data of patients with cervical cancer and lung cancer

  18. A Study on Soft Computing Applications in I and C Systems of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kang, H. T.; Chung, H. Y.

    2006-01-01

    In the paper, the application of the soft computing based nuclear power plant(NPP) is discussed. Soft computing such as neural network(NN), fuzzy logic controller(FLC), and genetic algorithm(GA) and/or their hybrid will be a new frontier for the development of instrument and control(I and C) systems in NPP. The application includes several fields, for example, the diagnostics of system transient, optimal data selection in NN, and intelligent control etc. Two or more combining structure, hybrid system, is more efficient. The concept of FLC, NN, and GA is presented in Section 2. The applications of soft computing used in NPP are presented in Section 3

  19. Computational model of soft tissues in the human upper airway.

    Science.gov (United States)

    Pelteret, J-P V; Reddy, B D

    2012-01-01

    This paper presents a three-dimensional finite element model of the tongue and surrounding soft tissues with potential application to the study of sleep apnoea and of linguistics and speech therapy. The anatomical data was obtained from the Visible Human Project, and the underlying histological data was also extracted and incorporated into the model. Hyperelastic constitutive models were used to describe the material behaviour, and material incompressibility was accounted for. An active Hill three-element muscle model was used to represent the muscular tissue of the tongue. The neural stimulus for each muscle group was determined through the use of a genetic algorithm-based neural control model. The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated. It is demonstrated that, when a time-dependent loading is applied to the tongue, the neural model is able to control the position of the tongue and produce a physiologically realistic response for the genioglossus.

  20. Microscope self-calibration based on micro laser line imaging and soft computing algorithms

    Science.gov (United States)

    Apolinar Muñoz Rodríguez, J.

    2018-06-01

    A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.

  1. Computer vision and soft computing for automatic skull-face overlay in craniofacial superimposition.

    Science.gov (United States)

    Campomanes-Álvarez, B Rosario; Ibáñez, O; Navarro, F; Alemán, I; Botella, M; Damas, S; Cordón, O

    2014-12-01

    Craniofacial superimposition can provide evidence to support that some human skeletal remains belong or not to a missing person. It involves the process of overlaying a skull with a number of ante mortem images of an individual and the analysis of their morphological correspondence. Within the craniofacial superimposition process, the skull-face overlay stage just focuses on achieving the best possible overlay of the skull and a single ante mortem image of the suspect. Although craniofacial superimposition has been in use for over a century, skull-face overlay is still applied by means of a trial-and-error approach without an automatic method. Practitioners finish the process once they consider that a good enough overlay has been attained. Hence, skull-face overlay is a very challenging, subjective, error prone, and time consuming part of the whole process. Though the numerical assessment of the method quality has not been achieved yet, computer vision and soft computing arise as powerful tools to automate it, dramatically reducing the time taken by the expert and obtaining an unbiased overlay result. In this manuscript, we justify and analyze the use of these techniques to properly model the skull-face overlay problem. We also present the automatic technical procedure we have developed using these computational methods and show the four overlays obtained in two craniofacial superimposition cases. This automatic procedure can be thus considered as a tool to aid forensic anthropologists to develop the skull-face overlay, automating and avoiding subjectivity of the most tedious task within craniofacial superimposition. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. SOFT COMPUTING SINGLE HIDDEN LAYER MODELS FOR SHELF LIFE PREDICTION OF BURFI

    Directory of Open Access Journals (Sweden)

    Sumit Goyal

    2012-05-01

    Full Text Available Burfi is an extremely popular sweetmeat, which is prepared by desiccating the standardized water buffalo milk. Soft computing feedforward single layer models were developed for predicting the shelf life of burfi stored at 30g.C. The data of the product relating to moisture, titratable acidity, free fatty acids, tyrosine, and peroxide value were used as input variables, and the overall acceptability score as output variable. The results showed excellent agreement between the experimental and the predicted data, suggesting that the developed soft computing model can alternatively be used for predicting the shelf life of burfi.

  3. Computational Modeling for Enhancing Soft Tissue Image Guided Surgery: An Application in Neurosurgery.

    Science.gov (United States)

    Miga, Michael I

    2016-01-01

    With the recent advances in computing, the opportunities to translate computational models to more integrated roles in patient treatment are expanding at an exciting rate. One area of considerable development has been directed towards correcting soft tissue deformation within image guided neurosurgery applications. This review captures the efforts that have been undertaken towards enhancing neuronavigation by the integration of soft tissue biomechanical models, imaging and sensing technologies, and algorithmic developments. In addition, the review speaks to the evolving role of modeling frameworks within surgery and concludes with some future directions beyond neurosurgical applications.

  4. SCC in acidic, neutral, and alkaline environments

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This group considered the following: (1) What features characterized SCC in the different environments? (2) What are the phenomenological correlations that presently describe SCC and how good are these? (3) What modeling is now available for all or some part of the subject? (4) What are the elements and sub-elements for an ideal model which would adequately describe the subject? and (5) What work has yet to be done to organize an adequate model?

  5. Interior spatial layout with soft objectives using evolutionary computation

    NARCIS (Netherlands)

    Chatzikonstantinou, I.; Bengisu, E.

    2016-01-01

    This paper presents the design problem of furniture arrangement in a residential interior living space, and addresses it by means of evolutionary computation. Interior arrangement is an important and interesting problem that occurs commonly when designing living spaces. It entails determining the

  6. Efficient Buffer Capacity and Scheduler Setting Computation for Soft Real-Time Stream Processing Applications

    NARCIS (Netherlands)

    Bekooij, Marco; Bekooij, Marco Jan Gerrit; Wiggers, M.H.; van Meerbergen, Jef

    2007-01-01

    Soft real-time applications that process data streams can often be intuitively described as dataflow process networks. In this paper we present a novel analysis technique to compute conservative estimates of the required buffer capacities in such process networks. With the same analysis technique

  7. Prediction of scour caused by 2D horizontal jets using soft computing techniques

    Directory of Open Access Journals (Sweden)

    Masoud Karbasi

    2017-12-01

    Full Text Available This paper presents application of five soft-computing techniques, artificial neural networks, support vector regression, gene expression programming, grouping method of data handling (GMDH neural network and adaptive-network-based fuzzy inference system, to predict maximum scour hole depth downstream of a sluice gate. The input parameters affecting the scour depth are the sediment size and its gradation, apron length, sluice gate opening, jet Froude number and the tail water depth. Six non-dimensional parameters were achieved to define a functional relationship between the input and output variables. Published data were used from the experimental researches. The results of soft-computing techniques were compared with empirical and regression based equations. The results obtained from the soft-computing techniques are superior to those of empirical and regression based equations. Comparison of soft-computing techniques showed that accuracy of the ANN model is higher than other models (RMSE = 0.869. A new GEP based equation was proposed.

  8. A Computational Modeling Approach for Investigating Soft Tissue Balancing in Bicruciate Retaining Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Shahram Amiri

    2012-01-01

    Full Text Available Bicruciate retaining knee arthroplasty, although has shown improved functions and patient satisfaction compared to other designs of total knee replacement, remains a technically demanding option for treating severe cases of arthritic knees. One of the main challenges in bicruciate retaining arthroplasty is proper balancing of the soft tissue during the surgery. In this study biomechanics of soft tissue balancing was investigated using a validated computational model of the knee joint with high fidelity definitions of the soft tissue structures along with a Taguchi method for design of experiments. The model was used to simulate intraoperative balancing of soft tissue structures following the combinations suggested by an orthogonal array design. The results were used to quantify the corresponding effects on the laxity of the joint under anterior-posterior, internal-external, and varus-valgus loads. These effects were ranked for each ligament bundle to identify the components of laxity which were most sensitive to the corresponding surgical modifications. The resulting map of sensitivity for all the ligament bundles determined the components of laxity most suitable for examination during intraoperative balancing of the soft tissue. Ultimately, a sequence for intraoperative soft tissue balancing was suggested for a bicruciate retaining knee arthroplasty.

  9. A Computational Modeling Approach for Investigating Soft Tissue Balancing in Bicruciate Retaining Knee Arthroplasty

    Science.gov (United States)

    Amiri, Shahram; Wilson, David R.

    2012-01-01

    Bicruciate retaining knee arthroplasty, although has shown improved functions and patient satisfaction compared to other designs of total knee replacement, remains a technically demanding option for treating severe cases of arthritic knees. One of the main challenges in bicruciate retaining arthroplasty is proper balancing of the soft tissue during the surgery. In this study biomechanics of soft tissue balancing was investigated using a validated computational model of the knee joint with high fidelity definitions of the soft tissue structures along with a Taguchi method for design of experiments. The model was used to simulate intraoperative balancing of soft tissue structures following the combinations suggested by an orthogonal array design. The results were used to quantify the corresponding effects on the laxity of the joint under anterior-posterior, internal-external, and varus-valgus loads. These effects were ranked for each ligament bundle to identify the components of laxity which were most sensitive to the corresponding surgical modifications. The resulting map of sensitivity for all the ligament bundles determined the components of laxity most suitable for examination during intraoperative balancing of the soft tissue. Ultimately, a sequence for intraoperative soft tissue balancing was suggested for a bicruciate retaining knee arthroplasty. PMID:23082090

  10. Development of Fuzzy Logic and Soft Computing Methodologies

    Science.gov (United States)

    Zadeh, L. A.; Yager, R.

    1999-01-01

    Our earlier research on computing with words (CW) has led to a new direction in fuzzy logic which points to a major enlargement of the role of natural languages in information processing, decision analysis and control. This direction is based on the methodology of computing with words and embodies a new theory which is referred to as the computational theory of perceptions (CTP). An important feature of this theory is that it can be added to any existing theory - especially to probability theory, decision analysis, and control - and enhance the ability of the theory to deal with real-world problems in which the decision-relevant information is a mixture of measurements and perceptions. The new direction is centered on an old concept - the concept of a perception - a concept which plays a central role in human cognition. The ability to reason with perceptions perceptions of time, distance, force, direction, shape, intent, likelihood, truth and other attributes of physical and mental objects - underlies the remarkable human capability to perform a wide variety of physical and mental tasks without any measurements and any computations. Everyday examples of such tasks are parking a car, driving in city traffic, cooking a meal, playing golf and summarizing a story. Perceptions are intrinsically imprecise. Imprecision of perceptions reflects the finite ability of sensory organs and ultimately, the brain, to resolve detail and store information. More concretely, perceptions are both fuzzy and granular, or, for short, f-granular. Perceptions are f-granular in the sense that: (a) the boundaries of perceived classes are not sharply defined; and (b) the elements of classes are grouped into granules, with a granule being a clump of elements drawn together by indistinguishability, similarity. proximity or functionality. F-granularity of perceptions may be viewed as a human way of achieving data compression. In large measure, scientific progress has been, and continues to be

  11. Measurement of facial soft tissues thickness using 3D computed tomographic images

    International Nuclear Information System (INIS)

    Jeong, Ho Gul; Kim, Kee Deog; Shin, Dong Won; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Park, Chang Seo; Han, Seung Ho

    2006-01-01

    To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. There were no statistically significant differences between the direct measurements and those using the 3D images(p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissue thickness more easily in forensic science and anthropology

  12. Measurement of facial soft tissues thickness using 3D computed tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho Gul; Kim, Kee Deog; Shin, Dong Won; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Park, Chang Seo [Yonsei Univ. Hospital, Seoul (Korea, Republic of); Han, Seung Ho [Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2006-03-15

    To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. There were no statistically significant differences between the direct measurements and those using the 3D images(p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissue thickness more easily in forensic science and anthropology.

  13. A Case for Soft Error Detection and Correction in Computational Chemistry.

    Science.gov (United States)

    van Dam, Hubertus J J; Vishnu, Abhinav; de Jong, Wibe A

    2013-09-10

    High performance computing platforms are expected to deliver 10(18) floating operations per second by the year 2022 through the deployment of millions of cores. Even if every core is highly reliable the sheer number of them will mean that the mean time between failures will become so short that most application runs will suffer at least one fault. In particular soft errors caused by intermittent incorrect behavior of the hardware are a concern as they lead to silent data corruption. In this paper we investigate the impact of soft errors on optimization algorithms using Hartree-Fock as a particular example. Optimization algorithms iteratively reduce the error in the initial guess to reach the intended solution. Therefore they may intuitively appear to be resilient to soft errors. Our results show that this is true for soft errors of small magnitudes but not for large errors. We suggest error detection and correction mechanisms for different classes of data structures. The results obtained with these mechanisms indicate that we can correct more than 95% of the soft errors at moderate increases in the computational cost.

  14. Critical Data Analysis Precedes Soft Computing Of Medical Data

    DEFF Research Database (Denmark)

    Keyserlingk, Diedrich Graf von; Jantzen, Jan; Berks, G.

    2000-01-01

    extracted. The factors had different relationships (loadings) to the symptoms. Although the factors were gained only by computations, they seemed to express some modular features of the language disturbances. This phenomenon, that factors represent superior aspects of data, is well known in factor analysis...... the deficits in communication. Sets of symptoms corresponding to the traditional symptoms in Broca and Wernicke aphasia may be represented in the factors, but the factor itself does not represent a syndrome. It is assumed that this kind of data analysis shows a new approach to the understanding of language...

  15. Computed Tomography and Magnetic Resonance Imaging of Myoepitheliloma in the Soft Palate: A Case Report

    International Nuclear Information System (INIS)

    Lim, Hun Cheol; Yu, In Kyu; Park, Mi Ja; Jang, Dong Sik

    2011-01-01

    We report the appearance of myoepithelioma arising from minor salivary glands in the soft palate observed on computed tomography (CT) and magnetic resonance imaging (MRI). CT, the tumor was round with a smooth and partial lobulating contour, and slightly marginal contrast enhancement. On T1-weighted images, the mass had heterogeneous iso-signal intensity compared to the pharyngeal muscle. Additionally, the tumor had heterogeneously high T2 signal intensity with heterogeneously strong enhancement on the Gd-enhanced T1-weighted image. Radiologists should consider myoepithelioma in the radiological differential diagnosis of soft palate tumors.

  16. Determining flexor-tendon repair techniques via soft computing

    Science.gov (United States)

    Johnson, M.; Firoozbakhsh, K.; Moniem, M.; Jamshidi, M.

    2001-01-01

    An SC-based multi-objective decision-making method for determining the optimal flexor-tendon repair technique from experimental and clinical survey data, and with variable circumstances, was presented. Results were compared with those from the Taguchi method. Using the Taguchi method results in the need to perform ad-hoc decisions when the outcomes for individual objectives are contradictory to a particular preference or circumstance, whereas the SC-based multi-objective technique provides a rigorous straightforward computational process in which changing preferences and importance of differing objectives are easily accommodated. Also, adding more objectives is straightforward and easily accomplished. The use of fuzzy-set representations of information categories provides insight into their performance throughout the range of their universe of discourse. The ability of the technique to provide a "best" medical decision given a particular physician, hospital, patient, situation, and other criteria was also demonstrated.

  17. 3D-SoftChip: A Novel Architecture for Next-Generation Adaptive Computing Systems

    Directory of Open Access Journals (Sweden)

    Lee Mike Myung-Ok

    2006-01-01

    Full Text Available This paper introduces a novel architecture for next-generation adaptive computing systems, which we term 3D-SoftChip. The 3D-SoftChip is a 3-dimensional (3D vertically integrated adaptive computing system combining state-of-the-art processing and 3D interconnection technology. It comprises the vertical integration of two chips (a configurable array processor and an intelligent configurable switch through an indium bump interconnection array (IBIA. The configurable array processor (CAP is an array of heterogeneous processing elements (PEs, while the intelligent configurable switch (ICS comprises a switch block, 32-bit dedicated RISC processor for control, on-chip program/data memory, data frame buffer, along with a direct memory access (DMA controller. This paper introduces the novel 3D-SoftChip architecture for real-time communication and multimedia signal processing as a next-generation computing system. The paper further describes the advanced HW/SW codesign and verification methodology, including high-level system modeling of the 3D-SoftChip using SystemC, being used to determine the optimum hardware specification in the early design stage.

  18. The hierarchical expert tuning of PID controllers using tools of soft computing.

    Science.gov (United States)

    Karray, F; Gueaieb, W; Al-Sharhan, S

    2002-01-01

    We present soft computing-based results pertaining to the hierarchical tuning process of PID controllers located within the control loop of a class of nonlinear systems. The results are compared with PID controllers implemented either in a stand alone scheme or as a part of conventional gain scheduling structure. This work is motivated by the increasing need in the industry to design highly reliable and efficient controllers for dealing with regulation and tracking capabilities of complex processes characterized by nonlinearities and possibly time varying parameters. The soft computing-based controllers proposed are hybrid in nature in that they integrate within a well-defined hierarchical structure the benefits of hard algorithmic controllers with those having supervisory capabilities. The controllers proposed also have the distinct features of learning and auto-tuning without the need for tedious and computationally extensive online systems identification schemes.

  19. An Integrated Soft Computing Approach to Hughes Syndrome Risk Assessment.

    Science.gov (United States)

    Vilhena, João; Rosário Martins, M; Vicente, Henrique; Grañeda, José M; Caldeira, Filomena; Gusmão, Rodrigo; Neves, João; Neves, José

    2017-03-01

    The AntiPhospholipid Syndrome (APS) is an acquired autoimmune disorder induced by high levels of antiphospholipid antibodies that cause arterial and veins thrombosis, as well as pregnancy-related complications and morbidity, as clinical manifestations. This autoimmune hypercoagulable state, usually known as Hughes syndrome, has severe consequences for the patients, being one of the main causes of thrombotic disorders and death. Therefore, it is required to be preventive; being aware of how probable is to have that kind of syndrome. Despite the updated of antiphospholipid syndrome classification, the diagnosis remains difficult to establish. Additional research on clinically relevant antibodies and standardization of their quantification are required in order to improve the antiphospholipid syndrome risk assessment. Thus, this work will focus on the development of a diagnosis decision support system in terms of a formal agenda built on a Logic Programming approach to knowledge representation and reasoning, complemented with a computational framework based on Artificial Neural Networks. The proposed model allows for improving the diagnosis, classifying properly the patients that really presented this pathology (sensitivity higher than 85%), as well as classifying the absence of APS (specificity close to 95%).

  20. A Soft Computing Approach to Kidney Diseases Evaluation.

    Science.gov (United States)

    Neves, José; Martins, M Rosário; Vilhena, João; Neves, João; Gomes, Sabino; Abelha, António; Machado, José; Vicente, Henrique

    2015-10-01

    Kidney renal failure means that one's kidney have unexpectedly stopped functioning, i.e., once chronic disease is exposed, the presence or degree of kidney dysfunction and its progression must be assessed, and the underlying syndrome has to be diagnosed. Although the patient's history and physical examination may denote good practice, some key information has to be obtained from valuation of the glomerular filtration rate, and the analysis of serum biomarkers. Indeed, chronic kidney sickness depicts anomalous kidney function and/or its makeup, i.e., there is evidence that treatment may avoid or delay its progression, either by reducing and prevent the development of some associated complications, namely hypertension, obesity, diabetes mellitus, and cardiovascular complications. Acute kidney injury appears abruptly, with a rapid deterioration of the renal function, but is often reversible if it is recognized early and treated promptly. In both situations, i.e., acute kidney injury and chronic kidney disease, an early intervention can significantly improve the prognosis. The assessment of these pathologies is therefore mandatory, although it is hard to do it with traditional methodologies and existing tools for problem solving. Hence, in this work, we will focus on the development of a hybrid decision support system, in terms of its knowledge representation and reasoning procedures based on Logic Programming, that will allow one to consider incomplete, unknown, and even contradictory information, complemented with an approach to computing centered on Artificial Neural Networks, in order to weigh the Degree-of-Confidence that one has on such a happening. The present study involved 558 patients with an age average of 51.7 years and the chronic kidney disease was observed in 175 cases. The dataset comprise twenty four variables, grouped into five main categories. The proposed model showed a good performance in the diagnosis of chronic kidney disease, since the

  1. Clinical usefulness of facial soft tissues thickness measurement using 3D computed tomographic images

    International Nuclear Information System (INIS)

    Jeong, Ho Gul; Kim, Kee Deog; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Han, Seung Ho; Choi, Seong Ho; Kim, Chong Kwan; Park, Chang Seo

    2006-01-01

    To evaluate clinical usefulness of facial soft tissue thickness measurement using 3D computed tomographic images. One cadaver that had sound facial soft tissues was chosen for the study. The cadaver was scanned with a Helical CT under following scanning protocols about slice thickness and table speed: 3 mm and 3 mm/sec, 5 mm and 5 mm/sec, 7 mm and 7 mm/sec. The acquired data were reconstructed 1.5, 2.5, 3.5 mm reconstruction interval respectively and the images were transferred to a personal computer. Using a program developed to measure facial soft tissue thickness in 3D image, the facial soft tissue thickness was measured. After the ten-time repeation of the measurement for ten times, repeated measure analysis of variance (ANOVA) was adopted to compare and analyze the measurements using the three scanning protocols. Comparison according to the areas was analysed by Mann-Whitney test. There were no statistically significant intraobserver differences in the measurements of the facial soft tissue thickness using the three scanning protocols (p>0.05). There were no statistically significant differences between measurements in the 3 mm slice thickness and those in the 5 mm, 7 mm slice thickness (p>0.05). There were statistical differences in the 14 of the total 30 measured points in the 5 mm slice thickness and 22 in the 7 mm slice thickness. The facial soft tissue thickness measurement using 3D images of 7 mm slice thickness is acceptable clinically, but those of 5 mm slice thickness is recommended for the more accurate measurement

  2. Pattern recognition algorithms for data mining scalability, knowledge discovery and soft granular computing

    CERN Document Server

    Pal, Sankar K

    2004-01-01

    Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks.Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.

  3. Proceedings of the International Conference on Soft Computing for Problem Solving

    CERN Document Server

    Nagar, Atulya; Pant, Millie; Bansal, Jagdish

    2012-01-01

    The present book is based on the research papers presented in the International Conference on Soft Computing for Problem Solving (SocProS 2011), held at Roorkee, India. This book is divided into two volumes and covers a variety of topics, including mathematical modeling, image processing, optimization, swarm intelligence, evolutionary algorithms, fuzzy logic, neural networks, forecasting, data mining etc. Particular emphasis is laid on Soft Computing and its application to diverse fields. The prime objective of the book is to familiarize the reader with the latest scientific developments that are taking place in various fields and the latest sophisticated problem solving tools that are being developed to deal with the complex and intricate problems that are otherwise difficult to solve by the usual and traditional methods. The book is directed to the researchers and scientists engaged in various fields of Science and Technology.

  4. Soft drink effects on sensorimotor rhythm brain computer interface performance and resting-state spectral power.

    Science.gov (United States)

    Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He

    2016-08-01

    Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.

  5. Proceedings of the International Conference on Soft Computing for Problem Solving

    CERN Document Server

    Nagar, Atulya; Pant, Millie; Bansal, Jagdish

    2012-01-01

    The present book is based on the research papers presented in the International Conference on Soft Computing for Problem Solving (SocProS 2011), held at Roorkee, India. This book is divided into two volumes and covers a variety of topics, including mathematical modeling, image processing, optimization, swarm intelligence, evolutionary algorithms, fuzzy logic, neural networks, forecasting, data mining etc. Particular emphasis is laid on Soft Computing and its application to diverse fields. The prime objective of the book is to familiarize the reader with the latest scientific developments that are taking place in various fields and the latest sophisticated problem solving tools that are being developed to deal with the complex and intricate problems that are otherwise difficult to solve by the usual and traditional methods. The book is directed to the researchers and scientists engaged in various fields of Science and Technology.

  6. Controller Design of DFIG Based Wind Turbine by Using Evolutionary Soft Computational Techniques

    Directory of Open Access Journals (Sweden)

    O. P. Bharti

    2017-06-01

    Full Text Available This manuscript illustrates the controller design for a doubly fed induction generator based variable speed wind turbine by using a bioinspired scheme. This methodology is based on exploiting two proficient swarm intelligence based evolutionary soft computational procedures. The particle swarm optimization (PSO and bacterial foraging optimization (BFO techniques are employed to design the controller intended for small damping plant of the DFIG. Wind energy overview and DFIG operating principle along with the equivalent circuit model is adequately discussed in this paper. The controller design for DFIG based WECS using PSO and BFO are described comparatively in detail. The responses of the DFIG system regarding terminal voltage, current, active-reactive power, and DC-Link voltage have slightly improved with the evolutionary soft computational procedure. Lastly, the obtained output is equated with a standard technique for performance improvement of DFIG based wind energy conversion system.

  7. Claudio Moraga a passion for multi-valued logic and soft computing

    CERN Document Server

    Allende-Cid, Héctor

    2017-01-01

    The book is an authoritative collection of contributions by leading experts on the topics of fuzzy logic, multi-valued logic and neural network. Originally written as an homage to Claudio Moraga, seen by his colleagues as an example of concentration, discipline and passion for science, the book also represents a timely reference guide for advance students and researchers in the field of soft computing, and multiple-valued logic. .

  8. Assessment of traffic noise levels in urban areas using different soft computing techniques.

    Science.gov (United States)

    Tomić, J; Bogojević, N; Pljakić, M; Šumarac-Pavlović, D

    2016-10-01

    Available traffic noise prediction models are usually based on regression analysis of experimental data, and this paper presents the application of soft computing techniques in traffic noise prediction. Two mathematical models are proposed and their predictions are compared to data collected by traffic noise monitoring in urban areas, as well as to predictions of commonly used traffic noise models. The results show that application of evolutionary algorithms and neural networks may improve process of development, as well as accuracy of traffic noise prediction.

  9. SCC Initiation Testing of Alloy 600 in High Temperature Water

    Science.gov (United States)

    Etien, Robert A.; Richey, Edward; Morton, David S.; Eager, Julie

    Stress corrosion cracking (SCC) initiation tests have been conducted on Alloy 600 at temperatures from 304 to 367°C. Tests were conducted with in-situ monitored smooth tensile specimens under a constant load in hydrogenated environments. A reversing direct current electric potential drop (EPD) system was used for all of the tests to detect SCC initiation. Tests were conducted to examine the effects of stress (and strain), coolant hydrogen, and temperature on SCC initiation time. The thermal activation energy of SCC initiation was measured as 103 ± 18 kJ/mol in hydrogenated water, which is similar to the thermal activation energy for SCC growth. Results suggest that the fundamental mechanical parameter which controls SCC initiation is plastic strain not stress. SCC initiation was shown to have a different sensitivity than SCC growth to dissolved hydrogen level. Specifically, SCC initiation time appears to be relatively insensitive to hydrogen level in the nickel stability region.

  10. Application of Soft Computing Techniques and Multiple Regression Models for CBR prediction of Soils

    Directory of Open Access Journals (Sweden)

    Fatimah Khaleel Ibrahim

    2017-08-01

    Full Text Available The techniques of soft computing technique such as Artificial Neutral Network (ANN have improved the predicting capability and have actually discovered application in Geotechnical engineering. The aim of this research is to utilize the soft computing technique and Multiple Regression Models (MLR for forecasting the California bearing ratio CBR( of soil from its index properties. The indicator of CBR for soil could be predicted from various soils characterizing parameters with the assist of MLR and ANN methods. The data base that collected from the laboratory by conducting tests on 86 soil samples that gathered from different projects in Basrah districts. Data gained from the experimental result were used in the regression models and soft computing techniques by using artificial neural network. The liquid limit, plastic index , modified compaction test and the CBR test have been determined. In this work, different ANN and MLR models were formulated with the different collection of inputs to be able to recognize their significance in the prediction of CBR. The strengths of the models that were developed been examined in terms of regression coefficient (R2, relative error (RE% and mean square error (MSE values. From the results of this paper, it absolutely was noticed that all the proposed ANN models perform better than that of MLR model. In a specific ANN model with all input parameters reveals better outcomes than other ANN models.

  11. Computed tomography of the soft tissues of the shoulder. Pt. 3

    International Nuclear Information System (INIS)

    Dihlmann, W.; Bandick, J.

    1988-01-01

    Computed tomography of the soft tissue of the shoulder in cases of calcifying tendinitis of the rotator cuff provides the following information: 1. Localisation of the calcium deposits within the rotator cuff. 2. Contours and density of the calcium deposits correlated with the clinical findings as described by Uhthoff et al. Ill-defined contours and non-homogeneous deposits are associated with more severe clinical features. 3. Computed tomography shows that apatite particles, which are not visible radiologically, may penetrate into the shoulder joint and produce synovitis with an effusion. This is of importance in local therapy. (orig.) [de

  12. Challenges in Soft Computing: Case Study with Louisville MSD CSO Modeling

    Science.gov (United States)

    Ormsbee, L.; Tufail, M.

    2005-12-01

    The principal constituents of soft computing include fuzzy logic, neural computing, evolutionary computation, machine learning, and probabilistic reasoning. There are numerous applications of these constituents (both individually and combination of two or more) in the area of water resources and environmental systems. These range from development of data driven models to optimal control strategies to assist in more informed and intelligent decision making process. Availability of data is critical to such applications and having scarce data may lead to models that do not represent the response function over the entire domain. At the same time, too much data has a tendency to lead to over-constraining of the problem. This paper will describe the application of a subset of these soft computing techniques (neural computing and genetic algorithms) to the Beargrass Creek watershed in Louisville, Kentucky. The application include development of inductive models as substitutes for more complex process-based models to predict water quality of key constituents (such as dissolved oxygen) and use them in an optimization framework for optimal load reductions. Such a process will facilitate the development of total maximum daily loads for the impaired water bodies in the watershed. Some of the challenges faced in this application include 1) uncertainty in data sets, 2) model application, and 3) development of cause-and-effect relationships between water quality constituents and watershed parameters through use of inductive models. The paper will discuss these challenges and how they affect the desired goals of the project.

  13. A virtual surgical training system that simulates cutting of soft tissue using a modified pre-computed elastic model.

    Science.gov (United States)

    Toe, Kyaw Kyar; Huang, Weimin; Yang, Tao; Duan, Yuping; Zhou, Jiayin; Su, Yi; Teo, Soo-Kng; Kumar, Selvaraj Senthil; Lim, Calvin Chi-Wan; Chui, Chee Kong; Chang, Stephen

    2015-08-01

    This work presents a surgical training system that incorporates cutting operation of soft tissue simulated based on a modified pre-computed linear elastic model in the Simulation Open Framework Architecture (SOFA) environment. A precomputed linear elastic model used for the simulation of soft tissue deformation involves computing the compliance matrix a priori based on the topological information of the mesh. While this process may require a few minutes to several hours, based on the number of vertices in the mesh, it needs only to be computed once and allows real-time computation of the subsequent soft tissue deformation. However, as the compliance matrix is based on the initial topology of the mesh, it does not allow any topological changes during simulation, such as cutting or tearing of the mesh. This work proposes a way to modify the pre-computed data by correcting the topological connectivity in the compliance matrix, without re-computing the compliance matrix which is computationally expensive.

  14. Computation of stress on the surface of a soft homogeneous arbitrarily shaped particle.

    Science.gov (United States)

    Yang, Minglin; Ren, Kuan Fang; Wu, Yueqian; Sheng, Xinqing

    2014-04-01

    Prediction of the stress on the surface of an arbitrarily shaped particle of soft material is essential in the study of elastic properties of the particles with optical force. It is also necessary in the manipulation and sorting of small particles with optical tweezers, since a regular-shaped particle, such as a sphere, may be deformed under the nonuniform optical stress on its surface. The stress profile on a spherical or small spheroidal soft particle trapped by shaped beams has been studied, however little work on computing the surface stress of an irregular-shaped particle has been reported. We apply in this paper the surface integral equation with multilevel fast multipole algorithm to compute the surface stress on soft homogeneous arbitrarily shaped particles. The comparison of the computed stress profile with that predicted by the generalized Lorenz-Mie theory for a water droplet of diameter equal to 51 wavelengths in a focused Gaussian beam show that the precision of our method is very good. Then stress profiles on spheroids with different aspect ratios are computed. The particles are illuminated by a Gaussian beam of different waist radius at different incidences. Physical analysis on the mechanism of optical stress is given with help of our recently developed vectorial complex ray model. It is found that the maximum of the stress profile on the surface of prolate spheroids is not only determined by the reflected and refracted rays (orders p=0,1) but also the rays undergoing one or two internal reflections where they focus. Computational study of stress on surface of a biconcave cell-like particle, which is a typical application in life science, is also undertaken.

  15. Soft and hard computing approaches for real-time prediction of currents in a tide-dominated coastal area

    Digital Repository Service at National Institute of Oceanography (India)

    Charhate, S.B.; Deo, M.C.; SanilKumar, V.

    . Owing to the complex real sea conditions, such methods may not always yield satisfactory results. This paper discusses a few alternative approaches based on the soft computing tools of artificial neural networks (ANNs) and genetic programming (GP...

  16. MRT letter: Contrast-enhanced computed tomographic imaging of soft callus formation in fracture healing.

    Science.gov (United States)

    Hayward, Lauren Nicole Miller; de Bakker, Chantal Marie-Jeanne; Lusic, Hrvoje; Gerstenfeld, Louis Charles; Grinstaff, Mark W; Morgan, Elise Feng-I

    2012-01-01

    Formation of a cartilaginous soft callus at the site of a bone fracture is a pivotal stage in the healing process. Noninvasive, or even nondestructive, imaging of soft callus formation can be an important tool in experimental and pre-clinical studies of fracture repair. However, the low X-ray attenuation of cartilage renders the soft callus nearly invisible in radiographs. This study utilized a recently developed, cationic, iodinated contrast agent in conjunction with micro-computed tomography to identify cartilage in fracture calluses in the femora of C57BL/6J and C3H/HeJ mice. Fracture calluses were scanned before and after incubation in the contrast agent. The set of pre-incubation images was registered against and then subtracted from the set of post-incubation images, resulting in a three-dimensional map of the locations of cartilage in the callus, as labeled by the contrast agent. This map was then compared to histology from a previous study. The results showed that the locations where the contrast agent collected in relatively high concentrations were similar to those of the cartilage. The contrast agent also identified a significant difference between the two strains of mice in the percentage of the callus occupied by cartilage, indicating that this method of contrast-enhanced computed tomography may be an effective technique for nondestructive, early evaluation of fracture healing. Copyright © 2011 Wiley Periodicals, Inc.

  17. Computed tomography in the evaluation of soft tissue tumors. Report in 124 cases

    Energy Technology Data Exchange (ETDEWEB)

    Torricelli, P; Calo, M; Boriani, S; De Santis, G

    1986-01-01

    In order to evaluate the role of Computed Tomography (CT) in prediction of nature, staging and follow-up of soft-tessue tumors, the authors examined by CT 124 patients with soft tissue neoplasms who later underwent surgery (116 cases) or fine needle biopsy (8 cases). Comparison between CT and surgical or anatomical results showed that CT was able to correctly predict the benignancy or malignancy of the masses in 76% of cases but it was very seldom able to allow an hystological prediction. On the contrary CT was found to be a very useful tool for pre-therapeutic staging and follow-up of the tumors, because it gave many diagnostic information which influenced therapeutic choiches and strategies. 39 refs.

  18. Soft Electronics Enabled Ergonomic Human-Computer Interaction for Swallowing Training

    Science.gov (United States)

    Lee, Yongkuk; Nicholls, Benjamin; Sup Lee, Dong; Chen, Yanfei; Chun, Youngjae; Siang Ang, Chee; Yeo, Woon-Hong

    2017-04-01

    We introduce a skin-friendly electronic system that enables human-computer interaction (HCI) for swallowing training in dysphagia rehabilitation. For an ergonomic HCI, we utilize a soft, highly compliant (“skin-like”) electrode, which addresses critical issues of an existing rigid and planar electrode combined with a problematic conductive electrolyte and adhesive pad. The skin-like electrode offers a highly conformal, user-comfortable interaction with the skin for long-term wearable, high-fidelity recording of swallowing electromyograms on the chin. Mechanics modeling and experimental quantification captures the ultra-elastic mechanical characteristics of an open mesh microstructured sensor, conjugated with an elastomeric membrane. Systematic in vivo studies investigate the functionality of the soft electronics for HCI-enabled swallowing training, which includes the application of a biofeedback system to detect swallowing behavior. The collection of results demonstrates clinical feasibility of the ergonomic electronics in HCI-driven rehabilitation for patients with swallowing disorders.

  19. Developments in SCC Mitigation by Electrocatalysis

    Science.gov (United States)

    Andresen, Peter L.; Kim, Young J.

    SCC is strongly influenced by water chemistry parameters, especially when crack chemistry can be concentrated from differential aeration or thermal gradients or boiling. Mitigation of the effects of the high corrosion potential associated with oxidants is markedly and efficiently accomplished by electrocatalysis, which requires that there be a stoichiometric excess of reductants over oxidants. Mechanisms and criteria for effective SCC mitigation are summarized, with particular focus on the critical location for the catalyst in a crack and experimental support for these concepts. Optimization of electrocatalysis by OnLine NobleChem- is described, for example where Pt is injected at levels of 0.002 to 0.05 ppb in the reactor water.

  20. A program to compute the soft Robinson-Foulds distance between phylogenetic networks.

    Science.gov (United States)

    Lu, Bingxin; Zhang, Louxin; Leong, Hon Wai

    2017-03-14

    Over the past two decades, phylogenetic networks have been studied to model reticulate evolutionary events. The relationships among phylogenetic networks, phylogenetic trees and clusters serve as the basis for reconstruction and comparison of phylogenetic networks. To understand these relationships, two problems are raised: the tree containment problem, which asks whether a phylogenetic tree is displayed in a phylogenetic network, and the cluster containment problem, which asks whether a cluster is represented at a node in a phylogenetic network. Both the problems are NP-complete. A fast exponential-time algorithm for the cluster containment problem on arbitrary networks is developed and implemented in C. The resulting program is further extended into a computer program for fast computation of the Soft Robinson-Foulds distance between phylogenetic networks. Two computer programs are developed for facilitating reconstruction and validation of phylogenetic network models in evolutionary and comparative genomics. Our simulation tests indicated that they are fast enough for use in practice. Additionally, the distribution of the Soft Robinson-Foulds distance between phylogenetic networks is demonstrated to be unlikely normal by our simulation data.

  1. Image Analysis via Soft Computing: Prototype Applications at NASA KSC and Product Commercialization

    Science.gov (United States)

    Dominguez, Jesus A.; Klinko, Steve

    2011-01-01

    This slide presentation reviews the use of "soft computing" which differs from "hard computing" in that it is more tolerant of imprecision, partial truth, uncertainty, and approximation and its use in image analysis. Soft computing provides flexible information processing to handle real life ambiguous situations and achieve tractability, robustness low solution cost, and a closer resemblance to human decision making. Several systems are or have been developed: Fuzzy Reasoning Edge Detection (FRED), Fuzzy Reasoning Adaptive Thresholding (FRAT), Image enhancement techniques, and visual/pattern recognition. These systems are compared with examples that show the effectiveness of each. NASA applications that are reviewed are: Real-Time (RT) Anomaly Detection, Real-Time (RT) Moving Debris Detection and the Columbia Investigation. The RT anomaly detection reviewed the case of a damaged cable for the emergency egress system. The use of these techniques is further illustrated in the Columbia investigation with the location and detection of Foam debris. There are several applications in commercial usage: image enhancement, human screening and privacy protection, visual inspection, 3D heart visualization, tumor detections and x ray image enhancement.

  2. Computed tomography in soft-tissue lesions of the hand and forearm

    International Nuclear Information System (INIS)

    Schmitt, R.; Warmuth-Metz, M.; Lucas, D.; Feyerabend, T.; Schindler, G.; Lanz, U.

    1990-01-01

    Computed tomography was carried out in 32 patients with clinically equivocal soft-tissue lesions of the hand (24 times) and forearm (8 times). The CT scans were performed with the patients in standard positions; thin slices and zoom technique were used. All soft-tissue tumors were correctly diagnosed with regard to localization, size and infiltration of the surrounding tissue. The histological diagnosis was correct in tendon-sheath proliferations, deposits caused by metabolic disorders, epithelial and ganglion cysts, hemangiomas, lipomas and in one schwannoma. A malignancy was suspected and was proven to be correct in two cases. False-positive diagnoses of a malignant soft-tissue tumor were made in one case of an aggressive fibromatosis, in a rapidly progressive, ossifying myositis, and three times in the presence of postoperative scar tissue following the resection of a sarcoma. Finally, a case of proliferative myositis regarded as semimalignant was underrated by CT. The hand surgeon considered CT diagnostics to be very helpful in planning operations in an anatomically complex organ such as the hand. (orig.) [de

  3. Rough set soft computing cancer classification and network: one stone, two birds.

    Science.gov (United States)

    Zhang, Yue

    2010-07-15

    Gene expression profiling provides tremendous information to help unravel the complexity of cancer. The selection of the most informative genes from huge noise for cancer classification has taken centre stage, along with predicting the function of such identified genes and the construction of direct gene regulatory networks at different system levels with a tuneable parameter. A new study by Wang and Gotoh described a novel Variable Precision Rough Sets-rooted robust soft computing method to successfully address these problems and has yielded some new insights. The significance of this progress and its perspectives will be discussed in this article.

  4. Speed challenge: a case for hardware implementation in soft-computing

    Science.gov (United States)

    Daud, T.; Stoica, A.; Duong, T.; Keymeulen, D.; Zebulum, R.; Thomas, T.; Thakoor, A.

    2000-01-01

    For over a decade, JPL has been actively involved in soft computing research on theory, architecture, applications, and electronics hardware. The driving force in all our research activities, in addition to the potential enabling technology promise, has been creation of a niche that imparts orders of magnitude speed advantage by implementation in parallel processing hardware with algorithms made especially suitable for hardware implementation. We review our work on neural networks, fuzzy logic, and evolvable hardware with selected application examples requiring real time response capabilities.

  5. Live theater on a virtual stage: incorporating soft skills and teamwork in computer graphics education.

    Science.gov (United States)

    Schweppe, M; Geigel, J

    2011-01-01

    Industry has increasingly emphasized the need for "soft" or interpersonal skills development and team-building experience in the college curriculum. Here, we discuss our experiences with providing such opportunities via a collaborative project called the Virtual Theater. In this joint project between the Rochester Institute of Technology's School of Design and Department of Computer Science, the goal is to enable live performance in a virtual space with participants in different physical locales. Students work in teams, collaborating with other students in and out of their disciplines.

  6. A soft-contact model for computing safety margins in human prehension.

    Science.gov (United States)

    Singh, Tarkeshwar; Ambike, Satyajit

    2017-10-01

    The soft human digit tip forms contact with grasped objects over a finite area and applies a moment about an axis normal to the area. These moments are important for ensuring stability during precision grasping. However, the contribution of these moments to grasp stability is rarely investigated in prehension studies. The more popular hard-contact model assumes that the digits exert a force vector but no free moment on the grasped object. Many sensorimotor studies use this model and show that humans estimate friction coefficients to scale the normal force to grasp objects stably, i.e. the smoother the surface, the tighter the grasp. The difference between the applied normal force and the minimal normal force needed to prevent slipping is called safety margin and this index is widely used as a measure of grasp planning. Here, we define and quantify safety margin using a more realistic contact model that allows digits to apply both forces and moments. Specifically, we adapt a soft-contact model from robotics and demonstrate that the safety margin thus computed is a more accurate and robust index of grasp planning than its hard-contact variant. Previously, we have used the soft-contact model to propose two indices of grasp planning that show how humans account for the shape and inertial properties of an object. A soft-contact based safety margin offers complementary insights by quantifying how humans may account for surface properties of the object and skin tissue during grasp planning and execution. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Threshold values characterizing iodine-induced SCC of zircaloys

    International Nuclear Information System (INIS)

    Une, K.

    1984-01-01

    Threshold values of stress, stress intensity factor, strain, strain rate and iodine concentration for SCC of unirradiated and irradiated Zircaloys are reviewed. The ratio of σsub(th)/σsub(y) adequately represents the effects of cold work and irradiation damage on the SCC susceptibility, where threshold stress σsub(th) is defined as the minimum stress to cause SCC to failure after -6 and 10 -3 min -1 . A comparison of SCC data between constant strain rate and constant stress tests is presented in order to examine the validity of a cumulative-damage concept under SCC conditions. (author)

  8. LAFD: TA-3 NISC & SCC Facility Familiarization Tour, OJT #53356

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Victor Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norman, Rich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montoya, Gene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Blumberg, Paul A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCurdy, Patrick B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-24

    Los Alamos National Laboratory (LANL, the Laboratory, or the Lab) conducts familiarization tours for Los Alamos County Fire Department (LAFD) personnel at the Strategic Computing Complex (SCC), TA-03-2327, and the Nonproliferation & International Security Complex (NISC), TA-03-2322. These tours are official LANL business; their purpose is to orient the firefighters to the SCC and the NISC so that they can respond efficiently and quickly to a variety of emergency situations. The tour includes ingress and egress of the buildings, layout and organization of the buildings, evacuation procedures, and areas of concern to emergency responders within these buildings. LAFD firefighters have the training, skills, and abilities to perform these emergency responder tasks; other LANL personnel who have the required clearance level cannot perform these tasks. This handout provides details of the information, along with maps and diagrams, to be presented during the familiarization tours. The report will be distributed to the trainees at the time of the tour. A corresponding checklist will also be used as guidance during the familiarization tours to ensure that all required information is presented to the LAFD personnel.

  9. A Wireless Sensor Network with Soft Computing Localization Techniques for Track Cycling Applications.

    Science.gov (United States)

    Gharghan, Sadik Kamel; Nordin, Rosdiadee; Ismail, Mahamod

    2016-08-06

    In this paper, we propose two soft computing localization techniques for wireless sensor networks (WSNs). The two techniques, Neural Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN), focus on a range-based localization method which relies on the measurement of the received signal strength indicator (RSSI) from the three ZigBee anchor nodes distributed throughout the track cycling field. The soft computing techniques aim to estimate the distance between bicycles moving on the cycle track for outdoor and indoor velodromes. In the first approach the ANFIS was considered, whereas in the second approach the ANN was hybridized individually with three optimization algorithms, namely Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Backtracking Search Algorithm (BSA). The results revealed that the hybrid GSA-ANN outperforms the other methods adopted in this paper in terms of accuracy localization and distance estimation accuracy. The hybrid GSA-ANN achieves a mean absolute distance estimation error of 0.02 m and 0.2 m for outdoor and indoor velodromes, respectively.

  10. Soft Computing Optimizer For Intelligent Control Systems Design: The Structure And Applications

    Directory of Open Access Journals (Sweden)

    Sergey A. Panfilov

    2003-10-01

    Full Text Available Soft Computing Optimizer (SCO as a new software tool for design of robust intelligent control systems is described. It is based on the hybrid methodology of soft computing and stochastic simulation. It uses as an input the measured or simulated data about the modeled system. SCO is used to design an optimal fuzzy inference system, which approximates a random behavior of control object with the certain accuracy. The task of the fuzzy inference system construction is reduced to the subtasks such as forming of the linguistic variables for each input and output variable, creation of rule data base, optimization of rule data base and refinement of the parameters of the membership functions. Each task by the corresponding genetic algorithm (with an appropriate fitness function is solved. The result of SCO application is the design of Knowledge Base of a Fuzzy Controller, which contains the value information about developed fuzzy inference system. Such value information can be downloaded into the actual fuzzy controller to perform online fuzzy control. Simulations results of robust fuzzy control of nonlinear dynamic systems and experimental results of application on automotive semi-active suspension control are demonstrated.

  11. Effects of Soft Drinks on Resting State EEG and Brain-Computer Interface Performance.

    Science.gov (United States)

    Meng, Jianjun; Mundahl, John; Streitz, Taylor; Maile, Kaitlin; Gulachek, Nicholas; He, Jeffrey; He, Bin

    2017-01-01

    Motor imagery-based (MI based) brain-computer interface (BCI) using electroencephalography (EEG) allows users to directly control a computer or external device by modulating and decoding the brain waves. A variety of factors could potentially affect the performance of BCI such as the health status of subjects or the environment. In this study, we investigated the effects of soft drinks and regular coffee on EEG signals under resting state and on the performance of MI based BCI. Twenty-six healthy human subjects participated in three or four BCI sessions with a resting period in each session. During each session, the subjects drank an unlabeled soft drink with either sugar (Caffeine Free Coca-Cola), caffeine (Diet Coke), neither ingredient (Caffeine Free Diet Coke), or a regular coffee if there was a fourth session. The resting state spectral power in each condition was compared; the analysis showed that power in alpha and beta band after caffeine consumption were decreased substantially compared to control and sugar condition. Although the attenuation of powers in the frequency range used for the online BCI control signal was shown, group averaged BCI online performance after consuming caffeine was similar to those of other conditions. This work, for the first time, shows the effect of caffeine, sugar intake on the online BCI performance and resting state brain signal.

  12. Multi-GPU Jacobian accelerated computing for soft-field tomography

    International Nuclear Information System (INIS)

    Borsic, A; Attardo, E A; Halter, R J

    2012-01-01

    Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use finite element models (FEMs) to represent the volume of interest and solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are 3D. Although the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in electrical impedance tomography (EIT) applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15–20 min with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Furthermore, providing high-speed reconstructions is essential for some promising clinical application of EIT. For 3D problems, 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In this work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with the use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of 20 times

  13. Multi-GPU Jacobian accelerated computing for soft-field tomography.

    Science.gov (United States)

    Borsic, A; Attardo, E A; Halter, R J

    2012-10-01

    Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use finite element models (FEMs) to represent the volume of interest and solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are 3D. Although the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in electrical impedance tomography (EIT) applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15-20 min with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Furthermore, providing high-speed reconstructions is essential for some promising clinical application of EIT. For 3D problems, 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In this work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with the use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of 20

  14. Finding-specific display presets for computed radiography soft-copy reading.

    Science.gov (United States)

    Andriole, K P; Gould, R G; Webb, W R

    1999-05-01

    Much work has been done to optimize the display of cross-sectional modality imaging examinations for soft-copy reading (i.e., window/level tissue presets, and format presentations such as tile and stack modes, four-on-one, nine-on-one, etc). Less attention has been paid to the display of digital forms of the conventional projection x-ray. The purpose of this study is to assess the utility of providing presets for computed radiography (CR) soft-copy display, based not on the window/level settings, but on processing applied to the image optimized for visualization of specific findings, pathologies, etc (i.e., pneumothorax, tumor, tube location). It is felt that digital display of CR images based on finding-specific processing presets has the potential to: speed reading of digital projection x-ray examinations on soft copy; improve diagnostic efficacy; standardize display across examination type, clinical scenario, important key findings, and significant negatives; facilitate image comparison; and improve confidence in and acceptance of soft-copy reading. Clinical chest images are acquired using an Agfa-Gevaert (Mortsel, Belgium) ADC 70 CR scanner and Fuji (Stamford, CT) 9000 and AC2 CR scanners. Those demonstrating pertinent findings are transferred over the clinical picture archiving and communications system (PACS) network to a research image processing station (Agfa PS5000), where the optimal image-processing settings per finding, pathologic category, etc, are developed in conjunction with a thoracic radiologist, by manipulating the multiscale image contrast amplification (Agfa MUSICA) algorithm parameters. Soft-copy display of images processed with finding-specific settings are compared with the standard default image presentation for 50 cases of each category. Comparison is scored using a 5-point scale with the positive scale denoting the standard presentation is preferred over the finding-specific processing, the negative scale denoting the finding

  15. On the possibility of non-invasive multilayer temperature estimation using soft-computing methods.

    Science.gov (United States)

    Teixeira, C A; Pereira, W C A; Ruano, A E; Ruano, M Graça

    2010-01-01

    This work reports original results on the possibility of non-invasive temperature estimation (NITE) in a multilayered phantom by applying soft-computing methods. The existence of reliable non-invasive temperature estimator models would improve the security and efficacy of thermal therapies. These points would lead to a broader acceptance of this kind of therapies. Several approaches based on medical imaging technologies were proposed, magnetic resonance imaging (MRI) being appointed as the only one to achieve the acceptable temperature resolutions for hyperthermia purposes. However, MRI intrinsic characteristics (e.g., high instrumentation cost) lead us to use backscattered ultrasound (BSU). Among the different BSU features, temporal echo-shifts have received a major attention. These shifts are due to changes of speed-of-sound and expansion of the medium. The originality of this work involves two aspects: the estimator model itself is original (based on soft-computing methods) and the application to temperature estimation in a three-layer phantom is also not reported in literature. In this work a three-layer (non-homogeneous) phantom was developed. The two external layers were composed of (in % of weight): 86.5% degassed water, 11% glycerin and 2.5% agar-agar. The intermediate layer was obtained by adding graphite powder in the amount of 2% of the water weight to the above composition. The phantom was developed to have attenuation and speed-of-sound similar to in vivo muscle, according to the literature. BSU signals were collected and cumulative temporal echo-shifts computed. These shifts and the past temperature values were then considered as possible estimators inputs. A soft-computing methodology was applied to look for appropriate multilayered temperature estimators. The methodology involves radial-basis functions neural networks (RBFNN) with structure optimized by the multi-objective genetic algorithm (MOGA). In this work 40 operating conditions were

  16. Use of Soft Computing Technologies for a Qualitative and Reliable Engine Control System for Propulsion Systems

    Science.gov (United States)

    Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)

    2001-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by

  17. The potential of soft computing methods in NPP instrumentation and control

    International Nuclear Information System (INIS)

    Hampel, R.; Chaker, N.; Kaestner, W.; Traichel, A.; Wagenknecht, M.; Gocht, U.

    2002-01-01

    The method of signal processing by soft computing include the application of fuzzy logic, synthetic neural networks, and evolutionary algorithms. The article contains an outline of the objectives and results of the application of fuzzy logic and methods of synthetic neural networks in nuclear measurement and control. The special requirements to be met by the software in safety-related areas with respect to reliability, evaluation, and validation are described. Possible uses may be in off-line applications in modeling, simulation, and reliability analysis as well as in on-line applications (real-time systems) for instrumentation and control. Safety-related aspects of signal processing are described and analyzed for the fuzzy logic and synthetic neural network concepts. Application are covered in selected examples. (orig.)

  18. Soft Computing Methods for Microwave and Millimeter-Wave Design Problems

    CERN Document Server

    Chauhan, Narendra; Mittal, Ankush

    2012-01-01

    The growing commercial market of Microwave/ Millimeter wave industry over the past decade has led to the explosion of interests and opportunities for the design and development of microwave components.The design of most microwave components requires the use of commercially available electromagnetic (EM) simulation tools for their analysis. In the design process, the simulations are carried out by varying the design parameters until the desired response is obtained. The optimization of design parameters by manual searching is a cumbersome and time consuming process. Soft computing methods such as Genetic Algorithm (GA), Artificial Neural Network (ANN) and Fuzzy Logic (FL) have been widely used by EM researchers for microwave design since last decade. The aim of these methods is to tolerate imprecision, uncertainty, and approximation to achieve robust and low cost solution in a small time frame.  Modeling and optimization are essential parts and powerful tools for the microwave/millimeter wave design. This boo...

  19. Seismic Response Prediction of Buildings with Base Isolation Using Advanced Soft Computing Approaches

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2017-01-01

    Full Text Available Modeling response of structures under seismic loads is an important factor in Civil Engineering as it crucially affects the design and management of structures, especially for the high-risk areas. In this study, novel applications of advanced soft computing techniques are utilized for predicting the behavior of centrically braced frame (CBF buildings with lead-rubber bearing (LRB isolation system under ground motion effects. These techniques include least square support vector machine (LSSVM, wavelet neural networks (WNN, and adaptive neurofuzzy inference system (ANFIS along with wavelet denoising. The simulation of a 2D frame model and eight ground motions are considered in this study to evaluate the prediction models. The comparison results indicate that the least square support vector machine is superior to other techniques in estimating the behavior of smart structures.

  20. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques

    Science.gov (United States)

    Kisi, Ozgur; Shiri, Jalal

    2012-06-01

    Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.

  1. Image Analysis Based on Soft Computing and Applied on Space Shuttle During the Liftoff Process

    Science.gov (United States)

    Dominquez, Jesus A.; Klinko, Steve J.

    2007-01-01

    Imaging techniques based on Soft Computing (SC) and developed at Kennedy Space Center (KSC) have been implemented on a variety of prototype applications related to the safety operation of the Space Shuttle during the liftoff process. These SC-based prototype applications include detection and tracking of moving Foreign Objects Debris (FOD) during the Space Shuttle liftoff, visual anomaly detection on slidewires used in the emergency egress system for the Space Shuttle at the laJlIlch pad, and visual detection of distant birds approaching the Space Shuttle launch pad. This SC-based image analysis capability developed at KSC was also used to analyze images acquired during the accident of the Space Shuttle Columbia and estimate the trajectory and velocity of the foam that caused the accident.

  2. Enhancing performance of next generation FSO communication systems using soft computing-based predictions.

    Science.gov (United States)

    Kazaura, Kamugisha; Omae, Kazunori; Suzuki, Toshiji; Matsumoto, Mitsuji; Mutafungwa, Edward; Korhonen, Timo O; Murakami, Tadaaki; Takahashi, Koichi; Matsumoto, Hideki; Wakamori, Kazuhiko; Arimoto, Yoshinori

    2006-06-12

    The deterioration and deformation of a free-space optical beam wave-front as it propagates through the atmosphere can reduce the link availability and may introduce burst errors thus degrading the performance of the system. We investigate the suitability of utilizing soft-computing (SC) based tools for improving performance of free-space optical (FSO) communications systems. The SC based tools are used for the prediction of key parameters of a FSO communications system. Measured data collected from an experimental FSO communication system is used as training and testing data for a proposed multi-layer neural network predictor (MNNP) used to predict future parameter values. The predicted parameters are essential for reducing transmission errors by improving the antenna's accuracy of tracking data beams. This is particularly essential for periods considered to be of strong atmospheric turbulence. The parameter values predicted using the proposed tool show acceptable conformity with original measurements.

  3. Prediction of monthly regional groundwater levels through hybrid soft-computing techniques

    Science.gov (United States)

    Chang, Fi-John; Chang, Li-Chiu; Huang, Chien-Wei; Kao, I.-Feng

    2016-10-01

    Groundwater systems are intrinsically heterogeneous with dynamic temporal-spatial patterns, which cause great difficulty in quantifying their complex processes, while reliable predictions of regional groundwater levels are commonly needed for managing water resources to ensure proper service of water demands within a region. In this study, we proposed a novel and flexible soft-computing technique that could effectively extract the complex high-dimensional input-output patterns of basin-wide groundwater-aquifer systems in an adaptive manner. The soft-computing models combined the Self Organized Map (SOM) and the Nonlinear Autoregressive with Exogenous Inputs (NARX) network for predicting monthly regional groundwater levels based on hydrologic forcing data. The SOM could effectively classify the temporal-spatial patterns of regional groundwater levels, the NARX could accurately predict the mean of regional groundwater levels for adjusting the selected SOM, the Kriging was used to interpolate the predictions of the adjusted SOM into finer grids of locations, and consequently the prediction of a monthly regional groundwater level map could be obtained. The Zhuoshui River basin in Taiwan was the study case, and its monthly data sets collected from 203 groundwater stations, 32 rainfall stations and 6 flow stations during 2000 and 2013 were used for modelling purpose. The results demonstrated that the hybrid SOM-NARX model could reliably and suitably predict monthly basin-wide groundwater levels with high correlations (R2 > 0.9 in both training and testing cases). The proposed methodology presents a milestone in modelling regional environmental issues and offers an insightful and promising way to predict monthly basin-wide groundwater levels, which is beneficial to authorities for sustainable water resources management.

  4. APPLICATION OF SOFT COMPUTING TECHNIQUES FOR PREDICTING COOLING TIME REQUIRED DROPPING INITIAL TEMPERATURE OF MASS CONCRETE

    Directory of Open Access Journals (Sweden)

    Santosh Bhattarai

    2017-07-01

    Full Text Available Minimizing the thermal cracks in mass concrete at an early age can be achieved by removing the hydration heat as quickly as possible within initial cooling period before the next lift is placed. Recognizing the time needed to remove hydration heat within initial cooling period helps to take an effective and efficient decision on temperature control plan in advance. Thermal properties of concrete, water cooling parameters and construction parameter are the most influencing factors involved in the process and the relationship between these parameters are non-linear in a pattern, complicated and not understood well. Some attempts had been made to understand and formulate the relationship taking account of thermal properties of concrete and cooling water parameters. Thus, in this study, an effort have been made to formulate the relationship for the same taking account of thermal properties of concrete, water cooling parameters and construction parameter, with the help of two soft computing techniques namely: Genetic programming (GP software “Eureqa” and Artificial Neural Network (ANN. Relationships were developed from the data available from recently constructed high concrete double curvature arch dam. The value of R for the relationship between the predicted and real cooling time from GP and ANN model is 0.8822 and 0.9146 respectively. Relative impact on target parameter due to input parameters was evaluated through sensitivity analysis and the results reveal that, construction parameter influence the target parameter significantly. Furthermore, during the testing phase of proposed models with an independent set of data, the absolute and relative errors were significantly low, which indicates the prediction power of the employed soft computing techniques deemed satisfactory as compared to the measured data.

  5. Assessing the suitability of soft computing approaches for forest fires prediction

    Directory of Open Access Journals (Sweden)

    Samaher Al_Janabi

    2018-07-01

    Full Text Available Forest fires present one of the main causes of environmental hazards that have many negative results in different aspect of life. Therefore, early prediction, fast detection and rapid action are the key elements for controlling such phenomenon and saving lives. Through this work, 517 different entries were selected at different times for montesinho natural park (MNP in Portugal to determine the best predictor that has the ability to detect forest fires, The principle component analysis (PCA was applied to find the critical patterns and particle swarm optimization (PSO technique was used to segment the fire regions (clusters. In the next stage, five soft computing (SC Techniques based on neural network were used in parallel to identify the best technique that would potentially give more accurate and optimum results in predicting of forest fires, these techniques namely; cascade correlation network (CCN, multilayer perceptron neural network (MPNN, polynomial neural network (PNN, radial basis function (RBF and support vector machine (SVM In the final stage, the predictors and their performance were evaluated based on five quality measures including root mean squared error (RMSE, mean squared error (MSE, relative absolute error (RAE, mean absolute error (MAE and information gain (IG. The results indicate that SVM technique was more effective and efficient than the RBF, MPNN, PNN and CCN predictors. The results also show that the SVM algorithm provides more precise predictions compared with other predictors with small estimation error. The obtained results confirm that the SVM improves the prediction accuracy and suitable for forest fires prediction compared to other methods. Keywords: Forest fires, Soft computing, Prediction, Principle component analysis, Particle swarm optimization, Cascade correlation network, Multilayer perceptron neural network, Polynomial neural networks, Radial basis function, Support vector machine

  6. Applications of soft computing in time series forecasting simulation and modeling techniques

    CERN Document Server

    Singh, Pritpal

    2016-01-01

    This book reports on an in-depth study of fuzzy time series (FTS) modeling. It reviews and summarizes previous research work in FTS modeling and also provides a brief introduction to other soft-computing techniques, such as artificial neural networks (ANNs), rough sets (RS) and evolutionary computing (EC), focusing on how these techniques can be integrated into different phases of the FTS modeling approach. In particular, the book describes novel methods resulting from the hybridization of FTS modeling approaches with neural networks and particle swarm optimization. It also demonstrates how a new ANN-based model can be successfully applied in the context of predicting Indian summer monsoon rainfall. Thanks to its easy-to-read style and the clear explanations of the models, the book can be used as a concise yet comprehensive reference guide to fuzzy time series modeling, and will be valuable not only for graduate students, but also for researchers and professionals working for academic, business and governmen...

  7. Eco-SCC: From Theory to Practical Application

    NARCIS (Netherlands)

    Hüsken, G.; Brouwers, H.J.H.; Shui, Z.; Wu, S.; Yu, J.

    2010-01-01

    This paper presents the results of an experimental investigation on the application of self-compacting concrete (SCC) with reduced cement content and fine stone waste materials. Two SCC mixes containing stone waste material were designed for the application in a new formwork system developed for

  8. Using soft-X-ray energy spectrum to measure electronic temperature Te and primary research with computer data processing

    International Nuclear Information System (INIS)

    Wang Jingyao; Zhang Guangyang

    1993-01-01

    The authors reported the application of SCORPIO--2000 Computer detecting system on a nuclear fusion equipment, to measure the energy spectrum of soft X-ray from which the plasma electronic temperature was calculated. The authors processed systematically the data of the energy area of 1-4 Kev soft X-ray. The program edited was mostly made in FORTRAN, but only one SUBSB was made in assembly language. The program worked normally with convincing operation and easy correction of the data. The result obtained from calculation is the same as what was expected and the diagram obtained is the same as the expected one

  9. Maintenance technologies for SCC of PWR

    International Nuclear Information System (INIS)

    Okimura, Koji; Hori, Nobuyuki; Kanzaki, Hiroshi; Tokuhisa, Kiichi; Kamo, Kazuhiko; Kurokawa, Masaaki

    2007-01-01

    The recent technologies of test, relaxation of deterioration, repairing and change of materials are explained for safe and stable operation of pressurized water reactor (PWR). Stress corrosion cracking (SCC) is originated by three factors such as materials, stress and environment. The eddy current test (ECT) method for the stream generator pipe and the ultrasonic test method for welding part of pipe were developed as the test technologies. Primary water stress corrosion cracking (PWSCC) of Inconel 600 in the welding part is explained. The shot peening of instrument in the gas, the water jet peening of it in water, and laser irradiation on the surface are illustrated as some examples of improvement technology of stress. The cladding of Inconel 690 on Inconel 600 is carried out under the condition of environmental cut. Total or some parts of the upper part of reactor, stream generator and structure in the reactor are changed by the improvement technologies. Changing Inconel 600 joint in the exit pipe of reactor with Inconel 690 is illustrated. (S.Y.)

  10. Inference of Cancer-specific Gene Regulatory Networks Using Soft Computing Rules

    Directory of Open Access Journals (Sweden)

    Xiaosheng Wang

    2010-03-01

    Full Text Available Perturbations of gene regulatory networks are essentially responsible for oncogenesis. Therefore, inferring the gene regulatory networks is a key step to overcoming cancer. In this work, we propose a method for inferring directed gene regulatory networks based on soft computing rules, which can identify important cause-effect regulatory relations of gene expression. First, we identify important genes associated with a specific cancer (colon cancer using a supervised learning approach. Next, we reconstruct the gene regulatory networks by inferring the regulatory relations among the identified genes, and their regulated relations by other genes within the genome. We obtain two meaningful findings. One is that upregulated genes are regulated by more genes than downregulated ones, while downregulated genes regulate more genes than upregulated ones. The other one is that tumor suppressors suppress tumor activators and activate other tumor suppressors strongly, while tumor activators activate other tumor activators and suppress tumor suppressors weakly, indicating the robustness of biological systems. These findings provide valuable insights into the pathogenesis of cancer.

  11. Soft computing analysis of the possible correlation between temporal and energy release patterns in seismic activity

    Science.gov (United States)

    Konstantaras, Anthony; Katsifarakis, Emmanouil; Artzouxaltzis, Xristos; Makris, John; Vallianatos, Filippos; Varley, Martin

    2010-05-01

    This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter's scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc', IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and

  12. Soft Computing Technique and Conventional Controller for Conical Tank Level Control

    Directory of Open Access Journals (Sweden)

    Sudharsana Vijayan

    2016-03-01

    Full Text Available In many process industries the control of liquid level is mandatory. But the control of nonlinear process is difficult. Many process industries use conical tanks because of its non linear shape contributes better drainage for solid mixtures, slurries and viscous liquids. So, control of conical tank level is a challenging task due to its non-linearity and continually varying cross-section. This is due to relationship between controlled variable level and manipulated variable flow rate, which has a square root relationship. The main objective is to execute the suitable controller for conical tank system to maintain the desired level. System identification of the non-linear process is done using black box modelling and found to be first order plus dead time (FOPDT model. In this paper it is proposed to obtain the mathematical modelling of a conical tank system and to study the system using block diagram after that soft computing technique like fuzzy and conventional controller is also used for the comparison.

  13. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network.

    Science.gov (United States)

    Falat, Lukas; Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  14. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    Directory of Open Access Journals (Sweden)

    Lukas Falat

    2016-01-01

    Full Text Available This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  15. Temperature-based estimation of global solar radiation using soft computing methodologies

    Science.gov (United States)

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Danesh, Amir Seyed; Abdullah, Mohd Shahidan; Zamani, Mazdak

    2016-07-01

    Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures ( T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T max- T min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.

  16. Wind turbine power coefficient estimation by soft computing methodologies: Comparative study

    International Nuclear Information System (INIS)

    Shamshirband, Shahaboddin; Petković, Dalibor; Saboohi, Hadi; Anuar, Nor Badrul; Inayat, Irum; Akib, Shatirah; Ćojbašić, Žarko; Nikolić, Vlastimir; Mat Kiah, Miss Laiha; Gani, Abdullah

    2014-01-01

    Highlights: • Variable speed operation of wind turbine to increase power generation. • Changeability and fluctuation of wind has to be accounted. • To build an effective prediction model of wind turbine power coefficient. • The impact of the variation in the blade pitch angle and tip speed ratio. • Support vector regression methodology application as predictive methodology. - Abstract: Wind energy has become a large contender of traditional fossil fuel energy, particularly with the successful operation of multi-megawatt sized wind turbines. However, reasonable wind speed is not adequately sustainable everywhere to build an economical wind farm. In wind energy conversion systems, one of the operational problems is the changeability and fluctuation of wind. In most cases, wind speed can vacillate rapidly. Hence, quality of produced energy becomes an important problem in wind energy conversion plants. Several control techniques have been applied to improve the quality of power generated from wind turbines. In this study, the polynomial and radial basis function (RBF) are applied as the kernel function of support vector regression (SVR) to estimate optimal power coefficient value of the wind turbines. Instead of minimizing the observed training error, SVR p oly and SVR r bf attempt to minimize the generalization error bound so as to achieve generalized performance. The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the SVR approach in compare to other soft computing methodologies

  17. An appraisal of wind speed distribution prediction by soft computing methodologies: A comparative study

    International Nuclear Information System (INIS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Anuar, Nor Badrul; Saboohi, Hadi; Abdul Wahab, Ainuddin Wahid; Protić, Milan; Zalnezhad, Erfan; Mirhashemi, Seyed Mohammad Amin

    2014-01-01

    Highlights: • Probabilistic distribution functions of wind speed. • Two parameter Weibull probability distribution. • To build an effective prediction model of distribution of wind speed. • Support vector regression application as probability function for wind speed. - Abstract: The probabilistic distribution of wind speed is among the more significant wind characteristics in examining wind energy potential and the performance of wind energy conversion systems. When the wind speed probability distribution is known, the wind energy distribution can be easily obtained. Therefore, the probability distribution of wind speed is a very important piece of information required in assessing wind energy potential. For this reason, a large number of studies have been established concerning the use of a variety of probability density functions to describe wind speed frequency distributions. Although the two-parameter Weibull distribution comprises a widely used and accepted method, solving the function is very challenging. In this study, the polynomial and radial basis functions (RBF) are applied as the kernel function of support vector regression (SVR) to estimate two parameters of the Weibull distribution function according to previously established analytical methods. Rather than minimizing the observed training error, SVR p oly and SVR r bf attempt to minimize the generalization error bound, so as to achieve generalized performance. According to the experimental results, enhanced predictive accuracy and capability of generalization can be achieved using the SVR approach compared to other soft computing methodologies

  18. A Soft Computing Based Approach Using Modified Selection Strategy for Feature Reduction of Medical Systems

    Directory of Open Access Journals (Sweden)

    Kursat Zuhtuogullari

    2013-01-01

    Full Text Available The systems consisting high input spaces require high processing times and memory usage. Most of the attribute selection algorithms have the problems of input dimensions limits and information storage problems. These problems are eliminated by means of developed feature reduction software using new modified selection mechanism with middle region solution candidates adding. The hybrid system software is constructed for reducing the input attributes of the systems with large number of input variables. The designed software also supports the roulette wheel selection mechanism. Linear order crossover is used as the recombination operator. In the genetic algorithm based soft computing methods, locking to the local solutions is also a problem which is eliminated by using developed software. Faster and effective results are obtained in the test procedures. Twelve input variables of the urological system have been reduced to the reducts (reduced input attributes with seven, six, and five elements. It can be seen from the obtained results that the developed software with modified selection has the advantages in the fields of memory allocation, execution time, classification accuracy, sensitivity, and specificity values when compared with the other reduction algorithms by using the urological test data.

  19. COOBBO: A Novel Opposition-Based Soft Computing Algorithm for TSP Problems

    Directory of Open Access Journals (Sweden)

    Qingzheng Xu

    2014-12-01

    Full Text Available In this paper, we propose a novel definition of opposite path. Its core feature is that the sequence of candidate paths and the distances between adjacent nodes in the tour are considered simultaneously. In a sense, the candidate path and its corresponding opposite path have the same (or similar at least distance to the optimal path in the current population. Based on an accepted framework for employing opposition-based learning, Oppositional Biogeography-Based Optimization using the Current Optimum, called COOBBO algorithm, is introduced to solve traveling salesman problems. We demonstrate its performance on eight benchmark problems and compare it with other optimization algorithms. Simulation results illustrate that the excellent performance of our proposed algorithm is attributed to the distinct definition of opposite path. In addition, its great strength lies in exploitation for enhancing the solution accuracy, not exploration for improving the population diversity. Finally, by comparing different version of COOBBO, another conclusion is that each successful opposition-based soft computing algorithm needs to adjust and remain a good balance between backward adjacent node and forward adjacent node.

  20. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    Science.gov (United States)

    Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450

  1. Inference of cancer-specific gene regulatory networks using soft computing rules.

    Science.gov (United States)

    Wang, Xiaosheng; Gotoh, Osamu

    2010-03-24

    Perturbations of gene regulatory networks are essentially responsible for oncogenesis. Therefore, inferring the gene regulatory networks is a key step to overcoming cancer. In this work, we propose a method for inferring directed gene regulatory networks based on soft computing rules, which can identify important cause-effect regulatory relations of gene expression. First, we identify important genes associated with a specific cancer (colon cancer) using a supervised learning approach. Next, we reconstruct the gene regulatory networks by inferring the regulatory relations among the identified genes, and their regulated relations by other genes within the genome. We obtain two meaningful findings. One is that upregulated genes are regulated by more genes than downregulated ones, while downregulated genes regulate more genes than upregulated ones. The other one is that tumor suppressors suppress tumor activators and activate other tumor suppressors strongly, while tumor activators activate other tumor activators and suppress tumor suppressors weakly, indicating the robustness of biological systems. These findings provide valuable insights into the pathogenesis of cancer.

  2. Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2001-01-01

    This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  3. Development of Semi-Automatic Lathe by using Intelligent Soft Computing Technique

    Science.gov (United States)

    Sakthi, S.; Niresh, J.; Vignesh, K.; Anand Raj, G.

    2018-03-01

    This paper discusses the enhancement of conventional lathe machine to semi-automated lathe machine by implementing a soft computing method. In the present scenario, lathe machine plays a vital role in the engineering division of manufacturing industry. While the manual lathe machines are economical, the accuracy and efficiency are not up to the mark. On the other hand, CNC machine provide the desired accuracy and efficiency, but requires a huge capital. In order to over come this situation, a semi-automated approach towards the conventional lathe machine is developed by employing stepper motors to the horizontal and vertical drive, that can be controlled by Arduino UNO -microcontroller. Based on the input parameters of the lathe operation the arduino coding is been generated and transferred to the UNO board. Thus upgrading from manual to semi-automatic lathe machines can significantly increase the accuracy and efficiency while, at the same time, keeping a check on investment cost and consequently provide a much needed escalation to the manufacturing industry.

  4. A soft computing based approach using modified selection strategy for feature reduction of medical systems.

    Science.gov (United States)

    Zuhtuogullari, Kursat; Allahverdi, Novruz; Arikan, Nihat

    2013-01-01

    The systems consisting high input spaces require high processing times and memory usage. Most of the attribute selection algorithms have the problems of input dimensions limits and information storage problems. These problems are eliminated by means of developed feature reduction software using new modified selection mechanism with middle region solution candidates adding. The hybrid system software is constructed for reducing the input attributes of the systems with large number of input variables. The designed software also supports the roulette wheel selection mechanism. Linear order crossover is used as the recombination operator. In the genetic algorithm based soft computing methods, locking to the local solutions is also a problem which is eliminated by using developed software. Faster and effective results are obtained in the test procedures. Twelve input variables of the urological system have been reduced to the reducts (reduced input attributes) with seven, six, and five elements. It can be seen from the obtained results that the developed software with modified selection has the advantages in the fields of memory allocation, execution time, classification accuracy, sensitivity, and specificity values when compared with the other reduction algorithms by using the urological test data.

  5. Soft computing approach for reliability optimization: State-of-the-art survey

    International Nuclear Information System (INIS)

    Gen, Mitsuo; Yun, Young Su

    2006-01-01

    In the broadest sense, reliability is a measure of performance of systems. As systems have grown more complex, the consequences of their unreliable behavior have become severe in terms of cost, effort, lives, etc., and the interest in assessing system reliability and the need for improving the reliability of products and systems have become very important. Most solution methods for reliability optimization assume that systems have redundancy components in series and/or parallel systems and alternative designs are available. Reliability optimization problems concentrate on optimal allocation of redundancy components and optimal selection of alternative designs to meet system requirement. In the past two decades, numerous reliability optimization techniques have been proposed. Generally, these techniques can be classified as linear programming, dynamic programming, integer programming, geometric programming, heuristic method, Lagrangean multiplier method and so on. A Genetic Algorithm (GA), as a soft computing approach, is a powerful tool for solving various reliability optimization problems. In this paper, we briefly survey GA-based approach for various reliability optimization problems, such as reliability optimization of redundant system, reliability optimization with alternative design, reliability optimization with time-dependent reliability, reliability optimization with interval coefficients, bicriteria reliability optimization, and reliability optimization with fuzzy goals. We also introduce the hybrid approaches for combining GA with fuzzy logic, neural network and other conventional search techniques. Finally, we have some experiments with an example of various reliability optimization problems using hybrid GA approach

  6. Risk assessment through drinking water pathway via uncertainty modeling of contaminant transport using soft computing

    International Nuclear Information System (INIS)

    Datta, D.; Ranade, A.K.; Pandey, M.; Sathyabama, N.; Kumar, Brij

    2012-01-01

    The basic objective of an environmental impact assessment (EIA) is to build guidelines to reduce the associated risk or mitigate the consequences of the reactor accident at its source to prevent deterministic health effects, to reduce the risk of stochastic health effects (eg. cancer and severe hereditary effects) as much as reasonable achievable by implementing protective actions in accordance with IAEA guidance (IAEA Safety Series No. 115, 1996). The measure of exposure being the basic tool to take any appropriate decisions related to risk reduction, EIA is traditionally expressed in terms of radiation exposure to the member of the public. However, models used to estimate the exposure received by the member of the public are governed by parameters some of which are deterministic with relative uncertainty and some of which are stochastic as well as imprecise (insufficient knowledge). In an admixture environment of this type, it is essential to assess the uncertainty of a model to estimate the bounds of the exposure to the public to invoke a decision during an event of nuclear or radiological emergency. With a view to this soft computing technique such as evidence theory based assessment of model parameters is addressed to compute the risk or exposure to the member of the public. The possible pathway of exposure to the member of the public in the aquatic food stream is the drinking of water. Accordingly, this paper presents the uncertainty analysis of exposure via uncertainty analysis of the contaminated water. Evidence theory finally addresses the uncertainty in terms of lower bound as belief measure and upper bound of exposure as plausibility measure. In this work EIA is presented using evidence theory. Data fusion technique is used to aggregate the knowledge on the uncertain information. Uncertainty of concentration and exposure is expressed as an interval of belief, plausibility

  7. Accuracy and reliability of facial soft tissue depth measurements using cone beam computer tomography

    NARCIS (Netherlands)

    Fourie, Zacharias; Damstra, Janalt; Gerrits, Pieter; Ren, Yijin

    2010-01-01

    It is important to have accurate and reliable measurements of soft tissue thickness for specific landmarks of the face and scalp when producing a facial reconstruction. In the past several methods have been created to measure facial soft tissue thickness (FSTT) in cadavers and in the living. The

  8. Investigation on potential SCC in gas transmission pipeline in China

    Energy Technology Data Exchange (ETDEWEB)

    Jian, S. [Petroleum Univ., Beijing (China); Zupei, Y.; Yunxin, M. [China Petroleum Pipeline Corp., Beijing (China). Science and Technology Center

    2004-07-01

    Stress corrosion cracking (SCC) is a common phenomenon that occurs on the outer surfaces of buried pipelines. This paper investigated aspects of SCC on 3 transmission pipelines on the West-East Gas Pipeline Project in China. The study was comprised of 3 different investigations: (1) an investigation of SCC cases on constructed pipelines; (2) an evaluation of SCC sensitivity of pipeline steels in typical soil environments; and (3) an analysis of soil environments and operation conditions of western pipelines. The study included a review of pipeline corrosion investigations, as well as an examination of pipeline failure cases. Investigative digs were conducted at 21 sites to test soil chemistries. Slow strain rate stress were conducted to evaluate SCC sensitivity of steel pipelines used in China. Potentiodynamic polarization tests were conducted to characterize the electrochemical behaviour of the X70 line pipe steel in different soil environments. Results of the study showed that the environmental conditions in many locations in China contributed to SCC in pipelines. SCC was observed on the surface of X70 steel pipe specimens in both marsh and saline environments. Seasonal temperature changes also contributed additional stress on pipelines. The movement of soil bodies in mountainous areas also contributed to stress and coating damage. It was concluded that proper cathodic protection can alleviate concentrations of local solutions under disbanded coatings. Overprotection of SCC will accelerate the growth of cracks and the degradation of coatings. Samples gathered from the solutions found under the disbanded coatings of pipelines will be used to form part of a reference database for predicting SCC in oil and gas pipelines in the future. 2 refs., 4 tabs., 5 figs.

  9. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    Directory of Open Access Journals (Sweden)

    J. Bhardwaj

    2018-02-01

    Full Text Available New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.

  10. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    Science.gov (United States)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv

    2018-02-01

    New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.

  11. Evaluation of the Frequencies for Canister Inspections for SCC

    Energy Technology Data Exchange (ETDEWEB)

    Stockman, Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-02

    This report fulfills the M3 milestone M3FT-15SN0802042, “Evaluate the Frequencies for Canister Inspections for SCC” under Work Package FT-15SN080204, “ST Field Demonstration Support – SNL”. It reviews the current state of knowledge on the potential for stress corrosion cracking (SCC) of dry storage canisters and evaluates the implications of this state of knowledge on the establishment of an SCC inspection frequency. Models for the prediction of SCC by the Japanese Central Research Institute of Electric Power Industry (CRIEPI), the United States (U.S.) Electric Power Research Institute (EPRI), and Sandia National Laboratories (SNL) are summarized, and their limitations discussed.

  12. Automatic Generation of Agents using Reusable Soft Computing Code Libraries to develop Multi Agent System for Healthcare

    OpenAIRE

    Priti Srinivas Sajja

    2015-01-01

    This paper illustrates architecture for a multi agent system in healthcare domain. The architecture is generic and designed in form of multiple layers. One of the layers of the architecture contains many proactive, co-operative and intelligent agents such as resource management agent, query agent, pattern detection agent and patient management agent. Another layer of the architecture is a collection of libraries to auto-generate code for agents using soft computing techni...

  13. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    International Nuclear Information System (INIS)

    Morrow, Natalya V.; Lawton, Colleen A.; Qi, X. Sharon; Li, X. Allen

    2012-01-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  14. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Natalya V.; Lawton, Colleen A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Qi, X. Sharon [Department of Radiation Oncology, University of Colorado Denver, Denver, Colorado (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2012-04-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  15. Soft-computing base analyses of the relationship between annoyance and coping with noise and odor.

    Science.gov (United States)

    Botteldooren, Dick; Lercher, Peter

    2004-06-01

    The majority of research on annoyance as an important impact of noise, odor, and other stressors on man, has regarded the person as a passive receptor. It was however recognized that this person is an active participant trying to alter a troubled person-environment relationship or to sustain a desirable one. Coping has to be incorporated. This is of particular importance in changing exposure situations. For large populations a lot of insight can be gained by looking at average effects only. To investigate changes in annoyance and effects of coping, the individual or small group has to be studied. Then it becomes imperative to recognize the inherent vagueness in perception and human behavior. Fortunately, tools have been developed over the past decades that allow doing this in a mathematically precise way. These tools are sometimes referred to by the common label: soft-computing, hence the title of this paper. This work revealed different styles of coping both by blind clustering and by (fuzzy) logical aggregation of different actions reported in a survey. The relationship between annoyance and the intensity of coping it generates was quantified after it was recognized that the possibility for coping is created by the presence of the stressor rather than the actual fact of coping. It was further proven that refinement of this relationship is possible if a person can be identified as a coper. This personal factor can be extracted from a known reaction to one stressor and be used for predicting coping intensity and style in another situation. The effect of coping on a perceived change in annoyance is quantified by a set of fuzzy linguistic rules. This closes the loop that is responsible for at least some of the dynamics of the response to a stressor. This work thus provides all essential building blocks for designing models for annoyance in changing environments.

  16. Glass fiber effect on mechanical properties of Eco-SCC

    Science.gov (United States)

    Prasad M. L., V.; Loksesh, G.; Ramanjaneyulu, B.; Venkatesh, S.; Mousumi, K.

    2017-07-01

    Sustainable Construction encouraging the use of recycled materials and implies adoption of fewer natural resources in buildings and other infrastructure. In this paper Quarry Dust (QD) is used as partial replacement for River Sand (RS) to make Self Compacting Concrete (SCC) of grade M40. Glass fiber is used as strengthening material to the developed concrete. The present study mainly focused to develop Eco-SCC using QD. In this study it was found that, for developing Eco-SCC, what is the optimum dosage of replacement of QD in RS. Fresh properties of SCC are satisfying the EFNARC specifications and also target strength is achieved. Further it is concluded that, with the glass fiber addition there is an improvement in the split and flexural strength values.

  17. Characteristics of SCC with Fly Ash and Manufactured Sand

    Science.gov (United States)

    Praveen Kumar, K.; Radhakrishna

    2016-09-01

    Self compacting concrete (SCC) of M40 grade was designed. The binder in SCC consists of OPC and fly ash in the ratio of 65:35. River sand was replaced by manufactured sand (M-sand) at replacement levels of 20,40,60,80 and 100%. An attempt was made to evaluate the workability and strength characteristics of self compacting concrete with river sand and manufactured sand as fine aggregates. For each replacement level, constant workability was maintained by varying the dosage of superplasticizer. T50 flow time, V Funnel time, V-funnel T5 time as well as compressive, split tensile and flexural strength of SCC were found at each replacement level of M-sand. They were compared to SCC with river sand. Results indicate favourable use of M-sand in preparation of Self Compacting Concrete.

  18. An assessment on the use of bivariate, multivariate and soft computing techniques for collapse susceptibility in GIS environ

    Science.gov (United States)

    Yilmaz, Işik; Marschalko, Marian; Bednarik, Martin

    2013-04-01

    The paper presented herein compares and discusses the use of bivariate, multivariate and soft computing techniques for collapse susceptibility modelling. Conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) models representing the bivariate, multivariate and soft computing techniques were used in GIS based collapse susceptibility mapping in an area from Sivas basin (Turkey). Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index (TWI), stream power index (SPI), Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from the models, and they were then compared by means of their validations. However, Area Under Curve (AUC) values obtained from all three models showed that the map obtained from soft computing (ANN) model looks like more accurate than the other models, accuracies of all three models can be evaluated relatively similar. The results also showed that the conditional probability is an essential method in preparation of collapse susceptibility map and highly compatible with GIS operating features.

  19. Modeling of Groundwater Resources Heavy Metals Concentration Using Soft Computing Methods: Application of Different Types of Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Meysam Alizamir

    2017-09-01

    Full Text Available Nowadays, groundwater resources play a vital role as a source of drinking water in arid and semiarid regions and forecasting of pollutants content in these resources is very important. Therefore, this study aimed to compare two soft computing methods for modeling Cd, Pb and Zn concentration in groundwater resources of Asadabad Plain, Western Iran. The relative accuracy of several soft computing models, namely multi-layer perceptron (MLP and radial basis function (RBF for forecasting of heavy metals concentration have been investigated. In addition, Levenberg-Marquardt, gradient descent and conjugate gradient training algorithms were utilized for the MLP models. The ANN models for this study were developed using MATLAB R 2014 Software program. The MLP performs better than the other models for heavy metals concentration estimation. The simulation results revealed that MLP model was able to model heavy metals concentration in groundwater resources favorably. It generally is effectively utilized in environmental applications and in the water quality estimations. In addition, out of three algorithms, Levenberg-Marquardt was better than the others were. This study proposed soft computing modeling techniques for the prediction and estimation of heavy metals concentration in groundwater resources of Asadabad Plain. Based on collected data from the plain, MLP and RBF models were developed for each heavy metal. MLP can be utilized effectively in applications of prediction of heavy metals concentration in groundwater resources of Asadabad Plain.

  20. Monitoring asthma control in children with allergies by soft computing of lung function and exhaled nitric oxide.

    Science.gov (United States)

    Pifferi, Massimo; Bush, Andrew; Pioggia, Giovanni; Di Cicco, Maria; Chinellato, Iolanda; Bodini, Alessandro; Macchia, Pierantonio; Boner, Attilio L

    2011-02-01

    Asthma control is emphasized by new guidelines but remains poor in many children. Evaluation of control relies on subjective patient recall and may be overestimated by health-care professionals. This study assessed the value of spirometry and fractional exhaled nitric oxide (FeNO) measurements, used alone or in combination, in models developed by a machine learning approach in the objective classification of asthma control according to Global Initiative for Asthma guidelines and tested the model in a second group of children with asthma. Fifty-three children with persistent atopic asthma underwent two to six evaluations of asthma control, including spirometry and FeNO. Soft computing evaluation was performed by means of artificial neural networks and principal component analysis. The model was then tested in a cross-sectional study in an additional 77 children with allergic asthma. The machine learning method was not able to distinguish different levels of control using either spirometry or FeNO values alone. However, their use in combination modeled by soft computing was able to discriminate levels of asthma control. In particular, the model is able to recognize all children with uncontrolled asthma and correctly identify 99.0% of children with totally controlled asthma. In the cross-sectional study, the model prospectively identified correctly all the uncontrolled children and 79.6% of the controlled children. Soft computing analysis of spirometry and FeNO allows objective categorization of asthma control status.

  1. Effects of temperature on SCC propagation in high temperature water injected with hydrogen peroxide

    International Nuclear Information System (INIS)

    Nakano, Junichi; Sato, Tomonori; Kato, Chiaki; Yoshiyuki, Kaji; Yamamoto, Masahiro; Tsukada, Takashi

    2012-09-01

    film were performed on the fracture surface. In addition, to estimate the environmental situation in crack by prediction of oxide formation, a thermal equilibrium calculation was performed using a computer code for simulating aqueous-based chemical systems. Tensile tests were also carried out at 453 and 561 K in air to evaluate an effect of temperature on mechanical properties. Conclusions obtained in this study are summarized as follows; (1) Specimen exposed to 100 ppb H 2 O 2 at 453 K and 8 ppm O 2 at 561 K showed a steady SCC propagation behaviour. In 100 ppb H 2 O 2 at 561 K, however, an intergranular type SCC (IGSCC) was observed only small portion of area near the side groove of specimen. Effects of H 2 O 2 on SCC growth behaviour appeared stronger at lower temperature due to a reduction of the thermal decomposition of H 2 O 2 . (2) In 100 ppb H 2 O 2 at 453 K and 8 ppm O 2 at 561 K, a single phase oxide of Fe 3 O 4 was observed near the crack tip. In 100 ppb H 2 O 2 at 561 K, however, mixture of NiFe 2 O 4 , Fe 3 O 4 and Fe 2 O 3 was distributed on the surface of side groove and the crack mouth. When SCC propagated steadily, Fe 3 O 4 was produced near the crack tip. (3) Thermal equilibrium calculation for oxide formation at 561 and 453 K showed that a domain of stable Fe 2 O 3 spreads toward high pH region with decreasing in temperature which seemed to be due to production of Fe 3+ and OH - by thermal decomposition of H 2 O 2 . (authors)

  2. SCC susceptibility evaluation of plastic deformed austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshima, Yoshiari; Totsuka, Nobuo; Arioka, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    Slow strain rate temperature (SSRT) tests were carried out to evaluate the SCC susceptibility of deformed SUS316 stainless steel in simulated primary water of pressurized water reactor (PWR). The influence of material hardness and temperature on SCC susceptibility was studied. From these tests following results were obtained. (1) Both of the total SCC and IGSCC susceptibilities increased as the hardness of deformed specimens increased. Especially over 250{approx}300HV area, this tendency remarkably increased. (2) The reduction ratio showed a plateau under 300HV area. However, over 300HV area, it decreased remarkably as the hardness increased, that is, the SCC susceptibility remarkably increased. (3) Based on the SSRT test results conducted at 320, 340 and 360degC, the total SCC susceptibility dependence on temperature was small and the IGSCC susceptibility was dependent on the temperature. From these results, the TGSCC susceptibility dependence on temperature was also small. The activation energy of total SCC and IGSCC susceptibility were calculated. (author)

  3. Computed tomography of the soft tissues of the shoulder. Pt. 3. Calcifying tendinitis of the rotator cuff

    Energy Technology Data Exchange (ETDEWEB)

    Dihlmann, W.; Bandick, J.

    1988-01-01

    Computed tomography of the soft tissue of the shoulder in cases of calcifying tendinitis of the rotator cuff provides the following information: 1. Localisation of the calcium deposits within the rotator cuff. 2. Contours and density of the calcium deposits correlated with the clinical findings as described by Uhthoff et al. Ill-defined contours and non-homogeneous deposits are associated with more severe clinical features. 3. Computed tomography shows that apatite particles, which are not visible radiologically, may penetrate into the shoulder joint and produce synovitis with an effusion. This is of importance in local therapy.

  4. A New Screening Methodology for Improved Oil Recovery Processes Using Soft-Computing Techniques

    Science.gov (United States)

    Parada, Claudia; Ertekin, Turgay

    2010-05-01

    able to recognize the strong correlation between the displacement mechanism and the reservoir characteristics as they effectively forecast hydrocarbon production for different types of reservoir undergoing diverse recovery processes. The artificial neuron networks are able to capture the similarities between different displacement mechanisms as same network architecture is successfully applied in both CO2 and N2 injection. The neuro-simulation application tool is built within a graphical user interface to facilitate the display of the results. The developed soft-computing tool offers an innovative approach to design a variety of efficient and feasible IOR processes by using artificial intelligence. The tool provides appropriate guidelines to the reservoir engineer, it facilitates the appraisal of diverse field development strategies for oil reservoirs, and it helps to reduce the number of scenarios evaluated with conventional reservoir simulation.

  5. Description of EMX computer code. System for measuring soft X rays

    International Nuclear Information System (INIS)

    Marty, D.A.; Smeulders, P.; Launois, D.

    1978-07-01

    After briefly describing the system for measuring soft X rays implanted in TFR 600, the objectives and principles of the E.M.X calculation programme are presented. This model is divided into two distinct parts. The ultimate aim of EMX 1, the first part, is to build the soft X ray photo of a plasma with varied characteristics, seen through a certain collimation system (in this case a slit). That of EMX 2, the second part, is to filter the previously built soft X ray photo, by means of the system of absorbents belonging to the measuring system and to calculate the currents generated by each detector aimed at a plasma chord. The first calculation results are commented and discussed [fr

  6. Metazoan Scc4 homologs link sister chromatid cohesion to cell and axon migration guidance

    NARCIS (Netherlands)

    V.C. Seitan (Vlad); P.A. Banks (Peter); S. Laval (Steve); N.A. Majid (Nazia); D. Dorsett (Dale); A. Rana (Amer); J. Smith (Jeremy); A. Bateman (Alex); S. Krpic (Sanja); A. Hostert (Arnd); S.M. Rollins; H. Erdjument-Bromage (Hediye); P. Tempst (Paul); C.Y. Benard (Claire); S. Hekimi (Siegfried); S.F. Newbury (Sarah); T. Strachan (Tom)

    2006-01-01

    textabstractSaccharomyces cerevisiae Scc2 binds Scc4 to form an essential complex that loads cohesin onto chromosomes. The prevalence of Scc2 orthologs in eukaryotes emphasizes a conserved role in regulating sister chromatid cohesion, but homologs of Scc4 have not hitherto been identified outside

  7. Evaluating the SCC resistance of underwater welds in sodium tetrathionate

    International Nuclear Information System (INIS)

    White, R.A.; Angeliu, T.M.

    1997-01-01

    The susceptibility of welds to stress corrosion cracking (SCC) is enhanced by the surface residual tensile stresses generated by the typical welding process. However, underwater plasma transferred arc (PTA) welding has been shown to produce compressive surface residual stresses, an encouraging result if repairs of cracked boiling water reactor (BWR) components are to be made without further endangering them to SCC. This program was designed to verify that underwater PTA welds are resistant to SCC and to determine if underwater PTA welding could mitigate SCC in potentially susceptible welds. This was achieved by exposing various welds on solution annealed (SA) and SA + thermally sensitized 304 stainless steel at 25 C in a solution of 1.5 gm/liter of sodium sulfide added to 0.05M sodium tetrathionate, titrated to a pH of 1.25 with H 2 SO 4 . The autogeneous welds were produced using gas tungsten arc (GTA) and plasma transferred arc (PTA) welding under atmospheric conditions, and PTA welding underwater. After 1 hour of sodium tetrathionate exposure, GTA and air PTA welds exhibited SCC while the underwater PTA weld heat affected zones were more resistant. Underwater PTA welds bisecting a GTA weld eliminated the cracking in the GTA weld heat affected zone under certain conditions. The lack of IG cracking in the region influenced by the underwater PTA weld is consistent with the measurement of compressive surface residual stresses inherent to the underwater welding process

  8. SCC with high volume of fly ash content

    Directory of Open Access Journals (Sweden)

    Bakhrakh Anton

    2017-01-01

    Full Text Available Self-compacting concrete is a very perspective building material. It provides great benefits during the construction of heavily reinforced buildings. SCC has outstanding properties such as high flowability, dense structure and high strength due to specific quality of aggregates, fillers, their proportion in mix, use of polycarboxylate-based superplasticizers. Main disadvantages of SCC are high price and the difficulty of obtaining a proper mix. Use of fillers, such as fly ash type F, is a way to make SCC cheaper by replacing part of cement. Fly ash also provides some technological and operating advantages. In this paper the influence of high volume (60% from cement fly ash type F on the properties of concrete mixture and hardened concrete is investigated. The result of the work shows the possibility of reduction the cost of SCC using ordinary fillers and high amount of fly ash. The investigated SCC has low speed of hardening (7-day compressive strength at the range of 41.8 MPa and high volume of entrained air content (3.5%.

  9. Threshold values characterizing iodine-induced SCC of zircaloys

    International Nuclear Information System (INIS)

    Une, K.

    1981-01-01

    In this paper, threshold values of stress, stress intensity factor, strain, strain rate and iodine concentration for SCC of unirradiated and irradiated Zircaloys are reviewed. The ratio of σ sub(th)/σ sub(y) adequately represents the effects of cold-work and irradiation on the SCC susceptibility, where threshold stress σ sub(th) is defined as the minimum stress to cause SCC to failure after 10-20 hours and σ sub(y), the yield stress obtained in an inert atmosphere. The ratio becomes gradually smaller with larger σ sub(y) and is less than 1 for materials with yield strengths above about 350MPa. Plastic strain appears to be necessary for SCC; plastic strains to failure range from 0.1 to 1% for high strength materials, even when data for irradiated materials are included. Strain rate significantly affects the susceptibility. A comparison of SCC data between constant strain rate and constant stress tests is presented. (author)

  10. SoftWAXS: a computational tool for modeling wide-angle X-ray solution scattering from biomolecules.

    Science.gov (United States)

    Bardhan, Jaydeep; Park, Sanghyun; Makowski, Lee

    2009-10-01

    This paper describes a computational approach to estimating wide-angle X-ray solution scattering (WAXS) from proteins, which has been implemented in a computer program called SoftWAXS. The accuracy and efficiency of SoftWAXS are analyzed for analytically solvable model problems as well as for proteins. Key features of the approach include a numerical procedure for performing the required spherical averaging and explicit representation of the solute-solvent boundary and the surface of the hydration layer. These features allow the Fourier transform of the excluded volume and hydration layer to be computed directly and with high accuracy. This approach will allow future investigation of different treatments of the electron density in the hydration shell. Numerical results illustrate the differences between this approach to modeling the excluded volume and a widely used model that treats the excluded-volume function as a sum of Gaussians representing the individual atomic excluded volumes. Comparison of the results obtained here with those from explicit-solvent molecular dynamics clarifies shortcomings inherent to the representation of solvent as a time-averaged electron-density profile. In addition, an assessment is made of how the calculated scattering patterns depend on input parameters such as the solute-atom radii, the width of the hydration shell and the hydration-layer contrast. These results suggest that obtaining predictive calculations of high-resolution WAXS patterns may require sophisticated treatments of solvent.

  11. Effect of dissolved oxygen on SCC of LP turbine steel

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Lee, J. H.; Kim, W. C.

    2002-01-01

    Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of dissolved oxygen on Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs of Low-Pressure (LP) steam turbines in electric power generating plants. The influence of dissolved oxygen on cracking in water was studied; for this purpose, specimens were strained to fracture at 150 .deg. C in water environments with various amounts of dissolved oxygen. The maximum elongation of the turbine steel decreased with increasing dissolved oxygen. Dissolved oxygen significantly affected the SCC susceptibility of turbine steel in water. The increase of the SCC susceptibility of the turbine steel in a higher dissolved oxygen environment is due to the non protectiveness of the oxide layer of the turbine steel surface and the increase of corrosion current

  12. In vivo X-Ray Computed Tomographic Imaging of Soft Tissue with Native, Intravenous, or Oral Contrast

    Science.gov (United States)

    Wathen, Connor A.; Foje, Nathan; van Avermaete, Tony; Miramontes, Bernadette; Chapaman, Sarah E.; Sasser, Todd A.; Kannan, Raghuraman; Gerstler, Steven; Leevy, W. Matthew

    2013-01-01

    X-ray Computed Tomography (CT) is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site. PMID:23711461

  13. Percutaneous computed tomography-guided core needle biopsy of soft tissue tumors: results and correlation with surgical specimen analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chojniak, Rubens; Grigio, Henrique Ramos; Bitencourt, Almir Galvao Vieira; Pinto, Paula Nicole Vieira; Tyng, Chiang J.; Cunha, Isabela Werneck da; Aguiar Junior, Samuel; Lopes, Ademar, E-mail: chojniak@uol.com.br [Hospital A.C. Camargo, Sao Paulo, SP (Brazil)

    2012-09-15

    Objective: To evaluate the efficacy of percutaneous computed tomography (CT)-guided core needle biopsy of soft tissue tumors in obtaining appropriate samples for histological analysis, and compare its diagnosis with the results of the surgical pathology as available. Materials and Methods: The authors reviewed medical records, imaging and histological reports of 262 patients with soft-tissue tumors submitted to CT-guided core needle biopsy in an oncologic reference center between 2003 and 2009. Results: Appropriate samples were obtained in 215 (82.1%) out of the 262 patients. The most prevalent tumors were sarcomas (38.6%), metastatic carcinomas (28.8%), benign mesenchymal tumors (20.5%) and lymphomas (9.3%). Histological grading was feasible in 92.8% of sarcoma patients, with the majority of them (77.9%) being classified as high grade tumors. Out of the total sample, 116 patients (44.3%) underwent surgical excision and diagnosis confirmation. Core biopsy demonstrated 94.6% accuracy in the identification of sarcomas, with 96.4% sensitivity and 89.5% specificity. A significant intermethod agreement about histological grading was observed between core biopsy and surgical resection (p < 0.001; kappa = 0.75). Conclusion: CT-guided core needle biopsy demonstrated a high diagnostic accuracy in the evaluation of soft tissue tumors as well as in the histological grading of sarcomas, allowing an appropriate therapeutic planning (author)

  14. Comparison of ANN and RKS approaches to model SCC strength

    Science.gov (United States)

    Prakash, Aravind J.; Sathyan, Dhanya; Anand, K. B.; Aravind, N. R.

    2018-02-01

    Self compacting concrete (SCC) is a high performance concrete that has high flowability and can be used in heavily reinforced concrete members with minimal compaction segregation and bleeding. The mix proportioning of SCC is highly complex and large number of trials are required to get the mix with the desired properties resulting in the wastage of materials and time. The research on SCC has been highly empirical and no theoretical relationships have been developed between the mixture proportioning and engineering properties of SCC. In this work effectiveness of artificial neural network (ANN) and random kitchen sink algorithm(RKS) with regularized least square algorithm(RLS) in predicting the split tensile strength of the SCC is analysed. Random kitchen sink algorithm is used for mapping data to higher dimension and classification of this data is done using Regularized least square algorithm. The training and testing data for the algorithm was obtained experimentally using standard test procedures and materials available. Total of 40 trials were done which were used as the training and testing data. Trials were performed by varying the amount of fine aggregate, coarse aggregate, dosage and type of super plasticizer and water. Prediction accuracy of the ANN and RKS model is checked by comparing the RMSE value of both ANN and RKS. Analysis shows that eventhough the RKS model is good for large data set, its prediction accuracy is as good as conventional prediction method like ANN so the split tensile strength model developed by RKS can be used in industries for the proportioning of SCC with tailor made property.

  15. Soft Computing Approach to Evaluate and Predict Blast-Induced Ground Vibration

    Science.gov (United States)

    Khandelwal, Manoj

    2010-05-01

    the same excavation site, different predictors give different values of safe PPV vis-à-vis safe charge per delay. There is no uniformity in the predicted result by different predictors. All vibration predictor equations have their site specific constants. Therefore, they cannot be used in a generalized way with confidence and zero level of risk. To overcome on this aspect new soft computing tools like artificial neural network (ANN) has attracted because of its ability to learn from the pattern acquainted before. ANN has the ability to learn from patterns acquainted before. It is a highly interconnected network of a large number of processing elements called neurons in an architecture inspired by the brain. ANN can be massively parallel and hence said to exhibit parallel distributed processing. Once, the network has been trained, with sufficient number of sample data sets, it can make reliable and trustworthy predictions on the basis of its previous learning, about the output related to new input data set of similar pattern. This paper deals the application of ANN for the prediction of ground vibration by taking into consideration of maximum charge per delay and distance between blast face to monitoring point. To investigate the appropriateness of this approach, the predictions by ANN have been also compared with other vibration predictor equations.

  16. Soft computing based on hierarchical evaluation approach and criteria interdependencies for energy decision-making problems: A case study

    International Nuclear Information System (INIS)

    Gitinavard, Hossein; Mousavi, S. Meysam; Vahdani, Behnam

    2017-01-01

    In numerous real-world energy decision problems, decision makers often encounter complex environments, in which existent imprecise data and uncertain information lead us to make an appropriate decision. In this paper, a new soft computing group decision-making approach is introduced based on novel compromise ranking method and interval-valued hesitant fuzzy sets (IVHFSs) for energy decision-making problems under multiple criteria. In the proposed approach, the assessment information is provided by energy experts or decision makers based on interval-valued hesitant fuzzy elements under incomplete criteria weights. In this respect, a new ranking index is presented respecting to interval-valued hesitant fuzzy Hamming distance measure to prioritize energy candidates, and criteria weights are computed based on an extended maximizing deviation method by considering the preferences experts' judgments about the relative importance of each criterion. Also, a decision making trial and evaluation laboratory (DEMATEL) method is extended under an IVHF-environment to compute the interdependencies between and within the selected criteria in the hierarchical structure. Accordingly, to demonstrate the applicability of the presented approach a case study and a practical example are provided regarding to hierarchical structure and criteria interdependencies relations for renewable energy and energy policy selection problems. Hence, the obtained computational results are compared with a fuzzy decision-making method from the recent literature based on some comparison parameters to show the advantages and constraints of the proposed approach. Finally, a sensitivity analysis is prepared to indicate effects of different criteria weights on ranking results to present the robustness or sensitiveness of the proposed soft computing approach versus the relative importance of criteria. - Highlights: • Introducing a novel interval-valued hesitant fuzzy compromise ranking method. • Presenting

  17. COGNITIVE COMPUTER GRAPHICS AS A MEANS OF "SOFT" MODELING IN PROBLEMS OF RESTORATION OF FUNCTIONS OF TWO VARIABLES

    Directory of Open Access Journals (Sweden)

    A.N. Khomchenko

    2016-08-01

    Full Text Available The paper considers the problem of bi-cubic interpolation on the final element of serendipity family. With cognitive-graphical analysis the rigid model of Ergatoudis, Irons and Zenkevich (1968 compared with alternative models, obtained by the methods: direct geometric design, a weighted averaging of the basis polynomials, systematic generation of bases (advanced Taylor procedure. The emphasis is placed on the phenomenon of "gravitational repulsion" (Zenkevich paradox. The causes of rising of inadequate physical spectra nodal loads on serendipity elements of higher orders are investigated. Soft modeling allows us to build a lot of serendipity elements of bicubic interpolation, and you do not even need to know the exact form of the rigid model. The different interpretations of integral characteristics of the basis polynomials: geometrical, physical, probability are offered. Under the soft model in the theory of interpolation of function of two variables implies the model amenable to change through the choice of basis. Such changes in the family of Lagrangian finite elements of higher orders are excluded (hard simulation. Standard models of serendipity family (Zenkevich were also tough. It was found that the "responsibility" for the rigidity of serendipity model rests on ruled surfaces (zero Gaussian curvature - conoids that predominate in the base set. Cognitive portraits zero lines of standard serendipity surfaces suggested that in order to "mitigate" of serendipity pattern conoid should better be replaced by surfaces of alternating Gaussian curvature. The article shows the alternative (soft bases of serendipity models. The work is devoted to solving scientific and technological problems aimed at the creation, dissemination and use of cognitive computer graphics in teaching and learning. The results are of interest to students of specialties: "Computer Science and Information Technologies", "System Analysis", "Software Engineering", as well as

  18. Multifractal Analysis of Seismically Induced Soft-Sediment Deformation Structures Imaged by X-Ray Computed Tomography

    Science.gov (United States)

    Nakashima, Yoshito; Komatsubara, Junko

    Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.

  19. Form Filling with SCC in a Vertical Form

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2004-01-01

    This paper presents the results obtained from two different vertical form filling experiments with SCC that have been completed as part of the experimental work in an ongoing Ph.D project. The project is carried out at the Danish Technological Institute in collaboration with the Technical...

  20. SCC modification by use of amorphous nano-silica

    NARCIS (Netherlands)

    Quercia Bianchi, G.; Spiesz, P.R.; Hüsken, G.; Brouwers, H.J.H.

    2014-01-01

    In this study two different types of nano-silica (nS) were applied in self-compacting concrete (SCC), both having similar particle size distributions (PSD), but produced through two different processes: fumed powder silica and precipitated silica in colloidal suspension. The influence of nano-silica

  1. Soft-error tolerance and energy consumption evaluation of embedded computer with magnetic random access memory in practical systems using computer simulations

    Science.gov (United States)

    Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko

    2017-08-01

    We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.

  2. A Computing Method to Determine the Performance of an Ionic Liquid Gel Soft Actuator.

    Science.gov (United States)

    He, Bin; Zhang, Chenghong; Zhou, Yanmin; Wang, Zhipeng

    2018-01-01

    A new type of soft actuator material-an ionic liquid gel (ILG) that consists of BMIMBF 4 , HEMA, DEAP, and ZrO 2 -is polymerized into a gel state under ultraviolet (UV) light irradiation. In this paper, we first propose that the ILG conforms to the assumptions of hyperelastic theory and that the Mooney-Rivlin model can be used to study the properties of the ILG. Under the five-parameter and nine-parameter Mooney-Rivlin models, the formulas for the calculation of the uniaxial tensile stress, plane uniform tensile stress, and 3D directional stress are deduced. The five-parameter and nine-parameter Mooney-Rivlin models of the ILG with a ZrO 2 content of 3 wt% were obtained by uniaxial tensile testing, and the parameters are denoted as c 10 , c 01 , c 20 , c 11 , and c 02 and c 10 , c 01 , c 20 , c 11 , c 02 , c 30 , c 21 , c 12 , and c 03 , respectively. Through the analysis and comparison of the uniaxial tensile stress between the calculated and experimental data, the error between the stress data calculated from the five-parameter Mooney-Rivlin model and the experimental data is less than 0.51%, and the error between the stress data calculated from the nine-parameter Mooney-Rivlin model and the experimental data is no more than 8.87%. Hence, our work presents a feasible and credible formula for the calculation of the stress of the ILG. This work opens a new path to assess the performance of a soft actuator composed of an ILG and will contribute to the optimized design of soft robots.

  3. The Scc2/Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions

    Science.gov (United States)

    Lopez-Serra, Lidia; Kelly, Gavin; Patel, Harshil; Stewart, Aengus; Uhlmann, Frank

    2014-01-01

    The cohesin complex is at the heart of many chromosomal activities, including sister chromatid cohesion and transcriptional regulation1-3. Cohesin loading onto chromosomes depends on the Scc2/Scc4 cohesin loader complex4-6, but the chromatin features that form cohesin loading sites remain poorly understood. Here, we show that the RSC chromatin remodeling complex recruits budding yeast Scc2/Scc4 to broad nucleosome-free regions, that the cohesin loader itself helps to maintain. Consequently, inactivation of the cohesin loader or RSC complex have similar effects on nucleosome positioning, gene expression and sister chromatid cohesion. These results reveal an intimate link between local chromatin structure and higher order chromosome architecture. Our findings pertain to the similarities between two severe human disorders, Cornelia de Lange syndrome, caused by mutations in the human cohesin loader, and Coffin-Siris syndrome, resulting from mutations in human RSC complex components7-9. Both could arise from gene misregulation due to related changes in the nucleosome landscape. PMID:25173104

  4. Using soft computing techniques to predict corrected air permeability using Thomeer parameters, air porosity and grain density

    Science.gov (United States)

    Nooruddin, Hasan A.; Anifowose, Fatai; Abdulraheem, Abdulazeez

    2014-03-01

    Soft computing techniques are recently becoming very popular in the oil industry. A number of computational intelligence-based predictive methods have been widely applied in the industry with high prediction capabilities. Some of the popular methods include feed-forward neural networks, radial basis function network, generalized regression neural network, functional networks, support vector regression and adaptive network fuzzy inference system. A comparative study among most popular soft computing techniques is presented using a large dataset published in literature describing multimodal pore systems in the Arab D formation. The inputs to the models are air porosity, grain density, and Thomeer parameters obtained using mercury injection capillary pressure profiles. Corrected air permeability is the target variable. Applying developed permeability models in recent reservoir characterization workflow ensures consistency between micro and macro scale information represented mainly by Thomeer parameters and absolute permeability. The dataset was divided into two parts with 80% of data used for training and 20% for testing. The target permeability variable was transformed to the logarithmic scale as a pre-processing step and to show better correlations with the input variables. Statistical and graphical analysis of the results including permeability cross-plots and detailed error measures were created. In general, the comparative study showed very close results among the developed models. The feed-forward neural network permeability model showed the lowest average relative error, average absolute relative error, standard deviations of error and root means squares making it the best model for such problems. Adaptive network fuzzy inference system also showed very good results.

  5. In vivo X-Ray Computed Tomographic Imaging of Soft Tissue with Native, Intravenous, or Oral Contrast

    Directory of Open Access Journals (Sweden)

    W. Matthew Leevy

    2013-05-01

    Full Text Available X-ray Computed Tomography (CT is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site.

  6. SCC crack propagation behavior in 316L weld metal under high temperature water

    International Nuclear Information System (INIS)

    Nakade, Katsuyuki; Hirasaki, Toshifumi; Suzuki, Shunichi; Takamori, Kenro; Kumagai, Katsuhiko; Tanaka, Yoshihiko; Umeoka, Kuniyoshi

    2008-01-01

    Intergranular stress corrosion cracking (SCC) of 316L weld metal is of concern to the BWR plants. PLR pipes in commercial BWR plants have shown SCC in almost HAZ area in high temperature water, whereas, SCC has been arrested around fusion boundary for long time in the actual PLR pipe. The SCC behavior could be characterized in terms of dendrite direction, which was defined as the angle between dendrite growth direction and macro-SCC direction. In this study, the relationship between dendrite growth direction and macro-SCC direction was clearly showed on the fracture surface. The relative large difference of SCC susceptibility of 316L HAZ and weld metal was observed on the fracture surface. In the case of 0 degree, SCC has rapidly propagated into the weld metal parallel to the dendrite structure. In the case of more than 30 degree SCC direction, SCC was arrested around fusion area, and 60 degree SCC was drastically arrested around the fusion area. The large inclined dendrite structure for SCC is highly resistant to SCC. (author)

  7. Investigation of coupling of magnetohydrodynamic modes by soft x-ray computer tomography on the WT-3 tokamak

    International Nuclear Information System (INIS)

    Yoshimura, Satoru; Maekawa, Takashi; Terumichi, Yasushi

    2002-01-01

    The internal structure of the stationary m=1 and m=2 modes in an ohmic heating plasma and the double m=1 mode structure in a lower hybrid current drive plasma are investigated on the WT-3 tokamak [Maehara et al., Nucl. Fusion 38, 39 (1998)] using computer tomography after the application of the singular value decomposition to the soft x-ray signals. The results show that, in both cases, two coexisting modes have the same frequency and have a fixed mutual phase relation, indicating that two modes are coupled and rotate as one body in the toroidal direction. It is found that the mutual inductance of two loops of helical current filaments for producing magnetic islands always takes the maximum at the experimentally observed positions of two-mode structures. This result means not only that the electromagnetic coupling of two current loops is at the maximum, but also that the two loops are in the dynamically stable position

  8. Application of Soft Computing Tools for Wave Prediction at Specific Locations in the Arabian Sea Using Moored Buoy Observations

    Directory of Open Access Journals (Sweden)

    J. Vimala

    2012-12-01

    Full Text Available The knowledge of design and operational values of significant wave heights is perhaps the single most important input needed in ocean engineering studies. Conventionally such information is obtained using classical statistical analysis and stochastic methods. As the causative variables are innumerable and underlying physics is too complicated, the results obtained from the numerical models may not always be very satisfactory. Soft computing tools like Artificial Neural Network (ANN and Adaptive Network based Fuzzy Inference System (ANFIS may therefore be useful to predict significant wave heights in some situations. The study is aimed at forecasting of significant wave height values in real time over a period of 24hrs at certain locations in Indian seas using the models of ANN and ANFIS. The data for the work were collected by National Institute of Ocean Technology, Chennai. It was found that the predictions of wave heights can be done by both methods with equal efficiency and satisfaction.

  9. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface

    Science.gov (United States)

    Norton, James J. S.; Lee, Dong Sup; Lee, Jung Woo; Lee, Woosik; Kwon, Ohjin; Won, Phillip; Jung, Sung-Young; Cheng, Huanyu; Jeong, Jae-Woong; Akce, Abdullah; Umunna, Stephen; Na, Ilyoun; Kwon, Yong Ho; Wang, Xiao-Qi; Liu, ZhuangJian; Paik, Ungyu; Huang, Yonggang; Bretl, Timothy; Yeo, Woon-Hong; Rogers, John A.

    2015-01-01

    Recent advances in electrodes for noninvasive recording of electroencephalograms expand opportunities collecting such data for diagnosis of neurological disorders and brain–computer interfaces. Existing technologies, however, cannot be used effectively in continuous, uninterrupted modes for more than a few days due to irritation and irreversible degradation in the electrical and mechanical properties of the skin interface. Here we introduce a soft, foldable collection of electrodes in open, fractal mesh geometries that can mount directly and chronically on the complex surface topology of the auricle and the mastoid, to provide high-fidelity and long-term capture of electroencephalograms in ways that avoid any significant thermal, electrical, or mechanical loading of the skin. Experimental and computational studies establish the fundamental aspects of the bending and stretching mechanics that enable this type of intimate integration on the highly irregular and textured surfaces of the auricle. Cell level tests and thermal imaging studies establish the biocompatibility and wearability of such systems, with examples of high-quality measurements over periods of 2 wk with devices that remain mounted throughout daily activities including vigorous exercise, swimming, sleeping, and bathing. Demonstrations include a text speller with a steady-state visually evoked potential-based brain–computer interface and elicitation of an event-related potential (P300 wave). PMID:25775550

  10. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface.

    Science.gov (United States)

    Norton, James J S; Lee, Dong Sup; Lee, Jung Woo; Lee, Woosik; Kwon, Ohjin; Won, Phillip; Jung, Sung-Young; Cheng, Huanyu; Jeong, Jae-Woong; Akce, Abdullah; Umunna, Stephen; Na, Ilyoun; Kwon, Yong Ho; Wang, Xiao-Qi; Liu, ZhuangJian; Paik, Ungyu; Huang, Yonggang; Bretl, Timothy; Yeo, Woon-Hong; Rogers, John A

    2015-03-31

    Recent advances in electrodes for noninvasive recording of electroencephalograms expand opportunities collecting such data for diagnosis of neurological disorders and brain-computer interfaces. Existing technologies, however, cannot be used effectively in continuous, uninterrupted modes for more than a few days due to irritation and irreversible degradation in the electrical and mechanical properties of the skin interface. Here we introduce a soft, foldable collection of electrodes in open, fractal mesh geometries that can mount directly and chronically on the complex surface topology of the auricle and the mastoid, to provide high-fidelity and long-term capture of electroencephalograms in ways that avoid any significant thermal, electrical, or mechanical loading of the skin. Experimental and computational studies establish the fundamental aspects of the bending and stretching mechanics that enable this type of intimate integration on the highly irregular and textured surfaces of the auricle. Cell level tests and thermal imaging studies establish the biocompatibility and wearability of such systems, with examples of high-quality measurements over periods of 2 wk with devices that remain mounted throughout daily activities including vigorous exercise, swimming, sleeping, and bathing. Demonstrations include a text speller with a steady-state visually evoked potential-based brain-computer interface and elicitation of an event-related potential (P300 wave).

  11. Digital dissection - using contrast-enhanced computed tomography scanning to elucidate hard- and soft-tissue anatomy in the Common Buzzard Buteo buteo.

    Science.gov (United States)

    Lautenschlager, Stephan; Bright, Jen A; Rayfield, Emily J

    2014-04-01

    Gross dissection has a long history as a tool for the study of human or animal soft- and hard-tissue anatomy. However, apart from being a time-consuming and invasive method, dissection is often unsuitable for very small specimens and often cannot capture spatial relationships of the individual soft-tissue structures. The handful of comprehensive studies on avian anatomy using traditional dissection techniques focus nearly exclusively on domestic birds, whereas raptorial birds, and in particular their cranial soft tissues, are essentially absent from the literature. Here, we digitally dissect, identify, and document the soft-tissue anatomy of the Common Buzzard (Buteo buteo) in detail, using the new approach of contrast-enhanced computed tomography using Lugol's iodine. The architecture of different muscle systems (adductor, depressor, ocular, hyoid, neck musculature), neurovascular, and other soft-tissue structures is three-dimensionally visualised and described in unprecedented detail. The three-dimensional model is further presented as an interactive PDF to facilitate the dissemination and accessibility of anatomical data. Due to the digital nature of the data derived from the computed tomography scanning and segmentation processes, these methods hold the potential for further computational analyses beyond descriptive and illustrative proposes. © 2013 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  12. Evidence of soft bound behaviour in analogue memristive devices for neuromorphic computing.

    Science.gov (United States)

    Frascaroli, Jacopo; Brivio, Stefano; Covi, Erika; Spiga, Sabina

    2018-05-08

    The development of devices that can modulate their conductance under the application of electrical stimuli constitutes a fundamental step towards the realization of synaptic connectivity in neural networks. Optimization of synaptic functionality requires the understanding of the analogue conductance update under different programming conditions. Moreover, properties of physical devices such as bounded conductance values and state-dependent modulation should be considered as they affect storage capacity and performance of the network. This work provides a study of the conductance dynamics produced by identical pulses as a function of the programming parameters in an HfO 2 memristive device. The application of a phenomenological model that considers a soft approach to the conductance boundaries allows the identification of different operation regimes and to quantify conductance modulation in the analogue region. Device non-linear switching kinetics is recognized as the physical origin of the transition between different dynamics and motivates the crucial trade-off between degree of analog modulation and memory window. Different kinetics for the processes of conductance increase and decrease account for device programming asymmetry. The identification of programming trade-off together with an evaluation of device variations provide a guideline for the optimization of the analogue programming in view of hardware implementation of neural networks.

  13. Soft computing approach to 3D lung nodule segmentation in CT.

    Science.gov (United States)

    Badura, P; Pietka, E

    2014-10-01

    This paper presents a novel, multilevel approach to the segmentation of various types of pulmonary nodules in computed tomography studies. It is based on two branches of computational intelligence: the fuzzy connectedness (FC) and the evolutionary computation. First, the image and auxiliary data are prepared for the 3D FC analysis during the first stage of an algorithm - the masks generation. Its main goal is to process some specific types of nodules connected to the pleura or vessels. It consists of some basic image processing operations as well as dedicated routines for the specific cases of nodules. The evolutionary computation is performed on the image and seed points in order to shorten the FC analysis and improve its accuracy. After the FC application, the remaining vessels are removed during the postprocessing stage. The method has been validated using the first dataset of studies acquired and described by the Lung Image Database Consortium (LIDC) and by its latest release - the LIDC-IDRI (Image Database Resource Initiative) database. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A New Soft Computing Method for K-Harmonic Means Clustering.

    Science.gov (United States)

    Yeh, Wei-Chang; Jiang, Yunzhi; Chen, Yee-Fen; Chen, Zhe

    2016-01-01

    The K-harmonic means clustering algorithm (KHM) is a new clustering method used to group data such that the sum of the harmonic averages of the distances between each entity and all cluster centroids is minimized. Because it is less sensitive to initialization than K-means (KM), many researchers have recently been attracted to studying KHM. In this study, the proposed iSSO-KHM is based on an improved simplified swarm optimization (iSSO) and integrates a variable neighborhood search (VNS) for KHM clustering. As evidence of the utility of the proposed iSSO-KHM, we present extensive computational results on eight benchmark problems. From the computational results, the comparison appears to support the superiority of the proposed iSSO-KHM over previously developed algorithms for all experiments in the literature.

  15. Computing in the presence of soft bit errors. [caused by single event upset on spacecraft

    Science.gov (United States)

    Rasmussen, R. D.

    1984-01-01

    It is shown that single-event-upsets (SEUs) due to cosmic rays are a significant source of single bit error in spacecraft computers. The physical mechanism of SEU, electron hole generation by means of Linear Energy Transfer (LET), it discussed with reference made to the results of a study of the environmental effects on computer systems of the Galileo spacecraft. Techniques for making software more tolerant of cosmic ray effects are considered, including: reducing the number of registers used by the software; continuity testing of variables; redundant execution of major procedures for error detection; and encoding state variables to detect single-bit changes. Attention is also given to design modifications which may reduce the cosmic ray exposure of on-board hardware. These modifications include: shielding components operating in LEO; removing low-power Schottky parts; and the use of CMOS diodes. The SEU parameters of different electronic components are listed in a table.

  16. Devising tissue ingrowth metrics: a contribution to the computational characterization of engineered soft tissue healing.

    Science.gov (United States)

    Alves, Antoine; Attik, Nina; Bayon, Yves; Royet, Elodie; Wirth, Carine; Bourges, Xavier; Piat, Alexis; Dolmazon, Gaëlle; Clermont, Gaëlle; Boutrand, Jean-Pierre; Grosgogeat, Brigitte; Gritsch, Kerstin

    2018-03-14

    differences not detected by the semi-quantitative assessment, demonstrating the importance of quantitative analysis in the performance evaluation of soft tissue healing. This automated and supervised method reduced operator dependency and proved to be simple, sensitive, cost-effective and time-effective. It supports objective therapeutic comparisons and helps to elucidate regeneration and the dynamics of a functional tissue.

  17. Cytotoxic Effect of the Genus Sinularia Extracts on Human SCC25 and HaCaT Cells

    International Nuclear Information System (INIS)

    Wang, G.H.; Chou, T.H.; Liang, C.H.; Lin, R.J.; Sheu, J.H.; Wang, S.H.

    2009-01-01

    Soft corals of the genus Sinularia are being increasingly adopted to treat a wide variety of disease processes. However, the mechanism underlying its activity against human oral cancer cells is poorly understood. This study evaluates the cyototoxicity effects of the genus Sinularia extracts (S. grandilobata, S. parva, S. triangula, S. scabra, S. nanolobata and S. gibberosa) by SCC25 and HaCaT cells. The cell adhesion assay indicates that extracts reduce the cell attachment. Extracts exhibit a dose-dependent cytotoxic effect using MTS assay.Treatment of extracts to observe the morphological alterations in cells, membrane blebbing, nuclear condensation, and apoptotic bodies is demonstrated. Flow cytometry shows that extracts sensitized the cells in the G0/G1 and G2/M phases with a concomitant significantly increased sub-G1 fraction, suggesting cell death by apoptosis. Extracts of the genus Sinularia thus apparently cause apoptosis of SCC25 and HaCaT cells, and warrant further research investigating the possible antioral cancer compounds in these soft corals.

  18. The effect of molybdenum addition on SCC susceptibility of stainless steels in oxygenated high temperature water

    International Nuclear Information System (INIS)

    Akashi, Masatsune; Kawamoto, Teruaki

    1978-01-01

    The effect of molybdenum addition on the SCC susceptibility of sensitized stainless steel in oxygenated high temperature water has been studied through the creviced bent beam SCC test (CBB test) and A262E intergranular corrosion test. The molybdenum addition improved the SCC susceptibility of sensitized stainless steels in oxygenated high temperature water not only by delaying the sensitization at lower temperatures but also by increasing the material resistance to the SCC under a given degree of sensitization. These laboratory test results reveal that the molybdenum addition is quite beneficial for improving the SCC susceptibility of stainless steel pipe weld joints in boiling water reactor environment. (auth.)

  19. REAL TIME PULVERISED COAL FLOW SOFT SENSOR FOR THERMAL POWER PLANTS USING EVOLUTIONARY COMPUTATION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    B. Raja Singh

    2015-01-01

    Full Text Available Pulverised coal preparation system (Coal mills is the heart of coal-fired power plants. The complex nature of a milling process, together with the complex interactions between coal quality and mill conditions, would lead to immense difficulties for obtaining an effective mathematical model of the milling process. In this paper, vertical spindle coal mills (bowl mill that are widely used in coal-fired power plants, is considered for the model development and its pulverised fuel flow rate is computed using the model. For the steady state coal mill model development, plant measurements such as air-flow rate, differential pressure across mill etc., are considered as inputs/outputs. The mathematical model is derived from analysis of energy, heat and mass balances. An Evolutionary computation technique is adopted to identify the unknown model parameters using on-line plant data. Validation results indicate that this model is accurate enough to represent the whole process of steady state coal mill dynamics. This coal mill model is being implemented on-line in a 210 MW thermal power plant and the results obtained are compared with plant data. The model is found accurate and robust that will work better in power plants for system monitoring. Therefore, the model can be used for online monitoring, fault detection, and control to improve the efficiency of combustion.

  20. A Hybrid Soft-computing Method for Image Analysis of Digital Plantar Scanners

    Science.gov (United States)

    Razjouyan, Javad; Khayat, Omid; Siahi, Mehdi; Mansouri, Ali Alizadeh

    2013-01-01

    Digital foot scanners have been developed in recent years to yield anthropometrists digital image of insole with pressure distribution and anthropometric information. In this paper, a hybrid algorithm containing gray level spatial correlation (GLSC) histogram and Shanbag entropy is presented for analysis of scanned foot images. An evolutionary algorithm is also employed to find the optimum parameters of GLSC and transform function of the membership values. Resulting binary images as the thresholded images are undergone anthropometric measurements taking in to account the scale factor of pixel size to metric scale. The proposed method is finally applied to plantar images obtained through scanning feet of randomly selected subjects by a foot scanner system as our experimental setup described in the paper. Running computation time and the effects of GLSC parameters are investigated in the simulation results. PMID:24083133

  1. A Hybrid Soft-computing Method for Image Analysis of Digital Plantar Scanners.

    Science.gov (United States)

    Razjouyan, Javad; Khayat, Omid; Siahi, Mehdi; Mansouri, Ali Alizadeh

    2013-01-01

    Digital foot scanners have been developed in recent years to yield anthropometrists digital image of insole with pressure distribution and anthropometric information. In this paper, a hybrid algorithm containing gray level spatial correlation (GLSC) histogram and Shanbag entropy is presented for analysis of scanned foot images. An evolutionary algorithm is also employed to find the optimum parameters of GLSC and transform function of the membership values. Resulting binary images as the thresholded images are undergone anthropometric measurements taking in to account the scale factor of pixel size to metric scale. The proposed method is finally applied to plantar images obtained through scanning feet of randomly selected subjects by a foot scanner system as our experimental setup described in the paper. Running computation time and the effects of GLSC parameters are investigated in the simulation results.

  2. Soft-tissue perineurioma of the retroperitoneum in a 63-year-old man, computed tomography and magnetic resonance imaging findings: a case report

    Directory of Open Access Journals (Sweden)

    Yasumoto Mayumi

    2010-08-01

    Full Text Available Abstract Introduction Soft-tissue perineuriomas are rare benign peripheral nerve sheath tumors in the subcutis of the extremities and the trunks of young patients. To our knowledge, this the first presentation of the computed tomography and magnetic resonance imaging of a soft-tissue perineurioma in the retroperitoneum with pathologic correlation. Case presentation A 63-year-old Japanese man was referred for assessment of high blood pressure. Abdominal computed tomography and magnetic resonance imaging showed a well-defined, gradually enhancing tumor without focal degeneration or hemorrhage adjacent to the pancreatic body. Tumor excision with distal pancreatectomy and splenectomy was performed, as a malignant tumor of pancreatic origin could not be ruled out. No recurrence has been noted in the 16 months since the operation. Pathologic examination of the tumor revealed a soft-tissue perineurioma of the retroperitoneum. Conclusion Although the definitive diagnosis of soft-tissue perineurioma requires biopsy and immunohistochemical reactivity evaluation, the computed tomography and magnetic resonance imaging findings described in this report suggest inclusion of this rare tumor in the differential diagnosis when such findings occur in the retroperitoneum.

  3. Calibration Device Designed for proof ring used in SCC Experiment

    Science.gov (United States)

    Hu, X. Y.; Kang, Z. Y.; Yu, Y. L.

    2017-11-01

    In this paper, a calibration device for proof ring used in SCC (Stress Corrosion Cracking) experiment was designed. A compact size loading device was developed to replace traditional force standard machine or a long screw nut. The deformation of the proof ring was measured by a CCD (Charge-Coupled Device) during the calibration instead of digital caliper or a dial gauge. The calibration device was verified at laboratory that the precision of force loading is ±0.1% and the precision of deformation measurement is ±0.002mm.

  4. Modeling of SCC initiation and propagation mechanisms in BWR environments

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Hans, E-mail: Hans.Hoffmeister@hsu-hh.de [Institute for Failure Analysis and Failure Prevention ISSV e.V., c/o Helmut Schmidt University of the Federal Armed Forces, D-22039 Hamburg (Germany); Klein, Oliver [Institute for Failure Analysis and Failure Prevention ISSV e.V., c/o Helmut Schmidt University of the Federal Armed Forces, D-22039 Hamburg (Germany)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We show that SSC in BWR environments includes anodic crack propagation and hydrogen assisted cracking. Black-Right-Pointing-Pointer Hydrogen cracking is triggered by crack tip acidification following local impurity accumulations and subsequent phase precipitations. Black-Right-Pointing-Pointer We calculate effects of pH, chlorides, potentials and stress on crack SCC growth rates at 288 Degree-Sign C. - Abstract: During operation of mainly BWRs' (Boiling Water Reactors) excursions from recommended water chemistries may provide favorite conditions for stress corrosion cracking (SCC). Maximum levels for chloride and sulfate ion contents for avoiding local corrosion are therefore given in respective water specifications. In a previously published deterministic 288 Degree-Sign C - corrosion model for Nickel as a main alloying element of BWR components it was demonstrated that, as a theoretically worst case, bulk water chloride levels as low as 30 ppb provide local chloride ion accumulation, dissolution of passivating nickel oxide and precipitation of nickel chlorides followed by subsequent local acidification. In an extension of the above model to SCC the following work shows that, in a first step, local anodic path corrosion with subsequent oxide breakdown, chloride salt formation and acidification at 288 Degree-Sign C would establish local cathodic reduction of accumulated hydrogen ions inside the crack tip fluid. In a second step, local hydrogen reduction charges and increasing local crack tip strains from increasing crack lengths at given global stresses are time stepwise calculated and related to experimentally determined crack critical cathodic hydrogen charges and fracture strains taken from small scale SSRT tensile tests pieces. As a result, at local hydrogen equilibrium potentials higher than those of nickel in the crack tip solution, hydrogen ion reduction initiates hydrogen crack propagation that is enhanced with

  5. Fuzzy classification for strawberry diseases-infection using machine vision and soft-computing techniques

    Science.gov (United States)

    Altıparmak, Hamit; Al Shahadat, Mohamad; Kiani, Ehsan; Dimililer, Kamil

    2018-04-01

    Robotic agriculture requires smart and doable techniques to substitute the human intelligence with machine intelligence. Strawberry is one of the important Mediterranean product and its productivity enhancement requires modern and machine-based methods. Whereas a human identifies the disease infected leaves by his eye, the machine should also be capable of vision-based disease identification. The objective of this paper is to practically verify the applicability of a new computer-vision method for discrimination between the healthy and disease infected strawberry leaves which does not require neural network or time consuming trainings. The proposed method was tested under outdoor lighting condition using a regular DLSR camera without any particular lens. Since the type and infection degree of disease is approximated a human brain a fuzzy decision maker classifies the leaves over the images captured on-site having the same properties of human vision. Optimizing the fuzzy parameters for a typical strawberry production area at a summer mid-day in Cyprus produced 96% accuracy for segmented iron deficiency and 93% accuracy for segmented using a typical human instant classification approximation as the benchmark holding higher accuracy than a human eye identifier. The fuzzy-base classifier provides approximate result for decision making on the leaf status as if it is healthy or not.

  6. A Soft Computing Approach to Crack Detection and Impact Source Identification with Field-Programmable Gate Array Implementation

    Directory of Open Access Journals (Sweden)

    Arati M. Dixit

    2013-01-01

    Full Text Available The real-time nondestructive testing (NDT for crack detection and impact source identification (CDISI has attracted the researchers from diverse areas. This is apparent from the current work in the literature. CDISI has usually been performed by visual assessment of waveforms generated by a standard data acquisition system. In this paper we suggest an automation of CDISI for metal armor plates using a soft computing approach by developing a fuzzy inference system to effectively deal with this problem. It is also advantageous to develop a chip that can contribute towards real time CDISI. The objective of this paper is to report on efforts to develop an automated CDISI procedure and to formulate a technique such that the proposed method can be easily implemented on a chip. The CDISI fuzzy inference system is developed using MATLAB’s fuzzy logic toolbox. A VLSI circuit for CDISI is developed on basis of fuzzy logic model using Verilog, a hardware description language (HDL. The Xilinx ISE WebPACK9.1i is used for design, synthesis, implementation, and verification. The CDISI field-programmable gate array (FPGA implementation is done using Xilinx’s Spartan 3 FPGA. SynaptiCAD’s Verilog Simulators—VeriLogger PRO and ModelSim—are used as the software simulation and debug environment.

  7. Automatic bone detection and soft tissue aware ultrasound-CT registration for computer-aided orthopedic surgery.

    Science.gov (United States)

    Wein, Wolfgang; Karamalis, Athanasios; Baumgartner, Adrian; Navab, Nassir

    2015-06-01

    The transfer of preoperative CT data into the tracking system coordinates within an operating room is of high interest for computer-aided orthopedic surgery. In this work, we introduce a solution for intra-operative ultrasound-CT registration of bones. We have developed methods for fully automatic real-time bone detection in ultrasound images and global automatic registration to CT. The bone detection algorithm uses a novel bone-specific feature descriptor and was thoroughly evaluated on both in-vivo and ex-vivo data. A global optimization strategy aligns the bone surface, followed by a soft tissue aware intensity-based registration to provide higher local registration accuracy. We evaluated the system on femur, tibia and fibula anatomy in a cadaver study with human legs, where magnetically tracked bone markers were implanted to yield ground truth information. An overall median system error of 3.7 mm was achieved on 11 datasets. Global and fully automatic registration of bones aquired with ultrasound to CT is feasible, with bone detection and tracking operating in real time for immediate feedback to the surgeon.

  8. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters.

    Science.gov (United States)

    Chowdhury, S; Maniar, A; Suganya, O M

    2015-11-01

    In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  9. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters

    Directory of Open Access Journals (Sweden)

    S. Chowdhury

    2015-11-01

    Full Text Available In this study, Wood Ash (WA prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45 and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20% including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM, strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  10. Soft computing modelling of moisture sorption isotherms of milk-foxtail millet powder and determination of thermodynamic properties.

    Science.gov (United States)

    Simha, H V Vikram; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Kumar, P Arun; Manimala, K

    2016-06-01

    Moisture sorption isotherms of spray-dried milk-foxtail millet powder were determined at 10, 25 and 40 °C. Sorption data was fitted using classical and soft-computing approaches. The isotherms were of type II, and equilibrium moisture content (EMC) was temperature dependent. The BET monolayer moisture content decreased from 3.30 to 2.67 % as temperature increased from 10 to 40 °C. Amongst the classical models, Ferro-Fontan gave the best fit of EMC-aw data. However, the Sugeno-type adaptive neuro-fuzzy inference system (ANFIS) with generalized bell-shaped membership function performed better than artificial neural network and classical models with RMSE as low as 0.0099. The isosteric heat of sorption decreased from 150.32 kJ mol(-1) at 1 % moisture content to 44.11 kJ mol(-1) at 15 % moisture. The enthalpy-entropy compensation theory was validated, and the isokinetic and harmonic mean temperatures were determined as 333.1 and 297.5 K, respectively.

  11. Estimation of Rivers Dissolved Solids TDS by Soft Computing (Case Study: Upstream of Boukan Dam

    Directory of Open Access Journals (Sweden)

    S. Zaman Zad Ghavidel

    2017-01-01

    layer with five inputs, one hidden and output layer with three and two neurons for Anyan and Safakhaneh hydrometer stations, respectively. Similar ANN, ANFIS-SC5 model had the best performance. It is clear that the ANFIS with 0/4 and 0/7 radii value has the highest R and the lowest RMSE for Anyan and Safakhaneh hydrometer stations, respectively. Various GEP models have been developed using the input combinations similar ANN and ANFIS models. Comparing the GEP5 estimations with the measured data for the test stage demonstrates a high generalization capacity of the model, with relatively low error and high correlation. From the scatter plots it is obviously seen that the GEP5 predictions are closer to the corresponding measured TDS than other models. As seen from the best straight line equations (assume the equation as y=ax in the scatter plots that the a coefficient for GEP5 is closer to 1 than other models. In addition to previous operation, Gene expression programming offered mathematical relationships in the stations of Anyan and Safakhane with the correlation coefficients, respectively 0.962 , 0.971 and with Root-mean-square errors, respectively 12.82 , 29.08 in order to predict dissolved solids (TDS in the rivers located at upstream of the dam. The obtained results showed the efficiency of the applied models in simulating the nonlinear behavior of TDS variations in terms of performance indices. Overall, the GEP model outperformed the other models. For all of applied models, the best result was obtained by application of input combination (5 including HCO3, Ca, Na, Q and Mg. The results are also tested by using t test for verifying the robustness of the models at 95% significance level. Comparison results indicated that the poorest model in TDS simulation was ANN especially in test period. The observed relationship between residuals and model computed TDS values shows complete independence and random distribution. It is further supported by the respective

  12. Self-compacting concretes (SCC: comparison of methods of dosage

    Directory of Open Access Journals (Sweden)

    B. F. Tutikian

    Full Text Available The composition of a self-compacting concrete (SCC should be defined to fulfills a number of requirements, such as self-compactibility, strength and durability. This study aims to compare three methods of dosage for SCC with local materials, so as to determine which one is the most economical and rational, thus assisting the executor in making a decision and enabling economic and technical feasibility for its application. The methods used in the experimental program were: Nan Su et al., which was developed in 2001 [1]; Repette-Melo, which was proposed in 2005 [2]; and Tutikian & Dal Molin, which was developed in 2007 [3]. From the results obtained in the experimental program, it was observed that the method which presented the lowest cost and highest compressive strength at the ages of 7, 28 and 91 days was Tutikian & Dal Molin, while the one which reached the lowest chloride ion penetration, best compactness and highest elasticity modulus was Repette-Melo. In tests carried out in the fresh state, all tested methods yielded mixtures which comply with the self-compactibility levels required by ABNT NBR 15823:2010 [4].

  13. Inkjet Printed Fully-Passive Body-Worn Wireless Sensors for Smart and Connected Community (SCC

    Directory of Open Access Journals (Sweden)

    Bashir I. Morshed

    2017-11-01

    Full Text Available Future Smart and Connected Communities (SCC will utilize distributed sensors and embedded computing to seamlessly generate meaningful data that can assist individuals, communities, and society with interlocking physical, social, behavioral, economic, and infrastructural interaction. SCC will require newer technologies for seamless and unobtrusive sensing and computation in natural settings. This work presents a new technology for health monitoring with low-cost body-worn disposable fully passive electronic sensors, along with a scanner, smartphone app, and web-server for a complete smart sensor system framework. The novel wireless resistive analog passive (WRAP sensors are printed using an inkjet printing (IJP technique on paper with silver inks (Novacentrix Ag B40, sheet resistance of 21 mΩ/sq and incorporate a few discrete surface mounted electronic components (overall thickness of <1 mm. These zero-power flexible sensors are powered through a wireless inductive link from a low-power scanner (500 mW during scanning burst of 100 ms by amplitude modulation at the carrier signal of 13.56 MHz. While development of various WRAP sensors is ongoing, this paper describes development of a WRAP temperature sensor in detail as an illustration. The prototypes were functionally verified at various temperatures with energy consumption of as low as 50 mJ per scan. The data is analyzed with a smartphone app that computes severity (Events-of-Interest, or EoI using a real-time algorithm. The severity can then be anonymously shared with a custom web-server, and visualized either in temporal or spatial domains. This research aims to reduce ER visits of patients by enabling self-monitoring, thereby improving community health for SSC.

  14. Time series analysis of reference crop evapotranspiration using soft computing techniques for Ganjam District, Odisha, India

    Science.gov (United States)

    Patra, S. R.

    2017-12-01

    minimization principle. The reliability of these computational models was analysed in light of simulation results and it was found out that SVM model produces better results among the three. The future research should be routed to extend the validation data set and to check the validity of our results on different areas with hybrid intelligence techniques.

  15. Influence of deformation on SCC susceptibility of austenitic stainless steel in PWR primary water

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshima, Yoshiari; Totsuka, Nobuo; Nakajima, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Slow strain rate tests (SSRT) were carried out to evaluate the SCC susceptibility of four types of austenitic stainless steels (SUS304, SUS316, SUS304L and SUS316L) in PWR primary water. The influence of deformation on SCC susceptibility of SUS316 was studied. All types of stainless steel were susceptible to SCC, and the SCC susceptibility varied depending on the steel type. The comparison of the SSRT results and tensile test in air based on the reduction of area measurement showed that the SCC susceptibility increased with increasing the degree of deformation. For explaining the influence of deformation on SCC susceptibility, it is necessary to evaluate both intergranular and transgranular fractures. (author)

  16. The value of computed tomography in the diagnosis of the rotator cuff tears, and bone and soft tissue tumors

    International Nuclear Information System (INIS)

    Yoh, Sansen

    1984-01-01

    The usefulness of computed tomography (CT) in the diagnosis of rotator cuff tear was assessed. The rotator cuff could not be visualized in detail by CT unless introduction of contrast material into the joint cavity was performed. CT arthrography was performed on 21 cases of rotator cuff tears. The most detailed information was obtained when a relatively low concentration of contrast material (3.25% Angiografin) was filled in the joint cavity, and when the shoulder joint was rotated to the maximum outwards at the side. CT arthrography proved to be the most reliable method for assessing the extent and portion of the rotator cuff tears, so that it demonstrated conclusive evidence of diagnosis and management in 89% of patients studied. The usefulness of CT in the diagnosis of bone and soft tissue tumors was assessed. CT examination provided unique preoperative information which could imagine a more precise histological characteristics and anatomical localization of the lesion. Contrast enhancement (CE), when used, proved to be helpful in predicting the nature of tumors. The CE by intra-arterial infusion, or intravenous bolous injection of contrast material during the scan was more useful than that by intervenous drip infusion of the material. The information regarding change of tumor size, CT number and CE were appropriate indicators which directly corresponded to responsiveness of the tumor to the chemotheraphy and radiotherapy performed. Preoperative ABC classification of the tumor by information regarding its size, location, definition and anatomical relation of tumors to vital structures (neural, vescular, and visceral) was done by using CT. The classification clearly corresponded to the status of patients regarding the treatment required for the patients. (author)

  17. A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS

    Science.gov (United States)

    Naghibi, Seyed Amir; Pourghasemi, Hamid Reza; Abbaspour, Karim

    2018-02-01

    Considering the unstable condition of water resources in Iran and many other countries in arid and semi-arid regions, groundwater studies are very important. Therefore, the aim of this study is to model groundwater potential by qanat locations as indicators and ten advanced and soft computing models applied to the Beheshtabad Watershed, Iran. Qanat is a man-made underground construction which gathers groundwater from higher altitudes and transmits it to low land areas where it can be used for different purposes. For this purpose, at first, the location of the qanats was detected using extensive field surveys. These qanats were classified into two datasets including training (70%) and validation (30%). Then, 14 influence factors depicting the region's physical, morphological, lithological, and hydrological features were identified to model groundwater potential. Linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), flexible discriminant analysis (FDA), penalized discriminant analysis (PDA), boosted regression tree (BRT), random forest (RF), artificial neural network (ANN), K-nearest neighbor (KNN), multivariate adaptive regression splines (MARS), and support vector machine (SVM) models were applied in R scripts to produce groundwater potential maps. For evaluation of the performance accuracies of the developed models, ROC curve and kappa index were implemented. According to the results, RF had the best performance, followed by SVM and BRT models. Our results showed that qanat locations could be used as a good indicator for groundwater potential. Furthermore, altitude, slope, plan curvature, and profile curvature were found to be the most important influence factors. On the other hand, lithology, land use, and slope aspect were the least significant factors. The methodology in the current study could be used by land use and terrestrial planners and water resource managers to reduce the costs of groundwater resource discovery.

  18. SCC of Alloy 600 in PWR steam generator tubes

    International Nuclear Information System (INIS)

    Pascali, R.; Buzzanca, G.; Quaglia, G.M.; Ronchetti, C.

    1986-01-01

    The studies reported in this paper concern the evaluation of Alloy 600 and 690 behaviour in chemical agressive conditions simulating the concentration film on heat exchanging tube. The corrosion tests have been performed to evidence the influence of metallurgical conditions and different heats. Various devices for reproducing dead areas and steam blanketing have been designed and tested, such as, umbrellas, rings, thin deposits, etc. A system to reproduce the S.G. areas with thick deposits has been designed successively and set up in a previous series of tests, in boiling water at 56 kg/cm/sup 2/, 270 0 C and heat flux 45 W/cm/sup 2/. Caustic SCC tests have been carried out in adiabatic conditions also using small autoclaves

  19. EFFECTS OF LASER SHOCK PEENING ON SCC BEHAVIOR OF ALLOY 600

    Energy Technology Data Exchange (ETDEWEB)

    Abhishek Telang; Amrinder Gill; S.R.Mannava; Vijay K. Vasudevan; Dong Qian; Sebastien P. Teysseyre

    2013-08-01

    In this study, the effects of laser shock peening (LSP) on stress corrosion cracking (SCC) behavior of Alloy 600 in tetrathionate solution were investigated. The degree of sensitization was quantified using double loop electrochemical potentiokinetic reactivation (DLEPR) tests. The sensitized Alloy 600 was demonstrated to be susceptible to intergranular SCC in tetrathionate solution. Following LSP, residual stresses and the amount of plastic strain introduced in Alloy 600 were characterized. The effects of LSP on SCC susceptibility of Alloy 600 in tetrathionate solution were evaluated by slow strain rate tests and constant load tests. Results indicate a significant increase in resistance to crack initiation and decreased susceptibility to SCC after LSP.

  20. Crystal Structure of the Cohesin Gatekeeper Pds5 and in Complex with Kleisin Scc1

    Directory of Open Access Journals (Sweden)

    Byung-Gil Lee

    2016-03-01

    Full Text Available Sister chromatid cohesion is mediated by cohesin, whose Smc1, Smc3, and kleisin (Scc1 subunits form a ring structure that entraps sister DNAs. The ring is opened either by separase, which cleaves Scc1 during anaphase, or by a releasing activity involving Wapl, Scc3, and Pds5, which bind to Scc1 and open its interface with Smc3. We present crystal structures of Pds5 from the yeast L. thermotolerans in the presence and absence of the conserved Scc1 region that interacts with Pds5. Scc1 binds along the spine of the Pds5 HEAT repeat fold and is wedged between the spine and C-terminal hook of Pds5. We have isolated mutants that confirm the observed binding mode of Scc1 and verified their effect on cohesin by immunoprecipitation and calibrated ChIP-seq. The Pds5 structure also reveals architectural similarities to Scc3, the other large HEAT repeat protein of cohesin and, most likely, Scc2.

  1. A high performance scientific cloud computing environment for materials simulations

    OpenAIRE

    Jorissen, Kevin; Vila, Fernando D.; Rehr, John J.

    2011-01-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including...

  2. SCC growth behavior of stainless steel weld heat-affected zone in hydrogenated high temperature water

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2010-01-01

    It is known that the SCC growth rate of stainless steels in high-temperature water is accelerated by cold-work (CW). The weld heat-affected-zone (HAZ) of stainless steels is also deformed by weld shrinkage. However, only little have been reported on the SCC growth of weld HAZ of SUS316 and SUS304 in hydrogenated high-temperature water. Thus, in this present study, SCC growth experiments were performed using weld HAZ of stainless steels, especially to obtain data on the dependence of SCC growth on (1) temperature and (2) hardness in hydrogenated water at temperatures from 250degC to 340degC. And then, the SCC growth behaviors were compared between weld HAZ and CW stainless steels. The following results have been obtained. Significant SCC growth were observed in weld HAZ (SUS316 and SUS304) in hydrogenated water at 320degC. The SCC growth rates of the HAZ are similar to that of 10% CW non-sensitized SUS316, in accordance with that the hardness of weld HAZ is also similar to that of 10% CW SUS316. Temperature dependency of SCC growth of weld HAZ (SUS316 and SUS304) is also similar to that of 10% CW non-sensitized SUS316. That is, no significant SCC were observed in the weld HAZ (SUS316 and SUS304) in hydrogenated water at 340degC. This suggests that SCC growth behaviors of weld HAZ and CW stainless steels are similar and correlated with the hardness or yield strength of the materials, at least in non-sensitized regions. And the similar temperature dependence between the HAZ and CW stainless steels suggests that the SCC growth behaviors are also attributed to the common mechanism. (author)

  3. Prediction of the impact of flow induced inhomogeneities in Self Compacting Concrete (SCC)

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Roussel, N.; Hattel, Jesper Henri

    2010-01-01

    SCC is nowadays a worldwide used construction material. However, heterogeneities induced by casting may lead to variations of local properties and hence to a potential decrease of the structure’s load carrying capacity. The heterogeneities in SCC are primarily caused by static and dynamic segrega...

  4. Facial soft-tissue asymmetry in three-dimensional cone-beam computed tomography images of children with surgically corrected unilateral clefts.

    Science.gov (United States)

    Starbuck, John Marlow; Ghoneima, Ahmed; Kula, Katherine

    2014-03-01

    Cleft lip with or without cleft palate (CL/P) is a relatively common craniofacial malformation involving bony and soft-tissue disruptions of the nasolabial and dentoalveolar regions. The combination of CL/P and subsequent craniofacial surgeries to close the cleft and improve appearance of the cutaneous upper lip and nose can cause scarring and muscle pull, possibly resulting in soft-tissue depth asymmetries across the face. We tested the hypothesis that tissue depths in children with unilateral CL/P exhibit differences in symmetry across the sides of the face. Twenty-eight tissue depths were measured on cone-beam computed tomography images of children with unilateral CL/P (n = 55), aged 7 to 17 years, using Dolphin software (version 11.5). Significant differences in tissue depth symmetry were found around the cutaneous upper lip and nose in patients with unilateral CL/P.

  5. Computing dispersion curves of elastic/viscoelastic transversely-isotropic bone plates coupled with soft tissue and marrow using semi-analytical finite element (SAFE) method.

    Science.gov (United States)

    Nguyen, Vu-Hieu; Tran, Tho N H T; Sacchi, Mauricio D; Naili, Salah; Le, Lawrence H

    2017-08-01

    We present a semi-analytical finite element (SAFE) scheme for accurately computing the velocity dispersion and attenuation in a trilayered system consisting of a transversely-isotropic (TI) cortical bone plate sandwiched between the soft tissue and marrow layers. The soft tissue and marrow are mimicked by two fluid layers of finite thickness. A Kelvin-Voigt model accounts for the absorption of all three biological domains. The simulated dispersion curves are validated by the results from the commercial software DISPERSE and published literature. Finally, the algorithm is applied to a viscoelastic trilayered TI bone model to interpret the guided modes of an ex-vivo experimental data set from a bone phantom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguang [Columbia Univ., New York, NY; Frenkel, Anatoly [Yeshiva Univ., New York, NY (United States); Rodriguez, Jose [Brookhaven National Lab. (BNL), Upton, NY (United States); Adzic, Radoslav [Brookhaven National Lab. (BNL), Upton, NY (United States); Bare, Simon R. [UOP LLC, Des Plaines, IL (United States); Hulbert, Steve L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karim, Ayman [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullins, David R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steve [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  7. SCC testing of steam generator tubes repaired by welded sleeves

    International Nuclear Information System (INIS)

    Pierson, E.; Stubbe, J.

    1993-01-01

    One way to repair steam generator tubing is to introduce a sleeve inside the tube so that it spans the corroded area and to seal it at both ends. This technique has been studied at Laborelec with a particular attention paid to the occurrence of new SCC cracks at the upper joint. Tube segments coming from the same lot of mill annealed alloy 600 were sent to six manufacturers to be sleeved by their own procedure (including TIG, laser or kinetic welding, followed or not by a stress relief heat treatment), and then tested at Laborelecin 10% NaOH at 350 degrees C. The tests were performed with and without differential pressure i.e. in capsules (Δ = 9 and 19 MPa) and in autoclave (Δp = 0). Nearly all the not stress relieved mock-ups developed through cracks in several hundred hours in auto-clave. The cracks were circumferential and situated near the weld. At 9 and 19 MPa, the time to failure decreased and longitudinal cracks appeared near the weld and at the transition zone of expanded areas. Cracks were never observed in the alloy 690 sleeve, except in the weld bead. Reference capsules (roll expaned tubes) made of the same lot of alloy 600 were tested in the same environment

  8. Serviceability and Prestress Loss Behavior of SCC Prestressed Concrete Girders Subjected to Increased Compressive Stresses at Release

    Science.gov (United States)

    2009-08-01

    There are limited measurements documented in the literature related to long-term prestress losses in self-consolidated concrete (SCC) members. Recorded test data has shown variations in mechanical property behavior of SCC compared to conventional HSC...

  9. NDE to Manage Atmospheric SCC in Canisters for Dry Storage of Spent Fuel: An Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cuta, Judith M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qiao, Hong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doctor, Steven R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    This report documents efforts to assess representative horizontal (Transuclear NUHOMS®) and vertical (Holtec HI-STORM) storage systems for the implementation of non-destructive examination (NDE) methods or techniques to manage atmospheric stress corrosion cracking (SCC) in canisters for dry storage of used nuclear fuel. The assessment is conducted by assessing accessibility and deployment, environmental compatibility, and applicability of NDE methods. A recommendation of this assessment is to focus on bulk ultrasonic and eddy current techniques for direct canister monitoring of atmospheric SCC. This assessment also highlights canister regions that may be most vulnerable to atmospheric SCC to guide the use of bulk ultrasonic and eddy current examinations. An assessment of accessibility also identifies canister regions that are easiest and more difficult to access through the ventilation paths of the concrete shielding modules. A conceivable sampling strategy for canister inspections is to sample only the easiest to access portions of vulnerable regions. There are aspects to performing an NDE inspection of dry canister storage system (DCSS) canisters for atmospheric SCC that have not been addressed in previous performance studies. These aspects provide the basis for recommendations of future efforts to determine the capability and performance of eddy current and bulk ultrasonic examinations for atmospheric SCC in DCSS canisters. Finally, other important areas of investigation are identified including the development of instrumented surveillance specimens to identify when conditions are conducive for atmospheric SCC, characterization of atmospheric SCC morphology, and an assessment of air flow patterns over canister surfaces and their influence on chloride deposition.

  10. Analysis of SCC initiation/propagation behavior of stainless steels in LWR environments

    International Nuclear Information System (INIS)

    Saito, Koichi; Kuniya, Jiro

    1999-01-01

    This paper presents a method to analyze initiation and propagation behavior of stress corrosion cracking (SCC) of stainless steels on the basis of a new prediction algorithm in which the initiation period and propagation period of SCC under irradiation conditions are considered from a practical viewpoint. The prediction algorithm is based on three ideas: (1) threshold neutron fluence of radiation-enhanced SCC (RESCC), (2) equivalent critical crack depth, and (3) threshold stress intensity factor for SCC (K ISCC ). SCC initiation/propagation behavior in light water reactor (LWR) environments is analyzed by incorporating model equations on irradiation hardening, irradiation-enhanced electrochemical potentiokinetic reactivation (EPR) and irradiation stress relaxation that are phenomena peculiar to neutron irradiation. The analytical method is applied to predict crack growth behavior of a semi-elliptical surface crack in a flat plane that has an arbitrary residual stress profile; specimens are sensitized type 304 stainless steels which had been subjected to neutron irradiation in high temperature water. SCC growth behavior of a semi-elliptical surface crack was greatly dependent on the distribution of residual stress in a flat plane. When residual stress at the surface of the flat plane was relatively small, the method predicted SCC propagation did not take place. (author)

  11. The manufacturing of Stress Corrosion Crack (SCC) on Inconel 600 tube

    International Nuclear Information System (INIS)

    Bae, Seunggi; Bak, Jaewoong; Kim, Seongcheol; Lee, Sangyul; Lee, Boyoung

    2014-01-01

    The Stress Corrosion Crack (SCC), taken a center stage in recently accidents about nuclear power plants, is one of the environmentally induced cracking occurred when a metallic structure under tensile stress is exposed to corrosive environment. In this study, the SCC was manufactured in the simulated corrosive environmental conditions on Inconel 600 tube that widely applied in the nuclear power plants. The tensile stress which is one of the main factors to induce SCC was given by GTAW welding in the inner surface of the specimen. The corrosive environment was simulated by using the sodium hydroxide (NaOH) and sodium sulfide (Na 2 S). In this study, SCC was manufactured in the simulated corrosive environmental conditions with Inconel 600 tube that widely applied in the nuclear power plants. 1) The SCC was manufactured on Inconel 600 tube in simulated operational environments of nuclear power plants. In the experiment, the welding heat input which is enough to induce the cracking generated the SCC near the welding bead. So, in order to prevent the SCC, the residual stress on structure should be relaxed. 2) The branch-type cracking was detected

  12. Stochastic model of texture dependence of iodine SCC susceptibility of a zircaloy-2 alloy

    International Nuclear Information System (INIS)

    Hirao, Keiichi; Yamane, Toshimi; Nakajima, Shinichi; Node, Shunsaku; Fujisawa, Takashi; Minamino, Yoritoshi

    1991-01-01

    Effects of textures on statistical parameters of tensile elongations in stress corrosion cracking (SCC) of zircaloy-2 using a slow strain rate test (SSRT) method have been investigated by Weibull distribution method based on stochastic process theory. The SCC is analyzed by assuming a probabilistic state transition model. Tensile directions of test pieces were prepared parallel, 45deg and perpendicular to rolling direction of the sheet. The test pieces in evacuated silica tubes were annealed at 1073K for 7.2x10 3 s, and then quenched into ice water. The annealed pieces with tilt angle α between tensile direction and a basal plane {0001} were 0, 18 and 25deg respectively. The tensile elongations of zircaloy-2 in SCC using the SSRT method are found to obey the single Weibull distribution with location parameters, and the SCC phenomena can be described by the Weibull distribution based on the stochastic process. The values of scale parameter η decrease with the tilt angle α, and the SCC susceptibility can be indicated by the values of scale parameter η. The texture dependence of the values of shape parameters m shows the changes of corrosion process in iodine solution and deformation system in air which are observed in the SSRT. The mechanism of decrement in the SCC susceptibility changes with the tilt angle α. The SCC under SSRT method is found to obey the model of probabilistic state transition. The constant load SCC process which obey the model of probabilistic state transition, is found to be effective for estimation of accelerated SCC condition. (author)

  13. Effect of overload on SCC growth in stainless steels in high temperature water

    International Nuclear Information System (INIS)

    Xue, He; Peng, Qunjia; Shoji, Tetsuo

    2009-01-01

    By incorporating the film slip-dissolution/oxidation model and the elastic-plastic finite element method (EPFEM), the effect of the overload on stress corrosion cracking (SCC) growth rate of stainless steel in high temperature water is discussed in this paper. Results show that SCC growth rate of a 20% cold worked 316L stainless steel in high temperature water decrease in the overload affected zone ahead of the growing crack tip. Therefore, a reasonable overload could availably reduce the SCC growth rate during a certain in-service period. (author)

  14. Multi-scale analysis of deformation behavior at SCC crack tip (3) (Contract research)

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Miwa, Yukio; Tsukada, Takashi; Hayakawa, Masao; Nagashima, Nobuo

    2008-08-01

    In recent years, incidents of the stress corrosion cracking (SCC) were frequently reported that occurred to the various components of domestic boiling water reactors (BWR), and the cause investigation and measure become the present important issue. By the Japan nuclear energy safety organization (JNES), a research project on the intergranular SCC (IGSCC) in nuclear grade stainless steels (henceforth, IGSCC project) is under enforcement from a point of view to secure safety and reliability of BWR, and SCC growth data of low carbon stainless steels are being accumulated for the weld part or the work-hardened region adjacent to the weld metal. In the project, it has been an important subject to guarantee the validity of accumulated SCC data. At a crack tip of SCC in compact tension (CT) type specimen used for the SCC propagation test, a macroscopic plastic region is formed where heterogeneity of microstructure developed by microscopic sliding and dislocations is observed. However, there is little quantitative information on the plastic region, and therefore, to assess the data of macroscopic SCC growth rate and the validity of propagation test method, it is essentially required to investigate the plastic region at the crack tip in detail from a microscopic viewpoint. This report describes a result of the research conducted by the Japan Atomic Energy Agency and the National Institute for Materials Science under contract with JNES that was concerned with a multi-scale analysis of plastic deformation behavior at the crack tip of SCC. The research was carried out to evaluate the validity of the SCC growth data acquired in the IGSCC project based on a mechanistic understanding of SCC. For the purpose, in this research, analyses of the plastic deformation behavior and microstructure around the crack tip were performed in a nano-order scale. The hardness measured in nano, meso and macro scales was employed as a common index of the strength, and the essential data necessary

  15. Holiday fun with soft gluons

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Emissions of soft gluons from energetic particles play an important role in collider processes. While the basic physics of soft emissions is simple, it gives rise to a variety of interesting and intricate phenomena (non-global logs, Glauber phases, super-leading logs, factorization breaking). After an introduction, I will review progress in resummation methods such as Soft-Collinear Effective Theory driven by a better understanding of soft emissions. I will also show some new results for computations of soft-gluon effects in gap-between-jets and isolation-cone cross sections.

  16. Investigation of plastic zones near SCC tips in a pipeline after hydrostatic testing

    International Nuclear Information System (INIS)

    Li Jian; Elboujdaini, M.; Gao, M.; Revie, R.W.

    2008-01-01

    Stress corrosion cracking (SCC) is an important failure mechanism for oil and gas pipelines. In the past, hydrostatic testing has been frequently used to assess and mitigate stress corrosion cracking. It is commonly agreed that an effective hydrostatic test not only eliminates critical crack-like flaws, but also blunts the sub-critical crack tip thereby suppressing further SCC propagation. However, little study has been done on the plastic deformation that results from the high stress intensity at the crack tip due to hydrostatic testing pressure and its possible role in subsequent SCC propagation. In this study, microstructural details were examined of an API 5L X52 SCC-containing pipe removed from field service. Plastic deformation generated by the hydrostatic testing pressure was revealed by using high-resolution imaging of a focused ion beam (FIB) microscope. The existence of the microscopic plastic zones around some crack tips suggests that caution should be taken when setting up pipeline hydrostatic tests

  17. Investigation of plastic zones near SCC tips in a pipeline after hydrostatic testing

    Energy Technology Data Exchange (ETDEWEB)

    Li Jian [Materials Technology Laboratory, Natural Resources Canada, 568 Booth Street, Ottawa, Ont., K1A 0G1 (Canada)], E-mail: jili@nrcan.gc.ca; Elboujdaini, M [Materials Technology Laboratory, Natural Resources Canada, 568 Booth Street, Ottawa, Ont., K1A 0G1 (Canada); Gao, M [Blade Energy Partners, 16225 Park Ten Place, Suite 450, Houston, TX 77084 (United States); Revie, R W [Materials Technology Laboratory, Natural Resources Canada, 568 Booth Street, Ottawa, Ont., K1A 0G1 (Canada)

    2008-07-15

    Stress corrosion cracking (SCC) is an important failure mechanism for oil and gas pipelines. In the past, hydrostatic testing has been frequently used to assess and mitigate stress corrosion cracking. It is commonly agreed that an effective hydrostatic test not only eliminates critical crack-like flaws, but also blunts the sub-critical crack tip thereby suppressing further SCC propagation. However, little study has been done on the plastic deformation that results from the high stress intensity at the crack tip due to hydrostatic testing pressure and its possible role in subsequent SCC propagation. In this study, microstructural details were examined of an API 5L X52 SCC-containing pipe removed from field service. Plastic deformation generated by the hydrostatic testing pressure was revealed by using high-resolution imaging of a focused ion beam (FIB) microscope. The existence of the microscopic plastic zones around some crack tips suggests that caution should be taken when setting up pipeline hydrostatic tests.

  18. Report D : self-consolidating concrete (SCC) for infrastructure elements - creep, shrinkage and abrasion resistance.

    Science.gov (United States)

    2012-08-01

    Concrete specimens were fabricated for shrinkage, creep, and abrasion resistance : testing. Variations of self-consolidating concrete (SCC) and conventional concrete were : all tested. The results were compared to previous similar testing programs an...

  19. Relation between the mechanical properties and SCC behavior of the alloys used in high temperature water

    International Nuclear Information System (INIS)

    Tsubota, M.; Katayama, Y.; Kanazawa, Y.

    2007-01-01

    It was shown in the previous reports that carbon and low alloy steels, martensitic stainless steels and cold worked austenitic stainless steels have shown high SCC susceptibility in the highly hardened condition. Those steels had similar critical hardness for SCC (HV300-340), over which the materials showed SCC susceptibility, even though the hardening process was different. Hardening processes applied for the alloys were as follows: (1) Martensitic transformation: Carbon and low alloy steels and martensitic stainless steels. (2) Alpha-prime decomposition (precipitation hardening): martensitic stainless steels. (3) Cold work: austenitic stainless steels. The relationship between the mechanical properties and SCC susceptibility of the alloys is discussed and summarized in the present paper. (author)

  20. Structure of the Pds5-Scc1 Complex and Implications for Cohesin Function

    Directory of Open Access Journals (Sweden)

    Kyle W. Muir

    2016-03-01

    Full Text Available Sister chromatid cohesion is a fundamental prerequisite to faithful genome segregation. Cohesion is precisely regulated by accessory factors that modulate the stability with which the cohesin complex embraces chromosomes. One of these factors, Pds5, engages cohesin through Scc1 and is both a facilitator of cohesion, and, conversely also mediates the release of cohesin from chromatin. We present here the crystal structure of a complex between budding yeast Pds5 and Scc1, thus elucidating the molecular basis of Pds5 function. Pds5 forms an elongated HEAT repeat that binds to Scc1 via a conserved surface patch. We demonstrate that the integrity of the Pds5-Scc1 interface is indispensable for the recruitment of Pds5 to cohesin, and that its abrogation results in loss of sister chromatid cohesion and cell viability.

  1. Report E : self-consolidating concrete (SCC) for infrastructure elements - hardened mechanical properties and durability performance.

    Science.gov (United States)

    2012-08-01

    Concrete is one of the most produced and utilized materials in the world. Due to : the labor intensive and time consuming nature of concrete construction, new and : innovative concrete mixes are being explored. Self-consolidating concrete (SCC) is on...

  2. Improvement of life time of SCC in type 304 stainless steel by ultrasound irradiation

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu; Kimura, Hideo

    1985-01-01

    It is well known that the susceptibility to stress corrosion cracking (SCC) is controled by compressive stress such as shot-peening treatment. In this study, the effects of ultrasound irradiation to type 304 stainless upon SCC were investigated. The main findings are as follows; (1) Ultrasound irradiation produces the high level compressive stress on the surface of metals. This compressive stress was induced by the cavitation phenomenon. (2) In U-bent specimen, the initial tensile stress was mitigated and converted to compressive stress by ultrasound irradiation. (3) Type 304 stainless steel was subjected to SCC test using sodium thyosulfate solution. It was definitely demonstrated that the ultrasound irradiation was effective for the mitigation of SCC life time. (4) Ultrasound irradiation time was one of the most important factors in irradiation conditions. (author)

  3. Chl1 DNA helicase regulates Scc2 deposition specifically during DNA-replication in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Soumya Rudra

    Full Text Available The conserved family of cohesin proteins that mediate sister chromatid cohesion requires Scc2, Scc4 for chromatin-association and Eco1/Ctf7 for conversion to a tethering competent state. A popular model, based on the notion that cohesins form huge ring-like structures, is that Scc2, Scc4 function is essential only during G1 such that sister chromatid cohesion results simply from DNA replisome passage through pre-loaded cohesin rings. In such a scenario, cohesin deposition during G1 is temporally uncoupled from Eco1-dependent establishment reactions that occur during S-phase. Chl1 DNA helicase (homolog of human ChlR1/DDX11 and BACH1/BRIP1/FANCJ helicases implicated in Fanconi anemia, breast and ovarian cancer and Warsaw Breakage Syndrome plays a critical role in sister chromatid cohesion, however, the mechanism through which Chl1 promotes cohesion remains poorly understood. Here, we report that Chl1 promotes Scc2 loading unto DNA such that both Scc2 and cohesin enrichment to chromatin are defective in chl1 mutant cells. The results further show that both Chl1 expression and chromatin-recruitment are tightly regulated through the cell cycle, peaking during S-phase. Importantly, kinetic ChIP studies reveals that Chl1 is required for Scc2 chromatin-association specifically during S-phase, but not during G1. Despite normal chromatin enrichment of both Scc2 and cohesin during G1, chl1 mutant cells exhibit severe chromosome segregation and cohesion defects--revealing that G1-loaded cohesins is insufficient to promote cohesion. Based on these findings, we propose a new model wherein S-phase cohesin loading occurs during DNA replication and in concert with both cohesion establishment and chromatin assembly reactions--challenging the notion that DNA replication fork navigates through or around pre-loaded cohesin rings.

  4. EDF program on SCC initiation of cold-worked stainless steels in primary water

    Energy Technology Data Exchange (ETDEWEB)

    Huguenin, P.; Vaillant, F.; Couvant, T. [Electricite de France (EDF/RD), Site des Renardieres, 77 - Moret sur loing (France); Buisse, L. [EDF UTO, 93 - Noisy-Le-Grand (France); Huguenin, P.; Crepin, J.; Duhamel, C.; Proudhon, H. [MINES ParisTech, Centre des Materiaux, 91 - Evry (France); Ilevbare, G. [EPRI California (United States)

    2009-07-01

    A few cases of Intergranular Stress Corrosion Cracking (IGSCC) on cold-worked austenitic stainless steels in primary water have been detected in French Pressurized Water Reactors (PWRs). A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with cyclic loading favoured SCC, whereas cracking under static conditions appeared to be difficult. A propagation model was also proposed. The first available results of the present study demonstrate the strong influence of a trapezoidal cyclic loading on the creep of 304L austenitic stainless steel. While no creep was detected under a pure static loading, the creep rate was increased by a factor 102 under a trapezoidal cyclic loading. The first results of SCC initiation performed on notched specimens under a trapezoidal cyclic loading at low frequency are presented. The present study aims at developing an engineering model for IGSCC initiation of 304L, 316L and weld 308L stainless steels. The effect of the pre-straining on the SCC mechanisms is more specifically studied. Such a model will be based on (i) SCC initiation tests on notched and smooth specimens under 'trapezoidal' cyclic loading and, (ii) constant strain rate SCC initiation tests. The influence of stress level, cold-work level, strain path, surface roughness and temperature is particularly investigated. (authors)

  5. Multi-scale analysis of deformation behavior at SCC crack tip (2). (Contract research)

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Miwa, Yukio; Tsukada, Takashi; Hayakawa, Masao; Nagashima, Nobuo

    2007-03-01

    This report describes a result of the research conducted by the Japan Atomic Energy Agency and the National Institute for Materials Science under contract with Japan Nuclear Energy Safety Organization (JNES) that was concerned with a multi-scale analysis of plastic deformation behavior at the crack tip of stress corrosion cracking (SCC). The research was carried out to evaluate the validity of the SCC growth data acquired in the intergranular SCC (IGSCC) project based on a mechanistic understanding of SCC. For the purpose, in this research, analyses of the plastic deformation behavior and microstructure around the crack tip were performed in a nano-order scale. The hardness measured in nano, meso and macro scales was employed as a common index of the strength, and the essential data necessary to understand the SCC propagation behavior were acquired and analyzed that are mainly a size of plastic deformation region and a microstructural information in the region, e.g. data of crystallografy, microscopic deformation and dislocations at the inside of grains and grain boundaries. In this year, we analyzed the state of plastic deformation region at the crack tip of IGSCC under various conditions and investigated relationship between crack growth behavior and stress intensity factor. Especially, we investigated in detail about two different hardened specimens used in the SCC growth tests in the IGSCC project. (J.P.N.)

  6. Fundamental and clinical evaluation of ''SCC RIABEAD'' kit for immunoradiometric assay of squamous cell carcinoma related antigen

    International Nuclear Information System (INIS)

    Koizumi, Mitsuru; Endo, Keigo; Nakajima, Kotoko

    1987-01-01

    A commercial ''SCC RIABEAD'' kit for immunoradiometric assay of squamous cell carcinoma related antigen (SCC antigen) was fundamentally and clinically evaluated. Laboratory performance was satisfactory for intra-assay and inter-assay reproducibility, recovery, and dilution, with rapid and simple measurement techniques. Seropositivity for SCC antigen was significantly higher for squamous cell carcinoma of the liver and uterine cervix than the other histology types. In the case of cervical squamous cell carcinoma, it increased with progressing disease. Post-treatment serum levels of SCC antigen returned to negative. SCC antigen is considered to be a useful tumor marker for these diseases. There was a good correlation between the measurement values obtained from the present and conventional (SCC RIAKIT) assays. The present assay remarkably decreased false-positive cases of pulmonary benign diseases. The results showed a ''SCC RIABEAD'' to be a favorable kit for immunoradiometric assay of SSC antigen, as compared with conventional assay kit. (Namekawa, K.)

  7. A high performance scientific cloud computing environment for materials simulations

    Science.gov (United States)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  8. SCC of Alloy 600 components in PWR primary loop

    International Nuclear Information System (INIS)

    Gomez-Briceno, Dolores; Lapena, Jesus; Castano, M. Luisa; Blazquez, Fernando

    2002-01-01

    initiation time has been determined. A detailed fractographic study of the fracture surface points out that the appearance of the fracture, intergranular in all the cases, is related to the susceptibility of the material. For the crack growth rate test, CT specimens tested under constant load were used. Specimens were fabricated from five Alloy 600 heats (two forged bars, cold work and hot work tubes, and a plate) with yield strength ranging from 280 to 413 MPa. Crack growth rate data were obtained at temperatures between 290 and 330 deg. C. Activation energy for both processes, crack initiation and propagation has been determined. On the other hand, in January 1994, during a refueling outage, an ID axial throughwall crack was detected in one of the RVH nozzle of Jose Cabrera Nuclear Plant in Spain. Extensive NDE examination of all the vessel head penetrations confirmed ID axially oriented indications in several of the nozzles. The cause of the extensive cracking detected was identified as an IGA/SCC process in primary water contaminated with sulphur species due to a cation resin ingress in the primary loop during the early 1980s. In order to confirm the postulated degradation process and to assess its relevance for other alloy 600 components in the reactor primary loop, an experimental program was performed. The scope of this program included to study the behaviour of sensitised alloy 600 in the water conditions postulated as the cause of the cracking and to obtain crack growth rate data in similar conditions, at 285 and 325 deg. C. In addition, the behaviour of the sensitised alloy 600 in shutdown conditions was also studied. In this paper the main results of these experimental programs, including no published data, will be presented and discussed in the light of the available results from other laboratories. (author)

  9. Soft leptogenesis

    International Nuclear Information System (INIS)

    D'Ambrosio, Giancarlo; Giudice, Gian F.; Raidal, Martti

    2003-01-01

    We study 'soft leptogenesis', a new mechanism of leptogenesis which does not require flavour mixing among the right-handed neutrinos. Supersymmetry soft-breaking terms give a small mass splitting between the CP-even and CP-odd right-handed sneutrino states of a single generation and provide a CP-violating phase sufficient to generate a lepton asymmetry. The mechanism is successful if the lepton-violating soft bilinear coupling is unconventionally (but not unnaturally) small. The values of the right-handed neutrino masses predicted by soft leptogenesis can be low enough to evade the cosmological gravitino problem

  10. Simulation of the soft-landing and adsorption of C{sub 60} molecules on a graphite substrate and computation of their scanning-tunnelling-microscopy-like images

    Energy Technology Data Exchange (ETDEWEB)

    Rafii-Tabar, H. [Computational Nano-Science Research Group, Centre for Numerical Modelling and Process Analysis, School of Computing and Mathematical Sciences, University of Greenwich, Greenwich, London (United Kingdom); Jurczyszyn, L.; Stankiewicz, B. [Institute of Experimental Physics, University of Wroclaw, Wroclaw (Poland)

    2000-07-03

    A constant-temperature molecular dynamics (MD) simulation was performed to model the soft-landing and adsorption of C{sub 60} molecules on a graphite substrate with the C{sub 60}s treated as soft molecules and released individually towards the substrate. The intra-molecular and intra-planar covalently bonding interactions were modelled by very accurate many-body potentials, and the non-bonding forces were derived from various pairwise potentials. The simulation extended over 1.6 million time steps covering a significant period of 160 picoseconds. The final alignment of the molecules on the surface agrees closely with that observed in an experiment based on scanning tunnelling microscopy (STM) on the same system, performed at room temperature and under ultrahigh-vacuum (UHV) conditions. Using a tungsten tip in a constant-current mode of imaging, we have also computed the STM-like images of one of the adsorbed molecules using a formulation of the STM tunnelling current based on Keldysh's non-equilibrium Green function formalism. Our aim has been to search for tip-induced states, which were speculated, on the basis of another STM-based experiment, performed in air, to form one of the possible origins of the extra features purported to have been observed in that experiment. We have not obtained any such states. (author)

  11. An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging.

    Science.gov (United States)

    Pauwels, E; Van Loo, D; Cornillie, P; Brabant, L; Van Hoorebeke, L

    2013-04-01

    High resolution X-ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for histological purposes it has great potential. Although microCT has proven to be a valuable technique for the imaging of bone structures, the visualization of soft tissue structures is still an important challenge due to their low inherent X-ray contrast. One way to achieve contrast enhancement is to make use of contrast agents. However, contrary to light and electron microscopy, knowledge about contrast agents and staining procedures is limited for X-ray CT. The purpose of this paper is to identify useful X-ray contrast agents for soft tissue visualization, which can be applied in a simple way and are also suited for samples larger than (1 cm)(3) . And 28 chemical substances have been investigated. All chemicals were applied in the form of concentrated aqueous solutions in which the samples were immersed. First, strips of green Bacon were stained to evaluate contrast enhancement between muscle and adipose tissue. Furthermore it was also tested whether the contrast agents remained fixed in the tissue after staining by re-immersing them in water. Based on the results, 12 contrast agents were selected for further testing on postmortem mice hind legs, containing a variety of different tissues, including muscle, fat, bone, cartilage and tendons. It was evaluated whether the contrast agents allowed a clearer distinction between the different soft tissue structures present. Finally also penetration depth was measured. And 26 chemicals resulted in contrast enhancement between muscle and adipose tissue in the Bacon strips. Mercury(II)chloride (HgCl2 ), phosphotungstic acid (PTA), phosphomolybdic acid (PMA) and ammonium orthomolybdate ((NH4 )2 MoO4 ) remained fixed after re-immersion in water. The penetration tests showed that potassium iodide (KI) and sodium tungstate can be most efficiently used for large samples of the order

  12. From Soft Sculpture to Soft Robotics: Retracing a Physical Aesthetics of Bio-Morphic Softness

    DEFF Research Database (Denmark)

    Jørgensen, Jonas

    2017-01-01

    Soft robotics has in the past decade emerged as a growing subfield of technical robotics research, distinguishable by its bio-inspired design strategies, interest in morphological computation, and interdisciplinary combination of insights from engineering, computer science, biology and material...... science. Recently, soft robotics technology has also started to make its way into art, design, and architecture. This paper attempts to think an aesthetics of softness and the life-like through an artistic tradition deeply imbricated with an interrogation of softness and its physical substrates, namely...... the soft sculpture that started proliferating in the late 1960s. Critical descriptions of these works, interestingly, frequently emphasize their similarities with living organisms and bodies as a central tenet of their aesthetics. The paper seeks to articulate aspects of a contiguity between softness...

  13. A comparison of monthly precipitation point estimates at 6 locations in Iran using integration of soft computing methods and GARCH time series model

    Science.gov (United States)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2017-11-01

    Precipitation plays an important role in determining the climate of a region. Precise estimation of precipitation is required to manage and plan water resources, as well as other related applications such as hydrology, climatology, meteorology and agriculture. Time series of hydrologic variables such as precipitation are composed of deterministic and stochastic parts. Despite this fact, the stochastic part of the precipitation data is not usually considered in modeling of precipitation process. As an innovation, the present study introduces three new hybrid models by integrating soft computing methods including multivariate adaptive regression splines (MARS), Bayesian networks (BN) and gene expression programming (GEP) with a time series model, namely generalized autoregressive conditional heteroscedasticity (GARCH) for modeling of the monthly precipitation. For this purpose, the deterministic (obtained by soft computing methods) and stochastic (obtained by GARCH time series model) parts are combined with each other. To carry out this research, monthly precipitation data of Babolsar, Bandar Anzali, Gorgan, Ramsar, Tehran and Urmia stations with different climates in Iran were used during the period of 1965-2014. Root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute error (MAE) and determination coefficient (R2) were employed to evaluate the performance of conventional/single MARS, BN and GEP, as well as the proposed MARS-GARCH, BN-GARCH and GEP-GARCH hybrid models. It was found that the proposed novel models are more precise than single MARS, BN and GEP models. Overall, MARS-GARCH and BN-GARCH models yielded better accuracy than GEP-GARCH. The results of the present study confirmed the suitability of proposed methodology for precise modeling of precipitation.

  14. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues.

    Science.gov (United States)

    Gignac, Paul M; Kley, Nathan J; Clarke, Julia A; Colbert, Matthew W; Morhardt, Ashley C; Cerio, Donald; Cost, Ian N; Cox, Philip G; Daza, Juan D; Early, Catherine M; Echols, M Scott; Henkelman, R Mark; Herdina, A Nele; Holliday, Casey M; Li, Zhiheng; Mahlow, Kristin; Merchant, Samer; Müller, Johannes; Orsbon, Courtney P; Paluh, Daniel J; Thies, Monte L; Tsai, Henry P; Witmer, Lawrence M

    2016-06-01

    Morphologists have historically had to rely on destructive procedures to visualize the three-dimensional (3-D) anatomy of animals. More recently, however, non-destructive techniques have come to the forefront. These include X-ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard-tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT-based research is the use of chemical agents to render visible, and differentiate between, soft-tissue structures in X-ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine-based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine-based, contrast-enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting-edge applications of diffusible iodine-based contrast-enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward. © 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  15. Influence of startup oxidizing transients of IGA/SCC in PWR steam generators

    International Nuclear Information System (INIS)

    Gorman, J.A.; McIlree, A.R.; Gaudreau, T.; Bjornkvist, L.; Andersson, P.-O.

    1998-01-01

    There is a considerable amount of evidence oxidizing conditions during and following startups are an important factor in the intergranular corrosion/stress corrosion cracking (IGA/SCC) of mill annealed alloy 600 steam generator tubes. This evidence includes plant data that indicate that the growth of IGA/SCC correlates better in some cases with numbers of startups than with time at power, laboratory tests in several plausible crevice environments that show that small amounts of copper oxides accelerate the rate of IGA/SCC, laboratory tests that show that elevating the electrochemical potential (ECP) increases the rates of IGA/SCC in many chemical environments, and laboratory tests that show that copper oxides, hematite, and other oxidized corrosion products can raise the ECP of several solution chemistries into aggressive ranges. Some preliminary data also exist that show that some amounts of oxidized species are produced during typical layup and startup conditions, but data for the subsequent reduction of these oxides are largely lacking. The purpose of this paper is to review the available evidence, to arrive at conclusions regarding the probable importance of oxidizing conditions during startup on occurrence of IGA/SCC, and to identify needed research to better quantify the situation. (author)

  16. Determination of I-SCC crack propagation rate of zircaloy-4

    International Nuclear Information System (INIS)

    Woo-Seog, Ryu

    2002-01-01

    Threshold stress intensity (K ISCC ) and propagation rate of iodine-induced SCC in recrystallized and stress-relieved Zircaloy-4 were determined using a DCPD method. Dynamic system flowing Ar gas through iodine chamber at 60 deg C provided a constant iodine pressure of 1000 Pa during test. The SCC curves of crack velocity vs. stress intensity showed the typical SCC curves that are composed of stages I, II and III. The threshold K ISCC at 350 deg C was about 9 and 9.5 MPa √m for the stress- relieved Zircaloy-4 and the recrystallized Zircaloy-4, respectively. The plateau velocity in the stage II at 350 deg C was 4-8x 10 -4 mm/sec in the range of 20-40 MPa√m. In comparison with recrystallized Zircaloy-4, stress-relieved Zircaloy-4 had a lower threshold stress intensity factor and a little higher SCC velocity, indicating that SRA Zircaloy-4 was more sensitive to SCC in respect of velocity. The fracture mode in recrystallized Zircaloy was mostly a transgranular fracture with river pattern. An intergranular mode and the flutting were scarcely observed. (author)

  17. Soft tissue-preserving computer-aided impression: a novel concept using ultrasonic 3D-scanning.

    Science.gov (United States)

    Vollborn, Thorsten; Habor, Daniel; Pekam, Fabrice Chuembou; Heger, Stefan; Marotti, Juliana; Reich, Sven; Wolfart, Stefan; Tinschert, Joachim; Radermacher, Klaus

    2014-01-01

    Subgingival preparations are often affected by blood and saliva during impression taking, regardless of whether one is using compound impression techniques or intraoral digital scanning methods. The latter are currently based on optical principles and therefore also need clean and dry surfaces. In contrast, ultrasonic waves are able to non-invasively penetrate gingiva, saliva, and blood, leading to decisive advantages, as cleaning and drying of the oral cavity becomes unnecessary. In addition, the application of ultrasound may facilitate the detection of subgingival structures without invasive manipulation, thereby reducing the risk of secondary infection and treatment time, and increasing patient comfort. Ultrasound devices commonly available for medical application and for the testing of materials are only suitable to a limited extent, as their resolution, precision, and design do not fulfill the requirements for intraoral scanning. The aim of this article is to describe the development of a novel ultrasound technology that enables soft tissue-preserving digital impressions of preparations for the CAD/CAM-based production of dental prostheses. The concept and development of the high-resolution ultrasound technique and the corresponding intraoral scanning system, as well as the integration into the CAD/CAM process chain, is presented.

  18. The clinical significance of follow up SCC levels in patients with recurrent squamous cell carcinoma of the cervix

    International Nuclear Information System (INIS)

    Choi, Young Min; Park, Sung Kwang; Cho, Heung Lae; Lee, Kyoung Bok; Kim, Ki Tae; Kim, Ju Ree; Sohn, Seung Chang

    2002-01-01

    To investigate the clinical usefulness of a follow-up examination using serum squamous cell carcinoma antigen (SCC) for the early detection of recurrence in patients treated for cervical squamous cell carcinoma. 20 patients who were treated for recurrent cervical squamous cell carcinoma between 1997 and 1998, who had experienced a complete remission after radiotherapy and who underwent an SCC test around the time when recurrence was detected, were included in this study. The levels of SCC were measured from the serum of the patients by immunoassay and values less than 2 ng/mL were regarded as normal. The sensitivity of the SCC test for use in the detection of recurrence, the association between the SCC values and the recurrence patterns and the tumor size and stage, and the temporal relation between the SCC increment and recurrence detection were evaluated. The SCC values were above normal in 17 out of 20 patients, so the sensitivity of the SCC test for the detection of recurrence was 85%, and the mean and median of the SCC values were 15.2 and 9.5 ng/mL, respectively. No differences were observed in the SCC values according to the recurrence sites. For 11 patients, the SCC values were measured over a pero id of 6 months before recurrence was detected, and the mean and median values were 13.6 and 3.6 ng/mL, respectively. The SCC values of 7 patients were higher than the normal range, and the SCC values of the other 4 patients were normal but 3 among them were above 1.5 ng/mL. At the time of diagnosis, the SCC valuess were measured for 16 of the 20 recurrent patients, and the SCC values of the patients with a bulky tumor (≥ 4 cm) or who were in stage IIb or III were higher than those of the patients with a non-bulky tumor or who were in stage Ib or IIa. The SCC test is thought to be useful for the early detection of recurrence during the follow up period in patients treated for cervical squamous cell carcinoma. When an effective salvage treatment is developed in

  19. Computational alloy design of (Co1-xNix)88Zr7B4Cu1 nanocomposite soft magnets

    Science.gov (United States)

    Dong, B.; Healy, J.; Lan, S.; Daniil, M.; Willard, M. A.

    2018-05-01

    The dependence of coercivity on composition is an important factor for establishing optimized soft magnetic properties. In this study, we have used the random anisotropy and coherent rotation models to estimate the variation of coercivity with composition in (Co1-xNix)88Zr7B4Cu1 nanocomposite alloys. Our calculations that the magnetoelastic anisotropy contribution to coercivity dominates for Ni rich compositions (x > 0.5). A small range of compositions (0.65 < x < 0.75) is predicted to result in low values of coercivity (<10 A/m). To validate this prediction, (Co1-xNix)88Zr7B4Cu1 nanocomposites in this range were prepared by melt spinning followed by 3600 s isothermal annealing at the primary crystallization peak temperature (˜673 K). Hysteresis loops were measured using vibrating sample magnetometry at room temperature and saturation magnetostriction was measured using a strain gage based magnetostrictometer. Moderately small coercivities (30-40 A/m) and magnetostrictions (3-4 ppm) were measured at for samples with 0.685 < x < 0.725. Our measured coercivity had a minimum value of 32 A/m at x = 0.725, a shift in composition of about 5 at% in the direction of higher Ni content and without the anticipated low value of coercivity. Several reasons for the inaccuracy of this approach are described, including: ignored contributions from amorphous phase (especially in magnetoealstic anisotropy), composition segregation during crystallization leading to unpredictable compositional shifts in prediction, and the general observation that the predictability of minimum coercivity from minimal combined anisotropies has unexplained deviation even in far less complicated materials.

  20. Elucidating the iodine stress corrosion cracking (SCC) process for zircaloy tubing

    International Nuclear Information System (INIS)

    Nagai, M.; Shimada, S.; Nishimura, S.; Amano, K.

    1984-01-01

    Several experimental investigations were made to enhance understanding of the iodine stress corrosion cracking (SCC) process for Zircaloy: (1) oxide penetration process, (2) crack initiation process, and (3) crack propagation process. Concerning the effect of the oxide layer produced by conventional steam-autoclaving, no significant difference was found between results for autoclaved and as-pickled samples. Tests with 15 species of metal iodides revealed that only those metal iodides which react thermodynamically with zirconium to produce zirconium tetraiodide (ZrI 4 ) caused SCC of Zircaloy. Detailed SEM examinations were made on the SCC fracture surface of irradiated specimens. The crack propagation rate was expressed with a da/dt=C Ksup(n) type equation by combining results of tests and calculations with a finite element method. (author)

  1. SCC susceptibility of cold-worked stainless steel with minor element additions

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Junichi, E-mail: nakano.junnichi@jaea.go.jp [Japan Atomic Energy Agency, Shirakatashirane 2-4, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Nemoto, Yoshiyuki, E-mail: yoshiyuki.nemoto@oecd.org [OECD Nuclear Energy Agency, Le Seine St-Germain, 12, boulevard des Iles, F-92130 Issy-les-Moulineaux (France); Tsukada, Takashi, E-mail: tsukada.takashi@jaea.go.jp [Japan Atomic Energy Agency, Shirakatashirane 2-4, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Uchimoto, Tetsuya, E-mail: uchimoto@ifs.tohoku.ac.jp [Tohoku University, Aoba-ku, Sendai-shi, Miyagi-ken 980-8577 (Japan)

    2011-10-01

    To examine the effects of minor elements on stress corrosion cracking (SCC) susceptibility of low carbon stainless steels with a work hardened layer, a high purity type 304 stainless steel was fabricated and minor elements, Si, S, P, C or Ti, were added. A work hardened layer was introduced by shaving on the surface of stainless steels. The specimens were exposed to a boiling 42% MgCl{sub 2} solution for 20 h and the number and the length of initiated cracks were examined. SCC susceptibility of the specimen with P was the highest and that of the specimen with C was the lowest in all specimens. By magnetic force microscope examination, a magnetic phase expected to be a martensitic phase was detected near the surface. Since corrosion resistance of martensite is lower than that of austenite, the minor elements additions would affect SCC susceptibility through the amount of the transformed martensite.

  2. SCC susceptibility of cold-worked stainless steel with minor element additions

    International Nuclear Information System (INIS)

    Nakano, Junichi; Nemoto, Yoshiyuki; Tsukada, Takashi; Uchimoto, Tetsuya

    2011-01-01

    To examine the effects of minor elements on stress corrosion cracking (SCC) susceptibility of low carbon stainless steels with a work hardened layer, a high purity type 304 stainless steel was fabricated and minor elements, Si, S, P, C or Ti, were added. A work hardened layer was introduced by shaving on the surface of stainless steels. The specimens were exposed to a boiling 42% MgCl 2 solution for 20 h and the number and the length of initiated cracks were examined. SCC susceptibility of the specimen with P was the highest and that of the specimen with C was the lowest in all specimens. By magnetic force microscope examination, a magnetic phase expected to be a martensitic phase was detected near the surface. Since corrosion resistance of martensite is lower than that of austenite, the minor elements additions would affect SCC susceptibility through the amount of the transformed martensite.

  3. The effect of form pressure on the air void structure of SCC

    DEFF Research Database (Denmark)

    Jensen, Mikkel Vibæk; Hasholt, Marianne Tange; Geiker, Mette Rica

    2005-01-01

    The high workability of self-compacting concrete (SCC) invites to high casting rates. However, casting walls at high rate may result in large pressure at the bottom of the form and subsequently compression of the air voids. This paper deals with the influence of hydrostatic pressure during setting...... on the air void structure of hardened, air entrained SCC. The subject was examined through laboratory investigations of SCC with two different amounts of air entrainment. The condition in the form was simulated by using containers making it possible to cure concrete under various pressures corresponding...... to the bottom of castings of 0, 2, 4, and 6 meters height. The laboratory investigations were supplemented with data from two full-scale wall castings. The air void structure of the hardened concretes was determined on plane sections. The results indicate that the pressure related changes of the air void...

  4. PREFACE: 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics & 38th National Conference on Theoretical Physics

    Science.gov (United States)

    2014-09-01

    This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1

  5. Application of tumor markers SCC-Ag, CEA, and TPA in patients with cervical precancerous lesions.

    Science.gov (United States)

    Farzaneh, Farah; Shahghassempour, Shapour; Noshine, Bahram; Arab, Maliheh; Yaseri, Mehdi; Rafizadeh, Mitra; Alizadeh, Kamyab

    2014-01-01

    To determine the potential clinical utility of tumor markers CEA, TPA, and SCC-Ag for early detection of cervical precancerous lesions. A case-control study was carried out on 120 women (46 patients with histologically confirmed cervical precancerous lesions and 74 healthy controls). The significance of serum selected tumor markers in early detection of cervical intraepithelial neoplasia (CIN) were assessed. Of the case group, the rates of CIN I, II, III, was 69.6%, 23.9%, and 6.5%, respectively. According to the manufacturer's cut-off values of 2 ng/ml, 5 ng/ml, and 70 U/ml for SCC-Ag, CEA and TPA tests, in that order, SCC-Ag test had a sensitivity of 13%, but CEA and TPA tests could not distinguish between case and control groups. The diagnostic sensitivities were highest at cut-off values of 0.55 ng/ml for SCC-Ag, 2.6 ng/ ml for CEA, and 25.5 U/ml for TPA which were 93%, 61%, and 50%, respectively. However, the area under the receiver operating characteristic curve was the largest for SCC-Ag (0.95 vs. 0.61 and 0.60 for CEA and TPA, respectively). Moreover, there was a highly significant direct correlation between SCC-Ag concentration and the degree of cervical precancerous lesions (r=0.847, ptumor marker in Iranian patients with CIN and it needs to be more evaluated by studies with larger populationa.

  6. Soft Robotics.

    Science.gov (United States)

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Soft lubrication

    Science.gov (United States)

    Skotheim, Jan; Mahadevan, Laksminarayanan

    2004-11-01

    We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g a shell) or constitutive properties (e.g. a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving tangentially to a soft layer coating a rigid substrate; a soft cylinder moving tangentially to a rigid substrate; a cylindrical shell moving tangentially to a rigid substrate; and finally a journal bearing coated with a thin soft layer, which being a conforming contact allows us to gauge the influence of contact geometry. In addition, for the particular case of a soft layer coating a rigid substrate we consider both elastic and poroelastic material responses. Finally, we consider the role of contact geometry in the context of the journal bearing, a conforming contact. For all these cases we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness.

  8. Soft tissue tumors - imaging methods

    International Nuclear Information System (INIS)

    Arlart, I.P.

    1985-01-01

    Soft Tissue Tumors - Imaging Methods: Imaging methods play an important diagnostic role in soft tissue tumors concerning a preoperative evaluation of localization, size, topographic relationship, dignity, and metastatic disease. The present paper gives an overview about diagnostic methods available today such as ultrasound, thermography, roentgenographic plain films and xeroradiography, radionuclide methods, computed tomography, lymphography, angiography, and magnetic resonance imaging. Besides sonography particularly computed tomography has the most important diagnostic value in soft tissue tumors. The application of a recently developed method, the magnetic resonance imaging, cannot yet be assessed in its significance. (orig.) [de

  9. A simulation model for visitors’ thermal comfort at urban public squares using non-probabilistic binary-linear classifier through soft-computing methodologies

    International Nuclear Information System (INIS)

    Kariminia, Shahab; Shamshirband, Shahaboddin; Hashim, Roslan; Saberi, Ahmadreza; Petković, Dalibor; Roy, Chandrabhushan; Motamedi, Shervin

    2016-01-01

    Sustaining outdoor life in cities is decreasing because of the recent rapid urbanisation without considering climate-responsive urban design concepts. Such inadvertent climatic modifications at the indoor level have imposed considerable demand on the urban energy resources. It is important to provide comfortable ambient climate at open urban squares. Researchers need to predict the comfortable conditions at such outdoor squares. The main objective of this study is predict the visitors' outdoor comfort indices by using a developed computational model termed as SVM-WAVELET (Support Vector Machines combined with Discrete Wavelet Transform algorithm). For data collection, the field study was conducted in downtown Isfahan, Iran (51°41′ E, 32°37′ N) with hot and arid summers. Based on different environmental elements, four separate locations were monitored across two public squares. Meteorological data were measured simultaneously by surveying the visitors' thermal sensations. According to the subjects' thermal feeling and their characteristics, their level of comfort was estimated. Further, the adapted computational model was used to estimate the visitors’ thermal sensations in terms of thermal comfort indices. The SVM-WAVELET results indicate that R"2 value for input parameters, including Thermal Sensation, PMW (The predicted mean vote), PET (physiologically equivalent temperature), SET (standard effective temperature) and T_m_r_t were estimated at 0.482, 0.943, 0.988, 0.969 and 0.840, respectively. - Highlights: • To explore the visitors' thermal sensation at urban public squares. • This article introduces findings of outdoor comfort prediction. • The developed SVM-WAVELET soft-computing technique was used. • SVM-WAVELET estimation results are more reliable and accurate.

  10. SCC crack growth rate of cold worked 316L stainless steel in PWR environment

    Science.gov (United States)

    Du, Donghai; Chen, Kai; Yu, Lun; lu, Hui; Zhang, Lefu; Shi, Xiuqiang; Xu, Xuelian

    2015-01-01

    Many component failures in nuclear power plants were found to be caused by stress corrosion cracking (SCC) of cold worked austenitic steels. Some of the pressure boundary component materials are even cold worked up to 35% plastic deformation, leaving high residual stress and inducing high growth rate of corrosion crack. Controlling water chemistry is one of the best counter measure to mitigate this problem. In this work, the effects of temperature (200 up to 325 °C) and dissolved oxygen (0 up to 2000 μg/L) on SCC crack growth rates of cold worked austenitic stainless steel type 316L have been tested by using direct current potential drop (DCPD) method. The results showed that temperature affected SCC crack growth rates more significantly in oxygenated water than in deaerated water. In argon deaerated water, the crack growth rate exhibited a peak at about 250 °C, which needs further verification. At 325 °C, the SCC crack growth rate increased rapidly with the increase of dissolved oxygen concentration within the range from 0 up to 200 μg/L, while when dissolved oxygen was above 200 μg/L, the crack growth rate followed a shallower dependence on dissolved oxygen concentration.

  11. Durability Indicators Comparison for SCC and CC in Tropical Coastal Environments.

    Science.gov (United States)

    Calado, Carlos; Camões, Aires; Monteiro, Eliana; Helene, Paulo; Barkokébas, Béda

    2015-03-27

    Self-compacting concrete (SCC) demands more studies of durability at higher temperatures when subjected to more aggressive environments in comparison to the conventional vibrated concrete (CC). This work aims at presenting results of durability indicators of SCC and CC, having the same water/binder relations and constituents. The applied methodologies were electrical resistivity, diffusion of chloride ions and accelerated carbonation experiments, among others, such as microstructure study, scanning electron microscope and microtomography experiments. The tests were performed in a research laboratory and at a construction site of the Pernambuco Arena. The obtained results shows that the SCC presents an average electrical resistivity 11.4% higher than CC; the average chloride ions diffusion was 63.3% of the CC; the average accelerated carbonation penetration was 45.8% of the CC; and the average open porosity was 55.6% of the CC. As the results demonstrated, the SCC can be more durable than CC, which contributes to elucidate the aspects related to its durability and consequent prolonged life cycle.

  12. Durability Indicators Comparison for SCC and CC in Tropical Coastal Environments

    Directory of Open Access Journals (Sweden)

    Carlos Calado

    2015-03-01

    Full Text Available Self-compacting concrete (SCC demands more studies of durability at higher temperatures when subjected to more aggressive environments in comparison to the conventional vibrated concrete (CC. This work aims at presenting results of durability indicators of SCC and CC, having the same water/binder relations and constituents. The applied methodologies were electrical resistivity, diffusion of chloride ions and accelerated carbonation experiments, among others, such as microstructure study, scanning electron microscope and microtomography experiments. The tests were performed in a research laboratory and at a construction site of the Pernambuco Arena. The obtained results shows that the SCC presents an average electrical resistivity 11.4% higher than CC; the average chloride ions diffusion was 63.3% of the CC; the average accelerated carbonation penetration was 45.8% of the CC; and the average open porosity was 55.6% of the CC. As the results demonstrated, the SCC can be more durable than CC, which contributes to elucidate the aspects related to its durability and consequent prolonged life cycle.

  13. Effects of nano-silica (NS) additions on durability of SCC mixtures

    NARCIS (Netherlands)

    Quercia Bianchi, G.; Spiesz, P.R.; Brouwers, H.J.H.; Andrade, C; Gulikers, JJW; Polder, R

    2015-01-01

    In this study, three different types of nano-silica were applied in self-compacting concrete (SCC), one produced by the controlled dissolution of the olivine mineral and two having similar particle size distributions (PSD), but produced through two different processes: fumed powder nano-silica and

  14. Effect of surface grinding on chloride induced SCC of 304L

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nian, E-mail: nzh@du.se [Department of Material Science, Dalarna University, SE-79188 Falun (Sweden); KTH, SE-10044 Stockholm (Sweden); Pettersson, Rachel [KTH, SE-10044 Stockholm (Sweden); Jernkontoret, SE-11187 Stockholm (Sweden); Lin Peng, Ru [Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden); Schönning, Mikael [Corrosion Department, Avesta Research Centre – Outokumpu Stainless AB, SE-774 22 Avesta (Sweden)

    2016-03-21

    The effect of surface grinding on the stress corrosion cracking (SCC) behavior of 304L austenitic stainless steel in boiling magnesium chloride has been investigated. SCC tests were conducted both without external loading and with varied levels of four-point bend loading for as-delivered material and for specimens which had been ground parallel or perpendicular to the loading direction. Residual stresses due to the grinding operation were measured using the X-ray diffraction technique. In addition, surface stress measurements under applied load were performed before exposure to evaluate the deviation between actual applied loading and calculated values according to ASTM G39. Micro-cracks initiated by a high level of tensile residual stress in the surface layer were observed for all the ground specimens but not those in the as-delivered condition. Grinding along the loading direction increased the susceptibility to chloride induced SCC; while grinding perpendicular to the loading direction improved SCC resistance. Surface tensile residual stresses were largely relieved after the initiation of cracks.

  15. Inducement of IGA/SCC in Inconel 600 steam generator tubing during unit outages

    Energy Technology Data Exchange (ETDEWEB)

    Durance, D.; Sedman, K. [Bruce Power, Tiverton, Ontario (Canada); Roberts, J. [CANTECH Associates Ltd., Burlington, Ontario (Canada); King, P. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada); Gorman, J. [Dominion Engineering, Reston, VA (United States); Allen, R. [Kinectrics, Inc., Toronto, Ontario (Canada)

    2008-07-01

    The degradation of Unit 4 SG tubing by IGA/SCC has limited both the operating period and end of life predictions for Unit 4 since restart in late 2003. The circumferential IGA/SCC has been most significant in SG4 with substantial increases in both initiation and growth rates from 2005 through the spring of 2007. A detailed review of the occurrence of circumferential OD IGA/SCC at the RTZ in the HL TTS region of Bruce 4 steam generator tubes has led a conclusion that it is probable that the IGA/SCC has been the result of attack by partially reduced sulfur species such as tetrathionates and thiosulfates during periods of low temperature exposure. It is believed that attack of this type has mostly likely occurred during startup evolutions following outages as the result the development of aggressive reduced sulfur species in the TTS region during periods when the boilers were fully drained for maintenance activities. The modification of outage practices to limit secondary side oxygen ingress in the spring of 2007 has apparently arrested the degradation and has had significant affects on the allowable operating interval and end of life predictions for the entire unit. (author)

  16. Inducement of IGA/SCC in Inconel 600 steam generator tubing during unit outages

    International Nuclear Information System (INIS)

    Durance, D.; Sedman, K.; Roberts, J.; King, P.; Gorman, J.; Allen, R.

    2008-01-01

    The degradation of Unit 4 SG tubing by IGA/SCC has limited both the operating period and end of life predictions for Unit 4 since restart in late 2003. The circumferential IGA/SCC has been most significant in SG4 with substantial increases in both initiation and growth rates from 2005 through the spring of 2007. A detailed review of the occurrence of circumferential OD IGA/SCC at the RTZ in the HL TTS region of Bruce 4 steam generator tubes has led a conclusion that it is probable that the IGA/SCC has been the result of attack by partially reduced sulfur species such as tetrathionates and thiosulfates during periods of low temperature exposure. It is believed that attack of this type has mostly likely occurred during startup evolutions following outages as the result the development of aggressive reduced sulfur species in the TTS region during periods when the boilers were fully drained for maintenance activities. The modification of outage practices to limit secondary side oxygen ingress in the spring of 2007 has apparently arrested the degradation and has had significant affects on the allowable operating interval and end of life predictions for the entire unit. (author)

  17. Vibrational absorption spectra, DFT and SCC-DFTB conformational study and analysis of [Leu]enkephalin

    DEFF Research Database (Denmark)

    Abdali, Salim; Niehaus, T.A.; Jalkanen, Karl J.

    2003-01-01

    . Ab initio (DFT at the B3LYP/6-31G* level of theory) and semi-empirical (SCC-DFTB) with and without dispersion correction were applied to simulate the VA spectra of [Leu] enkephalin. In these calculations structures taken from X-ray measurements for different conformers of the molecule were used...

  18. Effect of surface grinding on chloride induced SCC of 304L

    International Nuclear Information System (INIS)

    Zhou, Nian; Pettersson, Rachel; Lin Peng, Ru; Schönning, Mikael

    2016-01-01

    The effect of surface grinding on the stress corrosion cracking (SCC) behavior of 304L austenitic stainless steel in boiling magnesium chloride has been investigated. SCC tests were conducted both without external loading and with varied levels of four-point bend loading for as-delivered material and for specimens which had been ground parallel or perpendicular to the loading direction. Residual stresses due to the grinding operation were measured using the X-ray diffraction technique. In addition, surface stress measurements under applied load were performed before exposure to evaluate the deviation between actual applied loading and calculated values according to ASTM G39. Micro-cracks initiated by a high level of tensile residual stress in the surface layer were observed for all the ground specimens but not those in the as-delivered condition. Grinding along the loading direction increased the susceptibility to chloride induced SCC; while grinding perpendicular to the loading direction improved SCC resistance. Surface tensile residual stresses were largely relieved after the initiation of cracks.

  19. Monitoring Conditions Leading to SCC/Corrosion of Carbon Steel in Fuel Grade Ethanol

    Science.gov (United States)

    2011-02-11

    This is the draft final report of the project on field monitoring of conditions that lead to SCC in ethanol tanks and piping. The other two aspects of the consolidated program, ethanol batching and blending effects (WP#325) and source effects (WP#323...

  20. Rehabilitation of the gas pipeline that had a rupture in service caused by SCC (Stress Corrosion C raking); Rehabilitacion al servicio de un gasoducto que ha sufrido una ruptura en servicio por SCC

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fernando; Carzoglio, Eduardo; Hryciuk, Pedro [TGN - Transportadora de Gas del Norte S.A. (Argentina). Depto. de Integridad

    2003-07-01

    TGN had a rupture in service on Gasoducto Troncal Norte. After initial evaluation of the causes of the rupture it was concluded that it had been caused by Stress Corrosion Cracking (SCC). Subsequent investigation in the area of the rupture revealed that colonies of cracks, typical of SCC were found in pipes located near the rupture. In order to put back in service the pipeline in a safety condition, SCC mitigation activities were performed. A decision was made to conduct a hydro test along approximately 30 kilometers of pipe. The stages of the works, the problems faced and the solutions found are dealt with, as well as the conclusions reached upon completion of the works which allowed a better understanding of SCC phenomenon. The methodology for the identification of those areas susceptible to SCC is also described. (author)

  1. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...... archiving. The Soft Clouding Project is part of LARM - a major infrastructure combining research in and access to sound and radio archives in Denmark. In 2012 the LARM infrastructure will consist of more than 1 million hours of radio, combined with metadata who describes the content. The idea is to analyse...... the concept of ‘infrastructure’ and ‘interface’ on a creative play with the fundamentals of LARM (and any sound archive situation combining many kinds and layers of data and sources). This paper will present and discuss the Soft clouding project from the perspective of the three practices and competencies...

  2. Environmental mitigation for SCC initiation of BWR core internals by hydrogen injection during start-up

    International Nuclear Information System (INIS)

    Dozaki, K.; Abe, A.; Nagata, N.; Takiguchi, H.

    2004-01-01

    Hydrogen injection into the reactor water has been applied to many BWR power stations. Since hydrogen injected accelerates recombination of oxidant generated by water radiolysis, oxidant concentration, such as dissolved oxygen concentration in reactor water can be reduced. As the result of the reduction of oxidant concentration, Electrochemical Corrosion Potential (ECP) at the surface of structural material can be lowered. Lowered ECP moderates Stress Corrosion Cracking (SCC) sensitivity of structural materials, such as stainless steels. As usual, hydrogen injection system begins to work after the plant start-up is finished, when the condition of normal operation is established. Accordingly, Hydrogen Water Chemistry (HWC) does not cover all the period of plant operation. As far as SCC crack growth is considered, loss of HWC during plant start-up does not result in significant crack growth, because of duration of plant start-up is much shorter than that of plant normal operation, when HWC condition is being satisfied. However, the reactor water environment and load conditions during a plant start-up may contribute to the initiation of SCC. It is estimated that the core internals are subjected to the strain rate that may cause susceptibility to SCC initiation during start-up. Dissolved oxygen (DO) and hydrogen peroxide (H 2 O 2 ) has a peak, and ECP is in high levels during start-up. Therefore it is beneficial to perform hydrogen injection during start-up as well in order to suppress SCC initiation. We call it HWC During Start-up (HDS) here. (orig.)

  3. Comparative evaluation of soft and hard tissue dimensions in the anterior maxilla using radiovisiography and cone beam computed tomography: A pilot study

    Directory of Open Access Journals (Sweden)

    Savita Mallikarjun

    2016-01-01

    Full Text Available Aims: To assess and compare the thickness of gingiva in the anterior maxilla using radiovisiography (RVG and cone beam computed tomography (CBCT and its correlation with the thickness of underlying alveolar bone. Settings and Design: This cross-sectional study included 10 male subjects in the age group of 20–45 years. Materials and Methods: After analyzing the width of keratinized gingiva of the maxillary right central incisor, the radiographic assessment was done using a modified technique for RVG and CBCT, to measure the thickness of both the labial gingiva and labial plate of alveolar bone at 4 predetermined locations along the length of the root in each case. Statistical Analysis Used: Statistical analysis was performed using Student's t-test and Pearson's correlation test, with the help of statistical software (SPSS V13. Results: No statistically significant differences were obtained in the measurement made using RVG and CBCT. The results of the present study also failed to reveal any significant correlation between the width of gingiva and the alveolar bone in the maxillary anterior region. Conclusions: Within the limitations of this study, it can be concluded that both CBCT and RVG can be used as valuable tools in the assessment of the soft and hard tissue dimensions.

  4. Application of a soft computing technique in predicting the percentage of shear force carried by walls in a rectangular channel with non-homogeneous roughness.

    Science.gov (United States)

    Khozani, Zohreh Sheikh; Bonakdari, Hossein; Zaji, Amir Hossein

    2016-01-01

    Two new soft computing models, namely genetic programming (GP) and genetic artificial algorithm (GAA) neural network (a combination of modified genetic algorithm and artificial neural network methods) were developed in order to predict the percentage of shear force in a rectangular channel with non-homogeneous roughness. The ability of these methods to estimate the percentage of shear force was investigated. Moreover, the independent parameters' effectiveness in predicting the percentage of shear force was determined using sensitivity analysis. According to the results, the GP model demonstrated superior performance to the GAA model. A comparison was also made between the GP program determined as the best model and five equations obtained in prior research. The GP model with the lowest error values (root mean square error ((RMSE) of 0.0515) had the best function compared with the other equations presented for rough and smooth channels as well as smooth ducts. The equation proposed for rectangular channels with rough boundaries (RMSE of 0.0642) outperformed the prior equations for smooth boundaries.

  5. Assessment of and proposal for a mechanistic interpretation of the SCC of high nickel alloys in lead-containing environments

    International Nuclear Information System (INIS)

    Staehle, R.W.

    2002-01-01

    The SCC of Alloys 600 and 690 in lead-containing solutions, 'lead stress corrosion cracking' (PbSCC) is quite aggressive on tubing in conditions of operation of steam generators (SG) in pressurized water reactors (PWR). Lead dissolved in water can produce PbSCC at concentrations of Pb as low as 0.1 ppm in these alloys. PbSCC is perhaps the most generally aggressive of the environmental species that occur in SGs. This discussion considers the occurrence of Pb in SGs and the PbSCC that can result. The dependencies of PbSCC on the variables of pH, potential, species, alloy composition, alloy structure, temperature and stress are reviewed. Also, important features of the mechanism of PbSCC are assessed. The most significant question related to PbSCC is why more is not occurring in view of the low thresholds for the PbSCC and the ubiquity of the Pb. While there are usually no common specific sources for Pb in most secondary systems, Pb concentrates on surfaces of tubing efficiently over long times. Regardless, it appears that extensive PbSCC does not occur because it is immobilized by forming stable compounds with other species such as sulfur, carbon, phosphorous and silica. Pb is also immobilized by forming stable adsorbed states with oxides such as magnetite and hematite. The possibility of releasing Pb to produce PbSCC increases as water chemistry produces more pure systems and as chemical cleaning is used. Contrary to the common assumption that PbSCC is TGSCC, that of Alloy 600MA is generally IGSCC; only the sensitized (SN), stress relieved (SR) and thermally treated (TT) conditions of Alloys 600 and 690 sustain TGSCC in Pb-containing solutions. In view of the prevailing IGSCC produced by Pb in MA materials, the possibility of all IGSCC in SGs being due to Pb should be considered where crevice environments are in the nominally neutral range. TGSCC that is observed in SGs can be produced by other, although not widely appreciated, environments. The mechanism of PbSCC

  6. SCC life estimation based on cracks initiated from the corrosion pits of bolting material SCM435 used in steam turbine

    International Nuclear Information System (INIS)

    Itoh, Hitomi; Ochi, Mayumi; Fujiwara, Isao; Momoo, Takashi

    2003-01-01

    Life estimation was performed for the stress corrosion cracking (SCC) that occurs in deaerated and wet hot pure steam at the bottoms of the threads of bolts made of SCM435 (equivalent to AISI 4137) used in steam turbine. SCC is believed to occur when corrosion pits are formed and grow to critical size, after which SCC is initiated and cracks propagate until the critical fracture toughness value is reached. Calculations were performed using laboratory and field data. The results showed that, for a 40mm diameter bolt with 0.2% offset strength of 820MPa, the critical crack depth for straight-front cracks was 5.4mm. The SCC life depends on the lubricant used; the SCC life estimated from this value is approximately 70,000 hours when graphite is used as a lubricant. (author)

  7. Estimation of radiative forcing and chore length of shallow convective clouds (SCC) based on broadband pyranometer measurement network

    Science.gov (United States)

    Shi, H.

    2017-12-01

    We presented a method to identify and calculate cloud radiative forcing (CRF) and horizontal chore length (L) of shallow convective clouds (SCC) using a network of 9 broadband pyranometers. The analyzing data was collected from the SCC campaign during two years summers (2015 2016) at Baiqi site over Inner Mongolia grassland. The network of pyranometers was operated across a spatial domain covering 42.16-42.30° N and 114.83-114.98° E. The SCC detection method was verified by observer reports and cameras, which showed that the detection method and human observations were in agreement about 75 %. The differences between the SCC detection method and human observations can be responsible for following factors: 1) small or dissipating clouds can be neglected for the value of 1 min of temporal resolution of pyranometer; 2) human observation recorded weather conditions four times every day; 3) SCC was indistinguishable from coexistence of SCC and Cirrus (Ci); 4) the SCC detection method is weighted toward clouds crossing the sun's path, while the human observer can view clouds over the entire sky. The deviation of L can be attributed to two factors: 1) the accuracy of wind speed at height of SCC and the ratio of horizontal and vertical length play a key role in determine values of L; 2) the effect of variance of solar zenith angle can be negligible. The downwelling shortwave CRF of SCC was -134.1 Wm-2. The average value of L of SCC was 1129 m. Besides, the distribution of normalized cloud chore length agreed well with power-law fit.

  8. Soft electronics for soft robotics

    Science.gov (United States)

    Kramer, Rebecca K.

    2015-05-01

    As advanced as modern machines are, the building blocks have changed little since the industrial revolution, leading to rigid, bulky, and complex devices. Future machines will include electromechanical systems that are soft and elastically deformable, lending them to applications such as soft robotics, wearable/implantable devices, sensory skins, and energy storage and transport systems. One key step toward the realization of soft systems is the development of stretchable electronics that remain functional even when subject to high strains. Liquid-metal traces embedded in elastic polymers present a unique opportunity to retain the function of rigid metal conductors while leveraging the deformable properties of liquid-elastomer composites. However, in order to achieve the potential benefits of liquid-metal, scalable processing and manufacturing methods must be identified.

  9. [Initial evolution research for design and process accuracy of one type of domestic computer aided design soft and computer aided manufacture].

    Science.gov (United States)

    Song, Yang; Zhao, Yi-jiao; Sun, Yu-chun; Lü, Pei-jun; Wang, Yong

    2013-09-01

    To evaluate the design and manufacture accuracy of a domestic computer aided design (CAD) and computer aided manufacture (CAM) system, and to compare it with similar foreign products. Thirty models of posterior-teeth-single-crown preparations were collected, and STL data of these preparations was collected by Denmark 3Shape scanner. Three copings were made for each preparation, the one designed and manufactured using commercial CAD/CAM system (3Shape CAD software and Wieland T1 CAM equipment) was assigned into control group T0, the one designed and manufactured using domestic CAD software (developed by Peking University School and Hospital of Stomatology and Nanjing University of Aeronautics and Astronautics) and Wieland T1 CAM equipment was assigned into experimental group TCAD for design accuracy evaluation, and the one designed and manufactured using 3Shape CAD software and domestic CAM equipment (developed by Peking University School and Hospital of Stomatology, Tsinghua University and ShanDong XinHua Incorporated Company of medical apparatus and instruments) was assigned into experimental group TCAM for manufacture accuracy evaluation. Finally, the marginal fitness were compared and evaluated by using 3D & Profile measurement microscope laser. The marginal fitness of TCAD was 27.98 (19.10, 46.57) µm in buccal, 32.67 (20.65, 50.82) µm in lingual, 27.38 (22.53, 52.61) µm in mesial, 29.50 (22.68, 53.65) µm in distal; of TCAM was 21.69 (15.87, 30.21) µm in buccal, 18.51 (13.50, 22.51) µm in lingual, 19.15 (15.42, 26.89) µm in mesial, 22.77 (18.58, 32.15) µm in distal; and there were no statistical differences compared with T0 [20.16 (17.16, 48.00) µm in buccal, 21.51 (17.05, 28.31) µm in lingual, 23.54 (17.89, 30.04) µm in mesial and 23.94 (17.93, 28.19) µm in distal] except lingual data of TCAD. The design and machining precision of this domestic CAD/CAM system is at the same level of those comparable foreign products.

  10. A Review of Root Causes of SCC Phenomena in BWR/RBMK: An Overview of Radiation-Induced Long Cell Action Relevant to SCC

    International Nuclear Information System (INIS)

    Genn Saji

    2004-01-01

    The author suggests a new hypothetical mechanism: radiation-induced 'long cell action' may cause electrolytic corrosion. In this mechanism, SCC (stress corrosion cracking) results from auto-catalytic growth of cracks in crevice water chemistry that is kept acidic by a combination of hydration of cations released from crack tips. The acidic chemistry is maintained by radiation-induced 'long cell action' in pits which are maintained by a trans-passive corrosion process under a stress field. The pivotal point of the thesis is 'long cell action' which appears not to have been investigated in the nuclear community. It is because the reactor water used in BWR/RBMK systems has a very low electrical conductivity. For 'long cell action' to take place, there must be an unknown ion transport mechanism. One potential mechanism can be the high flow rate of the reactor water, carrying ionic species from the anode to the cathode. The other is the effective removal of ferrous ions by deposition as crud, which enhanced by the decomposition of H 2 O 2 . There are also some surprising similarities between SCC in the reactor systems and the basic mechanism of underground corrosion by long cell action. In this mechanism, the 'long cell action' is induced by a difference in availability of oxygen inside the soil. Conduction of electrons through an electric conductor over a long distance plays a significant role as they are released by dissolution of metallic ions and sucked up from the metal surface. (author)

  11. Latest SCC Issues of core shroud and recirculation piping in Japanese BWRs

    International Nuclear Information System (INIS)

    Okamura, Yuichi; Sakashita, Akihiro; Fukuda, Toshihiko; Yamashita, Hironobu; Futami, Tsuneo

    2003-01-01

    This paper reports that a high incidence of stress corrosion cracking (SCC) cracks have been found in the core Shroud and PLR piping of several Japanese BWR plants. The results of investigations show the cracks to be of SCC type in 316L stainless steel and with different characteristics from the type in 304 stainless steel. The cracks on the shroud surface were mainly verified near the shroud ring weld line and core region weld line, and the crack shape could be classified into two types: one type was circumferential cracking in the shroud ring, and the other was isolated occurrences of radial cracking in the core region. The structural integrity of those shrouds with cracks was evaluated under a conservative assumption and confirmed to be adequate. A relatively large error was identified in measuring the crack depth in the PLR piping. (author)

  12. Assessment and management of SCC in a liquid pipeline: case study

    Energy Technology Data Exchange (ETDEWEB)

    Cazenave, Pablo; Tandon, Samarth; Gao, Ming; Krishnamurthy, Ravi [Blade Energy Partners, Houston, Texas (United States); Peverelli, Romina (PIMS of London, London (United Kingdom)); Moreno Ochoa, Carlos (Pemex Refinacion, Cd de Mexico, (Mexico)); Diaz Solis, Esau (Pemex Refinacion, Cd de Mexico, (Mexico))

    2010-07-01

    A 30-inch crude oil pipeline system was built between Nuevo Teapa to Venta de Carpjo from 1978 to 1980. It is owned by Pemex; its total length is 570 km, and it has strategic importance in Mexico's refining capability. In this oil pipeline, various degrees of external and internal corrosion have been found, and recent incidents occurred as a result of stress corrosion cracking (SCC). This paper presents an approach for managing high pH SCC in such a pipeline: it includes a comprehensive verification excavation plan, a strict in-ditch NDT investigation protocol, statistical models to determine the probability of detection and identification, sizing tolerance analyses, and an assessment methodology that is backed up by the material testing program. All the results provided by the application of the approach lead to the development of integrity management strategies. An integrity management plan is established and refined before the next inspection.

  13. Characterization of SCC crack tips and surface oxide layers in alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Katsuhiko; Fukuya, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    In order to investigate the mechanism of primary water stress corrosion cracking (SCC), direct observation of microstructures of SCC crack tips and surface oxide layers in alloy 600 were carried out. A focused-ion beam (FIB) micro-processing technique was applied to prepare electron transparent foils including the crack tip and the surface oxide layer without any damage to those microstructures. Transmission electron microscopy and analysis were used to characterize the crack tips and surface oxide layers. Cr-rich oxides and a metal-Ni phase were identified in the crack tips and grain boundaries ahead of the crack tips independent of dissolved hydrogen concentrations. >From the fact that the Cr-rich oxides and metal-Ni phase were observed in the inner surface oxide layer, the same oxidation mechanism as the surface is proposed for the crack tip region and internal oxidation accompanying selective Cr oxidation is suggested as the mechanism. (author)

  14. Characterization of SCC crack tip and hydrogen distribution in alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Katsuhiko; Nakajima, Nobuo; Fukuya, Koji [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan); Hatano, Yuji [Toyama Univ. (Japan)

    2001-09-01

    In order to identify the mechanism of primary water stress corrosion cracking (SCC), direct observations of SCC crack tip microstructure and hydrogen distribution in alloy 600 were carried out. A new technique has been developed to prepare electron transparent foils including the crack tip using focused-ion beam (FIB) micro-processing technique. Cr-rich oxide and metal-Ni phase were identified in the crack tip and grain boundary ahead of the crack. >From the fact that similar microstructure was observed in the surface oxide layer, it is suggested that the oxidation mechanism is identical at the crack tip region and the surface. It became clear that the crack tip region and the oxidized grain boundary don't work as strong trapping sites of solute hydrogen under unloaded condition, because a homogeneous hydrogen distribution around the crack tip region was detected by tritium microautoradiography. (author)

  15. Prostate positioning using cone-beam computer tomography based on manual soft-tissue registration. Interobserver agreement between radiation oncologists and therapists

    Energy Technology Data Exchange (ETDEWEB)

    Jereczek-Fossa, B.A.; Pobbiati, C.; Fanti, P. [European Institute of Oncology, Department of Radiation Oncology, Milan (Italy); University of Milan, Milan (Italy); Santoro, L. [European Institute of Oncology, Department of Epidemiology and Biostatistics, Milan (Italy); Fodor, C.; Zerini, D. [European Institute of Oncology, Department of Radiation Oncology, Milan (Italy); Vigorito, S. [European Institute of Oncology, Department of Medical Physics, Milan (Italy); Baroni, G. [Politecnico di Milano, Department of Electronics Information and Bioengineering, Milan (Italy); De Cobelli, O. [European Institute of Oncology, Department of Urology, Milan (Italy); University of Milan, Milan (Italy); Orecchia, R. [European Institute of Oncology, Department of Radiation Oncology, Milan (Italy); National Center for Oncological Hadrontherapy (CNAO) Foundation, Pavia (Italy); University of Milan, Milan (Italy)

    2014-01-15

    To check the interobserver agreement between radiation oncologists and therapists (RTT) using an on- and off-line cone-beam computer tomography (CBCT) protocol for setup verification in the radiotherapy of prostate cancer. The CBCT data from six prostate cancer patients treated with hypofractionated intensity-modulated radiotherapy (IMRT) were independently reviewed off-line by four observers (one radiation oncologist, one junior and two senior RTTs) and benchmarked with on-line CBCT positioning performed by a radiation oncologist immediately prior to treatment. CBCT positioning was based on manual soft-tissue registration. Agreement between observers was evaluated using weighted Cohen's kappa statistics. In total, 152 CBCT-based prostate positioning procedures were reviewed by each observer. The mean (± standard deviation) of the differences between off- and on-line CBCT-simCT registration translations along the three directions (antero-posterior, latero-lateral and cranio-caudal) and rotation around the antero-posterior axis were - 0.7 (3.6) mm, 1.9 (2.7) mm, 0.9 (3.6) mm and - 1.8 (5.0) degrees, respectively. Satisfactory interobserver agreement was found, being substantial (weighted kappa > 0.6) in 10 of 16 comparisons and moderate (0.41-0.60) in the remaining six comparisons. CBCT interpretation performed by RTTs is comparable to that of radiation oncologists. Our study might be helpful in the quality assurance of radiotherapy and the optimization of competencies. Further investigation should include larger sample sizes, a greater number of observers and validated methodology in order to assess interobserver variability and its impact on high-precision prostate cancer IGRT. In the future, it should enable the wider implementation of complex and evolving radiotherapy technologies. (orig.)

  16. Monitoring the Microgravity Environment Quality On-board the International Space Station Using Soft Computing Techniques. Part 2; Preliminary System Performance Results

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.; Weiss, Daniel S.

    2002-01-01

    and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  17. Influence of Recycled Concrete Dust on the Properties of Self– Compacting Concrete (SCC)

    OpenAIRE

    Ivanauskas, Ernestas; Lazauskas, Mantas; Grigaliūnas, Paulius

    2017-01-01

    Concrete – composite material which economical effect mostly depends on the amount of binder material (usually cement), its type and fineness. Cement manufacturing generates great employment of energy resources. The demand for all kind of manufacturing natural resources are aimed to be reduced as much as possible. Alternative raw material resources are being introduced and tested together with increasing self-compacting concrete (SCC) popularity in Lithuania. Considering environmental require...

  18. PCI/SCC failure behavior of KWU/CE fuel rods

    International Nuclear Information System (INIS)

    Kikuchi, Akira

    1983-10-01

    The Over Ramp (Studsvik Over Ramp-STOR) project is an international power ramping irradiation program for studying PCI/SCC failure behavior of PWR-fuel rods. The project had its activities for about three years (Apr., 1977 - Dec., 1980) as the cooperation works of twelve participants composing nine countries. The present report introduces the irradiation data on the KWU/CE fuel rods in the project and discusses the failure behavior of PWR-fuel rods. (author)

  19. Soft computing in advanced robotics

    CERN Document Server

    Kobayashi, Ichiro; Kim, Euntai

    2014-01-01

    Intelligent system and robotics are inevitably bound up; intelligent robots makes embodiment of system integration by using the intelligent systems. We can figure out that intelligent systems are to cell units, while intelligent robots are to body components. The two technologies have been synchronized in progress. Making leverage of the robotics and intelligent systems, applications cover boundlessly the range from our daily life to space station; manufacturing, healthcare, environment, energy, education, personal assistance, logistics. This book aims at presenting the research results in relevance with intelligent robotics technology. We propose to researchers and practitioners some methods to advance the intelligent systems and apply them to advanced robotics technology. This book consists of 10 contributions that feature mobile robots, robot emotion, electric power steering, multi-agent, fuzzy visual navigation, adaptive network-based fuzzy inference system, swarm EKF localization and inspection robot. Th...

  20. Soft computing in artificial intelligence

    CERN Document Server

    Matson, Eric

    2014-01-01

    This book explores the concept of artificial intelligence based on knowledge-based algorithms. Given the current hardware and software technologies and artificial intelligence theories, we can think of how efficient to provide a solution, how best to implement a model and how successful to achieve it. This edition provides readers with the most recent progress and novel solutions in artificial intelligence. This book aims at presenting the research results and solutions of applications in relevance with artificial intelligence technologies. We propose to researchers and practitioners some methods to advance the intelligent systems and apply artificial intelligence to specific or general purpose. This book consists of 13 contributions that feature fuzzy (r, s)-minimal pre- and β-open sets, handling big coocurrence matrices, Xie-Beni-type fuzzy cluster validation, fuzzy c-regression models, combination of genetic algorithm and ant colony optimization, building expert system, fuzzy logic and neural network, ind...

  1. Soft computing in machine learning

    CERN Document Server

    Park, Jooyoung; Inoue, Atsushi

    2014-01-01

    As users or consumers are now demanding smarter devices, intelligent systems are revolutionizing by utilizing machine learning. Machine learning as part of intelligent systems is already one of the most critical components in everyday tools ranging from search engines and credit card fraud detection to stock market analysis. You can train machines to perform some things, so that they can automatically detect, diagnose, and solve a variety of problems. The intelligent systems have made rapid progress in developing the state of the art in machine learning based on smart and deep perception. Using machine learning, the intelligent systems make widely applications in automated speech recognition, natural language processing, medical diagnosis, bioinformatics, and robot locomotion. This book aims at introducing how to treat a substantial amount of data, to teach machines and to improve decision making models. And this book specializes in the developments of advanced intelligent systems through machine learning. It...

  2. Soft computing in intelligent control

    CERN Document Server

    Jung, Jin-Woo; Kubota, Naoyuki

    2014-01-01

    Nowadays, people have tendency to be fond of smarter machines that are able to collect data, make learning, recognize things, infer meanings, communicate with human and perform behaviors. Thus, we have built advanced intelligent control affecting all around societies; automotive, rail, aerospace, defense, energy, healthcare, telecoms and consumer electronics, finance, urbanization. Consequently, users and consumers can take new experiences through the intelligent control systems. We can reshape the technology world and provide new opportunities for industry and business, by offering cost-effective, sustainable and innovative business models. We will have to know how to create our own digital life. The intelligent control systems enable people to make complex applications, to implement system integration and to meet society’s demand for safety and security. This book aims at presenting the research results and solutions of applications in relevance with intelligent control systems. We propose to researchers ...

  3. Porosity of Self-Compacting Concrete (SCC) incorporating high volume fly ash

    Science.gov (United States)

    Kristiawan, S. A.; Sunarmasto; Murti, G. Y.

    2017-02-01

    Degradation of concrete could be triggered by the presence of aggressive agents from the environment into the body of concrete. The penetration of these agents is influenced by the pore characteristics of the concrete. Incorporating a pozzolanic material such as fly ash could modify the pore characteristic of the concrete. This research aims to investigate the influence of incorporating fly ash at high volume level on the porosity of Self-Compacting Concrete (SCC). Laboratory investigations were carried out following the ASTM C642 for measuring density and volume of permeable pores (voids) of the SCC with varying fly ash contents (50-70% by weight of total binder). In addition, a measurement of permeable voids by saturation method was carried out to obtain an additional volume of voids that could not be measured by the immersion and boiling method of ASTM C642. The results show that the influence of fly ash content on the porosity appears to be dependent on age of SCC. At age less than 56 d, fly ash tends to cause an increase of voids but at 90 d of age it reduces the pores. The additional pores that can be penetrated by vacuum saturation method counts about 50% of the total voids.

  4. Asphalt dust waste material as a paste volume in developing sustainable self compacting concrete (SCC)

    Science.gov (United States)

    Ismail, Isham; Shahidan, Shahiron; Bahari, Nur Amira Afiza Saiful

    2017-12-01

    Self-compacting concrete (SCC) mixtures are usually designed to have high workability during the fresh state through the influence of higher volumes of paste in concrete mixtures. Asphalt dust waste (ADW) is one of disposed materials obtained during the production of asphalt premix. These fine powder wastes contribute to environmental problems today. However, these waste materials can be utilized in the development of sustainable and economical SCC. This paper focuses on the preliminary evaluations of the fresh properties and compressive strength of developed SCC for 7 and 28 days only. 144 cube samples from 24 mixtures with varying water binder ratios (0.2, 0.3 and 0.4) and ADW volume (0% to 100%) were prepared. MD940 and MD950 showed a satisfactory performance for the slump flow, J-Ring, L-Box and V-Funnel tests at fresh state. The compressive strength after 28 days for MD940 and MD950 was 36.9 MPa and 28.0 MPa respectively. In conclusion, the use of ADW as paste volume should be limited and a higher water binder ratio will significantly reduce the compressive strength.

  5. SCC of 2304 Duplex Stainless Steel-Microstructure, Residual Stress and Surface Grinding Effects.

    Science.gov (United States)

    Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel

    2017-02-23

    The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental.

  6. SCC of 2304 Duplex Stainless Steel—Microstructure, Residual Stress and Surface Grinding Effects

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2017-02-01

    Full Text Available The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental.

  7. SCC of 2304 Duplex Stainless Steel—Microstructure, Residual Stress and Surface Grinding Effects

    Science.gov (United States)

    Zhou, Nian; Peng, Ru Lin; Schönning, Mikael; Pettersson, Rachel

    2017-01-01

    The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC) behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental. PMID:28772582

  8. Human papillomavirus (HPV) and Oropharyngeal Squamous Cell Carcinoma (OP-SCC) of the Head and Neck: a Growing Epidemic

    Science.gov (United States)

    Bauman, Jessica; Wirth, Lori

    2015-01-01

    Human papillomavirus (HPV) is now considered a major causative agent in oropharyngeal squamous cell carcinoma (OP-SCC). The incidence of HPV+ OP-SCC is increasing dramatically, is higher in men, and is now more common than cervical cancer in the United States. HPV+ OPSCCs usually present as locally advanced, stage IV cancers, requiring intensive treatment with surgery, chemotherapy, and/or radiation that can cause tremendous morbidity. HPV vaccination is predicted to prevent HPV+ OP-SCC because over 90% are caused by vaccine-type HPV. However, current vaccination rates are not yet high enough to be effective at preventing HPV-associated malignancies at a population level. PMID:27132327

  9. Multiple nano elements of SCC--transition from phenomenology to predictive mechanistics

    International Nuclear Information System (INIS)

    Staehle, R.W.

    2009-01-01

    Full text of publication follows: Predicting the occurrence and rate of stress corrosion cracking in materials of construction is one of the most critical pathways for assuring the reliability of light water nuclear reactor plants. It is the general intention of operators of nuclear plants that they continue performing satisfactorily for times of 60 to 80 years at least. Such times are beyond existing experience, and there are no bases for choosing credible predictions. Present bases for predicting SCC rely on anecdotal experience for predicting what materials sustain SCC in specified environments and on phenomenological correlations using such parameters as K (stress intensity), 1/T (temperature), E(corr) (corrosion potential), pH, [x] a (concentration), other established quantities, and statistical correlations. While these phenomenological correlations have served the industry well in the past, they have also allowed grievous mistakes. Further, such correlations are flawed in their fundamental credibility. Predicting SCC in aqueous solutions means to predict its dependence upon the seven primary variables: potential, pH, species, alloy composition, alloy structure, stress and temperature. A serious prediction of SCC upon these seven primary variables can only be achieved by moving to fundamental nano elements. Unfortunately, useful predictability from the nano approach cannot be achieved quickly or easily; thus, it will continue to be necessary to rely on existing phenomenology. However, as the nano approach evolves, it can contribute increasingly to the quantitative capacity of the phenomenological approach. The nano approach will require quite different talents and thinking than are now applied to the prediction of SCC; while some of the boundary conditions of phenomenology must continue to be applied, elements of the nano approach will include accounting for at least, typically, the following multiple elements as they apply at the sites of initiation and at

  10. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  11. Characteristics of SCC crack propagation in 22Cr-5. 5Ni-3Mo duplex stainless steel weldment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Choong Un; Kang, Choon Sik

    1988-02-01

    The characteristics of SCC crack propagation in duplex stainless steel weldment made by SMAW, GTAW and GMAW processes were investigated in 42% MgCl/sub 2/ 142 deg C boiling solution. From these experiments, it could be concluded that the structure anisotropy of ..gamma.. phase as well as the phase ratio played an important role in SCC resistance. GTA and GMA weld metal showed higher SCC resistance than base metal because of randomly distributed ..gamma.. phase. The crack in weld metal had same opportunity of receiving keying effect as that in base metal, but it had less possibility of intersecting ..gamma.. phase. The SCC resistance of the SMA weld metal and the HAZ was lower than that of the base metal because their phase ratio deviated from the proper phase ratio.

  12. SoftAR: visually manipulating haptic softness perception in spatial augmented reality.

    Science.gov (United States)

    Punpongsanon, Parinya; Iwai, Daisuke; Sato, Kosuke

    2015-11-01

    We present SoftAR, a novel spatial augmented reality (AR) technique based on a pseudo-haptics mechanism that visually manipulates the sense of softness perceived by a user pushing a soft physical object. Considering the limitations of projection-based approaches that change only the surface appearance of a physical object, we propose two projection visual effects, i.e., surface deformation effect (SDE) and body appearance effect (BAE), on the basis of the observations of humans pushing physical objects. The SDE visualizes a two-dimensional deformation of the object surface with a controlled softness parameter, and BAE changes the color of the pushing hand. Through psychophysical experiments, we confirm that the SDE can manipulate softness perception such that the participant perceives significantly greater softness than the actual softness. Furthermore, fBAE, in which BAE is applied only for the finger area, significantly enhances manipulation of the perception of softness. We create a computational model that estimates perceived softness when SDE+fBAE is applied. We construct a prototype SoftAR system in which two application frameworks are implemented. The softness adjustment allows a user to adjust the softness parameter of a physical object, and the softness transfer allows the user to replace the softness with that of another object.

  13. Advances in Soft Matter Mechanics

    CERN Document Server

    Li, Shaofan

    2012-01-01

    "Advances in Soft Matter Mechanics" is a compilation and selection of recent works in soft matter mechanics by a group of active researchers in the field. The main objectives of this book are first to disseminate the latest developments in soft matter mechanics in the field of applied and computational mechanics, and second to introduce soft matter mechanics as a sub-discipline of soft matter physics. As an important branch of soft matter physics, soft matter mechanics has developed rapidly in recent years. A number of the novel approaches discussed in this book are unique, such as the coarse grained finite element method for modeling colloidal adhesion, entropic elasticity, meshfree simulations of liquid crystal elastomers, simulations of DNA, etc. The book is intended for researchers and graduate students in the field of mechanics, condensed matter physics and biomaterials. Dr. Shaofan Li is a professor of the University of California-Berkeley, U.S.A; Dr. Bohua Sun is a professor of Cape Peninsula Universit...

  14. IGA/SCC propagation rate measurements on alloy 600 steam generator tubing using a side stream model boiler

    International Nuclear Information System (INIS)

    Takamatsu, H.; Matsueda, K.; Matsunaga, T.; Kitera, T.; Arioka, K.; Tsuruta, T.; Okamoto, S.

    1993-01-01

    IGA/SCC crack propagation rate measurements using various types of IGA/SCC predefected ALloy 600 tubing were tested in model boilers, a side stream model boiler at Ohi Unit 1 and similar model boilers in the laboratory. Types of IGA/SCC predefects introduced from the outside of the tubing were as follows. (1) Actual IGA/SCC predefect introduced by high temperature caustic environments; (2) Longitudinal predefect by electrodischarge machining (EDM) method, and then crack tip fatigue was introduced to serve as the marker on the fractured surface (EDM slit + fatigue). IGA/SCC crack propagation rate was measured after the destructive examination by Cr concentration profile on fracture surface for (1), and observation of intergranular fractured surface propagated from the marked fatigue was employed for (2) and (3) after the model boiler tests. As for the water chemistry conditions, mainly AVT (high N 2 H 4 ) + boric acid (5-10ppm as B in SGs) treatment for both model boilers, and some of the tests for the model boiler in the laboratory employed AVT (high N 2 H 4 ) without boric acid. The results of IGA/SCC crack propagation rate measurements were compared with each other, and the three methods employed showed a good coincidence with the rate of ca. 1 x 10 -5 mm/Hr for AVT (high N 2 H 4 ) + boric acid treatment condition, in the case that crack tip boron intensity (B/O value by IMMA analysis) of more than 1 was observed

  15. Isoalantolactone inhibits UM-SCC-10A cell growth via cell cycle arrest and apoptosis induction.

    Directory of Open Access Journals (Sweden)

    Minjun Wu

    Full Text Available Isoalantolactone is a sesquiterpene lactone compound isolated from the roots of Inula helenium L. Previous studies have demonstrated that isoalantolactone possesses antifungal, anti-bacterial, anti-helminthic and anti-proliferative properties in a variety of cells, but there are no studies concerning its effects on head and neck squamous cell carcinoma (HNSCC. In the present study, an MTT assay demonstrated that isoalantolactone has anti-proliferative activity against the HNSCC cell line (UM-SCC-10A. Immunostaining identified that this compound induced UM-SCC-10A cell apoptosis but not necrosis. To explain the molecular mechanisms underlying its effects, flow cytometry and western blot analysis showed that the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and p21, and down-regulation of cyclin D. Furthermore, our results revealed that induction of apoptosis through a mitochondrial pathway led to up-regulation of pro-apoptotic protein expression (Bax, down-regulation of anti-apoptotic protein expression (Bcl-2, mitochondrial release of cytochrome c (Cyto c, reduction of mitochondrial membrane potential (MMP and activation of caspase-3 (Casp-3. Involvement of the caspase apoptosis pathway was confirmed using caspase inhibitor Z-VAD-FMK pretreatment. Together, our findings suggest that isoalantolactone induced caspase-dependent apoptosis via a mitochondrial pathway and was associated with cell cycle arrest in the G1 phase in UM-SCC-10A cells. Therefore, isoalantolactone may become a potential drug for treating HNSCC.

  16. Effects of overload on the threshold stress intensity factor for SCC

    International Nuclear Information System (INIS)

    Takahashi, Koji; Ando, Kotoji; Miyazaki, Yuji; Hashikura, Yasuaki

    2009-01-01

    The effects of overload on the threshold stress intensity factor for stress corrosion crack (K ISCC ) of stainless steel were studied. Tensile overload was applied to a wedge opening loaded (WOL) specimen of SUS316. Then, SCC tests were carried out to determine the resultant K ISCC . As a result, the apparent value of K ISCC increases as increasing a stress intensity factor by tensile overload (K OV ). The effects of tensile overload on K ISCC and the threshold stress intensity factor range for fatigue (ΔK th ) were compared. It was found that the effects of tensile overload on K ISCC were larger than that on ΔK th . (author)

  17. Performance predictions for solar-chemical convertors by computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Luttmer, J.D.; Trachtenberg, I.

    1985-08-01

    A computer model which simulates the operation of Texas Instruments solar-chemical convertor (SCC) was developed. The model allows optimization of SCC processes, material, and configuration by facilitating decisions on tradeoffs among ease of manufacturing, power conversion efficiency, and cost effectiveness. The model includes various algorithms which define the electrical, electrochemical, and resistance parameters and which describ the operation of the discrete components of the SCC. Results of the model which depict the effect of material and geometric changes on various parameters are presented. The computer-calculated operation is compared with experimentall observed hydrobromic acid electrolysis rates.

  18. Soft Tissue Sarcoma

    Science.gov (United States)

    ... muscles, tendons, fat, and blood vessels. Soft tissue sarcoma is a cancer of these soft tissues. There ... have certain genetic diseases. Doctors diagnose soft tissue sarcomas with a biopsy. Treatments include surgery to remove ...

  19. Effect of sulfur on the SCC and corrosion fatigue performance of stainless steel

    International Nuclear Information System (INIS)

    West, E.; Nolan, T.; Lucente, A.; Morton, D.; Lewis, N.; Morris, R.; Mullen, J.; Newsome, G.

    2015-01-01

    Stress corrosion cracking and corrosion fatigue experiments were conducted on model heats of 304/304L stainless steel with systematically controlled sulfur content to isolate the influence of sulfur on crack growth behavior. The results of the SCC experiments conducted in 338 C. degrees deaerated water on 20% cold worked model heats with 0.006 and 0.012 wt% sulfur showed an order of magnitude or more reduction in the crack growth rate relative to a model heat with <0.001 wt% sulfur. Corrosion fatigue crack growth rates revealed a reduction in the crack growth rates of the elevated sulfur heats relative to model predicted steady state crack growth rates with increasing rise time for nominal loading conditions of a stress ratio of 0.7 and a stress intensity factor range of 6.6 MPa√m. At the longest rise time of 5.330 sec, the corrosion fatigue crack growth rate of the 0.006 wt% sulfur model heat was only 13% of model predictions and the crack growth of the 0.012 wt% sulfur heat completely stalled. Experiments conducted in anion faulted aerated water on stainless steel heats with moderate to high sulfur and variable carbon and boron contents showed that any detrimental effect of sulfur in this environment was secondary to the effect of sensitization in promoting SCC growth. (authors)

  20. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water

    Science.gov (United States)

    Terachi, T.; Yamada, T.; Miyamoto, T.; Arioka, K.

    2012-07-01

    The rates of SCC growth were measured under simulated PWR primary water conditions (500 ppm B + 2 ppm Li + 30 cm3/kg-H2O-STP DH2) using cold worked 316SS and 304SS. The direct current potential drop method was applied to measure the crack growth rates for 53 specimens. Dependence of the major engineering factors, such as yield strength, temperature and stress intensity was systematically examined. The rates of crack growth were proportional to the 2.9 power of yield strength, and directly proportional to the apparent yield strength. The estimated apparent activation energy was 84 kJ/mol. No significant differences in the SCC growth rates and behaviors were identified between 316SS and 304SS. Based on the measured results, an empirical equation for crack growth rate was proposed for engineering applications. Although there were deviations, 92.8% of the measured crack growth rates did not exceed twice the value calculated by the empirical equation.

  1. Development of BWR components SCC mitigation method by the TiO{sub 2} treating technique

    Energy Technology Data Exchange (ETDEWEB)

    Takamori, K.; Suzuki, J.; Suzuki, S.; Miyazaki, A. [Tokyo Electric Power Co., Tokohama-city (Japan); Okamura, M.; Osato, T.; Ichikawa, N. [Toshiba Corp., Kawasaki-city (Japan); Urata, H.; Takagi, J. [Toshiba Corp., Yokohama-city (Japan)

    2007-07-01

    Stress Corrosion Cracking (SCC) susceptibility of Boiling Water Reactor (BWR) materials is mitigated by reduction of the electrochemical corrosion potential (ECP). In the reactor there is a photo-excitation reaction between TiO{sub 2} and ultraviolet Cherenkov radiation. The TiO{sub 2} treatment technique plans to mitigate SCC by reducing the ECP without hydrogen addition. We conducted the demonstration tests of the TiO{sub 2} treatment technique in a test reactor and in BWR plant piping systems. The test results showed that the ECP of TiO{sub 2} treated type 316L stainless steel and the Ni based alloy 600 were reduced to -350 mV vs. the standard hydrogen electrode (SHE) in the reactor system in normal water chemistry (NWC). In the no Cherenkov radiation area, the ECP of the TiO{sub 2} treated stainless steel still decreased as the dissolved hydrogen concentration in feed water up to 0.3 ppm. (a condition that will be referred as 'low HWC.') (author)

  2. Influence of surface oxide films on the SCC of stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Junichi; Kato, Shunji; Hirano, Hideo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab; Kushida, H.

    2000-06-01

    Effect of pre-filming conditions on the SCC susceptibility of stainless steels (SS) was investigated by SSRT and electrochemical measurement in high temperature water. The IGSCC ratio of a specimen with the oxide film formed in hydrogen-saturated water (R film specimen) was higher than that of a specimen with the oxide film formed in air-saturated water (O film specimen). When the pre-filmed specimens were coupled with a Cr-depleted SS that simulated weld-heat-affected zones, the galvanic couple between the R film specimen and Cr-depleted SS showed higher corrosion current than the couple between the O film specimen and Cr-depleted SS. The film thickness of the Cr-depleted SS was thinner in the couple with the R film specimen after the test. These results clearly show that the SCC susceptibility of R film specimen was higher than that of the O film specimen, in accordance with the SSRT results. (author)

  3. Chemical inhomogeneity populations in various zircaloy claddings and their association with SCC and corrosion resistance

    International Nuclear Information System (INIS)

    Tasooji, A.; Miller, A.K.; Cheung, T.Y.; Brooks, M.; Santucci, J.

    1987-01-01

    A technique has been developed that permits detection and characterization of sparsely distributed chemical inhomogeneities in Zircaloy. These inhomogeneities have previously been observed at the origins of iodine stress-corrosion cracks but are not detectable by, for example, simple scanning electron microscopy (SEM) examination. The technique uses radioactive iodine to ''label'' the chemical inhomogeneities, autoradiography to detect their locations, and SEM and energy-dispersive X-ray analysis (EDAX) to further characterize them. Large areas of surface have been surveyed and statistically meaningful populations of chemical inhomogeneities measured for five different lots of Zircaloy cladding. Inner surfaces and cladding cross-sectional surfaces have been studied. There are clear differences in chemical inhomogeneity size distribution and composition between the various claddings. For three of the claddings characterized in this work, the previously measured stress-corrosion cracking (SCC) threshold stresses correlate well (inversely) with the new data on their average chemical inhomogeneity sizes. Of special interest is the fact that the most SCC-resistant cladding contains far fewer iron-bearing inhomogeneities than the other claddings

  4. An Investigation of the Mechanism of IGA/SCC of Alloy 600 in Corrosion Accelerating Heated Crevice Environments - Topical Report Phase I 8/18/1999 - 8/31/2000

    International Nuclear Information System (INIS)

    Lumsden, Jesse

    2000-01-01

    The crevice formed by the tube/tube support plate (T/TSP) intersection in a pressurized water reactor (PWR) steam generator is a concentration site for nonvolatile impurities (referred to as hideout) in the steam generator water. The restricted mass transport in the small crevice volume prevents the species, which concentrate by a thermal/hydraulic mechanism during the generation of steam, from quickly dispersing into the bulk water. The presence of a porous scale corrosion product on the surface of the tube and deposits of corrosion products in the crevice further restrict mass transport. The concentrated solutions and deposits in T/TSP crevices have been correlated with several forms of corrosion on the OD of steam generator tubes including intergranular attack/stress corrosion cracking (IGA/SCC), pitting, and wastage. The rate and type of corrosion are dependent on pH, specific anions, and the electrochemical potential. Careful water chemistry control and other remedial measures have essentially stopped all forms of secondary side corrosion except IGA/SCC. Crevice chemistries in an operating steam generator cannot be measured directly because of their inaccessibility. In practice, computer codes (MULTEQ, Molar Ratio Index, etc.) based upon hypothesized chemical reactions and thermal hydraulic mechanisms are used to predict crevice chemistry. The Rockwell program provides an experimental base to benchmark crevice chemistry models and to benchmark crevice chemistry control measures designed to mitigate IGA/SCC. The objective of this program is to develop an understanding of the corrosion accelerating mechanisms, particularly IGA/SCC, in steam generator crevices. The important variables will be identified, including the relationship between bulk water chemistry and corrosion accelerating chemistries in a crevice. An important result will be the identification of water chemistry control measures needed to mitigate secondary side IGA/SCC in steam generator tubes. The

  5. An Investigation of the Mechanism of IGA/SCC of Alloy 600 in Corrosion Accelerating Heated Crevice Environments - Topical Report Phase I 8/18/1999 - 8/31/2000; TOPICAL

    International Nuclear Information System (INIS)

    Dr. Jesse Lumsden

    2000-01-01

    The crevice formed by the tube/tube support plate (T/TSP) intersection in a pressurized water reactor (PWR) steam generator is a concentration site for nonvolatile impurities (referred to as hideout) in the steam generator water. The restricted mass transport in the small crevice volume prevents the species, which concentrate by a thermal/hydraulic mechanism during the generation of steam, from quickly dispersing into the bulk water. The presence of a porous scale corrosion product on the surface of the tube and deposits of corrosion products in the crevice further restrict mass transport. The concentrated solutions and deposits in T/TSP crevices have been correlated with several forms of corrosion on the OD of steam generator tubes including intergranular attack/stress corrosion cracking (IGA/SCC), pitting, and wastage. The rate and type of corrosion are dependent on pH, specific anions, and the electrochemical potential. Careful water chemistry control and other remedial measures have essentially stopped all forms of secondary side corrosion except IGA/SCC. Crevice chemistries in an operating steam generator cannot be measured directly because of their inaccessibility. In practice, computer codes (MULTEQ, Molar Ratio Index, etc.) based upon hypothesized chemical reactions and thermal hydraulic mechanisms are used to predict crevice chemistry. The Rockwell program provides an experimental base to benchmark crevice chemistry models and to benchmark crevice chemistry control measures designed to mitigate IGA/SCC. The objective of this program is to develop an understanding of the corrosion accelerating mechanisms, particularly IGA/SCC, in steam generator crevices. The important variables will be identified, including the relationship between bulk water chemistry and corrosion accelerating chemistries in a crevice. An important result will be the identification of water chemistry control measures needed to mitigate secondary side IGA/SCC in steam generator tubes. The

  6. Soft energy

    International Nuclear Information System (INIS)

    Lovins, A.B.

    1978-01-01

    A compact energy concept opposes the existing development course of energy supply. This concept does without projects for opening-up oil and gas occurrences in the Arctic and in offshore seas, and also without a further extension of nuclear energy. Energy consumption is to be stabilized in the long-run on today's level by a utilization of energy which is to be substantially improved in a technical and economic respect. Oil and gas are to be replaced by 'soft', regenerative, mainly decentralized energy sources, in the course of about 30 years time. Solar energy is to be used for heating and service water, biogas as motor fuel being generated primarily from reference which will come from agriculture and forestry. Wind and hydroelectric power are to be used for generating electricity. In the first part, concepts for the present and future energy policy are discussed, in the second part, a lot of figures are given, supporting the respective arguments. In the third part the relationships between social and energy-economic developments are pointed out. (UA) [de

  7. Potential of utilizing asphalt dust waste as filler material in the production of sustainable self compacting concrete (SCC)

    Science.gov (United States)

    Ismail, Isham; Shahidan, Shahiron; Bahari, Nur Amira Afiza Saiful

    2017-12-01

    Waste materials from many industries are widely used in the production of sustainable green concrete. Utilizing asphalt dust waste (ADW) as a filler material in the development of self-compacting concrete (SCC) is one of the alternative solutions for reducing environmental waste. SCC is an innovative concrete that does not require vibration for placing and compaction. However, there is limited information on the effects of utilizing ADW in the development of SCC. Therefore, this research study examines the effects of various w/b ratios (0.2, 0.3 and 0.4) and differing amounts of ADW (0% to 50%) on the rheological properties of fresh state concrete. The compressive strength of the SCC was tested only for 7 and 28 days as preliminary studies. The results revealed that mixtures MD730, MD740 and MD750 showed satisfactory results for the slump flow, J-Ring, L-Box and V-Funnel test during the fresh state. The compressive strength values obtained after 28 days for MD730, MD740 and MD750 were 35.1 MPa, 36.8 MPa and 29.4 MPa respectively. In conclusion, the distribution of materials in mixtures has significant effect in achieving rheological properties and compressive strength of SCC.

  8. Casticin impairs cell growth and induces cell apoptosis via cell cycle arrest in human oral cancer SCC-4 cells.

    Science.gov (United States)

    Chou, Guan-Ling; Peng, Shu-Fen; Liao, Ching-Lung; Ho, Heng-Chien; Lu, Kung-Wen; Lien, Jin-Cherng; Fan, Ming-Jen; La, Kuang-Chi; Chung, Jing-Gung

    2018-02-01

    Casticin, a polymethoxyflavone, present in natural plants, has been shown to have biological activities including anti-cancer activities. Herein, we investigated the anti-oral cancer activity of casticin on SCC-4 cells in vitro. Viable cells, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS) production, and Ca 2+ production, levels of ΔΨ m and caspase activity were measured by flow cytometric assay. Cell apoptosis associated protein expressions were examined by Western blotting and confocal laser microscopy. Results indicated that casticin induced cell morphological changes, DNA condensation and damage, decreased the total viable cells, induced G 2 /M phase arrest in SCC-4 cells. Casticin promoted ROS and Ca 2+ productions, decreases the levels of ΔΨ m , promoted caspase-3, -8, and -9 activities in SCC-4 cells. Western blotting assay demonstrated that casticin affect protein level associated with G2/M phase arrest and apoptosis. Confocal laser microscopy also confirmed that casticin increased the translocation of AIF and cytochrome c in SCC-4 cells. In conclusion, casticin decreased cell number through G 2 /M phase arrest and the induction of cell apoptosis through caspase- and mitochondria-dependent pathways in SCC-4 cells. © 2017 Wiley Periodicals, Inc.

  9. Study of the SCC Behavior of 7075 Aluminum Alloy After One-Step Aging at 163 °C

    Science.gov (United States)

    Silva, G.; Rivolta, B.; Gerosa, R.; Derudi, U.

    2013-01-01

    For the past many years, 7075 aluminum alloys have been widely used especially in those applications for which high mechanical performances are required. It is well known that the alloy in the T6 condition is characterized by the highest ultimate and yield strengths, but, at the same time, by poor stress corrosion cracking (SCC) resistance. For this reason, in the aeronautic applications, new heat treatments have been introduced to produce T7X conditions, which are characterized by lower mechanical strength, but very good SCC behavior, when compared with the T6 condition. The aim of this study is to study the tensile properties and the SCC behavior of 7075 thick plates when submitted to a single-step aging by varying the aging times. The tests were carried out according to the standards and the data obtained from the SCC tests were analyzed quantitatively using an image analysis software. The results show that, when compared with the T7X conditions, the single-step aging performed in the laboratory can produce acceptable tensile and SCC properties.

  10. Imaging of musculoskeletal soft tissue infections

    Energy Technology Data Exchange (ETDEWEB)

    Turecki, Marcin B.; Taljanovic, Mihra S.; Holden, Dean A.; Hunter, Tim B.; Rogers, Lee F. [University of Arizona HSC, Department of Radiology, Tucson, AZ (United States); Stubbs, Alana Y. [Southern Arizona VA Health Care System, Department of Radiology, Tucson, AZ (United States); Graham, Anna R. [University of Arizona HSC, Department of Pathology, Tucson, AZ (United States)

    2010-10-15

    Prompt and appropriate imaging work-up of the various musculoskeletal soft tissue infections aids early diagnosis and treatment and decreases the risk of complications resulting from misdiagnosis or delayed diagnosis. The signs and symptoms of musculoskeletal soft tissue infections can be nonspecific, making it clinically difficult to distinguish between disease processes and the extent of disease. Magnetic resonance imaging (MRI) is the imaging modality of choice in the evaluation of soft tissue infections. Computed tomography (CT), ultrasound, radiography and nuclear medicine studies are considered ancillary. This manuscript illustrates representative images of superficial and deep soft tissue infections such as infectious cellulitis, superficial and deep fasciitis, including the necrotizing fasciitis, pyomyositis/soft tissue abscess, septic bursitis and tenosynovitis on different imaging modalities, with emphasis on MRI. Typical histopathologic findings of soft tissue infections are also presented. The imaging approach described in the manuscript is based on relevant literature and authors' personal experience and everyday practice. (orig.)

  11. Imaging of musculoskeletal soft tissue infections

    International Nuclear Information System (INIS)

    Turecki, Marcin B.; Taljanovic, Mihra S.; Holden, Dean A.; Hunter, Tim B.; Rogers, Lee F.; Stubbs, Alana Y.; Graham, Anna R.

    2010-01-01

    Prompt and appropriate imaging work-up of the various musculoskeletal soft tissue infections aids early diagnosis and treatment and decreases the risk of complications resulting from misdiagnosis or delayed diagnosis. The signs and symptoms of musculoskeletal soft tissue infections can be nonspecific, making it clinically difficult to distinguish between disease processes and the extent of disease. Magnetic resonance imaging (MRI) is the imaging modality of choice in the evaluation of soft tissue infections. Computed tomography (CT), ultrasound, radiography and nuclear medicine studies are considered ancillary. This manuscript illustrates representative images of superficial and deep soft tissue infections such as infectious cellulitis, superficial and deep fasciitis, including the necrotizing fasciitis, pyomyositis/soft tissue abscess, septic bursitis and tenosynovitis on different imaging modalities, with emphasis on MRI. Typical histopathologic findings of soft tissue infections are also presented. The imaging approach described in the manuscript is based on relevant literature and authors' personal experience and everyday practice. (orig.)

  12. Soft Interfaces

    International Nuclear Information System (INIS)

    Strzalkowski, Ireneusz

    1997-01-01

    This book presents an extended form of the 1994 Dirac Memorial Lecture delivered by Pierre Gilles de Gennes at Cambridge University. The main task of the presentation is to show the beauty and richness of structural forms and phenomena which are observed at soft interfaces between two media. They are much more complex than forms and phenomena existing in each phase separately. Problems are discussed including both traditional, classical techniques, such as the contact angle in static and dynamic partial wetting, as well as the latest research methodology, like 'environmental' scanning electron microscopes. The book is not a systematic lecture on phenomena but it can be considered as a compact set of essays on topics which particularly fascinate the author. The continuum theory widely used in the book is based on a deep molecular approach. The author is particularly interested in a broad-minded rheology of liquid systems at interfaces with specific emphasis on polymer melts. To study this, the author has developed a special methodology called anemometry near walls. The second main topic presented in the book is the problem of adhesion. Molecular processes, energy transformations and electrostatic interaction are included in an interesting discussion of the many aspects of the principles of adhesion. The third topic concerns welding between two polymer surfaces, such as A/A and A/B interfaces. Of great worth is the presentation of various unsolved, open problems. The kind of topics and brevity of description indicate that this book is intended for a well prepared reader. However, for any reader it will present an interesting picture of how many mysterious processes are acting in the surrounding world and how these phenomena are perceived by a Nobel Laureate, who won that prize mainly for his investigations in this field. (book review)

  13. SCC500: next-generation infrared imaging camera core products with highly flexible architecture for unique camera designs

    Science.gov (United States)

    Rumbaugh, Roy N.; Grealish, Kevin; Kacir, Tom; Arsenault, Barry; Murphy, Robert H.; Miller, Scott

    2003-09-01

    A new 4th generation MicroIR architecture is introduced as the latest in the highly successful Standard Camera Core (SCC) series by BAE SYSTEMS to offer an infrared imaging engine with greatly reduced size, weight, power, and cost. The advanced SCC500 architecture provides great flexibility in configuration to include multiple resolutions, an industry standard Real Time Operating System (RTOS) for customer specific software application plug-ins, and a highly modular construction for unique physical and interface options. These microbolometer based camera cores offer outstanding and reliable performance over an extended operating temperature range to meet the demanding requirements of real-world environments. A highly integrated lens and shutter is included in the new SCC500 product enabling easy, drop-in camera designs for quick time-to-market product introductions.

  14. Necrotizing Soft Tissue Infection

    Directory of Open Access Journals (Sweden)

    Sahil Aggarwal, BS

    2018-04-01

    Full Text Available History of present illness: A 71-year-old woman with a history of metastatic ovarian cancer presented with sudden onset, rapidly progressing painful rash in the genital region and lower abdominal wall. She was febrile to 103°F, heart rate was 114 beats per minute, and respiratory rate was 24 per minute. Her exam was notable for a toxic-appearing female with extensive areas of erythema, tenderness, and induration to her lower abdomen, intertriginous areas, and perineum with intermittent segments of crepitus without hemorrhagic bullae or skin breakdown. Significant findings: Computed tomography (CT of the abdominal and pelvis with intravenous (IV contrast revealed inflammatory changes, including gas and fluid collections within the ventral abdominal wall extending to the vulva, consistent with a necrotizing soft tissue infection. Discussion: Necrotizing fasciitis is a serious infection of the skin and soft tissues that requires an early diagnosis to reduce morbidity and mortality. Classified into several subtypes based on the type of microbial infection, necrotizing fasciitis can rapidly progress to septic shock or death if left untreated.1 Diagnosing necrotizing fasciitis requires a high index of suspicion based on patient risk factors, presentation, and exam findings. Definitive treatment involves prompt surgical exploration and debridement coupled with IV antibiotics.2,3 Clinical characteristics such as swelling, disproportionate pain, erythema, crepitus, and necrotic tissue should be a guide to further diagnostic tests.4 Unfortunately, lab values such as white blood cell count and lactate imaging studies have high sensitivity but low specificity, making the diagnosis of necrotizing fasciitis still largely a clinical one.4,5 CT is a reliable method to exclude the diagnosis of necrotizing soft tissue infections (sensitivity of 100%, but is only moderately reliable in correctly identifying such infections (specificity of 81%.5 Given the emergent

  15. Mesoscopic modelling and simulation of soft matter.

    Science.gov (United States)

    Schiller, Ulf D; Krüger, Timm; Henrich, Oliver

    2017-12-20

    The deformability of soft condensed matter often requires modelling of hydrodynamical aspects to gain quantitative understanding. This, however, requires specialised methods that can resolve the multiscale nature of soft matter systems. We review a number of the most popular simulation methods that have emerged, such as Langevin dynamics, dissipative particle dynamics, multi-particle collision dynamics, sometimes also referred to as stochastic rotation dynamics, and the lattice-Boltzmann method. We conclude this review with a short glance at current compute architectures for high-performance computing and community codes for soft matter simulation.

  16. Curcumin inhibits oral squamous cell carcinoma SCC-9 cells proliferation by regulating miR-9 expression

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Can [Department of Occupational Medicine and Environmental Health, School of Public Health, Soochow University, Suzhou 215123 (China); Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Wang, Lili; Zhu, Lifang [Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Zhang, Chenping, E-mail: zhang_cping@163.com [Department of Head and Neck Tumors, Shanghai Ninth People’s Hospital Affiliated Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China); Zhou, Jianhua [Department of Occupational Medicine and Environmental Health, School of Public Health, Soochow University, Suzhou 215123 (China)

    2014-11-28

    Highlights: • miR-9 expression level was significantly decreased in OSCC tissues. • Curcumin significantly inhibited SCC-9 cells proliferation. • miR-9 mediates the inhibition of SCC-9 proliferation by curcumin. • Curcumin suppresses Wnt/β-catenin signaling in SCC-9 cells. • miR-9 mediates the suppression of Wnt/β-catenin signaling by curcumin. - Abstract: Curcumin, a phytochemical derived from the rhizome of Curcuma longa, has shown anticancer effects against a variety of tumors. In the present study, we investigated the effects of curcumin on the miR-9 expression in oral squamous cell carcinoma (OSCC) and explored the potential relationships between miR-9 and Wnt/β-catenin pathway in curcumin-mediated OSCC inhibition in vitro. As the results shown, the expression levels of miR-9 were significantly lower in clinical OSCC specimens than those in the adjacent non-tumor tissues. Furthermore, our results indicated that curcumin inhibited OSCC cells (SCC-9 cells) proliferation through up-regulating miR-9 expression, and suppressing Wnt/β-catenin signaling by increasing the expression levels of the GSK-3β, phosphorylated GSK-3β and β-catenin, and decreasing the cyclin D1 level. Additionally, the up-regulation of miR-9 by curcumin in SCC-9 cells was significantly inhibited by delivering anti-miR-9 but not control oligonucleotides. Downregulation of miR-9 by anti-miR-9 not only attenuated the growth-suppressive effects of curcumin on SCC-9 cells, but also re-activated Wnt/β-catenin signaling that was inhibited by curcumin. Therefore, our findings would provide a new insight into the use of curcumin against OSCC in future.

  17. Curcumin inhibits oral squamous cell carcinoma SCC-9 cells proliferation by regulating miR-9 expression

    International Nuclear Information System (INIS)

    Xiao, Can; Wang, Lili; Zhu, Lifang; Zhang, Chenping; Zhou, Jianhua

    2014-01-01

    Highlights: • miR-9 expression level was significantly decreased in OSCC tissues. • Curcumin significantly inhibited SCC-9 cells proliferation. • miR-9 mediates the inhibition of SCC-9 proliferation by curcumin. • Curcumin suppresses Wnt/β-catenin signaling in SCC-9 cells. • miR-9 mediates the suppression of Wnt/β-catenin signaling by curcumin. - Abstract: Curcumin, a phytochemical derived from the rhizome of Curcuma longa, has shown anticancer effects against a variety of tumors. In the present study, we investigated the effects of curcumin on the miR-9 expression in oral squamous cell carcinoma (OSCC) and explored the potential relationships between miR-9 and Wnt/β-catenin pathway in curcumin-mediated OSCC inhibition in vitro. As the results shown, the expression levels of miR-9 were significantly lower in clinical OSCC specimens than those in the adjacent non-tumor tissues. Furthermore, our results indicated that curcumin inhibited OSCC cells (SCC-9 cells) proliferation through up-regulating miR-9 expression, and suppressing Wnt/β-catenin signaling by increasing the expression levels of the GSK-3β, phosphorylated GSK-3β and β-catenin, and decreasing the cyclin D1 level. Additionally, the up-regulation of miR-9 by curcumin in SCC-9 cells was significantly inhibited by delivering anti-miR-9 but not control oligonucleotides. Downregulation of miR-9 by anti-miR-9 not only attenuated the growth-suppressive effects of curcumin on SCC-9 cells, but also re-activated Wnt/β-catenin signaling that was inhibited by curcumin. Therefore, our findings would provide a new insight into the use of curcumin against OSCC in future

  18. Accelerated SCC Testing of Stainless Steels According to Corrosion Resistance Classes

    Energy Technology Data Exchange (ETDEWEB)

    Borchert, M.; Mori, G. [General Analytical and Physical Chemistry, Montanuniversitaet Leoben (Austria); Bischof, M.; Tomandl, A. [Hilti Corporation, Liechtenstein (Austria)

    2015-12-15

    The German Guidelines for stainless steel in buildings (Z.30.3-6) issued by the German Institute for Building Technology (DIBt) categorize various stainless steel grades into five corrosion resistance classes (CRCs). Only 21 frequently used grades are approved and assigned to these CRCs. To assign new or less commonly used materials, a large program of outdoor exposure tests and laboratory tests is required. The present paper shows the results of stress corrosion cracking (SCC) tests that can distinguish between different CRCs. Slow strain rate tests (SSRT) were performed in various media and at different temperatures. CRC IV could be distinguished from CRC II and CRC III with a 31.3 % Cl{sup -} as MgCl{sub 2} solution at 140 .deg. C. CRC II and CRC III could be differentiated by testing in a 30% Cl{sup -} as MgCl{sub 2} solution at 100 .deg. C.

  19. Evaluation of SCC test methods for Inconel 600 in low temperature aqueous solutions

    International Nuclear Information System (INIS)

    Newman, R.C.; Roberge, R.; Bandy, R.

    1982-04-01

    In late 1981, widespread leakage was encountered in Alloy 600 steam-generator tubing at the Three Mile Island Unit 1 nuclear power plant. The phenomenon was identified as low-temperature intergranular stress-corrosion cracking (SCC) initiated from the inner surfaces of the tubes exposed to the primary coolant. A testing program was initiated to examine the material and environmental factors relevant to these failures, which were found to be associated with sensitization of the material and contamination of the coolant by air and sodium thiosulfate. The test solutions contained 1.3% boric acid with various additions of sulfur compounds and lithium hydroxide. Constant extension rate testing was used as the primary tool to examine environmental effects such as the inhibition of cracking by lithium hydroxide. Important effects of crack-initiation frequency on the specimen potential (and therefore crack velocity) are demonstrated

  20. Mechanical and corrosion properties of Ni-Cr-Fe Alloy 600 related to primary side SCC

    International Nuclear Information System (INIS)

    Begley, J.A.; Jacko, R.J.; Gold, R.E.

    1987-01-01

    The two-fold objective of the program is to provide the mechanical property data required for the development of a strain rate damage model for environmentally assisted cracking of Inconel 600 and to evaluate critical damage model parameters in primary water environments by conducting a series of stress corrosion tests. The test program includes mechanical property tests at 20 0 C, 316 0 C and strain rate tests to determine critical strain rate SCC parameters in primary water environments. Data are presented from slow strain rate tensile tests, stress relaxation tests and creep tests. A short discussion of the Gerber-Garud Strain Rate Damage Model is included to provide the background rationale for the test program. Utilitarian aspects of the Strain Rate Damage Model and the test program data are presented. Analysis of accelerated stress corrosion testing at high temperatures, and the contribution of thermally activated inelastic deformation to apparent activation energies for stress corrosion cracking is emphasized

  1. An application of the recrystallization method for the observation of plastic strain distribution around SCC cracks in sensitized SUS 304 stainless steels

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu

    1981-01-01

    Various types of stress corrosion cracking (SCC) testing methods have been developed since the SCC was discovered in type 304 stainless steel of BWR cooling pipes. With regard to the countermeasures for SCC, it is essential to evaluate the SCC susceptibility under the simulated or accelerated testing conditions. Among various acceleration SCC tests, the slow strain rate technique (SSRT) test has been used most widely. The SCC susceptibility, in almost cases, has been evaluated not on the base of the crack behavior but of the reduction of stress or strain under the corrosive environment. It is well known that the intensively deformed zone (plastic zone) is formed at the crack tip in fatigue and creep phenomena, but such plastic zone related with the resistance of crack extention has not been studied in SCC phenomenon. The objective of this study is to confirm the existence of the plastic zone at tips of SCC cracks by the application of the recrystallization method. The shape and the distribution of the plastic zone was measured by use of optical and scanning electron microscope in sensitized specimens SSRT tested in high temperature water containing various concentrations of dissolved oxygen. Results obtained are discussed in relation to the susceptibility of SCC. (author)

  2. The behavior of self-compacting concrete (SCC) with bagasse ash

    Science.gov (United States)

    Hanafiah, Saloma, Whardani, Putri Nurul Kusuma

    2017-11-01

    Self-Compacting Concrete (SCC) has the ability to flow and self-compacting. One of the benefit of SCC can reduced the construction time and labor cost. The materials to be used for see slightly different with the conventional concrete. Less coarse aggregate to be used up to 50%. The maximum size of coarse aggregate was also limited e.g. 10 mm. Other material was quartz sand with grain size of 50-650 µm. For reducing the around of cement, bagasse ash was used as partial replacement of cement. In this research, the variations of w/c to be used, e.g. 0.275, 0.300, 0.325 and the percentage of bagasse ash substitution were 10%, 15%, and 20%. EFNARC standard was conducted for slump flow test following the V-funnel test and L-box shape test. The maximum value of slump flow test was 75.75 cm, V-funnel test was 4.95 second, and L-box test was 1.000 yielded by mixture with w/c = 0.325 and 0% of bagasse ash. The minimum value of slump flow test was 61.50 cm, V-funnel test is 21.05 second, and L-box test was 0.743 yielded by mixture with w/c = 0.275 and 20% of bagasse ash. The maximum value of compressive strength was 67.239 MPa yielded by mixture with w/c = 0.275 and 15% of bagasse ash. And the minimum value of compressive strength was 41.813 MPa yielded by mixture with w/c = 0.325 and 20% bagasse ash.

  3. SCC tests of AISI 304 and 316L type stainless steels in SCW conditions

    International Nuclear Information System (INIS)

    Novotny, R.; Prchal, D.; Debarberis, L.; Haehner, P.; Degmova, J.

    2008-01-01

    Full text of publication follows. Super Critical Water Reactors (SCWR) have been pre-selected as a one of the candidate concepts for the new generation of nuclear reactors in frame of Generation IV. Beside the design concept choice of construction materials is the most important question. Despite extensive research due to using various materials either in the conventional supercritical coal power plants or SCWO systems there is still missing knowledge about the properties of the materials in operational conditions of SCWR. That includes influence of irradiation and environment composition on chemistry of water especially process of radiolysis, mechanical properties of the materials and oxide films properties. The process of choice and testing of possible construction and fuel cladding materials are still under R and D (e.g. EU HPLWR project). Two types of tests were undertaken in SCW environment conditions (t = 600 deg C, p = 250 bar): U-bend specimens for constant displacement SCC tests and tensile specimens for SSRT tests. SSRT tests were carried out in SCW environment with different concentration of dissolved O 2 : 1, 10, 100, 20 ppb (±5 ppb) and with different displacement rates: 0.1, 1, 10 μm/min. In SCC test with LI-bend specimens different time expositions were carried out in two concentrations of dissolved O 2 : 0 and 200 ppb. Water chemistry was continually monitored by means of pH, conductivity and dissolved O 2 sensors. After the test the specimens were analysed by optical microscopy, SEM and XRD. (authors)

  4. Effects of microstructure and mechanical properties of alloys 600 an 690 on secondary side SCC

    International Nuclear Information System (INIS)

    Vaillant, F.; Buisine, D.; Prieux, B.; Fournel, J.C.; Gelpi, A.

    1996-03-01

    Modeling for secondary side cracking is needed to understand the behaviour of alloy 600 in plants. They require a comprehensive understanding of the various influences of the material properties on Stress Corrosion Cracking (SCC), based on field experience and laboratory data. In an attempt to predict the materials effects on SCC behaviour of new steam generators, laboratory corrosion data of alloy 690 were overviewed. French field experience with steam generators equipped with drilled tube support plates (TSPs) has demonstrated that the lower the yield stress (YS) and the carbon content, the higher the susceptibility t secondary side cracking of mill-annealed (MA) alloy 600. Also heat treated (700 deg. C x 16 h) tubing has been shown to have a much better resistance, but this excellent resistance could not be attributed only to the material properties. In laboratory environments, particularly in caustics, results have confirmed several of the above mentioned key findings on alloy 600: in caustic environments and under constant loading, tubes fabricated from MA alloy 600 with low YS have exhibited the worst resistance to initiation; YS was found to be the most accurate parameter to account for the behaviour of MA alloy 600. A heat treatment at 700 deg. C appeared to reduce the propagation rates of cracks in alloy 600. The best IGSCC resistance of alloy 690 was obtained for tubes with intergranular precipitation of carbides. TT (700 deg. C) significantly improved the propagation resistance of alloy 690; in acidic and neutral sulfate environments, IGSCC of alloy 600 was not strongly dependent on the microstructure in the MA condition, but sensitization was detrimental. When alloy 600 and particularly alloy 690 were thermally treated at 700 deg. C x 16 h, the resistance to IGSCC was significantly improved. Tests performed on alloy 690 have shown a better resistance to IGSCC initiation and propagation than alloy 600, in NaOH and acidic sulfate environments. (authors

  5. Effect of cold work and processing orientation on the SCC behavior of Alloy 600

    International Nuclear Information System (INIS)

    Moshier, W.C.; Brown, C.M.

    1999-01-01

    Cold work accelerates SCC growth rates in Alloy 600. However, the variation in crack growth rates generated from cold worker material has been significant, and the effect has been difficult to quantify. A study was performed in hydrogenated water adjusted to pH 10.2 to systematically evaluate the effect of cold work on Alloy 600 as a function of temperature, amount of cold work, stress intensity factor, and processing orientation. Cold work was introduced into the material by either tensile prestraining or cold rolling plate product. Crack growth rates were determined between 252 and 360 C, stress intensity factors between 21 and 55 MPa√m, and yield strengths between 201 and 827 MPa. The material with the highest yield strength was cold rolled and tested in the longitudinal-transverse (LT) and short-transverse (ST) orientations. Crack growth rates increased with increasing temperature, stress intensity factor, and yield strength. Furthermore, crack growth rates were a strong function of the processing orientation in the cold rolled plate, with growth rates being approximately an order of magnitude greater in the ST orientation compared to the LT orientation. Crack growth rates in the LT orientation were measured between 0.003 and 1.95 x 10 -9 m/s and between 0.066 and 6.3 x 10 -9 m/s in the ST orientation. Activation energies were slightly greater in the ST orientation, ranging from 154 to 191 kcal/mole, compared to activation energies between 126 and 157 kJ/mole in the LT orientation. The results of this study demonstrate that although cold work can be used to accelerate SCC, the orientation of crack growth can significantly affect the results, and must be taken into account when analyzing data from cold worked material

  6. The soft notion of China's 'soft power'

    OpenAIRE

    Breslin, Shaun

    2011-01-01

    · Although debates over Chinese soft power have increased in\\ud recent years, there is no shared definition of what ‘soft power’\\ud actually means. The definition seems to change depending on\\ud what the observer wants to argue.\\ud · External analyses of soft power often include a focus on\\ud economic relations and other material (hard) sources of power\\ud and influence.\\ud · Many Chinese analyses of soft power focus on the promotion of a\\ud preferred (positive) understanding of China’s inter...

  7. European Union bulk tank SCC standards and proposed US standards: Compliance based on data from four Federal Milk Marketing Orders

    Science.gov (United States)

    The objective of this study was to evaluate compliance of US producers with the proposed BTSCC limits. Four different SCC levels of compliance were evaluated: 750K; 600K; 500K; 400K. For the 12 month period ending October 2010, 1.0% of producers and 0.2% of milk exceeded the current US limit of 750K...

  8. SCC, Bowen's disease and BCC arising on chronic radiation dermatitis due to radiation therapy for tinea pedis

    International Nuclear Information System (INIS)

    Aoki, Eri; Aoki, Mikako; Ikemura, Akiko; Igarashi, Tsukasa; Suzuki, Kayano; Kawana, Seiji

    2000-01-01

    We reported a case who developed three different types of skin cancers: SCC, BCC, and Bowen's disease, on the chronic radiation dermatitis. He had been treated for his tinea pedis et palmaris with radiotherapy in 1940's. It is very ratre that three different types of skin cancers arise in the same patient. This is a second case reported in Japan. (author)

  9. SCC of cold-worked austenitic stainless steels exposed to PWR primary water conditions: susceptibility to initiation

    International Nuclear Information System (INIS)

    Herms, E.; Raquet, O.; Sejourne, L.; Vaillant, F.

    2009-01-01

    Heavily cold-worked austenitic stainless steels (AISI 304L and 316L types) could be significantly susceptible to Stress Corrosion Cracking (SCC) when exposed to PWR nominal primary water conditions even in absence of any pollutants. Susceptibility to SCC was shown to be related with some conditions such as initial hardness, procedure of cold-work or dynamic straining. A dedicated program devoted to better understand the initiation stage on CW austenitic stainless steels in PWR water is presented. Initiation is studied thanks to SCC test conditions leading to an intergranular cracking propagation mode on a CW austenitic stainless steel which is the mode generally reported after field experience. SCC tests are carried out in typical primary water conditions (composition 1000 ppm B and 2 ppm Li) and for temperature in the range 290 - 340 C. Material selected is 316L cold-worked essentially by rolling (reduction in thickness of 40%). Initiation tests are carried out under various stress levels with the aim to investigate the evolution of the initiation period versus the value of applied stress. SCC tests are performed on cylindrical notched specimens in order to increase the applied stress and allow accelerated testing without modify the exposure conditions to strictly nominal hydrogenated PWR water. Respective influences of cyclic/dynamic conditions on SCC initiation are presented and discussed. Dedicated interrupted tests help to investigate the behaviour of the crack initiation process. These SCC tests have shown that crack initiation could be obtained after a very short time under dynamic loading conditions on heavily pre-strained austenitic stainless steels. Actual results show that the most limiting stage of the cracking process on CW 316L seems to be the transition from slow transgranular propagation of surface initiated cracks to intergranular fast propagation through the thickness of the sample. The duration of this stage during crack initiation tests is

  10. Computer aided display of multiple soft tissue anatomical surfaces for simultaneous structural and area-dose appreciation in 3D-radiationtherapy planning. 115

    International Nuclear Information System (INIS)

    Moore, C.J.; Mott, D.J.; Wilkinson, J.M.

    1987-01-01

    For radiotherapy applications a 3D display that includes soft tissues is required but the presentation of all anatomical structures is often unnecessary and is potentially confusing. A tumour volume and a small number of critical organs, usually embedded within other soft tissue anatomy, are likely to be all that can be clearly displayed when presented in a 3D format. The inclusion of dose data (in the form of isodose lines or surfaces) adds to the complication of any 3D display. A solution to this problem is to incorporate the presentation of dose distribution into the technique used to provide the illusion of 3D. This illusion can be provided by either depth cueing or by the hypothetical illumination of spatially defined object surfaces. The dose distribution from irradiation fields or, in the case of brachytherapy from radioactive sources, can be regarded as a source of illumination for tumour and critical organs. The intensity of illumination at any point on a tissue surface represents the dose at that point. Such an approach also allows the variation of dose over a given surface (and by extension, over the corresponding volume) to be quantified using histogram techniques. This may be of value in analysing and comparing techniques in which vulnerable tissue surfaces are irradiated. The planning of intracavitary treatments for cervical cancer is one application which might benefit from the display approach described above. Here the variation of dose over the mucosal surfaces of the bladder and the rectum is of particular interest, since dose related morbidity has often been reported following these treatments. 7 refs.; 8 figs

  11. Usefulness of SCC-antigen for diagnosis and monitoring recurrence and effectiveness of therapies of squamous cell carcinoma of the lung

    International Nuclear Information System (INIS)

    Mino, Naoko; Iio, Atsushi; Ata, Mariko; Murase, Kenya; Kataoka, Masaaki; Ito, Hisao; Ishine, Masahiro; Kawamura, Masashi; Hamamoto, Ken

    1987-01-01

    The serum levels of SCC antigen (squamous cell carcinoma related antigen) were measured in 111 patients with primary lung cancer to assess its clinical usefulness for diagnosis of squamous cell carcinoma and for monitoring recurrence and effectiveness of therapies. Serum SCC antigen level in patients with squamous cell carcinoma of the lung was 5.9 ± 10.4 ng/ml, which was high (p < 0.05) compared with those in normal controls (1.6 ± 0.5 ng/ml), patients with other types of lung cancer (2.4 ± 2.9 ng/ml) or benign disease (1.8 ± 1.1 ng/ml). Studies at various clinical stages of squamous cell carcinoma of the lung showed, however, that the SCC antigen levels were high only in the advanced stages (III and IV), whereas not so high in the earlier stages. These results confirmed that SCC antigen is a relatively specific marker to squamous cell carcinoma in the lung, as reported in the uterine cervix and the esophagus. The SCC antigen levels decreased after operation and more markedly after radiotherapy in dose-dependent manner, corresponding to the reduction of the tumor size. On the other hand, the SCC antigen levels were extremely high in the recurrence. It was concluded that SCC antigen is a useful marker for monitoring recurrence or effectiveness of the therapies of SCC of the lung, although not so for its early diagnosis. (author)

  12. A quantitative prediction model of SCC rate for nuclear structure materials in high temperature water based on crack tip creep strain rate

    International Nuclear Information System (INIS)

    Yang, F.Q.; Xue, H.; Zhao, L.Y.; Fang, X.R.

    2014-01-01

    Highlights: • Creep is considered to be the primary mechanical factor of crack tip film degradation. • The prediction model of SCC rate is based on crack tip creep strain rate. • The SCC rate calculated at the secondary stage of creep is recommended. • The effect of stress intensity factor on SCC growth rate is discussed. - Abstract: The quantitative prediction of stress corrosion cracking (SCC) of structure materials is essential in safety assessment of nuclear power plants. A new quantitative prediction model is proposed by combining the Ford–Andresen model, a crack tip creep model and an elastic–plastic finite element method. The creep at the crack tip is considered to be the primary mechanical factor of protective film degradation, and the creep strain rate at the crack tip is suggested as primary mechanical factor in predicting the SCC rate. The SCC rates at secondary stage of creep are recommended when using the approach introduced in this study to predict the SCC rates of materials in high temperature water. The proposed approach can be used to understand the SCC crack growth in structural materials of light water reactors

  13. Soft, Embodied, Situated & Connected

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2015-01-01

    Soft wearables include clothing and textile-based accessories that incorporate smart textiles and soft electronic interfaces to enable responsive and interactive experiences. When designed well, they leverage the cultural, sociological and material qualities of textiles, fashion and dress; divers...

  14. Soft, embodied, situated & connected

    NARCIS (Netherlands)

    Tomico Plasencia, O.; Wilde, D.

    2015-01-01

    Soft wearables include clothing and textile-based accessories that incorporate smart textiles and soft electronic interfaces to enable responsive and interactive experiences. When designed well, they leverage the cultural, sociological and material qualities of textiles, fashion and dress; diverse

  15. The clinical significance of serum SCC-Ag combined with CD105 in patients with cervical cancer during the early stage diagnosis

    Directory of Open Access Journals (Sweden)

    Ru-Chan Ma

    2016-09-01

    Full Text Available Objective: To invest the clinical significance of serum SCC-Ag combined with CD105 in early diagnosis of cervical cancer to provide new ideas for early diagnosis and clinical treatment of cervical cancer. Methods: A total of 74 cases cervical cancer patients were selected as cervical cancer group, and 52 cases uterine fibroids patients were selected as normal cervical group, serum samples were collected in the early morning fasting condition, SCC-Ag and CD105 were checked by ELISA method, SCC-Ag and CD105 of two groups were analyzed by t-test, and to compare SCC-Ag and CD105 in different TMN staging, lymph gland metastasis and non-lymph gland metastasis in patients with cervical cancer, the correlation analysis was used by Pearson correlation analysis method. Results: These results came from ELISA method, comparing with normal cervical group, the SCC-Ag and CD105 of cervical cancer group increased, the difference was statistically significant. Comparing with Ⅰ period of TMN staging, SCC-Ag and CD105 of Ⅱ period increased, Ⅲ, Ⅳ period increased, the difference was statistically significant. Comparing with Ⅱ period, SCC-Ag and CD105 of Ⅲ, Ⅳ period increased, the difference was statistically significant. Comparing with non-lymph gland metastasis, SCC-Ag and CD105 of lymph gland metastasis increased in cervical cancer with surgical treatment, the difference was statistically significant. According to Pearson correlation analysis, SCC-Ag and CD105 were positively correlated. Conclusion: SCC-Ag and CD105 in patients with cervical cancer increase highly, it has important clinical value that of serum SCCAg combined with CD105 in the early diagnosis of cervical cancer, especially it has clinical guiding significance to staging and lymph gland metastasis of cervical cancer, and it is worthy of clinical reference.

  16. NSE, CEA and SCC - a useful combination of tumor markers in lung cancer

    International Nuclear Information System (INIS)

    Fischbach, W.; Jany, B.

    1988-01-01

    The usefulness of neuronspecific enolase (NSE), CEA, and of the tumor associated antigen SSC was investigated in 61 patients with histologically proven lung cancer (small cell lung cancer n=25, adenocarcinoma n=14, squamous cell carcinoma n=18 and large cell carcinoma n=4). The sensitivity of NSE was 93.3% in small cell lung cancer (SCLC), whereas in adeno- and squamous cell carcinoma only 8 or 13%, resp., elevated serum NSE were found. CEA was the most sensitive marker for adenocarcinoma (58.3%). Contrary to NSE, however, CEA does not allow any conclusions concerning differential diagnosis as pathological serum concentrations were also observed in 46.6% both in small cell lung cancer and in squamous cell carcinoma. SCC demonstrated a sensitivity of 53% in squamous cell carcinoma. Elevated serum levels were also found in adenocarcinoma (41.6%), but never in small lung cancer. For all three markers tested, high serum concentrations were predominantly present in patients with advanced disease state. (orig.) [de

  17. Evaluation of neutron irradiation effect on SCC crack growth behaviour of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Austenitic stainless steels are widely used as structural materials alloy in reactor pressure vessel internal components because of their high strength, ductility and fracture toughness. However, exposure due to neutron irradiation results in changes in microstructure, mechanical properties and microchemistry of the material. Irradiation assisted stress corrosion cracking (IASCC) caused by the effect of neutron irradiation during long term operation in high temperature water environments in nuclear power plants is considered to take the form of intergranular stress corrosion cracking (IGSCC) and the critical fluence level has been reported to be about 5x10{sup 24}n/m{sup 2} (E>1MeV) for Type 304 SS in BWR environment. JNES had been conducting IASCC project during from JFY 2000 to JFY 2008, and prepared an engineering database on IASCC. However, the data of crack growth rate (CGR) below the critical fluence level are not sufficient. Therefore, evaluation of neutron irradiation effect project (ENI) was initiated to obtain the CGR data below the critical fluence level, and prepare the SCC growth rate diagram for life time evaluation of core shroud. Test specimens have been irradiated in the OECD/Halden reactor, and the post irradiation experiments (PIE) have been conducting during from JFY 2011 to JFY 2013, finally the modified IASCC guide will be prepared in JFY 2013. (author)

  18. Role of grain boundary engineering in the SCC behavior of ferritic-martensitic alloy HT-9

    International Nuclear Information System (INIS)

    Gupta, G.; Ampornrat, P.; Ren, X.; Sridharan, K.; Allen, T.R.; Was, G.S.

    2007-01-01

    This paper focuses on the role of grain boundary engineering (GBE) in stress corrosion cracking (SCC) of ferritic-martensitic (F-M) alloy HT-9 in supercritical water (SCW) at 400 deg. C and 500 deg. C. Constant extension rate tensile (CERT) tests were conducted on HT-9 in as-received (AR) and coincident site lattice enhanced (CSLE) condition. Both unirradiated and irradiated specimens (irradiated with 2 MeV protons at 400 deg. C and 500 deg. C to a dose of 7 dpa) were tested. Ferritic-martensitic steel HT-9 exhibited intergranular stress corrosion cracking when subjected to CERT tests in an environment of supercritical water at 400 deg. C and 500 deg. C and also in an inert environment of argon at 500 deg. C. CSL-enhancement reduces grain boundary carbide coarsening and cracking susceptibility in both the unirradiated and irradiated condition. Irradiation enhanced coarsening of grain boundary carbides and cracking susceptibility of HT-9 for both the AR and CSLE conditions. Intergranular (IG) cracking of HT-9 results likely from fracture of IG carbides and seems consistent with the mechanism that coarser carbides worsen cracking susceptibility. Oxidation in combination with wedging stresses is the likely cause of the observed environmental enhancement of high temperature IG cracking in HT-9

  19. Precursor evolution and SCC initiation of cold-worked alloy 690 in simulated PWR primary water

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Ziqing; Kruska, Karen; Toloczko, Mychailo B.; Bruemmer, Stephen M.

    2017-03-27

    Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for the 21% and 31%CW CLT specimens loaded at their yield stress after ~9,220 h, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiation after 10,400h exposure at constant stress intensity, which resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Interestingly, post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and will discuss their effects on crack initiation in CW alloy 690.

  20. SCC analysis of Alloy 600 tubes from a retired steam generator

    Science.gov (United States)

    Hwang, Seong Sik; Kim, Hong Pyo

    2013-09-01

    Steam generators (SG) equipped with Alloy 600 tubes of a Korean nuclear power plants were replaced with a new one having Alloy 690 tubes in 1998 after 20 years of operation. To set up a guide line for an examination of the other SG tubes, a metallographic examination of the defected tubes was carried out. A destructive analysis on 71 tubes was addressed, and a relation among the stress corrosion crack (SCC) defect location, defect depth, and location of the sludge pile was obtained. Tubes extracted from the retired SG were transferred to a hot laboratory. Detailed nondestructive analysis examinations were taken again at the laboratory, and the tubes were then destructively examined. The types and sizes of the cracks were characterized. The location and depth of the SCC were evaluated in terms of the location and height of the sludge. Most axial cracks were in the sludge pile, whereas the circumferential ones were around the top of the tube sheet (TTS) or below the TTS. Average defect depth of the axial cracks was deeper than that of the circumferential ones. Axial cracks at tube support plate (TSP) seem to be related with corrosion/sludge in crevice like at the TTS region. Circumferential cracks at TSP seem to be caused by tube denting at the upper part of the TSP. Tubes not having clear ECT signals for quantifying an ECT data-base. Tubes having no ECT signal. Tubes with a large ECT signal. Tubes with various types and sizes of flaws (primary water stress corrosion cracking (PWSCC), outside diameter stress corrosion cracking (ODSCC), Pit). Tubes with distinct PWSCC or ODSCC. Tubes were extracted from the RSG based on the field ECT with the criteria, and transferred to a hot laboratory at the Korea Atomic Energy Research Institute (KAERI) for destructive examination. A comprehensive ECT inspection was performed again at the hot laboratory to confirm the location of the cracks obtained from a field inspection. These exact locations of the defects were marked on the

  1. SCC behavior of alloy 690 from a CDRM mock-up

    International Nuclear Information System (INIS)

    Lapena, J.; Sol Garcia-Redondo, M. del; Perosanz, F.J.; Saez, A.; Gomez-Briceno, D.; Castelao, C.

    2015-01-01

    Stress corrosion cracking (SCC) response of Alloy 690 when the material has been subjected to nonuniform cold working is of interest to understand the behavior of the weld heat affected zone (HAZ) of Alloy 690 in which localised plastic strain exists due to weld shrinkage. This has a special interest in the case of control-rod-drive mechanisms (CRDM) of vessel head. To simulate these conditions during last years many crack growth rate (CGR) data were obtained in deformed material by cold work (rolling, forging or tensile straining), up to 40% of cold working. However, it is unclear to what extent this simulation procedure reproduces the conditions of the material in a CRDM. A research project is being carried out in order to obtain CGR data in realistic situations existing in operating power plants, by the use of CT specimens extracted from CRDMs. This presentation shows the characterization and some results of crack growth rate data on Alloy 690 TT base metal/HAZ/weld metal using specimens made from a CRDM mock-up. It has been fabricated following the usual procedures used for the RPV head fabrication for the Spanish PWR NPP. (authors)

  2. SRNL SHELF LIFE STUDIES - SCC STUDIES AT ROOM TEMPERTURE [stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Duffey, J.

    2014-11-12

    Phase II, Series 2 corrosion testing performed by the Savannah River National Laboratory (SRNL) for the Department of Energy 3013 container has been completed. The corrosion tests are part of an integrated plan conducted jointly by Los Alamos National Laboratory and the Savannah River Site. SRNL was responsible for conducting corrosion studies in small-scale vessels to address the influence of salt composition, water loading, and type of oxide/salt contact on the relative humidity inside a 3013 container and on the resulting corrosion of Type 304L and 316L stainless steel (304L and 316L). This testing was conducted in two phases: Phase I evaluated a broad spectrum of salt compositions and initial water loadings on the salt mixtures exposed to 304L and 316L and the resulting corrosion; Phase II evaluated the corrosion of 304L at specific water loadings and a single salt composition. During Phase I testing at high initial moisture levels (0.35 to 1.24 wt%)a, the roomtemperature corrosion of 304L exposed to a series of plutonium oxide/chloride salt mixtures ranged from superficial staining to pitting and stress corrosion cracking (SCC). 304L teardrop coupons that exhibited SCC were directly exposed to a mixture composed of 98 wt % PuO2, 0.9 wt % NaCl, 0.9 wt % KCl, and 0.2 wt % CaCl2. Cracking was not observed in a 316L teardrop coupon. Pitting was also observed in this environment for both 304L and 316L with depths ranging from 20 to 100 μm. Neither pitting nor SCC was observed in mixtures with a greater chloride salt concentration (5 and 28 wt%). These results demonstrated that for a corrosive solution to form a balance existed between the water loading and the salt chloride concentration. This chloride solution results from the interaction of loaded water with the hydrating CaCl2 salt. In Phase II, Series 1 tests, the SCC results were shown to be reproducible with cracking occurring in as little as 85 days. The approximate 0.5 wt% moisture level was found to

  3. Grain by grain study of the mechanisms of crack propagation during iodine SCC of Zry-4

    International Nuclear Information System (INIS)

    Haddad Andalag, R.E.

    1993-01-01

    This paper describes the tests conducted to determine the conditions leading to cracking of a specified grain of metal, focussing on the crystallographic orientation of crack paths, the critical stress conditions and the significance of the fractographic features encountered. In order to get orientable cracking, a technique was developed to produce iodine SCC, by means of pressurizing tubes of a specially heat treated Zry-4 having very large grains, shaped as discs of a few millimeters in diameter and grown up to the wall thickness. Careful orientation of fractured grains, performed by means of a back-reflection Laue technique with a precision better than one degree, has proved that transgranular cracking occurs only along basal planes. The effect of anisotropy, plasticity, triaxiality and residual stresses originated in thermal contraction, has to be considered to account for the influence of the stress state . A grain by grain calculation led to the conclusion that transgranular cracking always occurs on those bearing the maximum resolved tensile stress on basal planes. There are clear indications of the need of a triaxial stress state for the process to occur. Fracture modes other than pseudo-cleavage have been encountered, including intergranular separation, ductile tearing produced by prismatic slip and propagation along twin boundaries. In each case the fractographic features have been identified, and associations have been made with fractographs obtained in normal fuel cladding. (Author)

  4. Soft theorems from conformal field theory

    International Nuclear Information System (INIS)

    Lipstein, Arthur E.

    2015-01-01

    Strominger and collaborators recently proposed that soft theorems for gauge and gravity amplitudes can be interpreted as Ward identities of a 2d CFT at null infinity. In this paper, we will consider a specific realization of this CFT known as ambitwistor string theory, which describes 4d Yang-Mills and gravity with any amount of supersymmetry. Using 4d ambtwistor string theory, we derive soft theorems in the form of an infinite series in the soft momentum which are valid to subleading order in gauge theory and sub-subleading order in gravity. Furthermore, we describe how the algebra of soft limits can be encoded in the braiding of soft vertex operators on the worldsheet and point out a simple relation between soft gluon and soft graviton vertex operators which suggests an interesting connection to color-kinematics duality. Finally, by considering ambitwistor string theory on a genus one worldsheet, we compute the 1-loop correction to the subleading soft graviton theorem due to infrared divergences.

  5. CT discography for cervical soft disc hernia

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Kenichi; Mizutani, Shigeru; Morimoto, Hiroyuki; Yamada, Hidehito; Iwasa, Satoru

    1985-03-01

    In this study the effectiveness of computed tomographic discography (CTD) in diagnosing cervical soft disc hernia was evaluated. Twenty-five intervertebral discs of 15 cases with cervical soft disc hernia were examined with a discography and then a CT scan. Results of the CT scan were as follows: three discs were protruded, 12 discs were prolapsed, 6 discs were extruded, and 4 discs were sequestrated. The findings were helpful in determining the location of soft disc hernias between the median and posterolateral discs. They were also valuable in classifying types of hernias and surgical approaches.

  6. CT discography for cervical soft disc hernia

    International Nuclear Information System (INIS)

    Iwasa, Kenichi; Mizutani, Shigeru; Morimoto, Hiroyuki; Yamada, Hidehito; Iwasa, Satoru

    1985-01-01

    In this study the effectiveness of computed tomographic discography (CTD) in diagnosing cervical soft disc hernia was evaluated. Twenty-five interververtebral discs of 15 cases with cervical soft disc hernia were examined with a discography and then a CT scan. Results of the CT scan were as follows: three discs were protruded, 12 discs were prolapsed, 6 discs were extruded, and 4 discs were sequestrated. The findings were helpful in determining the location of soft disc hernians between the median and posterolateral discs. They were also valuable in classifying types of hernians and surgical aproaches. (author)

  7. Soft Congruence Relations over Rings

    Science.gov (United States)

    Xin, Xiaolong; Li, Wenting

    2014-01-01

    Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft congruence relations by using the soft set theory. The notions of soft quotient rings, generalized soft ideals and generalized soft quotient rings, are introduced, and several related properties are investigated. Also, we obtain a one-to-one correspondence between soft congruence relations and idealistic soft rings and a one-to-one correspondence between soft congruence relations and soft ideals. In particular, the first, second, and third soft isomorphism theorems are established, respectively. PMID:24949493

  8. Double soft theorem for perturbative gravity

    OpenAIRE

    Saha, Arnab

    2016-01-01

    Following up on the recent work of Cachazo, He and Yuan \\cite{arXiv:1503.04816 [hep-th]}, we derive the double soft graviton theorem in perturbative gravity. We show that the double soft theorem derived using CHY formula precisely matches with the perturbative computation involving Feynman diagrams. In particular, we find how certain delicate limits of Feynman diagrams play an important role in obtaining this equivalence.

  9. Glass transition of soft colloids

    Science.gov (United States)

    Philippe, Adrian-Marie; Truzzolillo, Domenico; Galvan-Myoshi, Julian; Dieudonné-George, Philippe; Trappe, Véronique; Berthier, Ludovic; Cipelletti, Luca

    2018-04-01

    We explore the glassy dynamics of soft colloids using microgels and charged particles interacting by steric and screened Coulomb interactions, respectively. In the supercooled regime, the structural relaxation time τα of both systems grows steeply with volume fraction, reminiscent of the behavior of colloidal hard spheres. Computer simulations confirm that the growth of τα on approaching the glass transition is independent of particle softness. By contrast, softness becomes relevant at very large packing fractions when the system falls out of equilibrium. In this nonequilibrium regime, τα depends surprisingly weakly on packing fraction, and time correlation functions exhibit a compressed exponential decay consistent with stress-driven relaxation. The transition to this novel regime coincides with the onset of an anomalous decrease in local order with increasing density typical of ultrasoft systems. We propose that these peculiar dynamics results from the combination of the nonequilibrium aging dynamics expected in the glassy state and the tendency of colloids interacting through soft potentials to refluidize at high packing fractions.

  10. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview In autumn the main focus was to process and handle CRAFT data and to perform the Summer08 MC production. The operational aspects were well covered by regular Computing Shifts, experts on duty and Computing Run Coordination. At the Computing Resource Board (CRB) in October a model to account for service work at Tier 2s was approved. The computing resources for 2009 were reviewed for presentation at the C-RRB. The quarterly resource monitoring is continuing. Facilities/Infrastructure operations Operations during CRAFT data taking ran fine. This proved to be a very valuable experience for T0 workflows and operations. The transfers of custodial data to most T1s went smoothly. A first round of reprocessing started at the Tier-1 centers end of November; it will take about two weeks. The Computing Shifts procedure was tested full scale during this period and proved to be very efficient: 30 Computing Shifts Persons (CSP) and 10 Computing Resources Coordinators (CRC). The shift program for the shut down w...

  11. SCC growth behavior of cast stainless steels in high-temperature water. Influences of corrosion potential, steel type, thermal aging and cold-work

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2011-01-01

    Recent studies on crack growth rate (CGR) measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry (NWC) in BWRs, using compact tension (CT) type specimens have shown that stainless steel weld metal are susceptible to stress corrosion cracking (SCC). On the other hand, the authors reported that no significant SCC growth was observed on stainless steel weld metals in PWR primary water at temperatures from 250degC to 340degC. Cast austenitic stainless steels are widely used in light water reactors, and there is a similarity between welded and cast stainless steels in terms of the microstructure of the ferrite/austenite duplex structure. However, there are a few reports giving CGR data on cast stainless steels in the BWRs and PWRs. The principal purpose of this study was to examine the SCC growth behavior of cast stainless steels in simulated PWR primary water. A second objective was to examine the effects on SCC growth in hydrogenated and oxygenated water environments at 320degC of: (1) corrosion potential; (2) steels type (Mo in alloy); (3) thermal-aging (up to 400degC x 40 kh); and (4) cold-working (10%). The results were as follows: (1) No significant SCC growth was observed on all types of cast stainless steels: aged (400degC x 40 kh) of SCS14A and SCS13A and 10% cold-working, in hydrogenated (low-potential) water at 320degC. (2) Aging at 400degC x 40 kh SCS14A (10%CW) markedly accelerated the SCC growth of cast material in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after long-term thermal aging (400degC x 40 kh). (3) Thus, cast stainless steels have excellent SCC resistance in PWR primary water. (4) On the other hand, significant SCC growth was observed on all types of cast stainless steels: 10%CW SCS14A and SCS13A, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between SCS14A (Mo) and SCS13A. (6) No

  12. Examination of tapered plastic multimode fiber-based sensor performance with silver coating for different concentrations of calcium hypochlorite by soft computing methodologies--a comparative study.

    Science.gov (United States)

    Zakaria, Rozalina; Sheng, Ong Yong; Wern, Kam; Shamshirband, Shahaboddin; Wahab, Ainuddin Wahid Abdul; Petković, Dalibor; Saboohi, Hadi

    2014-05-01

    A soft methodology study has been applied on tapered plastic multimode sensors. This study basically used tapered plastic multimode fiber [polymethyl methacrylate (PMMA)] optics as a sensor. The tapered PMMA fiber was fabricated using an etching method involving deionized water and acetone to achieve a waist diameter and length of 0.45 and 10 mm, respectively. In addition, a tapered PMMA probe, which was coated by silver film, was fabricated and demonstrated using a calcium hypochlorite (G70) solution. The working mechanism of such a device is based on the observation increment in the transmission of the sensor that is immersed in solutions at high concentrations. As the concentration was varied from 0 to 6 ppm, the output voltage of the sensor increased linearly. The silver film coating increased the sensitivity of the proposed sensor because of the effective cladding refractive index, which increases with the coating and thus allows more light to be transmitted from the tapered fiber. In this study, the polynomial and radial basis function (RBF) were applied as the kernel function of the support vector regression (SVR) to estimate and predict the output voltage response of the sensors with and without silver film according to experimental tests. Instead of minimizing the observed training error, SVR_poly and SVR_rbf were used in an attempt to minimize the generalization error bound so as to achieve generalized performance. An adaptive neuro-fuzzy interference system (ANFIS) approach was also investigated for comparison. The experimental results showed that improvements in the predictive accuracy and capacity for generalization can be achieved by the SVR_poly approach in comparison to the SVR_rbf methodology. The same testing errors were found for the SVR_poly approach and the ANFIS approach.

  13. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction CMS distributed computing system performed well during the 2011 start-up. The events in 2011 have more pile-up and are more complex than last year; this results in longer reconstruction times and harder events to simulate. Significant increases in computing capacity were delivered in April for all computing tiers, and the utilisation and load is close to the planning predictions. All computing centre tiers performed their expected functionalities. Heavy-Ion Programme The CMS Heavy-Ion Programme had a very strong showing at the Quark Matter conference. A large number of analyses were shown. The dedicated heavy-ion reconstruction facility at the Vanderbilt Tier-2 is still involved in some commissioning activities, but is available for processing and analysis. Facilities and Infrastructure Operations Facility and Infrastructure operations have been active with operations and several important deployment tasks. Facilities participated in the testing and deployment of WMAgent and WorkQueue+Request...

  14. COMPUTING

    CERN Multimedia

    P. McBride

    The Computing Project is preparing for a busy year where the primary emphasis of the project moves towards steady operations. Following the very successful completion of Computing Software and Analysis challenge, CSA06, last fall, we have reorganized and established four groups in computing area: Commissioning, User Support, Facility/Infrastructure Operations and Data Operations. These groups work closely together with groups from the Offline Project in planning for data processing and operations. Monte Carlo production has continued since CSA06, with about 30M events produced each month to be used for HLT studies and physics validation. Monte Carlo production will continue throughout the year in the preparation of large samples for physics and detector studies ramping to 50 M events/month for CSA07. Commissioning of the full CMS computing system is a major goal for 2007. Site monitoring is an important commissioning component and work is ongoing to devise CMS specific tests to be included in Service Availa...

  15. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview During the past three months activities were focused on data operations, testing and re-enforcing shift and operational procedures for data production and transfer, MC production and on user support. Planning of the computing resources in view of the new LHC calendar in ongoing. Two new task forces were created for supporting the integration work: Site Commissioning, which develops tools helping distributed sites to monitor job and data workflows, and Analysis Support, collecting the user experience and feedback during analysis activities and developing tools to increase efficiency. The development plan for DMWM for 2009/2011 was developed at the beginning of the year, based on the requirements from the Physics, Computing and Offline groups (see Offline section). The Computing management meeting at FermiLab on February 19th and 20th was an excellent opportunity discussing the impact and for addressing issues and solutions to the main challenges facing CMS computing. The lack of manpower is particul...

  16. Extreme Mechanics in Soft Pneumatic Robots and Soft Microfluidic Electronics and Sensors

    Science.gov (United States)

    Majidi, Carmel

    2012-02-01

    In the near future, machines and robots will be completely soft, stretchable, impact resistance, and capable of adapting their shape and functionality to changes in mission and environment. Similar to biological tissue and soft-body organisms, these next-generation technologies will contain no rigid parts and instead be composed entirely of soft elastomers, gels, fluids, and other non-rigid matter. Using a combination of rapid prototyping tools, microfabrication methods, and emerging techniques in so-called ``soft lithography,'' scientists and engineers are currently introducing exciting new families of soft pneumatic robots, soft microfluidic sensors, and hyperelastic electronics that can be stretched to as much as 10x their natural length. Progress has been guided by an interdisciplinary collection of insights from chemistry, life sciences, robotics, microelectronics, and solid mechanics. In virtually every technology and application domain, mechanics and elasticity have a central role in governing functionality and design. Moreover, in contrast to conventional machines and electronics, soft pneumatic systems and microfluidics typically operate in the finite deformation regime, with materials stretching to several times their natural length. In this talk, I will review emerging paradigms in soft pneumatic robotics and soft microfluidic electronics and highlight modeling and design challenges that arise from the extreme mechanics of inflation, locomotion, sensor operation, and human interaction. I will also discuss perceived challenges and opportunities in a broad range of potential application, from medicine to wearable computing.

  17. Material parameter identification and inverse problems in soft tissue biomechanics

    CERN Document Server

    Evans, Sam

    2017-01-01

    The articles in this book review hybrid experimental-computational methods applied to soft tissues which have been developed by worldwide specialists in the field. People developing computational models of soft tissues and organs will find solutions for calibrating the material parameters of their models; people performing tests on soft tissues will learn what to extract from the data and how to use these data for their models and people worried about the complexity of the biomechanical behavior of soft tissues will find relevant approaches to address this complexity.

  18. Anti-Cancer Effects of Imperata cylindrica Leaf Extract on Human Oral Squamous Carcinoma Cell Line SCC-9 in Vitro.

    Science.gov (United States)

    Keshava, Rohini; Muniyappa, Nagesh; Gope, Rajalakshmi; Ramaswamaiah, Ananthanarayana Saligrama

    2016-01-01

    Imperata cylindrica, a tall tufted grass which has multiple pharmacological applications is one of the key ingredients in various traditional medicinal formula used in India. Previous reports have shown that I. cylindrica plant extract inhibited cell proliferation and induced apoptosis in various cancer cell lines. To our knowledge, no studies have been published on the effect of I. cylindrica leaf extract on human oral cancers. The present study was undertaken in order to evaluate the anticancer properties of the leaf extract of I. cylindrica using an oral squamous cell carcinoma cell line SCC-9 as an in vitro model system. A methanol extract from dried leaves of I. cylindrica (ICL) was prepared by standard procedures. Effects of the ICL extract on the morphology of SCC-9 cells was visualized by microscopy. Cytotoxicity was determined by MTT assay. Effects of the ICL extract on colony forming ability of SCC-9 cells was evaluated using clonogenic assay. Cell cycle analysis was performed by flow cytometry and induction of apoptosis was determined by DNA fragmentation assay. The ICL extract treatment caused cytotoxicity and induced cell death in vitro in SCC-9 cells in a dose-dependent manner. This treatment also significantly reduced the clonogenic potential and inhibited cell proliferation by arresting the cell cycle in the G2/M phase. Furthermore, DNA fragmentation assays showed that the observed cell death was caused by apoptosis. This is the first report showing the anticancer activity of the methanol extracts from the leaves of I. cylindrica in human oral cancer cell line. Our data indicates that ICL extract could be considered as one of the lead compounds for the formulation of anticancer therapeutic agents to treat/manage human oral cancers. The natural abundance of I. cylindrica and its wide geographic distribution could render it one of the primary resource materials for preparation of anticancer therapeutic agents.

  19. COMPUTING

    CERN Multimedia

    I. Fisk

    2013-01-01

    Computing activity had ramped down after the completion of the reprocessing of the 2012 data and parked data, but is increasing with new simulation samples for analysis and upgrade studies. Much of the Computing effort is currently involved in activities to improve the computing system in preparation for 2015. Operations Office Since the beginning of 2013, the Computing Operations team successfully re-processed the 2012 data in record time, not only by using opportunistic resources like the San Diego Supercomputer Center which was accessible, to re-process the primary datasets HTMHT and MultiJet in Run2012D much earlier than planned. The Heavy-Ion data-taking period was successfully concluded in February collecting almost 500 T. Figure 3: Number of events per month (data) In LS1, our emphasis is to increase efficiency and flexibility of the infrastructure and operation. Computing Operations is working on separating disk and tape at the Tier-1 sites and the full implementation of the xrootd federation ...

  20. The effect of w/c ratio on microstructure of self-compacting concrete (SCC) with sugarcane bagasse ash (SCBA)

    Science.gov (United States)

    Hanafiah, Saloma, Victor, Amalina, Khoirunnisa Nur

    2017-11-01

    Self-Compacting Concrete (SCC) is a concrete that can flow and compact by itself without vibrator. The ability of SCC to flow by itself makes this concrete very suitable for construction that has very small reinforcement gaps. In this study, SCC was designed to get a compressive strength above 60 MPa at the age of 28 days. Sugarcane bagasse ash was used as substitution material for cement replacement. Percentages of sugarcane bagasse ash used were 10%, 15%, and 20%. There were three w/c values that vary from 0.275, 0.300, and 0.325. Testing standards referred to ASTM, EFNARC and ACI. The fresh concrete test was slump flow, L-box and V-funnel. The maximum compressive strength was in the mixture with the sugarcane bagasse ash composition of 15% and w/c=0.275 which was 67.24 MPa. The result of SEM test analysis found that the mixture composition with 15% sugarcane bagasse ash has solid CSH structure, small amount of pores, and smaller pore diameter than other mixtures.

  1. CEA, SCC and NSE levels in exhaled breath condensate--possible markers for early detection of lung cancer.

    Science.gov (United States)

    Zou, Yingchang; Wang, Lin; Zhao, Cong; Hu, Yanjie; Xu, Shan; Ying, Kejing; Wang, Ping; Chen, Xing

    2013-12-01

    Lung cancer (LC) is the leading cause of cancer-related death. The sensitive and non-invasive diagnostic tools in the early stage are still poor. We present a pilot study on the early diagnosis of LC by detecting markers in exhaled breath condensate (EBC). EBC samples were collected from 105 patients with LC and 56 healthy controls. We applied chemiluminescence immunoassay to detect CEA (carcinoembryonic antigen), SCC (squamous cell carcinoma) antigen and NSE (neuron specific enolase) in EBC and serum. Concentrations of markers were compared between independent groups and subgroups. A significantly higher concentration level of each marker was found in patients with LC than healthy controls. The areas under curve of receiver operating characteristic (ROC) curves were 0.800, 0.771, 0.659, 0.679, 0.636 and 0.626 for EBC-CEA, serum-CEA, EBC-SCC, serum-SCC, EBC-NSE and serum-NSE, respectively. Markers in EBC had a higher positive rate (PR) and were more specific to histologic types than markers in serum. In addition, multivariate analysis was performed to evaluate the association of presenting markers with the stages of non-small cell lung cancer (NSCLC). EBC-CEA showed the best predictive characteristic (p tumor markers in EBC may have a better diagnostic performance for LC than those in serum. With further investigation on the combination of markers in EBC, detection of EBC could probably be a novel and non-invasive method to detect NSCLC earlier.

  2. SCC growth behavior of stainless steel weld metals in high-temperature water. Influence of corrosion potential, weld type, thermal aging, cold-work and temperature

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2009-01-01

    Recent studies on crack growth rate measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry in boiling water reactors, using compact tension type specimens have shown that weld stainless steels are susceptible to stress corrosion cracking. However, to our knowledge, there is no crack growth data of weld stainless steels in pressurized water reactor primary water. The principal purpose of this study was to examine the SCC growth behavior of stainless steel weld metals in simulated PWR primary water. A second objective was to examine the effect of (1) corrosion potential, (2) thermal-aging, (3) Mo in alloy and (4) cold-working on SCC growth in hydrogenated and oxygenated water environments at 320degC. In addition, the temperature dependence of SCC growth in simulated PWR primary water was also studied. The results were as follows: (1) No significant SCC growth was observed on all types of stainless steel weld metals: as-welded, aged (400degC x 10 kh) 308L and 316L, in 2.7 ppm-hydrogenated (low-potential) water at 320degC. (2) 20% cold-working markedly accelerated the SCC growth of weld metals in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after 20% cold-working. (3) No significant SCC growth was observed on stainless steel weld metals in low-potential water at 250degC and 340degC. Thus, stainless steel weld metals have excellent SCC resistance in PWR primary water. On the other hand, (4) significant SCC growth was observed on all types of stainless steel weld metals: as-weld, aged (400degC x 10 kh) and 20% cold-worked 308L and 316L, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between 316L (Mo) and 308L. (6) No large effect on SCC growth was observed between before and after aging up to 400degC for 10 kh. (7) 20% cold-working markedly accelerated the SCC growth of stainless steel weld metals. (author)

  3. Extracts from Cladiella australis, Clavularia viridis and Klyxum simplex (Soft Corals are Capable of Inhibiting the Growth of Human Oral Squamous Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Guey-Horng Wang

    2008-11-01

    Full Text Available Many biomedical products have already been obtained from marine organisms. In order to search more therapeutic drugs against cancer, this study demonstrates the cytotoxicity effects of Cladiella australis, Clavularia viridis and Klyxum simplex extractson human oral squamous cell carcinoma (SCC4, SCC9 and SCC25 cells using cell adhesion and cell viability assay. The morphological alterations in SCCs cells after treatment with three extracts, such as typical nuclear condensation, nuclear fragmentation and apoptotic bodies of cells were demonstrated by Hoechst stain. Flow cytometry indicated that three extracts sensitized SCC25 cells in the G0/G1 and S-G2/M phases with a concomitant significantly increased sub-G1 fraction, indicating cell death by apoptosis. This apoptosis process was accompanied by activation of caspase-3 expression after SCC25 cells were treated with three extracts. Thereby, it is possible that extracts of C. australis, C. viridis and K. simplex cause apoptosis of SCCs and warrant further research investigating the possible anti-oral cancer compounds in these soft corals.

  4. COMPUTING

    CERN Multimedia

    I. Fisk

    2010-01-01

    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion An activity that is still in progress is computing for the heavy-ion program. The heavy-ion events are collected without zero suppression, so the event size is much large at roughly 11 MB per event of RAW. The central collisions are more complex and...

  5. COMPUTING

    CERN Multimedia

    M. Kasemann P. McBride Edited by M-C. Sawley with contributions from: P. Kreuzer D. Bonacorsi S. Belforte F. Wuerthwein L. Bauerdick K. Lassila-Perini M-C. Sawley

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the comput...

  6. Characteristics of Aerococcus viridans isolated from bovine subclinical mastitis and its effect on milk SCC, yield, and composition.

    Science.gov (United States)

    Sun, Meng; Gao, Jian; Ali, Tariq; Yu, Dan; Zhang, Shiyao; Khan, Saeed U; Fanning, Séamus; Han, Bo

    2017-04-01

    Aerococcus viridians (A. viridans), an environmental Gram-positive bacterium, has been documented to be associated with bovine mastitis. However, its exact role in bovine mastitis and the changes it brings about in milk characteristics are not yet known. The objectives of the current study were to describe the antibiotic resistance of A. viridans from bovine mastitis as well as the correlation between existence of this pathogen in udders and the somatic cell counts (SCC), daily milk yield, and composition of individual cow. One-year sampling for subclinical mastitis composite milk was conducted based on monthly DHI data from September 2013 to August 2014, in a commercial herd located in Beijing, China. All samples were cultured and pathogens were identified using microbiology method. A. viridians isolates were further identified by API identification system and 16S ribosomal RNA (rRNA) sequencing method. Kirby-Bauer disk diffusion method was used to test the antibiotic resistance of A. viridians against kinds of antimicrobial substance. SCC, milk yield, and milk composition data were from monthly Dairy Herd Improvement (DHI) results. Results showed that a total of 279 (16.67%) A. viridans isolates were identified from among 1674 bacterial isolates cultured from milk samples with high SCC. The incidence of mastitis caused by A. viridans was the highest (48-53%) during the summer season. Majority of the isolates were susceptible to most of antimicrobial compounds tested, especially to β-lactams, but were found to be resistant (50-90%) to aminoglycosides, sulfonamides, and tetracycline. The average SCC of the A. viridans infected cows was significantly higher (1000.0 × 10 3  cells/mL) (P  0.05) by 1.86 kg/day. Reductions were also observed in fat content (P > 0.05), lactose (P  0.05), whereas protein content increased significantly (P bovine subclinical mastitis wherein it exerts an effect on SCC, milk yield, and composition.

  7. Soft matter physics

    CERN Document Server

    Doi, Masao

    2013-01-01

    Soft matter (polymers, colloids, surfactants and liquid crystals) are an important class of materials in modern technology. They also form the basis of many future technologies, for example in medical and environmental applications. Soft matter shows complex behaviour between fluids and solids, and used to be a synonym of complex materials. Due to the developments of the past two decades, soft condensed matter can now be discussed on the same sound physical basis as solid condensedmatter. The purpose of this book is to provide an overview of soft matter for undergraduate and graduate students

  8. Experimental investigation of halogen-bond hard-soft acid-base complementarity.

    Science.gov (United States)

    Riel, Asia Marie S; Jessop, Morly J; Decato, Daniel A; Massena, Casey J; Nascimento, Vinicius R; Berryman, Orion B

    2017-04-01

    The halogen bond (XB) is a topical noncovalent interaction of rapidly increasing importance. The XB employs a `soft' donor atom in comparison to the `hard' proton of the hydrogen bond (HB). This difference has led to the hypothesis that XBs can form more favorable interactions with `soft' bases than HBs. While computational studies have supported this suggestion, solution and solid-state data are lacking. Here, XB soft-soft complementarity is investigated with a bidentate receptor that shows similar associations with neutral carbonyls and heavy chalcogen analogs. The solution speciation and XB soft-soft complementarity is supported by four crystal structures containing neutral and anionic soft Lewis bases.

  9. Analysis of the truth loading conditions of a austenitic CT specimen during a SCC experiment

    International Nuclear Information System (INIS)

    Marie, S.; Guerre, C.; Herms, E.

    2012-01-01

    samples have been machined/prepared, the residual stresses field in the specimen after its machining is calculated and then taken into account in the mechanical analysis. The characteristics of this field in addition to the mechanical loading applied during SCC testing can explain the crack propagation behavior observed experimentally. (authors)

  10. Effect of controlled potential on SCC of nuclear waste package container materials

    International Nuclear Information System (INIS)

    Lum, B. Y.; Roy, A. K.; Spragge, M. K.

    1999-01-01

    The slow-strain-rate (SSR) test technique was used to evaluate the susceptibility of Titanium (Ti) Gr-7 (UNS R52400) and Ti Gr-12 (UNS R53400) to stress corrosion cracking (SCC). Ti Gr-7 and Ti Gr-12 are two candidate container materials for the multi-barrier package for nuclear waste. The tests were done in a deaerated 90 C acidic brine (pH ∼ 2.7) containing 5 weight percent (wt%) sodium chloride (NaCl) using a strain rate of 3.3 x 10 -6 sec -1 . Before being tested in the acidic brine, specimens of each alloy were pulled inside the test chamber in the dry condition at ambient temperature. Then while in the test solution, specimens were strained under different cathodic (negative) controlled electrochemical potentials. These controlled potentials were selected based on the corrosion potential measured in the test solution before the specimens were strained. Results indicate that the times to failure (TTF) for Ti Gr-12 were much shorter than those for Ti Gr-7. Furthermore, as the applied potential became more cathodic, Ti Gr-12 showed reduced ductility in terms of percent reduction in area (%RA) and true fracture stress (σ f ). In addition, TTF and percent elongation (%El) reached the minimum values when Ti Gr-12 was tested under an impressed potential of -1162 mV. However, for Ti Gr-7, all these ductility parameters were not significantly influenced by the changes in applied potential. In general, the results of hydrogen analysis by secondary ion mass spectrometry (SIMS) showed increased hydrogen concentration at more cathodic controlled potentials. Optical microscopy and scanning electron microscopy (SEM) were used to evaluate the morphology of cracking both at the primary fracture face and the secondary cracks along the gage section of the broken tensile specimen. Transgranular secondary cracks were observed in both alloys possibly resulting from the formation of brittle titanium hydrides due to cathodic charging. The primary fracture face was characterized

  11. Soft behavior of a closed massless state in superstring and universality in the soft behavior of the dilaton

    Energy Technology Data Exchange (ETDEWEB)

    Vecchia, Paolo Di [The Niels Bohr Institute, University of Copenhagen,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Marotta, Raffaele [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli (Italy); Mojaza, Matin [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Potsdam (Germany)

    2016-12-06

    We consider the tree-level scattering amplitudes in the NS-NS (Neveu-Schwarz) massless sector of closed superstrings in the case where one external state becomes soft. We compute the amplitudes generically for any number of dimensions and any number and kind of the massless closed states through the subsubleading order in the soft expansion. We show that, when the soft state is a graviton or a dilaton, the full result can be expressed as a soft theorem factorizing the amplitude in a soft and a hard part. This behavior is similar to what has previously been observed in field theory and in the bosonic string. Differently from the bosonic string, the supersymmetric soft theorem for the graviton has no string corrections at subsubleading order. The dilaton soft theorem, on the other hand, is found to be universally free of string corrections in any string theory.

  12. Soft behavior of a closed massless state in superstring and universality of the soft behavior of the dilaton

    DEFF Research Database (Denmark)

    di Vecchia, Paolo; Marotta, Raffaele; Mojaza, Matin

    2016-01-01

    We consider the tree-level scattering amplitudes in the NS-NS (Neveu-Schwarz) massless sector of closed superstrings in the case where one external state becomes soft. We compute the amplitudes generically for any number of dimensions and any number and kind of the massless closed states through...... the subsubleading order in the soft expansion. We show that, when the soft state is a graviton or a dilaton, the full result can be expressed as a soft theorem factorizing the amplitude in a soft and a hard part. This behavior is similar to what has previously been observed in field theory and in the bosonic string....... Differently from the bosonic string, the supersymmetric soft theorem for the graviton has no string corrections at subsubleading order. The dilaton soft theorem, on the other hand, is found to be universally free of string corrections in any string theory....

  13. Effect of corrosion product layer on SCC susceptibility of copper containing type 304 stainless steel in 1 M H2SO4

    International Nuclear Information System (INIS)

    Asawa, M.; Devasenapathi, A.; Fujisawa, M.

    2004-01-01

    The effect of surface corrosion product layer on the stress corrosion cracking (SCC) susceptibility of type 304 stainless steel with Cu was studied in 1 kmol/m 3 (1 M) sulfuric acid at 353 K temperature. Studies based on the intermittent removal of surface corrosion product layer indicated that the surface film governs the SCC behavior of the alloy by accelerating both the crack initiation and propagation stages. The electrochemical impedance and polarization studies showed the surface layer to be promoting SCC initiation by lowering the uniform corrosion rate and the propagation by shifting the surface corrosion potential to a more noble direction. The elemental analysis of the corrosion product both by the energy dispersive X-ray (EDX) spectroscopy and by X-ray diffraction (XRD) analysis along with the thermodynamic calculations showed the layer to be constituted mainly of metallic copper (Cu) and the mono-hydrated iron sulfate which acts as cathode promoting SCC

  14. Stress Corrosion Cracking of Pipeline Steels in Fuel Grade Ethanol and Blends - Study to Evaluate Alternate Standard Tests and Phenomenological Understanding of SCC

    Science.gov (United States)

    2011-10-30

    Main aim of this project was to evaluate alternate standard test methods for stress corrosion cracking (SCC) and compare them with the results from slow strain rate test (SSRT) results under equivalent environmental conditions. Other important aim of...

  15. COMPUTING

    CERN Multimedia

    P. McBride

    It has been a very active year for the computing project with strong contributions from members of the global community. The project has focused on site preparation and Monte Carlo production. The operations group has begun processing data from P5 as part of the global data commissioning. Improvements in transfer rates and site availability have been seen as computing sites across the globe prepare for large scale production and analysis as part of CSA07. Preparations for the upcoming Computing Software and Analysis Challenge CSA07 are progressing. Ian Fisk and Neil Geddes have been appointed as coordinators for the challenge. CSA07 will include production tests of the Tier-0 production system, reprocessing at the Tier-1 sites and Monte Carlo production at the Tier-2 sites. At the same time there will be a large analysis exercise at the Tier-2 centres. Pre-production simulation of the Monte Carlo events for the challenge is beginning. Scale tests of the Tier-0 will begin in mid-July and the challenge it...

  16. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction During the past six months, Computing participated in the STEP09 exercise, had a major involvement in the October exercise and has been working with CMS sites on improving open issues relevant for data taking. At the same time operations for MC production, real data reconstruction and re-reconstructions and data transfers at large scales were performed. STEP09 was successfully conducted in June as a joint exercise with ATLAS and the other experiments. It gave good indication about the readiness of the WLCG infrastructure with the two major LHC experiments stressing the reading, writing and processing of physics data. The October Exercise, in contrast, was conducted as an all-CMS exercise, where Physics, Computing and Offline worked on a common plan to exercise all steps to efficiently access and analyze data. As one of the major results, the CMS Tier-2s demonstrated to be fully capable for performing data analysis. In recent weeks, efforts were devoted to CMS Computing readiness. All th...

  17. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion The Tier 0 infrastructure was able to repack and promptly reconstruct heavy-ion collision data. Two copies were made of the data at CERN using a large CASTOR disk pool, and the core physics sample was replicated ...

  18. COMPUTING

    CERN Multimedia

    I. Fisk

    2012-01-01

    Introduction Computing continued with a high level of activity over the winter in preparation for conferences and the start of the 2012 run. 2012 brings new challenges with a new energy, more complex events, and the need to make the best use of the available time before the Long Shutdown. We expect to be resource constrained on all tiers of the computing system in 2012 and are working to ensure the high-priority goals of CMS are not impacted. Heavy ions After a successful 2011 heavy-ion run, the programme is moving to analysis. During the run, the CAF resources were well used for prompt analysis. Since then in 2012 on average 200 job slots have been used continuously at Vanderbilt for analysis workflows. Operations Office As of 2012, the Computing Project emphasis has moved from commissioning to operation of the various systems. This is reflected in the new organisation structure where the Facilities and Data Operations tasks have been merged into a common Operations Office, which now covers everything ...

  19. COMPUTING

    CERN Multimedia

    M. Kasemann

    CCRC’08 challenges and CSA08 During the February campaign of the Common Computing readiness challenges (CCRC’08), the CMS computing team had achieved very good results. The link between the detector site and the Tier0 was tested by gradually increasing the number of parallel transfer streams well beyond the target. Tests covered the global robustness at the Tier0, processing a massive number of very large files and with a high writing speed to tapes.  Other tests covered the links between the different Tiers of the distributed infrastructure and the pre-staging and reprocessing capacity of the Tier1’s: response time, data transfer rate and success rate for Tape to Buffer staging of files kept exclusively on Tape were measured. In all cases, coordination with the sites was efficient and no serious problem was found. These successful preparations prepared the ground for the second phase of the CCRC’08 campaign, in May. The Computing Software and Analysis challen...

  20. COMPUTING

    CERN Multimedia

    I. Fisk

    2010-01-01

    Introduction The first data taking period of November produced a first scientific paper, and this is a very satisfactory step for Computing. It also gave the invaluable opportunity to learn and debrief from this first, intense period, and make the necessary adaptations. The alarm procedures between different groups (DAQ, Physics, T0 processing, Alignment/calibration, T1 and T2 communications) have been reinforced. A major effort has also been invested into remodeling and optimizing operator tasks in all activities in Computing, in parallel with the recruitment of new Cat A operators. The teams are being completed and by mid year the new tasks will have been assigned. CRB (Computing Resource Board) The Board met twice since last CMS week. In December it reviewed the experience of the November data-taking period and could measure the positive improvements made for the site readiness. It also reviewed the policy under which Tier-2 are associated with Physics Groups. Such associations are decided twice per ye...

  1. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction More than seventy CMS collaborators attended the Computing and Offline Workshop in San Diego, California, April 20-24th to discuss the state of readiness of software and computing for collisions. Focus and priority were given to preparations for data taking and providing room for ample dialog between groups involved in Commissioning, Data Operations, Analysis and MC Production. Throughout the workshop, aspects of software, operating procedures and issues addressing all parts of the computing model were discussed. Plans for the CMS participation in STEP’09, the combined scale testing for all four experiments due in June 2009, were refined. The article in CMS Times by Frank Wuerthwein gave a good recap of the highly collaborative atmosphere of the workshop. Many thanks to UCSD and to the organizers for taking care of this workshop, which resulted in a long list of action items and was definitely a success. A considerable amount of effort and care is invested in the estimate of the co...

  2. Soft, embodied, situated & connected: enriching interactions with soft wearbles

    NARCIS (Netherlands)

    Tomico Plasencia, O.; Wilde, D.

    2016-01-01

    Soft wearables include clothing and textile-based accessories that incorporate smart textiles and soft electronic interfaces to enable responsive and interactive experiences. When designed well, soft wearables leverage the cultural, sociological and material qualities of textiles, fashion and dress;

  3. Possibility Fuzzy Soft Set

    Directory of Open Access Journals (Sweden)

    Shawkat Alkhazaleh

    2011-01-01

    Full Text Available We introduce the concept of possibility fuzzy soft set and its operation and study some of its properties. We give applications of this theory in solving a decision-making problem. We also introduce a similarity measure of two possibility fuzzy soft sets and discuss their application in a medical diagnosis problem.

  4. Fixing soft margins

    NARCIS (Netherlands)

    P. Kofman (Paul); A. Vaal, de (Albert); C.G. de Vries (Casper)

    1993-01-01

    textabstractNon-parametric tolerance limits are employed to calculate soft margins such as advocated in Williamson's target zone proposal. In particular, the tradeoff between softness and zone width is quantified. This may be helpful in choosing appropriate margins. Furthermore, it offers

  5. learning and soft skills

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard

    2000-01-01

    Learning of soft skills are becoming more and more necessary due to the complexe development of modern companies and their environments. However, there seems to be a 'gap' between intentions and reality regarding need of soft skills and the possiblities to be educated in this subject in particular...

  6. Embodying Soft Wearables Research

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2016-01-01

    of soft wearables. Throughout, we will experiment with how embodied design research techniques might be shared, developed, and used as direct and unmediated vehicles for their own reporting. Rather than engage in oral presentations, participants will lead each other through a proven embodied method...... and knowledge transfer in the context of soft wearables....

  7. Clinical diagnostic significance of combined detection of serum and pleural effusion levels of CEA, NSE, CYFRA21-1, SCC-Ag in patients with lung cancer

    International Nuclear Information System (INIS)

    Bian Baoxiang; Hu Nan; Wu Fenglei; Yang Chengxi

    2008-01-01

    Objective: To appraise the clinical diagnostic significance of combined detection of serum and chest fluid levels of CEA, NSE, CYFRA21-1 and SCC-Ag in patients with lung cancer. Methods: Serum and pleural effusion contents of CEA, NSE, CYFRA21-1 and SCC-Ag were determined with RIA in 54 patients with lung cancer and 35 patients with benign lung disorders. Results: The serum and pleural effusion contents of CEA, NSE, CYFRA21-1 and SCC-Ag in patients with lung cancer were significantly higher than those in patients with benign lung disorders (P<0.01). The contents of CEA, NSE, CYFRA21-1 and SCC-Ag in patients pleural effusion were significantly higher than those in patients serum (P<0.01). For combined detection of CEA, NSE, CYFRA21-1 and SCC-Ag in serum and pleural effusion, the positive rate was 83.33% and 92.59% respectively. Conclusion: Combined detection of CEA, NSE, CYFRA21-1 and SCC-Ag contents in serum and pleural effusion can increase the positive rate of lung cancer diagnosis. (authors)

  8. Soft buckling actuators

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dian; Whitesides, George M.

    2017-12-26

    A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predetermined direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.

  9. COMPUTING

    CERN Multimedia

    2010-01-01

    Introduction Just two months after the “LHC First Physics” event of 30th March, the analysis of the O(200) million 7 TeV collision events in CMS accumulated during the first 60 days is well under way. The consistency of the CMS computing model has been confirmed during these first weeks of data taking. This model is based on a hierarchy of use-cases deployed between the different tiers and, in particular, the distribution of RECO data to T1s, who then serve data on request to T2s, along a topology known as “fat tree”. Indeed, during this period this model was further extended by almost full “mesh” commissioning, meaning that RECO data were shipped to T2s whenever possible, enabling additional physics analyses compared with the “fat tree” model. Computing activities at the CMS Analysis Facility (CAF) have been marked by a good time response for a load almost evenly shared between ALCA (Alignment and Calibration tasks - highest p...

  10. COMPUTING

    CERN Multimedia

    Contributions from I. Fisk

    2012-01-01

    Introduction The start of the 2012 run has been busy for Computing. We have reconstructed, archived, and served a larger sample of new data than in 2011, and we are in the process of producing an even larger new sample of simulations at 8 TeV. The running conditions and system performance are largely what was anticipated in the plan, thanks to the hard work and preparation of many people. Heavy ions Heavy Ions has been actively analysing data and preparing for conferences.  Operations Office Figure 6: Transfers from all sites in the last 90 days For ICHEP and the Upgrade efforts, we needed to produce and process record amounts of MC samples while supporting the very successful data-taking. This was a large burden, especially on the team members. Nevertheless the last three months were very successful and the total output was phenomenal, thanks to our dedicated site admins who keep the sites operational and the computing project members who spend countless hours nursing the...

  11. COMPUTING

    CERN Multimedia

    M. Kasemann

    Introduction A large fraction of the effort was focused during the last period into the preparation and monitoring of the February tests of Common VO Computing Readiness Challenge 08. CCRC08 is being run by the WLCG collaboration in two phases, between the centres and all experiments. The February test is dedicated to functionality tests, while the May challenge will consist of running at all centres and with full workflows. For this first period, a number of functionality checks of the computing power, data repositories and archives as well as network links are planned. This will help assess the reliability of the systems under a variety of loads, and identifying possible bottlenecks. Many tests are scheduled together with other VOs, allowing the full scale stress test. The data rates (writing, accessing and transfer¬ring) are being checked under a variety of loads and operating conditions, as well as the reliability and transfer rates of the links between Tier-0 and Tier-1s. In addition, the capa...

  12. COMPUTING

    CERN Multimedia

    Matthias Kasemann

    Overview The main focus during the summer was to handle data coming from the detector and to perform Monte Carlo production. The lessons learned during the CCRC and CSA08 challenges in May were addressed by dedicated PADA campaigns lead by the Integration team. Big improvements were achieved in the stability and reliability of the CMS Tier1 and Tier2 centres by regular and systematic follow-up of faults and errors with the help of the Savannah bug tracking system. In preparation for data taking the roles of a Computing Run Coordinator and regular computing shifts monitoring the services and infrastructure as well as interfacing to the data operations tasks are being defined. The shift plan until the end of 2008 is being put together. User support worked on documentation and organized several training sessions. The ECoM task force delivered the report on “Use Cases for Start-up of pp Data-Taking” with recommendations and a set of tests to be performed for trigger rates much higher than the ...

  13. COMPUTING

    CERN Multimedia

    P. MacBride

    The Computing Software and Analysis Challenge CSA07 has been the main focus of the Computing Project for the past few months. Activities began over the summer with the preparation of the Monte Carlo data sets for the challenge and tests of the new production system at the Tier-0 at CERN. The pre-challenge Monte Carlo production was done in several steps: physics generation, detector simulation, digitization, conversion to RAW format and the samples were run through the High Level Trigger (HLT). The data was then merged into three "Soups": Chowder (ALPGEN), Stew (Filtered Pythia) and Gumbo (Pythia). The challenge officially started when the first Chowder events were reconstructed on the Tier-0 on October 3rd. The data operations teams were very busy during the the challenge period. The MC production teams continued with signal production and processing while the Tier-0 and Tier-1 teams worked on splitting the Soups into Primary Data Sets (PDS), reconstruction and skimming. The storage sys...

  14. COMPUTING

    CERN Multimedia

    I. Fisk

    2013-01-01

    Computing operation has been lower as the Run 1 samples are completing and smaller samples for upgrades and preparations are ramping up. Much of the computing activity is focusing on preparations for Run 2 and improvements in data access and flexibility of using resources. Operations Office Data processing was slow in the second half of 2013 with only the legacy re-reconstruction pass of 2011 data being processed at the sites.   Figure 1: MC production and processing was more in demand with a peak of over 750 Million GEN-SIM events in a single month.   Figure 2: The transfer system worked reliably and efficiently and transferred on average close to 520 TB per week with peaks at close to 1.2 PB.   Figure 3: The volume of data moved between CMS sites in the last six months   The tape utilisation was a focus for the operation teams with frequent deletion campaigns from deprecated 7 TeV MC GEN-SIM samples to INVALID datasets, which could be cleaned up...

  15. COMPUTING

    CERN Multimedia

    I. Fisk

    2012-01-01

      Introduction Computing activity has been running at a sustained, high rate as we collect data at high luminosity, process simulation, and begin to process the parked data. The system is functional, though a number of improvements are planned during LS1. Many of the changes will impact users, we hope only in positive ways. We are trying to improve the distributed analysis tools as well as the ability to access more data samples more transparently.  Operations Office Figure 2: Number of events per month, for 2012 Since the June CMS Week, Computing Operations teams successfully completed data re-reconstruction passes and finished the CMSSW_53X MC campaign with over three billion events available in AOD format. Recorded data was successfully processed in parallel, exceeding 1.2 billion raw physics events per month for the first time in October 2012 due to the increase in data-parking rate. In parallel, large efforts were dedicated to WMAgent development and integrati...

  16. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction The Computing Team successfully completed the storage, initial processing, and distribution for analysis of proton-proton data in 2011. There are still a variety of activities ongoing to support winter conference activities and preparations for 2012. Heavy ions The heavy-ion run for 2011 started in early November and has already demonstrated good machine performance and success of some of the more advanced workflows planned for 2011. Data collection will continue until early December. Facilities and Infrastructure Operations Operational and deployment support for WMAgent and WorkQueue+Request Manager components, routinely used in production by Data Operations, are provided. The GlideInWMS and components installation are now deployed at CERN, which is added to the GlideInWMS factory placed in the US. There has been new operational collaboration between the CERN team and the UCSD GlideIn factory operators, covering each others time zones by monitoring/debugging pilot jobs sent from the facto...

  17. The use of time-of-flight camera for navigating robots in computer-aided surgery: monitoring the soft tissue envelope of minimally invasive hip approach in a cadaver study.

    Science.gov (United States)

    Putzer, David; Klug, Sebastian; Moctezuma, Jose Luis; Nogler, Michael

    2014-12-01

    Time-of-flight (TOF) cameras can guide surgical robots or provide soft tissue information for augmented reality in the medical field. In this study, a method to automatically track the soft tissue envelope of a minimally invasive hip approach in a cadaver study is described. An algorithm for the TOF camera was developed and 30 measurements on 8 surgical situs (direct anterior approach) were carried out. The results were compared to a manual measurement of the soft tissue envelope. The TOF camera showed an overall recognition rate of the soft tissue envelope of 75%. On comparing the results from the algorithm with the manual measurements, a significant difference was found (P > .005). In this preliminary study, we have presented a method for automatically recognizing the soft tissue envelope of the surgical field in a real-time application. Further improvements could result in a robotic navigation device for minimally invasive hip surgery. © The Author(s) 2014.

  18. Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces

    Directory of Open Access Journals (Sweden)

    Muhammad Shabir

    2017-06-01

    Full Text Available Bipolar soft topological spaces are mathematical expressions to estimate interpretation of data frameworks. Bipolar soft theory considers the core features of data granules. Bipolarity is important to distinguish between positive information which is guaranteed to be possible and negative information which is forbidden or surely false. Connectedness and compactness are the most important fundamental topological properties. These properties highlight the main features of topological spaces and distinguish one topology from another. Taking this into account, we explore the bipolar soft connectedness, bipolar soft disconnectedness and bipolar soft compactness properties for bipolar soft topological spaces. Moreover, we introduce the notion of bipolar soft disjoint sets, bipolar soft separation, and bipolar soft hereditary property and study on bipolar soft connected and disconnected spaces. By giving the detailed picture of bipolar soft connected and disconnected spaces we investigate bipolar soft compact spaces and derive some results related to this concept.

  19. Soft-Material Robotics

    OpenAIRE

    Wang, L; Nurzaman, SG; Iida, Fumiya

    2017-01-01

    There has been a boost of research activities in robotics using soft materials in the past ten years. It is expected that the use and control of soft materials can help realize robotic systems that are safer, cheaper, and more adaptable than the level that the conventional rigid-material robots can achieve. Contrary to a number of existing review and position papers on soft-material robotics, which mostly present case studies and/or discuss trends and challenges, the review focuses on the fun...

  20. Evaluating six soft approaches

    DEFF Research Database (Denmark)

    Sørensen, Lene; Vidal, Rene Victor Valqui

    2006-01-01

    ’s interactive planning principles to be supported by soft approaches in carrying out the principles in action. These six soft approaches are suitable for supporting various steps of the strategy development and planning process. These are the SWOT analysis, the Future Workshop, the Scenario methodology......, Strategic Option Development and Analysis, Strategic Choice Approach and Soft Systems Methodology. Evaluations of each methodology are carried out using a conceptual framework in which the organisation, the result, the process and the technology of the specific approach are taken into consideration. Using...

  1. Evaluating Six Soft Approaches

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Valqui Vidal, René Victor

    2008-01-01

    's interactive planning principles to be supported by soft approaches in carrying out the principles in action. These six soft approaches are suitable forsupporting various steps of the strategy development and planning process. These are the SWOT analysis, the Future Workshop, the Scenario methodology......, Strategic Option Development and Analysis, Strategic Choice Approach and Soft Systems Methodology. Evaluations of each methodology are carried out using a conceptual framework in which the organisation, the result, the process and the technology of the specific approach are taken into consideration. Using...

  2. Evaluating six soft approaches

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Vidal, Rene Victor Valqui

    2008-01-01

    's interactive planning principles to be supported by soft approaches in carrying out the principles in action. These six soft approaches are suitable forsupporting various steps of the strategy development and planning process. These are the SWOT analysis, the Future Workshop, the Scenario methodology......, Strategic Option Development and Analysis, Strategic Choice Approach and Soft Systems Methodology. Evaluations of each methodology are carried out using a conceptual framework in which the organisation, the result, the process and the technology of the specific approach are taken into consideration. Using...

  3. COMPUTING

    CERN Multimedia

    M. Kasemann

    CMS relies on a well functioning, distributed computing infrastructure. The Site Availability Monitoring (SAM) and the Job Robot submission have been very instrumental for site commissioning in order to increase availability of more sites such that they are available to participate in CSA07 and are ready to be used for analysis. The commissioning process has been further developed, including "lessons learned" documentation via the CMS twiki. Recently the visualization, presentation and summarizing of SAM tests for sites has been redesigned, it is now developed by the central ARDA project of WLCG. Work to test the new gLite Workload Management System was performed; a 4 times increase in throughput with respect to LCG Resource Broker is observed. CMS has designed and launched a new-generation traffic load generator called "LoadTest" to commission and to keep exercised all data transfer routes in the CMS PhE-DEx topology. Since mid-February, a transfer volume of about 12 P...

  4. Distinguishing effect of buffing vs. grinding, milling and turning operations on the chloride induced SCC susceptibility of 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Kumar, Pandu Sunil; Acharyya, Swati Ghosh; Rao, S.V. Ramana; Kapoor, Komal

    2017-01-01

    The study compares the effect of different surface working operations like grinding, milling, turning and buffing on the Cl – induced stress corrosion cracking (SCC) susceptibility of austenitic 304L stainless steel (SS) in a chloride environment. SS 304L was subjected to four different surface working operations namely grinding, milling, turning and buffing. The residual stress distribution of the surface as a result of machining was measured by X-ray diffraction. The Cl – induced SCC susceptibility of the different surface worked samples were determined by testing in boiling magnesium chloride as per ASTM G36 for 3 h, 9 h and 72 h. The surface and cross section of the samples both pre and post exposure to the corrosive medium was characterized using optical microscopy, scanning electron microscopy (SEM). The study revealed that grinding, milling and turning operations resulted in high tensile residual stresses on the surface together with the high density of deformation bands making these surfaces highly susceptible to Cl – induced SCC. On the other hand buffing produces compressive residual stresses on the surface with minimal plastic strain, making it more resistance to Cl – induced SCC. The study highlights that the conventional machining operations on 304L SS surfaces should be invariably followed by buffing operation to make the surfaces more resistance to SCC. - Highlights: • Grinding, milling and turning lead to tensile residual stresses and plastic strain. • Buffing leads to compressive residual stresses on the surface and minimal strain. • Grinding, milling and turning make 304L SS surface susceptible to SCC. • Buffed 304L SS surface is immune to SCC. • Grinding, milling, and turning operations should be followed by buffing operation.

  5. Distinguishing effect of buffing vs. grinding, milling and turning operations on the chloride induced SCC susceptibility of 304L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pandu Sunil [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Acharyya, Swati Ghosh, E-mail: swati364@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Rao, S.V. Ramana; Kapoor, Komal [Nuclear Fuel Complex, Department of Atomic Energy, Government of India, Hyderabad 500062 (India)

    2017-02-27

    The study compares the effect of different surface working operations like grinding, milling, turning and buffing on the Cl{sup –} induced stress corrosion cracking (SCC) susceptibility of austenitic 304L stainless steel (SS) in a chloride environment. SS 304L was subjected to four different surface working operations namely grinding, milling, turning and buffing. The residual stress distribution of the surface as a result of machining was measured by X-ray diffraction. The Cl{sup –} induced SCC susceptibility of the different surface worked samples were determined by testing in boiling magnesium chloride as per ASTM G36 for 3 h, 9 h and 72 h. The surface and cross section of the samples both pre and post exposure to the corrosive medium was characterized using optical microscopy, scanning electron microscopy (SEM). The study revealed that grinding, milling and turning operations resulted in high tensile residual stresses on the surface together with the high density of deformation bands making these surfaces highly susceptible to Cl{sup –} induced SCC. On the other hand buffing produces compressive residual stresses on the surface with minimal plastic strain, making it more resistance to Cl{sup –} induced SCC. The study highlights that the conventional machining operations on 304L SS surfaces should be invariably followed by buffing operation to make the surfaces more resistance to SCC. - Highlights: • Grinding, milling and turning lead to tensile residual stresses and plastic strain. • Buffing leads to compressive residual stresses on the surface and minimal strain. • Grinding, milling and turning make 304L SS surface susceptible to SCC. • Buffed 304L SS surface is immune to SCC. • Grinding, milling, and turning operations should be followed by buffing operation.

  6. Stress corrosion cracking of Alloy 82 in hydrogenated steam at 400 C: influence of microstructural and mechanical parameters on initiation of SCC cracks

    International Nuclear Information System (INIS)

    Chaumun, Elizabeth

    2016-01-01

    In Pressurize Water Reactors (PWR), Stress Corrosion Cracking (SCC) is the mean degradation mode of components pieced together by welding. Nickel based alloys are, among others, used in dissimilar metal welding (DMW). International report showed only 3 cracking cases in Alloy 82 out of 300 cracking cases concerned on nickel based alloys DMW in primary water circuit. The aim of this study is to identify which microstructural and local mechanism parameters at microstructure scale provide the initiation of SCC cracks. Characterizations performed on specimen surface to identify those parameters are composed of chemical composition analysis and EBSD analysis (Electron Back-Scattered Diffraction) to know the morphology and the crystallography of grains for microstructure features on one hand, and experimental strain fields measured by Digital Imaging Correlation (DIC) of gold micro-grids deposed by electronic lithography on U-bend specimen surface and stress fields calculated along grains boundaries by finite element for local mechanical features on the other hand. The correlation between those characterizations and localization of initiation sites of SCC cracks, obtained on U-bend specimens tested in autoclave in hydrogen steam water at 400 C and 188 bar for 3500 hours, confirmed the susceptibility of the Alloy 82 in SCC conditions with intergranular SCC cracks. The perpendicular position to the loading direction (mode I) is the worst conditions for grains boundary in SCC. The others points concern the chemical composition (precipitation, impurities) around grain boundary and the grain boundary type which is more susceptible when it is a High Angle Grain Boundary. It is following by the mechanical characterization (stress and strain gradient) along grain boundary. This methodology can be used to other material and helped to define which microstructural and mechanical parameter can be define the initiation of SCC cracks. (author) [fr

  7. ATLAS soft QCD results

    CERN Document Server

    Sykora, Tomas; The ATLAS collaboration

    2018-01-01

    Recent results of soft QCD measurements performed by the ATLAS collaboration are reported. The measurements include total, elastic and inelastic cross sections, inclusive spectra, underlying event and particle correlations in p-p and p-Pb collisions.

  8. Iodine stress corrosion cracking (SCC) of unirradiated Zircaloy-4 tubing by means of internal gas pressurization, (1)

    International Nuclear Information System (INIS)

    Onchi, Takeo; Inoue, Tadashi

    1982-01-01

    The internal gas pressurization tests were conducted at 360 0 C, to examine the influence of iodine concentration on the iodine stress corrosion cracking (SCC) susceptibility of Zircaloy-4 tubing of 17 x 17 type PWR design. The iodine contents studied were ranging of 0.06 to 6 mg/cm 2 , corresponding to 30 from 0.3 mg/cm 3 . Applied hoop stress vs. time-to-failure relationships were obtained in argon gas with iodine, as well as without iodine, from the tests of maximum holding times up to 72 hrs. The relationships obtained were insensitive to iodine contents. The applied stress lowering in iodine atmosphere approached a threshold stress below which SCC failure did not occur within the holding time, but not in argon gas alone. The threshold stresses were approximately 25.5 kg/mm 2 (250 Mpa), independent on iodine concentrations. Based on fracture mechanics approach and fractographic analysis, an interpretation was made of those applied stress and time-to-failure relationships. (author)

  9. Comparison of ultrasound-assisted and traditional caustic leaching of spent cathode carbon (SCC) from aluminum electrolysis.

    Science.gov (United States)

    Xiao, Jin; Yuan, Jie; Tian, Zhongliang; Yang, Kai; Yao, Zhen; Yu, Bailie; Zhang, Liuyun

    2018-01-01

    The spent cathode carbon (SCC) from aluminum electrolysis was subjected to caustic leaching to investigate the different effects of ultrasound-assisted and traditional methods on element fluorine (F) leaching rate and leaching residue carbon content. Sodium hydroxide (NaOH) dissolved in deionized water was used as the reaction system. Through single-factor experiments and a comparison of two leaching techniques, the optimum F leaching rate and residue carbon content for ultrasound-assisted leaching process were obtained at a temperature of 70°C, residue time of 40min, initial mass ratio of alkali to SCC (initial alkali-to-material ratio) of 0.6, liquid-to-solid ratio of 10mL/g, and ultrasonic power of 400W, respectively. Under the optimal conditions, the leaching residue carbon content was 94.72%, 2.19% larger than the carbon content of traditional leaching residue. Leaching wastewater was treated with calcium chloride (CaCl 2 ) and bleaching powder and the treated wastewater was recycled caustic solution. All in all, benefiting from advantage of the ultrasonication effects, ultrasound-assisted caustic leaching on spent cathode carbon had 55.6% shorter residue time than the traditional process with a higher impurity removal rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Numerical study on dissimilar guide vane design with SCC piston for air and emulsified biofuel mixing improvement

    Directory of Open Access Journals (Sweden)

    Hamid Mohd Fadzli

    2017-01-01

    Full Text Available Crude palm oil (CPO is one of the most potential biofuels that can be applied in the conventional diesel engines, where the chemical properties of CPO are comparable to diesel fuel. However, its higher viscosity and heavier molecules can contributes to several engine problems such as low atomization during injection, carbon deposit formation, injector clogging, low mixing with air and lower combustion efficiency. An emulsification of biofuel and modifications of few engine critical components have been identified to mitigate the issues. This paper presents the effects of dissimilar guide vane design (GVD in terms of height variation of 0.25R, 0.3R and 0.35R at the intake manifold with shallow depth re-entrance combustion chamber (SCC piston application to the incylinder air flow characteristics improvement. The simulation results show that the intake manifold with GVD improved the performance of the air flow characteristic particularly swirl, tumble and cross tumble ratios from the intake manifold to the engine. The GVD with the height of 0.3R was found to be the optimum design with respect to the overall improvement of the air flow characteristic. The improvement of the air flow characteristic with the application of GVD and SCC piston in the engine was expected to contribute to a better air fuel mixing, fuel atomization and combustion efficiency of the engine using emulsified biofuel as a source of fuel.

  11. Dynamics of Soft Matter

    CERN Document Server

    García Sakai, Victoria; Chen, Sow-Hsin

    2012-01-01

    Dynamics of Soft Matter: Neutron Applications provides an overview of neutron scattering techniques that measure temporal and spatial correlations simultaneously, at the microscopic and/or mesoscopic scale. These techniques offer answers to new questions arising at the interface of physics, chemistry, and biology. Knowledge of the dynamics at these levels is crucial to understanding the soft matter field, which includes colloids, polymers, membranes, biological macromolecules, foams, emulsions towards biological & biomimetic systems, and phenomena involving wetting, friction, adhesion, or micr

  12. Printing soft matter in three dimensions

    Science.gov (United States)

    Truby, Ryan L.; Lewis, Jennifer A.

    2016-12-01

    Light- and ink-based three-dimensional (3D) printing methods allow the rapid design and fabrication of materials without the need for expensive tooling, dies or lithographic masks. They have led to an era of manufacturing in which computers can control the fabrication of soft matter that has tunable mechanical, electrical and other functional properties. The expanding range of printable materials, coupled with the ability to programmably control their composition and architecture across various length scales, is driving innovation in myriad applications. This is illustrated by examples of biologically inspired composites, shape-morphing systems, soft sensors and robotics that only additive manufacturing can produce.

  13. Quantification and validation of soft tissue deformation

    DEFF Research Database (Denmark)

    Mosbech, Thomas Hammershaimb; Ersbøll, Bjarne Kjær; Christensen, Lars Bager

    2009-01-01

    We present a model for soft tissue deformation derived empirically from 10 pig carcases. The carcasses are subjected to deformation from a known single source of pressure located at the skin surface, and the deformation is quantified by means of steel markers injected into the tissue. The steel...... markers are easy to distinguish from the surrounding soft tissue in 3D computed tomography images. By tracking corresponding markers using methods from point-based registration, we are able to accurately quantify the magnitude and propagation of the induced deformation. The deformation is parameterised...

  14. Magnetism and metallurgy of soft magnetic materials

    CERN Document Server

    Chen, Chih-Wen

    2011-01-01

    Soft magnetic materials are economically and technologically the most important of all magnetic materials. In particular, the development of new materials and novel applications for the computer and telecommunications industries during the past few decades has immensely broadened the scope and altered the nature of soft magnetic materials. In addition to metallic substances, nonmetallic compounds and amorphous thin films are coming increasingly important. This thorough, well-organized volume - on of the most comprehensive treatments available - offers a coherent, logical presentation of the p

  15. Teaching Soft Skills Employers Need

    Science.gov (United States)

    Ellis, Maureen; Kisling, Eric; Hackworth, Robbie G.

    2014-01-01

    This study identifies the soft skills community colleges teach in an office technology course and determines whether the skills taught are congruent with the soft skills employers require in today's entry-level office work. A qualitative content analysis of a community college office technology soft skills course was performed using 23 soft skills…

  16. Soft computing in big data processing

    CERN Document Server

    Park, Seung-Jong; Lee, Jee-Hyong

    2014-01-01

    Big data is an essential key to build a smart world as a meaning of the streaming, continuous integration of large volume and high velocity data covering from all sources to final destinations. The big data range from data mining, data analysis and decision making, by drawing statistical rules and mathematical patterns through systematical or automatically reasoning. The big data helps serve our life better, clarify our future and deliver greater value. We can discover how to capture and analyze data. Readers will be guided to processing system integrity and implementing intelligent systems. With intelligent systems, we deal with the fundamental data management and visualization challenges in effective management of dynamic and large-scale data, and efficient processing of real-time and spatio-temporal data. Advanced intelligent systems have led to managing the data monitoring, data processing and decision-making in realistic and effective way. Considering a big size of data, variety of data and frequent chan...

  17. Control of Neutralization Process Using Soft Computing

    Directory of Open Access Journals (Sweden)

    G. Balasubramanian

    2008-03-01

    Full Text Available A novel model-based nonlinear control strategy is proposed using an experimental pH neutralization process. The control strategy involves a non linear neural network (NN model, in the context of internal model control (IMC. When integrated into the internal model control scheme, the resulting controller is shown to have favorable practical implications as well as superior performance. The designed model based online IMC controller was implemented to a laboratory scaled pH process in real time using dSPACE 1104 interface card. The responses of pH and acid flow rate shows good tracking for both the set point and load chances over the entire nonlinear region.

  18. The Effect of Adding PET (Polyethylen Terephthalate) Plastic Waste on SCC (Self-Compacting Concrete) to Fresh Concrete Behavior and Mechanical Characteristics

    Science.gov (United States)

    Aswatama W, K.; Suyoso, H.; Meyfa U, N.; Tedy, P.

    2018-01-01

    To study the effect PET waste plastics on SCC then PET plastic waste content for SCC is made into 2.5%; 5%; 7.5%; and 10%. As reference concrete is made SCC with 0% PET level. The results on all fresh concrete test items indicate that for all PET waste levels made are meeting the criteria as SCC. The effect of adding PET to fresh concrete behavior on all test items shows that the filling ability and passing ability of concrete work increases with increasing of PET. However, the increase in PET will decrease its mechanical properties. The result of heat test shows that the mechanical properties of concrete (compressive strength, splitting, and elastic modulus) after heating at 250°C temperature has not changed, while at 600°C has significant capacity decline. To clarify the differences between SCC before and after heating, microstructure analysis was done in the form of photo magnification of specimen using SEM (Scanning Electron Microscope).

  19. Exploiting the Dynamics of Soft Materials for Machine Learning.

    Science.gov (United States)

    Nakajima, Kohei; Hauser, Helmut; Li, Tao; Pfeifer, Rolf

    2018-06-01

    Soft materials are increasingly utilized for various purposes in many engineering applications. These materials have been shown to perform a number of functions that were previously difficult to implement using rigid materials. Here, we argue that the diverse dynamics generated by actuating soft materials can be effectively used for machine learning purposes. This is demonstrated using a soft silicone arm through a technique of multiplexing, which enables the rich transient dynamics of the soft materials to be fully exploited as a computational resource. The computational performance of the soft silicone arm is examined through two standard benchmark tasks. Results show that the soft arm compares well to or even outperforms conventional machine learning techniques under multiple conditions. We then demonstrate that this system can be used for the sensory time series prediction problem for the soft arm itself, which suggests its immediate applicability to a real-world machine learning problem. Our approach, on the one hand, represents a radical departure from traditional computational methods, whereas on the other hand, it fits nicely into a more general perspective of computation by way of exploiting the properties of physical materials in the real world.

  20. On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets

    Directory of Open Access Journals (Sweden)

    Xiaoyan Liu

    2014-01-01

    Full Text Available Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov’s soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.

  1. On some nonclassical algebraic properties of interval-valued fuzzy soft sets.

    Science.gov (United States)

    Liu, Xiaoyan; Feng, Feng; Zhang, Hui

    2014-01-01

    Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation = L . We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.

  2. On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets

    Science.gov (United States)

    2014-01-01

    Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets. PMID:25143964

  3. Damage Models for Soft Tissues: A Survey.

    Science.gov (United States)

    Li, Wenguang

    Damage to soft tissues in the human body has been investigated for applications in healthcare, sports, and biomedical engineering. This paper reviews and classifies damage models for soft tissues to summarize achievements, identify new directions, and facilitate finite element analysis. The main ideas of damage modeling methods are illustrated and interpreted. A few key issues related to damage models, such as experimental data curve-fitting, computational effort, connection between damage and fractures/cracks, damage model applications, and fracture/crack extension simulation, are discussed. Several new challenges in the field are identified and outlined. This review can be useful for developing more advanced damage models and extending damage modeling methods to a variety of soft tissues.

  4. Multi-Attribute Decision-Making Method Based on Neutrosophic Soft Rough Information

    Directory of Open Access Journals (Sweden)

    Muhammad Akram

    2018-03-01

    Full Text Available Soft sets (SSs, neutrosophic sets (NSs, and rough sets (RSs are different mathematical models for handling uncertainties, but they are mutually related. In this research paper, we introduce the notions of soft rough neutrosophic sets (SRNSs and neutrosophic soft rough sets (NSRSs as hybrid models for soft computing. We describe a mathematical approach to handle decision-making problems in view of NSRSs. We also present an efficient algorithm of our proposed hybrid model to solve decision-making problems.

  5. Soft Decision Analyzer

    Science.gov (United States)

    Lansdowne, Chatwin; Steele, Glen; Zucha, Joan; Schlesinger, Adam

    2013-01-01

    We describe the benefit of using closed-loop measurements for a radio receiver paired with a counterpart transmitter. We show that real-time analysis of the soft decision output of a receiver can provide rich and relevant insight far beyond the traditional hard-decision bit error rate (BER) test statistic. We describe a Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in live-time during the development of software defined radios. This test technique gains importance as modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more protocol overhead through noisier channels, and software-defined radios (SDRs) use error-correction codes that approach Shannon's theoretical limit of performance.

  6. Hard and Soft Governance

    DEFF Research Database (Denmark)

    Moos, Lejf

    2009-01-01

    of Denmark, and finally the third layer: the leadership used in Danish schools. The use of 'soft governance' is shifting the focus of governance and leadership from decisions towards influence and power and thus shifting the focus of the processes from the decision-making itself towards more focus......The governance and leadership at transnational, national and school level seem to be converging into a number of isomorphic forms as we see a tendency towards substituting 'hard' forms of governance, that are legally binding, with 'soft' forms based on persuasion and advice. This article analyses...... and discusses governance forms at several levels. The first layer is the global: the methods of 'soft governance' that are being utilised by transnational agencies. The second layer is the national and local: the shift in national and local governance seen in many countries, but here demonstrated in the case...

  7. The Effect of the Kind of Sands and Additions on the Mechanical Behaviour of S.C.C

    Science.gov (United States)

    Zeghichi, L.; Benghazi, Z.; Baali, L.

    The sand is an inert element essential in the composition of concrete; its use ensures granular continuity between the cement and gravel for better cohesion of concrete. This paper presents the results of a study that investigated the influence of sand quality on the properties of fresh and hardened self-compacting concrete (SCC). The dune sands are very fine materials characterized by a high intergranular porosity, high surface area and low fineness modulus; on the other hand crushed (manufactured) sand has a high rate into thin and irregular shapes which are influencing the workability of concrete. The amount of dune sand varies from (0% 50%, to 100%) by weight of fine aggregates. The effect of additions is also treated (blast furnace slag and lime stone) The results show that the rheological properties favour the use of dune sands; however the mechanical properties support the use of crushed sand.

  8. Technical basis for hydrogen-water chemistry: Laboratory studies of water chemistry effects on SCC [stress-corrosion-cracking

    International Nuclear Information System (INIS)

    Kassner, T.F.; Ruther, W.E.; Soppet, W.K.

    1986-10-01

    The influence of different impurities, viz., oxyacids and several chloride salts, on the stress-corrosion-cracking (SCC) of sensitized Type 304 stainless steel (SS) was investigated in constant-extension-rate-tensile (CERT) tests in 289 0 C water at a low dissolved-oxygen concentration ( 0 C in low-oxygen environments with and without sulfate at low concentrations. In these experiments, the crack growth behavior of the materials was correlated with the type and concentration of the impurities and the electrochemical potentials of Type 304 SS and platinum electrodes in the simulated hydrogen-water chemistry environments. The information suggests that better characterization of water quality, through measurement of the concentrations of individual species (SO 4 2- , NO 3 - , Cu 2+ , etc.) coupled with measurements of the corrosion and redox potentials at high temperatures will provide a viable means to monitor and ultimately improve the performance of BWR system materials

  9. DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).

    Science.gov (United States)

    Gaus, Michael; Cui, Qiang; Elstner, Marcus

    2012-04-10

    The self-consistent-charge density-functional tight-binding method (SCC-DFTB) is an approximate quantum chemical method derived from density functional theory (DFT) based on a second-order expansion of the DFT total energy around a reference density. In the present study we combine earlier extensions and improve them consistently with, first, an improved Coulomb interaction between atomic partial charges, and second, the complete third-order expansion of the DFT total energy. These modifications lead us to the next generation of the DFTB methodology called DFTB3, which substantially improves the description of charged systems containing elements C, H, N, O, and P, especially regarding hydrogen binding energies and proton affinities. As a result, DFTB3 is particularly applicable to biomolecular systems. Remaining challenges and possible solutions are also briefly discussed.

  10. dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water

    Science.gov (United States)

    Chen, Kai; Wang, Jiamei; Du, Donghai; Andresen, Peter L.; Zhang, Lefu

    2018-05-01

    The effect of dK/da on crack growth behavior of nickel base alloys has been studied by conducting stress corrosion cracking tests under positive and negative dK/da loading conditions on Alloys 690, 600 and X-750 in high temperature water. Results indicate that positive dK/da accelerates the SCC growth rates, and the accelerating effect increases with dK/da and the initial CGR. The FRI model was found to underestimate the dK/da effect by ∼100X, especially for strain hardening materials, and this underscores the need for improved insight and models for crack tip strain rate. The effect of crack tip strain rate and dK/dt in particular can explain the dK/da accelerating effect.

  11. Gonadal development and growth in 46,XX and 46,XY individuals with P450scc deficiency (congenital lipoid adrenal hyperplasia)

    DEFF Research Database (Denmark)

    Müller, J; Torsson, A; Damkjaer Nielsen, M

    1991-01-01

    We have investigated gonadal development and growth in 4 individuals (3 with 46,XY and 1 with 46,XX karyotype) with P450scc deficiency. One patient died at 2 months of age from adrenal insufficiency, while the remaining 3 individuals were healthy and developed normally (age at follow-up: 18, 10...... and 8 years). In the surviving individuals, the diagnosis was established during the first 2-4 months of life by extensive endocrine studies of blood and urine. In the remaining patient, the diagnosis was made on the basis of karyotype (46,XY), anatomy of internal and external genitalia and adrenal...... pathology. Gonadectomy was performed in the 2 surviving 46,XY individuals at the age of 7 years, and histological examination showed normal testicular morphology but very few germ cells. Postmortem examination of the testes of the 2-month-old subject showed normal testicular histology, and quantitative...

  12. Liderazgo de una empresa familiar que influye en el clima laboral de los trabajadores de la empresa SEDEMI S.C.C

    OpenAIRE

    Rodríguez Valenzuela, Darwin Fausto

    2015-01-01

    El presente trabajo detalla el estudio del liderazgo y su influencia en el clima organizacional de los trabajadores de la empresa familiar Sedemi S.C.C., con la fin de proponer opciones de mejora, que coadyuven al directorio de la empresa, para fomentar un ambiente laboral agradable y motivador para sus empleados, y de esta manera incrementar su desempeño laboral. La investigación se realizó en la empresa SEDEMI S.C.C. La población objetivo está conformada por los empleados administrativos y ...

  13. Value and significance of tumor markers as CEA, CA125, SCC-Ag, CA199 and CYFRA21-1 in the diagnosis of cervical cancer

    Directory of Open Access Journals (Sweden)

    Xiao-Juan Wang

    2017-09-01

    Full Text Available Objective: To investigate the value and significance of serum CEA, CA125, SCC-Ag, CA199 and CYFRA21-1 in the diagnosis of cervical cancer by comparing the detection of five serum markers. Methods: A total of 108 cases were divided into three groups, including 60 cervical cancerpatients and 20 cervical intraepithelial neoplasiain patients treated in our hospital from September 2015 to September 2016 and 28 healthy women. Radioimmunoassay was used to detect and compare the serum levels of CA125, CA199, CYFRA21-1 and ELISA method was used to detect and compare the serum levels of SCC-Ag, CEA. Results: (1 There was no statistically significant difference in the serum CEA, CA125, SCC-Ag, CA199, CYFRA21-1 levels between CIN group and control group. The serums CEA, CA125, SCC-Ag, CA199, CYFRA21-1 levels of cervical cancer patients were significantly higher than the other two groups. The differences were statistically significant. (2There were statistically significant differences in the serum CEA, CA125, SCC-Ag, CA199, CYFRA21-1 levels between different cervical pathological type groups.The serum CA125, CA199, CEA levels of cervical glandular cancer patients were significantly higher than the other two groups. The differences were statistically significant. The serum SCC-Ag, CYFRA21-1 levels of cervical squamous cancer patients were significantly higher than the other two groups. The differences were statistically significant. Conclusion: The serums CEA, CA125, SCC-Ag, CA199, CYFRA21-1 levels of cervical cancer patients were significantly higher than cervical intraepithelial neoplasiain patients and healthy women. The serum CA125, CA199, CEA levels of cervical glandular cancer patients were significantly higher and the serum SCC-Ag, CYFRA21-1 levels of cervical squamous cancer patients were significantly higher. The five tumor markers can be used in diagnosis of cervical cancer and they are also worthy in distinguishing cervical pathological types.

  14. Prophylactic dissection of level V in primary mucosal SCC in the clinically N positive neck: A systematic review.

    Science.gov (United States)

    McLean, Timothy; Kerr, Stephen J; Giddings, Charles E B

    2017-09-01

    To review the evidence for level V dissection in the management of previously untreated mucosal squamous cell carcinoma (SCC) of the head and neck presenting with nodal metastasis when level V is clinically uninvolved. The Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) were used to conduct a systematic review of the current literature, including all English language articles published after 1990. A literature search was performed on November 29, 2015, of Medline, EMBASE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and the Cochrane Library. The search yielded a total of 270 papers. Strict inclusion and exclusion criteria were applied, leaving 20 eligible papers. Overall prevalence was calculated using random effect meta-analysis. The overall prevalence of level V occult disease in the node (N)-positive neck, irrespective of subsite, was 2.56% (95% confidence interval 1.29-3.84) (2,368 patients and 2,533 necks). The prevalence of occult level V metastasis was up to 7.7% for oral cavity and 8.3% for oropharyngeal tumors. Five studies reported regional recurrence rates over variable time periods. There is exceedingly limited data on outcomes, such as spinal accessory nerve function, quality of life, and perioperative complications. Mucosal head and neck SCC presenting with nodal metastasis but with level V clinically uninvolved has a low prevalence of occult level V disease. Routine dissection of level V does not appear to be warranted; however, a definitive conclusion is unable to be drawn due to limited data on morbidity and oncological outcomes. Laryngoscope, 127:2074-2080, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Evaluation of salt particle collection device for preventing SCC on canister - Effect on particle collection rate by electric field

    International Nuclear Information System (INIS)

    Takeda, H.; Saegusa, T.

    2013-01-01

    Now, in Japan, while metal casks are used for spent nuclear fuel storage, a practical use of concrete casks is under review because of its cost effectiveness and procurement easiness. In reviewing the practical use, stress corrosion cracking (SCC) of a canister container in the concrete cask becomes an issue and is needed to be resolved soon. A natural ventilation system is generally adopted for the storage facilities, especially in Japan where facilities are built near coasts so that the cooling air includes sea salt particles. Therefore, the occurrence of SCC is concerned when the sea salt particles adhere to welded parts of the canisters. In this study, we proposed a salt particle collection device with low pressure loss which does not interfere with the air flow into the building or the concrete casks. The device is composed of a stack of 10 parallel stainless steel plates, the air is free to circulate in the space between them. Pressure loss tests in a laboratory and salt particle collection tests in the field have been performed. It has been clarified that the pressure loss of the device is one-thirtieth to one-twentieth of that of a commercial filter and 40% of the particles in the air could be collected and the device would not influence the heat removal performance. Moreover, we evaluated the effect of electric field on the particle collection under supposing the particle charge. In the case of electric field over 10 3 kV/m the particle collection rate could be improved dramatically

  16. Soft and hard pomerons

    International Nuclear Information System (INIS)

    Maor, Uri; Tel Aviv Univ.

    1995-09-01

    The role of s-channel unitarity screening corrections, calculated in the eikonal approximation, is investigated for soft Pomeron exchange responsible for elastic and diffractive hadron scattering in the high energy limit. We examine the differences between our results and those obtained from the supercritical Pomeron-Regge model with no such corrections. It is shown that screening saturation is attained at different scales for different channels. We then proceed to discuss the new HERA data on hard (PQCD) Pomeron diffractive channels and discuss the relationship between the soft and hard Pomerons and the relevance of our analysis to this problem. (author). 18 refs, 9 figs, 1 tab

  17. Mechanics of soft materials

    CERN Document Server

    Volokh, Konstantin

    2016-01-01

    This book provides a concise introduction to soft matter modelling. It offers an up-to-date review of continuum mechanical description of soft and biological materials from the basics to the latest scientific materials. It includes multi-physics descriptions, such as chemo-, thermo-, electro- mechanical coupling. It derives from a graduate course at Technion that has been established in recent years. It presents original explanations for some standard materials and features elaborated examples on all topics throughout the text. PowerPoint lecture notes can be provided to instructors. .

  18. Soft-contact conductive carbon enabling depolarization of LiFePO4 cathodes to enhance both capacity and rate performances of lithium ion batteries

    Science.gov (United States)

    Ren, Wenju; Wang, Kai; Yang, Jinlong; Tan, Rui; Hu, Jiangtao; Guo, Hua; Duan, Yandong; Zheng, Jiaxin; Lin, Yuan; Pan, Feng

    2016-11-01

    Conductive nanocarbons generally are used as the electronic conductive additives to contact with active materials to generate conductive network for electrodes of commercial Li-ion batteries (LIBs). A typical of LiFePO4 (LFP), which has been widely used as cathode material for LIBs with low electronic conductivity, needs higher quantity of conductive nanocarbons to enhance the performance for cathode electrodes. In this work, we systematically studied three types of conductive nanocarbons and related performances in the LFP electrodes, and classify them as hard/soft-contact conductive carbon (named as H/SCC), respectively, according to their crystallite size, surface graphite-defect, specific surface area and porous structure, in which SCC can generate much larger contact area with active nano-particles of cathode materials than that of HCC. It is found that LFP nanocrystals wrapped in SCC networks perform significantly enhanced both capacity and rate performance than that in HCC. Combined experiments with multiphysics simulation, the mechanism is that LFP nanoparticles embedded in SCC with large contact area enable to generate higher depolarized effects with a relatively uniform current density vector (is) and lithium flux vector (NLi) than that in HCC. This discovery will guide us to how to design LIBs by selective using conductive carbon for high-performance LIBs.

  19. Mappings on Neutrosophic Soft Classes

    Directory of Open Access Journals (Sweden)

    Shawkat Alkhazaleh

    2014-03-01

    Full Text Available In 1995 Smarandache introduced the concept of neutrosophic set which is a mathematical tool for handling problems involving imprecise, indeterminacy and inconsistent data. In 2013 Maji introduced the concept of neutrosophic soft set theory as a general mathematical tool for dealing with uncertainty. In this paper we define the notion of a mapping on classes where the neutrosophic soft classes are collections of neutrosophic soft set. We also define and study the properties of neutrosophic soft images and neutrosophic soft inverse images of neutrosophic soft sets.

  20. Soft actuators and soft actuating devices

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dian; Whitesides, George M.

    2017-10-17

    A soft buckling linear actuator is described, including: a plurality of substantially parallel bucklable, elastic structural components each having its longest dimension along a first axis; and a plurality of secondary structural components each disposed between and bridging two adjacent bucklable, elastic structural components; wherein every two adjacent bucklable, elastic structural components and the secondary structural components in-between define a layer comprising a plurality of cells each capable of being connected with a fluid inflation or deflation source; the secondary structural components from two adjacent layers are not aligned along a second axis perpendicular to the first axis; and the secondary structural components are configured not to buckle, the bucklable, elastic structural components are configured to buckle along the second axis to generate a linear force, upon the inflation or deflation of the cells. Methods of actuation using the same are also described.