WorldWideScience

Sample records for scavenger enhances antioxidant

  1. Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin

    Directory of Open Access Journals (Sweden)

    Janina Dose

    2016-01-01

    Full Text Available Astaxanthin is a coloring agent which is used as a feed additive in aquaculture nutrition. Recently, potential health benefits of astaxanthin have been discussed which may be partly related to its free radical scavenging and antioxidant properties. Our electron spin resonance (ESR and spin trapping data suggest that synthetic astaxanthin is a potent free radical scavenger in terms of diphenylpicryl-hydrazyl (DPPH and galvinoxyl free radicals. Furthermore, astaxanthin dose-dependently quenched singlet oxygen as determined by photon counting. In addition to free radical scavenging and singlet oxygen quenching properties, astaxanthin induced the antioxidant enzyme paroxoanase-1, enhanced glutathione concentrations and prevented lipid peroxidation in cultured hepatocytes. Present results suggest that, beyond its coloring properties, synthetic astaxanthin exhibits free radical scavenging, singlet oxygen quenching, and antioxidant activities which could probably positively affect animal and human health.

  2. Role of antioxidant scavenging enzymes and extracellular ...

    African Journals Online (AJOL)

    In the present work, we studied the role of antioxidant scavenging enzymes of plant pathogenic bacteria: catalase, ascorbate peroxidase and a virulence factor; extracelluar polysaccharide production in determining the virulence of Xanthomonas oryzae pv. oryzae (Xoo) isolates and its differential reaction to rice cultivars.

  3. Antioxidant and free radical scavenging activities of plant extracts ...

    African Journals Online (AJOL)

    Twenty-two species of medicinal plants collected in the Mexican state of Morelos were selected to evaluate their free radical scavenging and antioxidant activities. The extracts from the aerial parts of the plants were obtained using hexane, acetone and methanol (66 extracts). The initial qualitative screening of antioxidants ...

  4. Antioxidant and free radical scavenging activities of plant extracts ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Circuito. Exterior, Ciudad Universitaria, México, D.F., 04510, México. Accepted 25 April ..... In general, extracts with the highest radical scavenging and antioxidant activity showed the highest ...

  5. Evaluation of Antioxidant and Free Radical Scavenging Abilities of ...

    African Journals Online (AJOL)

    Objective: This study was aimed at determining the antioxidants and free radical scavenging abilities of some packaged fruit juices (PFJ) widely used as source of fluids in Nigeria. Materials and methods: Packaged fruit juice samples produced by The Coca cola Company and Chi company namely: Apple(AP), blackcurrant, ...

  6. Antioxidant and free radical scavenging activity of Spondias pinnata

    Directory of Open Access Journals (Sweden)

    Mandal Nripendranath

    2008-12-01

    Full Text Available Abstract Background Many diseases are associated with oxidative stress caused by free radicals. Current research is directed towards finding naturally-occurring antioxidants of plant origin. The aim of the present study was to evaluate the in vitro antioxidant activities of Spondias pinnata stem bark extract. Methods A 70% methanol extract of Spondias pinnata stem bark was studied in vitro for total antioxidant activity, for scavenging of hydroxyl radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, singlet oxygen and hypochlorous acid, and for iron chelating capacity, reducing power, and phenolic and flavonoid contents. Results The extract showed total antioxidant activity with a trolox equivalent antioxidant concentration (TEAC value of 0.78 ± 0.02. The IC50 values for scavenging of free radicals were 112.18 ± 3.27 μg/ml, 13.46 ± 0.66 μg/ml and 24.48 ± 2.31 μg/ml for hydroxyl, superoxide and nitric oxide, respectively. The IC50 for hydrogen peroxide scavenging was 44.74 ± 25.61 mg/ml. For the peroxynitrite, singlet oxygen and hypochlorous acid scavenging activities the IC50 values were 716.32 ± 32.25 μg/ml, 58.07 ± 5.36 μg/ml and 127.99 ± 6.26 μg/ml, respectively. The extract was found to be a potent iron chelator with IC50 = 66.54 ± 0.84 μg/ml. The reducing power was increased with increasing amounts of extract. The plant extract (100 mg yielded 91.47 ± 0.004 mg/ml gallic acid-equivalent phenolic content and 350.5 ± 0.004 mg/ml quercetin-equivalent flavonoid content. Conclusion The present study provides evidence that a 70% methanol extract of Spondias pinnata stem bark is a potential source of natural antioxidants.

  7. Antioxidant and free radical scavenging activity of Spondias pinnata.

    Science.gov (United States)

    Hazra, Bibhabasu; Biswas, Santanu; Mandal, Nripendranath

    2008-12-09

    Many diseases are associated with oxidative stress caused by free radicals. Current research is directed towards finding naturally-occurring antioxidants of plant origin. The aim of the present study was to evaluate the in vitro antioxidant activities of Spondias pinnata stem bark extract. A 70% methanol extract of Spondias pinnata stem bark was studied in vitro for total antioxidant activity, for scavenging of hydroxyl radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, singlet oxygen and hypochlorous acid, and for iron chelating capacity, reducing power, and phenolic and flavonoid contents. The extract showed total antioxidant activity with a trolox equivalent antioxidant concentration (TEAC) value of 0.78 +/- 0.02. The IC50 values for scavenging of free radicals were 112.18 +/- 3.27 microg/ml, 13.46 +/- 0.66 microg/ml and 24.48 +/- 2.31 microg/ml for hydroxyl, superoxide and nitric oxide, respectively. The IC50 for hydrogen peroxide scavenging was 44.74 +/- 25.61 mg/ml. For the peroxynitrite, singlet oxygen and hypochlorous acid scavenging activities the IC50 values were 716.32 +/- 32.25 microg/ml, 58.07 +/- 5.36 microg/ml and 127.99 +/- 6.26 microg/ml, respectively. The extract was found to be a potent iron chelator with IC50 = 66.54 +/- 0.84 microg/ml. The reducing power was increased with increasing amounts of extract. The plant extract (100 mg) yielded 91.47 +/- 0.004 mg/ml gallic acid-equivalent phenolic content and 350.5 +/- 0.004 mg/ml quercetin-equivalent flavonoid content. The present study provides evidence that a 70% methanol extract of Spondias pinnata stem bark is a potential source of natural antioxidants.

  8. Scavenger and antioxidant properties of prenylflavones isolated from Artocarpus heterophyllus.

    Science.gov (United States)

    Ko, F N; Cheng, Z J; Lin, C N; Teng, C M

    1998-07-15

    The antioxidant properties of prenylflavones, isolated from Artocarpus heterophyllus Lam., was evaluated in this study. Among them, artocarpine, artocarpetin, artocarpetin A, and cycloheterophyllin diacetate and peracetate had no effect on iron-induced lipid peroxidation in rat brain homogenate. They also did not scavenge the stable free radical 1,1-diphenyl-2-picrylhydrazyl. In contrast, cycloheterophyllin and artonins A and B inhibited iron-induced lipid peroxidation in rat brain homogenate and scavenged 1,1-diphenyl-2-picrylhydrazyl. They also scavenged peroxyl radicals and hydroxyl radicals that were generated by 2,2'-azobis(2-amidinopropane) dihydrochloride and the Fe3+-ascorbate-EDTA-H2O2 system, respectively. However, they did not inhibit xanthine oxidase activity or scavenge superoxide anion, hydrogen peroxide, carbon radical, or peroxyl radicals derived from 2,2'-azobis(2,4-dimethylvaleronitrile) in hexane. Moreover, cycloheterophyllin and artonins A and B inhibited copper-catalyzed oxidation of human low-density lipoprotein, as measured by fluorescence intensity, thiobarbituric acid-reactive substance and conjugated-diene formations and electrophoretic mobility. It is concluded that cycloheterophyllin and artonins A and B serve as powerful antioxidants against lipid peroxidation when biomembranes are exposed to oxygen radicals.

  9. Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus.

    Science.gov (United States)

    Chokshi, Kaumeel; Pancha, Imran; Ghosh, Arup; Mishra, Sandhya

    2017-01-01

    Microalgae accumulate a considerable amount of lipids and carbohydrate under nutrient-deficient conditions, which makes them one of the promising sustainable resources for biofuel production. In the present study, to obtain the biomass with higher lipid and carbohydrate contents, we implemented a short-term nitrogen starvation of 1, 2, and 3 days in a green microalga Acutodesmus dimorphus. Few recent reports suggest that oxidative stress-tolerant microalgae are highly efficient for biofuel production. To study the role of oxidative stress due to nitrogen deficiency, responses of various stress biomarkers like reactive oxygen species (ROS), cellular enzymatic antioxidants superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and non-enzymatic scavengers proline and polyphenols were also evaluated. Further, the endogenous levels of phytohormones abscisic acid (ABA) and indole-3-acetic acid (IAA) were also determined to study their response to nitrogen deficiency. We observed that nitrogen starvation of 2 days is effective to produce biomass containing 29.92% of lipid (comprising about 75% of neutral lipid) and 34.80% of carbohydrate, which is significantly higher (about 23 and 64%, respectively) than that of the control culture. Among all nitrogen-starved cultures, the accumulations of ROS were lower in 2 days starved culture, which can be linked with the several folds higher activities of SOD and CAT in this culture. The accumulations of proline and total polyphenols were also significantly higher (about 4.7- and 1.7-folds, respectively, than that of the control) in 2 days nitrogen-starved culture. The levels of phytohormones once decreased significantly after 1 day, increased continuously up to 3 days of nitrogen starvation. The findings of the present study highlight the interaction of nitrogen starvation-induced oxidative stress with the signaling involved in the growth and development of microalga. The study presents a comprehensive

  10. Antioxidant and Free Radical Scavenging Capacity of Seed and Shell Essential Oils Extracted from Abrus precatorius (L

    Directory of Open Access Journals (Sweden)

    Sunday O. Okoh

    2014-04-01

    Full Text Available Essential oils from plants have been proven safe as natural antioxidants, and few are already marketed as digestive enhancers as well as in prevention of several degenerative diseases. This study evaluated the antioxidant capacity of seed and shell essential oils of Abrus precatorius (L, a herb used for ethno-medicinal practices in Nigeria. The essential oils were obtained by hydro-distillation. The ability of the oils to act as hydrogen/electrons donor or scavenger of radicals were determined by in-vitro antioxidant assays using 2,2-diphenyl-2-picryl-hydrazyl free radical (DPPH. scavenging; 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS radical scavenging; lipid peroxide and nitric oxide radicals scavenging assays. The IC50 of the seed and shell oils (2.10 mg/mL and 1.20 mg/mL respectively showed that antioxidant activity is higher than that for the standard drugs (3.20 mg/mL and 3.40 mg/mL for the nitric oxide scavenging assay. The lipid peroxidation radical activity of the oils were similar to vitamin C, weak DPPH and ABTS radical scavenging activities were discovered in comparison to vitamin C and rutin. Generally, in the four antioxidant assays, a significant correlation existed between concentrations of the oils and percentage inhibition of free radicals and lipid peroxidation. The composition of A. precatorius essential oils reported earlier may account for their antioxidant capacity.

  11. Flavonoids function as antioxidants: By scavenging reactive oxygen species or by chelating iron?

    Science.gov (United States)

    Wuguo, Deng; Xingwang, Fang; Jilan, Wu

    1997-09-01

    Flavonoids have been reported to exhibit strong antioxidative activity. In the present work, a systematic mechanistic study has been performed on five flavonoids (baicalin, hesperidin, naringin, quercetin and rutin) selected according to their structural characteristics. The experimental results reveal that flavonoids function as antioxidant mainly by chelating iron ions and by scavenging peroxyl radicals whereas their OH radical scavenging effect is much less important.

  12. Scavenger

    DEFF Research Database (Denmark)

    2009-01-01

    Scavenger is one of the cyber foraging frameworks developed in the Locusts project. It has been released as open source software at http://code.google.com/p/scavenger-cf/......Scavenger is one of the cyber foraging frameworks developed in the Locusts project. It has been released as open source software at http://code.google.com/p/scavenger-cf/...

  13. Free radical-scavenging activities of oligomeric proanthocyanidin from Rhodiola rosea L. and its antioxidant effects in vivo.

    Science.gov (United States)

    Zhou, Qian; Yin, Zhi-Ping; Ma, Lei; Zhao, Wen; Hao, Hong-Wei; Li, Hui-Ling

    2014-01-01

    This study aimed to determine the antioxidant activity of oligomeric proanthocyanidin from Rhodiola rosea L. (OPCRR). The free radical-scavenging activities exhibited by OPCRR, as determined by using 1,1-diphenyl-2-picrylhydrazyl, hydroxyl radical and superoxide anion (√[Formula: see text]) scavenging assays, were greater than that of vitamin C. The effects of OPCRR on the antioxidant enzymes activity and lipid peroxide content in vivo were evaluated through three observation biomarkers, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in serum, heart, liver and brain tissues in mice. The OPCRR significantly enhanced the SOD and GSH-Px activities, and reduced the MDA content in mice. These results indicated that the OPCRR has a great potential to be a natural antioxidant due to its considerable antioxidant activities in vitro and in vivo.

  14. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers.

    Science.gov (United States)

    Apak, Reşat; Güçlü, Kubilay; Ozyürek, Mustafa; Bektaşoğlu, Burcu; Bener, Mustafa

    2010-01-01

    , for which the FRAP (ferric reducing antioxidant potency) test is basically nonresponsive. The additivity of absorbances of all the tested antioxidants confirmed that antioxidants in the CUPRAC test do not chemically interact among each other so as to cause an intensification or quenching of the theoretically expected absorbance, and that a total antioxidant capacity (TAC) assay of serum is possible. As a distinct advantage over other electron-transfer based assays (e.g., Folin, FRAP, ABTS, DPPH), CUPRAC is superior in regard to its realistic pH close to the physiological pH, favorable redox potential, accessibility and stability of reagents, and applicability to lipophilic antioxidants as well as hydrophilic ones. The CUPRAC procedure can also assay hydroxyl radicals, being the most reactive oxygen species (ROS). As a more convenient, efficient, and less costly alternative to HPLC/electrochemical detection techniques and to the nonspecific, low-yield TBARS test, we use p-aminobenzoate, 2,4- and 3,5-dimethoxybenzoate probes for detecting hydroxyl radicals generated from an equivalent mixture of [Fe(II)+EDTA] with hydrogen peroxide. The produced hydroxyl radicals attack both the probe and the water-soluble antioxidants in 37 degrees C-incubated solutions for 2 h. The CUPRAC absorbance of the ethylacetate extract due to the reduction of Cu(II)-neocuproine reagent by the hydroxylated probe decreases in the presence of (.)OH scavengers, the difference being proportional to the scavenging ability of the tested compound. The developed method is less lengthy, more specific, and of a higher yield than the classical TBARS assay.

  15. Free radical scavenging by brain homogenate: implication to free radical damage and antioxidant defense in brain.

    Science.gov (United States)

    Mori, A; Liu, J; Wang, X; Kawai, M

    1994-03-01

    To study the mechanisms of free radical-induced brain damage and the antioxidant defense in the brain, we quantified the superoxide and hydroxyl radical scavenging effects of brain homogenate using electron spin resonance spectrometry. Brain homogenate was found to scavenge both superoxide and hydroxyl radicals in concentration-dependent fashion. Heat denaturation significantly decreased these scavenging effects. The ability of brain homogenate to scavenge free radicals implies that brain damage can be induced by free radicals since they are known to react virtually with any type of molecule such as nucleic acids, membrane lipids, and proteins in the brain. On the other hand, some molecules which can be regenerated or repaired after free radical scavenging are considered to be antioxidants which include both enzymatic and non-enzymatic antioxidants. Measurement of the decrease in antioxidant activity following heat denaturation suggests that the contribution of enzymatic antioxidants is about 20-40% in scavenging superoxide radicals and about 10-20% in scavenging hydroxyl radicals.

  16. Flavonoids function as antioxidants: by scavenging reactive oxygen species or by chelating iron?

    Energy Technology Data Exchange (ETDEWEB)

    Wuguo Deng; Xingwang Fang; Jilan Wu [Peking Univ., Technical Physics Dept., Beijing (China)

    1997-09-01

    Flavonoids have been reported to exhibit strong antioxidative activity. In the present work, a systematic mechanistic study has been performed on five flavonoids (baicalin, hesperidin, naringin, quercetin and rutin) selected according to their structural characteristics. The experimental results reveal that flavonoids function as antioxidant mainly by chelating iron ions and by scavenging peroxyl radicals whereas their OH radical scavenging effect is much less important. (author).

  17. Study of antioxidant activity and free radical scavenging power of ...

    African Journals Online (AJOL)

    In recent years, the use of synthetic antioxidants and the degradation products derived from them is limited, because they are toxic and carcinogenic. So, studying on the use of natural antioxidants to replace the synthetic antioxidants is very important. Natural antioxidants are healthier and have more benefits and fewer ...

  18. Modified Radical Scavenging and Antioxidant Activity Measurement of β-Carotene with β-Cyclodextrins Complexation in Aqueous Medium.

    Science.gov (United States)

    Çelik, Saliha Esin; Bekdeser, Burcu; Tufan, Ayse Nur; Apak, Resat

    2017-01-01

    In order to evaluate the antioxidant capacity/activity of β-carotene (BC) in aqueous media, we investigated the inclusion complexes of BC with methyl-β-cyclodextrin (Me-β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and 2-hydroxyethyl-β-cyclodextrin (HE-β-CD) that enhance water solubility and chemical stability. The inclusion complexes (monitored by FTIR) exhibited higher solubility than free BC, and phase solubility studies showed a linear increase in the solubility with the Me-β-CD concentration. Cupric ion-reducing antioxidant capacity (CUPRAC), ABTS-persulfate, peroxyl and hydroxyl radical scavenging assays were applied. CD-complexed β-carotene exhibited less effective antioxidative and radical scavenging than free BC dissolved in acetone. β-Carotene showed the highest antioxidant capacity in the presence of HE-β-CD, and the lowest with Me-β-CD, probably due to the deeper and more hydrophobic cavity of the latter. We believe that this is the first report on devising simple spectrophotometric methods for the wholistic assessment of antioxidant activity/capacity, hydroxyl and peroxyl radical scavenging activity of β-carotene in aqueous solution with CDs.

  19. Screening of Antioxidant and Radical Scavenging Activities of Some Omani Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Saleh Al-Busafi

    2007-06-01

    Full Text Available n-Butanol extracts of nine medicinal plants, Cressa cretica, Ziziphus spina-christ, Acacia tortilis, Tephrosia haussknechti, Aristolochiae bracteolata, Citrullus colocynthis, Teucrium mascatense, Rhazya stricta and Nerium oleander, found in Oman were screened for their antioxidant activity using phosphomolybdenum complex assays and their radical scavenging activity using DPPH assays. Ocimumi basilicum, a plant with well documented antioxidant activity, was used as a reference. A. tortilis, and T. haussknechti extracts possessed very high antioxidant activity (AOA and high radical scavenging activity (RSA.

  20. Radical scavenging, antioxidant and cytotoxic activity of Brazilian Caatinga plants.

    Science.gov (United States)

    David, Juceni P; Meira, Marilena; David, Jorge M; Brandão, Hugo N; Branco, Alexsandro; de Fátima Agra, M; Barbosa, M Regina V; de Queiroz, Luciano P; Giulietti, Ana M

    2007-04-01

    Extracts of 32 plants from the Brazilian northeastern semi-arid region called Caatinga were evaluated through DPPH radical scavenging assay, beta-carotene bleaching, and brine shrimp lethality tests (BST). Among the extracts studied Byrsonima cf. gardneriana, Mascagnia coriacea, Cordia globosa, Diodia apiculata and Hypenia salzmannii showed the highest activities in DPPH radical scavenging test. In the beta-carotene bleaching test the highest activities were observed for Passiflora cincinnata, Chamaecrista repens, B. cf. gardneriana, Rollinia leptopetala, Serjania glabrata, Diospyros gaultheriifolia, C. globosa, Mimosa ophtalmocentra, M. coriacea and Lippia cf. microphylla. In contrast, R. leptopetala, Zornia cf. brasiliensis and Leonotis nepetifolia were the most active species in the BST.

  1. Propolis in Kenya: Antioxidative and Radical Scavenging Activity in ...

    African Journals Online (AJOL)

    Dept. of Food Science & Technology

    2013-01-01

    Jan 1, 2013 ... disease and cancer [1]. Synthetic antioxidants, such as butylated hydroxyanisole. (BHA), butylated hydroxyltoluene (BHT), and tert-butyl hydroquinone (TBHQ), are widely used in the food industry because they are effective and less expensive than natural antioxidants. Their safety however, has been ...

  2. Anti-oxidative, metal chelating and radical scavenging effects of ...

    African Journals Online (AJOL)

    Purpose: To evaluate protein hydrolysates and membrane ultrafiltration fractions of blue-spotted stingray for metal chelating and radical scavenging activities, as well as protection against oxidative protein damage. Methods: Stingray protein isolates were hydrolysed with alcalase, papain and trypsin for 3 h. Alcalase ...

  3. Study of antioxidant activity and free radical scavenging power of ...

    African Journals Online (AJOL)

    ... the possibility of substituting these materials with effective compounds of herbal plants have been considered by the researchers. In this study, at first, the Physalis Alkekengi flower extract was extracted by using maceration method with methanol. The Phenolic compounds and the amount of free radical scavenging activity ...

  4. Free radical-scavenging capacity, antioxidant activity and phenolic content of Pouzolzia zeylanica

    Directory of Open Access Journals (Sweden)

    PEIYUAN LI

    2011-05-01

    Full Text Available Pouzolzia zeylanica was extracted with different solvents (acetone, ethyl acetate and petroleum ether, using different protocols (cold-extraction and Soxhlet extraction. To evaluate the antiradical and antioxidant abilities of the extracts, four in vitro test systems were employed, i.e., DPPH, ABTS and hydroxyl radical scavenging assays and a reducing power assay. All extracts exhibited outstanding antioxidant activities that were superior to that of butylated hydroxytoluene. The ethyl acetate extracts exhibited the most significant antioxidant activities, and cold-extraction under stirring seemed to be the more efficacious method for acquiring the predominant antioxidants. Furthermore, the antioxidant activities and total phenolic (TP content of different extracts followed the same order, i.e., there is a good correlation between antioxidant activities and TP content. The results showed that these extracts, especially the ethyl acetate extracts, could be considered as natural antioxidants and may be useful for curing diseases arising from oxidative deterioration.

  5. Anthocyanin extracts with antioxidant and radical scavenging effect

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielska, J.; Langner, M. [Technical Univ. Wroclaw (Poland). Dept. of Physics and Biophysics; Oszmianski, J. [Technical Univ. Wroclaw (Poland). Dept. of Fruit and Vegetable Technology; Komorowska, M. [Politechnika Wroclawska, Wroclaw (Poland). Inst. Fizyki

    1999-06-01

    The antioxidative activity of three anthocyanin pigments, extracted from the fruits of chokeberry, honeysuckle and sloe, were studied. Lipid oxidation in the liposome membrane, induced by UV radiation, was evaluated with a thiobarbituric acid-reactive substances assay. The antioxidant efficiency of the studied compounds follows this sequence: chokeberry>sloe>honeysuckle. The extract concentrations at which a 50% reduction of phosphatidylcholine oxidation was observed, were respectively: 48, 54 and 60 mg/l. The end products of lipid membrane oxidation were evaluated using HPLC. It was found that the antioxidative potency of anthocyanin extracts is concentration-dependent. As shown by EPR technique the efficiency of the extracts to eliminate free radicals from the solution follows the order of the antioxidant activity. (orig.)

  6. Radical-scavenging-linked antioxidant activities of extracts from black chokeberry and blueberry cultivated in Korea.

    Science.gov (United States)

    Hwang, Seok Joon; Yoon, Won Byong; Lee, Ok-Hwan; Cha, Seung Ju; Kim, Jong Dai

    2014-03-01

    The objective of this study was to investigate the radical-scavenging-linked antioxidant properties of the extracts from black chokeberry and blueberry cultivated in Korea. The 70% ethanol extracts were prepared from black chokeberry and blueberry, and evaluated for total phenolic content, total flavonoid content, total proanthocyanidin content, and antioxidative activities, using various in vitro assays, such as DPPH(2,2-diphenyl-1-picrylhydrazyl), ABTS(2,2-azino-bis-(3-ethylenebenzothiozoline-6-sulphonic acid)) radical-scavenging activity, FRAP(ferric-reducing antioxidant power) and reducing power. The major phenolic compounds, including cyanidin-3-galactoside, cyanidin-3-arabinoside, neochlorogenic acid, procyanidin B1, were analysed by HPLC with a photodiode array detector. Results showed that total phenol, flavonoid and proanthocyanidin contents of black chokeberry extract were higher than those of blueberry extract. In addition, black chokeberry extract exhibited higher free radical-scavenging activity and reducing power than did blueberry extract. Cyanidin-3-galactoside was identified as a major phenolic compound, with considerable content in black chokeberry, that correlated with its higher antioxidant and radical-scavenging effects. These results suggest that black chokeberry extracts could be considered as a good source of natural antioxidants and functional food ingredients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Microbial and host cells acquire enhanced oxidant-scavenging abilities by binding polyphenols.

    Science.gov (United States)

    Ginsburg, Isaac; Kohen, Ron; Koren, Erez

    2011-02-01

    The dilemma whether supplementations of dietary antioxidants might prevent the adverse consequences of oxidative stress, the inadequacy of the analytical methods employed to quantify oxidant scavenging ability (OSA) levels in whole blood and the distribution and fate of polyphenols and their metabolites in various body compartments following oral consumption are discussed. While none-metabolized polyphenols might exert their antioxidant effects mainly in the oral cavity, metabolized polyphenols might be beneficial in the gastrointestinal tract to counteract the toxicity of oxidants and also of the sequelae of inflammatory processes. Although only micromolar amounts of polyphenols and their metabolites eventually reach the blood circulation, these may nevertheless still be highly effective as scavengers of reactive oxygen and nitrogen species because of their ability to synergize with plasma low molecular-weight antioxidants and with albumin. Polyphenols can avidly bind to surfaces of microorganisms and of blood cells to markedly enhance their OSA, therefore the routine quantifications of antioxidant levels conducted in clinical settings should always use catalase-rich whole blood but not as customary, plasma alone. In addition to their antioxidant and metal chelating properties, polyphenols may also act as signaling agents capable of affecting metabolic, inflammatory, autoimmune, carcinogenic and aging processes. 2010 Elsevier Inc. All rights reserved.

  8. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds.

    Science.gov (United States)

    Gülçin, Ilhami

    2005-11-01

    Water and ethanol crude extracts from black pepper (Piper nigrum) were investigated for their antioxidant and radical scavenging activities in six different assay, namely, total antioxidant activity, reducing power, 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, and metal chelating activities. Both water extract (WEBP) and ethanol extract (EEBP) of black pepper exhibited strong total antioxidant activity. The 75 microg/ml concentration of WEBP and EEBP showed 95.5% and 93.3% inhibition on peroxidation of linoleic acid emulsion, respectively. On the other hand, at the same concentration, standard antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and alpha-tocopherol exhibited 92.1%, 95.0%, and 70.4% inhibition on peroxidation of linoleic acid emulsion, respectively. Also, total phenolic content in both WEBP and EEBP were determined as gallic acid equivalents. The total phenolics content of water and ethanol extracts were determined by the Folin-Ciocalteu procedure and 54.3 and 42.8 microg gallic acid equivalent of phenols was detected in 1 mg WEBP and EEBP.

  9. Evaluation of antioxidant, free radical scavenging and antimicrobial, activity of Quercus incana Roxb.

    Directory of Open Access Journals (Sweden)

    Rizwana eSarwar

    2015-11-01

    Full Text Available Considering the indigenous utilization of Quercus incana Roxb., the present study deals with the investigation of antioxidant, free radical scavenging activity, total phenolic content and antimicrobial activity of Quercus incana Roxb. In vitro antioxidant activity of the plant fractions were determined by DPPH and NO scavenging method. Total phenolic contents were determined by gallic acid equivalent (GAE and antimicrobial activities were determined by agar well diffusion method. It was observed that Quercus incana Roxb. showed significant antibacterial activity against Gram-positive and Gram-negative bacteria. n-Butanol fraction showed maximum activity against Micrococcus leuteus with 19 mm zone of inhibition. n-Butanol fraction of Quercus incana Roxb. showed immense antifungal activity against Aspergillus niger (32 mm ± 0.55 and Aspergillus flavus (28 mm ± 0.45. Similarly n-butanol fraction showed relatively good antioxidant activity with IC50 value of 55.4 ± 0.21μg/mL. The NO scavenging activity of ethyl acetate fraction (IC50 = 23.21 ± 0.31 μg/mL was fairly good compared to other fractions. The current study of Quercus incana Roxb. suggests the presences of synergetic action of some biological active compounds that may be present in the leaves of medicinal plant. Further studies are needed to better characterize the important active constituents responsible for the antimicrobial, antioxidant and free radical scavenging activity.

  10. Antioxidative and radical scavenging activities of propolis extracts in ...

    African Journals Online (AJOL)

    Propolis samples collected from Mwingi, Malindi, Uasin-gishu and Meru south districts in Kenya were extracted using ethanol and methanol. The methanol extracts were further partitioned into ethyl acetate, hexane and aqueous fractions. The extracts were concentrated and dried in vacuum evaporator. Their antioxidative ...

  11. Study of Antioxidant and Free Radical Scavenging Activities of Cotoneaster medicus and Glycyrrhiza glabra Plants

    Directory of Open Access Journals (Sweden)

    M. M. Heravi

    2013-08-01

    Full Text Available Extracts of Cotoneaster medicus, Glycyrrhiza glabra, as endemic plants of Iran, along with mixture of them were investigated for their antioxidant activities using 2, 2- diphenyl-1-picrylhidrazyl (DPPH reagent. UV-Vis spectrophotometry method was used to evaluate the ability of Cotoneaster and Glycyrrhiza glabra antioxidant to scavenge DPPH radical. The kinetic parameters such as rate constant and activation energy in experimental conditions were calculated. The rate constants of the H atom abstraction by DPPH (k1, in the presence of C. medicus and G. glabra antioxidant were obtained under pseudo-first-order conditions at different temperatures. The order in DPPH radical-scavenging was: mixture of C. medicus and G. glabra > C. medicus > G.  glabra plants. The numerical values of activation energy were found to be 45.84 kJ.mol-1for G. glabra and 62.02kJ.mol-1 for C. medicus.

  12. Antioxidant and nitrite-scavenging capacities of phenolic compounds from sugarcane (Saccharum officinarum L.) tops.

    Science.gov (United States)

    Sun, Jian; He, Xue-Mei; Zhao, Mou-Ming; Li, Li; Li, Chang-Bao; Dong, Yi

    2014-08-26

    Sugarcane tops were extracted with 50% ethanol and fractionated by petroleum ether, ethyl acetate (EtOAc), and n-butyl alcohol successively. Eight phenolic compounds in EtOAc extracts were purified through silica gel and Sephadex LH-20 column chromatographies, and then identified by nuclear magnetic resonance and electrospray ionization mass spectra. The results showed that eight phenolic compounds from EtOAc extracts were identified as caffeic acid, cis-p-hydroxycinnamic acid, quercetin, apigenin, albanin A, australone A, moracin M, and 5'-geranyl-5,7,2',4'-tetrahydroxyflavone. The antioxidant and nitrite-scavenging capacities of different solvent extracts correlated positively with their total phenolic (TP) contents. Amongst various extracts, EtOAc extracts possessed the highest TP content and presented the strongest oxygen radical absorbance capacity (ORAC), 1,1'-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity, 2,2'-azobis-3-ethylbenthiaazoline-6-sulfonic acid (ABTS) radical-scavenging capacity, ferric reducing antioxidant power (FRAP) and nitrite-scavenging capacity. Thus, sugarcane tops could be promoted as a source of natural antioxidant.

  13. Antioxidant and Nitrite-Scavenging Capacities of Phenolic Compounds from Sugarcane (Saccharum officinarum L. Tops

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2014-08-01

    Full Text Available Sugarcane tops were extracted with 50% ethanol and fractionated by petroleum ether, ethyl acetate (EtOAc, and n-butyl alcohol successively. Eight phenolic compounds in EtOAc extracts were purified through silica gel and Sephadex LH-20 column chromatographies, and then identified by nuclear magnetic resonance and electrospray ionization mass spectra. The results showed that eight phenolic compounds from EtOAc extracts were identified as caffeic acid, cis-p-hydroxycinnamic acid, quercetin, apigenin, albanin A, australone A, moracin M, and 5'-geranyl-5,7,2',4'-tetrahydroxyflavone. The antioxidant and nitrite-scavenging capacities of different solvent extracts correlated positively with their total phenolic (TP contents. Amongst various extracts, EtOAc extracts possessed the highest TP content and presented the strongest oxygen radical absorbance capacity (ORAC, 1,1'-diphenyl-2-picrylhydrazyl (DPPH radical-scavenging capacity, 2,2'-azobis-3-ethylbenthiaazoline-6-sulfonic acid (ABTS radical-scavenging capacity, ferric reducing antioxidant power (FRAP and nitrite-scavenging capacity. Thus, sugarcane tops could be promoted as a source of natural antioxidant.

  14. Polyphenolics profile, antioxidant and radical scavenging activity of leaves and stem of Raphanus sativus L.

    Science.gov (United States)

    Beevi, Syed Sultan; Narasu, Mangamoori Lakshmi; Gowda, Bandi Boje

    2010-03-01

    Aerial parts (leaves and stem) of Raphanus sativus, which are usually discarded were found to possess potent antioxidant and radical scavenging activity, as measured by standard antioxidant assays. Methanolic and acetone extracts of R. sativus leaves had total polyphenolic content of 86.16 and 78.77 mg/g dry extract, which were comparable to the traditional rich sources such as green tea and black tea. HPLC identification of polyphenolics indicated the presence of catechin, protocatechuic acid, syringic acid, vanillic acid, ferulic acid, sinapic acid, o-coumaric acid, myricetin, and quercetin in leaves and stem. Among the different extraction solvents, methanolic extract of leaves and stem showed potent reductive capacity, significantly inhibited linoleic acid peroxidation and displayed metal chelating activity. Further, they scavenged free radicals effectively with IC50 (half maximal inhibitory concentration) of 31 and 42 microg/ml for DPPH radical, 23 and 52 microg/ml for superoxide radical, 67 and 197 microg/ml for hydrogen peroxide,and 56 and 62 microg/ml for nitric oxide, respectively. Leaves showed most potent antioxidant and radical scavenging activity as compared to stem, which may be accounted for the high polyphenolic content. Leaves and stem of R. sativus,often under-utilized part of this vegetable, thus possessed considerable amount of polyphenolics. Hence, it should be egarded as a potential source of natural antioxidants and could be effectively employed as an ingredient in health or in functional food.

  15. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders.

    Science.gov (United States)

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alshamsan, Aws

    2017-04-01

    The balance between oxidation and anti-oxidation is believed to be critical in maintaining healthy biological systems. However, our endogenous antioxidant defense systems are incomplete without exogenous antioxidants and, therefore, there is a continuous demand for exogenous antioxidants to prevent stress and ageing associated disorders. Nanotechnology has yielded enormous variety of nanomaterials (NMs) of which metallic and carbonic (mainly fullerenes) NMs, with redox property, have been found to be strong scavengers of ROS and antioxidants in preclinical in vitro and in vivo models. Redox activity of metal based NMs and membrane translocation time of fullerene NMs seem to be the major determinants in ROS scavenging potential exhibited by these NMs. A comprehensive knowledge about the effects of ROS scavenging NMs in cellular antioxidant signalling is largely lacking. This review compiles the mechanisms of ROS scavenging as well as antioxidant signalling of the aforementioned metallic and fullerene NMs. Direct interaction between NMs and proteins does greatly affect the corona/adsorption formation dynamics but such interaction does not provide the explanation behind diverse biological outcomes induced by NMs. Indirect interaction, however, that could occur via NMs uptake and dissolution, NMs ROS induction and ROS scavenging property, and NMs membrane translocation time seem to work as a central mode of interaction. The usage of potential antioxidant NMs in biological systems would greatly impact the field of nanomedicine. ROS scavenging NMs hold great promise in the future treatment of ROS related degenerative disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Resveratrol analogues like piceatannol are potent antioxidants as quantitatively demonstrated through the high scavenging ability against reactive oxygen species and methyl radical.

    Science.gov (United States)

    Sueishi, Yoshimi; Nii, Risako; Kakizaki, Naru

    2017-12-01

    Resveratrol (RSV) analogues have attracted much attention because of the expected health functions including antioxidant activities. We have carried out a quantitative determination of the scavenging abilities of six trans-RSV analogues against various reactive oxygen species and methyl radical (hydroxyl radical, superoxide, alkoxyl radical, peroxyl radical, methyl radical, and singlet oxygen). RSV analogues are in general more potent scavenger than the parent RSV. Furthermore, piceatannol (PIC) having two OH groups in the ortho position of resveratrol was found to show 11 times higher scavenging ability against peroxyl radical than parent resveratrol. With the aid of previous theoretical studies, the enhanced antioxidant ability was interpreted based on the effects of substituent that modifies the original resveratrol structure and function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evaluation of antioxidant and free-radical scavenging potential of Artemisia absinthium.

    Science.gov (United States)

    Bora, Kundan Singh; Sharma, Anupam

    2011-12-01

    Currently there has been an increased global interest to identify antioxidant compounds for use in preventive medicine and the food-industry that are pharmacologically potent and have low or no side effects. As plants produce significant amount of antioxidants to prevent oxidative stress, they represent a potential source of new compounds with antioxidant activity. The current study was designed to evaluate the methanol extract of Artemisia absinthium Linn. (Asteraceae; MAB) for its in vitro free-radical scavenging effects using different classical assays, and in vivo antioxidant activity using global cerebral ischemia and reperfusion (I/R)-induced oxidative stress in mice. The in vitro scavenging activity was studied on the superoxide anions, hydrogen peroxide, hydroxyl, nitric oxide radical, and reducing power. Further, in the in vivo studies, the animal model of global cerebral I/R was established by occluding the bilateral carotid artery for 15 min followed by 24-h reperfusion. The thiobarbituric acid reactive substances (TBARS) concentration, superoxide dismutase (SOD) activity and glutathione (GSH) content were determined by colorimetric assays. In the in vitro assays, methanol extract of A. absinthium showed significant (pabsinthium possess potent antioxidant properties, and may be used as a protective agent against disorders associated with oxidative stress.

  18. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method.

    Science.gov (United States)

    Bektaşoğlu, Burcu; Esin Celik, Saliha; Ozyürek, Mustafa; Güçlü, Kubilay; Apak, Reşat

    2006-07-07

    Reactive oxygen species (ROS) such as superoxide anion, hydroxyl ((*)OH), peroxyl, and alkoxyl radicals may attack biological macromolecules giving rise to oxidative stress-originated diseases. Since (*)OH is very short-lived, secondary products resulting from (*)OH attack to various probes are measured. Although the measurement of aromatic hydroxylation with HPLC/electrochemical detection is more specific than the low-yield TBARS test, it requires sophisticated instrumentation. As a more convenient and less costly alternative, we used p-aminobenzoate, 2,4- and 3,5-dimethoxybenzoate probes for detecting hydroxyl radicals generated from an equivalent mixture of Fe(II)+EDTA with hydrogen peroxide. The produced hydroxyl radicals attacked both the probe and the water-soluble antioxidants in 37 degrees C-incubated solutions for 2h. The CUPRAC (i.e., our original method for total antioxidant capacity assay) absorbance of the ethylacetate extract due to the reduction of Cu(II)-neocuproine reagent by the hydroxylated probe decreased in the presence of (*)OH scavengers, the difference being proportional to the scavenging ability of the tested compound. A rate constant for the reaction of the scavenger with hydroxyl radical can be deduced from the inhibition of color formation. The second-order rate constants of the scavengers were determined with competition kinetics by means of a linear plot of A(0)/A as a function of C(scavenger)/C(probe), where A(0) and A are the CUPRAC absorbances of the system in the absence and presence of scavenger, respectively, and C is the molar concentration of relevant species. The 2,4- and 3,5-dimethoxybenzoates were the best probes in terms of linearity and sensitivity. Iodide, metabisulfite, hexacyanoferrate(II), thiourea, formate, and dimethyl sulfoxide were shown by the modified CUPRAC assay to be more effective scavengers than mannitol, glucose, lysine, and simple alcohols, as in the TBARS assay. The developed method is less lengthy, more

  19. Antioxidant, Radical Scavenging and Antimicrobial Activities of Red Onion (Allium cepa L) Skin and Edible Part Extracts

    OpenAIRE

    Škerget, M.; Majhenič, L.; Bezjak, M.; Knez, Ž.

    2009-01-01

    The antioxidant, radical scavenging and antimicrobial activities of extracts from skin and edible part of red onion have been investigated. Crude extracts of red onion were obtained separately with acetone, ethanol and mixtures of solvents with water. The amounts of isolated phenolic compounds and quercetin from onion skin were approximately 3 to 5 times higher as from the onion edible part. Antioxidant and radical scavenging activities of onion skin extracts were generally high, results were...

  20. Free radical scavenging behavior of antioxidant compounds of sesame (sesamum indicum L.) in DPPH(*) system.

    Science.gov (United States)

    Suja, Kizhiyedathu Polachira; Jayalekshmy, Anathasankaran; Arumughan, Chami

    2004-02-25

    The free radical scavenging capacity (RSC) of antioxidants from sesame cake extract was studied using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(*)()) on a kinetic model. Pure lignans and lignan glycosides isolated from methanolic extract by preparative HPLC were used in the study. To understand the kinetic behavior better and to determine the RSC of sesame antioxidants, the second-order rate constant (k(2)) was calculated for the quenching reaction with [DPPH(*)] radical. The k(2) values of the sesame antioxidants were compared with those of butylated hydroxytoluene and alpha-tocopherol. The k(2) values for sesamol, sesamol dimer, sesamin, sesamolin, sesaminol triglucoside, and sesaminol diglucoside were 4.00 x 10(-)(5), 0.50 x 10(-)(5), 0.36 x 10(-)(5), 0.13 x 10(-)(5), 0.33 x 10(-)(5), and 0.08 x 10(-)(5) microM(-)(1) s(-)(1), respectively.

  1. Evaluation of antioxidant, radical scavenging activity and polyphenolics profile in Solanum torvum L. fruits.

    Science.gov (United States)

    Ramamurthy, C H; Kumar, M Suresh; Suyavaran, V Sujatha A; Mareeswaran, R; Thirunavukkarasu, C

    2012-08-01

    Solanum torvum fruit widely used in traditional medicine of India and also in food preparation. Three different extracts such as water (WE), methanol (ME), and ethanol (EE) were used to evaluate their antioxidant and radical scavenging activity by different methods. All the assays results were compared with well-known standard antioxidants. The IC(50) values of assays were determined. The total phenolic and flavonoids content were found to be maximum in water and ethanol extracts, respectively. The electron quenching ability of fruit extract was assayed by DPPH and reducing power assays succeeding order were ME > EE > WE, respectively. Inhibition of membrane damage, was assayed interns of oxidative hemolysis and lipid peroxidation assays, among all WE extract shows 58.00% and 68.55 5% percentage of inhibition with 0.9 and 0.8 correlations (r(2)), respectively. Antioxidant and radical quenching efficiency were assayed by β-carotene bleaching and hydroxyl radical scavenging method and results were compared with vitamin C and catechin. The in vitro free radical quenching and antioxidant results were well correlated with in vitro DNA protection assay. As analyzed by HPTLC gallic acid content is high in WE (1394 ± 25.0) and ME (598 ± 54.0) whereas ferulic acid is high in EE (32 ± 5.94) μg/g, respectively. This study indicate that S. torvum fruit is an excellent source of natural antioxidant and could be an effective nutritional food supplement, which interns will have therapeutic applications. In siddha medicine on the traditional systems of India the, ripened fruits are used in the preparation of tonic named as a "sundaivattaral choornam" is used to improve the health and prevent several diseases. This study has given an experimental evidence that S. torvum fruit is an excellent source of natural antioxidants. © 2012 Institute of Food Technologists®

  2. Evaluation of antioxidant and free radical scavenging capacities of some Nigerian indigenous medicinal plants.

    Science.gov (United States)

    Akinmoladun, Afolabi C; Obuotor, Efere M; Farombi, Ebenezer O

    2010-04-01

    Methanolic extracts of 10 selected Nigerian medicinal plants-Psidium guajava, Alstonia boonei, Cassia alata, Newbouldia laevis, Spondias mombin, Globimetula cupulatum, Chromolaena odorata, Securidaca longepedunculata, Ocimum gratissimum, and Morinda lucida-widely used in ethnomedicine, were assessed for phytochemical constituents and antioxidant and free radical scavenging activities using seven different antioxidant assay methods. Phytochemical screening gave positive tests for steroids, terpenoids, and cardiac glycosides, alkaloids, saponins, tannins, and flavonoids contained in the extracts. P. guajava contained the highest amount of total phenolics (380.08 +/- 4.40 mg/L gallic acid equivalents), and the highest amounts of total flavonoids were found in the leaf extracts of C. alata (275.16 +/- 1.62 microg/mL quercetin equivalents [QE]), C. odorata (272.12 +/- 2.32 microg/mL QE), and P. guajava (269.72 +/- 2.78 microg/mL QE). Percentage 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was highest in S. mombin (88.58 +/- 3.04%) and P. guajava (82.79 +/- 2.84%) and compared with values obtained for ascorbic acid and gallic acid. All the extracts, generally, had low nitric oxide radical scavenging activities, and G. cupulatum had the highest hydroxyl radical scavenging activity (63.84 +/- 0.97%). The extracts in general demonstrated high lipid peroxidation inhibitory activity, with only M. lucida (38.74 +/- 1.99%) and A. boonei (47.16 +/- 0.59%) being exceptions. The reductive potential was highest in P. guajava (0.79 +/- 0.04) and least in S. longepedunculata (0.26 +/- 0.00). DPPH assay correlated well with total phenolic contents (r(2) = 0.76) and reductive potential (r(2) = 0.81) and fairly with lipid peroxidation inhibitory activity (r(2) = 0.51). There was a good correlation between total phenolic contents and reductive potential (r(2) = 0.79) and a fair correlation between total phenolic contents and lipid peroxidation inhibitory activity (r(2

  3. Variations of Antioxidant Properties and NO Scavenging Abilities during Fermentation of Tea

    Directory of Open Access Journals (Sweden)

    Yang Xu

    2011-07-01

    Full Text Available Tea is known as one of the most popular beverages in the world, which is believed to be beneficial for health. The main components in tea will change a lot depending on the different processes of fermentation, and thus the effects of different teas on human health may differ. The aim of this study is to explore the varied abilities of reactive oxygen species (ROS and nitric oxide (NO scavenging during the fermentation of tea. In this study, we conducted the in vitro experiments which involved some reaction systems indicating the abilities of scavenging ROS and NO. We also investigated the effects of tea and their components (catechins, theabrownins, caffeine on the intracellular levels of ROS and NO, using Raw 264.7 cells as the model. We found that regardless of whether it was out of cell system or in Raw 264.7 cells, the abilities of scavenging ROS would decrease during the fermentation of tea. Further, the post-fermented pu-erh tea showed the best effect on inhibiting the lipopolysaccharide (LPS-induced production of NO. These findings indicated that the fermentation process caused a change of the components which might be due to the changes of their antioxidant properties and NO scavenging abilities.

  4. Variations of Antioxidant Properties and NO Scavenging Abilities during Fermentation of Tea

    Science.gov (United States)

    Xu, Yang; Zhao, Hang; Zhang, Min; Li, Chun-Jie; Lin, Xue-Zhen; Sheng, Jun; Shi, Wei

    2011-01-01

    Tea is known as one of the most popular beverages in the world, which is believed to be beneficial for health. The main components in tea will change a lot depending on the different processes of fermentation, and thus the effects of different teas on human health may differ. The aim of this study is to explore the varied abilities of reactive oxygen species (ROS) and nitric oxide (NO) scavenging during the fermentation of tea. In this study, we conducted the in vitro experiments which involved some reaction systems indicating the abilities of scavenging ROS and NO. We also investigated the effects of tea and their components (catechins, theabrownins, caffeine) on the intracellular levels of ROS and NO, using Raw 264.7 cells as the model. We found that regardless of whether it was out of cell system or in Raw 264.7 cells, the abilities of scavenging ROS would decrease during the fermentation of tea. Further, the post-fermented pu-erh tea showed the best effect on inhibiting the lipopolysaccharide (LPS)-induced production of NO. These findings indicated that the fermentation process caused a change of the components which might be due to the changes of their antioxidant properties and NO scavenging abilities. PMID:21845097

  5. Antioxidant activity of wines determined by a polarographic assay based on hydrogen peroxide scavenge.

    Science.gov (United States)

    Gorjanović, Stanislava Z; Novaković, Miroslav M; Potkonjak, Nebojsa I; Suznjević, Desanka Z

    2010-04-28

    Antioxidant (AO) activity of various red and white wines of different origin as well as some individual phenolic compounds present in wine has been assessed using a polarographic assay. Direct current polarography has been used to survey hydrogen peroxide scavenge (HPS) upon gradual addition of tested samples. Results expressed as reciprocal value of wine volume required for 50% decrease of anodic limiting current of hydrogen peroxide have been validated through correlation with Folin-Ciocalteau and DPPH assays. All wines exhibit HPS activity analogous with total phenolic content and DPPH scavenge. Reliability and accuracy, low cost, and rapid and direct experimental procedure open a wide area for application of this assay, making it a good alternative to standard, widely accepted AO assays.

  6. Phenylpropanoid Glycoside Analogues: Enzymatic Synthesis, Antioxidant Activity and Theoretical Study of Their Free Radical Scavenger Mechanism

    Science.gov (United States)

    López-Munguía, Agustín; Hernández-Romero, Yanet; Pedraza-Chaverri, José; Miranda-Molina, Alfonso; Regla, Ignacio; Martínez, Ana; Castillo, Edmundo

    2011-01-01

    Phenylpropanoid glycosides (PPGs) are natural compounds present in several medicinal plants that have high antioxidant power and diverse biological activities. Because of their low content in plants (less than 5% w/w), several chemical synthetic routes to produce PPGs have been developed, but their synthesis is a time consuming process and the achieved yields are often low. In this study, an alternative and efficient two-step biosynthetic route to obtain natural PPG analogues is reported for the first time. Two galactosides were initially synthesized from vanillyl alcohol and homovanillyl alcohol by a transgalactosylation reaction catalyzed by Kluyveromyces lactis β-galactosidase in saturated lactose solutions with a 30%–35% yield. To synthesize PPGs, the galactoconjugates were esterified with saturated and unsaturated hydroxycinnamic acid derivatives using Candida antarctica Lipase B (CaL-B) as a biocatalyst with 40%–60% yields. The scavenging ability of the phenolic raw materials, intermediates and PPGs was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) method. It was found that the biosynthesized PPGs had higher scavenging abilities when compared to ascorbic acid, the reference compound, while their antioxidant activities were found similar to that of natural PPGs. Moreover, density functional theory (DFT) calculations were used to determine that the PPGs antioxidant mechanism proceeds through a sequential proton loss single electron transfer (SPLET). The enzymatic process reported in this study is an efficient and versatile route to obtain PPGs from different phenylpropanoid acids, sugars and phenolic alcohols. PMID:21674039

  7. Antioxidant and free radical scavenging activities of some medicinal plants from the Lamiaceae.

    Science.gov (United States)

    Matkowski, Adam; Piotrowska, Magdalena

    2006-07-01

    Antioxidative effects of methanolic extracts from six wild European Lamiaceae species have been studied with the use of three in vitro assays. The ability of scavenging free radicals was measured by DPPH reduction spectrophotometric assay. The reducing potential towards transition metals was tested by phosphomolybdenum method and the inhibition of lipid oxidation was tested by Fe/ascorbate system with photometric TBARS detection. All studied herbs exposed strong antioxidant capability, but the results were different for each species depending on the applied test. In DPPH scavenging the order from strongest to the weakest was: Leonurus cardiaca, Lamium album, Marrubium vulgare, Stachys officinalis, Lamium purpureum, Galeopsis speciosa. With phosphomolybdenum method the extract of S. officinalis was the strongest in both 40 degrees Celsius and 90 degrees Celsius but other species acted differently in both temperatures. In lipid peroxidation assay, the maximum inhibition of 78% was reached by S. officinalis and M. vulgare, whereas for both Lamium sp. and L. cardiaca slightly exceeded 70% and for G. speciosa reached 65%. The observed differences indicate the complexity of involved mechanisms and support the necessity of combining several assays in studying the antioxidant potential of medicinal plants.

  8. Antioxidant mechanisms of isoflavones in lipid systems: paradoxical effects of peroxyl radical scavenging.

    Science.gov (United States)

    Patel, R P; Boersma, B J; Crawford, J H; Hogg, N; Kirk, M; Kalyanaraman, B; Parks, D A; Barnes, S; Darley-Usmar, V

    2001-12-15

    Oxidation of lipids has been implicated in the pathophysiology of atherosclerosis. It has been suggested that scavenging of lipid peroxyl radicals contribute to the antiatherosclerotic effects of naturally occurring compounds such as the isoflavones. This group of polyphenolics includes genistein and is present in relatively high concentrations in food products containing soy. Soy isoflavones are capable of inhibiting lipoprotein oxidation in vitro and suppressing formation of plasma lipid oxidation products in vivo. However, key aspects of the antioxidant mechanisms remain unknown. In this study the antioxidant effects of genistein and other soy isoflavones on lipid peroxidation initiated by mechanistically diverse oxidants was investigated. Although isoflavones inhibited lipid peroxidation stimulated by both metal-dependent and independent processes, the concentration required for these effects were relatively high compared to those found in vivo. Interestingly, however, isoflavones were not consumed and remained in the native state over the time during which inhibition of lipid peroxidation was observed. This was also the case under conditions where synergistic inhibition of LDL oxidation was observed with ascorbate. Furthermore, in an oxidation system driven solely by peroxyl radicals, isoflavones were found to be relatively poor peroxyl radical scavengers. Consistent with the apparent lack of reactivity with lipid-derived oxidants, isoflavones were also relatively resistant to oxidation mediated by the potent oxidant peroxynitrite. The potential antioxidant mechanisms of isoflavones are discussed in the context of possible reactivities of isoflavone-derived phenoxyl radicals.

  9. CBLB502, an agonist of Toll-like receptor 5, has antioxidant and scavenging free radicals activities in vitro.

    Science.gov (United States)

    Li, Weiguang; Ge, Changhui; Yang, Liu; Wang, Ruixue; Lu, Yiming; Gao, Yan; Li, Zhihui; Wu, Yonghong; Zheng, Xiaofei; Wang, Zhaoyan; Zhang, Chenggang

    2016-01-01

    The bacterial protein flagellin is the known agonist of Toll-like receptor 5 (TLR5). It has been reported that CBLB502, a novel agonist of TLR5 derived from Salmonella flagellin, could reduce radiation toxicity in mouse and primate models, protect mice from dermatitis and oral mucositis caused by radiation, inhibit acute renal ischemic failure, and inhibit the growth of A549 lung cancer cell. The property of CBLB502 is able to bind to TLR5 and activates NF-κB signaling. In this study, we investigated the antioxidant potential and free radicals scavenging properties of CBLB502 in vitro. Interestingly, we found that CBLB502 has a direct and distinct antioxidant capacity and can efficiently scavenge a variety of free radicals, including superoxide anion, hydroxyl radical, and ABTS cation (ABTS(+)). Through wave scanning and kinetic evaluation of scavenging ABTS(+), we found that the ABTS(+) scavenging process of CBLB502 is relatively slow, and the ABTS(+) scavenging activity of CBLB502 has a consistently kinetics characteristics. In conclusion, our results suggested that CBLB502 has antioxidant and scavenging free radicals activities in vitro. It is implied that CBLB502 might partially promote the beneficial protective effect through its scavenging free radicals. Copyright © 2015. Published by Elsevier B.V.

  10. Streptomyces sp. MUM212 as a Source of Antioxidants with Radical Scavenging and Metal Chelating Properties

    Directory of Open Access Journals (Sweden)

    Loh Teng-Hern Tan

    2017-05-01

    Full Text Available Reactive oxygen species and other radicals potentially cause oxidative damage to proteins, lipids, and DNA which may ultimately lead to various complications including mutations, carcinogenesis, neurodegeneration, cardiovascular disease, aging, and inflammatory disease. Recent reports demonstrate that Streptomyces bacteria produce metabolites with potent antioxidant activity that may be developed into therapeutic drugs to combat oxidative stress. This study shows that Streptomyces sp. MUM212 which was isolated from mangrove soil in Kuala Selangor, Malaysia, could be a potential source of antioxidants. Strain MUM212 was characterized and determined as belonging to the genus Streptomyces using 16S rRNA gene phylogenetic analysis. The MUM212 extract demonstrated significant antioxidant activity through DPPH, ABTS and superoxide radical scavenging assays and also metal-chelating activity of 22.03 ± 3.01%, 61.52 ± 3.13%, 37.47 ± 1.79%, and 41.98 ± 0.73% at 4 mg/mL, respectively. Moreover, MUM212 extract was demonstrated to inhibit lipid peroxidation up to 16.72 ± 2.64% at 4 mg/mL and restore survival of Vero cells from H2O2-induced oxidative damages. The antioxidant activities from the MUM212 extract correlated well with its total phenolic contents; and this in turn was in keeping with the gas chromatography–mass spectrometry analysis which revealed the presence of phenolic compounds that could be responsible for the antioxidant properties of the extract. Other chemical constituents detected included hydrocarbons, alcohols and cyclic dipeptides which may have contributed to the overall antioxidant capacity of MUM212 extract. As a whole, strain MUM212 seems to have potential as a promising source of novel molecules for future development of antioxidative therapeutic agents against oxidative stress-related diseases.

  11. Evaluation of free radical scavenging capacity and antioxidative damage effect of resveratrol-nanostructured lipid carriers

    Science.gov (United States)

    Jin, Ju; Shi, Fan; Li, Qiu-wen; Li, Pei-shan; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping

    2016-03-01

    Cellular damage induced by free-radicals like reactive oxygen species has been implicated in several diseases. 2, 2-azobis(2-amidino-propane) dihydrochloride(AAPH) generates two potent ROS capable of inducing lipid peroxidation: alkoxy radical(RO-) and peroxy radical(ROO-). These radicals are similar to those that are physiologically active and thus might initiate a cascade of intracellular toxic events leading to oxidation, lipid peroxidation, DNA damage and subsequent cell death. Hence naturally anti-oxidant play a vital role in combating these conditions. In this study, resveratrol loaded nanostructured lipid carriers (Res-NLC) was prepared by hot melting and then high pressure homogenization technique. The effects of Res-NLC on free radical scavenging capacity and antioxidative damage is investigated. The particle size and zeta potential of Res-NLC were 139.3 ± 1.7 nm and -11.21 ± 0.41 mV, respectively. By free radical scavenging assays, the IC50 value of Res-NLC were 19.25, 5.29 μg/mL with DPPH, ABTS assay respectively, and 0.161 mg ferrous sulfate/1 mg Res-NLC with FRAP assay; and by AAPH-induced oxidative injury cell model assay, Res-NLC showed the strong protective effect against the human liver tumor HepG2 cell oxidative stress damage. These results indicated that the antioxidant properties of Res-NLC hold great potential used as an alternative to more toxic synthetic antioxidants as an additive in food, cosmetic and pharmaceutical preparations for the oxidative diseases treatment.

  12. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

    Directory of Open Access Journals (Sweden)

    Sheikh Hasna Habib

    2016-01-01

    Full Text Available Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR containing 1-aminocyclopropane-1-carboxylate (ACC deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.

  13. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes.

    Science.gov (United States)

    Habib, Sheikh Hasna; Kausar, Hossain; Saud, Halimi Mohd

    2016-01-01

    Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.

  14. Phytochemical screening, free radical scavenging, antioxidant activity and phenolic content of Dodonaea viscosa

    Directory of Open Access Journals (Sweden)

    Riaz Tauheeda

    2012-01-01

    Full Text Available The purpose of this study was to evaluate the antioxidant potential of Dodonaea viscosa Jacq. Methanolic extract of the plant was dissolved in distilled water and partitioned with n-hexane, chloroform, ethyl acetate and nbutanol sequentially. Phytochemical screening showed presence of phenolics, flavonoides and cardiac glycosides in large amount in chloroform, ethyl acetate and n-butanol fraction. The antioxidant potential of all these fractions and remaining aqueous fraction was evaluated by four methods: 1,1-Diphenyl-2-picrylhydrazyl (DPPH free radical scavenging activity, total antioxidant activity, Ferric Reducing Antioxidant Power (FRAP assay and ferric thiocyanate assay along with determination of their total phenolics. The results revealed that ethyl acetate soluble fraction exhibited highest percent inhibition of DPPH radical as compared to other fractions. It showed 81.14 ± 1.38% inhibition of DPPH radical at a concentration of 60 μg/ml. The IC50 of this fraction was found to be 33.95 ± 0.58 μg/ml, relative to butylated hydroxytoluene (BHT, having IC50 of 12.54 ± 0.89 μg/mL. It also showed highest FRAP value (380.53 ± 0.74 μM of trolox equivalents as well as highest total phenolic contents (208.58 ± 1.83 GAE μg/g and highest value of inhibition of lipid peroxidation (58.11 ± 1.49% at concentration of 500 μg/ml as compared to the other studied fractions. The chloroform fraction showed highest total antioxidant activity i.e.1.078 ± 0.59 (eq. to BHT.

  15. Pyrroloquinoline quinone from Gluconobacter oxydans fermentation broth enhances superoxide anion-scavenging capacity of Cu/Zn-SOD.

    Science.gov (United States)

    Ma, Ke; Cui, Jun-Zhu; Ye, Jian-Bin; Hu, Xian-Mei; Ma, Ge-Li; Yang, Xue-Peng

    2017-09-01

    A bioassay-guided fractionation of extract from Gluconobacter oxydans fermentation broth afforded Compound 1, which was identified as pyrroloquinoline quinone (PQQ) by spectroscopic methods. PQQ has been shown to enhance the superoxide anion-scavenging capacity significantly for Cu/Zn-SOD. To illustrate the mechanism, the interaction between PQQ and Cu/Zn-SOD was investigated. The multiple binding sites involving hydrogen bonds and van der Waals force between PQQ and Cu/Zn-SOD were revealed by isothermal titration calorimetry. The α-helix content was increased in the Cu/Zn-SOD structure with the addition of PQQ into the solution through ultraviolet (UV) spectroscopy. These results indicated that PQQ could change the conformation of Cu/Zn-SOD through interaction, which could enhance its superoxide anion-scavenging capacity. Therefore, PQQ is a potential natural antioxidant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Antitumor, Antioxidant, and Nitrite Scavenging Effects of Chinese Water Chestnut (Eleocharis dulcis) Peel Flavonoids.

    Science.gov (United States)

    Zhan, Ge; Pan, Leiqing; Tu, Kang; Jiao, Shunshan

    2016-10-01

    The preparation, quantification, and characterization of flavonoid compounds from Chinese water chestnut peel (CWCP) flavonoid extract and ethyl acetate fraction (EF), n-butanol fraction, and water fraction were studied. Among these, EF showed the maximum free radical levels (IC50 values of 0.36, 0.40, and 0.37 mg/mL for DPPH•, ABTS•+ , and •OH, respectively), nitrite scavenging effects (IC50 = 1.89 mg/mL), and A549 cell inhibitory activities (IC50 = 776.12 μg/mL) with the highest value of total flavonoid content (TFC, 421.32 mg/g). Moreover, the contents of 8 flavonoids in this fraction were quantified using high-performance liquid chromatography, and fisetin, diosmetin, luteolin, and tectorigenin were the 4 major flavonoids with levels of 31.66, 29.91, 13.69, and 12.41 mg/g, respectively. Luteolin produced a greater inhibition of human lung cancer A549 cells (IC50 = 59.60 μg/mL) than did fisetin, diosmetin, and tectorigenin. Flow cytometry revealed that the cellular mechanisms of luteolin inhibition of A549 cells were achieved via the induction of cell proliferation arrest at G1 phase and apoptosis/necrosis. Our findings suggest that flavonoids are closely associated with antitumor, antioxidant, and nitrite scavenging effects of CWCP. © 2016 Institute of Food Technologists®.

  17. Screening of free radical scavenging capacity and antioxidant activities of Rosmarinus officinalis extracts with focus on location and harvesting times

    NARCIS (Netherlands)

    Yesil Celiktas, O.; Girgin, G.; Orhan, H.; Wichers, H.J.; Bedir, E.; Vardar Sukan, F.

    2007-01-01

    Methanolic extracts from the leaves of Rosmarinus officinalis (rosemary) harvested from different locations of Turkey at four different times of the year were analyzed by HPLC, and their radical scavenging capacities and antioxidant activities were studied by various assays. The amounts of carnosol,

  18. Radical scavenging-linked antioxidant activity of ethanolic extracts of diverse types of extra virgin olive oils.

    Science.gov (United States)

    Lee, O-H; Lee, B-Y; Kim, Y-C; Shetty, K; Kim, Y-C

    2008-09-01

    The present study evaluated the radical scavenging-linked antioxidant activity of hexane/80% ethanol extracts from several types of extra virgin olive oils (EVOOs) derived from varieties arbequina, hojiblanca, picual, their blends, and pure olive oil (POO). The antioxidant potential of the olive oil extracts was assessed by radical scavenging assays using DPPH (2, 2-diphenyl-1-picrylhydrazyl), ABTS (2, 2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), and hydroxyl radical, as well as hydrogen peroxide and superoxide anion inhibitory activities. Electron donating ability (EDA) using DPPH assay of 80% ethanol extracts from EVOOs, except arbequina oil, was significantly higher than POO. EDA was markedly higher in blended and picual EVOOs than the extracts from arbequina and hojiblanca EVOOs (P EVOOs was in order of picual EVOO > blended EVOO > hojiblanca EVOO >or= POO >or= arbequina EVOO. Further, the superoxide anion scavenging activity of blended, picual, and arbequina EVOOs was significantly higher than that of hojiblanca EVOO and POO, which were barely detectable. Hydroxyl radical scavenging activity of arbequina and hojiblanca was higher than that of blended, picual EVOOs, and POO. In addition, hydrogen peroxide scavenging activity of the extracts from blended, arbequina, hojiblanca, picual EVOOs, and POO was 63.1 +/- 3.1%, 44.4 +/- 10.2%, 52.0 +/- 2.7%, 71.8 +/- 2.5%, and 35.7 +/- 10.0%, respectively. Our results indicate that ethanol extracts of several EVOOs contained higher radical scavenging and antioxidant activity than the POO. This antioxidant potential is partly due to the phenolic compounds present in different olive oil grade and is influenced by cultivar type.

  19. Antioxidant activity of South African red and white cultivar wines: free radical scavenging.

    Science.gov (United States)

    De Beer, Dalene; Joubert, Elizabeth; Gelderblom, Wentzel C A; Manley, Marena

    2003-02-12

    The free radical scavenging activity of South African red (n = 46) and white (n = 40) cultivar wines was determined using 2,2'-azinobis(3-ethylbenzothialozinesulfonic acid) radical cations (ABTS(.+)) and 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH.). The total antioxidant activities (TAA) of red and white wines using ABTS(.+) were 14.916 and 0.939 mM Trolox, respectively, at corresponding total phenol (TP) contents of 2339.0 and 273.8 mg of gallic acid equiv/L. Ruby Cabernet wines had the lowest TAA(ABTS) (13.177 mM Trolox) of the red wines, whereas the TAA(ABTS) values of Chardonnay and Chenin blanc wines were the highest (1.060 mM Trolox) and lowest (0.800 mM Trolox) of the white wines. The TAA(DPPH) values were of the same magnitude as the TAA(ABTS) values, and similar trends were observed. TAA correlated (P red (r = 0.935) and white (r = 0.907) wines, as well as flavanol content of red wines (r = 0.866) and tartaric acid ester content of white wines (r = 0.767). Canonical discriminant analysis using phenolic composition and antioxidant activity was applied to differentiate between red and white cultivar wines.

  20. Isolation and evaluation of the radical-scavenging activity of the antioxidants in the leaves of an edible plant, Mallotus japonicus.

    Science.gov (United States)

    Tabata, Hiromasa; Katsube, Takuya; Tsuma, Terumi; Ohta, Yukari; Imawaka, Naoto; Utsumi, Toshihiko

    2008-07-01

    The antioxidative properties of a hot water extract of the leaves of Mallotus japonicus were evaluated. The extract had a high phenolic content and strong antioxidative activity, compared with green tea, rooibos tea, and red wine. Six phenolic compounds were isolated as antioxidative components by HPLC. They were identified as mallotinic acid, mallotusinic acid, corilagin, geraniin, rutin, and ellagic acid. These antioxidative compounds were subjected to DPPH radical-scavenging, superoxide radical-scavenging, and hydroxyl radical-scavenging assays, and compared with other antioxidative compounds. Four of the compounds, mallotinic acid, mallotusinic acid, corilagin and geraniin, exhibited much stronger antioxidative activity than gallic acid, rutin, ellagic acid, quercetin, and chlorogenic acid, and were as active as epigallocatechin gallate (EGCG), a strong antioxidant in green tea. Mallotus japonicus leaves are an excellent source of strong natural antioxidative materials. Copyright © 2007 Elsevier Ltd. All rights reserved.

  1. Kinetic study of DPPH scavenging in the presence of mixture of Zinc and Vitamin C as an antioxidant

    Directory of Open Access Journals (Sweden)

    M. Momen Heravi

    2012-08-01

    Full Text Available Reactions of free radicals and reactive oxygen species (ROS with biological molecules in vivo play an important physiological role in many diseases. 2,2-diphenyl-1-picrylhydrazyl (DPPH is a stable free radical and often used as a routine reagent to evaluate the antioxidant capacity of an antioxidant. This study was undertaken to investigate the free radical-scavenging and antioxidant activities of Zinc, Vitamin C and mixture of them. UV-Vis spectrophotometry method was used to evaluate the ability of Zinc, Vitamin C and mixture of them to scavenge DPPH radical. The kinetic parameters such as rate constant and activation energy in experimental conditions were calculated. The rate constants of the H atom abstraction by DPPH (, in the presence of Zinc, Vitamin C and mixture of them were obtained (0.4209, 2.092 and 1.82 min-1 respectively, under pseudo-first-order conditions at 25 oC.

  2. Antioxidant Composition of a Selection of Italian Red Wines and Their Corresponding Free-Radical Scavenging Ability

    Directory of Open Access Journals (Sweden)

    Claudio Cassino

    2016-01-01

    Full Text Available This study correlates the antioxidant composition profiles and the overall antioxidant capacities of 36 Italian red wine samples. The samples were fully characterized by chromatographic and spectrophotometric techniques. The overall antioxidant capacity was determined by titrating a solution of the semistable free radical DPPH (1,1-diphenyl-2-picrylhydrazyl with each wine sample followed by Electron Paramagnetic Resonance (EPR spectroscopy and then measuring the resulting decrease in DPPH-signal. The antioxidant activities of the samples were expressed as (+-catechin equivalents and related to their antioxidant composition profiles. Samples with a high polyphenol content showed a high DPPH scavenging ability as well. Seven well-defined groups, mainly constituted by wines coming from the same cultivar, were evidenced by PCA analysis. Alcohol content and pH did not influence the wine DPPH scavenging ability. The most important variables contributing to the wines’ antioxidant power are total flavonoid, total phenol, and proanthocyanidin indices together with fertaric acid, trans-caftaric acid, trans-coutaric acid, and both quercetin glucoside and quercetin glucuronide. EPR is demonstrated to be faster than the other analytical methods (spectrophotometric and chromatographic analyses to determine the wine overall antioxidant activity.

  3. Comparative evaluation of post-column free radical scavenging and ferric reducing antioxidant power assays for screening of antioxidants in strawberries.

    Science.gov (United States)

    Raudonis, Raimondas; Raudone, Lina; Jakstas, Valdas; Janulis, Valdimaras

    2012-04-13

    ABTS and FRAP post-column techniques evaluate the antioxidant characteristics of HPLC separated compounds with specific reagents. ABTS characterize their ability to scavenge free radicals by electron-donating antioxidants, resulting in the absorbance decrease of the chromophoric radical. FRAP - is based on the reduction of Fe(III)-tripyridyltriazine complex to Fe(II)-tripyridyltriazine at low pH by electron-donating antioxidants, resulting in an absorbance increase. Both post-column assays were evaluated and compared according to the following validation parameters: specificity, precision, limit of detection (LoD), limit of quantitation (LoQ) and linearity. ABTS and FRAP post-column assays were specific, repeatable and sensitive and thus can be used for the evaluation of antioxidant active compounds. Antioxidant active compounds were quantified according to TEAC for each assay and ABTS/FRAP ratio was derived. No previous records of antioxidative activity of leaves and fruits of strawberries (Fragaria viridis, Fragaria moschata) research have been found. The research results confirm the reliability of ABTS and FRAP post-column assays for screening of antioxidants in complex mixtures and the determination of radical scavenging and ferric reducing ability by their TEAC values. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Antioxidant and Free Radical Scavenging Activity of Trigonella foenum-graecum L, Murraya koenigii , Coriandrum sativum and Centella asiatica

    Directory of Open Access Journals (Sweden)

    Sanghamitra Dutta

    2016-04-01

    Full Text Available Antioxidants are naturally occurring substances that combat oxidative damage in biological entities. An antioxidant achieves this by slowing or preventing the oxidation process that can damage cells in the body. It does this by getting oxidized itself in place of the cells. The aim of the present study was to evaluate the in vitro antioxidant and free radical scavenging activities of aqueous and 95% methanol leaf extracts of four herbs viz. Trigonella foenum-graecum L, Murraya koenigii, Coriandrum sativum and Centella asiatica which have frequent use in Indian cuisine. Both aqueous and 95% methanol leaf extracts have shown significant amount reducing power. Both aqueous and 95% methanol leaf extracts of Coriandrum sativum had significant DPPH radical scavenging activity with IC50 value of 0.21± 0.3 mg/L and 0.176 ± 0.008 mg/L respectively. The aqueous leaf extract of Trigonella foenum-graecum L showed low scavenging activity. Among all the leaf extracts, the aqueous leaf extract of Centella asiatica has exhibited significantly high NO radical scavenging activity (80% with IC50 value of 0.11 ± 0.17 mg/L. The aqueous leaf extracts of the samples have showed significantly high superoxide radical scavenging activity. The activity was maximum for the aqueous leaf extract of Centella asiatica, IC50 value is 4.36 ± 0.41 mg/L. anti lipid peroxide activities were very high ( 90 % for aqueous leaf extracts of Coriandrum sativum (IC50 = 0.064 ± 0.85 mg/L and Centella asiatica (IC50 = 0.066 ± 0.9mg/L at a concentration of 0.16 mg/L. The aqueous leaf extracts of the samples were found to contain large amounts of flavonoids and phenolic compounds and exhibited high antioxidant and free radical scavenging activities. These in vitro assays indicate that these plant extracts are significant source of natural antioxidants which might be helpful in preventing the progress of various oxidative stresses.

  5. Can antioxidant's reactive oxygen species (ROS) scavenging capacity contribute to aged seed recovery? Contrasting effect of melatonin, ascorbate and glutathione on germination ability of aged maize seeds.

    Science.gov (United States)

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2017-10-01

    It is well known that antioxidants such as AA (reduced ascorbate), glutathione (GSH) (reduced glutathione) and melatonin can delay seed ageing. Can they recover aged seed? Artificial aged maize seeds were obtained and their reduced germination rate (GR) and high lipid peroxidation were recorded. Exogenous melatonin was applied on these aged seeds and enhanced GR was observed. However, treatment with other antioxidants such as AA, GSH or DMTU (dimethyl thiourea) did not significantly improve or even reduce the GR of aged seeds. In addition, melatonin improved germination ability of theses aged seeds can be significantly impaired by DDC (diethyldithiocarbamic acid, a specific inhibitor of superoxide dismutase or superoxide dismutase (SOD)) and ATZ (aminotriazol, a specific inhibitor of catalase or CAT). In a further study, we found that melatonin but not other antioxidants (AA, GSH and DMTU) significantly induced CAT and SOD activities of aged seeds after imbibition. Accordingly, melatonin significantly reduced lipid peroxidation in aged seeds than that of other antioxidants. Taken together, these data suggest that melatonin induced antioxidant enzyme but not its direct reactive oxygen species (ROS) scavenging capacity contributing to recovery of aged maize seeds.

  6. Rapid identification of antioxidant compounds of Genista saharae Coss. & Dur. by combination of DPPH scavenging assay and HPTLC-MS.

    Science.gov (United States)

    Meriane, Djamila; Genta-Jouve, Grégory; Kaabeche, Mohamed; Michel, Sylvie; Boutefnouchet, Sabrina

    2014-04-09

    Genista species are sources of antioxidant phenolic compounds such as O- and C-glycosylflavonoids and isoflavonoids. A combination of a DPPH scavenging assay with HPTLC-MS, a fast and efficient method for identification of bioactive compounds, has been applied for evaluation of the radical scavenging activity of metabolites from Genista saharae Coss. & Dur. Different organs collected at various periods have been compared. Identification of antioxidant compounds was obtained by elution of the major DPPH-inhibition zones. The resulting HPTLC-MS analysis under moderately polar conditions, coupled to the DPPH results led to the putative identification of two antioxidant isoflavone aglycones: 3',4',5,7-tetrahydroxyisoflavone (1) and ficuisoflavone (3), whereas polar migration conditions led to the identification of the glycosides 5-methoxy-4',7-trihydroxy-8-glucopyranosylisoflavone (4) and 4',5-dihydroxy-7-methoxyisoflavone-4'-O-β-D-gluco-pyranoside (5). Evaluation of percentage of inhibition of DPPH radical by the purified isoflavone 4 from the root extract showed that it affords a moderate contribution to the total radical scavenging activity of the extract.

  7. Antiatherogenic effect of bisvanillyl-hydralazone, a new hydralazine derivative with antioxidant, carbonyl scavenger, and antiapoptotic properties.

    Science.gov (United States)

    Bouguerne, Benaissa; Belkheiri, Nadji; Bedos-Belval, Florence; Vindis, Cécile; Uchida, Koji; Duran, Hubert; Grazide, Marie-Hélène; Baltas, Michel; Salvayre, Robert; Nègre-Salvayre, Anne

    2011-06-01

    Reactive oxygen species (ROS) generated within the vascular wall trigger low-density lipoprotein (LDL) oxidation, lipid peroxidation, and carbonyl stress that are involved in atherogenesis. We recently reported that the antihypertensive drug, hydralazine, exhibits carbonyl scavenger and antiatherogenic properties, but only moderate antioxidant activity, so that high concentrations are required for inhibiting LDL oxidation. We aimed to develop agents sharing both antioxidant and carbonyl scavenger properties. We have synthesized a new hydralazine derivative, the bisvanillyl-hydralazone (BVH). BVH strongly inhibited LDL oxidation induced by copper and by human endothelial cells (HMEC-1), and prevented the formation of macrophagic foam cells. BVH reduced both the extracellular generation of ROS (superoxide anion and hydrogen peroxide) induced by oxidized LDL (oxLDL), as well as intracellular oxidative stress and proteasome activation, NFkappaB activation, and oxLDL-mediated proinflammatory signaling. In parallel, BVH prevented the carbonyl stress induced by oxLDL on cellular proteins, and blocked the apoptotic cascade as assessed by the inhibition of Bid cleavage, cytochrome C release, and DEVDase activation. Lastly, BVH prevented atherogenesis and carbonyl stress in apoE(-/-) mice. In conclusion, BVH is the prototype of a new class of antioxidant and carbonyl scavenger agents designed for new therapeutical approaches in atherosclerosis.

  8. Rapid Identification of Antioxidant Compounds of Genista saharae Coss. & Dur. by Combination of DPPH Scavenging Assay and HPTLC-MS

    Directory of Open Access Journals (Sweden)

    Djamila Meriane

    2014-04-01

    Full Text Available Genista species are sources of antioxidant phenolic compounds such as O- and C-glycosylflavonoids and isoflavonoids. A combination of a DPPH scavenging assay with HPTLC-MS, a fast and efficient method for identification of bioactive compounds, has been applied for evaluation of the radical scavenging activity of metabolites from Genista saharae Coss. & Dur. Different organs collected at various periods have been compared. Identification of antioxidant compounds was obtained by elution of the major DPPH-inhibition zones. The resulting HPTLC-MS analysis under moderately polar conditions, coupled to the DPPH results led to the putative identification of two antioxidant isoflavone aglycones: 3',4',5,7-tetrahydroxyisoflavone (1 and ficuisoflavone (3, whereas polar migration conditions led to the identification of the glycosides 5-methoxy-4',7-trihydroxy-8-glucopyranosylisoflavone (4 and 4',5-dihydroxy-7-methoxyisoflavone-4'-O-β-D-gluco-pyranoside (5. Evaluation of percentage of inhibition of DPPH radical by the purified isoflavone 4 from the root extract showed that it affords a moderate contribution to the total radical scavenging activity of the extract.

  9. Synthesis and in Vitro Antioxidant Activity Evaluation of 3-Carboxycoumarin Derivatives and QSAR Study of Their DPPH• Radical Scavenging Activity

    Directory of Open Access Journals (Sweden)

    Maria Teresa Sumaya-Martínez

    2012-12-01

    Full Text Available The in vitro antioxidant activities of eight 3-carboxycoumarin derivatives were assayed by the quantitative 1,1-diphenyl-2-picrylhydrazil (DPPH• radical scavenging activity method. 3-Acetyl-6-hydroxy-2H-1-benzopyran-2-one (C1 and ethyl 6-hydroxy-2-oxo-2H-1-benzopyran-3-carboxylate (C2 presented the best radical-scavenging activity. A quantitative structure-activity relationship (QSAR study was performed and correlated with the experimental DPPH• scavenging data. We used structural, geometrical, topological and quantum-chemical descriptors selected with Genetic Algorithms in order to determine which of these parameters are responsible of the observed DPPH• radical scavenging activity. We constructed a back propagation neural network with the hydrophilic factor (Hy descriptor to generate an adequate architecture of neurons for the system description. The mathematical model showed a multiple determination coefficient of 0.9196 and a root mean squared error of 0.0851. Our results shows that the presence of hydroxyl groups on the ring structure of 3-carboxy-coumarins are correlated with the observed DPPH• radical scavenging activity effects.

  10. Evaluation of Abelmoschus moschatus extracts for antioxidant, free radical scavenging, antimicrobial and antiproliferative activities using in vitro assays

    Directory of Open Access Journals (Sweden)

    Qureshi Insaf A

    2011-08-01

    Full Text Available Abstract Background Abelmoschus moschatus Medik. leaves and seeds are considered as valuable traditional medicine. The aromatic seeds of this plant are aphrodisiac, ophthalmic, cardio tonic, antispasmodic and used in the treatment of intestinal complaints and check queasiness. To give a scientific basis for traditional usage of this medicinal plant, the seed and leaf extracts were evaluated for their antioxidant, free radical scavenging, antimicrobial and antiproliferative activities. Methods In this study, antioxidant, antimicrobial and antiproliferative activities of A. moschatus extracts were evaluated in a series of in vitro assay involving free radicals, reactive oxygen species and their IC50 values were also determined. The antioxidant activities of the seed and leaf extracts of A. moschatus were determined by total antioxidant, DPPH, and ferrous reducing antioxidant property (FRAP methods. In addition, the antiproliferative activity was also evaluated using colorectal adenocarcinoma and retinoblastoma human cancer cell lines. Moreover, six bacterial reference strains, two gram-positive (Bacillus subtilis and Staphylococcus aureus, four gram-negative (Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris and Salmonella enterica paratyphi and one fungal strain (Candida albicans were used to evaluate its antimicrobial activity. Results The results from this study showed that the antioxidant activities of A. moschatus as determined by the total phenol, flavonoids, total antioxidant and FRAP methods were higher in leaf than that of the seed extracts. On the other hand, the aqueous overnight seed extract (AMS-I has shown significant radical scavenging activity as in 1, 1- Diphenyl-2-picrylhydrazyl (DPPH, hydrogen peroxide, hydroxyl radical, superoxide and lipid peroxidation as compared to other seed and leaf extracts. The AMS-I and AML-IV have shown activity against six and seven microorganisms respectively. Simulteneously, AMS-IV and AML

  11. Evaluation of Abelmoschus moschatus extracts for antioxidant, free radical scavenging, antimicrobial and antiproliferative activities using in vitro assays

    Science.gov (United States)

    2011-01-01

    Background Abelmoschus moschatus Medik. leaves and seeds are considered as valuable traditional medicine. The aromatic seeds of this plant are aphrodisiac, ophthalmic, cardio tonic, antispasmodic and used in the treatment of intestinal complaints and check queasiness. To give a scientific basis for traditional usage of this medicinal plant, the seed and leaf extracts were evaluated for their antioxidant, free radical scavenging, antimicrobial and antiproliferative activities. Methods In this study, antioxidant, antimicrobial and antiproliferative activities of A. moschatus extracts were evaluated in a series of in vitro assay involving free radicals, reactive oxygen species and their IC50 values were also determined. The antioxidant activities of the seed and leaf extracts of A. moschatus were determined by total antioxidant, DPPH, and ferrous reducing antioxidant property (FRAP) methods. In addition, the antiproliferative activity was also evaluated using colorectal adenocarcinoma and retinoblastoma human cancer cell lines. Moreover, six bacterial reference strains, two gram-positive (Bacillus subtilis and Staphylococcus aureus), four gram-negative (Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris and Salmonella enterica paratyphi) and one fungal strain (Candida albicans) were used to evaluate its antimicrobial activity. Results The results from this study showed that the antioxidant activities of A. moschatus as determined by the total phenol, flavonoids, total antioxidant and FRAP methods were higher in leaf than that of the seed extracts. On the other hand, the aqueous overnight seed extract (AMS-I) has shown significant radical scavenging activity as in 1, 1- Diphenyl-2-picrylhydrazyl (DPPH), hydrogen peroxide, hydroxyl radical, superoxide and lipid peroxidation as compared to other seed and leaf extracts. The AMS-I and AML-IV have shown activity against six and seven microorganisms respectively. Simulteneously, AMS-IV and AML-IV have demonstrated

  12. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

    OpenAIRE

    Habib, Sheikh Hasna; Kausar, Hossain; Saud, Halimi Mohd

    2016-01-01

    Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzym...

  13. Thai plants with high antioxidant levels, free radical scavenging activity, anti-tyrosinase and anti-collagenase activity.

    Science.gov (United States)

    Chatatikun, Moragot; Chiabchalard, Anchalee

    2017-11-09

    Ultraviolet radiation from sunlight induces overproduction of reactive oxygen species (ROS) resulting in skin photoaging and hyperpigmentation disorders. Novel whitening and anti-wrinkle compounds from natural products have recently become of increasing interest. The purpose of this study was to find products that reduce ROS in 14 Thai plant extracts. To determine total phenolic and flavonoid content, antioxidant activity, anti-tyrosinase activity and anti-collagenase activity, we compared extracts of 14 Thai plants prepared using different solvents (petroleum ether, dichloromethane and ethanol). Antioxidant activities were determined by DPPH and ABTS assays. Total phenolic content of the 14 Thai plants extracts was found at the highest levels in ethanol followed by dichloromethane and petroleum ether extracts, respectively, while flavonoid content was normally found in the dichloromethane fraction. Scavenging activity ranged from 7 to 99% scavenging as assessed by DPPH and ABTS assays. The ethanol leaf extract of Ardisia elliptica Thunb. had the highest phenolic content, antioxidant activity and collagenase inhibition, while Cassia alata (L.) Roxb. extract had the richest flavonoid content. Interestingly, three plants extracts, which were the ethanolic fractions of Annona squamosa L., Ardisia elliptica Thunb. and Senna alata (L.) Roxb., had high antioxidant content and activity, and significantly inhibited both tyrosinase and collagenase. Our finding show that the ethanol fractions of Annona squamosa L., Ardisia elliptica Thunb. and Senna alata (L.) Roxb. show promise as potential ingredients for cosmetic products such as anti-wrinkle agents and skin whitening products.

  14. Functionalized graphene quantum dots loaded with free radicals combined with liquid chromatography and tandem mass spectrometry to screen radical scavenging natural antioxidants from Licorice and Scutellariae.

    Science.gov (United States)

    Wang, Guoying; Niu, XiuLi; Shi, Gaofeng; Chen, Xuefu; Yao, Ruixing; Chen, Fuwen

    2014-12-01

    A novel screening method was developed for the detection and identification of radical scavenging natural antioxidants based on a free radical reaction combined with liquid chromatography with tandem mass spectrometry. Functionalized graphene quantum dots were prepared for loading free radicals in the complex screening system. The detection was performed with and without a preliminary exposure of the samples to specific free radicals on the functionalized graphene quantum dots, which can facilitate charge transfer between free radicals and antioxidants. The difference in chromatographic peak areas was used to identify potential antioxidants. This is a novel approach to simultaneously evaluate the antioxidant power of a component versus a free radical, and to identify it in a vegetal matrix. The structures of the antioxidants in the samples were identified using tandem mass spectrometry and comparison with standards. Fourteen compounds were found to possess potential antioxidant activity, and their free radical scavenging capacities were investigated. The order of scavenging capacity of 14 compounds was compared according to their free radical scavenging rate. 4',5,6,7-Tetrahydroxyflavone (radical scavenging rate: 0.05253 mL mg(-1) s(-1) ) showed the strongest capability for scavenging free radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A study on the comparison of antioxidant effects among cultivated ginseng, and cultivated wild ginseng extracts -Using the measurement of superoxide and hydroxy radical scavenging activities-

    Directory of Open Access Journals (Sweden)

    Tae Jin, Rhim

    2009-06-01

    Full Text Available Objectives : The objective of this study was to compare the antioxidant effects among cultivated wild ginseng and ginseng extracts. Methods : In vitro antioxidant activities were examined by superoxide and hydroxyl radical scavenging activities of ginseng and cultivated wild ginseng extracts. Results : 1. In the superoxide radical scavenging activities of ginseng and cultivated wild ginseng extracts, antioxidant activities of cultivated wild ginseng extracts was showed higher than cultivated ginseng in the concentration of 0.25 and 0.50㎎/㎖. 2. In the hydroxyl radical scavenging activities of ginseng and cultivated wild ginseng extracts, antioxidant activities of cultivated wild ginseng extracts was showed higher than cultivated ginseng in the concentration of 1.0, 2.5, and 5.0㎎/㎖. Conclusions : In summary, the results of this study demonstrate that cultivated wild ginseng extracts had higher antioxidant activities to cultivated ginseng.

  16. Antimutagenic, antioxidant and free radical scavenging activity of ethyl acetate extracts from white, yellow and red onions.

    Science.gov (United States)

    Shon, Mi-Yae; Choi, Sang-Do; Kahng, Goon-Gjung; Nam, Sang-Hae; Sung, Nak-Ju

    2004-04-01

    The beneficial effects of red, yellow and white onion extracts have been assessed by antioxidant activity and antimutagenic activity. And the effects compared to BHT and ascorbic acid. Total phenolic compounds and flavonoids in onion extracts were determined. Yellow onion extract had more organic acid and free sugar than those detected in the white and red onion extract. The scavenging activity of DPPH radical and H(2)O(2) were increased depending on the concentration. The antioxidant activities using beta-carotene-linoleate system and reducing power were increased but the effect was small to that of BHT and ascorbic acid. After digested, extracts showed antimutagenic activities, and it seems that they inhibit the mutagenicity for digesting. This study demonstrated that the antimutagenicities and antioxidant properties of ethyl acetate extract against mutagens were related to their phenols and flavonoids, which are heat stable and losses digestive juices are relatively low.

  17. How Do Nutritional Antioxidants Really Work: Nucleophilic Tone and Para-Hormesis Versus Free Radical Scavenging in vivo

    Science.gov (United States)

    Forman, Henry Jay; Davies, Kelvin J. A.; Ursini, Fulvio

    2013-01-01

    We present arguments for an evolution in our understanding of how antioxidants in fruits and vegetables exert their health-protective effects. There is much epidemiological evidence for disease prevention by dietary antioxidants and chemical evidence that such compounds react in one-electron reactions with free radicals in vitro. Nonetheless, kinetic constraints indicate that in vivo scavenging of radicals is ineffective in antioxidant defense. Instead, enzymatic removal of non-radical electrophiles, such as hydroperoxides, in two-electron redox reactions is the major antioxidant mechanism. Furthermore, we propose that a major mechanism of action for nutritional antioxidants is the paradoxical oxidative activation of the Nrf2 (NF-E2-related factor 2) signaling pathway, which maintains protective oxidoreductases and their nucleophilic substrates. This maintenance of ‘Nucleophilic Tone,’ by a mechanism that can be called ‘Para-Hormesis,’ provides a means for regulating physiological non-toxic concentrations of the non-radical oxidant electrophiles that boost antioxidant enzymes, and damage removal and repair systems (for proteins, lipids, and DNA), at the optimal levels consistent with good health. PMID:23747930

  18. Structure of Dihydrochalcones and Related Derivatives and Their Scavenging and Antioxidant Activity against Oxygen and Nitrogen Radical Species

    Directory of Open Access Journals (Sweden)

    Alexandre L. A. Bentes

    2011-02-01

    Full Text Available Quantum mechanical calculations at B3LYP/6-31G** level of theory were employed to obtain energy (E, ionization potential (IP, bond dissociation enthalpy (O-H BDE and stabilization energies (DEiso in order to infer the scavenging activity of dihydrochalcones (DHC and structurally related compounds. Spin density calculations were also performed for the proposed antioxidant activity mechanism of 2,4,6-trihydroxyacetophenone (2,4,6-THA. The unpaired electron formed by the hydrogen abstraction from the phenolic hydroxyl group of 2,4,6-THA is localized on the phenolic oxygen at 2, 6, and 4 positions, the C3 and C6 carbon atoms at ortho positions, and the C5 carbon atom at para position. The lowest phenolic oxygen contribution corresponded to the  highest scavenging activity value. It was found that antioxidant activity depends on the presence of a hydroxyl at the C2 and C4 positions and that there is a correlation between IP and O-H BDE and peroxynitrite scavenging activity and lipid peroxidation. These results identified the pharmacophore group for DHC.

  19. Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: an overview.

    Science.gov (United States)

    Bagchi, Debasis; Swaroop, Anand; Preuss, Harry G; Bagchi, Manashi

    2014-10-01

    A large number of investigations have demonstrated a broad spectrum of pharmacological and therapeutic benefits of grape seed proanthocyanidins (GSP) against oxidative stress and degenerative diseases including cardiovascular dysfunctions, acute and chronic stress, gastrointestinal distress, neurological disorders, pancreatitis, various stages of neoplastic processes and carcinogenesis including detoxification of carcinogenic metabolites. GSP exhibited potent free radical scavenging abilities in both in vitro and in vivo models. GSP exerted significant in vivo protection against structurally diverse drug and chemical-induced hepatotoxicity, cardiotoxicity, neurotoxicity, nephrotoxicity and spleentoxicity. GSP also protected against idarubicin and 4-hydroxyperoxy-cyclophosphamide-induced cytotoxicity toward human normal liver cells. GSP exhibited selective cytotoxicity toward selected human cancer cells, while enhancing the growth and viability of normal cells. GSP exhibited potent modulatory effects of pro-apoptotic and apoptotic regulatory bcl-XL, p53, c-myc, c-JUN, JNK-1 and CD36 genes. Long-term exposure to GSP may serve as a novel chemoprotectant against three stages of DMN-induced liver carcinogenesis and tumorigenesis including initiation, promotion and progression. GSP may selectively protect against oxidative stress, genomic integrity and cell death patterns in vivo. These results demonstrate that GSP may serve as a novel therapeutic intervention against carcinogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Effect of solute–solvent interactions on DPPH radical scavenging efficiency of some flavonoid antioxidants in various binary water–methanol mixtures

    National Research Council Canada - National Science Library

    Moallem, Hamid Reza; Jabbari, Morteza

    ...-immune diseases, ageing, and diabetes. 1 – 3 However, most interest has been devoted to naturally occurring antioxidants that can be used to protect humans from oxidative stress damage. 4 There are many natural free radical scavengers and antioxidants that can protect biomolecules against the attack of free radicals or suppress the resultan...

  1. Enhanced protection of PDMS-embedded palladium catalysts by co-embedding of sulphide-scavengers.

    Science.gov (United States)

    Comandella, Daniele; Ahn, Min Hyung; Kim, Hojeong; Mackenzie, Katrin

    2017-12-01

    For Pd-containing hydrodechlorination catalysts, coating with poly(dimethyl siloxane) (PDMS) was proposed earlier as promising protection scheme against poisoning. The PDMS coating can effectively repel non-permeating poisons (such as SO3(2-)) retaining the hydrodechlorination Pd activity. In the present study, the previously achieved protection efficiency was enhanced by incorporation of sulphide scavengers into the polymer. The embedded scavengers were able to bind permeating non-ionic poisons (such as H2S) during their passage through PDMS prior to Pd contact which ensured an extended catalyst lifetime. Three scavenger types forming non-permeable sulphur species from H2S - alkaline, oxidative or iron-based compounds - were either incorporated into single-layer coats around individual Pd/Al2O3 particles or into a second layer above Pd-containing PDMS films (Pd-PDMS). Hydrodechlorination and hydrogenation were chosen as model reactions, carried out in batch and continuous-flow reactors. Batch tests with all scavenger-containing catalysts showed extended Pd protection compared to scavenger-free catalysts. Solid alkaline compounds (Ca(OH)2, NaOH, CaO) and MnO2 showed the highest instantaneous scavenger efficiencies (retained Pd activity=30-60%), while iron-based catalysts, such as nano zero-valent iron (nZVI) or ferrocene (FeCp2), proved less efficient (1-10%). When stepwise poisoning was applied, the protection efficiency of iron-based and oxidizing compounds was higher in the long term than that of alkaline solids. Long-term experiments in mixed-flow reactors were performed with selected scavengers, revealing the following trend of protection efficiency: CaO2>Ca(OH)2>FeCp2. Under field-simulating conditions using a fixed-bed reactor, the combination of sulphide pre-oxidation in the water phase by H2O2 and local scavenger-enhanced Pd protection was successful. The oxidizing agent H2O2 does not disturb the Pd-catalysed reduction, while the PDMS

  2. Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding.

    Science.gov (United States)

    Zimmerman, Matthew T; Bayse, Craig A; Ramoutar, Ria R; Brumaghim, Julia L

    2015-04-01

    Because sulfur and selenium antioxidants can prevent oxidative damage, numerous animal and clinical trials have investigated the ability of these compounds to prevent the oxidative stress that is an underlying cause of cardiovascular disease, Alzheimer's disease, and cancer, among others. One of the most common sources of oxidative damage is metal-generated hydroxyl radical; however, very little research has focused on determining the metal-binding abilities and structural attributes that affect oxidative damage prevention by sulfur and selenium compounds. In this review, we describe our ongoing investigations into sulfur and selenium antioxidant prevention of iron- and copper-mediated oxidative DNA damage. We determined that many sulfur and selenium compounds inhibit Cu(I)-mediated DNA damage and that DNA damage prevention varies dramatically when Fe(II) is used in place of Cu(I) to generate hydroxyl radical. Oxidation potentials of the sulfur or selenium compounds do not correlate with their ability to prevent DNA damage, highlighting the importance of metal coordination rather than reactive oxygen species scavenging as an antioxidant mechanism. Additional gel electrophoresis, mass spectrometry, and UV-visible studies confirmed sulfur and selenium antioxidant binding to Cu(I) and Fe(II). Ultimately, our studies established that both the hydroxyl-radical-generating metal ion and the chemical environment of the sulfur or selenium significantly affect DNA damage prevention and that metal coordination is an essential mechanism for these antioxidants. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Reactive oxygen species (ROS and response of antioxidants as ROS-scavengers during environmental stress in plants

    Directory of Open Access Journals (Sweden)

    Kaushik eDas

    2014-12-01

    Full Text Available Reactive oxygen species (ROS were initially recognized as toxic by-products of aerobic metabolism. In recent years, it has become apparent that ROS plays an important signaling role in plants, controlling processes such as growth, development and especially response to biotic and abiotic environmental stimuli. The major members of the ROS family include free radicals like O2● −, OH● and non-radicals like H2O2 and 1O2. The ROS production in plants is mainly localized in the chloroplast, mitochondria and peroxisomes. There are secondary sites as well like the endoplasmic reticulum, cell membrane, cell wall and the apoplast. The role of the ROS family is that of a double edged sword; while they act as secondary messengers in various key physiological phenomena, they also induce oxidative damages under several environmental stress conditions like salinity, drought, cold, heavy metals, UV irradiation etc., when the delicate balance between ROS production and elimination, necessary for normal cellular homeostasis, is disturbed. The cellular damages are manifested in the form of degradation of biomolecules like pigments, proteins, lipids, carbohydrates and DNA, which ultimately amalgamate in plant cellular death. To ensure survival, plants have developed efficient antioxidant machinery having two arms, (i enzymatic components like superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, guaiacol peroxidase (GPX, glutathione reductase (GR, monodehydroascorbate reductase (MDHAR and dehydroascorbate reductase (DHAR; (ii non-enzymatic antioxidants like ascorbic acid (AA, reduced glutathione (GSH, α-tocopherol, carotenoids, flavonoids and the osmolyte proline. These two components work hand in hand to scavenge ROS. In this review, we emphasize on the different types of ROS, their cellular production sites, their targets, and their scavenging mechanism mediated by both the branches of the antioxidant systems, highlighting the potential

  4. Prooxidant/Antioxidant Ratio (ProAntidex as a Better Index of Net Free Radical Scavenging Potential

    Directory of Open Access Journals (Sweden)

    Hwee Ming Cheng

    2010-11-01

    Full Text Available The antioxidant activity of several Malaysian plant extracts was analyzed simultaneously with their pro-oxidant capacity. This ratio represents an index (ProAntidex of the net free radical scavenging ability of whole plant extracts. We observed that ethanolic extracts of Nephelium lappaceum peel, Fragaria x ananassa leaf, Lawsonia inermis leaf, Syzygium aqueum leaf and grape seed had a lower Pro-Antidex than the commercially available Emblica™ extract which is an antioxidant agent with very low pro-oxidant activity. Among the aqueous extracts, Lawsonia inermis leaf, Nephelium mutobile leaf and grape seed had lower pro-oxidant activity compared to the Emblica™ extract. Among these extracts, aqueous extract of Nephelium mutobile leaf had a very low index of 0.05 compared to 0.69 for Emblica™. Most of the extracts had a far lower ProAntidex compared to the Vitamin C. The index enables us to identify extracts with high net free radical scavenging activity potential. The ProAntidex is beneficial as a screening parameter to the food industries and healthcare.

  5. Prooxidant/antioxidant ratio (ProAntidex) as a better index of net free radical scavenging potential.

    Science.gov (United States)

    Ling, Lai Teng; Palanisamy, Uma D; Cheng, Hwee Ming

    2010-11-03

    The antioxidant activity of several Malaysian plant extracts was analyzed simultaneously with their pro-oxidant capacity. This ratio represents an index (ProAntidex) of the net free radical scavenging ability of whole plant extracts. We observed that ethanolic extracts of Nephelium lappaceum peel, Fragaria x ananassa leaf, Lawsonia inermis leaf, Syzygium aqueum leaf and grape seed had a lower Pro-Antidex than the commercially available Emblica™ extract which is an antioxidant agent with very low pro-oxidant activity. Among the aqueous extracts, Lawsonia inermis leaf, Nephelium mutobile leaf and grape seed had lower pro-oxidant activity compared to the Emblica™ extract. Among these extracts, aqueous extract of Nephelium mutobile leaf had a very low index of 0.05 compared to 0.69 for Emblica™. Most of the extracts had a far lower ProAntidex compared to the Vitamin C. The index enables us to identify extracts with high net free radical scavenging activity potential. The ProAntidex is beneficial as a screening parameter to the food industries and healthcare.

  6. Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests.

    Science.gov (United States)

    Fauconneau, B; Waffo-Teguo, P; Huguet, F; Barrier, L; Decendit, A; Merillon, J M

    1997-01-01

    Vitis vinifera cell suspensions were used to isolate and characterize the flavonoids (anthocyanins, catechins) and non-flavonoids (stilbenes) found in red wine. Furthermore, we showed that astringin is produced although this stilbene has not previously been reported to be a constituent of V. vinifera or wine. The ability of these compounds to act as radical scavengers was investigated using 1,1-diphenyl-2-picryl-hydrazyl (DPPH), a stable free radical. Antioxidant activities were assessed by their capacity to prevent Fe2+-induced lipid peroxidation in microsomes and their action on Cu2+-induced lipid peroxidation in low-density lipoproteins. The results showed that astringin has an important antioxidant effect similar to that of trans-resveratrol, and a higher radical scavenger activity than the latter. Astringinin appeared to be more active. These data indicate that phenolic compounds (stilbenes, catechins, anthocyanins) exhibit interesting properties which may account in part for the so-called "French paradox," i.e. that moderate drinking of red wine over a long period of time can protect against coronary heart disease.

  7. Novel antioxidative nanotherapeutics in a rat periodontitis model: Reactive oxygen species scavenging by redox injectable gel suppresses alveolar bone resorption.

    Science.gov (United States)

    Saita, Makiko; Kaneko, Junya; Sato, Takenori; Takahashi, Shun-suke; Wada-Takahashi, Satoko; Kawamata, Ryota; Sakurai, Takashi; Lee, Masaichi-Chang-il; Hamada, Nobushiro; Kimoto, Katsuhiko; Nagasaki, Yukio

    2016-01-01

    The excessive production of reactive oxygen species (ROS) has been implicated in a variety of disorders, but to date, ROS scavengers have not been widely used for local treatment of inflammation, because they are rapidly eliminated from the inflamed site. We have designed a novel redox injectable gel (RIG) that is formed at 37 °C after disintegration of nano-assembled flower micelles allowing nitroxide radicals to act locally as specific ROS scavengers for the treatment of periodontitis. In the present study, we have confirmed retention of the RIG in the periodontal region, along with its antioxidant-related anti-inflammatory effects, and we have subsequently evaluated the inhibitory effect of the RIG against Porphyromonas gingivalis (P. gingivalis)-induced alveolar bone loss attributed to ROS. Alveolar bone loss was estimated by morphometry, gingival blood flow was measured using laser Doppler flowmetry, and osteoclast differentiation was evaluated by tartrate-resistant acid phosphatase staining. The results show that the RIG can inhibit P. gingivalis-induced bone loss by antioxidant-related anti-inflammatory actions, and this suggests that the RIG is a promising novel therapeutic agent for the treatment of P. gingivalis-induced periodontitis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Study On DPPH Free Radical - Scavenging Activity Of Antioxidant Compounds In Plants Composing BIN-5 Biological Active Preparation

    Directory of Open Access Journals (Sweden)

    Purevjav Urjintseren

    2015-08-01

    Full Text Available Recently there has been common trend among people to refuse from food and medications produced via synthetic method but try to consume natural products as much as possible instead. In this regard wild berries and medicinal plants are considered to be highly essential for human health as these kinds of plants serve as rich sources of biological active substances-phenol compounds. As a result of conducting research on source and spread of herbs which are commonly used as anti-diabetic medication we have developed a technological method to extract preparations from medicinal herbs such as Peony Paeonia lactiflora Pall Dandelion Taraxacum officinalis Wigg. Huckleberry Vaccinium myrtillus L Blueberry Vaccinium uliginosum L Cranberry Vaccinium vitisidaea L and Stinging nettles Urtica dioica accordingly studied chemical composition and antioxidant activity and conducted pharmacological study. With the use of Folin Denis amp Folin Ciocalteu reagent methodit was determined that the content of polyphenol compounds was 4.14-5.17 and 27.5 101.5mgml. The study was also aimed to investigate DPPH free radical-scavenging activity in connection with term temperature and concentration to identify the most rational technological procedure. As a result of study it was identified that free radical-scavenging activity of herbs selected for the study was generally estimated at 564.25-1750.00 mcgml whereas antioxidant activity of solvents with 2-10 mgml concentration was 417.20-1750.00 mcg ml respectively. This shows that such activity is dependent on concentration. However in temperature of 30 1000amp1057 degrees their activity has slowly been decreased by 1750 mcgml 476.7mcgml depending on temperature. Regarding the stinging nettles the activity was grown directly dependent from temperature. DPHH free radical-scavenging activity was gradually increased in 1-10 minutes but was relatively stable and active in 11-16 minutes.

  9. Functional Teas from the Leaves of Arbutus unedo: Phenolic Content, Antioxidant Activity, and Detection of Efficient Radical Scavengers.

    Science.gov (United States)

    Erkekoglou, Ioannis; Nenadis, Nikolaos; Samara, Efrosini; Mantzouridou, Fani Th

    2017-06-01

    The phenolic content/composition and antioxidant activity of hot/cold infusion and decoction from the leaves of Arbutus unedo were studied for the first time. 1,1-diphenyl-2-picrylhydrazyl (DPPH ● ), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation (ABTS ●+ ), crocin-bleaching, copper-reducing, and liposome accelerated oxidation assays were used for the evaluation of the activity in vitro. In vivo, the extracts were examined for their ability to protect S. cerevisiae cells from H 2 O 2 induced oxidative stress. An on-line high-performance liquid chromatography-DPPH ● assay was applied to identify potent radical scavengers and comment on their contribution to the total activity. The addition of leaves to boiling water (decoction) was the most appropriate practice to apply since the highest phenol intake (220.2 mg gallic acid/cup served) was obtained. Additionally, its antioxidant activity was equal or superior to that of the other extracts. Flavonols (~51-61 mg/g dry extract) were the main phenols in all the extracts, with quercitrin accounting for ~20% of the total phenol amount. The on-line DPPH ● method verified the high potency of the decoction and indicated as the most active radical scavengers, two galloylquinic acid derivatives and myricitrin, accounting for ~28-45% and ~11-13% of the total scavenging, respectively. Present data may contribute to the future exploitation of A. unedo leaves by the food industry for health-promoting herbal tea preparations and dietary supplements.

  10. Preventive (myoglobin, transferrin) and scavenging (superoxide dismutase, glutathione peroxidase) anti-oxidative properties of raw liquid extract of Morinda lucida leaf in the traditional treatment of Plasmodium infection

    OpenAIRE

    Olaniyan, Mathew Folaranmi; Babatunde, Elizabeth Moyinoluwa

    2016-01-01

    Background: Liquid extract of Morinda lucida leaf has been demonstrated to have antiplasmodial activities. Some phytochemicals act as preventive and or scavenging antioxidants. This study aimed to investigate the preventative and scavenging properties of the raw liquid extract of M. lucida leaf using plasma myoglobin, transferrin, superoxide dismutase (SOD), and glutathione (GSH) peroxidase. Materials and Methods: Forty-eight Plasmodium-infected patients aged 29-47 years that have not been tr...

  11. Antioxidative Properties of White Saffron Extract (Curcuma mangga Val) in The B-Carotene Bleaching and DPPH-Radical Scavenging Methods

    OpenAIRE

    Pujimulyani, Dwiyati; Wazyka, Agung; Anggrahini, Sri; Santoso, Umar

    2014-01-01

    Study on antioxidative properties of white saffron extract in the emulsion system of b-carotene linoleic acid (b-carotene bleaching method) and DPPH-radical scavenging method was undertaken. The objective of this study was to examine the antioxidative activity of white saffron extract in the emulsion system of b-carotene linoleic acid and for radical scavenging activity by DPPH method. The extraction was carried out as follows: fresh white saffron was peeled and blanched in the 0.5% boiling c...

  12. Oil, protein, antioxidants and free radical scavenging activity of stone from wild olive trees (Olea europaea L.).

    Science.gov (United States)

    Hannachi, Hédia; Elfalleh, Walid; Marzouk, Sizaiem

    2013-05-01

    The wild olive trees or oleaster (var. sylvestris) and the cultivated olive trees (var. europaea) constitute the two botanical varieties of Olea europaea L. from Mediterranean. In this study, a partial chemical profile was conducted including the total lipids, the fatty acid profiles, soluble proteins, polyphenols, flavanoids contents and antioxidants activities of stone from six oleaster trees. The comparison was made by two olive cultivars cultivated in the same region. The oleaster and cultivar stones were richer in oil content having an average of 8.99 and 7.38 % dry weight basis (DW), respectively. Qualitatively, all studied oils have the same fatty acids profile with the oleic acid C18:1n-9 as the major fatty acid. The oleaster stone oils were richer in monounsaturated fatty acids having an average of 64.87%. They, also, richer in protein content with an average of 198.86 mg/g DW.The globulin is the major fraction, followed by the albumin, the prolamin and the glutemin fractions. The oleaster stone extracts contain polyphenols, flavonoids with an average of 151.14 and 11.91 mg gallic acid equivalent/100g of DW, respectively. The studied extracts showed antioxidant activity using the free radical scavenging activity determined by DPPH and ABTS. The unexploited oleaster stone seems to be a source of oil with good fatty acids balance, in protein and antioxidants metabolites and would be useful for the formulation of supplements and/or pharmaceutical ingredients.

  13. Changes of Major Antioxidant Compounds and Radical Scavenging Activity of Palm Oil and Rice Bran Oil during Deep-Frying

    Directory of Open Access Journals (Sweden)

    Azizah Abdul Hamid

    2014-07-01

    Full Text Available Changes in antioxidant properties and degradation of bioactives in palm oil (PO and rice bran oil (RBO during deep-frying were investigated. The alpha (α-tocopherol, gamma (γ-tocotrienol and γ-oryzanol contents of the deep-fried oils were monitored using high performance liquid chromatography, and antioxidant activity was determined using 2-diphenyl-1-picryl hydrazyl (DPPH radical scavenging activity. Results revealed that the antioxidant activity of PO decreased significantly (p < 0.05, while that of RBO was preserved after deep-frying of fries. As expected, the concentration of α-tocopherol in PO and γ-tocotrienol in both PO and RBO decreased significantly (p < 0.05 with increased frying. Results also showed that γ-tocotrienol was found to be more susceptible to degradation compared to that of α-tocopherol in both PO and RBO. Interestingly, no significant degradation of α-tocopherol was observed in RBO. It is suggested that the presence of γ-oryzanol and γ-tocotrienol in RBO may have a protective effect on α-tocopherol during deep-frying.

  14. Development of microalgae biomaterials with enhanced antioxidant activity using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Younghwa; Park, Hyunjin; Choi, Soojeong; Lee, Jaehwa [Silla Univ., Busan (Korea, Republic of)

    2013-07-01

    By increasing the antioxidant products (e. g. antioxidant enzyme, carotenoid, phycobiliproteins, chlorophyll, lipid phenolic compounds, etc.) in microalgae, it could be useful for industry. In this study, mutants of fresh water microalgae Arthrospira platensis (A. platensis) by high energy electron beam were isolated and characterized. Those selected mutants showed higher growth rate than parental strain. The antioxidant enzyme activity (SOD and POD), flavonoid, phenolic compound and phycocyanin of mutants were increased about 2 times compared to wild type. Moreover, DPPH radical scavenging activity was increased about 20%. Microalgae species with improved growth rate and enhanced active compounds make the commercial process more feasible in industry. Using microalgae mutants with increased antioxidant products, it is useful to develop microalgae biomaterials for neutraceuticals.

  15. Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds.

    Science.gov (United States)

    Ali, Hussein M; Abo-Shady, Ahmed; Sharaf Eldeen, Hany A; Soror, Hany A; Shousha, Wafaa G; Abdel-Barry, Osama A; Saleh, Ahmed M

    2013-03-16

    Phenolic compounds are widely distributed in plant kingdom and constitute one of the most important classes of natural and synthetic antioxidants. In the present study fifty one natural and synthetic structurally variant phenolic, enolic and anilinic compounds were examined as antioxidants and radical scavengers against DPPH, hydroxyl and peroxyl radicals. The structural diversity of the used phenolic compounds includes monophenols with substituents frequently present in natural phenols e.g. alkyl, alkoxy, ester and carboxyl groups, besides many other electron donating and withdrawing groups, in addition to polyphenols with 1-3 hydroxyl groups and aminophenols. Some common groups e.g. alkyl, carboxyl, amino and second OH groups were incorporated in ortho, meta and para positions. SAR study indicates that the most important structural feature of phenolic compounds required to possess good antiradical and antioxidant activities is the presence of a second hydroxyl or an amino group in o- or p-position because of their strong electron donating effect in these positions and the formation of a stable quinone-like products upon two hydrogen-atom transfer process; otherwise, the presence of a number of alkoxy (in o or p-position) and /or alkyl groups (in o, m or p-position) should be present to stabilize the resulted phenoxyl radical and reach good activity. Anilines showed also similar structural feature requirements as phenols to achieve good activities, except o-diamines which gave low activity because of the high energy of the resulted 1,2-dimine product upon the 2H-transfer process. Enols with ene-1,2-diol structure undergo the same process and give good activity. Good correlations were obtained between DPPH inhibition and inhibition of both OH and peroxyl radicals. In addition, good correlations were obtained between DPPH inhibition and antioxidant activities in sunflower oil and liver homogenate systems. In conclusion, the structures of good anti radical and

  16. Free radical scavenging, in vivo antioxidant and hepatoprotective activity of folk medicine Trichodesma sedgwickianum

    Directory of Open Access Journals (Sweden)

    Shweta S. Saboo

    2013-03-01

    Full Text Available Trichodesma sedgwickianum has been used in folk medicine possessing anti-inflammatory and hepatoprotective activity. This led us to investigate for its antioxidant and hepatoprotective potential. Different polarities extracts were subjected to polyphenolic estimation and in vitro antioxidant activity. The potential extract was tested for in vivo antioxidant and hepatoprotective activity, assessed by carbon tetrachloride-induced oxidative stress in rats. Phytochemical identification of major constituents has been carried out by HPLC, GC-MS, 1HNMR and 13C NMR. Amongst the extracts, successive ethanol extract showed higher concentration of polyphenols (25.4 ± 0.1% w/w and in vitro antioxidant property. The in vivo antioxidant efficiency was confirmed by comparing the enzymatic level, superoxide dismutase, catalase, reduced glutathione and MDA in test group with the standard and control. Hepatoprotective effect was observed by changes in the serum enzyme level which were further supported by histological examination. Phytochemically ethanol extract contains gallic acid and catechin along with other constituents. Thus present study provides a scientific rationale for their traditional use.

  17. A multiple free-radical scavenging (MULTIS) study on the antioxidant capacity of a neuroprotective drug, edaravone as compared with uric acid, glutathione, and trolox.

    Science.gov (United States)

    Kamogawa, Erisa; Sueishi, Yoshimi

    2014-03-01

    Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is a neuroprotective drug that has been used for brain ischemia injury treatment. Because its activity is speculated to be due to free radical scavenging activity, we carried out a quantitative determination of edaravone's free radical scavenging activity against multiple free radical species. Electron spin resonance (ESR) spin trapping-based multiple free-radical scavenging (MULTIS) method was employed, where target free radicals were hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen. Edaravone showed relatively high scavenging abilities against hydroxyl radical (scavenging rate constant k=2.98×10(11) M(-1) s(-1)), singlet oxygen (k=2.75×10(7) M(-1) s(-1)), and methyl radical (k=3.00×10(7) M(-1) s(-1)). Overall, edaravone's scavenging activity against multiple free radical species is as robust as other known potent antioxidant such as uric acid, glutathione, and trolox. A radar chart illustration of the MULTIS activity relative to uric acid, glutathione, and trolox indicates that edaravone has a high and balanced antioxidant activity with low specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Comparative study of the antioxidant and reactive oxygen species scavenging properties in the extracts of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis

    Directory of Open Access Journals (Sweden)

    Biswas Santanu

    2010-05-01

    Full Text Available Abstract Background Cellular damage caused by reactive oxygen species (ROS has been implicated in several diseases, and hence natural antioxidants have significant importance in human health. The present study was carried out to evaluate the in vitro antioxidant and reactive oxygen species scavenging activities of Terminalia chebula, Terminalia belerica and Emblica officinalis fruit extracts. Methods The 70% methanol extracts were studied for in vitro total antioxidant activity along with phenolic and flavonoid contents and reducing power. Scavenging ability of the extracts for radicals like DPPH, hydroxyl, superoxide, nitric oxide, hydrogen peroxide, peroxynitrite, singlet oxygen, hypochlorous acid were also performed to determine the potential of the extracts. Results The ability of the extracts of the fruits in exhibiting their antioxative properties follow the order T. chebula >E. officinalis >T. belerica. The same order is followed in their flavonoid content, whereas in case of phenolic content it becomes E. officinalis >T. belerica >T. chebula. In the studies of free radicals' scavenging, where the activities of the plant extracts were inversely proportional to their IC50 values, T. chebula and E. officinalis were found to be taking leading role with the orders of T. chebula >E. officinalis >T. belerica for superoxide and nitric oxide, and E. officinalis >T. belerica >T. chebula for DPPH and peroxynitrite radicals. Miscellaneous results were observed in the scavenging of other radicals by the plant extracts, viz., T. chebula >T. belerica >E. officinalis for hydroxyl, T. belerica >T. chebula >E. officinalis for singlet oxygen and T. belerica >E. officinalis >T. chebula for hypochlorous acid. In a whole, the studied fruit extracts showed quite good efficacy in their antioxidant and radical scavenging abilities, compared to the standards. Conclusions The evidences as can be concluded from the study of the 70% methanol extract of the fruits of

  19. A new acylated flavone glycoside with antioxidant and radical scavenging activities from Teucrium polium leaves.

    Science.gov (United States)

    D'Abrosca, Brigida; Pacifico, Severina; Scognamiglio, Monica; D'Angelo, Grazia; Galasso, Silvia; Monaco, Pietro; Fiorentino, Antonio

    2013-03-01

    The antioxidant properties of six flavones from Teucrium polium L., one of them isolated for the first time, have been established through the determination of their abilities to inhibit free radicals using DPPH, ABTS radicals and ORAC test. The structure of the new metabolite has been elucidated by 1-D (1H, 13C and DEPT) and 2-D (COSY, TOCSY, HSQC, CIGAR) NMR experiments and by ESI Q-TOF HRMS analysis. Flavones 1-3 presented an efficacious activity towards the stable DPPH radical. Analogously, compounds 2 and 3 resulted significantly active also versus ABTS cation radical. On the basis of the comparable bioactivity of luteolin-based compounds, the presence of an ortho-dihydroxy substitution in the flavone B-ring is supposed to be the structural feature responsible for the antioxidant activity.

  20. Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review

    Science.gov (United States)

    Hidalgo, Gádor-Indra; Almajano, María Pilar

    2017-01-01

    Red fruits, as rich antioxidant foods, have gained over recent years capital importance for consumers and manufacturers. The industrial extraction of the phenolic molecules from this source has been taking place with the conventional solvent extraction method. New non-conventional extraction methods have been devised as environmentally friendly alternatives to the former method, such as ultrasound, microwave, and pressure assisted extractions. The aim of this review is to compile the results of recent studies using different extraction methodologies, identify the red fruits with higher antioxidant activity, and give a global overview of the research trends regarding this topic. As the amount of data available is overwhelming, only results referring to berries are included, leaving aside other plant parts such as roots, stems, or even buds and flowers. Several researchers have drawn attention to the efficacy of non-conventional extraction methods, accomplishing similar or even better results using these new techniques. Some pilot-scale trials have been performed, corroborating the applicability of green alternative methods to the industrial scale. Blueberries (Vaccinium corymbosum L.) and bilberries (Vaccinium myrtillus L.) emerge as the berries with the highest antioxidant content and capacity. However, several new up and coming berries are gaining attention due to global availability and elevated anthocyanin content. PMID:28106822

  1. Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review

    Directory of Open Access Journals (Sweden)

    Gádor-Indra Hidalgo

    2017-01-01

    Full Text Available Red fruits, as rich antioxidant foods, have gained over recent years capital importance for consumers and manufacturers. The industrial extraction of the phenolic molecules from this source has been taking place with the conventional solvent extraction method. New non-conventional extraction methods have been devised as environmentally friendly alternatives to the former method, such as ultrasound, microwave, and pressure assisted extractions. The aim of this review is to compile the results of recent studies using different extraction methodologies, identify the red fruits with higher antioxidant activity, and give a global overview of the research trends regarding this topic. As the amount of data available is overwhelming, only results referring to berries are included, leaving aside other plant parts such as roots, stems, or even buds and flowers. Several researchers have drawn attention to the efficacy of non-conventional extraction methods, accomplishing similar or even better results using these new techniques. Some pilot-scale trials have been performed, corroborating the applicability of green alternative methods to the industrial scale. Blueberries (Vaccinium corymbosum L. and bilberries (Vaccinium myrtillus L. emerge as the berries with the highest antioxidant content and capacity. However, several new up and coming berries are gaining attention due to global availability and elevated anthocyanin content.

  2. Determination of Free Radical Scavenging, Antioxidative DNA Damage Activities and Phytochemical Components of Active Fractions from Lansium domesticum Corr. Fruit

    Science.gov (United States)

    Klungsupya, Prapaipat; Suthepakul, Nava; Muangman, Thanchanok; Rerk-Am, Ubon; Thongdon-A, Jeerayu

    2015-01-01

    Lansium domesticum Corr. or “long-kong” is one of the most popular fruits in Thailand. Its peel (skin, SK) and seeds (SD) become waste unless recycled or applied for use. This study was undertaken to determine the bioactivity and phytochemical components of L. domesticum (LD) skin and seed extracts. Following various extraction and fractionation procedures, 12 fractions were obtained. All fractions were tested for antioxidant capacity against O2−• and OH•. It was found that the peel of L. domesticum fruits exhibited higher O2−• and OH• scavenging activity than seeds. High potential antioxidant activity was found in two fractions of 50% ethanol extract of peel followed by ethyl acetate (EA) fractionation (LDSK50-EA) and its aqueous phase (LDSK50-H2O). Therefore, these two active fractions were selected for further studies on their antioxidative activity against DNA damage by hydrogen peroxide (H2O2) in human TK6 cells using comet assay. The comet results revealed DNA-protective activity of both LDSK50-EA and LDSK50-H2O fractions when TK6 human lymphoblast cells were pre-treated at 25, 50, 100, and 200 μg/mL for 24 h prior to H2O2 exposure. The phytochemical analysis illustrated the presence of phenolic substances, mainly scopoletin, rutin, and chlorogenic acid, in these two active fractions. This study generates new information on the biological activity of L. domesticum. It will promote and strengthen the utilization of L. domesticum by-products. PMID:26287238

  3. Antioxidant capacity, radical scavenger activity, lipid oxidation protection analysis and antimicrobial activity of red grape extracts from different varieties cultivated in Portugal.

    Science.gov (United States)

    Correia, Ana C; Jordão, António M

    2015-01-01

    The aim of this study was to investigate the antioxidant capacity, radical scavenger activity, lipid oxidation protection and antimicrobial activity of grape extracts from 12 different red grape varieties cultivated in Portugal. The mean values of total phenolic content quantified in grape extracts varied from 833.7 to 2005.6 mg/L gallic acid. Antioxidant capacity results showed different values for each grape variety ranging from 3.96 to 32.96 mm/L Fe(II). The scavenger activity values ranged from 15.99% to 54.82% for the superoxide radical and from 11.79% to 29.67% for the hydroxyl radical. The grape extracts with the highest antioxidant capacity had a positive effect on the lipid oxidation protection and induced low peroxide values in butter samples. Finally, concerning antimicrobial activity, grape extracts from Touriga Nacional and Tinta Roriz grape varieties had significant antimicrobial activity, especially notable for total mesophilic aerobics.

  4. Cutaneous delivery of natural antioxidants: the enhancement approaches.

    Science.gov (United States)

    Aljuffali, Ibrahim A; Hsu, Ching-Yun; Lin, Yin-Ku; Fang, Jia-You

    2015-01-01

    Topically applied natural antioxidants can be an effective treatment for inhibiting oxidative damage and photoaging of the skin. Due to the barrier function of the stratum corneum (SC), it is necessary to use an enhancement approach to promote the cutaneous absorption of natural antioxidants. Some factors that should be considered when developing delivery systems for natural antioxidants include increased solubility, enhanced storage stability, improved permeability and bioavailability, skin targeting, and minimal side effects. This review describes the skin delivery systems for natural antioxidant permeation that have been developed during the last decade. The antioxidants introduced include vitamins, polyphenols, and carotenoids. Various types of formulations are employed to improve the skin penetration of the antioxidants, such as hydrogels, cyclodextrin, microemulsions, nanoparticles, liposomes and niosomes. This review focuses on the introduction of natural antioxidants used in skin protection, the mechanisms of antioxidant activity on the skin, and formulation designs for enhancing absorption and efficacy.

  5. Antioxidant content and free radical scavenging ability of fresh red pummelo [Citrus grandis (L.) Osbeck] juice and freeze-dried products.

    Science.gov (United States)

    Tsai, Hsiu-Ling; Chang, Sam K C; Chang, Sue-Joan

    2007-04-18

    The antioxidative phytochemicals in various fruits and vegetables are widely recognized for their role in scavenging free radicals, which are involved in the etiology of many chronic diseases. Colored fruits are especially considered a quality trait that correlates with their nutritional values and health benefits. The specific aim of this study was to investigate the antioxidants in the juice and freeze-dried flesh and peel of red pummelo and their ability to scavenge free radicals and compare them with those in white pummelo juice. The total phenolic content of red pummelo juice extracted by methanol (8.3 mg/mL) was found to be significantly higher than that of white pummelo juice (5.6 mg/mL). The carotenoid content of red pummelo juice was also significantly higher than that in white pummelo juice. The contents of vitamin C and delta-tocopherol in red pummelo juice were 472 and 0.35 mug/mL, respectively. The ability of the antioxidants found in red pummelo juice to scavenge radicals were found by methanol extraction to approximate that of BHA and vitamin C with a rapid rate in a kinetic model. The ability of methanol extracts of freeze-dried peel and flesh from red pummelo to scavenge these radicals was 20-40% that of BHA and vitamin C effects. Fresh red pummelo juice is an excellent source of antioxidant compounds and exhibited great efficiency in scavenging different forms of free radicals including DPPH, superoxide anion, and hydrogen peroxide radicals.

  6. Variations in free radical scavenging activities and antioxidant responses in salivary glands of Hyalomma anatolicum anatolicum and Hyalomma dromedarii (Acari: Ixodidae ticks

    Directory of Open Access Journals (Sweden)

    Mayukh Ghosh

    2014-10-01

    Full Text Available Aim: Hyalomma anatolicum anatolicum and Hyalomma dromedarii ticks are of major economic importance in the livestock sector as the vector of tropical theileriosis causing huge production loss, mostly in tropical countries. The release of different reactive oxygen and nitrogen species by exogenous and endogenous means can potentially induce oxidative damage to the ticks during their prolonged feeding on their vertebrate hosts. Hence, ticks need an effective free radical scavenging and antioxidant defense system for their successful feeding of a blood meal. Therefore, the present study was undertaken to evaluate the interspecies variations in antioxidant response, free radical scavenging, and anti-inflammatory activities in salivary gland extracts (SGE of the two species as they differ considerably in relation to feeding behavior and host specificity. Materials and Methods: Tick salivary glands were dissected out under ice from semi-fed female ticks of both the species and homogenized at low temperature to prepare SGE. SGE was stored at −40°C for analysis of free radical scavenging activities and antioxidant status. Results: Significant depletion in reduced glutathione concentrations, malondialdehyde level and elevation in free radical scavenging activity, superoxide dismutase, anti-inflammatory activity were found in SGE of engorging female H. dromedarii ticks as compared to H. a. anatolicum. Conclusion: Higher antioxidant status and free radical scavenging activities in H. dromedarii might have enabled these ticks to suck more blood from the host in spite of continuous host’s immune responses. These findings about tick biology will help in improving tick control strategies.

  7. Loading of free radicals on the functional graphene combined with liquid chromatography-tandem mass spectrometry screening method for the detection of radical-scavenging natural antioxidants.

    Science.gov (United States)

    Wang, Guoying; Shi, Gaofeng; Chen, Xuefu; Chen, Fuwen; Yao, Ruixing; Wang, Zhenju

    2013-11-13

    A novel free radical reaction combined with liquid chromatography electrospray ionization tandem mass spectrometry (FRR-LC-PDA-ESI/APCI-MS/MS) screening method was developed for the detection and identification of radical-scavenging natural antioxidants. Functionalized graphene was prepared by chemical method for loading free radicals (superoxide radical, peroxyl radical and PAHs free radical). Separation was performed with and without a preliminary exposure of the sample to specific free radicals on the functionalized graphene, which can facilitate reaction kinetics (charge transfers) between free radicals and potential antioxidants. The difference in chromatographic peak areas is used to identify potential antioxidants. The structure of the antioxidants in one sample (Swertia chirayita) is identified using MS/MS and comparison with standards. Thirteen compounds were found to possess potential antioxidant activity, and their free radical-scavenging capacities were investigated. The thirteen compounds were identified as 1,3,5-trihydroxyxanthone-8-O-β-D-glucopyranoside (PD1), norswertianin (PD2), 1,3,5,8-tetrahydroxyxanthone (PD3), 3, 3', 4', 5, 8-penta hydroxyflavone-6-β-D-glucopyranosiduronic acid-6'-pentopyranose-7-O-glucopyranoside (PD4), 1,5,8-trihydroxy-3-methoxyxanthone (PD5), swertiamarin (PS1), 2-C-β-D-glucopyranosyl-1,3,7-trihydroxylxanthone (PS2), 1,3,7-trihydroxylxanthone-8-O-β-D-glucopyranoside (PL1), 1,3,8-trihydroxyl xanthone-5-O-β-D-glucopyranoside (PL2), 1,3,7-trihydroxy-8-methoxyxanthone (PL3), 1,2,3-trihydroxy-7,8-dimethoxyxanthone (PL4), 1,8-dihydroxy-2,6-dimethoxy xanthone (PL5) and 1,3,5,8-tetramethoxydecussatin (PL6). The reactivity and SC50 values of those compounds were investigated, respectively. PD4 showed the strongest capability for scavenging PAHs free radical; PL4 showed prominent scavenging capacities in the lipid peroxidation processes; it was found that all components in S. chirayita exhibited weak reactivity in the superoxide

  8. Radical-Scavenging Activity of a Sunscreen Enriched by Antioxidants Providing Protection in the Whole Solar Spectral Range.

    Science.gov (United States)

    Souza, Carla; Maia Campos, Patrícia; Schanzer, Sabine; Albrecht, Stephanie; Lohan, Silke B; Lademann, Jürgen; Darvin, Maxim E; Meinke, Martina C

    2017-01-01

    The main reason for extrinsic skin aging is the negative action of free radicals. The formation of free radicals in the skin has been associated with ultraviolet (UV) exposure and also to visible (VIS) and near-infrared (NIR) irradiations. The aim of the present study was to evaluate the efficacy of a sunscreen in the whole solar range. The radical-scavenging activity of a sunscreen in the UV, VIS, and NIR ranges was evaluated using electron paramagnetic resonance spectroscopy. Ex vivo penetration profiles were determined using confocal Raman microscopy on porcine ear skin at different time points after application. Compared to the untreated skin, the sunscreen decreased the skin radical formation in the UV and VIS regions. Additional protection in the VIS and NIR ranges was observed for the sunscreen containing antioxidants (AO). The penetration depth of the cream was less than 11.2 ± 3.0 µm for all time points. A sunscreen containing AO improved the photoprotection in the VIS and NIR ranges. The sunscreen was retained in the stratum corneum. Therefore, these results show the possibility of the development of effective and safer sunscreen products. © 2017 S. Karger AG, Basel.

  9. Fumigation with essential oils improves sensory quality and enhanced antioxidant ability of shiitake mushroom (Lentinus edodes).

    Science.gov (United States)

    Jiang, Tianjia; Luo, Zisheng; Ying, Tiejin

    2015-04-01

    Several naturally occurring essential oils were evaluated for their effectiveness in maintaining sensory quality and increasing antioxidant levels and activities in shiitake (Lentinus edodes) mushrooms. Freshly harvested mushrooms were fumigated with 5 μl l(-)(1) clove, cinnamaldehyde and thyme oils at 10 °C for 1.5h and the antioxidant activities determined using assays of H2O2 content, O2(-) production rate, DPPH, and ABTS radical scavenging activity. The results showed that the antioxidant activities of the mushrooms fumigated with cinnamaldehyde were significantly increased when compared to the controls. Moreover, cinnamaldehyde fumigation significantly delayed losses of phenolic compounds and enhanced flavonoid content. The essential oil fumigation treatment also increased the antioxidant enzyme activities of CAT, SOD, APX and GR throughout the storage periods. All the fumigation treatments were effective in retarding mushroom sensory deterioration. These results indicate that postharvest application of essential oil fumigation can extend the shelf life and enhance the antioxidant capacity of shiitake mushrooms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Antioxidant and DPPH (1,1-diphenyl-2-picrylhydrazyl Free Radical Scavenging Activities of New the Calix[4]arene-bodipy Derivative

    Directory of Open Access Journals (Sweden)

    E. ERDEM

    2014-07-01

    Full Text Available p-tert-butylcalix[4]arene was synthesized with the condesation reaction of p-tert-butylphenol and formaldehyde in basic conditions and then has derivatized from the both of two hydroxyl position with chloride which is containing donor oxygen atoms. BODIPY compound (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene was synthesized with appropriate pyrrole and aldehyde compounds and then was bonded p-tert-butylcalix[4]arene derivative via lower rim hydroxyl groups.The antioxidant activity of the calix[4]arene-BODIPY compound were determined using β-karotene-linoleic acid system. Moreover, the free radical scavenging activity values were tested with DPPH free radical. The compound showed strong antioxidant activity.Total antioxidant activity of the compound was determined using β–carotenelinoleic acid model system and was found the antioxidant activity of 72,50%. The free radical scavenging activities were determined as 75.19%. Results show that, calix[4]arene-BODIPY compound has the antioxidant activity. 

  11. Antioxidant and DPPH (1,1-diphenyl-2-picrylhydrazyl Free Radical Scavenging Activities of Boniger Acid and Calix[4]arene Derivative

    Directory of Open Access Journals (Sweden)

    E. ERDEM

    2014-07-01

    Full Text Available Diazonium derivative of calix[4]arene has been synthesized using three different synthetic steps. Initially p-tert-butylcalix[4]arene was synthesized with the condensation reaction of p-tert-butylphenol and formaldehyde in basic conditions. Calix[4]arene was obtained after the debutylation reaction of p-tert-butylcalix[4]arene with AlCl3. Calix[4]arene reacted with diazonium salt of Böniger acid to yield the 5,17-[(Bis(azo-bis(5-hydroxy-2,7-naphthalenedisulfonicacid]-25,26,27,28-tetrahydroxy calix[4]arene which has eight free phenolic hydroxyl group. Reaction steps were shown in Fig.1.2,7-naphthalenedisulfonicacid]-25,26,27,28-tetrahydroxy calix[4]arene The antioxidant activity of the Böniger acid and calix[4]aren derivative were determined using β-karotene-linoleic acid system. Moreover, the free radical scavenging activity values were tested with DPPH free radical. The two compounds showed strong antioxidant activity. Total antioxidant activity of Böniger acid and calix[4]aren derivative was determined using β–carotenelinoleic acid model system and was found the antioxidant activity of 84.00% and 85.60 % respectively. The free radical scavenging activities were determined as 83.05% and 84.69 %. Results show that, two compounds has the antioxidant activity. The calix[4]aren derivaties has more higher activity then Boniger acid because of calix[4]aren derivative has much hydroxl groups.

  12. Mechanism of biochemical action of substituted 4-methylbenzopyran-2-ones. Part I: Dioxygenated 4-methyl coumarins as superb antioxidant and radical scavenging agents.

    Science.gov (United States)

    Raj, H G; Parmar, V S; Jain, S C; Goel, S; Poonam; Himanshu; Malhotra, S; Singh, A; Olsen, C E; Wengel, J

    1998-06-01

    Twenty-three 4-methylcoumarins bearing different functionalities have been examined for the first time for their effect on NADPH-catalysed liver-microsomal lipid peroxidation with a view to establish structure-activity relationship. Dihydroxy- and diacetoxy-4-methylcoumarins produced dramatic inhibition of lipid peroxidation. 7,8-Diacetoxy-4-methylcoumarin and 7,8-dihydroxy-4-methylcoumarin were found to possess superb antioxidant and radical scavenging activities.

  13. Antioxidant, free radical-scavenging activity and cytotoxicity of different solvent extracts and their phenolic constituents from the fruit hull of mangosteen (Garcinia mangostana).

    Science.gov (United States)

    Ngawhirunpat, Tanasait; Opanasopi, Praneet; Sukma, Monrudee; Sittisombut, Chavalit; Kat, Atsushi; Adachi, Isao

    2010-01-01

    Antioxidative, skin protective activities, and cytotoxicity of three extracts (water, methanol, and hexane) from the fruit hull of mangosteen (Garcinia mangostana Linn. (Guttiferae)) and their phenolic constituents such as alpha-mangostin, epicatechin, and tannin, were evaluated. The amounts of alpha-mangostin, total flavonoid, and total tannin were different among the three extracts, except those of total tannin in methanol and hexane extracts. For the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical scavenging, hydroxyl radical-scavenging, and inhibition of lipid peroxidation experiment, the water extract showed higher activity than the methanol extract and hexane extract. alpha-Mangostin, epicatechin, and tannin also revealed these antioxidant and free radical-scavenging activities. When added simultaneously with H(2)O(2) (200 microM) to keratinocyte cells, the water extract (50 microg/mL), epicatechin (200 microM), and tannin (200 microM) effectively protected cells from oxidative damage, but the methanol extract, hexane extract, and alpha-mangostin did not. The methanol extract and hexane extract exhibited moderate cytotoxicity, whereas alpha-mangostin showed strong cytotoxicity. The present study provides the evidence that Garcinia mangostana extracts, especially the G. mangostana water extract, act as antioxidants and cytoprotective agents against oxidative damage, which is at least partly due to its phenolic compounds in mangosteen.

  14. In vitro antioxidant and radical-scavenging capacities of Citrullus colocynthes (L) and Artemisia absinthium extracts using promethazine hydrochloride radical cation and contemporary assays.

    Science.gov (United States)

    Asghar, M Nadeem; Khan, I Ullah; Bano, N

    2011-10-01

    A new, quick and economical decolorization assay based upon the generation of a radical cation made from promethazine hydrochloride (PMZH) is described for screening of antioxidant activity of plants/herbal extracts. PMZH radical cations, produced through a reaction between PMZH and potassium persulfate (K(2)S(2)O(8)) in phosphoric acid medium, have maximum absorption at 515 nm in their first-order derivative spectrum. Theconcentrations of chromagen and K(2)S(2)O(8) were optimized (final concentration of PMZH and K₂S₂O₈ were 0.166 mM and 0.11 mM, respectively) for better stability and sensitivity of the radical cation produced. Agood linear correlation was found between the percentage inhibition and the increasing amounts of standard antioxidants, with correlation coefficients ranging from 0.989 to 0.999. The newly developed assay was employed to evaluate the antioxidant capacity of Citrullus colocynthes L. and Artemisia absinthium extracts. The proposed assay involved a more stable radical cation and required only 1 h for preparation of a working solution in comparison to the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation decolorizaion assay, which was reported to be less sensitive at low pH and almost 12-16 h were required for preparation of a working ABTS solution. Other assays employed to evaluate the antioxidant potential andradical-scavenging capacities of the extracts were the ferric-reducing antioxidant power, 2,2'-diphenyl-1-picrylhydrazyl radical scavenging, total phenolic contents assay, total flavonoid contents and metal-chelating activity assays, and the lipid peroxidation value in linoleic acid emulsion systems. The results indicate that boththe plants have potent free radical-scavenging activity and the ability to prevent lipid peroxidation and radical chain reactions.

  15. Phytochemical screening and antioxidant activity of ethanolic extract and ethyl acetate fraction from basil leaf (Ocimum basilicum L.) by DPPH radical scavenging method

    Science.gov (United States)

    Warsi; Sholichah, A. R.

    2017-11-01

    Basil leaf (Ocimum basilicum L.) contains various compounds such as flavonoid, alkaloid, phenol and essential oil, so it needs to be fractionated to find out the flavonoid compound with the greatest potential as an antioxidant. This research was aimed to know the chemical compound, antioxidant potential of ethanolic extract and ethyl acetate fraction from basil leaf. The basil leaf was extracted by maceration using ethanol 70 %. The crude extract was fractionated with ethyl acetate. The ethanolic extract and ethyl acetate fraction were screened of phytochemical content including identification of flavonoids, alkaloids and polyphenolics. The antioxidant activity of the ethanolic extract and ethyl acetate fraction were tested qualitatively with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and phosphomolybdate. Its antioxidant activity was determined quantitatively using DPPH radical scavenging method. Phytochemical screening test showed that ethanolic extract and ethyl acetate fraction from basil leaf contain flavonoids, polyphenolics, and alkaloids. The qualitative analysis of antioxidant activity of ethanolic extract and ethyl acetate fraction from basil leaf showed an antioxidant activity. The IC50 value of ethanolic extract, ethyl acetate fraction and quercetin were 1,374.00±6.20 389.00±1.00 2.10±0.01μg/mL, respectively. The research showed that antioxidant activity of the ethyl acetate fraction more potential than the ethanol extract of the basil leaf, but less than quercetin.

  16. Antioxidants: Enhancing oral and general health

    Directory of Open Access Journals (Sweden)

    Arvind Shetti

    2009-01-01

    Full Text Available Free radicals and antioxidant therapy have attracted a great deal of attention in recent years. Antioxidants are compounds that destroy the free radicals in the body, thereby preventing harmful oxidation-reduction reactions. Antioxidants are critical for maintaining optimum health and well-being. The best sources of antioxidants are fruits and vegetables, which provide a variety of antioxidants such as Vitamins A, C, E, and carotenoids. Currently available data are compatible with the notion that these vitamins act as chemopreventives against some important cancers, e.g., carotenoids for lung cancer, ascorbic acid for salivary gland cancer, tocopherols for head and neck cancers, etc. Thus, a greater consumption of fruits and vegetables should be encouraged as they are the natural sources of these chemopreventive antioxidants along with other protective factors packaged by nature.

  17. Evaluation of antioxidant activity of two important memory enhancing medicinal plants Baccopa monnieri and Centella asiatica.

    Science.gov (United States)

    Meena, Harsahay; Pandey, Hemant Kumar; Pandey, Pankaj; Arya, Mahesh Chand; Ahmed, Zakwan

    2012-01-01

    Free radicals or highly reactive oxygen species are capable of inducing oxidative damage to human body. Antioxidants are the compounds which terminate the attack of reactive species and reduce the risk of diseases. Both Baccopa monnieri and Centella asiatica are used in treatment of brain disorders in humans and have almost similar effects. The study was conducted to determine the antioxidant properties of two well-known memory enhancer medicinal plants Baccopa monnieri and Centella asiatica. The antioxidant activity of these two medicinal plants was evaluated by measuring reducing ability, free radical scavenging activity by DPPH and hydrogen peroxide methods. The antioxidants compounds like ascorbic acid, total phenols and tannins were also evaluated in these plants. Baccopa monnieri and Centella asiatica exhibited significant differences (PCentella asiatica. The antioxidant components viz. ascorbic acid, total phenols and tannins were also found in a higher concentration in Baccopa monnieri as compared to Centella asiatica. It can be concluded from the study that regular use of Baccopa monnieri as a supplement could be more helpful compared to Centella asiatica in treatment of neurological disorders caused by free radical damage.

  18. Antioxidant Capacities and Total Phenolic Contents Enhancement with Acute Gamma Irradiation in Curcuma alismatifolia (Zingiberaceae Leaves

    Directory of Open Access Journals (Sweden)

    Sima Taheri

    2014-07-01

    Full Text Available The present study was conducted in order to assess the effect of various doses of acute gamma irradiation (0, 10, 15, and 20 Gy on the improvement of bioactive compounds and their antioxidant properties of Curcuma alismatifolia var. Sweet pink. The high performance liquid chromatography (HPLC and gas chromatography (GC analysis uncovered that various types of phenolic, flavonoid compounds, and fatty acids gradually altered in response to radiation doses. On the other hand, antioxidant activities determined by 1,1-Diphenyl-2-picryl-hydrazyl (DPPH, ferric reduction, antioxidant power (FRAP, and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS radical scavenging assay showed a higher irradiation level significantly increased the antioxidant properties. This study revealed an efficient effect of varying levels of gamma radiation, based on the pharmaceutical demand to enhance the accumulation and distribution of bioactive compounds such as phenolic and flavonoid compounds, fatty acids, as well as their antioxidant activities in the leaves of C. alismatifolia var. Sweet pink.

  19. Antioxidant Capacities and Total Phenolic Contents Enhancement with Acute Gamma Irradiation in Curcuma alismatifolia (Zingiberaceae) Leaves

    Science.gov (United States)

    Taheri, Sima; Abdullah, Thohirah Lee; Karimi, Ehsan; Oskoueian, Ehsan; Ebrahimi, Mahdi

    2014-01-01

    The present study was conducted in order to assess the effect of various doses of acute gamma irradiation (0, 10, 15, and 20 Gy) on the improvement of bioactive compounds and their antioxidant properties of Curcuma alismatifolia var. Sweet pink. The high performance liquid chromatography (HPLC) and gas chromatography (GC) analysis uncovered that various types of phenolic, flavonoid compounds, and fatty acids gradually altered in response to radiation doses. On the other hand, antioxidant activities determined by 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), ferric reduction, antioxidant power (FRAP), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assay showed a higher irradiation level significantly increased the antioxidant properties. This study revealed an efficient effect of varying levels of gamma radiation, based on the pharmaceutical demand to enhance the accumulation and distribution of bioactive compounds such as phenolic and flavonoid compounds, fatty acids, as well as their antioxidant activities in the leaves of C. alismatifolia var. Sweet pink. PMID:25056545

  20. Enhanced single-particle brightness and photostability of semiconductor polymer dots by enzymatic oxygen scavenging system

    Science.gov (United States)

    Liu, Zhihe; Yang, Yingkun; Sun, Zezhou; Wu, Changfeng

    2016-12-01

    Semiconductor polymer dots (Pdots) are emerging as an excellent fluorescent probe in biology and medicine. However, the photostability of Pdots can't meet the requirements of long term single-particle imaging and tracking applications. Here we describe the enhanced single-particle brightness and photostability of Pdots by using an efficient enzymatic oxygen scavenging system (OSS). Pdots with particle diameters of 21 nm and 43 nm (PFBT21 and PFBT43) were prepared by a nanoprecipitation method. Single-particle imaging and photobleaching were performed to investigate the effect of OSS on the per-particle brightness and photostability of Pdots. Our results indicate that the single-particle brightness of the PFBT21 Pdots in OSS was enhanced nearly two times as compare to the PFBT21 Pdots in water. The photobleaching percentages of PFBT21 and PFBT43 in OSS were determined to be 29% and 33%, respectively. These values are decreased by 2-3 times as compared to those of the same Pdots in water, indicating the significantly improved photostability of Pdots by OSS. This study provides a promising approach for enhancing photostability of Pdots in long term single-particle tracking.

  1. Experimental Assessment of Moringa oleifera Leaf and Fruit for Its Antistress, Antioxidant, and Scavenging Potential Using In Vitro and In Vivo Assays

    Directory of Open Access Journals (Sweden)

    Suaib Luqman

    2012-01-01

    Full Text Available We have investigated effect of Moringa oleifera leaf and fruit extracts on markers of oxidative stress, its toxicity evaluation, and correlation with antioxidant properties using in vitro and in vitro assays. The aqueous extract of leaf was able to increase the GSH and reduce MDA level in a concentration-dependent manner. The ethanolic extract of fruit showed highest phenolic content, strong reducing power and free radical scavenging capacity. The antioxidant capacity of ethanolic extract of both fruit and leaf was higher in the in vitro assay compared to aqueous extract which showed higher potential in vivo. Safety evaluation studies showed no toxicity of the extracts up to a dose of 100 mg/kg body weight. Our results support the potent antioxidant activity of aqueous and ethanolic extract of Moringa oleifera which adds one more positive attribute to its known pharmacological importance.

  2. A new colorimetric DPPH• scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs.

    Science.gov (United States)

    Akar, Zeynep; Küçük, Murat; Doğan, Hacer

    2017-12-01

    2,2-Diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging, the most commonly used antioxidant method with more than seventeen thousand articles cited, is very practical; however, as with most assays, it has the major disadvantage of dependence on a spectrophotometer. To overcome this drawback, the colorimetric determination of the antioxidant activity using a scanner and freely available Image J software was developed. In this new method, the mixtures of solutions of DPPH• and standard antioxidants or extracts of common medicinal herbs were dropped onto TLC plates, after an incubation period. The spot images were evaluated with Image J software to determine CSC50 values, the sample concentrations providing 50% colour reduction, which were very similar with the SC50 values obtained with spectrophotometric method. The advantages of the new method are the use of lower amounts of reagents and solvents, no need for costly spectrophotometers, and thus significantly lowered costs, and convenient implementation in any environment and situation.

  3. Experimental Assessment of Moringa oleifera Leaf and Fruit for Its Antistress, Antioxidant, and Scavenging Potential Using In Vitro and In Vivo Assays

    Science.gov (United States)

    Luqman, Suaib; Srivastava, Suchita; Kumar, Ritesh; Maurya, Anil Kumar; Chanda, Debabrata

    2012-01-01

    We have investigated effect of Moringa oleifera leaf and fruit extracts on markers of oxidative stress, its toxicity evaluation, and correlation with antioxidant properties using in vitro and in vitro assays. The aqueous extract of leaf was able to increase the GSH and reduce MDA level in a concentration-dependent manner. The ethanolic extract of fruit showed highest phenolic content, strong reducing power and free radical scavenging capacity. The antioxidant capacity of ethanolic extract of both fruit and leaf was higher in the in vitro assay compared to aqueous extract which showed higher potential in vivo. Safety evaluation studies showed no toxicity of the extracts up to a dose of 100 mg/kg body weight. Our results support the potent antioxidant activity of aqueous and ethanolic extract of Moringa oleifera which adds one more positive attribute to its known pharmacological importance. PMID:22216055

  4. In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica

    Directory of Open Access Journals (Sweden)

    Bruno Moukette Moukette

    2015-01-01

    Full Text Available BACKGROUND: Excessive production of free radicals causes direct damage to biological molecules such as DNA, proteins, lipids, carbohydrates leading to tumor development and progression. Natural antioxidant molecules from phytochemicals of plant origin may directly inhibit either their production or limit their propagation or destroy them to protect the system. In the present study, Monodora myristica a non-timber forest product consumed in Cameroon as spice was screened for its free radical scavenging properties, antioxidant and enzymes protective activities. Its phenolic compound profile was also realized by HPLC. RESULTS: This study demonstrated that M. myristica has scavenging properties against DPPH',OH',NO', and ABTS'radicals which vary in a dose depending manner. It also showed an antioxidant potential that was comparable with that of Butylated Hydroxytoluene (BHT and vitamin C used as standard. The aqueous ethanol extract of M. myristica barks (AEH; showed a significantly higher content in polyphenolic compounds (21.44 ±0.24 mg caffeic acid/g dried extract and flavonoid (5.69 ± 0.07 quercetin equivalent mg/g of dried weight as compared to the other studied extracts. The HPLC analysis of the barks and leaves revealed the presence of several polyphenols. The acids (3,4-OH-benzoic, caffeic, gallic, O- and P- coumaric, syringic, vanillic, alcohols (tyrosol and OH-tyrosol, theobromine, quercetin, rutin, catechine and apigenin were the identified and quantified polyphenols. All the tested extracts demonstrated a high protective potential on the superoxide dismutase (SOD, catalase and peroxidase activities. CONCLUSION: Finally, the different extracts from M. myristica and specifically the aqueous ethanol extract reveal several properties such as higher free radical scavenging properties, significant antioxidant capacities and protective potential effects on liver enzymes.

  5. Antioxidant effects of Etlingera elatior flower extract against lead acetate - induced perturbations in free radical scavenging enzymes and lipid peroxidation in rats

    Directory of Open Access Journals (Sweden)

    Chakravarthi Srikumar

    2011-03-01

    Full Text Available Abstract Background Etlingera elatior or 'pink torch ginger' (Zingiberaceae are widely cultivated in tropical countries and used as spices and food flavoring. The purpose of this study was to evaluate the antioxidant effects of Etlingera elatior against lead - induced changes in serum free radical scavenging enzymes and lipid hydroperoxides in rats. Findings Rats were exposed to lead acetate in drinking water (500 ppm for 14 days alone or plus the ethanol extract of E. elatior (50, 100 and 200 mg/kg. Blood lead levels, lipid hydroperoxides, protein carbonyl contents and oxidative marker enzymes were estimated. Lead acetate in drinking water elicited a significant increase in lipid hydroperoxides (LPO and protein-carbonyl-contents (PCC. There was a significant decrease in total antioxidants, superoxide dismutase, glutathione peroxidase and glutathione S-transferase levels with lead acetate treatment. Supplementation of E. elatior was associated with reduced serum LPO and PCC and a significant increase in total antioxidants and antioxidant enzyme levels. Conclusions The results suggest that flower extract of Etlingera elatior has powerful antioxidant effect against lead - induced oxidative stress and the extract may be useful therapeutic agent against lead toxicity. However, detailed evaluations are required to identify the active antioxidant compounds from this plant extract.

  6. Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: determination of their polyphenolic and volatile constituents.

    Science.gov (United States)

    Payet, Bertrand; Shum Cheong Sing, Alain; Smadja, Jacqueline

    2005-12-28

    Seven cane brown sugars (four from La Réunion, two from Mauritius, and one from France) were investigated for their polyphenol content and volatile composition in relation to their free radical scavenging capacity determined by ABTS and DPPH assays. The thin layer coated on the sugar crystal was extracted by Soxhlet extractor with dichloromethane. The volatile compounds of brown sugars were studied by GC-MS, and 43 compounds were identified. The total phenolic content of brown sugars was determined according to the Folin-Ciocalteu method. Phenolic compounds were quantified in the brown sugar extracts by LC-UV-ESI-MS. Brown sugar aqueous solutions exhibited weak free radical scavenging activity in the DPPH assay and higher antioxidant activity in the ABTS assay at relatively high concentration. The brown sugar extracts showed interesting free radical scavenging properties despite the low concentration of phenolic and volatile compounds. Sugar is a common foodstuff traditionally used for its sweetening properties, which might be accompanied by antioxidant properties arising from molecules (polyphenols, Maillard products) other than sucrose of the cane brown sugars.

  7. Chemical Characterization, Free Radical Scavenging, and Cellular Antioxidant and Anti-Inflammatory Properties of a Stilbenoid-Rich Root Extract of Vitis vinifera.

    Science.gov (United States)

    Esatbeyoglu, Tuba; Ewald, Philipp; Yasui, Yoshiaki; Yokokawa, Haruka; Wagner, Anika E; Matsugo, Seiichi; Winterhalter, Peter; Rimbach, Gerald

    2016-01-01

    Dietary stilbenoids are receiving increasing attention due to their potential health benefits. However, most studies concerning the bioactivity of stilbenoids were conducted with pure compounds, for example, resveratrol. The aim of this study was to characterize a complex root extract of Vitis vinifera in terms of its free radical scavenging and cellular antioxidant and anti-inflammatory properties. HPLC-ESI-MS/MS analyses of the root extract of Vitis vinifera identified seven stilbenoids including two monomeric (resveratrol and piceatannol), two dimeric (trans-ɛ-viniferin and ampelopsin A), one trimeric (miyabenol C), and two tetrameric (r-2-viniferin = vitisin A and r-viniferin = vitisin B) compounds which may mediate its biological activity. Electron spin resonance and spin trapping experiments indicate that the root extract scavenged 2,2-diphenyl-1-picrylhydrazyl, hydroxyl, galvinoxyl, and superoxide free radicals. On a cellular level it was observed that the root extract of Vitis vinifera protects against hydrogen peroxide-induced DNA damage and induces Nrf2 and its target genes heme oxygenase-1 and γ-glutamylcysteine synthetase. Furthermore, the root extract could induce the antiatherogenic hepatic enzyme paraoxonase 1 and downregulate proinflammatory gene expression (interleukin 1β, inducible nitric oxide synthase) in macrophages. Collectively our data suggest that the root extract of Vitis vinifera exhibits free radical scavenging as well as cellular antioxidant and anti-inflammatory properties.

  8. Preventive (myoglobin, transferrin) and scavenging (superoxide dismutase, glutathione peroxidase) anti-oxidative properties of raw liquid extract of Morinda lucida leaf in the traditional treatment of Plasmodium infection.

    Science.gov (United States)

    Olaniyan, Mathew Folaranmi; Babatunde, Elizabeth Moyinoluwa

    2016-01-01

    Liquid extract of Morinda lucida leaf has been demonstrated to have antiplasmodial activities. Some phytochemicals act as preventive and or scavenging antioxidants. This study aimed to investigate the preventative and scavenging properties of the raw liquid extract of M. lucida leaf using plasma myoglobin, transferrin, superoxide dismutase (SOD), and glutathione (GSH) peroxidase. Forty-eight Plasmodium-infected patients aged 29-47 years that have not been treated with any antimalaria medication but have decided to be treated traditionally using M. lucida leaf extract were recruited from 15 traditional homes in ATISBO, Saki-East, and Saki-West local government areas of Oke-Ogun - the Northern part of Oyo State-Nigeria. Identification of Plasmodium in the blood of the test and normal control subjects were carried out by Giemsha thick film technique. Packed cell volume, total bile acids, blood glucose, blood pressure, plasma myoglobin, transferrin, SOD, and GSH peroxidase (GPx) were evaluated in the normal control subjects and in the Plasmodium-infected patients before and after the treatment with raw liquid extract of M. lucida leaf. A significant (P lucida leaf. Our study supports the possible preventative and scavenging antioxidative effect of the raw liquid extract of M. lucida leaf in the traditional treatment of Plasmodium infection.

  9. Enhanced antioxidant effect of caffeic acid phenethyl ester and Trolox in combination against radiation induced-oxidative stress.

    Science.gov (United States)

    Bai, Hua; Liu, Rui; Chen, Hong-Li; Zhang, Wei; Wang, Xin; Zhang, Xiao-Di; Li, Wen-Li; Hai, Chun-Xu

    2014-01-25

    Combinations of antioxidants are believed to be more effective than single antioxidant because when antioxidants are combined they support each other synergistically to create a magnified effect. Discovering the enhancer effects or synergies between bioactive components is valuable for resisting oxidative stress and improving health benefits. The aim of this study was to investigate a possible cooperation of natural antioxidant caffeic acid phenethyl ester (CAPE) with synthetic antioxidant Trolox in the model systems of chemical generation of free radicals, lipid peroxidation of microsomes and radiation-induced oxidative injury in L929 cells. Based on the intermolecular interaction between CAPE and Trolox, the present study shows a synergistic effect of CAPE and Trolox in combination on elimination of three different free radicals and inhibition of lipid peroxidation initiated by three different systems. CAPE and Trolox added simultaneously to the L929 cells exerted an enhanced preventive effect on the oxidative injury induced by radiation through decreasing ROS generation, protecting plasma membrane and increasing the ratios of reduced glutathione/oxidized glutathione and the expression of key antioxidant enzymes mediated by nuclear factor erythroid 2 p45-related factor 2 (Nrf2). Our results showed for the first time that administration of CAPE and Trolox in combination may exert synergistic antioxidant effects, and further indicate that CAPE and Trolox combination functions mainly through scavenging ROS directly, inhibiting lipid peroxidation and promoting redox cycle of GSH mediated by Nrf2-regulated glutathione peroxidase and glutathione reductase expression. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Effect of topical application of antioxidants and free radical scavengers on protection of hairless mouse skin exposed to chronic doses of ultraviolet B

    Energy Technology Data Exchange (ETDEWEB)

    Muizzuddin, N.; Shakoori, A.R. [Univ. of the Punjab, Dept. of Zoology, Cell and Molecular Biology Lab., Lahore (Pakistan); Marenus, K.D. [SUNY at Stonybrook, Stonybrook, NY (United States)

    1998-11-01

    Background/aims: Within the past three decades, there has emerged a greater awareness of the molecular effects of solar rays especially ultraviolet radiation (UV-R), to the extent that the harmful effects of solar radiation are recognized not only by molecular biologists and physicians, but also by the general public. Various sunscreen molecules that effectively block the UVB component of the sun are available; however, a large part of Western populations elicits adverse reactions against chemical sunscreens. This study was designed to observe the protective effect of antioxidants against the damaging effects of chronic UVB exposure of skin in an attempt to introduce antioxidants and free radical scavengers as topical sun protective agents. Methods: Jackson hairless mice were exposed to suberythemal doses of UVB, three times a week, and topically treated with a cream containing the anti-oxidants vitamin E, butylated hydroxytoluene, nordihydroguaradinic acid and vitamin C. Results: Treatment with vehicle alone along with UVB exposure resulted in an increase in epidermal thickness showing a 38%, 77% and 112% increase after 4 weeks, 8 weeks and 12 weeks, respectively. Chronic UVB exposed skin treated with the material containing free radical scavengers and antioxidants mix (AO mix) exhibited 39%, 73% and 124% thicker epidermis than the untreated control after, respectively, 4 weeks, 8 weeks and 12 weeks of treatment. The vehicle did not appear to protect skin against UV irradiation, since there appeared to be more (16%) sunburn cells in vehicle treated skin than the untreated, UV exposed skin after 4 weeks of treatment. After 8 weeks and 12 weeks, there were 33% and 36% less sunburn cells in the vehicle treated skin than the untreated, UV exposed skin. The antioxidant mix was significantly effective (P=<0.001) in protecting against UVB irradiation, having 63%, 71% and 79% fewer sunburn cells than the untreated, UV exposed skin af after 4 weeks, 8 weeks and 12 weeks of

  11. Enhanced radical scavenging activity of a procyanidin B3 analogue comprised of a dimer of planar catechin.

    Science.gov (United States)

    Mizuno, Mirei; Nakanishi, Ikuo; Matsumoto, Ken-Ichiro; Fukuhara, Kiyoshi

    2017-11-15

    Proanthocyanidins are oligomers of catechins that exhibit potent antioxidative activity and inhibit binding of oxidized low-density lipoprotein (OxLDL) to the lectin-like oxidized LDL receptor (LOX-1), which is involved in the onset and development of arteriosclerosis. Previous attempts aimed at developing proanthocyanidin derivatives with more potent antioxidative activity and stronger inhibition for LOX-1 demonstrated the synthesis of a novel proanthocyanidin derivative (1), in which the geometry of one catechin molecule in procyanidin B3 was constrained to a planar orientation. The radical scavenging activity of 1 was 1.9-fold higher than that of procyanidin B3. Herein, we synthesized another procyanidin B3 analogue (2), in which the geometries of both catechin molecules in the dimer were constrained to planar orientations. The radical scavenging activity of 2 was 1.5-fold higher than that of 1, suggesting that 2 may be a more effective candidate than 1 as a therapeutic agent to reduce oxidative stress induced in arteriosclerosis or related cerebrovascular disease. Copyright © 2017. Published by Elsevier Ltd.

  12. RADICAL SCAVENGING ACTIVITY OF SOME NATURAL ...

    African Journals Online (AJOL)

    (DFT) were applied to calculate the adiabatic ionization potential (IP), bond dissociation enthalpy (BDE) and other radical scavenging properties of antioxidant systems [5-11]. The ... scavenging processes of chain-breaking antioxidant (ArOH) [14, 15]. Both the mechanisms are significant for the scavenging activity of reactive ...

  13. Antioxidant Composition of a Selection of Italian Red Wines and Their Corresponding Free-Radical Scavenging Ability

    OpenAIRE

    Claudio Cassino; Valentina Gianotti; Federica Bonello; Christos Tsolakis; Maria Carla Cravero; Domenico Osella

    2016-01-01

    This study correlates the antioxidant composition profiles and the overall antioxidant capacities of 36 Italian red wine samples. The samples were fully characterized by chromatographic and spectrophotometric techniques. The overall antioxidant capacity was determined by titrating a solution of the semistable free radical DPPH (1,1-diphenyl-2-picrylhydrazyl) with each wine sample followed by Electron Paramagnetic Resonance (EPR) spectroscopy and then measuring the resulting decrease in DPPH-s...

  14. Effect of Solvent System on Extractability of Lipidic Components of Scenedesmus obliquus (M2-1) and Gloeothece sp. on Antioxidant Scavenging Capacity Thereof

    Science.gov (United States)

    Amaro, Helena M.; Fernandes, Fátima; Valentão, Patrícia; Andrade, Paula B.; Sousa-Pinto, I.; Malcata, F. Xavier; Guedes, A. Catarina

    2015-01-01

    Microalgae are well known for their biotechnological potential, namely with regard to bioactive lipidic components—especially carotenoids and polyunsaturated fatty acids (PUFA), well-known for therapeutic applications based on their antioxidant capacity. The aim of this work was to evaluate the influence of four distinct food-grade solvents upon extractability of specific lipidic components, and on the antioxidant capacity exhibited against both synthetic (2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+•)) and biological reactive species (O2•− and •NO−). A eukaryotic microalga (Scenedesmus obliquus (M2-1)) and a prokaryotic one (Gloeothece sp.) were used as case studies. Concerning total antioxidant capacity, the hexane:isopropanol (3:2) and acetone extracts of Sc. obliquus (M2-1) were the most effective against DPPH• and ABTS+•, respectively. Gloeothece sp. ethanol extracts were the most interesting scavengers of O2•−, probably due the high content of linolenic acid. On the other hand, acetone and hexane:isopropanol (3:2) extracts were the most interesting ones in •NO− assay. Acetone extract exhibited the best results for the ABTS assay, likely associated to its content of carotenoids, in both microalgae. Otherwise, ethanol stood out in PUFA extraction. Therefore, profiles of lipidic components extracted are critical for evaluating the antioxidant performance—which appears to hinge, in particular, on the balance between carotenoids and PUFAs. PMID:26492257

  15. Effect of Solvent System on Extractability of Lipidic Components of Scenedesmus obliquus (M2-1 and Gloeothece sp. on Antioxidant Scavenging Capacity Thereof

    Directory of Open Access Journals (Sweden)

    Helena M. Amaro

    2015-10-01

    Full Text Available Microalgae are well known for their biotechnological potential, namely with regard to bioactive lipidic components—especially carotenoids and polyunsaturated fatty acids (PUFA, well-known for therapeutic applications based on their antioxidant capacity. The aim of this work was to evaluate the influence of four distinct food-grade solvents upon extractability of specific lipidic components, and on the antioxidant capacity exhibited against both synthetic (2,2-diphenyl-1-picrylhydrazyl (DPPH• and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+• and biological reactive species (O2•- and •NO-. A eukaryotic microalga (Scenedesmus obliquus (M2-1 and a prokaryotic one (Gloeothece sp. were used as case studies. Concerning total antioxidant capacity, the hexane:isopropanol (3:2 and acetone extracts of Sc. obliquus (M2-1 were the most effective against DPPH• and ABTS+•, respectively. Gloeothece sp. ethanol extracts were the most interesting scavengers of O2•-, probably due the high content of linolenic acid. On the other hand, acetone and hexane:isopropanol (3:2 extracts were the most interesting ones in •NO- assay. Acetone extract exhibited the best results for the ABTS assay, likely associated to its content of carotenoids, in both microalgae. Otherwise, ethanol stood out in PUFA extraction. Therefore, profiles of lipidic components extracted are critical for evaluating the antioxidant performance—which appears to hinge, in particular, on the balance between carotenoids and PUFAs.

  16. Enhancement of cardioplegic protection with the free-radical scavenger peroxidase.

    Science.gov (United States)

    Menasche, P; Grousset, C; Gauduel, Y; Mouas, C; Piwnica, A

    1986-11-01

    This study assesses the ability of the free-radical scavenger peroxidase to enhance cardioplegic protection when given during or before myocardial ischemia. Forty-four isolated isovolumetric buffer-perfused rat hearts were studied. In a first series of experiments that consisted of three groups, hearts were subjected to 90 min of normothermic global ischemia followed by 45 min of reperfusion. One group received a crystalloid cardioplegic solution given as a single dose at the onset of arrest. A second group received cardioplegic solution supplemented with superoxide dismutase (200,000 U/liter), and a third group received cardioplegic solution supplemented with peroxidase (6000 U/liter). Based on comparisons of postreperfusion coronary flow, left ventricular developed pressure, maximum dP/dt, and diastolic pressure, we found that the best protection was provided by peroxidase-enriched cardioplegia. A second series of experiments was then undertaken to assess the effects of the latter enzyme given as a pretreatment. Hearts were subjected to 3 hr of global ischemia, during which myocardial protection was provided by hypothermia (15 degrees C) along with multidose cardioplegia. The treatment group was given peroxidase (10,000 U/liter) added to the perfusate fluid for 15 min before the onset of cardioplegic arrest without further enzyme supplementation during ischemia or reperfusion. Hearts perfused with standard buffer for an equal period of time served as controls. While the two groups demonstrated the same degree of postischemic increase in myocardial stiffness, peroxidase-pretreated hearts had a significantly better recovery of contractile indexes at 30 and 45 min of reflow.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Effect of blanching treatments on antioxidant activity of frozen green capsicum (Capsicum annuum L. var bell pepper) using radical scavenging activity (DPPH) assay

    Science.gov (United States)

    Azizzuddin, Norafida; Abdullah, Aminah

    2016-11-01

    Blanching treatments are needed to deactivate enzymes in frozen vegetables. Antioxidant activity using DPPH radical scavenging activity assay were evaluated in steaming, boiling water, and microwave blanching at different temperature, time and microwave power level on frozen green capsicum. Green capsicum was chosen for frozen treatment compared to other capsicum with different maturity index because of the firm texture. The objective of this study was to compare the antioxidant activity of frozen green capsicum between conventional and Oxi Count Kit® assay for DPPH radical scavenging activity. Results showed frozen green capsicum blanched using microwave at high level/90 seconds (sample J) contained higher level of DPPH in both conventional method and Oxi Count Kit® compared to other treatments. However, there were no significant differences between sample J and fresh sample (sample A). Overall, the sequences from highest to lowest in blanching treatments for both DPPH conventional method, and DPPH Oxi Count Kit® were J (microwave high level/90 seconds) > A (Fresh) > H (Microwave Medium Level/120 seconds) > D (Boiling Water 80°C/150 seconds) > K (Microwave High Level/120 seconds) > I (Microwave Medium Level/150 seconds) > F (Microwave Low Level/150 seconds)> B (Steam 100°C/150 seconds) > E (Boiling Water 100°C /120 seconds) > G (Microwave Low Level /180 seconds)> C (Steam 100°C/180 seconds). Almost all frozen green capsicum samples showed no significant differences for comparison between test using DPPH conventional method and Oxi Count Kit®. Frozen storage for 0, and 3rd months showed no significant differences which indicate no changes on antioxidant activity during frozen storage at -18°C.

  18. Overexpression of CaAPX Induces Orchestrated Reactive Oxygen Scavenging and Enhances Cold and Heat Tolerances in Tobacco.

    Science.gov (United States)

    Wang, Jiangying; Wu, Bin; Yin, Hengfu; Fan, Zhengqi; Li, Xinlei; Ni, Sui; He, Libo; Li, Jiyuan

    2017-01-01

    Ascorbate peroxidase (APX) acts indispensably in synthesizing L-ascorbate (AsA) which is pivotal to plant stress tolerance by detoxifying reactive oxygen species (ROS). Enhanced activity of APX has been shown to be a key step for genetic engineering of improving plant tolerance. However it needs a deeper understanding on the maintenance of cellular ROS homeostasis in response to stress. In this study, we identified and characterized an APX (CaAPX) gene from Camellia azalea. Quantitative real-time PCR (qRT-PCR) analysis showed that CaAPX was expressed in all tissues and peaked in immature green fruits; the expression levels were significantly upregulated upon cold and hot stresses. Transgenic plants displayed marked enhancements of tolerance under both cold and heat treatments, and plant growth was correlated with CaAPX expression levels. Furthermore, we monitored the activities of several ROS-scavenging enzymes including Cu/Zn-SOD, CAT, DHAR, and MDHAR, and we showed that stress tolerance was synchronized with elevated activities of ROS-scavenging. Moreover, gene expression analysis of ROS-scavenging enzymes revealed a role of CaAPX to orchestrate ROS signaling in response to temperature stresses. Overall, this study presents a comprehensive characterization of cellular response related to CaAPX expression and provides insights to breed crops with high temperature tolerances.

  19. Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L

    National Research Council Canada - National Science Library

    Loganayaki, Nataraj; Siddhuraju, Perumal; Manian, Sellamuthu

    In the present study, antioxidant activities of the phenolic extracts from H. isora fruits and C. pentandra seeds were investigated by employing established in vitro systems, which included reducing power, OH...

  20. 5-S-lipoylhydroxytyrosol, a multidefense antioxidant featuring a solvent-tunable peroxyl radical-scavenging 3-thio-1,2-dihydroxybenzene motif.

    Science.gov (United States)

    Amorati, Riccardo; Valgimigli, Luca; Panzella, Lucia; Napolitano, Alessandra; d'Ischia, Marco

    2013-10-04

    5-S-Lipoylhydroxytyrosol (1), the parent member of a novel group of bioinspired multidefense antioxidants, is shown herein to exhibit potent peroxyl radical scavenging properties that are controlled in a solvent-dependent manner by the sulfur center adjacent to the active o-diphenol moiety. With respect to the parent hydroxytyrosol (HTy), 1 proved to be a more potent inhibitor of model autoxidation processes in a polar solvent (acetonitrile), due to a lower susceptibility to the adverse effects of hydrogen bonding with the solvent. Determination of O-H bond dissociation enthalpies (BDE) in t-butanol by EPR radical equilibration technique consistently indicated a ca. 1.5 kcal/mol lower value for 1 relative to HTy. In good agreement, DFT calculations of the BDEOH using an explicit methanol molecule to mimic solvent effects predicted a 1.2 kcal/mol lower value for 1 relative to HTy. Forcing the geometry of the -S-R group to coplanarity with the aromatic ring resulted in a dramatic decrease in the computed BDEOH values suggesting a potentially higher activity than the reference antioxidant α-tocopherol, depending on geometrical constrains in microheterogeneous environments. These results point to sulfur substitution as an expedient tool to tailor the chain-breaking antioxidant properties of catechol derivatives in a rational and predictable fashion.

  1. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids

    Science.gov (United States)

    Nakabayashi, Ryo; Yonekura-Sakakibara, Keiko; Urano, Kaoru; Suzuki, Makoto; Yamada, Yutaka; Nishizawa, Tomoko; Matsuda, Fumio; Kojima, Mikiko; Sakakibara, Hitoshi; Shinozaki, Kazuo; Michael, Anthony J; Tohge, Takayuki; Yamazaki, Mami; Saito, Kazuki

    2014-01-01

    The notion that plants use specialized metabolism to protect against environmental stresses needs to be experimentally proven by addressing the question of whether stress tolerance by specialized metabolism is directly due to metabolites such as flavonoids. We report that flavonoids with radical scavenging activity mitigate against oxidative and drought stress in Arabidopsis thaliana. Metabolome and transcriptome profiling and experiments with oxidative and drought stress in wild-type, single overexpressors of MYB12/PFG1 (PRODUCTION OF FLAVONOL GLYCOSIDES1) or MYB75/PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), double overexpressors of MYB12 and PAP1, transparent testa4 (tt4) as a flavonoid-deficient mutant, and flavonoid-deficient MYB12 or PAP1 overexpressing lines (obtained by crossing tt4 and the individual MYB overexpressor) demonstrated that flavonoid overaccumulation was key to enhanced tolerance to such stresses. Antioxidative activity assays using 2,2-diphenyl-1-picrylhydrazyl, methyl viologen, and 3,3′-diaminobenzidine clearly showed that anthocyanin overaccumulation with strong in vitro antioxidative activity mitigated the accumulation of reactive oxygen species in vivo under oxidative and drought stress. These data confirm the usefulness of flavonoids for enhancing both biotic and abiotic stress tolerance in crops. PMID:24274116

  2. Scavenging Effect of Various Extracts of the Gymnema sylvestre R. Br. and Antioxidant Activity of the Isolated Triterpenes

    Directory of Open Access Journals (Sweden)

    Valeria Romanucci

    2018-01-01

    Full Text Available Gymnema sylvestre has been used in Asian traditional medicine for its anti-microbial, anti-hypercholesterolemic, hepatoprotective and sweet suppressing properties and activities. G. sylvestre has also been used extensively in chewing gum, as a health food for preventing obesity and diabetes, and as a tea. This study has evaluated the total phenolic content and antioxidant activity of the aqueous and organic G. sylvestre extracts and their sub-fractions for the initial characterization of the biological properties of the isolated compounds. An in vivo cell model was used to calculate the concentration inhibiting cell growth by 50% and the ability to exert antioxidant activity. All compounds inhibit cell growth in a dose-dependent manner, with an IC 50 value ranging between 29 and 1462 μM. The effects on intracellular ROS levels are extremely variable, but it is of interest that some of the compounds appear to display an antioxidant effect.

  3. Invasive carnivores alter ecological function and enhance complementarity in scavenger assemblages on ocean beaches.

    Science.gov (United States)

    Brown, Marion B; Schlacher, Thomas A; Schoeman, David S; Weston, Michael A; Huijbers, Chantal M; Olds, Andrew D; Connolly, Rod M

    2015-10-01

    Species composition is expected to alter ecological function in assemblages if species traits differ strongly. Such effects are often large and persistent for nonnative carnivores invading islands. Alternatively, high similarity in traits within assemblages creates a degree of functional redundancy in ecosystems. Here we tested whether species turnover results in functional ecological equivalence or complementarity, and whether invasive carnivores on islands significantly alter such ecological function. The model system consisted of vertebrate scavengers (dominated by raptors) foraging on animal carcasses on ocean beaches on two Australian islands, one with and one without invasive red foxes (Vulpes vulpes). Partitioning of scavenging events among species, carcass removal rates, and detection speeds were quantified using camera traps baited with fish carcasses at the dune-beach interface. Complete segregation of temporal foraging niches between mammals (nocturnal) and birds (diurnal) reflects complementarity in carrion utilization. Conversely, functional redundancy exists within the bird guild where several species of raptors dominate carrion removal in a broadly similar way. As predicted, effects of red foxes were large. They substantially changed the nature and rate of the scavenging process in the system: (1) foxes consumed over half (55%) of all carrion available at night, compared with negligible mammalian foraging at night on the fox-free island, and (2) significant shifts in the composition of the scavenger assemblages consuming beach-cast carrion are the consequence of fox invasion at one island. Arguably, in the absence of other mammalian apex predators, the addition of red foxes creates a new dimension of functional complementarity in beach food webs. However, this functional complementarity added by foxes is neither benign nor neutral, as marine carrion subsidies to coastal red fox populations are likely to facilitate their persistence as exotic

  4. Effective microorganisms enhance the scavenging capacity of the ascorbate-glutathione cycle in common bean (Phaseolus vulgaris L.) plants grown in salty soils.

    Science.gov (United States)

    Talaat, Neveen B

    2014-07-01

    No information is available regarding effective microorganisms (EM) influence on the enzymatic and non-enzymatic antioxidant defence system involved in the ascorbate-glutathione cycle under saline conditions. Therefore, as a first approach, this article focuses on the contribution of EM to the scavenging capacity of the ascorbate-glutathione cycle in salt-stressed plants. It investigates some mechanisms underlying alleviation of salt toxicity by EM application. Phaseolus vulgaris cv. Nebraska plants were grown under non-saline or saline conditions (2.5 and 5.0 dSm(-1)) with and without EM application. Lipid peroxidation and H2O2 content were significantly increased in response to salinity, while they decreased with EM application in both stressed and non-stressed plants. Activities of ascorbate peroxidase (APX; EC 1.11.1.11) and glutathione reductase (GR; EC 1.6.4.2) increased under saline conditions; these increases were more significant in salt-stressed plants treated by EM. Activities of monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) decreased in response to salinity; however, they were significantly increased in stressed plants treated with EM. Ascorbate and glutathione contents were increased with the increasing salt concentration; moreover they further increased in stressed plants treated with EM. Ratios of AsA/DHA and GSH/GSSG decreased under saline conditions, whereas they were significantly increased with EM treatment in the presence or in the absence of soil salinization. The EM treatment detoxified the stress generated by salinity and significantly improved plant growth and productivity. Enhancing the H2O2-scavenging capacity of the ascorbate-glutathione cycle in EM-treated plants may be an efficient mechanism to attenuate the activation of plant defences. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Analysis of passion fruit rinds (Passiflora edulis: isoorientin quantification by HPTLC and evaluation of antioxidant (radical scavenging capacity

    Directory of Open Access Journals (Sweden)

    Maria Luiza Zeraik

    2012-01-01

    Full Text Available The content of isoorientin in passion fruit rinds (Passiflora edulis fo. flavicarpa O. Degener was determined by HPTLC (high performance thin layer chromatography with densitometric analysis. The results revealed a higher amount of isoorientin in healthy rinds of P. edulis (92.275 ± 0.610 mg L-1 than in rinds with typical symptoms of PWV (Passion fruit Woodiness Virus infection (28.931 ± 0.346 mg L-1. The HPTLC data, allied to assays of radical scavenging activity, suggest the potential of P. edulis rinds as a natural source of flavonoids or as a possible functional food.

  6. Modified Radical Scavenging and Antioxidant Activity Measurement of β-Carotene with β-Cyclodextrins Complexation in Aqueous Medium

    National Research Council Canada - National Science Library

    ÇELIK, Saliha Esin; BEKDESER, Burcu; TUFAN, Ayse Nur; APAK, Resat

    2017-01-01

    In order to evaluate the antioxidant capacity/activity of β-carotene (BC) in aqueous media, we investigated the inclusion complexes of BC with methyl-β-cyclodextrin (Me-β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD...

  7. Development of an in Silico Model of DPPH• Free Radical Scavenging Capacity: Prediction of Antioxidant Activity of Coumarin Type Compounds

    Directory of Open Access Journals (Sweden)

    Elizabeth Goya Jorge

    2016-06-01

    Full Text Available A quantitative structure-activity relationship (QSAR study of the 2,2-diphenyl-l-picrylhydrazyl (DPPH• radical scavenging ability of 1373 chemical compounds, using DRAGON molecular descriptors (MD and the neural network technique, a technique based on the multilayer multilayer perceptron (MLP, was developed. The built model demonstrated a satisfactory performance for the training ( R 2 = 0.713 and test set ( Q ext 2 = 0.654 , respectively. To gain greater insight on the relevance of the MD contained in the MLP model, sensitivity and principal component analyses were performed. Moreover, structural and mechanistic interpretation was carried out to comprehend the relationship of the variables in the model with the modeled property. The constructed MLP model was employed to predict the radical scavenging ability for a group of coumarin-type compounds. Finally, in order to validate the model’s predictions, an in vitro assay for one of the compounds (4-hydroxycoumarin was performed, showing a satisfactory proximity between the experimental and predicted pIC50 values.

  8. Phytochemical profile and ABTS cation radical scavenging, cupric reducing antioxidant capacity and anticholinesterase activities of endemic Ballota nigra L. subsp. anatolica P.H. Davis from Turkey

    Directory of Open Access Journals (Sweden)

    Abdulselam Ertaş

    2014-07-01

    Full Text Available Objective: To evaluate the chemical compositions and biological activities of an endemic Ballota nigra L. subsp. anatolica P.H. Davis. Methods: Essential oil and fatty acid composition were determined by GC/MS analysis. ABTS cation radical decolourisation and cupric reducing antioxidant capacity assays were carried out to indicate the antioxidant activity. The anticholinesterase potential of the extracts were determined by Ellman method. Results: The major compounds in the fatty acid composition of the petroleum ether extract were identified as palmitic (36.0% and linoleic acids (14.3%. The major components of essential oil were 1-hexacosanol (26.7%, germacrene-D (9.3% and caryophyllene oxide (9.3%. The water extract indicated higher ABTS cation radical scavenging activity than α-tocopherol and BHT, at 100 µg/ mL. The acetone extract showed 71.58 and 44.71% inhibitory activity against butyrylcholinesterase and acetylcholinesterase enzyme at 200 µg/mL, respectively. Conclusions: The water and acetone extracts of Ballota nigra subsp. anatolica can be investigated in terms of both phytochemical and biological aspects to find natural active compounds.

  9. Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L. polyphenol enhanced extract.

    Directory of Open Access Journals (Sweden)

    Yihai Wang

    Full Text Available The antidiabetic and antioxidant activities of the ethyl acetate-soluble extract (MFE of mulberry fruit (Morus alba L. were investigated. In vitro, MFE showed potent α-glucosidase inhibitory activity and radical-scavenging activities against DPPH and superoxide anion radicals. In vivo, MFE could significantly decrease fasting blood glucose (FBG and glycosylated serum protein (GSP, and increase antioxidant enzymatic activities (SOD, CAT, GSH-Px in streptozotocin (STZ-induced diabetic mice. Bioactivity-guided fractionation of the MFE led to the isolation of 25 phenolic compounds, and their structures were identified on the basis of MS and NMR data. All the 25 compounds were isolated from mulberry fruit for the first time. Also, the α-glucosidase inhibitory activity and antioxidant activity of the phenolics were evaluated. Potent α-glucosidase inhibitory and radical-scavenging activities of these phenolics suggested that they may be partially responsible for the antidiabetic and antioxidant activities of mulberry fruit.

  10. Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage

    Directory of Open Access Journals (Sweden)

    Tzu-Ying Sun

    2015-12-01

    Full Text Available Traditional kombucha is a fermented black tea extract and sugar. Sweetened black tea (10% w/v and wheatgrass juice (WGJ were mixed in various ratios and used as fermentation substrate for enhancing phenolic compounds and antioxidant activity. Starter, comprising of yeast (Dekkera bruxellensis and acetic acid bacteria (Gluconacetobacter rhaeticus and Gluconobacter roseus, was inoculated at 20% (v/v, and fermented statically at 29 ± 1°C for 12 days. The results showed that the total phenolic and flavonoid contents and antioxidant activity of the modified kombucha were higher than those of traditional preparations. All WGJ-blended kombucha preparations were characterized as having higher concentrations of various phenolic compounds such as gallic acid, catechin, caffeic acid, ferulic acid, rutin, and chlorogenic acid as compared to traditional ones. Addition of WGJ resulted in the 1,1-diphenyl-2-picrylhydrazyl (DPPH scavenging ability of kombucha being > 90%, while the oxygen radical absorbance capacity increased from 5.0 μmol trolox equivalents/mL to 12.8 μmol trolox equivalents/mL as the ratio of WGJ increased from 0% to 67% (v/v. The highest antioxidant activity was obtained using a 1:1 (v/v black tea decoction to WGJ ratio and 3 days of fermentation, producing various types of phenolic acids. These results suggest that intake of fermented black tea enhanced with wheatgrass juice is advantageous over traditional kombucha formulas in terms of providing various complementary phenolics and might have more potential to reduce oxidative stress.

  11. Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage.

    Science.gov (United States)

    Sun, Tzu-Ying; Li, Jia-Shiun; Chen, Chinshuh

    2015-12-01

    Traditional kombucha is a fermented black tea extract and sugar. Sweetened black tea (10% w/v) and wheatgrass juice (WGJ) were mixed in various ratios and used as fermentation substrate for enhancing phenolic compounds and antioxidant activity. Starter, comprising of yeast (Dekkera bruxellensis) and acetic acid bacteria (Gluconacetobacter rhaeticus and Gluconobacter roseus), was inoculated at 20% (v/v), and fermented statically at 29 ± 1°C for 12 days. The results showed that the total phenolic and flavonoid contents and antioxidant activity of the modified kombucha were higher than those of traditional preparations. All WGJ-blended kombucha preparations were characterized as having higher concentrations of various phenolic compounds such as gallic acid, catechin, caffeic acid, ferulic acid, rutin, and chlorogenic acid as compared to traditional ones. Addition of WGJ resulted in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability of kombucha being > 90%, while the oxygen radical absorbance capacity increased from 5.0 μmol trolox equivalents/mL to 12.8 μmol trolox equivalents/mL as the ratio of WGJ increased from 0% to 67% (v/v). The highest antioxidant activity was obtained using a 1:1 (v/v) black tea decoction to WGJ ratio and 3 days of fermentation, producing various types of phenolic acids. These results suggest that intake of fermented black tea enhanced with wheatgrass juice is advantageous over traditional kombucha formulas in terms of providing various complementary phenolics and might have more potential to reduce oxidative stress. Copyright © 2015. Published by Elsevier B.V.

  12. Interaction of gold nanoparticles with free radicals and their role in enhancing the scavenging activity of ascorbic acid.

    Science.gov (United States)

    Razzaq, Humaira; Saira, Farhat; Yaqub, Azra; Qureshi, Rumana; Mumtaz, Misbah; Saleemi, Samia

    2016-08-01

    The present study investigates the interaction of citrate stabilized gold nanoparticles (12±1.5nm) (GNPs) with free radicals; 1,1-diphenyl-2-picrylhydrazyl (DPPH) stable and electrochemically generated superoxide, O2(-). Different experiments were designed to understand the interaction between GNPs and DPPH by employing cyclic voltammetry, UV-vis spectroscopy and computational chemistry using 6-311G basis set. The increase in heterogeneous rate constant, ksh, of DPPH upon addition of GNPs pointed towards possible complex formation, DPPH-GNPs which were further explained by a model assuming surface adsorption of DPPH on GNPs. Further, the model was validated by studying interaction of GNPs with a biologically important free radical, O2(-). Exciting result in terms of disappearance of anodic peak after GNPs addition confirmed that gold nanoparticles interacted with stable as well as unstable free radicals. Also, the stoichiometry of the most stable complex GNP-DPPH was determined from UV-vis spectroscopy by applying Job's method. The GNP-DPPH complex was found to be active with 46.0% reduction of the IC50 value of standard antioxidant, ascorbic acid (AA), indicating its role in enhancing antioxidant activity. Hence, this study presents a simple and potential approach to enhance the efficiency of natural antioxidants without modifying their structure, or involving the complex functionalization of GNPs with antioxidants. Copyright © 2016. Published by Elsevier B.V.

  13. Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment.

    Science.gov (United States)

    Luo, Yan; Liu, Yu Bo; Dong, Yu Xiu; Gao, Xin-Qi; Zhang, Xian Sheng

    2009-03-01

    Plant helicases are known to be involved in salinity and low-temperature tolerance. However, a functional involvement of helicases in the antioxidative response of plants has not been described. We have isolated a DEAD-box-containing cDNA sequence from Medicago sativa (alfalfa) that is a homolog of the pea DNA helicase 45 (PDH45) and named it M. sativa helicase 1 (MH1). Transient transfection of 35S::MH1-GFP to onion epidermis revealed that MH1 was localized in the nucleus. Expression of MH1 was detected in roots, stems and leaves of alfalfa. Furthermore, real-time PCR analysis revealed that mannitol, NaCl, methyl viologen and abscisic acid induced the expression of MH1. The ectopic expression of MH1 in Arabidopsis improved seed germination and plant growth under drought, salt and oxidative stress. The capacity for osmotic adjustment, superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and proline content were also elevated in the transgenic Arabidopsis plants. Our results suggest that MH1 responds to reactive oxygen species (ROS) and functions in drought and salt stress tolerance by enhancing the capacities for ROS scavenging and osmotic adjustment.

  14. Enhanced photostability, radical scavenging and antitumor activity of indole-3-carbinol-loaded rose hip oil nanocapsules.

    Science.gov (United States)

    Gehrcke, Mailine; Giuliani, Laura Minussi; Ferreira, Luana Mota; Barbieri, Allanna Valentini; Sari, Marcel Henrique Marcondes; da Silveira, Elita Ferreira; Azambuja, Juliana Hofstatter; Nogueira, Cristina Wayne; Braganhol, Elizandra; Cruz, Letícia

    2017-05-01

    This study aimed to develop poly(ε-caprolactone) nanocapsules loaded with indole-3-cabinol (I3C) using rose hip oil (RHO) or medium chain triglycerides (MCT) as oil core. In vitro radical scavenging activity (DPPH method), hemolysis, and antitumor effects on breast (MCF-7) and glioma (C6) cells were conducted. Preformulation evaluations revealed that RHO is suitable to prepare the nanocapsules considering the log P determination and dissolution/swelling experiments of polymer films. The nanocapsules were prepared and presented adequate physicochemical characteristics as mean size around 250nm, polydispersity index values <0.2, zeta potential negative values and I3C encapsulation efficiency around 42%, without any influence of the oil core (RHO or MCT) on these parameters. However, the photodegradation study demonstrated that RHO nanocapsules showed less degree of I3C degradation in comparison to MCT nanocapsules. The in vitro release profile showed that both nanocapsule suspensions demonstrated an initial burst effect followed by a prolonged I3C release. In addition, the formulations were considered hemocompatibles at 10μg/mL and showed an enhanced radical scavenging activity in comparison to free I3C. Moreover, nanocapsules prepared with RHO increased about two times the antitumor effect of I3C on MCF-7 and C6 cells without significant reduction of astrocyte cell viability. In conclusion, nanocapsule formulations developed in this study might be considered promising for cancer treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Neuroprotective and neurorescuing effects of isoform-specific nitric oxide synthase inhibitors, nitric oxide scavenger, and antioxidant against beta-amyloid toxicity

    Science.gov (United States)

    Law, A; Gauthier, S; Quirion, R

    2001-01-01

    Beta amyloid (Aβ) is implicated in Alzheimer's disease (AD). Aβ1–42 (5, 10, or 20 μM) was able to increase NO release and decrease cellular viability in primary rat cortical mixed cultures. L-NOARG and SMTC (both at 10 or 100 μM) – type I NOS inhibitors – reduced cellular NO release in the absence of Aβ1–42. At 100 μM, both drugs decreased cell viability. L-NIL (10 or 100 μM), and 1400W (1 or 5 μM) – type II NOS inhibitors – reduced NO release and improved viability when either drug was administered up to 4 h post Aβ1–42 (10 μM) treatment. L-NOARG and SMTC (both at 10 or 100 μM) were only able to decrease NO release. Carboxy-PTIO or Trolox (both at 10 or 100 μM) – a NO scavenger and an antioxidant, respectively–increased viability when administered up to 1 h post Aβ1–42 treatment. Either L-NIL (50 μM) or 1400W (3 μM) and Trolox (50 μM) showed synergistic actions. Peroxynitrite (100 or 200 μM) reduced cell viability. Viabilities were improved by L-NIL (100 μM), 1400W (5 μM), carboxy-PTIO (10 or 100 μM), and Trolox (10 or 100 μM). Hence, the data show that Aβ1–42 induced NO release in neurons and glial cells, and that Aβ neurotoxicity is, at least in part, mediated by NO. NO concentration modulating compounds and antioxidant may have therapeutic importance in neurological disorders where oxidative stress is likely involved such as in AD. PMID:11487523

  16. Nasturtium officinale reduces oxidative stress and enhances antioxidant capacity in hypercholesterolaemic rats.

    Science.gov (United States)

    Yazdanparast, Razieh; Bahramikia, Seifollah; Ardestani, Amin

    2008-04-15

    Nasturtium officinale R. Br. (Brassicaceae) has been used as a home remedy by the people of south eastern (SE) region of Iran as a medicinal plant. This therapeutical application has been attributed to Nasturtium officinale (N. officinale) antioxidant capacity which is mostly tested by means of cell-free assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP). In addition, the antioxidant effect of N. officinale extract has been investigated in hypercholesterolaemic rats in vivo. The results revealed that the extract has notable scavenging activity against DPPH radicals as well as potent reducing power in FRAP assay. Intragastric administration of N. officinale (500 mg/kg body weight per day) to groups of hypercholesterolaemic rats for 30 days lowered their blood total cholesterol (TC), triglyceride (TG), and low density lipoprotein cholesterol (LDL-C) levels by 37, 44 and 48%, respectively. However, the blood high density lipoprotein cholesterol (HDL-C) levels in the same treated rats increased by 16%. To evaluate the mechanism(s) of action, we studied the antioxidative potential of N. officinale extract in terms of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities and also the level of reduced glutathione (GSH) in the liver tissues. In addition, hepatic tissue malondialdehyde level (MDA, an index of lipid peroxidation) was also determined. Under hypercholesterolaemic condition, hepatic MDA was increased. Moreover, our data indicated GSH depletion along with significant reduction in the activities of CAT and SOD in rats fed high-fat diet rats. On the other hand, significant elevation in the activities of GPx and GR were seen in the same group of rats. Treatment of hypercholesterolaemic rats with N. officinale extract significantly increased the GSH level along with enhanced CAT and SOD activities in liver tissues. Furthermore, N. officinale extract significantly

  17. Effect of Heat on Antioxidant Activity of Some Tropical Leafy ...

    African Journals Online (AJOL)

    There was a significant increase in the total phenol, total flavonoid, DPPH radical scavenging ability, reducing property, Fe2+ chelating ability and hydroxyl radical scavenging ability. In like manner, short simmer treatment enhances the total antioxidant activities of all the vegetables. These results suggest that although ...

  18. Physiological and pharmacological inductors of HSP70 enhance the antioxidative defense mechanisms of the liver and pancreas in diabetic rats.

    Science.gov (United States)

    Dimitrovska, Maja; Dervisevik, Mirsada; Cipanovska, Natasa; Gerazova, Katerina; Dinevska-Kjovkarovska, Suzana; Miova, Biljana

    2018-02-01

    Heat preconditioning (HP) is a powerful adaptive and protective phenomenon and the heat stress proteins (HSPs) it produces are an important determinant for the development of diabetic complications. Aspirin has been reported to modulate heat shock response in different organisms through increased induction of HSPs and is also known to exert antioxidative and radical scavenging effects in diabetes. We estimated the effect of physiological (heat stress: 45 min at 41 ± 0.5 °C) and pharmacological (aspirin treatment) induction of HSP70 on several parameters of oxidative state in the pancreas and liver of diabetic rats. Diabetes increased HSP70 level and decreased poly(ADP) ribose polymerase (PARP), glutathione (GSH), and glutathione peroxidase (GPx) activities in the pancreas. In the liver, there was reduction of HSP70 level, GSH concentration, and CAT activity, while GPx and GR activity were enhanced. HP of diabetic rats caused an additional increase of HSP70, GSH, and antioxidant enzymes in both organs. Pre-treatment of HP-diabetic animals with aspirin led to an additional increase of PARP and HSP70. Both HP and aspirin, as physiological and pharmacological inductors of HSP70, respectively, enhanced the antioxidative defense mechanisms of the liver and pancreas in diabetic rats.

  19. Terpene constituents of the aerial parts, phenolic content, antibacterial potential, free radical scavenging and antioxidant activity of Callistemon citrinus (Curtis) Skeels (Myrtaceae) from Eastern Cape Province of South Africa

    OpenAIRE

    Larayetan, Rotimi A.; Okoh, Omobola O.; Sadimenko, Alexander; Okoh, Anthony I.

    2017-01-01

    Background Volatile oil from aromatic plants has been used by ancient Egyptians in embalming for the inhibition of bacterial growth and prevention of decay, Callistemon citrinus is used in traditional therapies for the treatment of bronchitis, cough, inflammation and as an antimicrobial herbs. This study examines the essential constituents of the volatile oils obtained from the aerial parts of the plant as well as its antioxidant activity, free radical scavenging, phenolic content and the ant...

  20. The experimental scavenging capacity and the degradation potential of the mixture of carotenoid and vitamin E, vitamin C

    Science.gov (United States)

    Tuyet, Nguyen Thi Ngoc; Khoa, Tran Anh; Quan, Vu Thi Hong; Chinh, Vuong Ngoc; Phung, Le Thi Kim

    2017-09-01

    The antioxidant capacity of Gac oil can be enhanced by the presence of these other active antioxidants such as vitamin E, vitamin C. Since many of these natural antioxidants are consumed together in foods, the potential for scavenging capacity is high in the human diet. The aim of this study was to determine what concentrations and combinations of antioxidants among Gac oil, vitamin E, vitamin C are capable of producing high scavenging capacity. The fact has resulted in detailed studies of antioxidation capacity of carotenoid of and vitamin. In addition, the antioxidant capacity and degradation potential of the combined mixture of carotenoid and vitamin E, vitamin C were discussed in view of their antioxidant properties as beneficial species in preventing various diseases.

  1. Antioxidant property enhancement of sweet potato flour under simulated gastrointestinal pH.

    Science.gov (United States)

    Chan, Kim Wei; Khong, Nicholas M H; Iqbal, Shahid; Umar, Imam Mustapha; Ismail, Maznah

    2012-01-01

    Sweet potato is known to be rich in healthful antioxidants, but the stability of its antioxidant properties under gastrointestinal pH is very much unknown. Hence, this study aimed to evaluate the changes in antioxidant properties (total contents of phenolics and flavonoids as well as antioxidant activity) of sweet potato flour (SPF) under simulated gastrointestinal pH conditions. It was found that the yield of SPF crude phenolic extract increased from 0.29 to 3.22 g/100 g SPF upon subjection to gastrointestinal pH conditions (p antioxidant activity of SPF (p antioxidant properties of SPF were enhanced under gastrointestinal pH conditions, suggesting that SPF might possess a considerable amount of bound phenolic and other antioxidative compounds. The antioxidant properties of SPF are largely influenced by pH and thus might be enhanced during the in vivo digestive process.

  2. Stepwise sequential analysis of stable multiradicals formation in polyphenolic myricetin active OH groups throughout the antioxidant process to scavenge free radicals

    Science.gov (United States)

    Barzegar, Abolfazl; Rezaei-Sadabady, Rogaie

    2017-10-01

    Five galvinoxyl radicals (Grad) reduction by one polyphenolic myricetin (Myc, 3,3‧,4‧,5,5‧,7-Hexahydroxyflavone) molecule-using EPR method-demonstrated that each Myc should donate at least five H atoms resulted in multiradicals Myc5rad (5 Grad + 1Myc → 5 GH + 1 Myc5rad). The process that five H atoms donation occurs from different OH sites of Myc lead to appearing of five unpaired valence electrons of Myc5rad via two possible different mechanisms. First; concerted five H atoms donation from five different OH groups that directly results in Myc5rad radicals (Myc → Myc5rad). Second; the step-wise radical formation in five different OH groups of Myc (Myc → Mycrad → Myc2rad → Myc3rad → Myc4rad → Myc5rad). Computational DFT method was used to analyze all the six different OH groups of Myc which involved in free radical reactions for the purposes of clarification the stable multiradicals Myc5rad formation mechanism. The fast semi-empirical combined quantum method, AM1/DFT, as well as full DFT geometry optimization approaches of B3LYP functional DFT/DFT with different basis sets of 6-31G (d), 6-311 + G (d,p) and 6-311 + G (2d,2p) confirmed the stepwise H atom abstraction trend on the main three hydroxyl sites as 4‧-Orad → 4‧-Orad3-Orad → 4‧-Orad3-Orad-7Orad both in the gas and water phase. Spin delocalization over the entire Myc, adding the co-planarity, contributed to the stabilization of respective radical species. The excellent stability of Myc radicals should give an effective chain-breaking antioxidant activity for Myc in biological environment which is expected to have far fewer side effects. These findings may be useful to elucidate the radical scavenging mechanism of other flavonoids regarding to design novel antioxidants.

  3. Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance.

    Science.gov (United States)

    An, Liangliang; Wang, Guanhua; Jia, Hongyu; Liu, Cuiyun; Sui, Wenjie; Si, Chuanling

    2017-06-01

    The heterogeneity of lignin chemical structure and molecular weight results in the lignin inhomogeneous properties which also covers the antioxidant performance. In order to evaluate the effects of lignin heterogeneity on its antioxidant activity, four lignin fractions from enzymatic hydrolysis lignin were classified by sequential organic solvent extraction and further evaluated by DPPH (1,1-Diphenyl-2-Picrylhydrazyl) free radical scavenging capacity and reducing power analysis. The characterization including FTIR, (1)H NMR and GPC showed that the fractionation process could effectively separate lignin fractions with distinctly different molecular weight and weaken the heterogeneity of unfractionated lignin. The antioxidant performance comparison of lignin fractions indicated that the dichloromethane fraction (F1) with lowest molecular weight (4585g/mol) and highest total phenolics content (246.13mg GAE/g) exhibited the highest antioxidant activity whose value was close to commercial antioxidant BHT (butylated hydroxytoluene). Moreover, the relationship between the antioxidant activity and the structure of lignin was further discussed to elucidate the mechanism of antioxidant activity improvement of lignin fractionation. Consequently, this study suggested that the sequential extraction was an effective way to obtain relatively homogeneous enzymatic hydrolysis lignin fractions which showed the potential for the value-added antioxidant application. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The scavenger protein apoptosis inhibitor of macrophages (AIM potentiates the antimicrobial response against Mycobacterium tuberculosis by enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Lucía Sanjurjo

    Full Text Available Apoptosis inhibitor of macrophages (AIM, a scavenger protein secreted by tissue macrophages, is transcriptionally regulated by the nuclear receptor Liver X Receptor (LXR and Retinoid X Receptor (RXR heterodimer. Given that LXR exerts a protective immune response against M. tuberculosis, here we analyzed whether AIM is involved in this response. In an experimental murine model of tuberculosis, AIM serum levels peaked dramatically early after infection with M. tuberculosis, providing an in vivo biological link to the disease. We therefore studied the participation of AIM in macrophage response to M. tuberculosis in vitro. For this purpose, we used the H37Rv strain to infect THP-1 macrophages transfected to stably express AIM, thereby increasing infected macrophage survival. Furthermore, the expression of this protein enlarged foam cell formation by enhancing intracellular lipid content. Phagocytosis assays with FITC-labeled M. tuberculosis bacilli indicated that this protein was not involved in bacterial uptake; however, AIM expression decreased the number of intracellular cfus by up to 70% in bacterial killing assays, suggesting that AIM enhances macrophage mycobactericidal activity. Accordingly, M. tuberculosis-infected AIM-expressing cells upregulated the production of reactive oxygen species. Moreover, real-time PCR analysis showed increased mRNA levels of the antimicrobial peptides cathelicidin and defensin 4B. These increases were concomitant with greater cellular concentrations of the autophagy-related molecules Beclin 1 and LC3II, as well as enhanced acidification of mycobacterial phagosomes and LC3 co-localization. In summary, our data support the notion that AIM contributes to key macrophage responses to M. tuberculosis.

  5. Development of a triple hyphenated HPLC-radical scavenging detection-DAD-SPE-NMR system for the rapid identification of antioxidants in complex plant extracts

    NARCIS (Netherlands)

    Pukalskas, A.; Beek, van T.A.; Waard, de P.

    2005-01-01

    A rapid method for the simultaneous detection and identification of radical scavenging compounds in plant extracts was developed by combining an HPLC with on-line radical scavenging using DPPH as a model radical and an HPLC¿DAD¿SPE¿NMR system. Using this method a commercial rosemary extract was

  6. The induction of salt stress tolerance by propyl gallate treatment in green microalga Dunaliella bardawil, through enhancing ascorbate pool and antioxidant enzymes activity.

    Science.gov (United States)

    Einali, Alireza

    2017-10-08

    The effect of propyl gallate (PG), a synthetic antioxidant, on antioxidant responses and salinity tolerance was investigated in the cells of the green microalga, Dunaliella bardawil. Algal suspensions grown at three salinity levels of 1, 2, and 3 M NaCl were incubated with 1 mM of PG. The number of cells was significantly lower in all PG-treated cells compared to untreated controls. Despite PG-induced cell death, the fresh weight of all PG-treated cells was considerably higher than controls. PG-treated cells had enhanced antioxidant capacity because of increased levels of Chlorophyll a, β-carotene, reduced ascorbate, protein, and enzymatic activities, but accumulated lower levels of malonyldialdehyde and hydrogen peroxide compared to untreated cells. The results suggest that PG acts as a signal molecule both directly by reducing of free radical oxidants and indirectly by augmenting ascorbate pool levels, β-carotene production, and antioxidant enzymes activity to boost the capacity of antioxidant systems and radical oxygen species scavenging. Therefore, induction of salt stress tolerance by PG in D. bardawil is associated with metabolic adjustments through activation or synthesis of both enzymatic and non-enzymatic molecules involved in antioxidant systems.

  7. Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715.

    Science.gov (United States)

    Juan, Ming-Yen; Chou, Cheng-Chun

    2010-08-01

    In the present study, a solid state fermentation of black soybeans with Bacillus subtilis BCRC 14715 was performed. The effect of fermentation on the changes of total phenolic and flavonoid content and antioxidant activities including 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging effect, and Fe(2+)-chelating ability exerted by various solvent (water, 80% methanol, 80% ethanol, 80% acetone) extracts of black soybeans was examined. It was found that fermentation enhanced the total phenolic and flavonoid content as well as antioxidant activity of the black soybean extract. Among the various extracts examined, the acetone extract of fermented black soybeans showed the highest total phenolic and flavonoid content. The acetone extract and the methanol extract of fermented black soybeans showed the highest DPPH free radical-scavenging effect and Fe(2+)-chelating ability, respectively. Analysis of extraction yields showed that the active principle associated with the DPPH radical-scavenging effect was most efficiently extracted from black soybeans using water, regardless of fermentation. Water and methanol effectively extract the Fe(2+)-chelating principles from non-fermented and fermented black soybeans, respectively. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Use of Gallic Acid to Enhance the Antioxidant and Mechanical Properties of Active Fish Gelatin Film.

    Science.gov (United States)

    Limpisophon, Kanokrat; Schleining, Gerhard

    2017-01-01

    This study explores the potential roles of gallic acid in fish gelatin film for improving mechanical properties, UV barrier, and providing antioxidant activities. Glycerol, a common used plasticizer, also impacts on mechanical properties of the film. A factorial design was used to investigate the effects of gallic acid and glycerol concentrations on antioxidant activities and mechanical properties of fish gelatin film. Increasing the amount of gallic acid increased the antioxidant capacities of the film measured by radical scavenging assay and the ferric reducing ability of plasma assay. The released antioxidant power of gallic acid from the film was not reduced by glycerol. The presence of gallic acid not only increased the antioxidant capacity of the film, but also increased the tensile strength, elongation at break, and reduced UV absorption due to interaction between gallic acid and protein by hydrogen bonding. Glycerol did not affect the antioxidant capacities of the film, but increased the elasticity of the films. Overall, this study revealed that gallic acid entrapped in the fish gelatin film provided antioxidant activities and improved film characteristics, namely UV barrier, strength, and elasticity of the film. © 2016 Institute of Food Technologists®.

  9. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity.

    Science.gov (United States)

    Delles, Rebecca M; Xiong, Youling L; True, Alma D; Ao, Touying; Dawson, Karl A

    2014-06-01

    Recent nutrigenomic studies have shown that animal nutrition can have a major influence on tissue gene expression. Dietary antioxidant supplements can enhance the quality of meat through modification of tissue metabolic processes. This study investigated the influence of dietary antioxidants and quality of oil on the oxidative and enzymatic properties of chicken broiler breast meat stored in an oxygen-enriched package (HiOx: 80% O2/20% CO2) in comparison with air-permeable polyvinylchloride (PVC) or skin packaging systems during retail display at 2 to 4°C for up to 21 d. Broilers were fed either a diet with a low-oxidized (peroxide value 23 mEq of O2/kg) or high-oxidized (peroxide value 121 mEq of O2/kg) oil, supplemented with or without an algae-based Se yeast and organic mineral antioxidant pack for 42 d. Lipid and protein oxidation and tissue enzymatic activity were analyzed. In all packaging systems, lipid oxidation (TBA reactive substances) was inhibited by up to 32.5% (P antioxidant-supplemented diet when compared with diets without antioxidants, particularly in the HiOx and PVC systems. Protein sulfhydryls were significantly protected by antioxidant diets (e.g., by 14.6 and 17.8% for low-and high-oxidized dietary groups, respectively, in PVC d 7 samples). Glutathione peroxidase, catalase, and superoxide dismutase activities were significantly higher (P antioxidant-supplemented diets compared with the basal diet, regardless of oil quality. Also, serum carbonyls were lower in broilers fed a low-oxidized antioxidant-supplemented treatment. The results demonstrate that dietary antioxidants can minimize the oxidative instability of proteins and lipids, and the protection may be linked to improved cellular antioxidant enzymatic activity. Poultry Science Association Inc.

  10. Antioxidant capacity and bioaccessibility of buckwheat-enhanced wheat bread phenolics.

    Science.gov (United States)

    Szawara-Nowak, Dorota; Bączek, Natalia; Zieliński, Henryk

    2016-01-01

    The impact of an in vitro procedure that mimics the physiochemical changes occurring in gastric and small intestinal digestion on the antioxidant capacity and bioaccessibility of phenolic compounds from 16 types of buckwheat-enhanced wheat breads was assessed. The methodology was based on the Global Antioxidant Response (GAR) which combined bioaccessible antioxidant capacity of the soluble fraction from digestible portion measured by the standard Trolox Equivalent Antioxidant Capacity (TEAC) assay and antioxidant capacity of the insoluble fraction from the undigested portion by the QUENCHER method. The bioaccessibility of the phenolics was measured in the soluble fraction with Folin-Cicalteu reagent and in the insoluble fraction by modified QUENCHER method. The studies showed almost 20-fold higher GAR values as compared to the antioxidant capacity of the respective undigested reference breads. The bioaccessible antioxidant capacity of soluble fraction from digestible portion increased significantly whereas the undigested residue displayed antioxidant capacity that accounted for up to 15 % of the GAR. The bioaccessible phenolics accounted for up to 90 % of the total phenolics after digestion and were highly correlated with GAR results of buckwheat-enriched wheat breads. Our results indicate that in vitro digestion is the crucial step that releases of high amount of phenolic antioxidants. The combination of QUENCHER assay with Total Antioxidant Capacity (TAC) and Total Phenolic Content (TPC) assay estimated on Folin-Ciocalteu reagent has been useful for the determination of the bioaccessible antioxidant activity and phenolics of the soluble and insoluble fraction of buckwheat-enhanced wheat breads.

  11. Radical scavenging compounds from Ethiopian medicinal plants ...

    African Journals Online (AJOL)

    All the secondary metabolites isolated from these active fractions were found to exhibit significant antioxidant activity, as judged by scavenging stable DPPH free radicals. However, the flavonol glycoside rutin figured as the most active radical scavenger with an IC50 value of 9.5 mM. Ethiopian Pharmaceutical Journal Vol.

  12. L-malate enhances the gene expression of carried proteins and antioxidant enzymes in liver of aged rats.

    Science.gov (United States)

    Zeng, X; Wu, J; Wu, Q; Zhang, J

    2015-01-01

    Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. To investigate the antioxidant mechanism of L-malate in the mitochondria, we analyzed the change in gene expression of two malate-aspartate shuttle (MAS)-related carried proteins (AGC, aspartate/glutamate carrier and OMC, oxoglutarate/malate carrier) in the inner mitochondrial membrane, and three antioxidant enzymes (CAT, SOD, and GSH-Px) in the mitochondria. The changes in gene expression of these proteins and enzymes were examined by real-time RT-PCR in the heart and liver of aged rats treated with L-malate. L-malate was orally administered in rats continuously for 30 days using a feeding atraumatic needle. We found that the gene expression of OMC and GSH-Px mRNA in the liver increased by 39 % and 38 %, respectively, in the 0.630 g/kg L-malate treatment group than that in the control group. The expression levels of SOD mRNA in the liver increased by 39 %, 56 %, and 78 % in the 0.105, 0.210, and 0.630 g/kg L-malate treatment groups, respectively. No difference were observed in the expression levels of AGC, OMC, CAT, SOD, and GSH-Px mRNAs in the heart of rats between the L-malate treatment and control groups. These results predicted that L-malate may increase the antioxidant capacity of mitochondria by enhancing the expression of mRNAs involved in the MAS and the antioxidant enzymes.

  13. Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress.

    Science.gov (United States)

    Tang, Hui; Liu, Yunguo; Gong, Xiaomin; Zeng, Guangming; Zheng, Bohong; Wang, Dafei; Sun, Zhichao; Zhou, Lu; Zeng, Xiaoxia

    2015-07-01

    Hydroponic experiments were performed to investigate the ameliorating effects and mitigation mechanisms of selenium and silicon on Cd toxicity in Boehmeria nivea (L.) Gaud. Metal accumulation, chlorophyll content, activities of antioxidant enzymes, and antioxidant contents in ramie were evaluated. The results revealed that cadmium was mainly accumulated in the roots of plants rather than in the aerial parts. Additionally, under 5 mg L(-1) Cd stress, both Se (1 μmol L(-1)) and Si (1 mmol L(-1)) treatments decreased the Cd concentrations in plants. Besides, the treatments also inhibited the translocation ability of Cd from roots to the aboveground parts, which might be related to the decline of generation of reactive oxygen species (ROS). The application of Se and/or Si ameliorated Cd toxicity via stimulating the activities of antioxidant enzymes such as superoxide dismutase (SOD), guaiacol peroxidase (POD), and ascorbate peroxidase (APX), which resulted in the significant decrease of the contents of malondialdialdehyde (MDA) and hydrogen peroxide (H2O2) in ramie leaves. In addition, the content of nonenzymatic antioxidant such as glutathione (GSH) was increased significantly through the addition of selenite and silicate. Also, ascorbate (AsA) and vitamin E played a crucial role in scavenging excess ROS within plants. On the whole, appropriate doses of Se and Si were found to benefit plant growth and enhance the ability of ramie to alleviate Cd-induced stress. Moerover, the effects of combination of Se and Si appeared to be more superior compared to addition separately in response to Cd stress.

  14. Antioxidant supplementation enhances bacterial peritonitis in mice by inhibiting phagocytosis.

    Science.gov (United States)

    Goswami, Manish; Sharma, Deepak; Khan, Nazir M; Checker, Rahul; Sandur, Santosh Kumar; Jawali, Narendra

    2014-03-01

    Antioxidants are known to exhibit numerous health benefits including anti-ageing, anti-apoptotic and immuno-stimulatory effects. However, we present the data showing counterproductive effects of therapeutically relevant antioxidants on bacterial clearance by the immune system in a murine peritonitic model. The antioxidants ascorbic acid, glutathione and N-acetylcysteine augmented morbidity and mortality in mice carrying Eshcerichia coli-induced acute bacterial peritonitis. Treatment of peritonitic mice with antioxidants significantly increased their bacterial load in the range of 0.3-2 logs. Antioxidant administration to peritonitic mice resulted in decreased numbers of macrophages, B-cells and dendritic cells at the primary site of infection and increased neutrophil infiltration. Serum TNF-α levels were also decreased in antioxidant-treated peritonitic mice. In vitro experiments showed that antioxidants reduced the phagocytic efficacy of peritoneal macrophages by ~60-75% and also decreased E. coli-induced oxidative burst in macrophages cells. Taken together, our data indicate that the antioxidants increased the severity of peritonitis by decreasing the phagocytic efficiency, oxidative burst, and TNF-α production, and increasing neutrophil infiltration. Based on these results, we propose that antioxidant supplementation during the course of bacterial infection is not recommended as it could be detrimental for the host. In addition, the present study underlines the importance of timing and context of antioxidant administration rather than indiscriminate usage to gain the best possible therapeutic advantage of these redox compounds.

  15. Polysulfides and products of H2S/S-nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2.

    Science.gov (United States)

    Misak, Anton; Grman, Marian; Bacova, Zuzana; Rezuchova, Ingeborg; Hudecova, Sona; Ondriasova, Elena; Krizanova, Olga; Brezova, Vlasta; Chovanec, Miroslav; Ondrias, Karol

    2017-09-23

    Exogenous and endogenously produced sulfide derivatives, such as H 2 S/HS - /S 2- , polysulfides and products of the H 2 S/S-nitrosoglutathione interaction (S/GSNO), affect numerous biological processes in which superoxide anion (O 2 - ) and hydroxyl (OH) radicals play an important role. Their cytoprotective-antioxidant and contrasting pro-oxidant-toxic effects have been reported. Therefore, the aim of our work was to contribute to resolving this apparent inconsistency by studying sulfide derivatives/free radical interactions and their consequent biological effects compared to the antioxidants glutathione (GSH) and Trolox. Using the electron paramagnetic resonance (EPR) spin trapping technique and O 2 - , we found that a polysulfide (Na 2 S 4 ) and S/GSNO were potent scavengers of O 2 - and cPTIO radicals compared to H 2 S (Na 2 S), GSH and Trolox, and S/GSNO scavenged the DEPMPO-OH radical. As detected by the EPR spectra of DEPMPO-OH, the formation of OH in physiological solution by S/GSNO was suggested. All the studied sulfide derivatives, but not Trolox or GSH, had a bell-shaped potency to decompose H 2 O 2 and produced OH in the following order: S/GSNO > Na 2 S 4  ≥ Na 2 S > GSH = Trolox = 0, but they scavenged OH at higher concentrations. In studies of the biological consequences of these sulfide derivatives/H 2 O 2 properties, we found the following: (i) S/GSNO alone and all sulfide derivatives in the presence of H 2 O 2 cleaved plasmid DNA; (ii) S/GSNO interfered with viral replication and consequently decreased the infectivity of viruses; (iii) the sulfide derivatives induced apoptosis in A2780 cells but inhibited apoptosis induced by H 2 O 2 ; and (iv) Na 2 S 4 modulated intracellular calcium in A87MG cells, which depended on the order of Na 2 S 4 /H 2 O 2 application. We suggest that the apparent inconsistency of the cytoprotective-antioxidant and contrasting pro-oxidant-toxic biological effects of sulfide derivatives results from their time

  16. The Oxidant-Scavenging Abilities in the Oral Cavity May Be Regulated by a Collaboration among Antioxidants in Saliva, Microorganisms, Blood Cells and Polyphenols: A Chemiluminescence-Based Study

    Science.gov (United States)

    Ginsburg, Isaac; Kohen, Ron; Shalish, Miri; Varon, David; Shai, Ella; Koren, Erez

    2013-01-01

    Saliva has become a central research issue in oral physiology and pathology. Over the evolution, the oral cavity has evolved the antioxidants uric acid, ascorbate reduced glutathione, plasma-derived albumin and antioxidants polyphenols from nutrients that are delivered to the oral cavity. However, blood cells extravasated from injured capillaries in gingival pathologies, or following tooth brushing and use of tooth picks, may attenuate the toxic activities of H2O2 generated by oral streptococci and by oxidants generated by activated phagocytes. Employing a highly sensitive luminol-dependent chemiluminescence, the DPPH radical and XTT assays to quantify oxidant-scavenging abilities (OSA), we show that saliva can strongly decompose both oxygen and nitrogen species. However, lipophilic antioxidant polyphenols in plants, which are poorly soluble in water and therefore not fully available as effective antioxidants, can nevertheless be solubilized either by small amounts of ethanol, whole saliva or also by salivary albumin and mucin. Plant-derived polyphenols can also act in collaboration with whole saliva, human red blood cells, platelets, and also with catalase-positive microorganisms to decompose reactive oxygen species (ROS). Furthermore, polyphenols from nutrient can avidly adhere to mucosal surfaces, are retained there for long periods and may function as a “slow- release devises” capable of affecting the redox status in the oral cavity. The OSA of saliva is due to the sum result of low molecular weight antioxidants, albumin, polyphenols from nutrients, blood elements and microbial antioxidants. Taken together, saliva and its antioxidants are considered regulators of the redox status in the oral cavity under physiological and pathological conditions. PMID:23658797

  17. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity1

    Science.gov (United States)

    Delles, Rebecca M.; Xiong, Youling L.; True, Alma D.; Ao, Touying; Dawson, Karl A.

    2014-01-01

    Recent nutrigenomic studies have shown that animal nutrition can have a major influence on tissue gene expression. Dietary antioxidant supplements can enhance the quality of meat through modification of tissue metabolic processes. This study investigated the influence of dietary antioxidants and quality of oil on the oxidative and enzymatic properties of chicken broiler breast meat stored in an oxygen-enriched package (HiOx: 80% O2/20% CO2) in comparison with air-permeable polyvinylchloride (PVC) or skin packaging systems during retail display at 2 to 4°C for up to 21 d. Broilers were fed either a diet with a low-oxidized (peroxide value 23 mEq of O2/kg) or high-oxidized (peroxide value 121 mEq of O2/kg) oil, supplemented with or without an algae-based Se yeast and organic mineral antioxidant pack for 42 d. Lipid and protein oxidation and tissue enzymatic activity were analyzed. In all packaging systems, lipid oxidation (TBA reactive substances) was inhibited by up to 32.5% (P Protein sulfhydryls were significantly protected by antioxidant diets (e.g., by 14.6 and 17.8% for low-and high-oxidized dietary groups, respectively, in PVC d 7 samples). Glutathione peroxidase, catalase, and superoxide dismutase activities were significantly higher (P dietary antioxidants can minimize the oxidative instability of proteins and lipids, and the protection may be linked to improved cellular antioxidant enzymatic activity. PMID:24879706

  18. Antioxidants

    Science.gov (United States)

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  19. Variation of antioxidative activity and growth enhancement of Brassicaceae induced by low-pressure oxygen plasma

    Science.gov (United States)

    Ono, Reoto; Hayashi, Nobuya

    2015-06-01

    The mechanism of growth enhancement induced by active oxygen species generated in an oxygen plasma is investigated. The plant growth enhancement induced by the active oxygen species would relate to an antioxidative activity, which is one of the biological responses. The amount of generated active oxygen species is varied by the oxygen gas pressure in a low-pressure RF glow discharge plasma. The antioxidative activity of sprouts of Brassicaceae induced by the oxygen plasma is maximized at pressures between 30 and 40 Pa, whereas the antioxidative activity becomes small at around 60 and 80 Pa. The pressure dependence of the antioxidative activity of sprout stems is opposite to that of the stem length of the sprouts. The growth enhancement would be induced by the increase in the concentration of active oxygen species in plants owing to the decrease in the amount of antioxidative substances.

  20. Enhanced Bioaccessibility of Crocetin Sugar Esters from Saffron in Infusions Rich in Natural Phenolic Antioxidants

    Directory of Open Access Journals (Sweden)

    Stella A. Ordoudi

    2015-09-01

    Full Text Available The present study aims to examine whether and to what extent the bioaccessibility of the major saffron apocarotenoids, namely crocetin sugar esters (CRTSEs, is affected by the presence of strong water-soluble antioxidants, ingredients of the herbs found in commercial tea blends with saffron. An in vitro digestion model was applied to infusions from these products to investigate the possible changes. All of the studied infusions were rich in total phenols (9.9–22.5 mg caffeic acid equivalents/100 mg dry infusion and presented strong DPPH radical scavenging activity regardless of the composition of the corresponding herbal blends. RP-HPLC-DAD and LC-MS analysis enabled the grouping of the infusions into hydroxycinnamic acid-rich and in flavan-3-ol-rich ones. CRTSEs in herbal tea infusions were found to be significantly more bioaccessible (66.3%–88.6% than those in the reference saffron infusion (60.9%. The positive role of strong phenolic antioxidants (caffeic acid, rosmarinic acid on the stability of CRTSEs was also evidenced in model binary mixtures. On the contrary, cinnamic acid, exerting no antioxidant activity, did not have such an effect. Our findings suggest that strong radical scavengers may protect the crocetin sugar esters from oxidation during digestion when present in excess.

  1. Polymerization of gallic acid enhances its antioxidant capacity ...

    African Journals Online (AJOL)

    Gallic acid (3, 4, 5-trihydroxybenzoic acid, GA) and its polymer, tannic acid (TA) are ubiquitous phytochemicals and are found to co-exist in plants. However, the rationale for the polymerisation of GA in plants is rather obscure. Hence, the present study compared the free radical scavenging ability, iron chelating potency, ...

  2. Lentinus squarrosulus (Mont.) mycelium enhanced antioxidant status in rat model.

    Science.gov (United States)

    Mhd Omar, Nor Adila; Abdullah, Sumaiyah; Abdullah, Noorlidah; Kuppusamy, Umah Rani; Abdulla, Mahmood Ameen; Sabaratnam, Vikineswary

    2015-01-01

    Lentinus squarrosulus is an edible wild mushroom commonly found in Asia. This species has several interesting features such as rapid mycelial growth, and hence has the potential to be used as food, functional food, and nutraceuticals. Our previous study shows that L. squarrosulus contains potent antioxidant compounds in vitro. This study aims to investigate the in vivo bioavailability of L. squarrosulus mycelium extract and its antioxidant effect on biomarkers of antioxidant defense and oxidative stress. Water extract of mycelial biomass of L. squarrosulus was analyzed for in vivo antioxidant effects, including cupric-reducing antioxidant capacity (CUPRAC), glutathione peroxidase (GPx), xanthine oxidase (XO), advanced oxidation protein products (AOPPs), and lipid hydroperoxides (LHPs) at 0 and 28 days. GPx and XO were also analyzed in liver homogenates. Normal Sprague Dawley rats were treated with 250 and 500 mg/kg of extract for 28 days. The serum CUPRAC level increased after treatment with both concentrations, indicating that there was sufficient bioavailability of the extract which contributed to the total antioxidant capacity. GPx activity in both serum and liver was increased and this correlated with LHP level after treatment with 250 mg/kg of extract, but XO activity was significantly decreased after treatment with 500 mg/kg of the extract. Lack of difference between AOPP levels implied that there were no significant changes in oxidative damage of protein after treatment. This study clearly showed that L. squarrosulus mycelium antioxidant extract contains absorbable antioxidants that enter the circulating plasma and cause a significant acute increase in plasma antioxidant capacity. Thus, the water extract of L. squarrosulus mycelium, which can be obtained abundantly by liquid fermentation, may serve as an antioxidant ingredient in functional foods and nutraceuticals.

  3. Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC-DAD-radical scavenging detection

    NARCIS (Netherlands)

    Pérez-Bonilla, M.; Salido, S.; Beek, van T.A.; Waard, de P.; Linares-Palomino, P.J.; Sánchez, A.; Altarejos, J.

    2011-01-01

    The woody portion of olive tree pruning is a source of natural antioxidants of potential interest for the food industry. This work deals with the isolation and identification of further antioxidants present in an ethyl acetate extract of olive (Olea europaea L.) wood. Thus, a new secoiridoid,

  4. Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L. and garlic (Allium sativum L. extracts

    Directory of Open Access Journals (Sweden)

    Noureddine Benkeblia

    2005-09-01

    Full Text Available The radical scavenging activity (RAS, chain-breaking activity, H2O2-scavenging, reducing capacity and total phenolics of four types of onions (Green onion, Yellow, Red and Purple and garlic were investigated. Total phenolics varied from 30 mg (green onion to 49 mg.100 g-1 fresh weight (garlic. Garlic extract showed the highest RAS, while green onion showed the lowest one. The chain-breaking activity of green onion extract was higher (0.48 than garlic extract (0.029. Chain-breaking activity of yellow, red and purple onion extracts was 0.19, 0.048 and 0.032 respectively. However, heating treatment (90 ºC, 3h caused an increase in this activity. Low ability of green onion extract to scavenge hydrogen peroxide was noted (35%, whereas high ability was noted in other onion and garlic extracts and ranged from 60 to 90%. The lowest reducing capacity was noted in green onion extract (18%, whereas the highest in garlic extract (196%. Statistically, high significant correlations were observed between total phenolics content and reducing power, scavenging of hydrogen peroxide and chain-breaking activity of extract

  5. Enhanced production of biomass, pigments and antioxidant capacity of a nutritionally important cyanobacterium Nostochopsis lobatus.

    Science.gov (United States)

    Pandey, Usha; Pandey, J

    2008-07-01

    A diazotrophic cyanobacterium Nostochopsis lobatus was evaluated for enhanced production of biomass, pigments and antioxidant capacity. N. lobatus showed potentially high antioxidant capacity (46.12 microM AEAC) with significant improvement under immobilized cell cultures (87.05 microM AEAC). When a mixture of P and Fe was supplemented, biomass, pigments, nutritive value and antioxidant capacity increased substantially at pH 7.8. When considered separately, P appeared to be a better supplement than Fe for the production of biomass, chlorophyll and carotenoids. However, for phycocyanin, phycoerythrin, nutritive value and antioxidant capacity, Fe appeared more effective than P. Our study indicates N. lobatus to be a promising bioresource for enhanced production of nutritionally rich biomass, pigments and antioxidants. The study also suggests that P and Fe are potentially effective supplements for scale-up production for commercial application.

  6. Enhanced yield of phenolic extracts from banana peels (Musa acuminata Colla AAA) and cinnamon barks (Cinnamomum varum) and their antioxidative potentials in fish oil.

    Science.gov (United States)

    Anal, Anil Kumar; Jaisanti, Sirorat; Noomhorm, Athapol

    2014-10-01

    The bioactive compounds of banana peels and cinnamon barks were extracted by vacuum microwave and ultrasonic-assisted extraction methods at pre-determined temperatures and times. These methods enhance the yield extracts in shorter time. The highest yields of both extracts were obtained from the conditions which employed the highest temperature and the longest time. The extracts' yield from cinnamon bark method was higher by ultrasonic than vacuum microwave method, while vacuum microwave method gave higher extraction yield from banana peel than ultrasonic method. The phenolic contents of cinnamon bark and banana peel extracts were 467 and 35 mg gallic acid equivalent/g extract, respectively. The flavonoid content found in banana peel and cinnamon bark extracts were 196 and 428 mg/g quercetin equivalent, respectively. In addition, it was found that cinnamon bark gave higher 2,2-Diphenyl-1-1 picryhydrazyl (DPPH) radical scavenging activity and total antioxidant activity (TAA). The antioxidant activity of the extracts was analyzed by measuring the peroxide and p-anisidine values after oxidation of fish oils, stored for a month (30 days) at 25 °C and showed lesser peroxide and p-anisidine values in the fish oils containing the sample extracts in comparison to the fish oil without containing any extract. The banana peel and cinnamon extracts had shown the ability as antioxidants to prevent the oxidation of fish oil and might be considered as rich sources of natural antioxidant.

  7. [Correlation Between Functional Groups and Radical Scavenging Activities of Acidic Polysaccharides from Dendrobium].

    Science.gov (United States)

    Liao, Ying; Yuan, Wen-yu; Zheng, Wen-ke; Luo, Ao-xue; Fan, Yi-jun

    2015-11-01

    To compare the radical scavenging activity of five different acidic polysaccharides, and to find the correlation with the functional groups. Alkali extraction method and Stepwise ethanol precipitation method were used to extract and concentrate the five Dendrobium polysaccharides, and to determine the contents of sulfuric acid and uronic acid of each kind of acidic polysaccharides, and the scavenging activity to ABTS+ radical and hydroxyl radical. Functional group structures were examined by FTIR Spectrometer. Five kinds of Dendrobium polysaccharides had different ability of scavenging ABTS+ free radical and hydroxyl free radical. Moreover, the study had shown that five kinds of antioxidant activity of acidic polysaccharides had obvious correlation withuronic acid and sulfuric acid. The antioxidant activity of each sample was positively correlated with the content of uronic acid, and negatively correlated with the content of sulfuric acid. Sulfuric acid can inhibit the antioxidant activity of acidic polysaccharide but uronic acid can enhance the free radical scavenging activity. By analyzing the structure characteristics of five acidic polysaccharides, all samples have similar structures, however, Dendrobium denneanum, Dendrobium devonianum and Dendrobium officinale which had β configuration have higher antioxidant activity than Dendrobium nobile and Dendrobium fimbriatum which had a configuration.

  8. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship.

    Science.gov (United States)

    Kim, Dae-Ok; Lee, Chang Yong

    2004-01-01

    Antioxidant capacity for a wide range of natural or synthetic polyphenolics was comprehensively evaluated by vitamin C equivalent antioxidant capacity (VCEAC) assay using free blue/green ABTS radicals. The polyphenolics tested are grouped into the following categories: vitamins (beta-carotene, alpha-tocopherol, vitamin A, and vitamin C), phenolic acids (benzoic acid, phenylacetic acid, cinnamic acid, and their derivatives), flavonoids (anthocyanidin, flavanol, chalcone, flavanone, flavone, flavonol, isoflavone, and their derivatives), synthetic food additives (BHA, BHT, TBHQ, and PG), and other miscellaneous polyphenolics (ellagic acid, sesamol, eugenol, thymol, etc.). A positive linear relationship between VCEAC and the number of free OH groups around the flavonoid framework was found, whereas, for phenolic acids, the linear relationship was not as good as with the flavonoid aglycones. Groups of chemicals having comparable structures generally showed similar trends. Polyphenolics commonly showed a higher VCEAC compared to monophenolics. Compounds like gallic acid with 3 vicinal hydroxy substitutions on the aromatic ring in phenolic acids or like epigallocatechin with 3 vicinal hydroxy substitutions on the B ring in flavonoids showed the highest antioxidant capcity among the groups. In the flavonoids, 2 characteristic chemical structures were very important, the catechol moiety in the B ring and the 3-OH functional group in a chroman ring. Glycosylated flavonoids showed less potent antioxidant capacity than their aglycone alone. Synthetic antioxidant food additives (BHA, TBHQ, and BHT) conventionally used in the food industry were less effective antioxidants than ascorbic acid. Other naturally occurring polyphenolics tested followed the expected general trends of phenolic acids and flavonoids.

  9. Enhancing Phenolic Contents and Antioxidant Potentials of Antidesma thwaitesianum by Supercritical Carbon Dioxide Extraction

    Directory of Open Access Journals (Sweden)

    Warut Poontawee

    2015-01-01

    Full Text Available Supercritical fluid extraction (SFE has increasingly gained attention as an alternative technique for extraction of natural products without leaving toxic residues in extracts. Antidesma thwaitesianum Muell. Arg. (Phyllanthaceae, or ma mao, has been reported to exhibit antioxidant health benefits due to its phenolic constituents. To determine whether SFE technique could impact on phenolic contents and associated antioxidant potentials, ripe fruits of Antidesma thwaitesianum (Phyllanthaceae were extracted using supercritical carbon dioxide (SC-CO2 and conventional solvents (ethanol, water. The results showed that the SC-CO2 extract contained significantly higher yield, total phenolic, flavonoid, and proanthocyanidin contents than those obtained from ethanol and water. It also demonstrated the greatest antioxidant activities as assessed by ABTS radical cation decolorization, DPPH radical scavenging, and ferric reducing antioxidant power (FRAP assays. Further analysis using high-performance liquid chromatography with diode array and mass spectrometry detectors (HPLC-DAD/MSD revealed the presence of catechin as a major phenolic compound of Antidesma thwaitesianum (Phyllanthaceae, with the maximum amount detected in the SC-CO2 extract. These data indicate that SFE technology improves both quantity and quality of Antidesma thwaitesianum fruit extract. The findings added more reliability of using this technique to produce high added value products from this medicinal plant.

  10. The physico-chemical alteration of lovastatin and enhanced antioxidant effect of Bacillus subtilis fermented-red yeast rice product.

    Science.gov (United States)

    Gum, Sang Il; Nguyen, Phuc Anh; Lee, Jong Rok; Han, Yeong Hwan; Cho, Min Kyung

    2017-10-01

    Red yeast rice product (RYP) has been used as a food supplement because of its lipid lowering, and in food additives as a natural colorant. Lovastatin of RYP is a hypolipidemic commercial drug. To enhance the beneficial effects of RYP, we performed a bioconversion with Bacillus subtilis. This B. subtilis-fermentation process of RYP increased the ratio of the active open-hydroxyl acid form and the prodrug lactone form of lovastatin, which is a potent cholesterol synthesis inhibitor. 3(2H)-benzofuranone was newly produced in the fermented red yeast rice product (FRYP) as analyzed by GC-MS. FRYP increased the free radical scavenging activity compared with RYP. FRYP blocked xanthine oxidase (XO)-induced oxidative cytotoxicity and inhibited the H2O2-induced intracellular ROS in cells. This is the first study to illustrate that B. subtilis-fermented FRYP is useful for facilitating the alteration in the physico-chemical property of lovastatin and enhancing antioxidant activity, which may have greater pharmacological activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Design, synthesis and evaluation of some N-methylenebenzenamine derivatives as selective acetylcholinesterase (AChE) inhibitor and antioxidant to enhance learning and memory.

    Science.gov (United States)

    Shrivastava, Sushant K; Srivastava, Pavan; Upendra, T V R; Tripathi, Prabhash Nath; Sinha, Saurabh K

    2017-02-15

    Series of some 3,5-dimethoxy-N-methylenebenzenamine and 4-(methyleneamino)benzoic acid derivatives comprising of N-methylenebenzenamine nucleus were designed, synthesized, characterized, and assessed for their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) inhibitory, and antioxidant activity thereby improving learning and memory in rats. The IC50 values of all the compound along with standard were determined on AChE and BChE enzyme. The free radical scavenging activity was also assessed by in vitro DPPH (2,2-diphenyl-1-picryl-hydrazyl) and hydrogen peroxide radical scavenging assay. The selective inhibitions of all compounds were observed against AChE in comparison with standard donepezil. The enzyme kinetic study of the most active compound 4 indicated uncompetitive AChE inhibition. The docking studies of compound 4 exhibited the worthy interaction on active-site gorge residues Phe330 and Trp279 responsible for its high affinity towards AChE, whereas lacking of the BChE inhibition was observed due to a wider gorge binding site and absence of important aromatic amino acids interactions. The ex vivo study confirmed AChE inhibition abilities of compound 4 at brain site. Further, a considerable decrease in escape latency period of the compound was observed in comparison with standard donepezil through in vivo Spatial Reference Memory (SRM) and Spatial Working Memory (SWM) models which showed the cognition-enhancing potential of compound 4. The in vivo reduced glutathione (GSH) estimation on rat brain tissue homogenate was also performed to evaluate free radical scavenging activity substantiated the antioxidant activity in learning and memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Enhanced antioxidant defense after exogenous application of Ca ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... modifications in physiological, biochemical and molecular characteristics of plants (Bajji et al., 2001; ... decreases CO2 availability for photosynthesis, resulting in an imbalance between the generation and the ... in intracellular redox sensing and activation of antioxidant resistance mechanisms, among other ...

  13. Enhanced antioxidative responses of a salt-resistant wheat cultivar ...

    African Journals Online (AJOL)

    use

    2011-11-23

    Nov 23, 2011 ... Wheat cultivars capable of accumulating minerals under salt stress are of considerable interest for their potential to improve crop productivity and crop quality. This study addressed the role of antioxidative enzymes in the responses of a salt-resistant wheat cultivar Cang 6001 to high-salt stress compared to ...

  14. Determination of the presence of antioxidants deriving from sage and oregano extracts added to animal fat by means of assessment of the radical scavenging capacity by photochemiluminescence analysis.

    Science.gov (United States)

    Vichi, S; Zitterl-Eglseer, K; Jugl, M; Franz, C

    2001-04-01

    Herbs and their extracts with antioxidant capacity could be used directly as stabilisers of fat and indirectly as feed additives, in order to improve quality and shelf-life of meat and fat-containing food. In this work a sensitive analytical method is proposed for determination of the antioxidant activity measured by photochemiluminescence (PCL) in lard stabilised with extracts of sage (Salvia officinalis L.) or oreganum (Origanum vulgare L.). A prior step of purification of fat samples is required, in order to separate and concentrate the phenolics from lipidic substances. The method was validated by determination of recovery rate and repeatability. In addition fat samples originating from pigs fed with feed additives of Salviae folium or Origani herba were analysed to investigate the supposed antioxidative effects, that could increase the shelf-life of meat products. In contrast with lard mixed with extracts of sage or oregano, back fat samples originating from pigs fed with feed additives of the same herbs didn't show a higher antioxidant activity than the control group. On the one hand it seems possible to keep perishable fat-containing food longer by an addition of an extract of sage or oregano due to their antioxidative properties, on the other hand administration of feed additives of dried herbs to pigs had no effect on quality and shelf-life of fat obtained from these animals.

  15. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system.

    Science.gov (United States)

    Zhu, Zhu; Chen, Yanli; Shi, Guoqing; Zhang, Xueji

    2017-03-15

    The antioxidant activity of selenium (Se) detoxifies reactive oxygen species (ROS) in plants and animals. In the present study, we elucidated the mechanism underlying Se induced fruit development and ripening. Our study showed that foliar pretreatment with 1mgL-1 sodium selenate effectively delayed fruit ripening and maintained fruit quality. Gene expression studies revealed that the repression of ethylene biosynthetic genes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase decreased ethylene production and respiration rate. Moreover, Se treatment probably boosted the antioxidant defense system to reduce ROS generation and membrane damage. The enhanced antioxidative effect was attributed to higher glutathione content and increased activity of enzymes such as glutathione peroxidase and glutathione reductase. The upregulation of respiratory burst oxidase homologue genes in tomato fruit may also contribute to the enhanced antioxidative effect. Selenium treatment represents a promising strategy for delaying ripening and extending the shelf life of tomato fruit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Terpene constituents of the aerial parts, phenolic content, antibacterial potential, free radical scavenging and antioxidant activity of Callistemon citrinus (Curtis) Skeels (Myrtaceae) from Eastern Cape Province of South Africa.

    Science.gov (United States)

    Larayetan, Rotimi A; Okoh, Omobola O; Sadimenko, Alexander; Okoh, Anthony I

    2017-06-05

    Volatile oil from aromatic plants has been used by ancient Egyptians in embalming for the inhibition of bacterial growth and prevention of decay, Callistemon citrinus is used in traditional therapies for the treatment of bronchitis, cough, inflammation and as an antimicrobial herbs. This study examines the essential constituents of the volatile oils obtained from the aerial parts of the plant as well as its antioxidant activity, free radical scavenging, phenolic content and the antibacterial potential of the oils. A portion of 500 g, 250 g and 150 g of the leaves, flowers and stems of this plant respectively were subjected to hydro-distillation process for three hours. The oils collected from the various plant parts were immediately subjected to GC-MS analysis. The overall phenolic content of the leaves oil, radical scavenging, antibacterial action and antioxidant activities of the essential oils of both the leaves and flowers of Callistemon citrinus were determined using standard methods, with free radical DPPH and ABTS as a reference antioxidant. Analyses of the three oils revealed a total of twenty-six components for the leaves oil representing 96.84% of the total oil composition, forty-one components for the flowers oil accounting for 98.92% of the whole composition and ten components for the stem oil amounting to 99.98% of the entire oil constituents. The dominant compounds in the leaves oil were eucalyptol (48.98%) and α-terpineol (8.01%), while α-eudesmol (12.93%), caryophyllene (11.89%), (-)-bornyl-acetate (10.02%) and eucalyptol (8.11%) were the main constituents of the flowers oil. In the same vein, the leading constituents in the stems oil were eucalyptol (56.00%) and α-pinene (31.03%). The antioxidant capacities of both the leaves and flowers oils of the plant were evaluated and their IC 50 were (1.49 and 1.13) for DPPH and (0.14 and 0.03) for ABTS assay respectively. The antibacterial activities of the oils from the (leaves and flowers) were also

  17. Evaluation of antioxidant activity of two important memory enhancing medicinal plants Baccopa monnieri and Centella asiatica

    OpenAIRE

    Meena, Harsahay; Pandey, Hemant Kumar; Pandey, Pankaj; Arya, Mahesh Chand; Ahmed, Zakwan

    2012-01-01

    Background: Free radicals or highly reactive oxygen species are capable of inducing oxidative damage to human body. Antioxidants are the compounds which terminate the attack of reactive species and reduce the risk of diseases. Both Baccopa monnieri and Centella asiatica are used in treatment of brain disorders in humans and have almost similar effects. Objective: The study was conducted to determine the antioxidant properties of two well-known memory enhancer medicinal plants Baccopa mon...

  18. Scavenging of superoxide anion radical by chaparral.

    Science.gov (United States)

    Zang, L Y; Cosma, G; Gardner, H; Starks, K; Shi, X; Vallyathan, V

    1999-06-01

    Chaparral is considered to act as an antioxidant. However, the inhibitory effects of chaparral on specific radical species are not well understood. Using electron paramagnetic resonance (EPR) spectroscopy in combination with spin trapping techniques, we have found that chaparral scavenges superoxide anion radical (O2*-) in a dose-dependent manner. 5,5-dimethyl-lpyrroline-N-oxide (DMPO) was used as a spin trapping agent and the reaction of xanthine and xanthine oxidase as a source of O2*-. The kinetic parameters, IC50 and Vmax, for chaparral scavenging of O2*- were found to be 0.899 microg/mL and 8.4 ng/mL/sec, respectively. The rate constant for chaparral scavenging O2*- was found to be 1.22 x 10(6) g(-1) s(-1). Our studies suggest that the antioxidant properties of chaparral may involve a direct scavenging effect of the primary oxygen radical, O2*-.

  19. Increase in the free radical scavenging capability of bitter gourd by a heat-drying process.

    Science.gov (United States)

    Wei, Lu; Shaoyun, Wang; Shutao, Liu; Jianwu, Zhou; Lijing, Ke; Pingfan, Rao

    2013-12-01

    Bitter gourd (Momordica charantia Linn.) is widely regarded as one of the best remedy foods for diabetes. The positive effect of bitter gourd on diabetes has been attributed in part to the remarkable free radical scavenging activity of its boiled water extract from sun-dried fruits. It is well known that a heat process significantly influences the antioxidant activity of fresh fruits. However, the heat drying processes of bitter gourd have not been studied so far. Here, we show that the free radical scavenging capability of bitter gourd extract significantly increases after the heat drying process, while the content of flavonoids and phenols, which are generally regarded as the main antioxidant components in bitter gourd, remain unaffected. Furthermore, the content of free amino acids and the total reducing sugar were found to decrease with increasing browning index, indicating the progression of the Maillard reaction, products of which are known to possess significant antioxidant activity. Therefore, it suggests that Maillard reaction products may be the main contributors to the increase in antioxidant capability. Finally, the bitter gourd extract with the higher antioxidant activity, was shown to manifest a corresponding higher proliferation activity on NIT-1 beta-cells. These results suggest that controllable conditions in the heat-drying processing of fresh bitter gourd fruit is of significance for enhancing the total free radical scavenging capacity, beta-cell proliferation activity and possibly the anti-diabetic activity of this fruit.

  20. Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: oil recovery, radical scavenging antioxidant activity, and oxidation stability.

    Science.gov (United States)

    Samaram, Shadi; Mirhosseini, Hamed; Tan, Chin Ping; Ghazali, Hasanah Mohd; Bordbar, Sara; Serjouie, Alireza

    2015-04-01

    The present study aimed to investigate the effects of ultrasound-assisted extraction (UAE) condition on the yield, antioxidant activity and stability of the oil from papaya seed. The studied ultrasound variables were time, temperature, ultrasound power and solvent to sample ratio. The main goal was to optimise UAE condition providing the highest recovery of papaya seed oil with the most desirable antioxidant activity and stability. The interaction of ultrasound variables had the most and least significant effects on the antioxidant activity and stability, respectively. Ultrasound-assisted extraction provided a relatively high oil recovery (∼ 73%) from papaya seed. The strongest antioxidant activity was achieved by the extraction at the elevated temperature using low solvent to sample ratio. The optimum ultrasound extraction was set at the elevated temperature (62.5 °C) for 38.5 min at high ultrasound power (700 W) using medium solvent to sample ratio (∼ 7:1 v/w). The optimum point was practically validated. Copyright © 2014. Published by Elsevier Ltd.

  1. In silico modelling of thiazolidine derivatives with antioxidant potency: Models quantify the degree of contribution of molecular fragments towards the free radical scavenging ability

    Science.gov (United States)

    De, Biplab; Adhikari, Indrani; Nandy, Ashis; Saha, Achintya; Goswami, Binoy Behari

    2017-06-01

    Design and development of antioxidant supplements constitute an essential aspect of research in order to derive molecules that would help to combat the free radical invasion to the human body and curb oxidative stress related diseases. The present work deals with the development of in silico models for a series of thiazolidine derivatives having antioxidant potential. The objective of the work is to obtain models that would help to design new thazolidine derivatives based on substituent modification and thereby predict their activity profile. The QSAR model thus developed helps in quantification of the extent of contribution of the various molecular fragments towards the activity of the molecules, while the 3D pharmacophore model provides a brief idea of the essential molecular features that help the molecules to interact with the neighbouring free radicals. Both the models have been extensively validated which ensures their predictive ability as well the potential to search molecular databases for selection of thiazolidine derivatives with potent antioxidant activity. The models can thus be utilised effectively for database searching with the aim to isolate active antioxidants belonging to the thiazolidine group.

  2. Innovative phytosynthesized silver nanoarchitectures with enhanced antifungal and antioxidant properties

    Science.gov (United States)

    Ortan, Alina; Fierascu, Irina; Ungureanu, Camelia; Fierascu, Radu Claudiu; Avramescu, Sorin Marius; Dumitrescu, Ovidiu; Dinu-Pirvu, Cristina Elena

    2015-12-01

    While in the early era of nanotechnology, nanoparticles of noble metals were obtained through expensive methods, using toxic chemical reagents, in the last decade attempts are made to obtain the desired chemical composition, size, morphology, and other properties by eco and green synthesis, using plants. The aim of this paper is to compare two extraction methods (hydroalcoholic extraction and microwave extraction) used to phytosynthesize silver nanoparticles, in terms of nanoparticle (NP) morphology, antioxidant, and antifungal action, using an European native plant, Anthriscus cerefolium (L.) Hoffm. The extracts and the obtained NPs were characterized by modern analytical techniques (GC-MS, UV-Vis, SEM, TEM) and by phytochemical assays (total flavonoids, total terpenoids and total phenolic content). The antifungal activity (evaluated using the Kirby-Bauer method, against Aspergillus niger and Penicillium hirsutum) and the antioxidant activity (determined by the DPPH assay and a chemiluminescence assay) revealed notable differences between the samples, differences due to the extraction procedure followed. Also, preliminary studies regarding the stability and the toxicity of the nanoparticles are presented. By using the microwave-assisted extraction, not only smaller particles (less than 10 nm) were obtained, but also with better antifungal and antioxidant properties than the ones obtained by classical extraction.

  3. Functional beverage of Garcinia mangostana (mangosteen) enhances plasma antioxidant capacity in healthy adults.

    Science.gov (United States)

    Xie, Zhuohong; Sintara, Marsha; Chang, Tony; Ou, Boxin

    2015-01-01

    This study was to investigate the absorption and antioxidant effect of a mangosteen-based functional beverage in humans. The beverage contained mangosteen, aloe vera, green tea, and multivitamins. A randomized, double-blind, placebo-controlled clinical trial was conducted with generally healthy male and female subjects between 18 and 60 years of age. Ten men and 10 women participated in this study. Participants were randomly divided into two groups, treatment and placebo group. Participants received either a daily single dose (245 mL) of the beverage or a placebo. Blood samples were collected from each participant at time points 0, 1, 2, 4, and 6 h. The plasma samples were analyzed by LC/MS for α-mangostin and vitamins B2 and B5. Results indicated that the three analytes were bioavailable, with observed C max at around 1 h. The antioxidant capacity measured with the oxygen radical absorbance capacity (ORAC) assay was increased with a maximum effect of 60% after 1 h, and the elevated antioxidant level lasted at least 6 h. This study demonstrated the bioavailability of α-mangostin and B vitamins from a xanthone-rich beverage and the mechanisms of the increase in plasma antioxidant may be direct effects from antioxidants, enhancement of endogenous antioxidant activity through activation of Nrf2 pathway, and synergism of the antioxidants.

  4. Enhancement of phenolics, flavonoids and glucosinolates of Broccoli (Brassica olaracea, var. Italica as antioxidants in response to organic and bio-organic fertilizers

    Directory of Open Access Journals (Sweden)

    Abd El-Moniem M. Naguib

    2012-06-01

    Full Text Available A field experiment was carried out to study the effect of organic and bioorganic fertilizers on growth parameters, yield and the quality of two broccoli cultivars (Calabrese and Southern star. Bio-organic fertilizers gave better results for all vegetative growth parameters for Southern star cultivar compared to Calabrese cultivar. Total phenolic content (TPC, total flavonoid content (TFC and total glucosinolates content (TGsC were almost higher in Calabrese cultivar as a result of organic fertilizer treatment. The antioxidant activities of both cultivars were evaluated and Calabrese cultivar showed the higher1, 1-diphenyl-2-picrylhydrazyl DPPH. scavenging activity expressed as IC50 (its concentrations for 50% inhibition (16.56 μg/ml compared to Southern star (19.42 μg/ml. In addition, Calabrese cultivar showed the higher chelating power (75.36 μg/ml than Southern star (72.43 μg/ml at (30 μg/ml when the organic fertilizer was applied. The results indicated that there is a good margin for enhancing antioxidant compounds of broccoli for economic production using organic fertilization. This study indicated the potential application of broccoli as a potent natural source of antioxidants as nutraceuticals.

  5. Antioxidant Enriched Fractions from Zingiber Officinale Roscoe

    Directory of Open Access Journals (Sweden)

    Ismail Rahath Kubra

    2011-01-01

    Full Text Available Ginger rhizome (Zingiber officinale Roscoe has many diverse properties and medicinal values such as antioxidant potential combined with the properties of a spice. Dried ginger (DG were extracted with aqueous ethanol and freeze-dried. The extract was evaluated for antioxidant potential, using 1,1'-diphenyl-2-picryl-hydrazyl radical scavenging, antioxidant capacity and reducing power assays. DG extract was further fractionated into methanol (Mfr and water-soluble (Wfr fractions. The Mfr exhibited higher antioxidant capacity when compared to DG extract. Higher antioxidant potential of the methanol fraction may be due to the presence higher polyphenols and [6]-gingerol content. This suggests that alcoholic soluble fraction possess enormous scope to enhance the antioxidant potential when used as a supplement in various food as well as pharmaceutical formulations / products.

  6. 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants.

    Science.gov (United States)

    Yusuf, Mohammad; Fariduddin, Qazi; Ahmad, Aqil

    2011-11-01

    The objective of this study was to establish relationship between boron induced oxidative stress and antioxidant system in Vigna radiata plants and also to investigate whether brassinosteroids will enhance the level of antioxidant system that could confer tolerance to the plants from the boron induced oxidative stress. The mung bean (V. radiata cv. T-44) plants were administered with 0.50, 1.0 and 2.0 mM boron at 6 d stage for 7 d along with nutrient solution. At 13 d stage, the seedlings were sprayed with deionized water (control) or 10(-8) M of 28-homobrassinolide and plants were harvested at 21 d stage to assess growth, leaf gas-exchange traits and biochemical parameters. The boron treatments diminished growth, water relations and photosynthetic attributes along with nitrate reductase and carbonic anhydrase activity in the concentration dependent manner whereas, it enhanced lipid peroxidation, electrolyte leakage, accumulation of H(2)O(2) as well as proline, and various antioxidant enzymes in the leaves of mung bean which were more pronounced at higher concentrations of boron. However, the follow-up application of 28-homobrassinolide to the boron stressed plants improved growth, water relations and photosynthesis and further enhanced the various antioxidant enzymes viz. catalase, peroxidase and superoxide dismutase and content of proline. The elevated level of antioxidant enzymes as well as proline could have conferred tolerance to the B-stressed plants resulting in improved growth, water relations and photosynthetic attributes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-{kappa}B (RANK)

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi; Fujiwara, Yukio; Komohara, Yoshihiro; Lei, XiaoFeng; Ohnishi, Koji [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Suzuki, Hiroshi [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido (Japan); Kodama, Tatsuhiko [Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Mizuta, Hiroshi [Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan)

    2010-01-22

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, and their differentiation depends on macrophage colony-stimulating factor (M-CSF) and receptor activator nuclear factor kappa B (RANK) ligand. Class A scavenger receptor (SR-A) is one of the principal functional molecules of macrophages, and its level of expression declines during osteoclast differentiation. To investigate the role of SR-A in osteoclastogenesis, we examined pathological changes in femoral bone and the expression levels of osteoclastogenesis-related molecules in SR-A{sup -/-} mice. The femoral osseous density of SR-A{sup -/-} mice was higher than that of SR-A{sup +/+} mice, and the number of multinucleated osteoclasts was significantly decreased. An in vitro differentiation assay revealed that the differentiation of multinucleated osteoclasts from bone marrow-derived progenitor cells is impaired in SR-A{sup -/-} mice. Elimination of SR-A did not alter the expression level of the M-CSF receptor, c-fms; however, the expression levels of RANK and RANK-related osteoclast-differentiation molecules such as nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and microphthalmia-associated transcription factor (MITF) significantly decreased. Furthermore, acetylated low-density lipoprotein (AcLDL), an SR-A ligand, significantly increased the expression level of RANK and MITF during osteoclast differentiation. These data indicate that SR-A promotes osteoclastogenesis via augmentation of the expression level of RANK and its related molecules.

  8. Radical scavenging activity of lipophilized products from lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids.

    Science.gov (United States)

    Choo, Wee-Sim; Birch, Edward John

    2009-02-01

    Lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids using an immobilized lipase from Candida antarctica (E.C. 3.1.1.3) was conducted to evaluate the antioxidant activity of the lipophilized products as model systems for enhanced protection of unsaturated oil. The lipophilized products were identified using ESI-MS. Free radical scavenging activity was determined using the DPPH radical method. The polarity of the solvents proved important in determining the radical scavenging activity of the substrates. Ferulic acid showed much higher radical scavenging activity than cinnamic acid, which has limited activity. The esterification of cinnamic acid and ferulic acid with triolein resulted in significant increase and decrease in the radical scavenging activity, respectively. These opposite effects were due to the effect of addition of electron-donating alkyl groups on the predominant mechanism of reaction (hydrogen atom transfer or electron transfer) of a species with DPPH. The effect of esterification of cinnamic acid was confirmed using ethyl cinnamate which greatly enhances the radical scavenging activity. Although, compared to the lipophilized cinnamic acid product, the activity was lower. The radical scavenging activity of the main component isolated from lipophilized cinnamic acid product using solid phase extraction, monocinnamoyl dioleoyl glycerol, was as good as the unseparated mixture of lipophilized product. Based on the ratio of a substrate to DPPH concentration, lipophilized ferulic acid was a much more efficient radical scavenger than lipophilized cinnamic acid.

  9. Brahma Rasayana enhances in vivo antioxidant status in cold-stressed chickens (Gallus gallus domesticus).

    Science.gov (United States)

    Ramnath, V; Rekha, P S

    2009-06-01

    To evaluate the antioxidant status of chicken during cold stress and to investigate if there are any beneficial effects of Brahma Rasayana supplementation in cold stressed chicken. Activities of enzymatic and levels of non-enzymatic antioxidants in blood / serum and liver tissue were evaluated in chicken exposed to cold (4 +/- 10C and relative humidity of 40 +/- 5%, for six consecutive hours daily, for 5 or 10 days). The antioxidant properties of Brahma Rasayana (BR) supplementation (2 g/kg daily, orally) during cold stress was also studied. There was a significant (P < 0.05) decrease in antioxidant enzyme in the blood, such as, superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR), and serum reduced glutathione (GSH) in cold stressed chicken. Serum and liver lipid peroxidation levels were significantly (P < 0.05) higher in cold stressed untreated chickens when compared to the treated and unstressed groups. There was also a significant (P < 0.05) increase in the antioxidant enzymes in the blood, such as, catalase (CAT) and SOD, in the liver CAT and SOD, and in GPX and GR in BR-treated cold stressed chicken, when compared to the untreated controls. Results of the present study conclude that in chicken, BR supplementation during cold stress brings about enhanced actions of the enzymatic and non-enzymatic antioxidants, which nullify the undesired side effects of free radicals generated during cold stress.

  10. Free radical scavenging capacity and antioxidant activity of methanolic and ethanolic extracts of plum (Prunus domestica L. in both fresh and dried samples

    Directory of Open Access Journals (Sweden)

    Amin Morabbi Najafabad

    2014-09-01

    Full Text Available Objectives: Consumption of fruits, such as plums and prunes, is useful in treating blood circulation disorder, measles, digestive disorder, and prevention of cancer, diabetes, and obesity. The paper presents a description of antioxidant and antiradical capacity of plum (Prunus domestica L. in both fresh and dried samples. Materials and Methods: Samples were mixed with methanol and ethanol (as solvents and were extracted on magnetic shaker, separately. The experiments were carried out to measure the Total Phenolic Content (TPC, Total Flavonoid Content (TFC, Total Antioxidant Capacity (TAC, Reducing Power Assay (RPA, Chain Breaking Activity (CBA, and quantity of Malondialdehyde (MDA, 2,2-Diphenyl-1-Picrylhydrazyl (DPPH,Nitric Oxide (NO,Hydrogen peroxide (H2O2 and superoxide(O2- radicals inhibition. Results: The results showed that the highest values for the TPC, TFC,TAC, RPA, CBA, DPPH, and NO were related to ethanolic extractsof dried sample which showed statistically significant differences (p2O2 and O2-were related to ethanolic extracts of fresh sample. The correlations data were analyzed among all parameters and the TPC and TFC had a significant correlation (r2=0.977. Moreover, it was found that methanol was more successful in extraction procedure than ethanol (p

  11. Enhancement of wheat grain antioxidant activity by solid state fermentation with Grifola spp.

    Science.gov (United States)

    Postemsky, Pablo; Curvetto, Néstor

    2014-05-01

    Grifola frondosa, Grifola gargal, and Grifola sordulenta are edible and medicinal mushrooms with antioxidant properties. To obtain wheat flour (Wf ) with a higher antioxidant activity than the one exhibited by regular Wf, solid state fermentation (SSF) of wheat grains with mycelia of those Grifola spp. was used to obtain biotransformed wheat grain (BWG) flour. The methanolic extract of control Wf and BWG flour of G. gargal, G. sordulenta, and G. frondosa (GfWG, GgWG, and GsWG, respectively) were studied for their radical scavenging (RS) activity against 2,2-diphenyl-1-picrylhydracyl (DPPH) and their Fe(III) reducing power (RP). The values for RS-EC50 decreased in BWG flour, therefore presenting a higher antioxidant activity: GgWG (0.56 mg/mL), GfWG (0.81 mg/mL), and GsWG (5.80 mg/mL) in comparison to Wf (57.60 mg/mL). The antioxidant content for this RS activity in terms of ascorbic acid content (RS-EQAA) was highest in GfWG, followed by GgWG and GsWG (71.73, 14.46, and 3.02 mg/g, respectively) and lowest in Wf (0.25 mg/g). The RP-EC50 values in GgWG, GfWG, and GsWG were low (0.55, 0.64, and 4.20 mg/mL, respectively) with respect to Wf (55.00 mg/mL). Compared with Wf (0.56 mg/g), the RP capacity in terms of ascorbic acid content (RP-EQAA) was very high in GfWG (193.67 mg/g) followed by GgWG and GsWG (31.42 and 8.74 mg/g, respectively). The high content in gallic acid equivalents was consistent with RS-EQ(AA) and RP-EQ(AA) contents. TLC revealed that antioxidant activity in BWG could be related to the presence of phenolic compounds. Thus, a valuable food alternative can easily be obtained with wheat grains, that is, by markedly increasing their antioxidant value through SSF with Grifola spp.

  12. Artesunate Reduces Serum Lipopolysaccharide in Cecal Ligation/Puncture Mice via Enhanced LPS Internalization by Macrophages through Increased mRNA Expression of Scavenger Receptors

    Directory of Open Access Journals (Sweden)

    Bin Li

    2014-01-01

    Full Text Available Innate immunity is the first line of defense in human beings against pathogen infection; monocytes/macrophages are the primary cells of the innate immune system. Recently, macrophages/monocytes have been discovered to participate in LPS clearance, and the clearance efficiency determines the magnitude of the inflammatory response and subsequent organ injury. Previously, we reported that artesunate (AS protected sepsis mice against heat-killed E. coli challenge. Herein, we further confirmed that AS protected cecal ligation/puncture (CLP sepsis mice. Its protection on sepsis mice was related to not only reduction of pro-inflammatory cytokines and serum LPS levels but also improvement of liver function. Based on the fact that AS did not directly bind and neutralize LPS, we hypothesized that the reduction of serum LPS level might be related to enhancement of LPS internalization and subsequent detoxification. Our results showed that AS increased FITC-LPS internalization by peritoneal macrophage and liver Kupffer cell, but enhancement of LPS internalization by AS was not related to the clathrin-dependent pathway. However, AS induced mRNA expression of important scavenger receptors (SRs; SR-A and MARCO mRNA expression was upregulated, suggesting that AS enhancement of LPS internalization and inhibition of pro-inflammatory cytokines was related to changes in mRNA expression of SRs.

  13. Arctigenin enhances swimming endurance of sedentary rats partially by regulation of antioxidant pathways.

    Science.gov (United States)

    Wu, Ruo-ming; Sun, Yan-yan; Zhou, Ting-ting; Zhu, Zhi-yuan; Zhuang, Jing-jing; Tang, Xuan; Chen, Jing; Hu, Li-hong; Shen, Xu

    2014-10-01

    Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan found in traditional Chinese herbs, has been determined to exhibit a variety of pharmacological activities, including anti-tumor, anti-inflammation, neuroprotection, and endurance enhancement. In the present study, we investigated the antioxidation and anti-fatigue effects of arctigenin in rats. Rat L6 skeletal muscle cell line was exposed to H2O2 (700 μmol/L), and ROS level was assayed using DCFH-DA as a probe. Male SD rats were injected with arctigenin (15 mg·kg(-1)·d(-1), ip) for 6 weeks, and then the weight-loaded forced swimming test (WFST) was performed to evaluate their endurance. The levels of antioxidant-related genes in L6 cells and the skeletal muscles of rats were analyzed using real-time RT-PCR and Western blotting. Incubation of L6 cells with arctigenin (1, 5, 20 μmol/L) dose-dependently decreased the H2O2-induced ROS production. WFST results demonstrated that chronic administration of arctigenin significantly enhanced the endurance of rats. Furthermore, molecular biology studies on L6 cells and skeletal muscles of the rats showed that arctigenin effectively increased the expression of the antioxidant-related genes, including superoxide dismutase (SOD), glutathione reductase (Gsr), glutathione peroxidase (GPX1), thioredoxin (Txn) and uncoupling protein 2 (UCP2), through regulation of two potential antioxidant pathways: AMPK/PGC-1α/PPARα in mitochondria and AMPK/p53/Nrf2 in the cell nucleus. Arctigenin efficiently enhances rat swimming endurance by elevation of the antioxidant capacity of the skeletal muscles, which has thereby highlighted the potential of this natural product as an antioxidant in the treatment of fatigue and related diseases.

  14. Antioxidant therapy enhances pulpal healing in bleached teeth.

    Science.gov (United States)

    Lima, Adriano Fonseca; Marques, Marcelo Rocha; Soares, Diana Gabriela; Hebling, Josimeri; Marchi, Giselle Maria; de Souza Costa, Carlos Alberto

    2016-02-01

    The purpose of this study was to evaluate the histopathological effects of an antioxidant therapy on the pulp tissue of rat teeth exposed to a bleaching gel with 35% hydrogen peroxide. Forty rats were subjected to oral ingestion by gavage of distilled water (DW) or ascorbic acid (AA) 90 min before the bleaching therapy. For the bleaching treatment, the agent was applied twice for 5 min each to buccal surfaces of the first right mandibular molars. Then, the animals were sacrificed at 6 hr, 24 hr, 3 day, or 7 day post-bleaching, and the teeth were processed for microscopic evaluation of the pulp tissue. At 6 hr, the pulp tissue showed moderate inflammatory reactions in all teeth of both groups. In the DW and AA groups, 100% and 80% of teeth exhibited pulp tissue with significant necrosis and intense tissue disorganization, respectively. At 24 hr, the AA-treated group demonstrated a greater regenerative capability than the DW group, with less intense inflammatory reaction and new odontoblast layer formation in 60% of the teeth. For up to the 7 day period, the areas of pulpal necrosis were replaced by viable connective tissue, and the dentin was underlined by differentiated odontoblast-like cells in most teeth of both groups. A slight reduction in initial pulpal damage during post-bleaching was promoted by AA therapy. However, the pulp tissue of AA-treated animals featured faster regenerative potential over time.

  15. Antioxidant therapy enhances pulpal healing in bleached teeth

    Directory of Open Access Journals (Sweden)

    Adriano Fonseca Lima

    2016-02-01

    Full Text Available Objectives The purpose of this study was to evaluate the histopathological effects of an antioxidant therapy on the pulp tissue of rat teeth exposed to a bleaching gel with 35% hydrogen peroxide. Materials and Methods Forty rats were subjected to oral ingestion by gavage of distilled water (DW or ascorbic acid (AA 90 min before the bleaching therapy. For the bleaching treatment, the agent was applied twice for 5 min each to buccal surfaces of the first right mandibular molars. Then, the animals were sacrificed at 6 hr, 24 hr, 3 day, or 7 day post-bleaching, and the teeth were processed for microscopic evaluation of the pulp tissue. Results At 6 hr, the pulp tissue showed moderate inflammatory reactions in all teeth of both groups. In the DW and AA groups, 100% and 80% of teeth exhibited pulp tissue with significant necrosis and intense tissue disorganization, respectively. At 24 hr, the AA-treated group demonstrated a greater regenerative capability than the DW group, with less intense inflammatory reaction and new odontoblast layer formation in 60% of the teeth. For up to the 7 day period, the areas of pulpal necrosis were replaced by viable connective tissue, and the dentin was underlined by differentiated odontoblast-like cells in most teeth of both groups. Conclusions A slight reduction in initial pulpal damage during post-bleaching was promoted by AA therapy. However, the pulp tissue of AA-treated animals featured faster regenerative potential over time

  16. Enhanced antioxidant defense after exogenous application of Ca 2+ ...

    African Journals Online (AJOL)

    Both of these nutrients play an important role in ameliorating drought stress in crop plants. This experiment was designed to study whether exogenous application of Ca2+ and K+ before the drought could enhance the potential of plants to survive under limiting water conditions. Brassica napus L. cv Bulbul-98 seedlings ...

  17. Characteristics and enhanced antioxidant activity of glycated Morchella esculenta protein isolate

    Directory of Open Access Journals (Sweden)

    Qiang ZHANG

    Full Text Available Abstract Morchella esculenta (L Pers. is a highly valued edible and medicinal fungus that remains underutilized. For this study, the effects of glycation treatment on antioxidant activity and characteristics of the M. esculenta protein isolate (MPI were investigated via the Maillard reaction. Conjugation between MPI and xylose was proven via UV-vis, FT-IR, intrinsic fluorescence analysis, and SDS-PAGE. Amino acid analysis revealed involvement of lysine, arginine and tyrosine in MPI, forming a covalent cross-link with xylose. Differential scanning calorimetry (DSC results showed that glycated MPI (MPIG possesses a more favorable thermal stability compared to native MPI (MPIN, heated MPI (MPIH and an unheated mixture of MPI and xylose (MPI-XM. MPIG exhibited significantly enhanced antioxidant activity compared to MPIN, MPIH, and MPI-XM. These results indicate MPIG can serve as a promising novel source of nutraceutical and functional ingredients that exert antioxidant activity.

  18. Reverse-phase HPLC separation of hemp seed (Cannabis sativa L.) protein hydrolysate produced peptide fractions with enhanced antioxidant capacity.

    Science.gov (United States)

    Girgih, Abraham T; Udenigwe, Chibuike C; Aluko, Rotimi E

    2013-03-01

    Hemp seed protein hydrolysate (HPH) was produced through simulated gastrointestinal tract (GIT) digestion of hemp seed protein isolate followed by partial purification and separation into eight peptide fractions by reverse-phase (RP)-HPLC. The peptide fractions exhibited higher oxygen radical absorbance capacity as well as scavenging of 2,2-diphenyl-1-picrylhydrazyl, superoxide and hydroxyl radicals when compared to HPH. Radical scavenging activities of the fractionated peptides increased as content of hydrophobic amino acids or elution time was increased, with the exception of hydroxyl radical scavenging that showed decreased trend. Glutathione (GSH), HPH and the RP-HPLC peptide fractions possessed low ferric ion reducing ability but all had strong (>60 %) metal chelating activities. Inhibition of linoleic acid oxidation by some of the HPH peptide fractions was higher at 1 mg/ml when compared to that observed at 0.1 mg/ml peptide concentration. Peptide separation resulted in higher concentration of some hydrophobic amino acids (especially proline, leucine and isoleucine) in the fractions (mainly F5 and F8) when compared to HPH. The elution time-dependent increased concentrations of the hydrophobic amino acids coupled with decreased levels of positively charged amino acids may have been responsible for the significantly higher (p < 0.05) antioxidant properties observed for some of the peptide fractions when compared to the unfractionated HPH. In conclusion, the antioxidant activity of HPH after simulated GIT digestion is mainly influenced by the amino acid composition of some of its peptides.

  19. Vitamin C and E Supplements Enhance the Antioxidant Capacity of Erythrocytes Obtained from Aged Rats.

    Science.gov (United States)

    Xiong, Yanlian; Xiong, Yanlei; Zhou, Shuai; Sun, Yanan; Zhao, Yuqi; Ren, Xiaotong; Zhang, Yingfang; Zhang, Naili

    2017-04-01

    The main purpose of the present study was to investigate the effects of vitamin C and E supplements on the antioxidant capacity of erythrocytes obtained from young and aged rats. Male Wistar rats aged 3 and 24 months were used. Vitamins C and E were injected at doses of 200 mg/kg (day) intraperitoneally in young and aged groups. The antioxidant capacity, oxidant stress parameters, and deformability of red blood cells collected from different age stages were evaluated. An in vitro oxidation system was constructed to explore the mechanisms of antioxidant capacity change in the vitamin treatment groups. Treatment with vitamins C and E can effectively restore the antioxidant capacity and deformability of red blood cells (RBCs) in aged rats. Under in vitro oxidative conditions, an age-dependent decline in the influx rate of L-cysteine was observed. This was significantly improved following treatment with vitamins C and E. We present evidence of an improvement in the antioxidant capacity of RBCs by treatment with vitamins C and E in aged rats. These observations also suggest that treatment with vitamins C and E improves glutathione synthesis by enhancing the influx rate of L-cysteine through the modification of membrane proteins and lipids.

  20. Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity.

    Science.gov (United States)

    Garg, Neera; Bhandari, Purnima

    2016-09-01

    Salinity is the major environmental constraint that affects legume productivity by inducing oxidative stress. Individually, both silicon (Si) nutrition and mycorrhization have been reported to alleviate salt stress. However, the mechanisms adopted by both in mediating stress responses are poorly understood. Thus, pot trials were undertaken to evaluate comparative as well as interactive effects of Si and/or arbuscular mycorrhiza (AM) in alleviating NaCl toxicity in modulating oxidative stress and antioxidant defence mechanisms in two Cicer arietinum L. (chickpea) genotypes-HC 3 (salt-tolerant) and CSG 9505 (salt-sensitive). Plants subjected to different NaCl concentrations (0-100 mM) recorded a substantial increase in the rate of superoxide radical (O2 (·-)), H2O2, lipoxygenase (LOX) activity and malondialdehyde (MDA) content, which induced leakage of ions and disturbed Ca(2+)/Na(+) ratio in roots and leaves. Individually, Si and AM reduced oxidative burst by strengthening antioxidant enzymatic activities (superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPOX)). Si was relatively more efficient in reducing accumulation of stress metabolites, while mycorrhization significantly up-regulated antioxidant machinery and modulated ascorbate-glutathione (ASA-GSH) cycle. Combined applications of Si and AM complemented each other in reducing reactive oxygen species (ROS) build-up by further enhancing the antioxidant defence responses. Magnitude of ROS-mediated oxidative burden was lower in HC 3 which correlated strongly with more effective AM symbiosis, better capacity to accumulate Si and stronger defence response when compared with CSG 9505. Study indicated that Si and/or AM fungal amendments upgraded salt tolerance through a dynamic shift from oxidative destruction towards favourable antioxidant defence system in stressed chickpea plants.

  1. Scavenging Effects of Dexrazoxane on Free Radicals

    Science.gov (United States)

    Junjing, Zhang; Yan, Zhao; Baolu, Zhao

    2010-01-01

    Dexrazoxane (ICRF-187) has been clinically used to reduce doxorubicin-induced cardiotoxicity for more than 20 years. It has been proposed that dexrazoxane may act through its rings-opened hydrolysis product ADR-925, which can either remove iron from the iron-doxorubicin complex or bind to free iron, thus preventing iron-based oxygen radical formation. However, it is not known whether the antioxidant actions of dexrazoxane are totally dependent on its metabolization to its rings-opened hydrolysis product and whether dexrazoxane has any effect on the iron-independent oxygen free radical production. In this study, we examined the scavenging effect of dexrazoxane on hydroxyl, superoxide, lipid, DPPH and ABTS+ free radicals in vitro solution systems. The results demonstrated that dexrazoxane was an antioxidant that could effectively scavenge these free radicals and the scavenging effects of dexrazoxane did not require the enzymatic hydrolysis. In addition, dexrazoxane was capable to inhibit the generation superoxide and hydroxyl radicals in iron free reaction system, indicating that the antioxidant properties of dexrazoxane were not solely dependent on iron chelation. Thus the application of dexrazoxane should not be limited to doxorubicin-induced cardiotoxicity. Instead, as an effective antioxidant that has been clinically proven safe, dexrazoxane may be used in a broader spectrum of diseases that are known to be benefited by antioxidant treatments. PMID:21103033

  2. Chemical Elicitor-Induced Modulation of Antioxidant Metabolism and Enhancement of Secondary Metabolite Accumulation in Cell Suspension Cultures of Scrophularia kakudensis Franch

    Directory of Open Access Journals (Sweden)

    Abinaya Manivannan

    2016-03-01

    Full Text Available Scrophularia kakudensis is an important medicinal plant with pharmaceutically valuable secondary metabolites. To develop a sustainable source of naturaceuticals with vital therapeutic importance, a cell suspension culture was established in S. kakudensis for the first time. Friable calli were induced from the leaf explants cultured on a Murashige and Skoog (MS medium containing 3.0 mg·L−1 6-benzyladenine (BA in a combination with 2 mg·L−1 2,4-dichlorophenoxy acetic acid (2,4-D. From the callus cultures, a cell suspension culture was initiated and the cellular differentiation was investigated. In addition, the effect of biotic elicitors such as methyl jasmonate (MeJa, salicylic acid (SA, and sodium nitroprusside (SNP on the accumulation of secondary metabolites and antioxidant properties was demonstrated. Among the elicitors, the MeJa elicited the accumulation of total phenols, flavonoids, and acacetin, a flavonoid compound with multiple pharmaceutical values. Similarly, the higher concentrations of the MeJa significantly modulated the activities of antioxidant enzymes and enhanced the scavenging potentials of free radicals of cell suspension extracts. Overall, the outcomes of this study can be utilized for the large scale production of pharmaceutically important secondary metabolites from S. kakudensis through cell suspension cultures.

  3. Chemical Elicitor-Induced Modulation of Antioxidant Metabolism and Enhancement of Secondary Metabolite Accumulation in Cell Suspension Cultures of Scrophularia kakudensis Franch.

    Science.gov (United States)

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2016-03-18

    Scrophularia kakudensis is an important medicinal plant with pharmaceutically valuable secondary metabolites. To develop a sustainable source of naturaceuticals with vital therapeutic importance, a cell suspension culture was established in S. kakudensis for the first time. Friable calli were induced from the leaf explants cultured on a Murashige and Skoog (MS) medium containing 3.0 mg·L(-1) 6-benzyladenine (BA) in a combination with 2 mg·L(-1) 2,4-dichlorophenoxy acetic acid (2,4-D). From the callus cultures, a cell suspension culture was initiated and the cellular differentiation was investigated. In addition, the effect of biotic elicitors such as methyl jasmonate (MeJa), salicylic acid (SA), and sodium nitroprusside (SNP) on the accumulation of secondary metabolites and antioxidant properties was demonstrated. Among the elicitors, the MeJa elicited the accumulation of total phenols, flavonoids, and acacetin, a flavonoid compound with multiple pharmaceutical values. Similarly, the higher concentrations of the MeJa significantly modulated the activities of antioxidant enzymes and enhanced the scavenging potentials of free radicals of cell suspension extracts. Overall, the outcomes of this study can be utilized for the large scale production of pharmaceutically important secondary metabolites from S. kakudensis through cell suspension cultures.

  4. In vitro free radical scavenging activity of Ixora coccinea L

    Directory of Open Access Journals (Sweden)

    Moni Rani Saha

    2008-06-01

    Full Text Available Antioxidant activity of the methanol extract of Ixora coccinea L. was determined by DPPH free radical scavenging assay, reducing power and total antioxidant capacity using phosphomolybdenum method. Preliminary phytochemical screening revealed that the extract of the flower of I. coccinea possesses flavonoids, steroids and tannin materials. The extract showed significant activities in all antioxidant assays compared to the standard antioxidant in a dose dependent manner and remarkable activities to scavenge reactive oxygen species (ROS may be attributed to the high amount of hydrophilic phenolics. In DPPH radical scavenging assay the IC50 value of the extract was found to be 100.53 μg/mL while ascorbic acid had the IC50 value 58.92 μg/mL. Moreover, I. coccinea extract showed strong reducing power and total antioxidant capacity.

  5. Antioxidant potential of all-trans retinoic acid (ATRA) and enhanced activity of liposome encapsulated ATRA against inflammation and tumor-directed angiogenesis.

    Science.gov (United States)

    Siddikuzzaman; Grace, V M Berlin

    2013-02-01

    The purpose of this study was to investigate whether all-trans retinoic acid (ATRA) has antioxidant property. The study was also focused on its inhibitory effect on the acute and chronic inflammation and tumor-associated capillary formation in terms of angiogenesis in C57BL/6 mice after incorporated in liposome composed of distearoylphosphatidylcholine (DSPC/cholesterol). ATRA possesses a number of important biologic activities including oncostatic, antioxidant and immunostimulatory actions. Our study was designed to evaluate the antioxidant activity of free ATRA by nitric oxide scavenging, superoxide radical scavenging, hydroxyl radical scavenging and lipid peroxide scavenging assays. The ATRA showed significant scavenging activities in all these antioxidant assays comparable to the standard antioxidant. We have also evaluated the activity of encapsulated ATRA against anti-inflammatory activity in C57BL/6 mice. The paw oedema inhibition was found in carrageenan model as 55.56% and 66.67% for free ATRA and encapsulated ATRA treatment respectively and for formaldehyde model it was found to be 60.87% and 69.57% respectively compared with saline treated control mice. Encapsulated ATRA inhibited the tumor-associated capillary formation in mice induced by highly metastatic B16F10 melanoma cells significantly than the free ATRA did. In this study the inhibition of tumor-directed capillary formation was found to be 56.25% and 62.50% for free ATRA and encapsulated ATRA treatment respectively. In conclusion, ATRA showed a significant antioxidant property in vitro. Free ATRA has anti-inflammatory activity as proved by us in animal model of acute and chronic inflammation and antiangiogenesis activity. Furthermore, its activity was boosted by encapsulation in liposome.

  6. The use of fruit extracts for production of apple chips with enhanced antioxidant activity

    Science.gov (United States)

    Tarko, Tomasz; Duda-Chodak, Aleksandra; Semik-Szczurak, Dorota

    Style and pace of life make consumers more willing to reach for snack products. This group of processed food includes, among others, fruit chips. Due to the increasing incidence of diseases associated with the excessive exposure to free radicals foods enriched with antioxidant compounds, eg. polyphenols, can be introduced into the sale. The aim of the study was to use the fruit extracts for the production of apple chips with enhanced antioxidant activity. ‘Golden Delicious’ variety of apple fruit was used to produce chips. Apple chips were prepared by slicing, soaking in a sugar solution and pre-drying in a microwave oven. Chips were enriched with extracts prepared from fruits of chokeberry, five-flavor berry, Cornelian cherry, woodland hawthorn, goji berry, Japanese quince and cranberry microcarpa. For this purpose, pre-dried apple slices were soaked (5 min) in ethanolic extract of fruits and then dried to achieve a 5% moisture content. Chips were sensory evaluated and their antioxidant activity and total polyphenols content were determined. All enriched apple chips were characterized by high antioxidant activity and a relatively high value of total polyphenols content. Chips soaked in extracts of five-flavor berry, cranberry and goji berry were characterized by the highest antioxidant potential. Samples obtained by using chokeberry and Cornelian cherry extracts showed the highest content of polyphenols. High sensory attractiveness of enriched chips was also showed. The chips with the addition of fiveflavor berry extract were exceptions. Their taste was not acceptable. Fruit extracts are a valuable material for chips enrichment. Taking into account all the analyzed differentiators, extracts of Japanese quince, goji berry and woodland hawthorn were found to be the best enriching additives. The chips soaked in extract of five-flavor berry, despite their high antioxidant activity, were disqualified due to very low score of sensory evaluation.

  7. Enhancing the quality and lipid stability of chicken nuggets using natural antioxidants.

    Science.gov (United States)

    Arshad, Muhammad Sajid; Imran, Ali; Nadeem, Muhammad Tahir; Sohaib, Muhammad; Saeed, Farhan; Anjum, Faqir Muhammad; Kwon, Joong-Ho; Hussain, Shahzad

    2017-06-08

    Current day consumers prefer natural antioxidants to synthetic antioxidants because they are more active. However, the activity generally depends on the specific condition and composition of food. The aim of this study was to investigate the effect of wheat germ oil and α-lipoic acid on the quality characteristics, antioxidant status, fatty acid profile, and sensory attributes of chicken nuggets. Six types of diets were prepared for feeding the chickens to evaluate the quality of nuggets made from the leg meat of these experimental animals. These included control, diet enriched with wheat germ oil (WGO), which is a rich natural source of α-tocopherol (AT), diet with added AT or α-lipoic acid (ALA), diet with a combination of either ALA and WGO (ALA + WGO) or ALA and synthetic AT (ALA + AT). ALA has great synergism with synthetic as well as natural AT (WGO). The diet with WGO and ALA showed the best potential with respect to both antioxidant activity and total phenolic content. HPLC results revealed that the chicken nuggets made from WGO + ALA group showed maximum deposition of AT and ALA. The stability of the nuggets from control group was found to be significantly lower than that of nuggets from the WGO + ALA group. Total fatty acid content too was higher in the nuggets from this group. The poly unsaturated fatty acids (PUFA) were found to be higher in the nuggets from the groups fed with a combination of natural and synthetic antioxidants. It is concluded that the combination of natural and synthetic antioxidants in the animal feed exerts a synergistic effect in enhancing the stability and quality of chicken nuggets.

  8. Quenching of singlet oxygen by natural and synthetic antioxidants and assessment of electronic UV/Visible absorption spectra for alleviating or enhancing the efficacy of photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Kaneez Fatima

    2016-02-01

    Full Text Available Photodynamic therapy (PDT is one of the methods involved in cancer therapy exploiting singlet oxygen as a weapon to kill cancer cells. Singlet oxygen, a bizarre reactive oxygen species as it is not related to electron transfer to O2 but it is one of the most active intermediate involved in biochemical reactions as it directly reacts with all the major macromolecules like DNA, protein, lipids etc, various photosensitized oxidations and in the photodegradation of dyes and polymers. Recent studies about the usage of antioxidant along with the photo-sensitizer involved in photodynamic therapy have shown concentration- dependent dual behavior like usually it retards the efficacy of PDT but at a higher dose mostly, it actually enhances the damaging effect of PDT. The natural and synthetic antioxidants are being used in our day to day life in order to increase the shelf life of various food ingredients and processed foods. In this paper, we have compared natural and synthetic antioxidants along with the known singlet oxygen quencher (DABCO in order to understand the quenching potential of singlet oxygen (1O2 which is lowest electronically excited state of molecular oxygen. The singlet oxygen can be artificially generated through various methods such as sunlight, phosphate, ozonides, NaOCl and H2O2 etc. We have studied the mechanisms of the few antioxidant effects on the bleaching of RNO linked with the energy decay of 1O2 produced by the Mallet reaction (H2O2+HOCl and #8200; and #8594; and #8200;HCl+H2O+1O2. beta-Carotene, and #945;-Tocopherol, Ascorbic acid and Quercetin exhibited best dose-dependent singlet quenching ranging from 92.3 to 56.5 % at 100 and #956;M among others. Overall singlet oxygen is a major concern of light-related properties so we have analyzed the theoretical aspect of electronic UV/visible absorption spectra of the antioxidants studied through ZINDO CI semi-empirical Hamiltonian method. We have compared only the first singlet

  9. Rol genes enhance the biosynthesis of antioxidants in Artemisia carvifolia Buch.

    Science.gov (United States)

    Dilshad, Erum; Ismail, Hammad; Haq, Ihsan-Ul-; Cusido, Rosa Maria; Palazon, Javier; Ramirez-Estrada, Karla; Mirza, Bushra

    2016-06-02

    The secondary metabolites of the Artemisia genus are well known for their important therapeutic properties. This genus is one of the valuable sources of flavonoids and other polyphenols, but due to the low contents of these important metabolites, there is a need to either enhance their concentration in the original plant or seek alternative sources for them. The aim of the current study was to detect and enhance the yield of antioxidant compounds of Artemisia carvifolia Buch. HPLC analysis was performed to detect the antioxidants. With the aim of increasing flavonoid content, Rol gene transgenics of A. carvifolia were established. Two genes of the flavonoid biosynthetic pathway, phenylalanine ammonia-lyase and chalcone synthase, were studied by real time qPCR. Antioxidant potential was determined by performing different antioxidant assays. HPLC analysis of wild-type A. carvifolia revealed the presence of flavonoids such as caffeic acid (30 μg/g DW), quercetin (10 μg/g DW), isoquercetin (400 μg/g DW) and rutin (300 μg/g DW). Compared to the untransformed plants, flavonoid levels increased 1.9-6-fold and 1.6-4-fold in rol B and rol C transgenics, respectively. RT qPCR analysis showed a variable expression of the flavonoid biosynthetic genes, including those encoding phenylalanine ammonia-lyase and chalcone synthase, which were found to be relatively more expressed in transformed than wild-type plants, thus correlating with the metabolite concentration. Methanolic extracts of transgenics showed higher antioxidant capacity, reducing power, and protection against free radical-induced DNA damage. Among the transgenic plants, those harboring rol B were slightly more active than the rol C-transformants. As well as demonstrating the effectiveness of rol genes in inducing plant secondary metabolism, this study provides insight into the molecular dynamics of the flavonoid accumulation pattern, which correlated with the expression of biosynthetic genes.

  10. Enhanced photocatalytic reduction reaction over Bi(3+)-TiO(2) nanoparticles in presence of formic acid as a hole scavenger.

    Science.gov (United States)

    Rengaraj, S; Li, X Z

    2007-01-01

    A series of Bi(3+)-doped TiO(2) (Bi(3+)-TiO(2)) catalysts with a doping concentration up to 2wt% were prepared by a sol-gel method. The prepared photocatalysts were characterized by different means to determine their chemical composition, surface structure and light absorption properties. The photocatalytic activity of different Bi(3+)-TiO(2) catalysts was evaluated in the photocatalytic reduction of nitrate in aqueous solution under UV illumination. In the experiments, formic acid was used as a hole scavenger to enhance the photocatalytic reduction reaction. The experiments demonstrated that nitrate was effectively degraded in aqueous Bi(3+)-TiO(2) suspension by more than 83% within 150min, while the pH of the solution increased from 3.19 to 5.83 due to the consumption of formic acid. The experimental results indicate that the presence of Bi(3+) in TiO(2) catalysts substantially enhances the photocatalytic reaction of nitrate reduction. It was found that the optimal dosage of 1.5wt% Bi(3+) in TiO(2) achieved the fastest reaction of nitrate reduction under the experimental condition. Bismuth ions deposit on the TiO(2) surface behaves as sites where electrons accumulate. Better separation of electrons and holes on the modified TiO(2) surface allows more efficient channeling of the charge carriers into useful reduction and oxidation reactions rather than recombination reactions. Two intermediate products of nitrite and ammonia during the reaction were also monitored to explore the possible mechanisms of photoluminescence quenching and photocatalytic reduction in the context of donor-acceptor interaction with electron trapping centers.

  11. Enhancement of Antioxidant Enzymes Activities, Drought Stress Tolerances and Quality of Potato Plants as Response to Algal Foliar Application.

    Science.gov (United States)

    Abd El Baky, Hanaa H; Nofal, Osama A; El Baroty, Gamal S

    2016-01-01

    Different types of environmental stress may induce several physiological, biochemical and molecular responses in several crop plants. According to a patent study, several types of low antioxidant defense compounds and the activity of various antioxidant defense enzymes are induced in plants grown under various biotic and abiotic stress factors. In this work, the responses of potatoes plant treated with algae extract to drought stress were examined by evaluating the crop yield of tuber, cellular biological compounds (total carbohydrates and proteins), mineral composition and enzyme and non-enzyme antioxidant systems and total oxidative compounds. The yield of tuber, concentration of low antioxidant defense compounds (glutathione, ascorbate, carotenoids, total phenol, flavonoids and tocopherols) and the activity of various antioxidant defense enzymes (catalase CAT; peroxidase POD; ascorbate peroxidase APX and superoxide dismutase SOD) in tuber of treated potato plants with algae extract were significantly increased compared with that in non-treated plants. In addition, essential elements: Fe, K, Ca, Mg and P were accumulated at high concentration in treated plant than that in untreated plants. The screening of antioxidant activity of the ethanolic extract of tubers potatoes treated with algae extracts using the di-(phenyl)-(2,4,6- trinitrophenyl) iminoazanium radical (DPPH) assay radical-scavenging showed an appreciable reduction of the stable radical DPPH with an IC50 of 75 µg/ml. The results suggest that the algae foliar extracts application can improve non-enzymatic and enzymatic antioxidant defense systems in potatoes plant cultivated under drought stress conditions, and it may be recommended for application in arid and semiarid regions.

  12. Engineering polypyrrole nanotubes by 100 MeV Si9+ ion beam irradiation: enhancement of antioxidant activity.

    Science.gov (United States)

    Upadhyay, J; Kumar, A

    2013-12-01

    In this work, the effect of 100 MeV Si(9+) ion beam with four different fluences on antioxidant and structural properties of polypyrrole nanotubes has been investigated. Polypyrrole nanotubes have been synthesized by reactive self degrade template method. Fragmentation of the polypyrrole nanotubes at higher fluence is revealed from the high resolution transmission electron micrograph (HRTEM) and X-ray diffraction (XRD) results. The decrease in characteristics band of polypyrrole in Fourier transmission of infrared spectra (FTIR) spectra suggests the main chain scission of polypyrrole during irradiation. The free radical scavenging activity of pristine and irradiated samples are evaluated by using α, α-diphenyl-β-picrylhydrazyl (DPPH) assay. The decline of the UV-visible absorbance at 516 nm suggests the neutralization of DPPH free radicals through the reaction with polypyrrole. Significant increase in antioxidant activity of polypyrrole nanotubes is observed with increase in ion fluence. © 2013.

  13. Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity.

    Science.gov (United States)

    Han, Hye Jung; Lee, Ji-Soo; Park, Sun-Ah; Ahn, Jun-Bae; Lee, Hyeon Gyu

    2015-06-01

    The aim of this study was to optimize extraction conditions for jujube pulp and seed in order to obtain maximum active ingredient yield and antioxidant activity, as well as to prepare chitosan nanoparticles loaded with jujube pulp and seed extracts for enhancing stability. The extraction conditions, i.e. temperature, time, and ethanol concentration, were optimized at the following respective values: 61.2 °C, 38 h, and 60.4% for pulp, and 58 °C, 34 h, and 59.2% for seed. The jujube nanoparticle size significantly increased with a higher chitosan/sodium tripolyphosphate ratio and extract concentration. Entrapment efficiency was greater than 80% regardless of preparation conditions. The stabilities of jujube pulp and seed extract in terms of total phenolic content and antioxidant activity were effectively enhanced by nanoencapsulation. In conclusion, jujube pulp and seed extracts prepared using optimal conditions could be useful as a natural functional food ingredient with antioxidant activity, and nanoencapsulation can be used to improve the stability of jujube extract. Therefore, these results could be used to promote the utilization of not only jujube pulp but also seed, by product. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Botanical Scavenger Hunt

    Science.gov (United States)

    Walker-Livingston, Wendy

    2009-01-01

    Why not combine the use of technology with the excitement of a scavenger hunt that moves middle-level students out into the "wilds" of their school campus to classify plants? In the lesson plan described here, students embark on a botanical scavenger hunt and then document their findings using a digital camera. This project was designed to allow…

  15. Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: role of macrophage scavenger receptor class A type I and II.

    Science.gov (United States)

    Ilchmann, Anne; Burgdorf, Sven; Scheurer, Stephan; Waibler, Zoe; Nagai, Ryoji; Wellner, Anne; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Henle, Thomas; Kurts, Christian; Kalinke, Ulrich; Vieths, Stefan; Toda, Masako

    2010-01-01

    The Maillard reaction occurs between reducing sugars and proteins during thermal processing of foods. It produces chemically glycated proteins termed advanced glycation end products (AGEs). The glycation structures of AGEs are suggested to function as pathogenesis-related immune epitopes in food allergy. This study aimed at defining the T-cell immunogenicity of food AGEs by using ovalbumin (OVA) as a model allergen. AGE-OVA was prepared by means of thermal processing of OVA in the presence of glucose. Activation of OVA-specific CD4(+) T cells by AGE-OVA was evaluated in cocultures with bone marrow-derived murine myeloid dendritic cells (mDCs) as antigen-presenting cells. The uptake mechanisms of mDCs for AGE-OVA were investigated by using inhibitors of putative cell-surface receptors for AGEs, as well as mDCs deficient for these receptors. Compared with the controls (native OVA and OVA thermally processed without glucose), AGE-OVA enhanced the activation of OVA-specific CD4(+) T cells on coculture with mDCs, indicating that the glycation of OVA enhanced the T-cell immunogenicity of the allergen. The mDC uptake of AGE-OVA was significantly higher than that of the controls. We identified scavenger receptor class A type I and II (SR-AI/II) as a mediator of the AGE-OVA uptake, whereas the receptor for AGEs and galectin-3 were not responsible. Importantly, the activation of OVA-specific CD4(+) T cells by AGE-OVA was attenuated on coculture with SR-AI/II-deficient mDCs. SR-AI/II targets AGE-OVA to the MHC class II loading pathway in mDCs, leading to an enhanced CD4(+) T-cell activation. The Maillard reaction might thus play an important role in the T-cell immunogenicity of food allergens. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  16. Free Radical Scavenging Properties of Annona squamosa

    Science.gov (United States)

    Vikas, Biba; Akhil B, S; P, Remani; Sujathan, K

    2017-10-26

    Annona squamosa has extensively been used in the traditional and folkloric medicine and found to possess many biological activities. Different solvents, petroleum ether, chloroform, ethyl acetate and methanol extracts of Annona squamosa seeds (ASPE, ASCH, ASEA, ASME) have been used to prepare plant extracts. The present investigations dealt with the free radical scavenging activity of four extracts using various techniques such as total reducing power estimation, total phenolic count, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging effect, evaluation of ABTS cation decolorisation capacity, FRAP assay, hdroxyl radical scavenging assay, super oxide assay and Nitric oxide radical scavenging assay of the extracts. The results showed that the four extracts of Annona squamosa showed significant reducing power in four extracts. The total phenolic contents in petroleum ether, chloroform, ethyl acetate, methanol extracts and positive control were 0.64±0.17, 0.54±0.27, 0.49±0.24, 0.57±0.22 and 0.66±0.33. The antioxidant capacity by ABTS assay of ASPE, ASCH, ASEA, ASME and positive control, trolox showed 77.75±0.5,73.25±1.7,78.5± 1.2 , 80 ± 0.8 μg/ml and 94.2 ± 0.9 respectively. The (50 % scavenging activity) SA50 of ASPE and ASCH, ASEA and ASME was found to be 34.4 μg/ml, 43.8 μg/ml 34.7 μg/m and 28.8 μg/ml respectively by DPPH assay. The percentage of hydroxyl radical scavenging increased with the increasing concentration of the extracts. ASPE, ASCH, ASEA and ASME showed superoxide radical scavenging activity, as indicated by their values 66 ± 0.5, 68 ± 1 ,63 ± 1 and 70 ± 0.5 μg/ml respectively compared to gallic acid which was 97 ± 0.5 μg/ml. The values for scavenging of nitric oxide for ASPE, ASCH, ASEA and ASME were 91.0 ± 1.0, 66.75 ± 0.5, 71.75 ± 1.1 and 75.75 ± 1.15 μg/ml while value for standard ascorbic acid was 91.0 ± 1.0 μg/ml. The results revealed strong antioxidants in four extracts may lead to the development of potent

  17. Understanding how mammalian scavengers use information from avian scavengers: cue from above.

    Science.gov (United States)

    Kane, Adam; Kendall, Corinne J

    2017-07-01

    Interspecific social information transfer can play a key role in many aspects of animal ecology from foraging to habitat selection to predator avoidance. Within scavenging communities, avian scavengers often act as producers and mammalian scavengers act as scroungers, but we predict that species-specific cueing will allow for mammalian scavengers to utilize particular avian scavenger species using preferred food sources similar to their own preferences. We use empirical and theoretic approaches to assess interactions between mammalian and avian scavengers in one of the most diverse scavenging guilds in Masai Mara National Reserve, Kenya. Using a spatially explicit model and data from experimental carcasses, we found evidence that mammals benefit from local enhancement provided by vultures and that mammalian-avian following patterns are consistent with the idea that species-specific cueing is occurring. Results suggest that ongoing population declines in avian scavengers may have significant impacts on mammalian scavengers and potentially create trophic cascades. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  18. Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L.

    Science.gov (United States)

    El-Esawi, Mohamed A; Elkelish, Amr; Elansary, Hosam O; Ali, Hayssam M; Elshikh, Mohamed; Witczak, Jacques; Ahmad, Margaret

    2017-01-01

    Lactuca serriola L. is a herbaceous species, used for human nutrition and medicinal purposes. The high antioxidant capacity of L. serriola indicates the possibility of enhancing its edible and health potential by increasing the flavonoid and phenolic contents. The present study aimed at enhancing the production of phenolics and flavonoids by hairy root cultures in Lactuca serriola transformed with Agrobacterium rhizogenes strain AR15834 harbouring the rolB gene. The genetic transformation of rolB in transformed roots was validated, and rolB expression level was evaluated using real-time qPCR analysis. Expression levels of flavonoid biosynthesis genes (CHI, PAL, FLS, and CHS) were assessed in the hairy and nontransformed roots. Results showed higher expression levels in the transgenic roots than in the nontransformed ones (p < 0.01). Transgenic hairy roots exhibited a 54.8-96.7% increase in the total phenolic content, 38.1-76.2% increase in the total flavonoid content, and 56.7-96.7% increase in the total reducing power when compared with the nontransgenic roots (p < 0.01). DPPH results also revealed that the transgenic hairy roots exhibited a 31.6-50% increase in antioxidant potential, when compared to normal roots. This study addressed the enhancement of secondary metabolite biosynthesis by hairy root induction in L. serriola.

  19. Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L.

    Directory of Open Access Journals (Sweden)

    Mohamed A. El-Esawi

    2017-01-01

    Full Text Available Lactuca serriola L. is a herbaceous species, used for human nutrition and medicinal purposes. The high antioxidant capacity of L. serriola indicates the possibility of enhancing its edible and health potential by increasing the flavonoid and phenolic contents. The present study aimed at enhancing the production of phenolics and flavonoids by hairy root cultures in Lactuca serriola transformed with Agrobacterium rhizogenes strain AR15834 harbouring the rolB gene. The genetic transformation of rolB in transformed roots was validated, and rolB expression level was evaluated using real-time qPCR analysis. Expression levels of flavonoid biosynthesis genes (CHI, PAL, FLS, and CHS were assessed in the hairy and nontransformed roots. Results showed higher expression levels in the transgenic roots than in the nontransformed ones (p<0.01. Transgenic hairy roots exhibited a 54.8–96.7% increase in the total phenolic content, 38.1–76.2% increase in the total flavonoid content, and 56.7–96.7% increase in the total reducing power when compared with the nontransgenic roots (p<0.01. DPPH results also revealed that the transgenic hairy roots exhibited a 31.6–50% increase in antioxidant potential, when compared to normal roots. This study addressed the enhancement of secondary metabolite biosynthesis by hairy root induction in L. serriola.

  20. Role of antioxidant scavenging enzymes and extracellular ...

    African Journals Online (AJOL)

    ChithrashreeGS

    2012-08-23

    Aug 23, 2012 ... compounds from host origin (Leigh and Coplin, 1992). Some of the genes ... was expressed as µM H2O2 min-1 mg-1 protein (ε = 43.5 mM cm-1). Ascorbate peroxidase activity was determined spectrophoto- metrically by a decrease in absorbance at 265 nm (ε = 13.7 mM cm-. 1) (Nakano and Asada, 1981).

  1. Dietary Supplementation of Phoenix dactylifera Seeds Enhances Performance, Immune Response, and Antioxidant Status in Broilers

    Directory of Open Access Journals (Sweden)

    Ali H. El-Far

    2016-01-01

    Full Text Available The date palm (Phoenix dactylifera seeds were utilized in some traditional medical remedies and have been investigated for their possible health benefits. This proposed study wanted to assess the effect of date palm seeds (DPS dietary supplementation in comparison to mannan-oligosaccharides (Bio-Mos® and β-glucan over antioxidant and immunity events that have effect on growth and carcass performances of broilers. An aggregate of 180, one-day-old, chicks were raised in the wire-floored cages and allotted into control, Bio-Mos (0.1%  Bio-Mos, β-glucan (0.1%  β-glucan, DPS2 (2% date crushed seeds, DPS4 (4% date crushed seeds, and DPS6 (6% date crushed seeds groups. Broilers in DPS2 and DPS4 groups showed significant variations (P<0.05 in relative growth rate (RGR, feed conversion ratio (FCR, and efficiency of energy utilization in comparison to control group. Moreover, all DPS fed groups showed significant increases (P<0.05 in serum reduced glutathione (GSH values. Meanwhile, both serum interferon-gamma (IFN-γ and interleukin-2 (IL-2 levels were significantly increased (P<0.05 in DPS2. Consequently, obtained data revealed a substantial enhancement of performance, immunity, and antioxidant status by DPS supplementation in broiler that might be related to the antioxidant and immune-stimulant constituents of P. dactylifera seeds.

  2. Surface enhanced Raman scattering study of the antioxidant alkaloid boldine using prismatic silver nanoparticles

    Science.gov (United States)

    Herrera, M. A.; Jara, G. P.; Villarroel, R.; Aliaga, A. E.; Gómez-Jeria, J. S.; Clavijo, E.; Garrido, C.; Aguayo, T.; Campos Vallette, M. M.

    2014-12-01

    Prismatic silver nanoparticles (PNps) were used in the surface enhanced Raman scattering (SERS) study of the antioxidant alkaloid boldine (5,6,6a,7-tetrahydro-1,10-dimethoxy-6-methyl-4H-dibenzo[de,g]quinoline-2,9-diol). Prismatic and quasi-spherical (QsNps) silver nanoparticles were synthesized and characterized by UV-Vis spectra, topographic profile (AFM) and zeta potential measurements. Raman and infrared (IR) spectra of the boldine were registered. Theoretical model calculations of the boldine onto the Ag surface predict a nearly coplanar orientation of the benzo[de]quinoline moiety and non-bonded interactions (electrostatic).

  3. In vitro antioxidant activity of Vetiveria zizanioides root extract

    African Journals Online (AJOL)

    lmboera

    anion radical scavenging activity, deoxyribose degradation assay, total antioxidant capacity, total phenolics and total flavonoid composition. The various antioxidant activities were compared with suitable antioxidants such as butyl hydroxy toluene, ascorbic acid, quercetin, alpha tocopherol, pyrocatechol and curcumin ...

  4. Kinetic evaluation of polyamines as radical scavengers.

    Science.gov (United States)

    Fujisawa, Seiichiro; Kadoma, Yoshinori

    2005-01-01

    To clarify whether polyamines scavenge alkyl (carbon-centered) and peroxy (oxygen-centered) radicals, we analyzed their effects on the kinetics of polymerization of methyl methacrylate (MMA) induced by 2,2'-azobisisobutyronitrile (AIBN, a R* radical) and benzoyl peroxide (BPO, a PhCOO* radical) under nearly anaerobic conditions. Stoichiometric factors (n; number of free radicals trapped by one mole of antioxidant moiety) were determined by the induction period method. The n value for polyamines (putrescine, spermidine and spermine) was 0.1-0.7, whereas that for conventional synthetic antioxidants, BHA and BHT, was about 2. These n values were not different between the AIBN and BPO systems. The n value for polyamines declined in the order spermine > spermidine > putrescine. The K(inh)/K(p) value for polyamines (20-115) was greater than that (4-7) for BHT or BHA. Radical-scavenging activity largely depends on the stoichiometric factor of antioxidants rather than their effects on initial rate of polymerization, a rate of propagation. Polyamines may scavenge alkyl or peroxy radicals derived from polyunsaturated fatty acids in biological systems.

  5. A carbohydrate-antioxidant hybrid polymer reduces oxidative damage in spermatozoa and enhances fertility.

    Science.gov (United States)

    Fleming, Craig; Maldjian, André; Da Costa, Daniel; Rullay, Attvinder K; Haddleton, David M; St John, Justin; Penny, Paul; Noble, Raymond C; Cameron, Neil R; Davis, Benjamin G

    2005-10-01

    Gamete-gamete interactions are critically modulated by carbohydrate-protein interactions that rely on the carbohydrate-selective recognition of polyvalent carbohydrate structures. A galactose-binding protein has been identified in mammalian spermatozoa that has similarity to the well-characterized hepatic asialoglycoprotein receptor. With the aim of exploiting the ability of this class of proteins to bind and internalize macromolecules displaying galactose, we designed hybrid carbohydrate-antioxidant polymers to deliver antioxidant vitamin E (alpha-tocopherol) to porcine spermatozoa. Treatment of sperm cells with one hybrid polymer in particular produced large increases in intracellular sperm levels of alpha-tocopherol and greatly reduced endogenous fatty acid degradation under oxidative stress. The polymer-treated spermatozoa had enhanced physiological properties and longer half-lives, which resulted in enhanced fertilization rates. Our results indicate that hybrid polymer delivery systems can prolong the functional viability of mammalian spermatozoa and improve fertility rates, and that our functionally guided optimization strategy can be applied to the discovery of active glycoconjugate ligands.

  6. Potential of marine lactic acid bacteria to ferment Sargassum sp. for enhanced anticoagulant and antioxidant properties.

    Science.gov (United States)

    Shobharani, P; Halami, P M; Sachindra, N M

    2013-01-01

    To evaluate the suitability of marine lactic acid bacteria (LAB) as starter cultures for Sargassum sp. fermentation to enhance its antioxidant and anticoagulation activity. LAB isolated from marine source were characterized for their ability to utilize seaweed as a sole carbon source and applied to Sargassum fermentation. Fermentation period was optimized by monitoring the fermented sample at regular interval for a period of 18 days. Results revealed that a fermentation period of 12 days was effective with maximum culture viability and other desirable characteristics such as pH, total titratable acidity, total and reducing sugars. Under optimum fermentation period, the sample fermented with P1-2CB-w1 (Enterococcus faecium) exhibited maximum anticoagulation activity and antioxidant activity. The study reveals a novel well-defined starter culture from marine origin intended for seaweed fermentation for recovery of bioactive molecules. The study provides information for the enhancement of bioactive molecules in an eco-friendly manner and also paves a way towards the development of wide range of seaweed functional foods. © 2012 The Society for Applied Microbiology.

  7. Exploitation of grape marc as functional substrate for lactic acid bacteria and bifidobacteria growth and enhanced antioxidant activity.

    Science.gov (United States)

    Campanella, Daniela; Rizzello, Carlo Giuseppe; Fasciano, Cristina; Gambacorta, Giuseppe; Pinto, Daniela; Marzani, Barbara; Scarano, Nicola; De Angelis, Maria; Gobbetti, Marco

    2017-08-01

    This study aimed at using grape marc for the growth of lactic acid bacteria and bifidobacteria with the perspective of producing a functional ingredient having antioxidant activity. Lactobacillus plantarum 12A and PU1, Lactobacillus paracasei 14A, and Bifidobacterium breve 15A showed the ability to grow on grape marc (GM) based media. The highest bacterial cell density (>9.0 CFU/g) was found in GM added of 1% of glucose (GMG). Compared to un-inoculated and incubated control fermented GMG showed a decrease of carbohydrates and citric acid together with an increase of lactic acid. The content of several free amino acids and phenol compounds differed between samples. Based on the survival under simulated gastro-intestinal conditions, GMG was a suitable carrier of lactic acid bacteria and bifidobacteria strains. Compared to the control, cell-free supernatant (CFS) of fermented GMG exhibited a marked antioxidant activity in vitro. The increased antioxidant activity was confirmed using Caco-2 cell line after inducing oxidative stress, and determining cell viability and radical scavenging activity through MTT and DCFH-DA assays, respectively. Supporting these founding, the SOD-2 gene expression of Caco-2 cells also showed a lowest pro-oxidant effect induced by the four CFS of GMG fermented by lactic acid bacteria and bifidobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of an immuno-enhanced diet containing antioxidants in esophageal cancer surgery following neoadjuvant therapy.

    Science.gov (United States)

    Aiko, S; Kumano, I; Yamanaka, N; Tsujimoto, H; Takahata, R; Maehara, T

    2012-02-01

    Neoadjuvant therapy-induced immunological deterioration may be a key factor in postoperative morbidity in patients with esophageal cancer. This study aimed to determine the effects of perioperative feeding with an immuno-enhanced diet on immune competence in patients treated with neoadjuvant therapy followed by surgery. Because an immuno-enhanced diet that contained several antioxidants was used, perioperative oxidative stress and the effects of the immuno-enhanced diet on this stress were also investigated. Of 39 patients with esophageal cancer who underwent similar surgical procedures, 26 patients who received chemotherapy or chemoradiation therapy before surgery were randomly divided into two groups: group 1 (n= 14) was given an immuno-enhanced diet for 5 days before surgery, and group 2 (n= 12) received no enteral feeding products before surgery. Group 3 (n= 13) consisted of patients that did not receive neoadjuvant therapy and received no enteral feeding products before surgery. Several markers for coagulation and fibrinolysis were determined and immunological assessments were performed for each patient. To measure reactive oxygen metabolites and the total antioxidant capacity, diacron-reactive oxygen metabolites (d-ROMs) and OXY-adsorbent tests were performed using a free radical elective evaluator. Significant depression in lymphocyte numbers was observed in groups 1 and 2 before and early after surgery as compared to group 3. Numbers of B cells, CD4/CD8 ratio, and phytohemagglutinin-induced lymphocyte transformation tests were also significantly decreased in groups 1 and 2 on postoperative day 1. Fibrin and fibrinogen degradation products were significantly elevated in group 2 compared to group 1. d-ROMs and OXY-adsorbent test values were elevated before surgery and were decreased transiently early after surgery. Compared to groups 2 and 3, d-ROMs values were significantly lower in group 1 patients throughout the postoperative period, while OXY

  9. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L.

    Science.gov (United States)

    Habiba, Ume; Ali, Shafaqat; Farid, Mujahid; Shakoor, Muhammad Bilal; Rizwan, Muhammad; Ibrahim, Muhammad; Abbasi, Ghulam Hasan; Hayat, Tahir; Ali, Basharat

    2015-01-01

    Copper (Cu) is an essential micronutrient for normal plant growth and development, but in excess, it is also toxic to plants. The present study investigated the influence of ethylenediaminetetraacetic acid (EDTA) in enhancing Cu uptake and tolerance as well as the morphological and physiological responses of Brassica napus L. seedlings under Cu stress. Four-week-old seedlings were transferred to hydroponics containing Hoagland's nutrient solution. After 2 weeks of transplanting, three levels (0, 50, and 100 μM) of Cu were applied with or without application of 2.5 mM EDTA and plants were further grown for 8 weeks in culture media. Results showed that Cu alone significantly decreased plant growth, biomass, photosynthetic pigments, and gas exchange characteristics. Cu stress also reduced the activities of antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) along with protein contents. Cu toxicity increased the concentration of reactive oxygen species (ROS) as indicated by the increased production of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in both leaves and roots. The application of EDTA significantly alleviated Cu-induced toxic effects in B. napus, showing remarkable improvement in all these parameters. EDTA amendment increased the activity of antioxidant enzymes by decreasing the concentrations of MDA and H2O2 both in leaves and roots of B. napus. Although, EDTA amendment with Cu significantly increased Cu uptake in roots, stems, and leaves in decreasing order of concentration but increased the growth, photosynthetic parameters, and antioxidant enzymes. These results showed that the application of EDTA can be a useful strategy for phytoextraction of Cu by B. napus from contaminated soils.

  10. Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities.

    Science.gov (United States)

    Del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G; LeBlanc, Jean Guy

    2014-02-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti

  11. Free radical scavenging potential of Picrorhiza kurrooa Royle ex Benth.

    Science.gov (United States)

    Govindarajan, R; Vijayakumar, M; Rawat, A K S; Mehrotra, Shanta

    2003-08-01

    For assessing free radical scavenging potential of P. kurrooa, the antioxidant activity of P. kurrooa extract was studied by lipid peroxidation assay using rat liver homogenate. The extract (1 mg/ml) showed marked protection (up to 66.68%) against peroxidation of liver phospholipids. Besides, reduced glutathione showed very encouraging activity. The extract also exhibited significant scavenging activity. Thus augmenting the wide use of plant in the indigenous system of medicine, which may partly be due to antioxidant and free radical scavening activity of the extract.

  12. Carvedilol Enhances the Antioxidant Effect of Vitamins E and C in Chronic Chagas Heart Disease

    Energy Technology Data Exchange (ETDEWEB)

    Budni, Patrícia, E-mail: budnip@gmail.com [Universidade Federal de Santa Catarina, Florianópolis, SC (Brazil); Pedrosa, Roberto Coury [Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil); Dalmarco, Eduardo Monguilhott; Dalmarco, Juliana Bastos; Frode, Tânia Sílvia; Wilhelm, Danilo Filho [Universidade Federal de Santa Catarina, Florianópolis, SC (Brazil)

    2013-10-15

    Chagas disease is still an important endemic disease in Brazil, and the cardiac involvement is its more severe manifestation. To verify whether the concomitant use of carvedilol will enhance the antioxidant effect of vitamins E and C in reducing the systemic oxidative stress in chronic Chagas heart disease. A total of 42 patients with Chagas heart disease were studied. They were divided into four groups according to the modified Los Andes classification: 10 patients in group IA (normal electrocardiogram and echocardiogram; no cardiac involvement); 20 patients in group IB (normal electrocardiogram and abnormal echocardiogram; mild cardiac involvement); eight patients in group II (abnormal electrocardiogram and echocardiogram; no heart failure; moderate cardiac involvement); and four patients in group III (abnormal electrocardiogram and echocardiogram with heart failure; severe cardiac involvement). Blood levels of markers of oxidative stress were determined before and after a six-month period of treatment with carvedilol, and six months after combined therapy of carvedilol with vitamins E and C. The markers analyzed were as follows: activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase and reductase, myeloperoxidade and adenosine deaminase; and the levels of reduced glutathione, thiobarbituric-acid reactive substances, protein carbonyls, vitamin E, and nitric oxide. After treatment with carvedilol, all groups showed significant decrease in protein carbonyls and reduced glutathione levels, whereas nitric oxide levels and adenosine activity increased significantly only in the less severely affected group (IA). In addition, the activity of most of the antioxidant enzymes was decreased in the less severely affected groups (IA and IB). By combining the vitamins with carvedilol, a reduction in protein damage, in glutathione levels, and in the activity of most of the antioxidant enzymes were observed. The decrease in oxidative

  13. Puffing, a novel coffee bean processing technique for the enhancement of extract yield and antioxidant capacity.

    Science.gov (United States)

    Kim, Wooki; Kim, Sang-Youn; Kim, Dae-Ok; Kim, Byung-Yong; Baik, Moo-Yeol

    2018-02-01

    Puffing of coffee beans, which induces heat- and pressure-derived physicochemical changes, was applied as an alternative to roasting. Roasted or puffed coffee beans with equivalent lightness values were compared. The moisture content was higher while the crude fat and protein compositions were lower in puffed beans than in roasted beans. The pH was lower and the acid content was higher in puffed beans than in roasted beans. The roasted beans exhibited greater specific volumes, while the puffed beans displayed greater extraction yields. The trigonelline and total phenolic contents were greater in puffed beans than in roasted beans resulting in an enhanced antioxidant capacity. Sensory evaluation of roasted and puffed coffee bean brews revealed that puffing did not affect the flavor or overall acceptance. The current study provides evidence that puffing is an alternative to roasting coffee beans with various benefits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Antioxidant Activities of Stilbenoids from Rheum emodi Wall

    Directory of Open Access Journals (Sweden)

    Yuan-yuan Chai

    2012-01-01

    Full Text Available Rheum emodi Wall has been reported to possess protective effect in many inflammatory diseases and oxidative stress-related injuries. This study aims to investigate antioxidant power of stilbenoids from R. emodi and then explore the material basis for its antioxidant potential. The most abundant stilbenoid piceatannol-4′-O-β-D-glucopyranoside (PICG and its aglycon piceatannol (PICE were isolated from R. emodi rhizome. Using well-accepted antioxidant chemicals as reference, antioxidant activity of these stilbenoids was examined by measuring DPPH and superoxide anion radical scavenging, ferric reducing power, and inhibition of lipid peroxidation in vitro. Both PICG and PICE displayed promising antioxidant activity in all the four assays. Comparisons among the tested compounds indicated that PICE has the most potent antioxidant activity and the presence of 3′-hydroxyl group may enhance antioxidant activity of stilbenoids. The antioxidative effect of PICE at the cellular level was further demonstrated on the model of hydrogen-peroxide-induced H9c2 rat cardiomyoblasts injury. Taking into account the rapid in vivo metabolic transformation of PICG into PICE it can be inferred that the most abundant stilbenoid PICG may be an important constituent responsible for the antioxidant potential of R. emodi and promising to be developed as an antioxidant agent for supplementary or therapeutic use.

  15. Antioxidant Activities of Stilbenoids from Rheum emodi Wall.

    Science.gov (United States)

    Chai, Yuan-Yuan; Wang, Fang; Li, Yan-Li; Liu, Ke; Xu, Hui

    2012-01-01

    Rheum emodi Wall has been reported to possess protective effect in many inflammatory diseases and oxidative stress-related injuries. This study aims to investigate antioxidant power of stilbenoids from R. emodi and then explore the material basis for its antioxidant potential. The most abundant stilbenoid piceatannol-4'-O-β-D-glucopyranoside (PICG) and its aglycon piceatannol (PICE) were isolated from R. emodi rhizome. Using well-accepted antioxidant chemicals as reference, antioxidant activity of these stilbenoids was examined by measuring DPPH and superoxide anion radical scavenging, ferric reducing power, and inhibition of lipid peroxidation in vitro. Both PICG and PICE displayed promising antioxidant activity in all the four assays. Comparisons among the tested compounds indicated that PICE has the most potent antioxidant activity and the presence of 3'-hydroxyl group may enhance antioxidant activity of stilbenoids. The antioxidative effect of PICE at the cellular level was further demonstrated on the model of hydrogen-peroxide-induced H9c2 rat cardiomyoblasts injury. Taking into account the rapid in vivo metabolic transformation of PICG into PICE it can be inferred that the most abundant stilbenoid PICG may be an important constituent responsible for the antioxidant potential of R. emodi and promising to be developed as an antioxidant agent for supplementary or therapeutic use.

  16. Antioxidant activity and protective effects of Trapa japonica pericarp extracts against tert-butylhydroperoxide-induced oxidative damage in Chang cells.

    Science.gov (United States)

    Kim, Yon-Suk; Hwang, Jin-Woo; Han, Young-Ki; Kwon, Hyuck-Ju; Hong, Heeok; Kim, Ee-Hwa; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2014-02-01

    In this study, the antioxidant properties of Trapa japonica pericarp extracts were evaluated through several biochemical assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH), alkyl radical scavenging activity, hydroxyl radical scavenging, ferric reducing antioxidant power (FRAP) assay, ABTS radical scavenging activity and oxygen radical absorbance capacity (ORAC). The antioxidant activities were compared with other natural and synthetic antioxidants. The results showed that higher radical scavenging activity and antioxidant capacity in FRAP than those of vitamin C as a positive control. T. japonica pericarp extracts have antioxidant properties through its ability to prevent tert-butylhydroperoxide (t-BHP)-induced toxicity which enhance the cell viability, reduce reactive oxygen species (ROS) production, inhibits of oxidative damage and mitochondria dysfunction in Chang liver cells. Therefore, based on these finding, it seems reasonable to suggest that T. japonica pericarp extracts has the potential to protect liver against t-BHP-induced cell damage and should be considered as a potential functional food. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Morinda citrifolia leaf enhanced performance by improving angiogenesis, mitochondrial biogenesis, antioxidant, anti-inflammatory & stress responses.

    Science.gov (United States)

    Mohamad Shalan, Nor Aijratul Asikin; Mustapha, Noordin M; Mohamed, Suhaila

    2016-12-01

    Morinda citrifolia fruit, (noni), enhanced performances in athletes and post-menopausal women in clinical studies. This report shows the edible noni leaves water extract enhances performance in a weight-loaded swimming animal model better than the fruit or standardized green tea extract. The 4weeks study showed the extract (containing scopoletin and epicatechin) progressively prolonged the time to exhaustion by threefold longer than the control, fruit or tea extract. The extract improved (i) the mammalian antioxidant responses (MDA, GSH and SOD2 levels), (ii) tissue nutrient (glucose) and metabolite (lactate) management, (iii) stress hormone (cortisol) regulation; (iv) neurotransmitter (dopamine, noradrenaline, serotonin) expressions, transporter or receptor levels, (v) anti-inflammatory (IL4 & IL10) responses; (v) skeletal muscle angiogenesis (VEGFA) and (v) energy and mitochondrial biogenesis (via PGC, UCP3, NRF2, AMPK, MAPK1, and CAMK4). The ergogenic extract helped delay fatigue by enhancing energy production, regulation and efficiency, which suggests benefits for physical activities and disease recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Solid-substrate fermentation of wheat grains by mycelia of indigenous species of the genus Ganoderma (higher Basidiomycetes) to enhance the antioxidant activities.

    Science.gov (United States)

    Subramaniam, Sarasvathy; Sabaratnam, Vikineswary; Kuppusamy, Umah Rani; Tan, Yee Shin

    2014-01-01

    Species of the genus Ganoderma are a cosmopolitan wood decaying white rot fungi, which has been used by the Asians for therapeutic purposes for centuries. In the present study, solid-substrate fermentation (SSF) of wheat grains (Triticum aestivum L.) was carried out with indigenous Ganoderma australe (KUM60813) and G. neo-japonicum (KUM61076) selected based on ethnomycological knowledge. G. lucidum (VITA GL) (a commercial strain) was also included in the study. Antioxidant activities of the crude ethanol and aqueous extracts of the fermented and unfermented wheat grains were investigated by ferric reducing antioxidant power (FRAP), Trolox equivalent antioxidant capacity (TEAC), diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging ability, and lipid peroxidation assay. Among the six mycelia extracts tested, the ethanol extract from wheat fermented with KUM61076 mycelia showed the most potent antioxidant activities, whereas the ethanol extract of wheat grains fermented with KUM60813 mycelia has a good potential in protecting frying oils against oxidation. Total phenolic content (TPC) in the ethanol extracts were higher than that in the aqueous extract. The wheat grains fermented with G. australe (KUM60813) and G. neo-japonicum KUM61076 have greater antioxidant potential compared to the commercially available G. lucidum (VITA GL). The antioxidant activities of the mycelia extracts had a positive correlation with their phenolic contents. Thus phenolic compounds may play a vital role in the antioxidant activities of the selected Ganoderma spp.

  19. Enhanced Reactive Oxygen Species Scavenging by Overproduction of Superoxide Dismutase and Catalase Delays Postharvest Physiological Deterioration of Cassava Storage Roots1[C][W][OA

    Science.gov (United States)

    Xu, Jia; Duan, Xiaoguang; Yang, Jun; Beeching, John R.; Zhang, Peng

    2013-01-01

    Postharvest physiological deterioration (PPD) of cassava (Manihot esculenta) storage roots is the result of a rapid oxidative burst, which leads to discoloration of the vascular tissues due to the oxidation of phenolic compounds. In this study, coexpression of the reactive oxygen species (ROS)-scavenging enzymes copper/zinc superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) in transgenic cassava was used to explore the intrinsic relationship between ROS scavenging and PPD occurrence. Transgenic cassava plants integrated with the expression cassette p54::MeCu/ZnSOD-35S::MeCAT1 were confirmed by Southern-blot analysis. The expression of MeCu/ZnSOD and MeCAT1 was verified by quantitative reverse transcription-polymerase chain reaction and enzymatic activity analysis both in the leaves and storage roots. Under exposure to the ROS-generating reagent methyl viologen or to hydrogen peroxide (H2O2), the transgenic plants showed higher enzymatic activities of SOD and CAT than the wild-type plants. Levels of malondialdehyde, chlorophyll degradation, lipid peroxidation, and H2O2 accumulation were dramatically reduced in the transgenic lines compared with the wild type. After harvest, the storage roots of transgenic cassava lines show a delay in their PPD response of at least 10 d, accompanied by less mitochondrial oxidation and H2O2 accumulation, compared with those of the wild type. We hypothesize that this is due to the combined ectopic expression of Cu/ZnSOD and CAT leading to an improved synergistic ROS-scavenging capacity of the roots. Our study not only sheds light on the mechanism of the PPD process but also develops an effective approach for delaying the occurrence of PPD in cassava. PMID:23344905

  20. Antioxidative catechol lignans converted from sesamin and sesaminol triglucoside by culturing with Aspergillus.

    Science.gov (United States)

    Miyake, Yoshiaki; Fukumoto, Syuichi; Okada, Miki; Sakaida, Kazuhiro; Nakamura, Yoshimasa; Osawa, Toshihiko

    2005-01-12

    Sesamin and sesaminol triglucoside in sesame seeds are major lignans that display an abundance of biological activities. Although their antioxidative activity in vitro is weak, they have been reported to suppress oxidative stress in vivo. We investigated the production of new antioxidative lignans from sesame lignans by culturing with the genus Aspergillus to enhance the function of food materials. Media containing sesamin or sesaminol triglucoside increased antioxidative activity for DPPH radical scavenging by culturing with Aspergillus usamii mut. shirousamii RIB2503. The antioxidative lignans in sesamin medium were identified as sesamin 2,6-dicatechol and episesamin 2,6-dicatechol. Those in sesaminol triglucoside medium were identified as sesaminol 6-catechol and episesaminol 6-catechol, which are novel antioxidative lignans. It is suggested that they may exhibit higher antioxidative activity than sesamin and sesaminol triglucoside because they have the catechol functional moiety.

  1. Strong enhancement of antioxidant activity of Aloe vera extracts by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Mi; Bai, Hyoung Woo; Lee, Seung Sik; Hong, Sung Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Jae Young; Chung, Byung Yeoup [Chonbuk National University, Jeonju (Korea, Republic of)

    2011-10-15

    The World Health Organization (WHO) has estimated that approximately 80% of individuals rely on traditional medicines. Among over 400 Aloe species, Aloe vera was the most accepted species for various medical, cosmetic and neutraceutical purposes. Aloe vera (syn.: Aloe barbadensis Miller) was a perennial succulent plant belonging to the Aloeaceae family (subfamily of the Asphodelaceae). It has been reported that Aloe vera extracts were useful in the treatment of wound and burn healing, minor skin infections, sebaceous cyst, diabetes, and elevated blood lipids in humans. Recent studies have shown that treatment with either Aloe vera crude gel or its extracts, such as acemannan, {beta}-sitosterol, and others, resulted in faster healing of wounds by stimulating fibroblast proliferation, collagen deposition, angiogenesis, and production of growth factors. Ionizing radiation technology has been developed to improve our daily life such as cancer therapy and sterilizing tool due to its unique feature that could be penetrated biomaterials leading to alter their own physical properties. More recently, many studies have attempted to apply the radiation technology to enhance their biological activities. At present, however, very little was known about whether naturally-occurring phenolic compounds of ethanolic aloe gel extracts that were altered their biological activities by ionizing radiation to serve as antioxidant in the body to reduce ROS produced by the stresses. The purpose of the current study was to investigate the influence of gamma irradiation on antioxidant activity of Aloe vera extracts, and open insight new possibilities that gamma ray could be a powerful tool for improving its own biological activities

  2. In Vitro Antioxidative Evaluation of α- and β-Carotene, Isolated from Crude Palm Oil

    Directory of Open Access Journals (Sweden)

    Surashree Sen Gupta

    2013-01-01

    Full Text Available The present work describes the isolation of α- and β-carotene from crude palm oil and their antioxidant potential in an in vitro model. Pure product was isolated by the method adopted. Antioxidant activities of the isolated α- and β-carotene were analyzed in five different concentrations of 0.001, 0.005, 0.01, 0.05, and 0.1% (w/v. From the several assays conducted, an observation was made that the antioxidant activity of the product shifted between antioxidant and prooxidant effects depending on the concentration and the system analyzed. The metal chelation, DPPH radical scavenging, and superoxide scavenging activities showed almost similar results in terms of high activity at lowest concentrations. ABTS-scavenging activity was displayed only by a particular antioxidant concentration of 0.1%. Lipid peroxidation assay pronounced the activity of 0.1% antioxidant in inhibiting oxidation of sensitive bioactive lipids. In vitro antidenaturation test again specified the efficacy of low concentrations in preventing protein denaturation. Through this study a definite dosage formulation for consumption of carotenoids is being proposed which will enhance health promotion and prevent chronic diseases when taken as fortified foods or dietary supplements.

  3. Antioxidant activity of whey protein hydrolysates in milk beverage system.

    Science.gov (United States)

    Mann, Bimlesh; Kumari, Anuradha; Kumar, Rajesh; Sharma, Rajan; Prajapati, Kishore; Mahboob, Shaik; Athira, S

    2015-06-01

    The aim of the present study was to evaluate the antioxidant activity of flavoured milk enriched with antioxidative whey protein hydrolysates (WPHs) by radical scavenging method. Whey protein concentrate (WPC) was hydrolyzed by using three commercial proteases; flavouzyme, alcalase and corolase PP and these WPHs were analyzed for degree of hydrolysis and antioxidant activity. The antioxidant activities of these WPHs were evaluated using ABTS method. Trolox equivalent antioxidant activity of all the hydrolysates i.e. flavourzyme (0.81 ± 0.04), alcalase (1.16 ± 0.05) and corolase (1.42 ± 0.12) was higher than the WPC (0.19 ± 0.01). Among these, whey protein hydrolysates prepared using corolase showed maximum antioxidant activity. Total 15 β-lactoglobulin, 1 α-lactoalbumin, and 6 β-casein derived peptide fragments were identified in the WPHs by LC-MS/MS. Due to their size and characteristic amino acid composition, all the identified peptides may contribute for the antioxidant activity. The strawberry and chocolate flavoured milk was supplemented with WPC and WPHs and 2 % addition has shown increase in antioxidant activity upto 42 %. The result suggests that WPH could be used as natural biofunctional ingredients in enhancing antioxidant properties of food products.

  4. Free radical-scavenging and antimutagenic potential of acetone ...

    African Journals Online (AJOL)

    The antioxidant potency of acetone, chloroform and methanol extracts of Argemone mexicana was investigated by employing in vitro systems like nitroblue tetrazolium (NBT) and 1,1-Diphenyl-2- picrylhydrazyl (DPPH) free radical scavenging assay whereas antimutagenic activity was determined by Maron and Ames assay ...

  5. scavenging activity, anti-inflammatory and diabetes related enzyme

    African Journals Online (AJOL)

    2013-12-31

    Dec 31, 2013 ... ENZYME INHIBITION PROPERTIES OF ETHANOL LEAVES EXTRACT OF. PHOENYX ... extracts, using superoxide anions inhibition, radical scavenging activity "DPPH" and total antioxidant activity .... Briefly, 100 µL of both the sample and the standard (gallic acid) of known concentrations were made up to.

  6. Exogenous Application of Growth Enhancers Mitigate Water Stress in Wheat by Antioxidant Elevation

    Directory of Open Access Journals (Sweden)

    Hamid eNawaz

    2016-05-01

    Full Text Available TThe present study was conducted to investigate the response of two wheat cultivars (AARI-11 and Millat-11 to a foliar application of four growth enhancers which include: {H2O (water, MLE30 (moringa leaf extract, KCl (potassium chloride and BAP (benzyl-amino purine}, within the six irrigation water-regimes which are applied at the various critical growth stages such as crown root initiation (CRI, tillering (T, booting (B and heading (H. Irrigation water-regimes include: CRI+T+B, CRI+T, CRI+B, T+B, T+H and control (CRI+T+B+H. The growth enhancers i.e. H2O, MLE30 (1:30, KCl (2% and BAP (50 mg L-1 were applied @ 500 L ha-1 at tillering and heading stages. The results demonstrated some increased quantities of both enzymatic (superoxide dismutase, peroxidase, catalase and non-enzymatic (ascorbic acid, phenol antioxidants in leaves of AARI-11 when MLE30 was applied under T+B and T+H irrigation water-regimes. Similar results were also observed in the case of leaf chlorophyll a & b and K+ contents in both cultivars under control, T+B and CRI+T+B irrigation water regimes. AARI-11 produced the highest biological and grain yield, due to the application of MLE30 and BAP under control, CRI+T+B, T+B and T+H irrigation water-regimes. However, KCl lagged behind among the treatments set for both cultivars under all the irrigation water-regimes. Foliar spray of MLE30 remained prominent growth enhancer and stresses mitigating agent under water deficit conditions particularly under T+B and T+H irrigation water-regimes. Moreover, economic analysis indicated that the foliar application of MLE30 is a cost effective and environment friendly strategy for the maximum yield and income.

  7. Extracts of Tsai Tai (Brassica chinensis): enhanced antioxidant activity and anti-aging effects both in vitro and in Caenorhabditis elegans.

    Science.gov (United States)

    Chen, Jing; Zhang, Ju; Xiang, Yanxia; Xiang, Limin; Liu, Yongmei; He, Xiangjiu; Zhou, Xiaoju; Liu, Xin; Huang, Zebo

    2016-02-01

    Tsai Tai is one of the most widely consumed Brassica vegetables in Asian countries because of its good taste and its nutritional benefits. This study evaluated the antioxidant capacity and possible associated health benefits of 3 Tsai Tai (Brassica chinensis) varieties, namely, Hon Tsai Tai, Pak Choi and Choi Sum. The DPPH radical scavenging ability and reducing power assays were performed to evaluate the in vitro activities of the extracts. Caenorhabditis elegans was used as an in vivo model for evaluation of beneficial health effects, including antioxidant activity and delayed aging. In vitro, the Hon Tsai Tai extract exhibited higher antioxidant activities than Pak Choi and Choi Sum, and the total phenolic contents were significantly correlated with the DPPH and RP values. In vivo, the three assayed Tsai Tai extracts significantly increased resistance against paraquat-induced oxidative stress with an increase in survival rates from 15% to 28% compared with controls. However, only the extract from Hon Tsai Tai significantly prolonged the lifespan of Caenorhabditis elegans, with an 8% increase in the mean lifespan with respect to controls. Further evidence of antioxidant protection was obtained by assessing ROS production via the DCF assay. The analyses of intracellular SOD activity and MDA content confirmed the existence of an antioxidant protective effect. These results suggest that Tsai Tai might serve as a good source of natural antioxidants, and in particular, Hon Tsai Tai could be explored as a potential dietary supplement to retard aging.

  8. Preharvest salicylic acid and acetylsalicylic acid treatments preserve quality and enhance antioxidant systems during postharvest storage of sweet cherry cultivars.

    Science.gov (United States)

    Giménez, M José; Serrano, María; Valverde, Juan Miguel; Martínez-Romero, Domingo; Castillo, Salvador; Valero, Daniel; Guillén, Fabián

    2017-03-01

    Sweet cherries are much appreciated by consumers as a result of their organoleptic quality attributes and antioxidant properties, although they deteriorate rapidly after harvest. Different preharvest strategies have been carried out to increase their quality at the time of harvest. We present data regarding the effect of preharvest salicylic acid (SA) and acetyl salicylic acid (ASA) treatments on sweet cherry quality during postharvest storage. At harvest and during postharvest storage, sweet cherry fruits ('Sweet Heart', 'Sweet Late' and 'Lapins') from SA (0.5 mmol L-1 ) and ASA (1 mmol L-1 ) treated trees had a higher colour (lower chroma index), firmness, total soluble solids, total phenolics, total anthocyanins and hydrophilic total antioxidant activity. In addition, the activity of the antioxidant enzymes catalase, peroxidase, superoxide dismutase and ascorbate peroxidase was also enhanced in SA- and ASA-treated cherries. Both SA and ASA preharvest treatments could be promising tools for improving sweet cherry quality at harvest and after storage, with an additional effect on delaying the postharvest ripening process by increasing the levels of antioxidant compounds and the activity of the antioxidant enzymes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. In-vitro free radical scavenging activity of Ixora coccinea L

    OpenAIRE

    Moni Rani Saha; Md Ashraful Alam; Raushanara Akter; Rumana Jahangir

    2008-01-01

    Antioxidant activity of the methanol extract of Ixora coccinea L. was determined by DPPH free radical scavenging assay, reducing power and total antioxidant capacity using phosphomolybdenum method. Preliminary phytochemical screening revealed that the extract of the flower of I. coccinea possesses flavonoids, steroids and tannin materials. The extract showed significant activities in all antioxidant assays compared to the standard antioxidant in a dose dependent manner and remarkable activiti...

  10. Antioxidant Property Enhancement of Sweet Potato Flour under Simulated Gastrointestinal pH

    OpenAIRE

    Chan, Kim Wei; Nicholas M.H. Khong; Iqbal, Shahid; Umar, Imam Mustapha; Ismail, Maznah

    2012-01-01

    Sweet potato is known to be rich in healthful antioxidants, but the stability of its antioxidant properties under gastrointestinal pH is very much unknown. Hence, this study aimed to evaluate the changes in antioxidant properties (total contents of phenolics and flavonoids as well as antioxidant activity) of sweet potato flour (SPF) under simulated gastrointestinal pH conditions. It was found that the yield of SPF crude phenolic extract increased from 0.29 to 3.22 g/100 g SPF upon subjection ...

  11. Changes in ultrastructure and responses of antioxidant systems of algae (Dunaliella salina) during acclimation to enhanced ultraviolet-B radiation.

    Science.gov (United States)

    Tian, Jiyuan; Yu, Juan

    2009-12-02

    Because of depletion of the stratospheric ozone layer, levels of solar ultraviolet-B (UV-B) radiation (280-315 nm), which penetrates the water column to an ecologically-significant depth, are increasing. In order to assess changes in ultrastructure and responses of antioxidant systems of algae during acclimation to enhanced ultraviolet-B radiation, Dunaliella salina was treated with higher dose of UV-B radiation (13.2 kJm(-2) d(-1) dose) in this study. As compared to the control panel (8.8 kJm(-2) d(-1)), the treatment D. salina had many changes in ultrastructures: (1) thylakoids became swelled, and some of them penetrated into the pyrenoid; (2) lipid globules accumulated; (3) the amounts of starch grains increased; (4) cristae of mitochondria disintegrated; (5) inclusions in vacuoles reduced; and (6) cisternae of Golgi dictyosomes became loose and swollen. Enhanced UV-B irradiation also induced different responses of the antioxidant systems in D. salina: (1) contents of TBARS (thiobarbituric acid reacting substance) and H(2)O(2) increased significantly (p0.05). In addition, growth curve displayed that enhanced UV-B radiation prominently inhibited increase of cell concentration when compared with control panel (p<0.05). Our results indicated that enhanced UV-B radiation caused ultrastructural changes of D. salina and induced different responses of antioxidant systems in D. salina.

  12. Determination of antioxidant activity of saffron taken from the flower ...

    African Journals Online (AJOL)

    Jane

    2011-08-03

    Aug 3, 2011 ... Laboratory of Oxidative Stress and Antioxidant, Faculty of Medical Sciences, Lebanese University, Lebanon. Accepted 19 ... Key words: Crocus sativus, oxidative stress, free radicals, Lebanese saffron, antioxidant activity, free radicals scavengers. ..... cellular aging and atherosclerosis, heart disease, stroke,.

  13. Biofortified carrot intake enhances liver antioxidant capacity and vitamin a status in mongolian gerbils.

    Science.gov (United States)

    Mills, Jordan P; Simon, Philipp W; Tanumihardjo, Sherry A

    2008-09-01

    Biofortification efforts have increased concentrations of bioactive compounds in carrots. We measured the antioxidant potential and vitamin A bioefficacy of 4 biofortified carrot varieties [purple/orange, purple/orange/red, orange/red, and orange] in Mongolian gerbils (n = 73). Following a 4-wk vitamin A depletion period and baseline kill (n = 7), freeze-dried carrot powders were mixed into purified feeds and fed to 6 groups (n = 11/group) for 4 wk. White carrot-fed control and vitamin A-supplemented groups were used to calculate carrot provitamin A bioefficacy. Antioxidant capacities of carrot powders, sera, and livers were determined using the 2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay and carotenoid and retinol concentrations were determined by HPLC. Antioxidant capacity of liver extracts from the 4 colored carrot-fed groups [10.1 +/- 1.2 mumol Trolox equivalent antioxidant capacity (TEAC)/g] was significantly higher than the white carrot-fed control group (9.3 +/- 0.9 mumol TEAC/g) and vitamin A-supplemented group (8.8 +/- 1.4 mumol TEAC/g) (P antioxidant capacity and retinol did not differ among treatment groups. Liver antioxidant capacity and vitamin A stores were higher in gerbils fed colored carrots than in those fed white carrots. Antioxidant activity is one of several proposed mechanisms by which plant foods, like biofortified carrots, may provide additional health benefits beyond maintenance of vitamin A status.

  14. Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity.

    Science.gov (United States)

    Shetty, Pallavi Krishna; Venuvanka, Venkatesh; Jagani, Hitesh Vitthal; Chethan, Gejjalagere Honnappa; Ligade, Virendra S; Musmade, Prashant B; Nayak, Usha Y; Reddy, Meka Sreenivasa; Kalthur, Guruprasad; Udupa, Nayanabhirama; Rao, Chamallamudi Mallikarjuna; Mutalik, Srinivas

    2015-01-01

    The objective of present work was to develop novel sunscreen creams containing polymeric nanoparticles (NPs) of morin. Polymeric NPs containing morin were prepared and optimized. The creams containing morin NPs were also prepared and evaluated. Optimized NPs exhibited particle size of 90.6 nm and zeta potential of -31 mV. The entrapment efficiency of morin, within the polymeric NPs, was found to be low (12.27%). Fourier transformed infrared spectroscopy and differential scanning calorimetry studies revealed no interaction between morin and excipients. Transmission electron microscopy and atomic force microscopy revealed that the NPs were spherical in shape with approximately 100 nm diameter. Optimized NPs showed excellent in vitro free radical scavenging activity. Skin permeation and deposition of morin from its NPs was higher than its plain form. Different sunscreen creams (SC1-SC8) were formulated by incorporating morin NPs along with nano zinc oxide and nano titanium dioxide. SC5 and SC8 creams showed excellent sun protection factor values (≈40). In vitro and in vivo skin permeation studies of sunscreen creams containing morin NPs indicated excellent deposition of morin within the skin. Morin NPs and optimized cream formulations (SC5 and SC8) did not exhibit cytotoxicity in Vero and HaCaT cells. Optimized sunscreen creams showed excellent dermal safety. SC5 and SC8 creams demonstrated exceptional in vivo antioxidant effect (estimation of catalase, superoxide dismutase, and glutathione) in UV radiation-exposed rats. The optimized sunscreen creams confirmed outstanding UV radiation protection as well as antioxidant properties.

  15. Scavenging Activity of Enzymatic Hydrolysates from Wheat Bran

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2009-01-01

    Full Text Available Wheat bran was destarched and deproteinated by α-amylase, protease and amyloglucosidase successively, and further hydrolyzed using Bacillus subtilis xylanases. The yield of enzymatic hydrolysates from wheat bran (EHWB was 1.84 %. The total phenolics were 0.3712 g of ferulic acid equivalents per gram of EHWB. The antioxidant potency of EHWB was evaluated using different assays, such as iron ion chelation, reducing power, scavenging activity against 2,2’-diphenyl-1-picrylhydrazyl (DPPH and reactive oxygen species under in vitro conditions. EHWB exhibited an effective ferrous ion chelating activity and strong reducing power. It also showed a high DPPH radical scavenging activity (89.4 % at 5.0 mg/mL, which was comparable to that of the synthetic antioxidant, butylated hydroxytoluene. EHWB also exerted a marked scavenging effect on ·OH with an EC50 value of 0.46 mg/mL, which was lower than that of mannitol (1.03 mg/mL, a classical hydroxyl radical scavenger, and obvious antioxidant activities toward O2·- and H2O2.

  16. Acetylcholinesterase Inhibition and in Vitro and in Vivo Antioxidant Activities of Ganoderma lucidum Grown on Germinated Brown Rice

    Directory of Open Access Journals (Sweden)

    Beong Ou Lim

    2013-06-01

    Full Text Available In this study, the acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum grown on germinated brown rice (GLBR were evaluated. In antioxidant assays in vitro, GLBR was found to have strong metal chelating activity, DPPH, ABTS, hydroxyl and superoxide radical scavenging activity. Cell-based antioxidant methods were used, including lipid peroxidation on brain homogenate and AAPH-induced erythrocyte haemolysis. In antioxidant assays in vivo, mice were administered with GLBR and this significantly enhanced the activities of antioxidant enzymes in the mice sera, livers and brains. The amount of total phenolic and flavonoid compounds were 43.14 mg GAE/g and 13.36 mg CE/g dry mass, respectively. GLBR also exhibited acetylcholinesterase inhibitory activity. In addition, HPLC analyses of GLBR extract revealed the presence of different phenolic compounds. These findings demonstrate the remarkable potential of GLBR extract as valuable source of antioxidants which exhibit interesting acetylcholinesterase inhibitory activity.

  17. Antioxidant-Enhancing Property of the Polar Fraction of Mangosteen Pericarp Extract and Evaluation of Its Safety in Humans

    Directory of Open Access Journals (Sweden)

    Wichit Suthammarak

    2016-01-01

    Full Text Available Crude extract from the pericarp of the mangosteen (mangosteen extract [ME] has exhibited several medicinal properties in both animal models and human cell lines. Interestingly, the cytotoxic activities were always observed in nonpolar fraction of the extract whereas the potent antioxidant was often found in polar fraction. Although it has been demonstrated that the polar fraction of ME exhibited the antioxidant activity, the safety of the polar fraction of ME has never been thoroughly investigated in humans. In this study, we investigated the safety of oral administration of the polar fraction of ME in 11 healthy Thai volunteers. During a 24-week period of the study, only minor and tolerable side effects were reported; no serious side effects were documented. Blood chemistry studies also showed no liver damage or kidney dysfunction in all subjects. We also demonstrated antioxidant property of the polar fraction of ME both in vitro and in vivo. Interestingly, oral administration of the polar fraction of ME enhanced the antioxidant capability of red blood cells and decreased oxidative damage to proteins within red blood cells and whole blood.

  18. Antioxidant-Enhancing Property of the Polar Fraction of Mangosteen Pericarp Extract and Evaluation of Its Safety in Humans.

    Science.gov (United States)

    Suthammarak, Wichit; Numpraphrut, Pornpayom; Charoensakdi, Ratiya; Neungton, Neelobol; Tunrungruangtavee, Vachara; Jaisupa, Nattapon; Charoensak, Suwit; Moongkarndi, Primchanien; Muangpaisan, Weerasak

    2016-01-01

    Crude extract from the pericarp of the mangosteen (mangosteen extract [ME]) has exhibited several medicinal properties in both animal models and human cell lines. Interestingly, the cytotoxic activities were always observed in nonpolar fraction of the extract whereas the potent antioxidant was often found in polar fraction. Although it has been demonstrated that the polar fraction of ME exhibited the antioxidant activity, the safety of the polar fraction of ME has never been thoroughly investigated in humans. In this study, we investigated the safety of oral administration of the polar fraction of ME in 11 healthy Thai volunteers. During a 24-week period of the study, only minor and tolerable side effects were reported; no serious side effects were documented. Blood chemistry studies also showed no liver damage or kidney dysfunction in all subjects. We also demonstrated antioxidant property of the polar fraction of ME both in vitro and in vivo. Interestingly, oral administration of the polar fraction of ME enhanced the antioxidant capability of red blood cells and decreased oxidative damage to proteins within red blood cells and whole blood.

  19. Solvent effects and improvements in the deoxyribose degradation assay for hydroxyl radical-scavenging.

    Science.gov (United States)

    Li, Xican

    2013-12-01

    The deoxyribose degradation assay is widely used to evaluate the hydroxyl (OH) radical-scavenging ability of food or medicines. We compared the hydroxyl radical-scavenging activity of 25 antioxidant samples prepared in ethanol solution with samples prepared after removing the ethanol (residue). The data suggested that there was an approximately 9-fold difference between assay results for the ethanol solution and residue samples. This indicated a strong alcoholic interference. To further study the mechanism, the scavenging activities of 18 organic solvents (including ethanol) were measured by the deoxyribose assay. Most pure organic solvents (especially alcohols) could effectively scavenge hydroxyl radicals. As hydroxyl radicals have extremely high reactivities, they will quickly react with surrounding solvent molecules. This shows that any organic solvent should be completely evaporated before measurement. The proposed method is regarded as a reliable hydroxyl radical-scavenging assay, suitable for all types of antioxidants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A study of antioxidant potential of Perilladehyde

    Science.gov (United States)

    Malu, T. J.; Banerjee, Nitesh; Singh, Avinash Kumar; Kannadasan, S.; Ethiraj, K. R.

    2017-11-01

    The use of plants as food, medicine is credited to a biological property of their secondary metabolites. These naturally occurring secondary metabolites are found to have great importance in controlling the formation of free radicles. These antioxidants are capable to catch the free radicles present in the body and maintain its balance. Antioxidant activity and potency of Perillaldehyde using various in vitro biochemical assays were studied. The assay involves various levels of antioxidant action such as free radical scavenging activity through DPPH, reducing power determination, nitric oxide scavenging ability, metal chelation power, scavenging of hydrogen peroxide, membrane stabilizing activity, and lipid peroxidation study.

  1. Preliminary assay on the radical scavenging activity of olive wood extracts

    NARCIS (Netherlands)

    Altarejos, J.; Salido, S.; Pérez-Bonilla, M.; Linares-Palomino, P.J.; Beek, van T.A.; Nogueras, M.; Sánchez, A.

    2005-01-01

    The dichloromethane and ethanol extracts of Olea europaea wood (picual olive cultivar) were screened for antioxidant activity, determined by the DPPH free radical scavenging assay. The ethanol extract displayed potent antioxidant activity. (c) 2005 Elsevier B.V. All rights reserved.

  2. Potassium contributes to zinc stress tolerance in peach (Prunus persica) seedlings by enhancing photosynthesis and the antioxidant defense system.

    Science.gov (United States)

    Song, Z Z; Duan, C L; Guo, S L; Yang, Y; Feng, Y F; Ma, R J; Yu, M L

    2015-07-27

    Zinc (Zn) is considered to be a major industrial pollutant because excessive amounts can impair plant growth. In this paper, we found that peach 'Yoshihime' seedlings are promising Zn tolerant plants. However, heavy Zn toxicity (2 mM) damaged plant performance by disrupting biochemical processes, including photosynthesis, proline production, and K(+) nutrition. Notably, elevated external K(+) supply (10 mM) alleviated peach seedlings from Zn toxicity, evidenced by enhanced photosynthesis, antioxidant defense systems, and plant K(+) nutritional status. Moreover, the transcript levels of KUP (K(+) uptake) genes involved in K(+) acquisition, transport, and homeostasis were significantly upregulated following supply of sufficient K(+) upon Zn toxicity. In general, K(+) favorably contributes to improvements in internal K(+) homeostasis, via the help of K(+) transporters, further protecting plant photosynthesis and the antioxidative defense system. Our findings further benefit the study of the mechanisms underpinning heavy metal tolerance in woody plants.

  3. Antioxidant activity of olive phenols and other dietary phenols in model gastric conditions: Scavenging of the free radical DPPH and inhibition of the haem-induced peroxidation of linoleic acid.

    Science.gov (United States)

    Achat, Sabiha; Rakotomanomana, Njara; Madani, Khodir; Dangles, Olivier

    2016-12-15

    The antioxidant activity of dietary phenols in humans (direct reduction of radicals and other highly oxidizing species) could be largely restricted to fighting postprandial oxidative stress in the gastric compartment. Hence, the development of chemical tests simply modelling this situation is pertinent. In this work, the antioxidant properties of the olive phenols hydroxytyrosol and oleuropein are investigated in pH 5-6 micellar solutions through the reduction of the DPPH radical and the inhibition of the metmyoglobin-induced peroxidation of linoleic acid. In the first test, hydroxytyrosol and oleuropein proved as efficient as common polyphenols and their reactivity was only moderately affected by β-cyclodextrin and bovine serum albumin, taken as models of food macromolecules. In the second test, hydroxytyrosol and oleuropein by themselves came up as relatively weak inhibitors, despite their efficiency at reducing hypervalent haem iron. However, hydroxytyrosol was able to act in synergy with the typical chain-breaking antioxidant α-tocopherol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Synthesis of cytotoxic and antioxidant Schiff's base analogs of aloin.

    Science.gov (United States)

    Kumar, S; Matharasi, D Priya; Gopi, Sreeraj; Sivakumar, S; Narasimhan, S

    2010-05-01

    Aloin (10-glucopyranosyl-1,8-dihydroxy-3-hydroxymethyl-9(10H)-anthracenone), a bioactive compound in Aloe vera, although known to have an anticancer effect, has not been used in current drug research. Optimization of the lead structure could enhance the utility of this compound. Hence, aloin was modified using natural amino acids to produce Schiff's base, a potential pharmacophore, and its corresponding aglycones. The synthetic derivatives exhibited significant enhancement in their efficacy toward antioxidant (DPPH radical scavenging) and cytotoxic activities than those of the parent compound, aloin showing promise for application in cancer treatment.

  5. Folic acid attenuates homocysteine and enhances antioxidative capacity in atherosclerotic rats.

    Science.gov (United States)

    Cui, Shanshan; Li, Wen; Lv, Xin; Wang, Pengyan; Huang, Guowei; Gao, Yuxia

    2017-10-01

    Atherosclerosis is a chronic disease that can seriously endanger human life. Folic acid supplementation modulates several disorders, including atherosclerosis, via its antiapoptotic and antioxidative properties. This study investigated whether folic acid alleviates atherogenesis by restoring homocysteine levels and antioxidative capacity in atherosclerosis Wistar rats. To this end, 28 Wistar rats were randomly divided into 4 groups (7 rats/group) as follows: (i) wild-type group, fed only the AIN-93 semi-purified rodent diet (folic acid: 2.1 mg/kg); (ii) high-fat + folic acid-deficient group (HF+DEF) (folic acid: 0.2 mg/kg); (iii) high-fat + normal folic acid group (folic acid: 2.1 mg/kg); and (iv) high-fat + folic acid-supplemented group (folic acid: 4.2 mg/kg). After 12 weeks, histopathological changes in the atherosclerotic lesions of the aortic arch were determined. In addition, serum folate levels, plasma homocysteine levels, plasma S-adenosyl-homocysteine levels, antioxidant status, oxidant status, and lipid profiles were evaluated. The results show aggravated atherosclerotic lesions in the HF+DEF group. Folic acid supplementation increased concentrations of serum folate. Further, folic acid supplementation increased high-density lipoprotein-cholesterol, decreased plasma homocysteine levels, and improved antioxidant capacity in atherogenic rats. These findings are consistent with the hypothesis that folic acid alleviates atherogenesis by reducing plasma homocysteine levels and improving antioxidant capacity in rats fed a high-fat diet.

  6. Culturing on decellularized extracellular matrix enhances antioxidant properties of human umbilical cord-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaozhen [School of Engineering, Sun Yat-sen University, Guangzhou 510006 (China); Zhou, Long; Chen, Xi [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Liu, Tao [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Pan, Guoqing; Cui, Wenguo; Li, Mao; Luo, Zong-Ping [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Pei, Ming [Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506 (United States); Yang, Huilin [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Gong, Yihong, E-mail: gongyih@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510006 (China); He, Fan, E-mail: fanhe@suda.edu.cn [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China)

    2016-04-01

    Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) have attracted great interest in clinical application because of their regenerative potential and their lack of ethical issues. Our previous studies showed that decellularized cell-deposited extracellular matrix (ECM) provided an in vivo-mimicking microenvironment for MSCs and facilitated in vitro cell expansion. This study was conducted to analyze the cellular response of UC-MSCs when culturing on the ECM, including reactive oxygen species (ROS), intracellular antioxidative enzymes, and the resistance to exogenous oxidative stress. After decellularization, the architecture of cell-deposited ECM was characterized as nanofibrous, collagen fibrils and the matrix components were identified as type I and III collagens, fibronectin, and laminin. Compared to tissue culture polystyrene (TCPS) plates, culturing on ECM yielded a 2-fold increase of UC-MSC proliferation and improved the percentage of cells in the S phase by 2.4-fold. The levels of intracellular ROS and hydrogen peroxide (H{sub 2}O{sub 2}) in ECM-cultured cells were reduced by 41.7% and 82.9%, respectively. More importantly, ECM-cultured UC-MSCs showed enhanced expression and activity of intracellular antioxidative enzymes such as superoxide dismutase and catalase, up-regulated expression of silent information regulator type 1, and suppressed phosphorylation of p38 mitogen-activated protein kinase. Furthermore, a continuous treatment with exogenous 100 μM H{sub 2}O{sub 2} dramatically inhibited osteogenic differentiation of UC-MSCs cultured on TCPS, but culturing on ECM retained the differentiation capacity for matrix mineralization and osteoblast-specific marker gene expression. Collectively, by providing sufficient cell amounts and enhancing antioxidant capacity, decellularized ECM can be a promising cell culture platform for in vitro expansion of UC-MSCs. - Highlights: • Decellularization preserved the architecture and components of cell

  7. Light Intensity and Carbon Dioxide Availability Impact Antioxidant Activity in Green Onions (Allium fistulosumm L)

    Science.gov (United States)

    Levine, Lanfang; Bisbee, Patricia; Pare, Paul

    The prospect of long-duration manned space missions poses many challenges, including the development of a sustainable life support system and effective methods of space-radiation protection. To mitigate the risk of increased space-radiation, functional foods rich in antioxidant properties such as green onions are of particular interest. However it has yet to be established whether antioxidant properties can be preserved or enhanced in space environment where carbon dioxide, lighting intensity, gravity and pressure differ from which plants have acclimated to on earth. In this study, green onions (Allium fistulosumm L. cultivar Kinka) rich in antioxidant flavonoids are used as a model system to investigate variations in antioxidant capacity with plants grown under varying light intensities and CO2 concentrations. The antioxidant potential is determined using both radical cation scavenging and oxygen radical absorbance assays. For all light intensities assayed, antioxidant potential in water extract of green onions per gram biomass declined with CO2 increases up to 1200 ppm, and then leveled off with further CO2 increase to 4000 ppm. This inverse carbon dioxide versus antioxidant activity correlation suggests lower accumulation rates for water soluble antioxidant compounds compared to total biomass under increasing CO2 concentrations. The effect of increasing atmospheric CO2 concentration on antioxidant activity of ethanol extracts were light intensity dependent. The implications of these findings are discussed in the context of traditional plant antioxidants including vitamin C and the major onion flavonoid quercetin.

  8. Antioxidant properties of some plants growing wild in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Serteser, A.; Kargioglu, M.; Gok, V.; Bagci, Y.; Musa Ozcan, M.; Arslan, D.

    2009-07-01

    In this study, the antioxidant activity of 50% aqueous methanol extracts of 38 plants growing in the Afyonkarahisar province of Turkey were evaluated by various antioxidant assay, including free radical scavenging, hydrogen peroxide (H{sub 2}O{sub 2}) scavenging and metal (Fe{sup 2}+) chelating activities. The methanolic fruit extracts of the Cornus and Morus species (H{sub 2}O{sub 2} and DPPH scavenging activities, Fe{sup 2}+ chelating activity) and the methanolic leaf extracts of the Mentha species (DPPH scavenging activities) examined in the assay showed the strongest activities. These antioxidant properties depended on the concentration of samples. (Author) 30 refs.

  9. Allicin ameliorates cardiac hypertrophy and fibrosis through enhancing of Nrf2 antioxidant signaling pathways.

    Science.gov (United States)

    Li, Xian-Hui; Li, Chun-Yan; Xiang, Zhi-Gang; Hu, Jian-Jun; Lu, Jiang-Ming; Tian, Rong-Bo; Jia, Wei

    2012-12-01

    To evaluate the protective effects of allicin on Ang II-induced cardiac hypertrophy. Sprague-Dawley male rats were randomized into 3 groups:1)sham group (saline)(n = 12), 2) Ang II group(n = 9), 3) allicin group (Ang II + allicin)(n = 9). They received infusions of either saline or Ang II (250 ng/kg body weight per min) through mini-osmotic pumps implanted subcutaneously for 2 weeks and given a diet containing 180 mg/kg/day of allicin for 8 consecutive weeks. Hemodynamic, morphological, histological, and biochemical changes were evaluated at corresponding time points. Ang II infusion increased blood pressure, heart rate and heart weight to body weight ratio, and resulted in anatomical and functional changes, such as increased LV mass, posterior wall thickness and LV end-diastolic diameter, and decreased fractional shortening and EF compared with sham rats. Nrf2 and HO-1 in the hearts of rats in the Ang II group were moderately elevated at both mRNA and protein levels compared to sham group mice, but NQO1 andγ-GCS were significantly lower. GPx activities, levels of GSH and T-AOC in the hearts of the rats in the Ang II group were also significantly lower, and the levels of TBARS, reactive oxygen species and protein carbonyl were significant increased. Allicin attenuated LV mass, posterior wall thickness and LV end-diastolic diameter (1.10 ± 0.04 vs. 1.37 ± 0.05, 2.26 ± 0.08 vs. 2.96 ± 0.12, 7.27 ± 0.36 vs. 8.56 ± 0.41, respectively; all P allicin treatment attenuated the accumulation of interstitial collagen and collagen I/III (P allicin significantly increased mRNA expression and protein levels of Nrf2, NQO1, and γ-GCS ( P Allicin could prevent the development of cardiac remodeling and the progression of cardiac hypertrophy to cardiac dysfunction caused by enhancing the Nrf2 antioxidant signaling pathways.

  10. Chestnut flowers as functionalizing agents to enhance the antioxidant properties of highly appreciated traditional pastry.

    Science.gov (United States)

    Carocho, Márcio; Barreira, João C M; Bento, Albino; Morales, Patricia; Ferreira, Isabel C F R

    2014-11-01

    Some studies have proven the antioxidant and antimicrobial potency of chestnut flowers both in the raw matrix and after extraction, and the consumption of their decoctions has been related to beneficial effects towards health. In recent years, due to controversy and ambiguous legislation of chemical conservatives, plant extracts have been successfully used as functionalizing agents in different matrixes by displaying their various beneficial effects towards the foodstuff and/or the consumer. In this paper, decoctions of chestnut flowers as well as the dried flower were added to Portuguese traditional cakes that were then stored for 15 and 30 days, after which they were analysed for their antioxidant potential. The results were analysed by means of a 2 way ANOVA and a linear discriminant analysis, concluding that storage time had a slightly higher influence on alteration of the antioxidant activity. DPPH and TBARS were the most improved parameters, regardless of the concentration added.

  11. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    2017-12-01

    Full Text Available Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce (Lactuca sativa L., one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and bioactive compounds such as polyphenols, ascorbic acid and tocopherols. In this study, two lettuce cultivars, Shenxuan 1 and Lollo Rossa, were hydroponically cultured in media containing 4.5, 9, or 18 mM glycine or 9 mM nitrate (control for 4 weeks, and the levels of health-promoting compounds and antioxidant activity of the lettuce leaf extracts were evaluated. Glycine significantly reduced fresh weight compared to control lettuce, while 9 mM glycine significantly increased fresh weight compared to 4.5 or 18 mM glycine. Compared to controls, glycine (18 mM for Shenxuan 1; 9 mM for Lollo Rossa significantly increased the levels of most antioxidants (including total polyphenols, α-tocopherol and antioxidant activity, suggesting appropriate glycine supply promotes antioxidant accumulation and activity. Glycine induced most glycosylated quercetin derivatives and luteolin derivatives detected and decreased some phenolic acids compared to nitrate treatment. This study indicates exogenous glycine supplementation could be used strategically to promote the accumulation of health-promoting compounds and antioxidant activity of hydroponically grown lettuce, which could potentially improve human nutrition.

  12. Enhancement and indication of food quality by combinations of oxygen scavenger and quality indicator systems for polymer packaging: Poster at the 3rd International Symposium on Food Packaging: Ensuring the Safety, Quality and Traceability of Foods, 17-19 November 2004, Barcelona, Spain

    OpenAIRE

    Goldhan, G.; Wanner, T.

    2004-01-01

    Objectives od the project: - Oxygen scavenger packaging with the addition of a visible indicator; - Application of this new developments into food packaging; - Enhancement of food quality and shelf life; - Easy assessment of packaging integrity and tamper evidence. Applications: Polymer packaging for - Oxygen sensitive foodstuffs; - Foods to be pasteurized/sterilized; - CA/MAP products.

  13. The design of propolis flavone microemulsion and its effect on enhancing the immunity and antioxidant activity in mice.

    Science.gov (United States)

    Fan, Yunpeng; Ma, Lin; Zhang, Weimin; Wang, Junmin; Chen, Ying; Gao, Yuanyuan; Feng, Wei; Zhong, Liuqing; Song, Xiaoping

    2014-04-01

    The objective of the present study was to formulate a microemulsion system for improving the activity of propolis flavone (PF). Pseudo-ternary phase diagrams were constructed to evaluate the existence area of PF microemulsion (PFM). The formulation was characterized by particle size, zeta potential, morphology and stability. The results showed that the optimal PFM formulation consists of 5.3% ethyl acetate, 14% RH-40, 7% ethanol and 73.7% water (w/w), with a solubility of PF up to 3.0 mg mL(-1). The immune-enhancing and antioxidant activity of PFM in vitro and in vivo were performed. The results showed that PFM could significantly promote the splenocyte proliferation and the secretion of IL-2 and IFN-γ in vitro. In vivo, PFM at high and medium doses was able to significantly increase the thymus and spleen indices, enhance splenocyte activity and improve the contents of IgG and IgM in serum, it could also improve the antioxidant activity, significantly increase the levels of superoxidase dismutase and glutathione peroxidase, and decrease the malondialdehyde levels compared with PF. These results indicated that microemulsion could be used as an effective formulation for enhancing the activity of PF. Therefore, microemulsion would be expected to exploit into a new-type preparation of PF. Copyright © 2014. Published by Elsevier B.V.

  14. Customized Cooking Methods Enhance Antioxidant, Antiglycemic, and Insulin-Like Properties of Momordica charantia and Moringa oleifera

    Directory of Open Access Journals (Sweden)

    Sarasvathy Subramaniam

    2017-01-01

    Full Text Available The current study compares antioxidant activities, total phenolic content (TPC, vitamin C content, and antiglycemic properties of Momordica charantia (small bitter gourd and Moringa oleifera (drumstick leaves before and after subjecting to boiling and microwave heating for different durations. Both cooking methods enhanced the antioxidant activity and vitamin C content in the vegetables studied when cooked for five minutes and these properties declined when the cooking time was prolonged to 20 minutes. Cooking also retained or slightly improved the α-glucosidase enzyme inhibition activity of the vegetables; however, it reduced the ability of the vegetable extracts to inhibit α-amylase enzyme activity. The antioxidant activities were positively correlated with the TPC and vitamin C content in the vegetable extracts tested. The present study also evaluated the insulin-like properties (stimulation of adipogenesis of selected vegetable extracts (five minutes microwaved. 3T3-L1 adipocytes treated with small bitter gourd extract significantly stimulated lipogenesis (in the absence of insulin compared to drumstick leaves. Thus, the finding of this study negates the belief that cooking will reduce the nutritional value of the vegetables and also suggested that appropriate cooking method and duration for different vegetables could be selected to improve or preserve their nutritional value.

  15. Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae.

    Science.gov (United States)

    Rais, Afroz; Jabeen, Zahra; Shair, Faluk; Hafeez, Fauzia Yusuf; Hassan, Muhammad Nadeem

    2017-01-01

    Plant growth promoting rhizobacteria (PGPR) are found to control the plant diseases by adopting various mechanisms. Induced systemic resistance (ISR) is an important defensive strategy manifested by plants against numerous pathogens especially infecting at aerial parts. Rhizobacteria elicit ISR by inducing different pathways in plants through production of various metabolites. In the present study, potential of Bacillus spp. KFP-5, KFP-7, KFP-17 was assessed to induce antioxidant enzymes against Pyricularia oryzae infection in rice. The antagonistic Bacillus spp. significantly induced antioxidant defense enzymes i-e superoxide dismutase (1.7-1.9-fold), peroxidase (3.5-4.1-fold), polyphenol oxidase (3.0-3.8-fold), phenylalanine ammonia-lyase (3.9-4.4-fold), in rice leaves and roots under hydroponic and soil conditions respectively. Furthermore, the antagonistic Bacillus spp significantly colonized the rice plants (2.0E+00-9.1E+08) and secreted multiple biocontrol determinants like protease (1.1-5.5 U/mg of soil or U/mL of hydroponic solution), glucanase, (1.0-1.3 U/mg of soil or U/mL of hydroponic solution), siderophores (6.5-42.8 μg/mL or mg) in the rhizosphere of different rice varieties. The results showed that treatment with Bacillus spp. enhanced the antioxidant defense activities in infected rice, thus alleviating P. oryzae induced oxidative damage and suppressing blast disease incidence.

  16. Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae.

    Directory of Open Access Journals (Sweden)

    Afroz Rais

    Full Text Available Plant growth promoting rhizobacteria (PGPR are found to control the plant diseases by adopting various mechanisms. Induced systemic resistance (ISR is an important defensive strategy manifested by plants against numerous pathogens especially infecting at aerial parts. Rhizobacteria elicit ISR by inducing different pathways in plants through production of various metabolites. In the present study, potential of Bacillus spp. KFP-5, KFP-7, KFP-17 was assessed to induce antioxidant enzymes against Pyricularia oryzae infection in rice. The antagonistic Bacillus spp. significantly induced antioxidant defense enzymes i-e superoxide dismutase (1.7-1.9-fold, peroxidase (3.5-4.1-fold, polyphenol oxidase (3.0-3.8-fold, phenylalanine ammonia-lyase (3.9-4.4-fold, in rice leaves and roots under hydroponic and soil conditions respectively. Furthermore, the antagonistic Bacillus spp significantly colonized the rice plants (2.0E+00-9.1E+08 and secreted multiple biocontrol determinants like protease (1.1-5.5 U/mg of soil or U/mL of hydroponic solution, glucanase, (1.0-1.3 U/mg of soil or U/mL of hydroponic solution, siderophores (6.5-42.8 μg/mL or mg in the rhizosphere of different rice varieties. The results showed that treatment with Bacillus spp. enhanced the antioxidant defense activities in infected rice, thus alleviating P. oryzae induced oxidative damage and suppressing blast disease incidence.

  17. Sucrose-enhanced biosynthesis of medicinally important antioxidant secondary metabolites in cell suspension cultures of Artemisia absinthium L.

    Science.gov (United States)

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Ali, Syed Shujait; Ali, Shahid; Ali, Gul Shad

    2016-12-01

    Natural products are gaining tremendous importance in pharmaceutical industry and attention has been focused on the applications of in vitro technologies to enhance yield and productivity of such products. In this study, we investigated the accumulation of biomass and antioxidant secondary metabolites in response to different carbohydrate sources (sucrose, maltose, fructose and glucose) and sucrose concentrations (1, 3, 5, 7 and 9 %). Moreover, the effects of 3 % repeated sucrose feeding (day-12, -18 and -24) were also investigated. The results showed the superiority of disaccharides over monosaccharides for maximum biomass and secondary metabolites accumulation. Comparable profiles for maximum biomass were observed in response to sucrose and maltose and initial sucrose concentrations of 3 and 5 %. Maximum total phenolic and total flavonoid contents were displayed by cultures treated with sucrose and maltose; however, initial sucrose concentrations of 5 and 7 % were optimum for both classes of metabolites, respectively. Following 3 % extra sucrose feeding, cultures fed on day-24 (late-log phase) showed higher biomass, total phenolic and total flavonoid contents as compared to control cultures. Highest antioxidant activity was exhibited by maltose-treated cultures. Moreover, sucrose-treated cultures displayed positive correlation of antioxidant activity with total phenolics and total flavonoids production. This work describes the stimulatory role of disaccharides and sucrose feeding strategy for higher accumulation of phenolics and flavonoids, which could be potentially scaled up to bioreactor level for the bulk production of these metabolites in suspension cultures of A. absinthium.

  18. Avaliação da atividade antioxidante utilizando sistema beta-caroteno/ácido linoléico e método de seqüestro de radicais DPPH• Evaluation of the antioxidant activity using the b-carotene/linoleic acid system and the DPPH scavenging method

    Directory of Open Access Journals (Sweden)

    Joaquim Maurício Duarte-Almeida

    2006-06-01

    Full Text Available A atividade antioxidante de extratos de frutas (acerola, amora, açaí e morango e compostos puros foi avaliada por meio de dois métodos: sistema beta-caroteno/ácido linoléico e método de seqüestro de radicais livres (DPPH• - 2,2-difenil-1-picrilhidrazila. As metodologias foram previamente adaptadas para a realização em microplacas, de forma a reduzir a quantidade de reagentes e amostras necessárias, aumentar o número de análises simultâneas e permitir a automatização das leituras de absorbância. Os resultados mostraram que a atividade antioxidante dos extratos metanólicos dos frutos estava de acordo com a apresentada pelos compostos puros, isto é ácido ascórbico e compostos fenólicos, nos dois sistemas. O extrato de acerola, devido ao seu alto conteúdo de vitamina C, comportou-se como pró-oxidante e os de açaí, amora e morango como antioxidantes no sistema beta-caroteno/ácido linoléico. Entretanto, quando avaliado pelo método de seqüestro de radicais livres, o extrato de acerola apresentou a maior atividade antioxidante, seguido pelos extratos de amora, açaí e morango. As adaptações realizadas nos métodos de avaliação de atividade antioxidante utilizando microplaca permitiram a realização de múltiplas análises simultâneas, além de minimizar significativamente o uso de reagentes e amostras.The antioxidant activity of fruit extracts (acerola, açaí, black-berry and strawberry and pure compounds has been analysed by two methods: beta-carotene/linoleic acid and DPPH•(2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. First, those methodologies were adapted to be performed in microplates, in order to reduce the sample and reagent amounts, to increase the number of simultaneous analyses and to automate absorbance lectures. The results showed that the antioxidant activity of the fruit extracts was in accordance with those of pure ascorbic acid and phenolic compounds, in the two systems. The acerola

  19. Antioxidant properties of some medicinal Aristolochiaceae species

    African Journals Online (AJOL)

    SERVER

    2008-02-19

    DPPH) radical scavenging activities, reducing powers, and the amount of total phenolic compounds of the extracts were studied. The highest antioxidant activity was shown by A. tagala and the lowest one was A. brasiliensis. The.

  20. Antioxidant properties of cultivated edible mushroom (Agaricus ...

    African Journals Online (AJOL)

    Peter Omenda (Dr.)

    2015-04-22

    Apr 22, 2015 ... Key words: Button mushroom (Agaricus bisporus), edible mushroom, antioxidant, reducing power, scavenging ability, phytochemicals. INTRODUCTION. The button mushroom, Agaricus bisporus (J.E. Lange). Imbach, is the premier cultivated edible mushroom and is consumed throughout the world.

  1. Kinetic Study of Free Radicals Scavenging by Saffron Petal Extracts

    Directory of Open Access Journals (Sweden)

    T. Ardalan

    2013-01-01

    Full Text Available Saffron petal is the main by-product of saffron processing which is produced in large amounts, annually. The objectives of this study were to study the antioxidant activity and free radical-scavenging effects of saffron petal extracts. The ability of saffron petal to act as an antioxidant using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH free-radical method was investigated by applying the Uv–Vis spectrometry. The Uv–Vis spectra of reaction mixtures in acetonitrile revealed that saffron petal has a considerable effect on scavenging free radical. Kinetic studies were conducted by measuring the disappearance of DPPH in acetonitrile over the wavelength range of 515-522 nm under pseudo-first-order conditions at 37oC. Furthermore, the pseudo first order rate constants were determined

  2. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea.

    Science.gov (United States)

    Sharma, Priyadarshini; Bhatt, Deepesh; Zaidi, M G H; Saradhi, P Pardha; Khanna, P K; Arora, Sandeep

    2012-08-01

    Metal nanoparticles can potentially be used as tools for engineering biological redox reactions. Present study underlines the effect of silver metal nanoparticles (at 0, 25, 50, 100, 200 and 400 ppm) on the growth and antioxidant status of 7-day-old Brassica juncea seedlings. Fresh weight, root and shoot length, and vigor index of seedlings is positively affected by silver nanoparticle treatment. It induced a 326 % increase in root length and 133 % increase in vigor index of the treated seedlings. Improved photosynthetic quantum efficiency and higher chlorophyll contents were recorded in leaves of treated seedlings, as compared to the control seedlings. Levels of malondialdehyde and hydrogen peroxide decreased in the treated seedlings. Nanoparticle treatment induced the activities of specific antioxidant enzymes, resulting in reduced reactive oxygen species levels. Decrease in proline content confirmed the improvement in antioxidant status of the treated seedlings. The observed stimulatory affects of silver nanoparticles are found to be dose dependent, with 50 ppm treatment being optimum for eliciting growth response. Present findings, for the first time indicate that silver nanoparticles promote the growth of B. juncea seedlings by modulating their antioxidant status.

  3. Concomitant ingestion of lactic acid bacteria and black tea synergistically enhances flavonoid bioavailability and attenuates d-galactose-induced oxidative stress in mice via modulating glutathione antioxidant system.

    Science.gov (United States)

    Zhao, Danyue; Shah, Nagendra P

    2016-12-01

    Black tea (BT) has been positively linked to improved redox status, while its efficacy is limited due to the low bioavailability of BT flavonoids. In addition to the direct antioxidant activity, flavonoids regulate redox balance via inducing endogenous antioxidants, particularly glutathione (GSH) and GSH-dependent antioxidant enzymes. This work first examined the effect of lactic acid bacteria (LAB) and BT alone or in combination on flavonoid bioavailability and metabolism; next, the effect of LAB-fermented BT diet in attenuating oxidative stress in mice and the underlying mechanisms were studied. Phenolic profiles of plasma, urine and feces from healthy mice consuming plain yogurt, BT milk (BTM) or BT yogurt (BTY) were acquired using LC-MS/MS. Plasma antioxidant capacity, lipid peroxidation level, content of nonprotein thiols and expression of GSH-related antioxidant enzymes and Nrf2 were examined in d-galactose-treated mice. Total flavonoid content in plasma following a single dose of BTY attained 0.657 μmol/l, increased by 50% compared with the BTM group. Increased excretion of phenolic metabolite and hippuric acid in urine and feces indicated enhanced metabolism of flavonoids in BTY-fed mice. In the second study, 8-week concomitant LAB-BT treatment of oxidatively stressed mice effectively restored plasma antioxidant capacity and GSH levels, and mitigated lipid peroxidation, which were associated with significant induction of GSH-dependent antioxidant enzymes and nuclear accumulation of Nrf2. Our results demonstrated the effect of LAB fermentation in enhancing BT flavonoid bioavailability in vivo. The synergistic antioxidant efficacy of LAB-BT diet implied its therapeutic potential in enhancing antioxidant defenses and protecting organisms from oxidative damage. Copyright © 2016. Published by Elsevier Inc.

  4. Centella asiatica enhances hepatic antioxidant status and regulates hepatic inflammatory cytokines in type 2 diabetic rats.

    Science.gov (United States)

    Oyenihi, Ayodeji B; Chegou, Novel N; Oguntibeju, Oluwafemi O; Masola, Bubuya

    2017-12-01

    Neutralizing the over-activation of oxidative stress and inflammation remains an important goal in the management of type 2 diabetes mellitus (T2DM). Centella asiatica (L.) Urban (Apiaceae) (CA) has been used in traditional folklore in Africa and Asia to treat various ailments including diabetes. We investigated the hepatic antioxidant and anti-inflammatory potential of methanol extract of CA leaves in T2DM. T2DM was induced in male Sprague-Dawley rats with 10% fructose in drinking water for 14 days followed by a single intraperitoneal injection of streptozotocin (40 mg/kg b.wt). Hepatic oxidant/antioxidant status was assessed by measuring the concentrations of malondialdehyde (MDA), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), Trolox equivalent antioxidant capacity (TEAC), reduced glutathione (GSH) and activities of glutathione S-transferase (GST) and glutathione peroxidase (GPX). The concentrations of cytokines IL-1β, IL-4, IL-6, IL-10, MCP-1 and TNF-α in the liver were determined. Diabetes increased MDA formed (47%) and reduced FRAP (20%), TEAC (15%), GSH levels (32%), significantly; decreased GST and GPX activities in the liver and elevated levels of cytokines studied. Treatment of diabetic rats with 500 mg/kg b.wt CA for 14 days decreased MDA (44%); elevated FRAP (15%) and GSH (131%) levels and increased the activities of GST and GPX by 16%. Hepatic concentrations of IL-1β, MCP-1 and TNF-α in DCA group were reduced to 68%, 75% and 63% of DC values, respectively. The antioxidant and anti-inflammatory properties of CA may protect tissues such as the liver from diabetes-induced oxidative damage.

  5. Composition, functional properties and antioxidative activity of ...

    African Journals Online (AJOL)

    ... radical scavenging capacity, and differed significantly in reducing capacity. Thus hydrolysates produced with these proteases vary in their nutritional, functional and antioxidant characteristics. Keywords: degree of hydrolysis, DPPH radical-scavenging capacity, reducing capacity, metal-chelating capacity, foaming capacity ...

  6. Free radical scavenging activities of tea drinks on the market

    OpenAIRE

    中川, 一夫; Nakagawa, Kazuo; 仲村, 明子; Nakamura, Akiko; 松永, 博絵; Matsunaga, Hiroe

    2002-01-01

    Tea drinks, prepared from the tea plant classified as Camellia sinensis, contain antioxidative phenolic compounds, like catechins and flavonols. We evaluated the free radical scavenging activities of tea drinks on the market by measuring luminol-amplified chemiluminescence stimulated by the free radical initiator 2,2'-azobis (2-amidinopropane9 dihydrochloride, and the absorption of 2,2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) radica cation at 734 nm. Black tea drinks and green tea ...

  7. Effect of Heating on DPPH Radical Scavenging Activity of Meat Substitute.

    Science.gov (United States)

    Song, Hyeun Sung; Bae, Jun Kyu; Park, Inshik

    2013-03-01

    This study was conducted to evaluate the increase of DPPH radical scavenging activity of meat substitute by heating. The meat substitute showed higher DPPH radical scavenging activity than those of other foods rich in protein such as beef, pork, chicken, and soybean curd. The DPPH radical scavenging activity of meat substitute was dependent upon concentration, heating temperature and heating time of meat substitute. The DPPH radical scavenging activity of meat substitute was enhanced with increasing heating temperature and time. The increase of DPPH radical scavenging activity was only applied to meat substitute without showing any activation in other foods rich in protein such as beef, pork, chicken, and soybean curd.

  8. 8-METHOXYNEORAUTENOL AND RADICAL SCAVENGING ...

    African Journals Online (AJOL)

    Preferred Customer

    8-METHOXYNEORAUTENOL AND RADICAL SCAVENGING FLAVONOIDS FROM. ERYTHRINA ABYSSINICA. Abiy Yenesew1*, Hannington Twinomuhwezi1 ... shown that the plant elaborates alkaloids [1], flavanones, pterocarpans, chalcones and isoflavonoids [1, 3]; some of which have been shown to have antimicrobial ...

  9. The Ability of Bile to Scavenge Superoxide Radicals and Pigment Gallstone Formation in Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Cong Lin

    1996-01-01

    Full Text Available After partial ligation of the common bile duct (CBD of guinea pigs, 14 of 16 animals developed pigment gallstones within one week (S group. Intraperitoneal injection of Vit. E and C, each 10 mg/kg daily from 3 days before CBD ligation to one week after the operation (S+V group, decreased the gallstone incidence to 5/14 (exact probability0.05, but Vit. E and C normalized the SR, and the difference between S group and S+V group was significant (p<0.05. These results suggested that Vit. E and C, known as antioxidants, enhanced the ability to scavenge oxygen radical in S+V group; and that in addition to the increases of UCB and Ca2+ concentrations, the participation of oxygen radicals might be of importance for pigment gallstone formation induced by bile duct obstruction.

  10. Subnormothermic Perfusion in the Isolated Rat Liver Preserves the Antioxidant Glutathione and Enhances the Function of the Ubiquitin Proteasome System

    Directory of Open Access Journals (Sweden)

    Teresa Carbonell

    2016-01-01

    Full Text Available The reduction of oxidative stress is suggested to be one of the main mechanisms to explain the benefits of subnormothermic perfusion against ischemic liver damage. In this study we investigated the early cellular mechanisms induced in isolated rat livers after 15 min perfusion at temperatures ranging from normothermia (37°C to subnormothermia (26°C and 22°C. Subnormothermic perfusion was found to maintain hepatic viability. Perfusion at 22°C raised reduced glutathione levels and the activity of glutathione reductase; however, lipid and protein oxidation still occurred as determined by malondialdehyde, 4-hydroxynonenal-protein adducts, and advanced oxidation protein products. In livers perfused at 22°C the lysosomal and ubiquitin proteasome system (UPS were both activated. The 26S chymotrypsin-like (β5 proteasome activity was significantly increased in the 26°C (46% and 22°C (42% groups. The increased proteasome activity may be due to increased Rpt6 Ser120 phosphorylation, which is known to enhance 26S proteasome activity. Together, our results indicate that the early events produced by subnormothermic perfusion in the liver can induce oxidative stress concomitantly with antioxidant glutathione preservation and enhanced function of the lysosomal and UPS systems. Thus, a brief hypothermia could trigger antioxidant mechanisms and may be functioning as a preconditioning stimulus.

  11. Edible bird's nest enhances antioxidant capacity and increases lifespan in Drosophila Melanogaster.

    Science.gov (United States)

    Hu, Q; Li, G; Yao, H; He, S; Li, H; Liu, S; Wu, Y; Lai, X

    2016-04-30

    In this study, we aims to investigate the effects of edible bird's nest (EBN) on anti-aging efficacy. In order to investigate lifespan and mortality rate of flies, we treated flies with various doses of EBN. Besides, fecundity, water content and food are determined and heat-stress test is conducted after flies treating with different medium. Effects of EBN on total antioxidant activity (T-AOC), super-oxide dismutase activity (SOD), catalase activity (CAT), and malondialdehyde (MDA) were examined in drosophila melanogaster. Results indicated that flies in EBN treated group illustrated significantly lower mortality rates and longer median and maximum lifespan compared to control group (Pdrosophila melanogaster aging, attributing to the increasing antioxidant enzyme activities and decreasing content of lipid peroxidation products in drosophila melanogaster.

  12. Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress?

    Science.gov (United States)

    Krishnan, Natraj; Kodrík, Dalibor

    2006-01-01

    The Egyptian armyworm Spodoptera littoralis is a polyphagous insect attacking a number of plant species including those belonging to the Solanaceae and Cruciferaceae families. Its digestive physiology must therefore adapt to the food plant to ensure maximum extraction of nutrients with minimum trade-off in terms of growth retardation by pro-oxidant allelochemicals. To investigate this, the caterpillars of S. littoralis were fed on a semi-artificial diet (Manduca Premix-Heliothis Premix) and for 24 h on potato plants (Solanum tuberosum), respectively, at the mature 6th instar, and the levels of oxidative radicals and antioxidant enzymes in their guts were compared. The gut pH, standard redox potential (Eh) and electron availability (pe) revealed that oxidizing conditions prevail which promote oxidation of pro-oxidant allelochemicals in foliage. Oxidative stress in the foregut and midgut tissue and the gut contents was assessed from the generation of superoxide radical, total peroxide content and protein carbonyl content. Antioxidant defense was measured by the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX) and glutathione S-transferase peroxidase (GSTpx). A significant (p enzymes SOD (in midgut tissues), CAT (in foregut, midgut tissue and contents), APOX (in foregut contents, midgut tissue and contents) and GSTpx (in foregut tissues) was recorded on the plant diet in comparison to the semi-artificial diet. The pro-oxidant allelochemicals in the plant diet are thus eliminated by the insect at the expense of up-regulation of antioxidative enzymes in response to increased oxidative stress from oxidizable allelochemicals. The results are consistent with the hypothesis that increased concentrations of antioxidants form an important component of the defense of herbivorous insects against both exogenous and endogenous oxidative radicals.

  13. Ω3 Supplementation and Intermittent Hypobaric Hypoxia Induce Cardioprotection Enhancing Antioxidant Mechanisms in Adult Rats

    Directory of Open Access Journals (Sweden)

    Emilio A. Herrera

    2015-02-01

    Full Text Available Intermittent hypobaric hypoxia (IH is linked with oxidative stress, impairing cardiac function. However, early IH also activate cardio-protective mechanisms. Omega 3 fatty acids (Ω3 induce cardioprotection by reducing infarct size and reinforcing antioxidant defenses. The aim of this work was to determine the combined effects of IH and Ω3 on cardiac function; oxidative balance and inflammatory state. Twenty-eight rats were randomly divided into four groups: normobaric normoxia (N; N + Ω3 (0.3 g·kg−1·day−1; IH; and IH + Ω3. IH was induced by 4 intercalate periods of hypoxia (4 days—normoxia (4 days in a hypobaric chamber during 32 days. At the end of the exposure, hearts were mounted in a Langendorff system and subjected to 30 min of ischemia followed by 120 min of reperfusion. In addition, we determined HIF-1α and ATP levels, as well as oxidative stress by malondialdehyde and nitrotyrosine quantification. Further, the expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase was determined. NF-kappaB and myeloperoxidase levels were assessed in the hearts. Relative to N hearts, IH improved left ventricular function (Left ventricular developed pressure: N; 21.8 ± 3.4 vs. IH; 42.8 ± 7.1 mmHg; p < 0.05; reduced oxidative stress (Malondialdehyde: N; 14.4 ± 1.8 vs. IH; 7.3 ± 2.1 μmol/mg prot.; p < 0.05; and increased antioxidant enzymes expression. Supplementation with Ω3 induces similar responses as IH group. Our findings suggest that both, IH and Ω3 in an independent manner, induce functional improvement by antioxidant and anti-inflammatory mechanisms, establishing cardio-protection.

  14. Human milk enhances antioxidant defenses against hydroxyl radical aggression in preterm infants.

    Science.gov (United States)

    Ledo, Ana; Arduini, Alessandro; Asensi, Miguel A; Sastre, Juan; Escrig, Raquel; Brugada, María; Aguar, Marta; Saenz, Pilar; Vento, Maximo

    2009-01-01

    Preterm infants endowed with an immature antioxidant defense system are prone to oxidative stress. Hydroxyl radicals are very aggressive reactive oxygen species that lack specific antioxidants. These radicals cannot be measured directly, but oxidation byproducts of DNA or phenylalanine in urine are reliable markers of their activity. Human milk has a higher antioxidant capacity than formula. We hypothesized that oxidative stress associated with prematurity could be diminished by feeding human milk. We recruited a cohort of stable preterm infants who lacked perinatal conditions associated with oxidative stress; were not receiving prooxidant or antioxidant drugs, vitamins, or minerals before recruitment; and were fed exclusively human milk (HM group) or preterm formula (PTF group). Collected urine was analyzed for oxidative bases of DNA [8-hydroxy-2'-deoxyguanosine (8-oxodG)/2'-deoxyguanosine (2dG) ratio] and oxidative derivatives of phenylalanine [ortho-tyrosine (o-Tyr)/Phe ratio] by HPLC coupled to tandem mass spectrometry. Healthy term newborn infants served as control subjects. Both preterm groups eliminated greater amounts of metabolites than did the control group. However, the PTF group eliminated significantly (P group (8-oxodG/2dG ratio: 9.05 +/- 2.19) and significantly (P group (o-Tyr/Phe ratio: 12.53 +/- 3.49). When data were lumped together independently of the type of feeding received, a significant correlation was established between the 8-oxodG/2dG and o-Tyr/Phe ratios in urine, dependent on gestational age and birth weight. Prematurity is associated with protracted oxidative stress, and human milk is partially protective.

  15. Effects of Pin-up Oxygen on [60]Fullerene for Enhanced Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Matsubayashi Kenji

    2008-01-01

    Full Text Available AbstractThe introduction of pin-up oxygen on C60, such as in the oxidized fullerenes C60O and C60On, induced noticeable increase in the antioxidant activity as compared to pristine C60. The water-soluble inclusion complexes of fullerenes C60O and C60Onreacted with linoleic acid peroxyl radical 1.7 and 2.4 times faster, respectively.

  16. Simulating of Top-Cross system for enhancement of antioxidants in maize grain

    Directory of Open Access Journals (Sweden)

    Jelena Vancetovic

    2014-04-01

    Full Text Available Blue maize (Zea mays L. is grown for its high content of antioxidants. Conversion of yellow and white to blue maize is time consuming because several genes affect blue color. After each backcross selfing is needed for color to be expressed. In order to overcome the problem of time and effort needed for conversion to blue kernel color, we have set a pilot experiment simulating a Top-cross system for increasing antioxidants in maize grain. The idea is to alternately sow six rows of sterile standard quality hybrid and two rows of blue maize in commercial production. Five commercial ZP hybrids were crossed with a blue pop-corn population. Xenia effect caused by cross-pollination produced blue grain on all hybrids in the same year. Chemical analyses of the grains of five selfed original hybrids, five cross-pollinated hybrids and selfed blue popcorn pollinator were performed. Cross-fertilization with blue popcorn had different impact on antioxidant capacity and phytonutrients, increasing them significantly in some but not all cross-pollinated hybrids. Popcorn blue pollinator had higher values for all the analyzed traits than either selfed or cross-pollinated hybrids. Selfed vs. pollinated hybrids showed significant difference for total antioxidant capacity (p<0.1, total phenolics and total yellow pigments (p<0.01, with the increase of total phenolics and decrease of total yellow pigments in pollinated ones. Total flavonoids showed a little non-significant decrease in pollinated hybrids, while total anthocyanins were not detected in selfed yellow hybrids. Blue maize obtained this way has shown good potential for growing high quality phytonutrient genotypes.

  17. Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress.

    Science.gov (United States)

    Sallah-Ud-Din, Rasham; Farid, Mujahid; Saeed, Rashid; Ali, Shafaqat; Rizwan, Muhammad; Tauqeer, Hafiz Muhammad; Bukhari, Syed Asad Hussain

    2017-07-01

    Phytoextraction is a cost-effective and eco-friendly technique for the removal of pollutants, mainly heavy metal(loids) especially from polluted water and metal-contaminated soils. The phytoextraction of heavy metals is, in general, limited due to the low availability of heavy metals in the growth medium. Organic chelators can help to improve the phytoextraction by increasing metal mobility and solubility in the growth medium. The present research was carried out to examine the possibility of citric acid (CA) in improving chromium (Cr) phytoextraction by Lemna minor (duckweed). For this purpose, healthy plants were collected from nearby marsh and grown in hydroponics under controlled conditions. Initial metal contents of both marsh water and plant were measured along with physico-chemical properties of the marsh water. Different concentrations of Cr and CA were applied in the hydroponics in different combinations after defined intervals. Continuous aeration was supplied and pH maintained at 6.5 ± 0.1. Results showed that increasing concentration of Cr significantly decreased the plant biomass, photosynthetic pigments, leaf area, and antioxidant enzyme activities (like catalase, ascorbate peroxidase, superoxide dismutase, peroxidase). Furthermore, Cr stress increased the Cr concentrations, electrolyte leakage, hydrogen peroxide, and malondialdehyde contents in plants. The addition of CA alleviated the Cr-induced toxicity in plants and further enhanced the Cr uptake and its accumulation in L. minor. The addition of CA enhanced the Cr concentration in L. minor by 6.10, 26.5, 20.5, and 20.2% at 0, 10, 100, and 200 μM Cr treatments, respectively, compared to the respective Cr treatments without CA. Overall, the results of the present study showed that CA addition may enhance the Cr accumulation and tolerance in L. minor by enhancing the plant growth and activities of antioxidant enzymes.

  18. Edible solid lipid nanoparticles (SLN) as carrier system for antioxidants of different lipophilicity

    Science.gov (United States)

    Oehlke, Kathleen; Behsnilian, Diana; Mayer-Miebach, Esther; Weidler, Peter G.; Greiner, Ralf

    2017-01-01

    Ferulic acid (FA) and tocopherol (Toc) loaded solid lipid nanoparticles (SLN) were prepared by a hot homogenisation method. The particle size distribution, zeta potential and melting behaviour of the SLN as well as the stability, encapsulation efficiency and radical scavenging activity of FA and Toc in the SLN were analysed. The different formulations containing up to 2.8 mg g−1 of FA or Toc were stable during at least 15 weeks of storage at room temperature. Despite partial degradation and / or release of FA and Toc during storage, significant radical scavenging activity was maintained. DSC measurements and radical scavenging tests after different time periods revealed that the re-structuring of the lipid matrix was connected to the enhanced antioxidant activity of Toc but did not affect the activity of FA. PMID:28192494

  19. In vitro and in vivo antioxidant activity of a fructan from the roots of Arctium lappa L.

    Science.gov (United States)

    Liu, Wei; Wang, Jiajia; Zhang, Zhenzhen; Xu, Jinnan; Xie, Zhuohong; Slavin, Margaret; Gao, Xiangdong

    2014-04-01

    To explore new antioxidant resource from food, a water-soluble polysaccharide (ALP1) was extracted and purified from the roots of Arctium lappa L. (A. lappa L.) through hot water extraction followed by ethanol precipitation, ion-exchange chromatography and gel filtration. The antioxidant activity of ALP1 was then evaluated in vitro and in vivo. ALP1 was characterized as a fructan composed of fructose and glucose in the ratio of 13.0:1.0, with an average molecular weight of 4600 Da. The linkages in ALP1 were →1)-Fruf-(2→, Fruf-(2→ and Glcp-(1→. In vitro antioxidant assays demonstrated that ALP1 possessed moderate ABTS(+) scavenging activity, strong hydroxyl radical scavenging activity and strong ferrous ion chelating activity. In in vivo antioxidant assays, ALP1 administration significantly enhanced antioxidant enzyme activities and total antioxidant capacity, as well as decreased the levels of malondialdehyde (MDA) in both the serum and liver of aging mice. These results suggest that ALP1 has potential as a novel natural antioxidant in food industry and pharmaceuticals. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The Improvement of The Endogenous Antioxidant Property of Stone Fish (Actinopyga lecanora Tissue Using Enzymatic Proteolysis

    Directory of Open Access Journals (Sweden)

    Sara Bordbar

    2013-01-01

    Full Text Available The stone fish (Actinopyga lecanora ethanolic and methanolic tissue extracts were investigated for total phenolic contents (TPCs as well as antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH• radical scavenging activity and ferric reducing antioxidant power (FRAP assays. Both extracts showed low amount of phenolics (20.33 to 17.03 mg of gallic acid equivalents/100 g dried sample and moderate antioxidant activity (39% to 34%  DPPH• radical scavenging activity and 23.95 to 22.30 mmol/100 mL FeSO4 FRAP value. Enzymatic proteolysis was carried out in order to improve the antioxidant activity using six commercially available proteases under their optimum conditions. The results revealed that the highest increase in antioxidant activity up to 85% was obtained for papain-generated proteolysate, followed by alcalase (77%, trypsin (75%, pepsin (68%, bromelain (68%, and flavourzyme (50% as measured by DPPH• radical scavenging activity, whilst for the FRAP value, the highest increase in the antioxidant activity up to 39.2 mmol/100 mL FeSO4 was obtained for alcalase-generated proteolysate, followed by papain (29.5 mmol/100 mL FeSO4, trypsin (23.2 mmol/100 mL FeSO4, flavourzyme (24.7 mmol/100 mL FeSO4, bromelain (22.9 mmol/100 mL FeSO4, and pepsin (20.8 mmol/100 mL FeSO4. It is obvious that proteolysis of stone fish tissue by proteolytic enzymes can considerably enhance its antioxidant activity.

  1. Upgrading the antioxidant potential of cereals by their fungal fermentation under solid-state cultivation conditions.

    Science.gov (United States)

    Bhanja Dey, T; Kuhad, R C

    2014-11-01

    Solid-state fermentation (SSF) at 30°C for 72 h with four generally recognized as safe (GRAS) filamentous fungi (Aspergillus oryzae NCIM 1212, Aspergillus awamori MTCC No. 548, Rhizopus oligosporus NCIM 1215 and Rhizopus oryzae RCK2012) showed high efficiency for the improvement of water-soluble total phenolic content (TPC) and antioxidant properties including ABTS(●+) [2,2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)] and DPPH(●) (2,2'-diphenyl-1-picrylhydrazyl) scavenging capacities of four whole grain cereals, namely wheat, brown rice, maize and oat. A maximum 14-fold improvement in TPC (11·61 mg gallic acid equivalent g(-1) grain) was observed in A. oryzae fermented wheat, while extract of R. oryzae fermented wheat (ROFW) showed maximum of 6·6-fold and fivefold enhancement of DPPH(●) scavenging property (8·54 μmol Trolox equivalent g(-1) grain) and ABTS(●+) scavenging activity (19·5 μmol Trolox equivalent g(-1) grain), respectively. The study demonstrates that SSF is an efficient method for the improvement of antioxidant potentials of cereals and R. oryzae RCK2012 fermented wheat can be a powerful source of natural antioxidants. Antioxidant-rich food products are getting popularity day by day. In this study, potential of solid-state fermentation (SSF) has been studied for the improvement of antioxidant potential of different cereals by GRAS micro-organisms. The comparative evaluation of the antioxidant potential of various fungal fermented products derived from whole grain cereals, such as wheat, brown rice, oat and maize, has been carried out. Among these, Rhizopus oryzae RCK2012-fermented wheat was observed as a potent source of natural antioxidants. A diet containing fermented cereals would be useful for the prevention of free radical-mediated diseases. © 2014 The Society for Applied Microbiology.

  2. The improvement of the endogenous antioxidant property of stone fish (Actinopyga lecanora) tissue using enzymatic proteolysis.

    Science.gov (United States)

    Bordbar, Sara; Ebrahimpour, Afshin; Abdul Hamid, Azizah; Abdul Manap, Mohd Yazid; Anwar, Farooq; Saari, Nazamid

    2013-01-01

    The stone fish (Actinopyga lecanora) ethanolic and methanolic tissue extracts were investigated for total phenolic contents (TPCs) as well as antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) radical scavenging activity and ferric reducing antioxidant power (FRAP) assays. Both extracts showed low amount of phenolics (20.33 to 17.03 mg of gallic acid equivalents/100 g dried sample) and moderate antioxidant activity (39% to 34% DPPH(•) radical scavenging activity and 23.95 to 22.30 mmol/100 mL FeSO4 FRAP value). Enzymatic proteolysis was carried out in order to improve the antioxidant activity using six commercially available proteases under their optimum conditions. The results revealed that the highest increase in antioxidant activity up to 85% was obtained for papain-generated proteolysate, followed by alcalase (77%), trypsin (75%), pepsin (68%), bromelain (68%), and flavourzyme (50%) as measured by DPPH(•) radical scavenging activity, whilst for the FRAP value, the highest increase in the antioxidant activity up to 39.2 mmol/100 mL FeSO4 was obtained for alcalase-generated proteolysate, followed by papain (29.5 mmol/100 mL FeSO4), trypsin (23.2 mmol/100 mL FeSO4), flavourzyme (24.7 mmol/100 mL FeSO4), bromelain (22.9 mmol/100 mL FeSO4), and pepsin (20.8 mmol/100 mL FeSO4). It is obvious that proteolysis of stone fish tissue by proteolytic enzymes can considerably enhance its antioxidant activity.

  3. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity

    Energy Technology Data Exchange (ETDEWEB)

    Song Alin [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li Zhaojun [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Zhang Jie [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Xue Gaofeng; Fan Fenliang [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Liang Yongchao, E-mail: ycliang@caas.ac.cn [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003 (China)

    2009-12-15

    A series of hydroponics experiments were performed to investigate roles of silicon (Si) in enhancing cadmium (Cd) tolerance in two pakchoi (Brassica chinensis L.) cultivars: i.e. cv. Shanghaiqing, a Cd-sensitive cultivar, and cv. Hangyoudong, a Cd-tolerant cultivar. Plants were grown under 0.5 and 5 mg Cd L{sup -1} Cd stress without or with 1.5 mM Si. Plant growth of the Cd-tolerant cultivar was stimulated at the lower Cd level, but was decreased at the higher Cd level when plants were treated with Cd for one week. However, Plant growth was severely inhibited at both Cd levels as stress duration lasted for up to three weeks. Plant growth of the Cd-sensitive cultivar was severely inhibited at both Cd levels irrespective of Cd stress duration. Addition of Si increased shoot and root biomass of both cultivars at both Cd levels and decreased Cd uptake and root-to-shoot transport. Superoxide dismutase, catalase and ascorbate peroxidase activities decreased, but malondialdehyde and H{sub 2}O{sub 2} concentrations increased at the higher Cd level, which were counteracted by Si added. Ascorbic acid, glutathione and non-protein thiols concentrations increased at the higher Cd level, which were further intensified by addition of Si. The effects of Si and Cd on the antioxidant enzyme activity were further verified by isoenzyme analysis. Silicon was more effective in enhancing Cd tolerance in the Cd-tolerant cultivar than in the Cd-sensitive cultivar. It can be concluded that Si-enhanced Cd tolerance in B. chinensis is attributed mainly to Si-suppressed Cd uptake and root-to-shoot Cd transport and Si-enhanced antioxidant defense activity.

  4. Antioxidant and Anti-Hepatitis C Viral Activities of Commercial Milk Thistle Food Supplements

    Directory of Open Access Journals (Sweden)

    Kevin Anthony

    2013-02-01

    Full Text Available Milk thistle dietary supplements that contain silymarin are widely marketed and used in the USA and other countries for liver enhancement and recovery. More recently, silymarin has also been identified as a possible antiviral for the treatment of hepatitis C virus (HCV infection. To assess different brands of commercially sold silymarin, 45 products were collected from local stores and analyzed for their silymarin content, antioxidant activities, and antiviral activity against HCV. Antioxidant activity was measured as radical scavenging activity using DPPH and by estimating their antioxidant capacity as trolox equivalent. Anti-HCV activity was measured in an HCV genotype 1b replication inhibition assay. Samples were found to vary widely in their silymarin content, with some samples having none or very low concentrations while silymarin represented higher than 80% of other samples. Both antioxidant and anti-HCV activity correlated with the overall level of silymarin.

  5. Chemical Profiles and Antioxidant Activity of Black Elder (Sambucus Nigra L.) - A Review

    National Research Council Canada - National Science Library

    Georgiana PETRUT; Sevastita MUSTE; Crina MURESAN; Adriana PAUCEAN; Andruta MURESAN; Melinda NAGY

    2017-01-01

    ...), found in flowers, berries and leaves of Sambucus nigra L. Materials and Methods: Chromatographic profiling, spectrophotometric evaluation, DPPH antioxidant assay, ABTS radical scavenging activity. Results...

  6. Studies on free radical scavenging activity in Chinese seaweeds part I. Screening results

    Science.gov (United States)

    Yan, Xiao-Jun; Fang, Guo-Ming; Lou, Qing-Xiang

    1999-09-01

    Antioxidants have attracted the attention of researchers due to their beneficial effects as free radical scavengers. Application of a stable free radical named 1, 1-diphenyl-2-picrylhydrazyl(DPPH) to screen the free radical scavenging activity in 27 species of Chinese seaweed showed that 15 of them had significant activity in at least one of the organic solvent extracts. The most interesting seaweed species were Gelidium amansii, Gloiosiphonia capillaris, Polysiphonia urceolata, Sargassum kjellmanianum, Desmarestia viridis, and Rhodomela teres.

  7. Tetrahydrofolate and 5-methyltetrahydrofolate are folates with high antioxidant activity. Identification of the antioxidant pharmacophore.

    NARCIS (Netherlands)

    Rezk, BM; Haenen, GR; Vijgh, van der W.J.F.

    2003-01-01

    The presumed protective effect of folic acid on the pathogenesis of cardiovascular, hematological and neurological diseases and cancer has been associated with the antioxidant activity of folic acid. Peroxynitrite (PON) scavenging activity and inhibition of lipid peroxidation (LPO) of the

  8. Reduction of cathodic delamination rates of anticorrosive coatings using free radical scavengers

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Weinell, C. E.; Dam-Johansen, Kim

    2010-01-01

    formed as intermediates in the cathodic reaction during the corrosion process. In this study, antioxidants (i.e., free radical scavengers and peroxide decomposers) have been incorporated into various generic types of coatings to investigate the effect of antioxidants on the rate of cathodic delamination......, copper, aluminum, galvanized steel, and brass also showed a reduction in the rate of cathodic delamination when the coating was modified with a free radical scavenger. The protective mechanism of free radical scavengers investigated for the primers are similar to that of antioxidants used for protection...... against photochemical degradation by UV-radiation of top coatings. Both substrate corrosion and degradation of a coating exposed to UV-radiation lead to the formation of free radicals as reactive intermediates....

  9. H(2 enhances arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion.

    Directory of Open Access Journals (Sweden)

    Yanjie Xie

    Full Text Available BACKGROUND: The metabolism of hydrogen gas (H(2 in bacteria and algae has been extensively studied for the interesting of developing H(2-based fuel. Recently, H(2 is recognized as a therapeutic antioxidant and activates several signalling pathways in clinical trials. However, underlying physiological roles and mechanisms of H(2 in plants as well as its signalling cascade remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this report, histochemical, molecular, immunological and genetic approaches were applied to characterize the participation of H(2 in enhancing Arabidopsis salt tolerance. An increase of endogenous H(2 release was observed 6 hr after exposure to 150 mM NaCl. Arabidopsis pretreated with 50% H(2-saturated liquid medium, mimicking the induction of endogenous H(2 release when subsequently exposed to NaCl, effectively decreased salinity-induced growth inhibition. Further results showed that H(2 pretreatment modulated genes/proteins of zinc-finger transcription factor ZAT10/12 and related antioxidant defence enzymes, thus significantly counteracting the NaCl-induced reactive oxygen species (ROS overproduction and lipid peroxidation. Additionally, H(2 pretreatment maintained ion homeostasis by regulating the antiporters and H(+ pump responsible for Na(+ exclusion (in particular and compartmentation. Genetic evidence suggested that SOS1 and cAPX1 might be the target genes of H(2 signalling. CONCLUSIONS: Overall, our findings indicate that H(2 acts as a novel and cytoprotective regulator in coupling ZAT10/12-mediated antioxidant defence and maintenance of ion homeostasis in the improvement of Arabidopsis salt tolerance.

  10. Spectroscopic studies on the antioxidant activity of ellagic acid

    Science.gov (United States)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  11. Free radical scavenging activity of peptide fractions from defatted soybean meal hydrolysates evaluated by electron spin resonance.

    Science.gov (United States)

    Xu, Jing; Zhao, Qingshan; Qu, Yanyan; Ye, Fei

    2013-12-01

    Defatted soybean meal, a by-product of soybean oil extraction, was pretreated by ultrasonic and hydrolyzed with neutrase. The DSMH pretreated at 400 W of ultrasonic power, identified to possess the strongest antioxidant activity, was fractionated according to molecular weight into three fractions of DSMH-I (>10 kDa), DSMH-II (5-10 kDa), and DSMH-III (<5 kDa) using ultrafiltration. The fraction, DSMH-III (<5 kDa), exhibited the highest antioxidative activity and was further purified using ion-exchange chromatography. The DSMH-III was separated into five fractions (A, B, C, D, and E). Fraction C with molecular weight of 2434 Da exhibited the strongest free radical scavenging, which was evidenced by the electron spin resonance of 1,1-diphenyl-2-pycryl hydrazyl and hydroxyl radicals. Fraction C was subjected to reverse-phase high performance liquid chromatography and the sequences of the highest activity peptide were determined by liquid chromatography tandem mass spectrometry. The strongest antioxidant activity peptide had the amino acid sequence of Glu-Glu-Gln-Glu-Trp-Pro-Arg-Lys-Glu-Glu-Lys. In conclusion, ultrasonic treatment and ultrafiltration could enhanced antioxidant activity of DSMH.

  12. Evaluation on Antioxidant Effect of Xanthohumol by Different Antioxidant Capacity Analytical Methods

    OpenAIRE

    Xiu-Li Zhang; Yong-Dong Zhang; Tao Wang; Hong-Yun Guo; Qi-Ming Liu; Hai-Xiang Su

    2014-01-01

    Several assays have been frequently used to estimate antioxidant capacities including ABTS•+, DPPH, and FRAP assays. Xanthohumol (XN), the major prenylated flavonoid contained in beer, witnessed various reports on its antioxidant capacity. We systematically evaluated the antioxidant activity of XN using three systems, 2,2,-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS•+) scavenging assays, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assays, and ferric reducing antioxidant power (FRA...

  13. Preharvest treatments with salicylates enhance nutrient and antioxidant compounds in plum at harvest and after storage.

    Science.gov (United States)

    Martínez-Esplá, Alejandra; Zapata, Pedro J; Valero, Daniel; Martínez-Romero, Domingo; Díaz-Mula, Huertas M; Serrano, María

    2017-11-06

    Previous reports have addressed the effectiveness of salicylic acid (SA), acetylsalicylic acid (ASA) and methylsalicylate (MeSA) postharvest treatments on maintaining quality properties during storage in several commodities. However, there is no literature regarding the effect of preharvest treatments with salicylates on plum quality attributes (at harvest or after long-term cold storage), which was evaluated in this research. At harvest, weight, firmness, individual organic acids, sugars, phenolics, anthocyanins and total carotenoids were found at higher levels in plums from SA-, ASA- and MeSA-treated trees than in those from controls. During storage, softening, colour changes and acidity losses were delayed in treated fruits as compared to controls. In addition, organic acids and antioxidant compounds were still found at higher levels in treated than in control plums after 40 days of storage. Results show a delay in the postharvest ripening process due to salicylate treatments, which could be attributed to their effect in delaying and decreasing ethylene production. Preharvest treatment with salicylates could be a safety, eco-friendly and new tool to improve (at harvest) and maintain (during storage) plum quality and especially its content of bioactive compounds with antioxidant properties, increasing the health effects of plum consumption. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Curcuma aromatica Water Extract Attenuates Ethanol-Induced Gastritis via Enhancement of Antioxidant Status

    Directory of Open Access Journals (Sweden)

    Woo-Young Jeon

    2015-01-01

    Full Text Available Curcuma aromatica is an herbal medicine and traditionally used for the treatment of various diseases in Asia. We investigated the effects of C. aromatica water extract (CAW in the stomach of rats with ethanol-induced gastritis. Gastritis was induced in rats by intragastric administration of 5 mL/kg body weight of absolute ethanol. The CAW groups were given 250 or 500 mg of extract/kg 2 h before administration of ethanol, respectively. To determine the antioxidant effects of CAW, we determined the level of lipid peroxidation, the level of reduced glutathione (GSH, the activities of catalase, degree of inflammation, and mucus production in the stomach. CAW reduced ethanol-induced inflammation and loss of epithelial cells and increased the mucus production in the stomach. CAW reduced the increase in lipid peroxidation associated with ethanol-induced gastritis (250 and 500 mg/kg, p<0.01, resp. and increased mucosal GSH content (500 mg/kg, p<0.01 and the activity of catalase (250 and 500 mg/kg, p<0.01, resp.. CAW increased the production of prostaglandin E2. These findings suggest that CAW protects against ethanol-induced gastric mucosa injury by increasing antioxidant status. We suggest that CAW could be developed for the treatment of gastritis induced by alcohol.

  15. Characterization and Enhanced Antioxidant Activity of the Cysteinyl β-Cyclodextrin-Baicalein Inclusion Complex

    Directory of Open Access Journals (Sweden)

    Hwanhee Kim

    2016-05-01

    Full Text Available Baicalein is a type of flavonoid isolated from the roots of a medicinal plant, Scutellaria baicalensis. Although it has attracted considerable attention due to its antiviral, anti-tumor, and anti-inflammatory activities, its limited aqueous solubility inhibits the clinical application of this flavonoid. The present study aimed to prepare and characterize a host-guest complex in an effort to improve the solubility and antioxidant activity of baicalein. The host molecule is a macrocyclic β-cyclodextrin (β-CD functionalized with cysteine for a synergetic effect. The structure of the synthesized cysteinyl β-CD was analyzed using nuclear magnetic resonance (NMR spectroscopy and mass spectrometry. The inclusion complex with baicalein was studied by UV-vis, NMR spectroscopy, scanning electron microscopy, and X-ray powder diffractometry. The formed cysteinyl β-CD/baicalein inclusion complex efficiently improved the solubility and antioxidant ability of baicalein. Therefore, we suggest that the present cysteinyl β-CD is a potential host molecule for inclusion complexation and for bioavailability augmentation.

  16. Ω3 Supplementation and intermittent hypobaric hypoxia induce cardioprotection enhancing antioxidant mechanisms in adult rats.

    Science.gov (United States)

    Herrera, Emilio A; Farías, Jorge G; González-Candia, Alejandro; Short, Stefania E; Carrasco-Pozo, Catalina; Castillo, Rodrigo L

    2015-02-04

    Intermittent hypobaric hypoxia (IH) is linked with oxidative stress, impairing cardiac function. However, early IH also activate cardio-protective mechanisms. Omega 3 fatty acids (Ω3) induce cardioprotection by reducing infarct size and reinforcing antioxidant defenses. The aim of this work was to determine the combined effects of IH and Ω3 on cardiac function; oxidative balance and inflammatory state. Twenty-eight rats were randomly divided into four groups: normobaric normoxia (N); N + Ω3 (0.3 g·kg-1·day-1); IH; and IH + Ω3. IH was induced by 4 intercalate periods of hypoxia (4 days)-normoxia (4 days) in a hypobaric chamber during 32 days. At the end of the exposure, hearts were mounted in a Langendorff system and subjected to 30 min of ischemia followed by 120 min of reperfusion. In addition, we determined HIF-1α and ATP levels, as well as oxidative stress by malondialdehyde and nitrotyrosine quantification. Further, the expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase was determined. NF-kappaB and myeloperoxidase levels were assessed in the hearts. Relative to N hearts, IH improved left ventricular function (Left ventricular developed pressure: N; 21.8 ± 3.4 vs. IH; 42.8 ± 7.1 mmHg; p inflammatory mechanisms, establishing cardio-protection.

  17. Fortification of fried potato chips with antioxidant vitamins to enhance their nutritional value and storage ability

    Directory of Open Access Journals (Sweden)

    Edress El-Sayed, Fyka

    2004-12-01

    Full Text Available The frying shelf life of commercial frying oil was increased by the addition of synthetic and natural antioxidants, e.g. TBHQ, retinyl palmitate and ascorbyl palmitate (antioxidant vitamins.The results revealed that TBHQ had the best effect in retarding the deteriorative effect of frying conditions throughout 24h of frying potato chips at 180±10 ºC followed by the effect of retinyl palmitate and the effect of ascorbyl palmitate compared to the control without any additives. Fried potato chips in oils either with or without antioxidant were collected during the first 8h of frying, divided into 3 main portions each portion had different treatment; 1 without any additives (control samples for fried potatoes resulting from the control oil or from oil containing TBHQ or containing retinyl or ascorbyl palmitate. 2 fortification of the above 4 samples with vitamin E (tocopherol by dipping each of the resulting samples from the four frying trials separately in oil containing 0.1 % tocopherol. 3 fortification of each of the above mentioned samples with vitamin C by dispersing the mixture of fine salt and ascorbyl palmitate on the fried chips' surface and vigorous shaking in bags. The control samples and fortified samples were packed in aluminum bags and stored in an electric oven at 63±1 ºC . The storage ability of fried potatoes at 63±1 ºC was increased by the fortification with antioxidant vitamins either with vitamin E (tocopherol or with vitamin C (ascorbyl palmitate before packaging and storing at 63±1 ºC. The results indicated that potatoes fried in oil without any additives (control had the lowest storage stability and that it was increased by the fortification with antioxidant vitamins, C or E. Potato chips fortified with vitamins A or C by frying in oil containing retinyl palmitate or ascorbyl palmitate and also in oil containing TBHQ had better storage ability at 63 ºC and this was also prolonged by the addition of vitamin E or C after

  18. Oreochromis mossambicus diet supplementation with Psidium guajava leaf extracts enhance growth, immune, antioxidant response and resistance to Aeromonas hydrophila.

    Science.gov (United States)

    Gobi, Narayanan; Ramya, Chinnu; Vaseeharan, Baskaralingam; Malaikozhundan, Balasubramanian; Vijayakumar, Sekar; Murugan, Kadarkarai; Benelli, Giovanni

    2016-11-01

    In this research, we focused on the efficacy of aqueous and ethanol leaf extracts of Psidium guajava L. (guava) based experimental diets on the growth, immune, antioxidant and disease resistance of tilapia, Oreochromis mossambicus following challenge with Aeromonas hydrophila. The experimental diets were prepared by mixing powdered (1, 5 and 10 mg/g) aqueous and ethanol extract of guava leaf with commercial diet. The growth (FW, FCR and SGR), non-specific cellular immune (myeloperoxidase activity, reactive oxygen activity and reactive nitrogen activity) humoral immune (complement activity, antiprotease, alkaline phosphatase activity and lysozyme activity) and antioxidant enzyme responses (SOD, GPX, and CAT) were examined after 30 days of post-feeding. A significant enhancement in the biochemical and immunological parameters of fish were observed fed with experimental diets compared to control. The dietary supplementation of P. guajava leaf extract powder for 30 days significantly reduced the mortality and increased the disease resistance of O. mossambicus following challenge with A. hydrophila at 50 μl (1 × 10 7  cells ml -1 ) compared to control after post-infection. The results suggest that the guava leaf extract could be used as a promising feed additive in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability

    Directory of Open Access Journals (Sweden)

    Ilaiyaraja Nallamuthu

    2015-06-01

    Full Text Available In this study, chlorogenic acid (CGA, a phenolic compound widely distributed in fruits and vegetables, was encapsulated into chitosan nanoparticles by ionic gelation method. The particles exhibited the size and zeta potential of 210 nm and 33 mV respectively. A regular, spherical shaped distribution of nanoparticles was observed through scanning electron microscopy (SEM and the success of entrapment was confirmed by FTIR analysis. The encapsulation efficiency of CGA was at about 59% with the loading efficiency of 5.2%. In vitro ABTS assay indicated that the radical scavenging activity of CAG was retained in the nanostructure and further, the release kinetics study revealed the burst release of 69% CGA from nanoparticles at the end of 100th hours. Pharmacokinetic analysis in rats showed a lower level of Cmax, longer Tmax, longer MRT, larger AUC0–t and AUC0–∞ for the CGA nanoparticles compared to free CGA. Collectively, these results suggest that the synthesised nanoparticle with sustained release property can therefore ease the fortification of food-matrices targeted for health benefits through effective delivery of CGA in body.

  20. Kinetic radical-scavenging activity of colchicine and tropolone.

    Science.gov (United States)

    Kadoma, Yoshinori; Ishihara, Mariko; Yokoe, Ichiro; Fujisawa, Seiichiro

    2007-01-01

    The kinetics of radical-scavenging activities for colchicine and tropolone remain unknown. Their antioxidant activities were determined by the induction period (IP) method in the polymerization of methyl methacrylate initiated by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN, R*) or benzoyl peroxide (BPO, PhCOO*) using differential scanning calorimetry (DSC) under nearly anaerobic conditions. The IPs for colchicine and tropolone were very short despite the addition of a high concentration of these compounds relative to initiators; the stoichiometric factor (n, the number of moles of PhCOO* trapped by the antioxidant) was approximately 0.03 and 0.04 for colchicine and tropolone, respectively. The n value of these compounds for R* was less than that for PhCOO*. The rate constant of inhibition to that of propagation (kinh/kp) for both compounds was 23-27, and the difference between them was considerably small. Both compounds had weak antioxidant properties at very high concentrations.

  1. Tronchuda cabbage (Brassica oleracea L. var. costata DC): scavenger of reactive nitrogen species.

    Science.gov (United States)

    Sousa, Carla; Valentão, Patrícia; Ferreres, Federico; Seabra, Rosa M; Andrade, Paula B

    2008-06-11

    The ability of tronchuda cabbage ( Brassica oleracea L. var. costata DC) to act as a scavenger of the reactive nitrogen species nitric oxide and peroxynitrite was investigated. The aqueous extracts obtained from tronchuda cabbage seeds and from its external and internal leaves exhibited a concentration dependent scavenging capacity. The antioxidant potential observed against the two reactive species was as follows: seeds > external leaves > internal leaves. In order to establish a possible correlation with the chemical composition of the extracts, the activity of ascorbic and sinapic acids and kaempferol 3- O-rutinoside was also studied. Among the compounds tested, sinapic acid showed the strongest antioxidant activity against both species.

  2. Application of the Kombucha 'tea fungus' for the enhancement of antioxidant and starch hydrolase inhibitory properties of ten herbal teas.

    Science.gov (United States)

    Watawana, Mindani I; Jayawardena, Nilakshi; Choo, Candy; Waisundara, Viduranga Y

    2016-03-01

    Ten herbal teas (Acacia arabica, Aegle marmelos flower, A. marmelos root bark, Aerva lanata, Asteracantha longifolia, Cassia auriculata, Hemidesmus indicus, Hordeum vulgare, Phyllanthus emblica, Tinospora cordifolia) were fermented with the Kombucha 'tea fungus'. The pH values of the fermented beverages ranged from 4.0 to 6.0 by day 7, while the titratable acidity ranged from 2.5 to 5.0g/mL (PKombucha beverages to have statistically significant increases (Pfermentation, while the α-glucosidase inhibitory activities ranged from 95.2 to 196.1μg/mL. In conclusion, an enhancement of the antioxidant and starch hydrolase inhibitory potential of the herbal teas was observed by adding the tea fungus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera.

    Science.gov (United States)

    Prasad, Ram; Kamal, Shwet; Sharma, Pradeep K; Oelmüller, Ralf; Varma, Ajit

    2013-12-01

    Unorganized collections and over exploitation of naturally occurring medicinal plant Bacopa monniera is leading to rapid depletion of germplasm and is posing a great threat to its survival in natural habitats. The species has already been listed in the list of highly threatened plants of India. This calls for micropropagation based multiplication of potential accessions and understanding of their mycorrhizal associations for obtaining plants with enhanced secondary metabolite contents. The co-cultivation of B. monniera with axenically cultivated root endophyte Piriformospora indica resulted in growth promotion, increase in bacoside content, antioxidant activity and nuclear hypertrophy of this medicinal plant. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Radical scavenging propensity of Cu2 +, Fe3 + complexes of flavonoids and in-vivo radical scavenging by Fe3 +-primuletin

    Science.gov (United States)

    Jabeen, Erum; Janjua, Naveed Kausar; Ahmed, Safeer; Murtaza, Iram; Ali, Tahir; Hameed, Shahid

    2017-01-01

    Cu2 + and Fe3 + complexes of three flavonoids (morin or mo, quercetin or quer and primuletin or prim) were synthesized with the objective of improving antioxidant capacities of flavonoids. The radical scavenging activities of pure flavonoids and their metal complexes were assayed to monitor their tendencies towards sequestering of radicals at physiological conditions. The scavenger potencies of metal-flavonoid complexes were significantly higher than those of the parent flavonoids. Further, influence of the solvent polarity on the radical capturing by flavonoids and their metal complexes was in favor for the polar solvent. Fe3 +-prim displayed its radical scavenging ability via up gradation of CAT and SOD activities in in-vivo antioxidant assays.

  5. Synergistic radical scavenging potency of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes

    Energy Technology Data Exchange (ETDEWEB)

    Aadinath, W.; Bhushani, Anu; Anandharamakrishnan, C., E-mail: anandhram@cftri.res.in

    2016-07-01

    Curcumin is a highly potent nutraceutical associated with various health benefits. However, its hydrophobic nature affects its bioavailability and bioactivity, and limits nutraceutical applications. Drug-in-cyclodextrin-in-liposome has the ability to mask the hydrophobic nature of drug and achieve better encapsulation. Also, encapsulating iron oxide nanoparticles (IONPs) within liposomes endow additional beneficial functionalities of IONPs. In the present study, curcumin-β-cyclodextrin inclusion complex (IC) and IONPs were co-encapsulated within liposomes (curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes) to achieve the synergistic antioxidant potential of curcumin and IONPs. IC of curcumin-β-cyclodextrin was prepared by a simple rapid method and successful inclusion was confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Mean diameter of IONPs was found to be 180 nm and X-ray diffraction pattern confirmed the formation of hematite nanoparticles. Band gap energy calculated using absorption spectra was 2.25 eV, which falls in close proximity with the theoretically calculated values of hematite. Mean diameter of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes was 67 nm and encapsulation efficiency of curcumin was found to be 71%. Further, the co-encapsulated particles possessed significantly low IC{sub 50} value (64.7791 μg/ml, p < 0.01) compared to conventional curcumin liposome and IONPs, indicating its synergistically enhanced radical scavenging property. - Highlights: • Curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes (mean diameter, 67 nm) has been prepared. • Encapsulation efficiency of curcumin was found to be 71%. • IONPs in the nano-carrier play dual role of targeted delivery and radical scavenging activities. • Conjunction of IONPs and curcumin into the liposomes increases the radical scavenging activity.

  6. Evaluation of Antioxidant and Immunity-Enhancing Activities of Sargassum pallidum Aqueous Extract in Gastric Cancer Rats

    Directory of Open Access Journals (Sweden)

    Shen-Kang Zhou

    2012-07-01

    Full Text Available The effect of Sargassum pallidum (brown seaweed aqueous extract on the immunity function and antioxidant activities in was studied gastric cancer rats. Treatment with Sargassum pallidum aqueous extract at oral doses 400, 600 or 800 mg/kg body weight was found to provide a dose-dependent protection against N-methyl-N′-nitro-N-nitrosoguanidine (MNNG-induced immunity damage and oxidative injury by enhancing serum interleukin-2 (IL-2, interleukin-4 (IL-4, interleukin-10 (IL-10 levels, decreasing interleukin-6 (IL-6, interleukin-1β (IL-1β, tumor necrosis factor-alpha (TNF-α levels, preserving normal antioxidant enzymes activities, and by inhibiting lipid peroxidation in gastric mucosa. It can be concluded that Sargassum pallidum aqueous extract may enhance the immunity and antioxidant activities in gastric cancer rats.

  7. Antioxidant properties of HDL

    Directory of Open Access Journals (Sweden)

    Handrean eSoran

    2015-10-01

    Full Text Available High-density lipoprotein (HDL provides a pathway for the passage of lipid peroxides and lysophospholipids to the liver via hepatic scavenger receptors. Perhaps more importantly, HDL actually metabolises lipid hydroperoxides preventing their accumulation on low-density lipoprotein (LDL, thus impeding its atherogenic structural modification. A number of candidates have been suggested to be responsible for HDL’s antioxidant function, with paraoxonase-1 (PON1 perhaps the most prominent. Here we review the evidence for HDL anti-oxidative function and the potential contributions of apolipoproteins, lipid transfer proteins, paraoxonases and other enzymes associated with HDL.

  8. Evaluation of in Vivo Antioxidant and Immunity Enhancing Activities of Sodium Aescinate Injection Liquid

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2012-08-01

    Full Text Available Oxidative stress is involved in the development and progression of disease. Because sodium aescinate has been reported to have immunity enhancing and antioxidative effects, we investigated its activity by employing a hepatocellular carcinoma (HCC mouse model. Sixty BALB/c mice were randomly divided into four groups, including a 1.4 mg/kg treated group (n = 15, a 2.8 mg/kg treated group (n = 15, an untreated hepatocellular carcinoma control group (n = 15 and a normal control group (n = 15. After H22 cells were cultured for one week, we collected 2 × 106 cells and injected them subcutaneously as 0.2 mL cell suspensions in sterile saline into the right shoulder region of every mouse. The animals were monitored for changes in activity, physical condition and body weight during the experiment. The next day after injection of H22 cells, animals in these test groups received one intraperitoneal injection of drug or physiological saline for 13 days. Results showed that in the sodium aescinate injection liquid (SAIL-treated HCC mice, serum interleukin-1 beta (IL-1β, interleukin-6 (IL-6, tumor necrosis factor-alpha (TNF-α, interferon-gamma (IFN-γ, Gamma-glutamyltransferase (γ-GT, alanine transaminase (ALT, aspartate transaminase (AST and alkaline phosphatase (ALP levels were significantly decreased compared with normal control mice. In addition, treatment with sodium aescinate injection liquid significantly decreased blood and liver malondialdehyde (MDA levels, increased glutathione (GSH levels, and antioxidant enzyme [superoxide dismutase (SOD, catalase (CAT and glutathione peroxidase (GSH-Px] activities in a dose-dependent manner. We conclude that sodium aescinate injection liquid can decrease oxidative injury and enhance immunity functions in HCC mice.

  9. Antioxidant activity of lichen Cetraria aculeata

    Directory of Open Access Journals (Sweden)

    Tomović Jovica

    2016-01-01

    Full Text Available The aim of the present study is to investigate the antioxidant properties of the lichen Cetraria aculeata. Antioxidant activity of the methanol and ethyl acetate extracts of lichen was tested by different methods including determination of total phenolics content, determination of total antioxidant capacity, DPPH free radical scavenging activity, inhibitory activity towards lipid peroxidation, ferrous ion chelating ability and hydroxyl radical scavenging activity. The extracts of the lichen C. aculeata showed significant antioxidant activity. The methanol extract showed higher values for total phenolics and total antioxidant capacity compared to the ethyl acetate extract, while the ethyl acetate extract demonstrated better results for DPPH radical scavenging, inhibitory activity towards lipid peroxidation, chelating ability and hydroxyl radical scavenging than the methanol extract. This is the first report of the antioxidant properties of Cetraria aculeata growing in Serbia. The results of antioxidant activity indicate the application of this lichen as source of natural antioxidants that could be used as a possible food supplement, in the pharmaceutical industry and in the treatment of various diseases.

  10. Analysis and enhancement of nutritional and antioxidant properties of Vigna aconitifolia sprouts.

    Science.gov (United States)

    Kestwal, Rakesh M; Bagal-Kestwal, Dipali; Chiang, Been-Huang

    2012-06-01

    Vigna aconitifolia sprouts (Moth bean sprouts, MBS) were analyzed for their nutritional and antioxidant properties during sprouting. Sprouting for six days led to a 7.0 fold increase in fresh weight, 2.4 fold increase in soluble proteins, 3.0 fold increase in carbohydrates, and a 5.5 fold increase in mineral content. Phenolic content also increased by 28% during germination. Caffeic acid, ferulic acid, cinnamic acid and kaempferol were the predominant phenolic compounds detected in the ethanolic extracts of MBS by HPLC. Following supplementation with metal ions (200 μg ml⁻¹), the sprouts demonstrated a considerable increase in metal ion uptake, with improved phenolic content. MBS ethanolic extracts also reduced intracellular oxidative stress in HepG2 cells.

  11. Weight loss enhances hepatic antioxidant status in a NAFLD model induced by high-fat diet.

    Science.gov (United States)

    Mendes, Iara Karise Santos; Matsuura, Cristiane; Aguila, Marcia Barbosa; Daleprane, Julio Beltrame; Martins, Marcela Anjos; Mury, Wanda Vianna; Brunini, Tatiana Marlowe Cunha

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a benign condition that can progress to more severe liver damage in a process mediated, in part, by disturbances in redox balance. Additionally, some argue that it is set to become the main cause of end-stage liver disease in the near future. Here, we investigated whether diet-induced weight loss is able to reverse hepatic lipid accumulation and reduce oxidative stress in liver from C57BL/6 mice fed a high-fat (HF) diet. Male C57BL/6 mice were divided into 4 groups: standard chow (SC; 10% energy from fat, 16 weeks); HF (50% energy from fat, 16 weeks); SC-HF (SC for 8 weeks followed by HF for 8 weeks); and HF-SC (HF for 8 weeks followed by SC for 8 weeks). The HF diet during 8 (SC-HF) and 16 weeks (HF) downregulated messenger RNA levels and protein expression of Nrf2 and endogenous antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) in the liver; caused liver steatosis; affected liver function markers; increased intra-abdominal and subcutaneous adipose tissue; and induced glucose intolerance and hypercholesterolemia compared with controls (SC). Diet-induced weight loss significantly reduced the intrahepatic lipid accumulation, improved glucose tolerance, and restored both gene and protein expression of the antioxidant enzymes. Our findings suggest that a dietary intervention aimed to induce weight loss may exert protective effects in NAFLD as it can reduce hepatic oxidative stress and intrahepatic lipid accumulation, which can hinder the progression of this condition to more severe states.

  12. Free radical scavenging capacity, anticandicidal effect of bioactive compounds from Sida cordifolia L., in combination with nystatin and clotrimazole and their effect on specific immune response in rats.

    Science.gov (United States)

    Ouédraogo, Maurice; Konaté, Kiessoun; Lepengué, Alexis Nicaise; Souza, Alain; M'Batchi, Bertrand; Sawadogo, Laya L

    2012-12-26

    Infectious diseases caused by fungi are still a major threat to public health, despite numerous efforts by researchers. Use of ethnopharmacological knowledge is one attractive way to reduce empiricism and enhance the probability of success in new drug-finding efforts. In this work, the total alkaloid compounds (AC) from Sida cordifolia L. (Malvaceae) have been investigated for their free radical scavenging capacity, antifungal and immunostimulatory properties. The antifungal activity was investigated against five candida strains using the microplate dilution method and the Fractional Inhibitory Concentration Index (FICI) of compounds was evaluated. The antioxidant activity of the samples was evaluate using three separate methods, at last, the immunostimulatory effect on immunosuppressed wistar rats was performed. As for the antifungal activity, result varied according to microorganism. The results obtained in this antifungal activity were interesting and indicated a synergistic effect between alkaloid compounds and the antifungal references such as Nystatin and Clotrimazole. Antioxidant capacity noticed that the reduction capacity of DPPH radicals obtained the best result comparatively to the others methods of free radical scavenging. Our results showed a low immunostimulatory effect and this result could be explained by the lack of biologically active antioxidants such as polyphenol compounds lowly contained in the alkaloid compounds. The results of this study showed that alkaloid compounds in combination with antifungal references (Nystatin and Clotrimazole) exhibited antimicrobial effects against candida strains tested. The results supported the utilization of these plants in infectious diseases particularly in treatment of candida infections.

  13. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, D., E-mail: dtahir@fmipa.unhas.ac.id; Halide, H., E-mail: dtahir@fmipa.unhas.ac.id; Kurniawan, D. [Department of Physics, Hasanuddin University, Makassar 90245 (Indonesia); Wahab, A. W. [Department of Chemistry, Hasanuddin University, Makassar 90245 (Indonesia)

    2014-09-25

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  14. GC/MS profiling, in vitro antioxidant, antimicrobial and haemolytic activities of Smilax macrophylla leaves

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair

    2017-02-01

    Full Text Available The current study has been designed to appraise the antioxidant, antimicrobial and haemolytic potential of Smilax macrophylla leaves. The n-hexane fraction was analysed by Gas Chromatography/Mass Spectrometer which revealed the presence of 38 compounds. All examined extracts and fractions of plant leaves showed significant antimicrobial activity. The haemolytic effect of the plant was found to be in a range of 3.41–8.48%. S. macrophylla leaves contained substantial level of total phenolic contents (2.2–6.2 Gallic acid equivalent mg/g and total flavonoid contents (1.2–4.5 Catechin, mg/g of dry plant matter. Leaf extract and fractions also exhibited a good antioxidant potential when measured by DPPH radical scavenging assay (Inhibitory concentration 50% = 33.4–72.3 μg/mL. The antioxidant activity of plant extracts was also studied using sunflower oil as an oxidative substrate and found that it stabilized the oil. Significant (p < 0.05 variations were observed in the results. The correlation between the results of different antioxidant assays and oxidation parameters of oil indicated that leaf extracts and fractions, exhibit considerable total phenolic contents, total flavonoid contents and scavenging power, along with more potent for enhancing the oxidative stability of sunflower oil. Considering these results, S. macrophylla could be used as a source for the exploration of new antimicrobial, antioxidant agents, functional food and nutraceutical applications.

  15. Antioxidant capacity of extracts from calyx fruits of roselle (Hibiscus ...

    African Journals Online (AJOL)

    Yomi

    2012-02-16

    Feb 16, 2012 ... The antioxidant capacities of extracts of dried roselle (Hibiscus sabdariffa L.) calyx and fruit with distilled water ethanol (30, ... extract could be used as a good natural antioxidant with potent free radical scavenging activity. Key words: Antioxidant ..... promotion in mouse skin. Cancer Lett. 126: 199-207.

  16. Total phenolic, condensed tannin and antioxidant activity of four ...

    African Journals Online (AJOL)

    Different species of functional agricultural crops may vary in antioxidant capacities. In this study, the antioxidant activities of methanol extracts from four species of Carya genus were compared by various antioxidant assays, including the reducing power, 1,1-diphenyl-2-pycrylhydrazyl (DPPH) radical scavenging activity and ...

  17. Formation, characterization, aggregation, fluorescence and antioxidant properties of novel tetrasubstituted metal-free and metallophthalocyanines bearing (4-(methylthio)phenoxy) moieties

    Science.gov (United States)

    Yıldırım, Nurdan; Bilgiçli, Ahmet T.; Alici, Esma Hande; Arabacı, Gulnur; Yarasir, M. Nilüfer

    2017-09-01

    The synthesis and characterization of peripherally tetra 4-(methylthio)phenoxy substituted metal-free(2), Zn(II) (3) and Co(II) (4) phthalocyanine derivatives were reported. These newly synthesized phthalocyanine derivatives showed the enhanced solubility in organic solvents and they were characterized by a combination of elemental analysis, FTIR, 1H NMR, 13C NMR, UV-vis and MALDI-TOF/MS spectral data. Their aggregation properties were investigated in THF by UV-vis and fluorescence. These metal-free and metallophthalocyanine compounds were also evaluated for their total antioxidant abilities by using three different antioxidant methods such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, ferrous ion chelating and reducing power activity. All tested compounds showed radical scavenging activity. The highest radical scavenging activity was found from cobalt phthalocyanine (4) compound respectively. IC50 values of the compounds and standards (BHT and Trolox) were also determined. The results showed that the compound 4 had the highest antioxidant activity among all tested compounds including standards. The tested phthalocyanine compounds had ferrous ion chelating activity. In addition, they showed very high reducing power. All tested compounds had higher reducing power than the standards such as ascorbic acid and BHT. The present study shows that the synthesized tetra phthalocyanine [M: 2H(2), Zn(II)(3), Co(II)(4)] with four peripheral 4-(methylthio) phenoxy compounds have the effective antioxidant properties that can be used as antioxidant agents.

  18. Synthesis and antioxidant property of novel 1,2,3-triazole-linked starch derivatives via 'click chemistry'.

    Science.gov (United States)

    Tan, Wenqiang; Li, Qing; Li, Wancong; Dong, Fang; Guo, Zhanyong

    2016-01-01

    Based on the copper (I) catalyzed Huisgen azide-alkyne cycloaddition (click chemistry), the novel synthesis of a variety of 1,2,3-triazole-linked starch derivatives was developed, including 6-hydroxymethyltriazole-6-deoxy starch (HMTST), 6-hydroxyethyltriazole-6-deoxy starch (HETST), 6-hydroxypropyltriazole-6-deoxy starch (HPTST), and 6-hydroxybutyltriazole-6-deoxy starch (HBTST). Their antioxidant properties against hydroxyl-radical, DPPH-radical, and superoxide-radical were evaluated in vitro, respectively. The antioxidant activity of the obtained novel amphiprotic starch derivatives via 'click reaction' exhibited remarkable improvement over starch. And the scavenging effect indices of most of the products were higher than 60% at 1.6 mg/mL against hydroxyl-radical and DPPH-radical. Moreover, the scavenging effect of the products against superoxide-radical attained 90% above at 0.1mg/mL. Generally, the antioxidant activity decreased in the order: HBTST>HPTST>HETST>HMTST>starch. Furthermore, the order of their antioxidant activity was consistent with the electron-donating ability of different substituted groups of the 1,2,3-triazoles. The substituted groups with stronger electron supplying capacity provided more electrons to the various radicals, which relatively enhanced the capacity for scavenging free radicals. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Antioxidant Cerium Oxide Nanoparticle Hydrogels for Cellular Encapsulation

    Science.gov (United States)

    Weaver, Jessica D; Stabler, Cherie L

    2015-01-01

    Oxidative stress and the resulting radical by-products cause significant toxicity and graft loss in cellular transplantation. Here, the engineering of an auto-catalytic, antioxidant, self-renewing cerium oxide nanoparticle (CONP)-composite hydrogel is reported. This enzyme-mimetic material ubiquitously scavenges ambient free radicals, with the potential to provide indefinite antioxidant protection. Here, we evaluated the potential of this system to enhance the protection of encapsulated beta cells. Co-incubation of CONPs, free in solution with beta cells, demonstrated potent cytoprotection from superoxide exposure; however, phagocytosis of the CONPs by the beta cells resulted in cytotoxicity at concentrations as low as 1 mM. When CONPs were embedded within alginate hydrogels, the composite hydrogel provided cytoprotection to encapsulated beta cells from free radical attack without cytotoxicity, even up to 10 mM concentrations. This nanocomposite hydrogel has wide applicability in cellular transplantation, with the unique advantage of localization of these potent antioxidant CONPs and their capacity for sustained, long-term scavenging. PMID:25620795

  20. Antioxidant Potential and Oil Composition of Callistemon viminalis Leaves

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair

    2013-01-01

    Full Text Available The present study was designed to investigate the antioxidant potential and oil composition of Callistemon viminalis leaves. GC-MS analysis of the n-hexane extract revealed the presence of 40 compounds. Leaves contained appreciable levels of total phenolic contents (0.27–0.85 GAE mg/g and total flavonoid contents (2.25–7.96 CE mg/g. DPPH radical scavenging IC50 and % inhibition of linoleic acid peroxidation were found to be in the ranges of 28.4–56.2 μg/ml and 40.1–70.2%, respectively. The haemolytic effect of the plant leaves was found in the range of 1.79–4.95%. The antioxidant activity of extracts was also studied using sunflower oil as an oxidative substrate and found that it stabilized the oil. The correlation between the results of different antioxidant assays and oxidation parameters of oil indicated that leaves' methanolic extract, exhibiting higher TPC and TFC and scavenging power, was also more potent for enhancing the oxidative stability of sunflower oil.

  1. Role of allyl group in the hydroxyl and peroxyl radical scavenging activity of S-allylcysteine.

    Science.gov (United States)

    Maldonado, Perla D; Alvarez-Idaboy, J Raúl; Aguilar-González, Adriana; Lira-Rocha, Alfonso; Jung-Cook, Helgi; Medina-Campos, Omar Noel; Pedraza-Chaverrí, José; Galano, Annia

    2011-11-17

    S-Allylcysteine (SAC) is the most abundant compound in aged garlic extracts, and its antioxidant properties have been demonstrated. It is known that SAC is able to scavenge different reactive species including hydroxyl radical (•OH), although its potential ability to scavenge peroxyl radical (ROO•) has not been explored. In this work the ability of SAC to scavenge ROO• was evaluated, as well as the role of the allyl group (-S-CH(2)-CH═CH(2)) in its free radical scavenging activity. Two derived compounds of SAC were prepared: S-benzylcysteine (SBC) and S-propylcysteine (SPC). Their abilities to scavenge •OH and ROO• were measured. A computational analysis was performed to elucidate the mechanism by which these compounds scavenge •OH and ROO•. SAC was able to scavenge •OH and ROO•, in a concentration-dependent way. Such activity was significantly ameliorated when the allyl group was replaced by benzyl or propyl groups. It was shown for the first time that SAC is able to scavenge ROO•.

  2. In vitro antioxidant activities of edible artichoke (Cynara scolymus L.) and effect on biomarkers of antioxidants in rats

    DEFF Research Database (Denmark)

    Jimenez-Escrig, A.; Dragsted, Lars Ove; Daneshvar, Bahram

    2003-01-01

    Artichoke (Cynara scolymus L.), an edible vegetable from the Mediterranean area, is a good source of natural antioxidants such as vitamin C, hydroxycinnamic acids, and flavones. The antioxidant activity of aqueous-organic extracts of artichoke were determined using three methods: (a) free radical 2......,2-diphenyl-1-picrylhydrazyl (DPPH.) scavenging, (b) ferric-reducing antioxidant power (FRAP), and...

  3. Antioxidant activity of Potentilla fruticosa

    NARCIS (Netherlands)

    Miliauskas, G.; Beek, van T.A.; Venskutonis, P.R.; Linssen, J.P.H.; Waard, de P.; Sudhölter, E.J.R.

    2004-01-01

    The molecular structures of the radical scavenging compounds present in extracts of Potentilla fruticosa blossoms were elucidated and the antioxidant activities of various extracts were determined. The activities of the different fractions were monitored by off-line and on-line RP-HPLC DPPH. and

  4. Antioxidative activity of Geranium macrorrhizum

    NARCIS (Netherlands)

    Miliauskas, G.; Beek, van T.A.; Venskutonis, P.R.; Linssen, J.P.H.; Waard, de P.

    2004-01-01

    The composition of radical-scavenging compounds from Geranium macrorrhizum leaves was analyzed and the antioxidative activities of various extracts was determined. Seven compounds, namely gallic acid, ellagic acid, 4-galloyl quinic acid, the flavonoid quercetin and three of its glycosides,

  5. Purple potato (Solanum tuberosum L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense.

    Science.gov (United States)

    Jiang, Zhihui; Chen, Chen; Wang, Jian; Xie, Wenyan; Wang, Meng; Li, Xinsheng; Zhang, Xiaoying

    2016-01-01

    Alcoholic liver disease (ALD) is a serious and challenging health issue. In the past decade, natural components possessing hepatoprotective properties have gained more attention for ALD intervention. In this study, the phytochemical components of anthocyanins from purple potato were assessed using UPLC-MS/MS, and the hepatoprotective effects of purple potato anthocyanins (PPAs) were investigated in the ALD mouse model. Serum and liver biochemical parameters were determined, along with histopathological changes in liver tissue. In addition, the major contributors to alcohol-induced oxidative stress were assessed. The results indicated that the levels of aspartate transaminase and alanine transaminase were lower in the serum of the PPA-treated group than the alcohol-treated group. PPAs significantly inhibited the reduction of total cholesterol and triglycerides. Higher levels of superoxide dismutase and reduced glutathione enzymes as well as a reduction in the formation of malondialdehyde occurred in mice fed with PPAs. In addition, PPAs protected against increased alcohol-induced levels and activity of cytochrome P450 2E1 (CYP2E1), which demonstrates the effects of PPAs against alcohol-induced oxidative stress and liver injury. This study suggests that PPAs could be an effective therapeutic agent in alcohol-induced liver injuries by inhibiting CYP2E1 expression and thereby strengthening antioxidant defenses.

  6. Enhancing the Antioxidant Activities of Wines by Addition of White Rose Extract.

    Science.gov (United States)

    Seong, Hyunbin; Heo, Jieun; Lee, Kyun Hee; Lee, Yoon Bok; Kim, Yun Bae; Han, Nam Soo

    2017-09-28

    White rose petal extract (WRE) contains large amounts of phenolic compounds and is considered edible. In this study, red and white wines were prepared by the addition of WRE (0.10% or 0.25% (w/v)), followed by fermentation at 25°C for 15 days. The fermentation profiles, colors, sensory test results, and antioxidant activities of the wines were compared. As reported herein, the fermentation profiles of the pH, CO₂ production rate, and final ethanol concentration were not affected by the addition of WRE, but a slow consumption rate of sugar was observed in 0.25% WRE-added wine. In contrast, the total polyphenol concentrations in WRE-added wines increased significantly ( p wines. Chromaticity tests showed slight changes in the redness and yellowness, but sensory tests showed that the overall flavor qualities of the WRE-added wines were acceptable to the panels. This study demonstrates that addition of WRE to wine confers beneficial health effects and this treatment results in better outcome in white wine.

  7. Hydrogen sulfide extends the postharvest life and enhances antioxidant activity of kiwifruit during storage.

    Science.gov (United States)

    Zhu, Liqin; Wang, Wei; Shi, Jingying; Zhang, Wei; Shen, Yonggen; Du, Huaying; Wu, Shaofu

    2014-10-01

    Exogenous hydrogen sulfide (H₂S) treatment can prolong the postharvest life of cut flowers and strawberries. Little work has been done to explore the effects of H₂S on respiratory climacteric fruits such as kiwifruits during storage. Therefore the aim of the present study was to evaluate the effects of H₂S treatment at concentrations of 15–1000 µmol L⁻¹ on the postharvest life of kiwifruit during 25 °C storage and the role of H₂S in regulating the antioxidant defensive system of kiwifruit. Treatments with 45 and 90 µmol L⁻¹ H₂S significantly inhibited the increase in soluble sugar content and the decrease in vitamin C (Vit C), chlorophyll content and firmness, inhibited ethylene production and both superoxide production rate (O(·2)⁻) and hydrogen peroxide content. Kiwifruits with 45 and 90 µmol L⁻¹ H₂S exhibited significantly higher activities of superoxide dismutase, catalase and peroxidase. Treatment with 180 µmol L⁻¹ H₂S promoted the ripening of kiwifruits. Treatments with 45 and 90 µmol L⁻¹ H₂S could delay the maturation and senescence of kiwifruits and maintain higher titratable acid (TA) and Vit C during eating-ripe storage by inhibiting ethylene production, improving protective enzyme activities and decreasing the accumulation of reactive oxygen species to protect the cell membrane during storage. © 2014 Society of Chemical Industry.

  8. Computational design of bio-inspired carnosine-based HOBr antioxidants

    Science.gov (United States)

    Sarrami, Farzaneh; Yu, Li-Juan; Karton, Amir

    2017-09-01

    During a respiratory burst the enzyme myeloperoxidase generates significant amounts of hypohalous acids (HOX, X = Cl and Br) in order to inflict oxidative damage upon invading pathogens. However, excessive production of these potent oxidants is associated with numerous inflammatory diseases. It has been suggested that the endogenous antioxidant carnosine is an effective HOCl scavenger. Recent computational and experimental studies suggested that an intramolecular Cl+ transfer from the imidazole ring to the terminal amine might play an important role in the antioxidant activity of carnosine. Based on high-level ab initio calculations, we propose a similar reaction mechanism for the intramolecular Br+ transfer in carnosine. These results suggest that carnosine may be an effective HOBr scavenger. On the basis of the proposed reaction mechanism, we proceed to design systems that share similar structural features to carnosine but with enhanced HOX scavenging capabilities for X = Cl and Br. We find that (i) elongating the β-alanyl-glycyl side chain by one carbon reduces the reaction barriers by up to 44%, and (ii) substituting the imidazole ring with strong electron-donating groups reduces the reaction barriers by similar amounts. We also show that the above structural and electronic effects are largely additive. In an antioxidant candidate that involves both of these effects the reaction barriers are reduced by 71%.

  9. Ultraviolet Radiation-Elicited Enhancement of Isoflavonoid Accumulation, Biosynthetic Gene Expression, and Antioxidant Activity in Astragalus membranaceus Hairy Root Cultures.

    Science.gov (United States)

    Jiao, Jiao; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Gu, Cheng-Bo; Fu, Yu-Jie; Ma, Wei

    2015-09-23

    In this work, Astragalus membranaceus hairy root cultures (AMHRCs) were exposed to ultraviolet radiation (UV-A, UV-B, and UV-C) for promoting isoflavonoid accumulation. The optimum enhancement for isoflavonoid production was achieved in 34-day-old AMHRCs elicited by 86.4 kJ/m(2) of UV-B. The resulting isoflavonoid yield was 533.54 ± 13.61 μg/g dry weight (DW), which was 2.29-fold higher relative to control (232.93 ± 3.08 μg/g DW). UV-B up-regulated the transcriptional expressions of all investigated genes involved in isoflavonoid biosynthetic pathway. PAL and C4H were found to be two potential key genes that controlled isoflavonoid biosynthesis. Moreover, a significant increase was noted in antioxidant activity of extracts from UV-B-elicited AMHRCs (IC50 values = 0.85 and 1.08 mg/mL) in comparison with control (1.38 and 1.71 mg/mL). Overall, this study offered a feasible elicitation strategy to enhance isoflavonoid accumulation in AMHRCs and also provided a basis for metabolic engineering of isoflavonoid biosynthesis in the future.

  10. Study on Sensory Quality, Antioxidant Properties, and Maillard Reaction Products Formation in Rye-Buckwheat Cakes Enhanced with Selected Spices

    Directory of Open Access Journals (Sweden)

    Małgorzata Przygodzka

    2015-01-01

    Full Text Available The effect of selected spices included in the recipe of rye-buckwheat cakes on sensory quality, nutritional value, and Maillard reaction (MR products formation was addressed in this study. The cakes with cloves, nutmeg, allspice, cinnamon, vanilla, and spice mix addition revealed the highest overall quality values. Cakes enriched with cloves, allspice, and spice mix showed the highest rutin content and almost threefold higher available lysine contents whereas cakes enhanced with mix, cloves, and cinnamon were the richest source of phenolic compounds. The highest antioxidant capacity showed cakes with cloves and spice mix. The furosine, a marker of early stage of MR, was decreased in cakes with cloves, allspice, spice mix, and vanilla whereas fluorescent intermediatory compounds were reduced in cakes enhanced with cloves, allspice, and cinnamon. In contrast, browning index was increased as compared to cakes without spices. The FAST index was significantly lowered in all cakes enriched with spices, especially with cloves, allspice, and mix addition. The presence of cloves, allspice, and vanilla in cake formula was the most efficient in acrylamide strategy. It can be suggested that cloves, allspice, and vanilla might be used for production of safety and good quality cakes.

  11. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    Directory of Open Access Journals (Sweden)

    Hirotaka Yamamoto

    2016-01-01

    Full Text Available Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.

  12. Long-term melatonin treatment reduces ovarian mass and enhances tissue antioxidant defenses during ovulation in the rat

    Directory of Open Access Journals (Sweden)

    L.G.A. Chuffa

    2011-03-01

    Full Text Available Melatonin regulates the reproductive cycle, energy metabolism and may also act as a potential antioxidant indoleamine. The present study was undertaken to investigate whether long-term melatonin treatment can induce reproductive alterations and if it can protect ovarian tissue against lipid peroxidation during ovulation. Twenty-four adult female Wistar rats, 60 days old (± 250-260 g, were randomly divided into two equal groups. The control group received 0.3 mL 0.9% NaCl + 0.04 mL 95% ethanol as vehicle, and the melatonin-treated group received vehicle + melatonin (100 µg·100 g body weight-1·day-1 both intraperitoneally daily for 60 days. All animals were killed by decapitation during the morning estrus at 4:00 am. Body weight gain and body mass index were reduced by melatonin after 10 days of treatment (P < 0.05. Also, a marked loss of appetite was observed with a fall in food intake, energy intake (melatonin 51.41 ± 1.28 vs control 57.35 ± 1.34 kcal/day and glucose levels (melatonin 80.3 ± 4.49 vs control 103.5 ± 5.47 mg/dL towards the end of treatment. Melatonin itself and changes in energy balance promoted reductions in ovarian mass (20.2% and estrous cycle remained extensive (26.7%, arresting at diestrus. Regarding the oxidative profile, lipid hydroperoxide levels decreased after melatonin treatment (6.9% and total antioxidant substances were enhanced within the ovaries (23.9%. Additionally, melatonin increased superoxide dismutase (21.3%, catalase (23.6% and glutathione-reductase (14.8% activities and the reducing power (10.2% GSH/GSSG ratio. We suggest that melatonin alters ovarian mass and estrous cyclicity and protects the ovaries by increasing superoxide dismutase, catalase and glutathione-reductase activities.

  13. Scavenging effect of Trolox released from brushite cements.

    Science.gov (United States)

    Mestres, Gemma; Santos, Carlos F; Engman, Lars; Persson, Cecilia; Ott, Marjam Karlsson

    2015-01-01

    In this study a brushite cement was doped with the chain-breaking antioxidant Trolox. The effect of the antioxidant on the physical properties of the cement was evaluated and the release of Trolox was monitored by UV spectroscopy. The ability of the Trolox set free to scavenge reactive oxygen species (ROS) released by macrophages was determined in vitro using a luminol-amplified chemiluminescence assay. Trolox did not modify the crystalline phases of the set cement, which mainly formed crystalline brushite after 7 days in humid conditions. The setting time, compressive strength and morphology of the cement also remained unaltered after the addition of the antioxidant. Trolox was slowly released from the cement following a non-Fickian transport mechanism and nearly 64% of the total amount was released after 3 days. Moreover, the capacity of Trolox to scavenge the ROS released by macrophages increased in a dose-dependent manner. Trolox-loaded cements are expected to reduce some of the first harmful effects of acute inflammation and can thus potentially protect the surrounding tissue during implantation of these as well as other materials used in conjunction. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Free radical scavenging, antimicrobial and immunomodulatory activities of Orthosiphon stamineus.

    Science.gov (United States)

    Alshawsh, Mohammed A; Abdulla, Mahmood A; Ismail, Salmah; Amin, Zahra A; Qader, Suhailah W; Hadi, Hamid A; Harmal, Nabil S

    2012-05-08

    Orthosiphon stamineus is considered an important traditional folk medicine. In this study ethanol and aqueous extracts of O. stamineus were evaluated in vitro for their antioxidant, antimicrobial as well as for their immunomodulatory properties on human peripheral blood mononuclear cells (PBMCs). The DPPH radical scavenging method was used for the determination of antioxidant activity, while the antibacterial efficacy was investigated by both disc diffusion method and Minimum Inhibitory Concentration (MIC) against four bacterial strains (Gram-positive and Gram-negative). Furthermore, the immunomodulatory potential of the extracts was investigated through the MTT assay. Aqueous extract of O. stamineus exhibited significant free radical scavenging activity with IC₅₀ 50 9.6 µg/mL, whereas the IC₅₀ for the ethanol extract was 21.4 µg/mL. The best antimicrobial activity was shown by the aqueous extract of O. stamineus against Staphylococcus aureus, with inhibition zone of 10.5 mm and MIC value 1.56 mg/mL. Moreover, the results observed from the MTT assay showed that both plant extracts stimulated the PBMCs proliferation in vitro in a concentration-dependent manner, but the aqueous extract has remarkable activity against PBMCs. These findings indicate that O. stamineus showed high antioxidant activity and may be considered as an immunomodulatory agent.

  15. Hypoxia depresses CYP1A induction and enhances DNA damage, but has minimal effects on antioxidant responses in sheepshead minnow (Cyprinodon variegatus) larvae exposed to dispersed crude oil.

    Science.gov (United States)

    Dasgupta, Subham; DiGiulio, Richard T; Drollette, Brian D; L Plata, Desire; Brownawell, Bruce J; McElroy, Anne E

    2016-08-01

    The growing incidence of hypoxic regions in coastal areas receiving high volumes of anthropogenic discharges requires more focused risk assessment of multiple stressors. One area needing further study is the combined effect of hypoxia and oil exposure. This study examined the short-term sublethal effects of co-exposure to hypoxia and water accommodated fractions (WAF) and chemically enhanced WAFs (CEWAFs) of Southern Louisiana Crude oil on detoxification, antioxidant defenses and genotoxicity in early life stage sheepshead minnow (Cyprinodon variegatus). CYP1A induction (evaluated by measuring EROD activity), activity of a number of key antioxidant enzymes (GST, GR, GPx, SOD, CAT, and GCL), levels of antioxidants (tGSH, GSH, and GSSG), evidence of lipid peroxidation (evaluated using the TBARS assay), and DNA damage (evaluated using the comet assay) provided a broad assessment of responses. Contaminant detoxification pathways induced by oil exposure were inhibited by co-exposure to hypoxia, indicating a maladaptive response. The interactive effects of oil and hypoxia on antioxidant defenses were mixed, but generally indicated less pronounced alterations, with significant increases in lipid peroxidation not observed. Hypoxia significantly enhanced DNA damage induced by oil exposure indicating the potential for significant deleterious effects post exposure. This study demonstrates the importance of considering hypoxia as an enhanced risk factor in assessing the effects of contaminants in areas where seasonal hypoxia may be prevalent. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Food Processing Antioxidants.

    Science.gov (United States)

    Hidalgo, F J; Zamora, R

    Food processing has been carried out since ancient times as a way to preserve and improve food nutritional and organoleptic properties. Although it has some undesirable consequences, such as the losses of some nutrients and the potential formation of toxic compounds, a wide range of benefits can be enumerated. Among them, the increased total antioxidant capacity of many processed foods has been known for long. This consequence has been related to both the release or increased availability of natural antioxidants and the de novo formation of substances with antioxidant properties as a consequence of the produced reactions. This review analyzes the chemical changes produced in foods during processing with special emphasis on the formation of antioxidants as a consequence of carbonyl-amine reactions produced by both carbohydrate- and lipid-derived reactive carbonyls. It discusses the lastest advances produced in the characterization of carbonyl-amine adducts and their potential action as primary (free radical scavengers), secondary (chelating and other ways to prevent lipid oxidation), and tertiary (carbonyl scavengers as a way to avoid lipid oxidation consequences) antioxidants. Moreover, the possibility of combining amino compounds with different hydrophobicity, such as aminophospholipids and proteins, with a wide array of reactive carbonyls points out to the use of carbonyl-amine reactions as a new way to induce the formation of a great variety of substances with antioxidant properties and very variable hydrophilia/lipophilia. All presented results point out to carbonyl-amine reactions as an effective method to generate efficacious antioxidants that can be used in food technology. © 2017 Elsevier Inc. All rights reserved.

  17. Total phenolic content and antioxidant activities of pomegranate juice and whey based novel beverage fermented by kefir grains.

    Science.gov (United States)

    Sabokbar, Nayereh; Khodaiyan, Faramarz

    2016-01-01

    Mixture of pomegranate juice and whey was evaluated as a potential substrate for production of a novel beverage by kefir grains. The effects of two different variables, fermentation, temperature (19 and 25 °C) and kefir grain amount (5 %w/v and 8 %w/v), on total phenolic content (TPC) and antioxidant activities of beverage were examined during a fermentation time of 32 h. TPC and antioxidant activities including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, reducing power, inhibition effect upon linoleic acid autoxidation and inhibition effect upon ascorbate autoxidation increased significantly (p kefir grain amount of 8 %w/v were applied. Results proved antioxidant activities of beverages were desirable and fermentation by kefir grains has the ability to enhance these antioxidant activities, as compared with unfermented beverage. Also pomegranate juice and whey were suitable media for producing a novel dairy-juice beverage.

  18. Astragalus membranaceus (AM) enhances growth performance and antioxidant stress profiles in bluegill sunfish (Lepomis macrochirus).

    Science.gov (United States)

    Elabd, Hiam; Wang, Han-Ping; Shaheen, Adel; Yao, Hong; Abbass, Amany

    2016-06-01

    This study was designed to assess the potential effects of Astragalus membranaceus (AM) on the growth performance and antioxidative stress response in bluegill sunfish (Lepomis macrochirus) exposed to challenging cold water temperature conditions. In this regard, fish with an average weight of 43 ± 1 g were divided into four groups and fed daily with an AM-free diet (control), and 1.5, 3, and 4.5 % (w/w) AM-incorporated diets for an 8-week period. Oxidative stress response, biochemical, and growth parameters were measured, and subgroups of fish were exposed to the outside challenging cold pond water temperature (1.6-9.9 °C) with an average of 7.0 ± 0.1 °C beyond the optimal temperature. The results showed that incorporating AM in the diet significantly improved growth performance parameters (body mass gain, specific growth rate, length, condition factor, and feed conversion ratio) and biochemicals (aspartate aminotransferase and alanine transaminase activities, and glucose and cortisol concentrations). In addition, markedly up-regulated superoxide dismutase, glutathione peroxidase, and catalase activities were observed in AM-treated fish groups over the control. Conclusively, feeding AM diets significantly increased (P stress profiles throughout the entire experiment, and this increase was much more pronounced at 8 weeks after the water temperature began to rise, which can be related to the nature of Bluegill fish as it is known to be a warm water fish. These findings are considered to be of great importance for sustainable aquaculture.

  19. Nanocarriers for Delivery of Antioxidants on the Skin

    Directory of Open Access Journals (Sweden)

    María Pilar Vinardell

    2015-10-01

    Full Text Available Skin is protected from the harmful effects of free radicals by the presence of an endogenous antioxidant system. However, when exposed to ultraviolet (UV radiation, there is an imbalance between pro-oxidants and antioxidants, leading to oxidative stress and photoaging of the skin. It has been described that free radicals and other reactive species can cause severe damage to cells and cell components of the skin, which results in skin aging and cancer. To prevent these actions on skin, the use of topical antioxidant supplementation is a strategy used in the cosmetics industry and these antioxidants act on quenching free radicals. There are many studies that demonstrated the antioxidant activity of many phytochemicals or bioactive compounds by free radical scavenging. However, many bioactive substances are unstable when exposed to light or lose activity during storage. The potential sensitivity of these substances to light exposure is of importance in cosmetic formulations applied to skin because photo-degradation might occur, reducing their activity. One strategy to reduce this effect on the skin is the preparation of different types of nanomaterials that allow the encapsulation of the antioxidant substances. Another problem related to some antioxidants is their inefficient percutaneous penetration, which limits the amount of the active ingredient able to reach the site of action in viable epidermis and dermis. In this sense, the encapsulation in polymeric nanoparticles could enhance the permeation of these substances. Nanocarriers offers several advantages over conventional passive delivery, such as increased surface area, higher solubility, improved stability, controlled release, reduced skin irritancy, and protection from degradation. The different nanocarrier systems used in cosmetics include nanolipid delivery systems such as solid lipid nanoparticles (SLN and nanostructured lipid carriers (NLC, nanoemulsions (NEs, nanoparticles (NP

  20. Antimutagenic profile of antioxidant vitamins in drosophila mulation test.

    Science.gov (United States)

    Khan, P K; Sinha, S P

    2008-04-01

    To assess the antimutagenicity of antioxidant vitamins (vitamins A, C, and E) as expressed by their efficacy to lower aflatoxin-induced mutations. The Muller-5 method for mutation detection was used to assay the frequency of X-chromosome linked recessive lethal mutations (XRLMs) in Drosophila. Larvae were exposed to dietary concentration of aflatoxins and/or the human therapeutic doses of any of the three antioxidant vitamins. Absence of normal eyed males among M2 progeny gave an indication of mutation induction. Aflatoxin supplimentation significantly increased the incidence of XRLMs in Drosophila. Mutation frequency was also raised a little above the control level in case of vitamin treatment. However, notable mitigation in mutation frequency was registered when aflatoxin-treated larvae were concomitantly fed with any of the three antioxidant vitamins. Aflatoxin exposure can enhance the frequency of gene mutation in Drosophila which is significantly lowered by each of the three antioxidant vitamins. The degree of amelioration produced by them is almost identical. This mitigation is based on the scavenging/trapping by antioxidant vitamins of DNA-reactive products (metabolites and radicals) emanating from aflatoxin metabolism.

  1. Synergistic antioxidant activity of green tea with some herbs

    Directory of Open Access Journals (Sweden)

    Dheeraj P Jain

    2011-01-01

    Full Text Available Cardiovascular diseases, cancer, arthritis, etc. are caused by free radicals that are byproducts of metabolic pathways. Selected plants namely Vitis vinifera, Phyllanthus emblica L., Punica granatum, Cinnamomum cassia, Ginkgo biloba L., and Camellia sinensis Linn. are reported to produce antioxidant property. This study is undertaken to support the hypothesis that formulation of a polyherbal combination of these plants shows a synergistic effect with green tea. The extracts of each drug were characterized by phytochemical studies and tests for phenolics and flavonoids. In vitro antioxidant activity for individual drug and its combination was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH, superoxide, and nitric oxide free radical scavenging methods. Our results suggest that a combination of all these herbs with green tea can synergistically enhance antioxidant activity and thus lower doses of each herb with green tea may be used. Antioxidant potential of polyherbal combination was also comparable to that of standard ascorbic acid. Studies showed that selected individual plants contained abundant quantity of phenolics and flavonoids and their polyherbal combination with green tea was found to produce best antioxidant activity among all individual extracts. This will help in avoiding undesirable side effects due to higher doses of single herb.

  2. Antioxidant and Anti-Fatigue Constituents of Okra.

    Science.gov (United States)

    Xia, Fangbo; Zhong, Yu; Li, Mengqiu; Chang, Qi; Liao, Yonghong; Liu, Xinmin; Pan, Ruile

    2015-10-26

    Okra (Abelmoschus esculentus (L.) Moench), a healthy vegetable, is widely spread in tropical and subtropical areas. Previous studies have proven that okra pods possess anti-fatigue activity, and the aim of this research is to clarify the anti-fatigue constituents. To achieve this, we divided okra pods (OPD) into seeds (OSD) and skins (OSK), and compared the contents of total polysaccharides, total polyphenols, total flavonoids, isoquercitrin, and quercetin-3-O-gentiobiose and the antioxidant activity in vitro and anti-fatigue activity in vivo between OSD and OSK. The contents of total polyphenols and total polysaccharides were 29.5% and 14.8% in OSD and 1.25% and 43.1% in OSK, respectively. Total flavonoids, isoquercitrin and quercetin-3-O-gentiobiose (5.35%, 2.067% and 2.741%, respectively) were only detected in OSD. Antioxidant assays, including 1-diphenyl-2-picrylhydrazyl (DPPH) scavenging, ferric reducing antioxidant power (FRAP) and reducing power test, and weight-loaded swimming test showed OSD possessed significant antioxidant and anti-fatigue effects. Moreover, biochemical determination revealed that that anti-fatigue activity of OSD is caused by reducing the levels of blood lactic acid (BLA) and urea nitrogen (BUN), enhancing hepatic glycogen storage and promoting antioxidant ability by lowering malondialdehyde (MDA) level and increasing superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) levels. These results proved okra seeds were the anti-fatigue part of okra pods and polyphenols and flavonoids were active constituents.

  3. Confrontational scavenging as a possible source for language and cooperation

    Directory of Open Access Journals (Sweden)

    Szathmáry Eörs

    2011-09-01

    Full Text Available Abstract The emergence of language and the high degree of cooperation found among humans seems to require more than a straightforward enhancement of primate traits. Some triggering episode unique to human ancestors was likely necessary. Here it is argued that confrontational scavenging was such an episode. Arguments for and against an established confrontational scavenging niche are discussed, as well as the probable effects of such a niche on language and co-operation. Finally, several possible directions for future research are suggested.

  4. Radical-scavenging activity of penicillin G, ampicillin, oxacillin, and dicloxacillin.

    Science.gov (United States)

    Berczyński, Paweł; Kładna, Aleksandra; Kruk, Irena; Aboul-Enein, Hassan Y

    2017-05-01

    The aim of this study was to characterize the antioxidant activity of penicillin G (PG), ampicillin (AMP), oxacillin (OX) and dicloxacillin (DOX) through their reactivity towards reactive oxygen species (superoxide anion radical, O2•̅; hydroxyl radical, HO(•) ; peroxyl radical, ROO(•) ; hydrogen peroxide, H2 O2 ; DPPH(•) ) using various in vitro antioxidant assays with chemiluminescence (CL) and spectrophotometry as measurement techniques. In hydroxyl radical assays , PG, OX and AMP were found to inhibit the CL signal arising from the Fenton-like reaction in a dose-dependent manner with IC50  = 0.480 ± 0.020 mM, IC50  = 0.569 ± 0.021 mM, and IC50  = 0.630 ± 0.019 mM, respectively. The highest reactivity of PG among the tested penicillins towards the HO radical was confirmed in the deoxyribose degradation assay. In the ABAP-derived ROO radical assay, the radical-scavenging ability of the test penicillins was in the following order: AMP > PG > DOX > OX. The number of reduced DPPH radicals by the drugs tested was <1 being the biggest for PG. The weak antioxidant capacity of the test penicillins was confirmed in the trolox antioxidant capacity assay (0.075 ± 0.004; 0.093 ± 0.006; 0.123 ± 0.005; 0.126 ± 0.004) for OX, AMP, DOX, PG, respectively. Use of luminol as a CL probe for estimation of penicillin reactivity towards H2 O2 showed that only AMP was able to quench light emission; the remaining antibiotics demonstrated a strong enhancing effect. All the examined compounds showed a weak antioxidant potential when estimated using the ferric-ferrozine assay. This study is the first to report the evaluation of test penicillins as antioxidants under the same reaction conditions. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Isolation and identification of radical scavengers in olive tree (Olea europaea) wood

    NARCIS (Netherlands)

    Pérez-Bonilla, M.; Salido, S.; Beek, van T.A.; Linares-Palomino, P.J.; Altarejos, J.; Nogueras, M.; Sánchez, A.

    2006-01-01

    Several extracts of Olea europaea wood (Picual olive cultivar) were obtained with solvents of different polarity and their antioxidant activities determined. The active compounds were detected in fractions of an ethyl acetate extract using HPLC with on-line radical scavenging detection. After

  6. Transformation of Lettuce with rol ABC Genes: Extracts Show Enhanced Antioxidant, Analgesic, Anti-Inflammatory, Antidepressant, and Anticoagulant Activities in Rats.

    Science.gov (United States)

    Ismail, Hammad; Dilshad, Erum; Waheed, Mohammad Tahir; Mirza, Bushra

    2017-03-01

    Lettuce is an edible crop that is well known for dietary and antioxidant benefits. The present study was conducted to investigate the effects of rol ABC genes on antioxidant and medicinal potential of lettuce by Agrobacterium-mediated transformation. Transgene integration and expression was confirmed through PCR and real-time RT-PCR, respectively. The transformed plants showed 91-102 % increase in total phenolic contents and 53-65 % increase in total flavonoid contents compared to untransformed plants. Total antioxidant capacity and total reducing power increased up to 112 and 133 % in transformed plants, respectively. Results of DPPH assay showed maximum 51 % increase, and lipid peroxidation assay exhibited 20 % increase in antioxidant activity of transformed plants compared to controls. Different in vivo assays were carried out in rats. The transgenic plants showed up to 80 % inhibition in both hot plate analgesic assay and carrageenan-induced hind paw edema test, while untransformed plants showed only 45 % inhibition. Antidepressant and anticoagulant potential of transformed plants was also significantly enhanced compared to untransformed plants. Taken together, the present work highlights the use of rol genes to enhance the secondary metabolite production in lettuce and improve its analgesic, anti-inflammatory, antidepressant, and anticoagulatory properties.

  7. Radical-scavenging activity and phenolic constituents of propolis from different regions of Argentina.

    Science.gov (United States)

    Kumazawa, Shigenori; Ahn, Mok-Ryeon; Fujimoto, Takunori; Kato, Masashi

    2010-05-01

    Propolis is a resinous substance collected by honeybees from various plant sources. The composition of propolis depends on the type of vegetation and the area of collection. We examined the radical-scavenging activity of propolis from the following regions of Argentina: Mendoza, Rio Negro, La Pampa, and Entre Rios. Ethanol extracts of propolis (EEP) were prepared and their 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities were evaluated. Furthermore, the major constituents in EEP were identified by HPLC with photodiode array (PDA) detection, and each component was quantitatively analysed. Almost all of the propolis samples, except La Pampa, had radical-scavenging activity. Propolis with strong radical-scavenging activity contained large amounts of antioxidative compounds, such as caffeic acid, ferulic acid and caffeic acid phenethyl ester.

  8. Free radical-scavenging activity and flavonoid contents of Polygonum orientale leaf, stem, and seed extracts

    Directory of Open Access Journals (Sweden)

    Jiang Xinyu

    2009-01-01

    Full Text Available The present study was designed to explore the total flavonoid and taxifolin contents and the radical-scavenging activity of 50% ethanol extracts of Polygonum orientale leaves, stems, and seeds by 2,2-diphenyl-1-picrylhydrazyl (DPPH assay. The extract with higher total flavonoid content has higher radical scavenging activity. Taxifolin (IC50 = 2.83 μmol/L has antioxidant activity stronger than that of rutin (IC50 = 3.08 μmol/L. The free radical-scavenging potentials of chloroform, ethyl acetate, water, ethanol, and methanol extracts of Polygonum orientale seeds were also investigated. The free radical-scavenging abilities of various extracts were determined as: methanol > ethanol > water > ethyl acetate > chloroform.

  9. Kinetic radical-scavenging activity of melatonin.

    Science.gov (United States)

    Fujisawa, Seiichiro; Kadoma, Yoshinori; Ishihara, Mariko; Shibuya, Kazutoshi; Yokoe, Ichiro

    2006-01-01

    Carbon-centred free radicals can be involved in damage to biological systems under hypoxiclanoxic conditions as well as in ischaemia/reperfusion injury. The antioxidant activities of melatonin against carbon-centred radicals are poorly understood. The aim of this study was to investigate the antioxidant properties of melatonin against carbon-centred radicals in a biomimetic model system consisting of growing methyl methacrylate (MMA) radicals (poly-MMA radicals, PMMA*). The kinetics of the polymerization of MMA initiated by thermal decomposition of 2,2'-azobis(isobutyronitrile) (AIBN; R* radical) or benzoyl peroxide (BPO; PhCOO* radical) in the presence of melatonin were investigated by the induction period method under nearly anaerobic conditions. As melatonin concentrations increased, the length of the induction period (IP) increased, but for the BPO system the IP reached a plateau at a molar ratio of BPO to melatonin of 5:1, indicating that the oxidation of melatonin by PhCOO* was limited. At low concentrations of melatonin, the stoichiometric factor (n, the number of free radicals trapped by the antioxidant moiety) for melatonin was approximately 2, but as the melatonin concentration increased the n value decreased markedly to 0.1. These observations suggest that melatonin may possess catalytic activity contributing to radical avoidance. The initial rate of polymerization (Rp) in the BPO system was markedly suppressed by high concentrations of melatonin, suggesting a strong interaction between oxidative end-products formed from melatonin and PMMA*. Under conditions where n was about 2, the kinh values for melatonin in the BPO system and the AIBN system were 6.58 x 10(4) M(-1)S(-1) and 2.49 x 10(3) M(-1)s(-1), respectively. In the BPO system, the kinh of melatonin was of a similar magnitude to that of a-tocopherol, whereas in the AIBN system the kinh of melatonin was 100-fold greater than that of tocopherol. The present findings suggest that melatonin may be

  10. Antioxidative Activity of Lichen Thamnolia vermicularis in vitro

    Science.gov (United States)

    Luo, Heng; Ren, Meirong; Lim, Kwang-Mi; Koh, Young Jin; Wang, Li-Song

    2006-01-01

    This study was aimed at evaluating the antioxidant activities of methanol extract of Thamnolia vermicularis. The antioxidant activity, reducing power, superoxide anion radical scavenging and free radical scavenging activities were studied. The antioxidant activity of the extract correlated with its concentration (0.2~2 mg/ml) in the reaction mixtures containing linoleic acid. Upto 67% of lipid peroxidation was inhibited by 2 mg/ml of the lichen extract. The extract showed strong free radical scavenging activity similar to that of BHA (positive control) in a manner of concentration dependent. The lichen extract also showed moderate effects on superoxide anoin scavenging activity and reducing power, which was not so effective as that of Quercetin and BHA used as positive controls. This study suggests that T. vermicularis lichen can be used as a novel source of natural antioxidant. PMID:24039484

  11. Total Phenolics and Antioxidant Capacity of Some Nigerian Beverages

    African Journals Online (AJOL)

    Samples; FCA , FCB ,FCC ,FCD) Pure cocoa powder (PCA, PCB), coffee (C), ginger (G) and Tea samples (Green, TA, TB) were assayed for total phenols, flavonoids, Vitamin C and radical scavenging abilities using four different in vitro antioxidant ...

  12. Phenolic production and antioxidant properties of some Macedonian medicinal plants

    National Research Council Canada - National Science Library

    Tusevski, Oliver; Kostovska, Aneta; Iloska, Ana; Trajkovska, Ljubica; Simic, Sonja Gadzovska

    2014-01-01

    ... (ABTS·+) radical scavenging activity. Origanum vulgare extract consistently exhibited the highest content of phenolic compounds and the strongest antioxidant capacity based on the tests performed, and can be proposed as a promising...

  13. Characterization and Antioxidant Activity of the Complex of ...

    African Journals Online (AJOL)

    visible spectrometry (UV), infrared spectrometry (IR), differential scanning calorimetry (DSC) and x-ray diffractometry (XRD). The antioxidant activity was examined by DPPH and ABTS radical-scavenging activities. Results: Phloridzin in the complex ...

  14. Evaluation on Antioxidant Effect of Xanthohumol by Different Antioxidant Capacity Analytical Methods

    Directory of Open Access Journals (Sweden)

    Xiu-Li Zhang

    2014-01-01

    Full Text Available Several assays have been frequently used to estimate antioxidant capacities including ABTS•+, DPPH, and FRAP assays. Xanthohumol (XN, the major prenylated flavonoid contained in beer, witnessed various reports on its antioxidant capacity. We systematically evaluated the antioxidant activity of XN using three systems, 2,2,-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS•+ scavenging assays, 1,1-diphenyl-2-picrylhydrazyl (DPPH radical assays, and ferric reducing antioxidant power (FRAP assays. The results are expressed as Trolox equivalent antioxidant capacity (TEAC. The TEAC of XN was 0.32±0.09 μmol·l−1 by the ABTS assay and 0.27±0.04 μmol·l−1 by the FRAP. Meanwhile, the XN did not show obviously scavenging effect on DPPH radical reaction system. These results showed that different methods in the evaluation of compound antioxidant capicity, there may be a different conclusion.

  15. Wound healing property of ethanolic extract of leaves of Hyptis suaveolens with supportive role of antioxidant enzymes.

    Science.gov (United States)

    Shirwaikar, Annie; Shenoy, Radhika; Udupa, A L; Udupa, S L; Shetty, Somashekar

    2003-03-01

    Ethanolic extract of leaves of Hyptis suaveolens was evaluated for its wound healing activity in ether-anaesthetized Wistar rats at two different doses (400 and 800 mg/kg) using incision, excision, and dead space wound model. Significant increase in skin breaking strength, granuloma breaking strength, wound contraction, hydroxyproline content and dry granuloma weight and decrease in epithelization period was observed. A supportive study made on granuloma tissue to estimate the levels of catalase and superoxide dismutase recorded a significant increase in the level of these antioxidant enzymes. Granuloma tissue was subjected to histopathological examination to determine the pattern of lay-down for collagen using Van Gieson and Masson Trichrome stains. Enhanced wound healing activity may be due to free radical scavenging action of the plant and enhanced level of antioxidant enzymes in granuloma tissue. Better collagenation may be because of improved antioxidant studies.

  16. New synthetic peptides can enhance gene expression of key antioxidant defense enzymes in vitro and in vivo.

    Science.gov (United States)

    Shashoua, Victor E; Adams, David S; Volodina, Natalia V; Li, Hua

    2004-10-22

    Neurodegenerative, cardiovascular, and age-related disorders have been attributed to the cellular damage caused by elevated production of reactive oxygen species (ROS) and free radicals (FRs). These cannot be adequately defended by existing levels of key antioxidant enzymes. Two peptides, 8 and 14 amino acids long, were synthesized and found to up-regulate, at nanomolar concentrations, superoxide dismutase (SOD) and catalase (CAT) m-RNAs (9- to 12-fold) within 3 h, and then elevate by 5- to 10-fold the protein levels of SOD, CAT, and glutathione peroxidase (GPX) in rat primary cortical cultures. Kinetic studies showed that the peptide up-regulation of all three enzymes appears to be a coordinated process which occurs in vitro and in vivo. We also found that ischemia alone, without added drugs, can lead to enhanced gene expression of SOD, CAT, and GPX. This suggests that the CNS can initiate its own "defense" against ROS and FR. Thus, our peptides may activate such systems, as well as AP-1 transcription factor, reported in earlier findings to lead to "repair" (growth) of injured cells.

  17. Antioxidant and free radical scavenging activities of plant extracts ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... Azochil, Axochitl, Ahuejotes, Flor de agua, Palo de agua. 12 Hamelia patens Jacq. Rubiaceae. Coral, Trompetilla, Jicarillo. 13 Swietenia humilis Zucc. Meliaceae. Zopilote, Cóbano, Palo de zopilote. 14 Stemmadenia bella Miers. Apocynaceae. 15 Rupechtia fusca. Polygonaceae. Guayabillo, Azulillo.

  18. Antioxidant and Free Radical Scavenging Abilities of some ...

    African Journals Online (AJOL)

    added to the soymilk. The other was not sweetened. ' Zobo' Drink. Roselle calyces (46g) were steeped into 460mls of water (80oC for 30 minutes) and filtered using a clean sterile sieve cloth. (Abdullahi and Elegbe, 2001;. Onwuka and Omeire 2001; Fasoyinso et al.,. 2005).The filtrate was then sweetened with 46g of.

  19. Anti-Oxidative, Metal Chelating and Radical Scavenging Effects of ...

    African Journals Online (AJOL)

    only due to their high abundance as well as their active participation in most cellular processes. Oxidative protein damage is associated with aging and human pathologies [15]. The < 3 kDa fraction was as potent as reduced glutathione in quenching hydroxyl radicals and in protecting against oxidative protein damage. The.

  20. Antioxidant and free radical scavenging activities of edible weeds ...

    African Journals Online (AJOL)

    Reactive oxygen species (ROS) such as superoxide anions, hydrogen peroxide, and hydroxyl, nitric oxide radicals, play an important role in oxidative stress related to the pathogenesis of various important diseases. Active (or reactive) oxygen species and free radical-mediated reactions are involved in degenerative or ...

  1. Antioxidant and Free Radical Scavenging Abilities of some ...

    African Journals Online (AJOL)

    Soybean milk drink is produced from soybean. (Glycine max) ... The slurry was then discarded and the milk boiled for. 30 minutes. Two different portions were made. One portion was sweetened with table sugar (5% w/v) added to the soymilk. The other was not ..... color variability among new plantain and banana hybrid flour ...

  2. Antioxidant properties of Ziziphus Jujuba Mill. aqueous extract of and its preventive role on RBC hemolysis induced by AAPH

    Directory of Open Access Journals (Sweden)

    Mina Arab

    2017-09-01

    Conclusion: According to total phenolic content of the Jujobe extracts, its significant antioxidant properties and radical scavenging activities, which was tested through different methods, it can be a potential booster for anti-oxidant capacities.

  3. Comparative Evaluation of the Radical-Scavenging Activities of Fucoxanthin and Its Stereoisomers

    Directory of Open Access Journals (Sweden)

    Yiping Zhang

    2014-02-01

    Full Text Available Fucoxanthin (Fuco is a characteristic carotenoid of brown seaweeds. In the present study, Fuco and its stereoisomers 9'Z-Fuco, 13Z- and 13'Z-Fuco were extracted from Laminaria japonica Aresch. They were isolated and purified by silica gel column chromatography, Sephadex LH-20, and reversed-phase HPLC. The radical-scavenging activities of the three stereoisomers were evaluated toward 1,1-diphenyl-2-picrylhydrazyl (DPPH radical, 2-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS radical, hydroxyl radical, and superoxide radical. The order of 1,1-diphenyl-2-picrylhydrazyl (DPPH radical-scavenging activity was 13Z- and 13'Z-Fuco > (all-E-Fuco > 9'Z-Fuco. The order of 2-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS and hydroxyl radical-scavenging activities were 9'Z-Fuco > (all-E-Fuco > 13Z-and 13'Z-Fuco. The order of superoxide radical-scavenging activity was 13Z- and 13'Z-Fuco > (all-E-Fuco > 9'Z-Fuco. The scavenging activities of Fuco and its stereoisomers toward the four radical types were all dose-dependent. The ABTS, DPPH, and superoxide radical-scavenging activities were all weaker than that of tocopherol (VE, while their hydroxyl radical-scavenging activities were stronger than that of VE. The results confirmed that Fuco and its stereoisomers have potent antioxidant activities.

  4. Procollagen C-endopeptidase Enhancer Protein 2 (PCPE2) Reduces Atherosclerosis in Mice by Enhancing Scavenger Receptor Class B1 (SR-BI)-mediated High-density Lipoprotein (HDL)-Cholesteryl Ester Uptake.

    Science.gov (United States)

    Pollard, Ricquita D; Blesso, Christopher N; Zabalawi, Manal; Fulp, Brian; Gerelus, Mark; Zhu, Xuewei; Lyons, Erica W; Nuradin, Nebil; Francone, Omar L; Li, Xiang-An; Sahoo, Daisy; Thomas, Michael J; Sorci-Thomas, Mary G

    2015-06-19

    Studies in human populations have shown a significant correlation between procollagen C-endopeptidase enhancer protein 2 (PCPE2) single nucleotide polymorphisms and plasma HDL cholesterol concentrations. PCPE2, a 52-kDa glycoprotein located in the extracellular matrix, enhances the cleavage of C-terminal procollagen by bone morphogenetic protein 1 (BMP1). Our studies here focused on investigating the basis for the elevated concentration of enlarged plasma HDL in PCPE2-deficient mice to determine whether they protected against diet-induced atherosclerosis. PCPE2-deficient mice were crossed with LDL receptor-deficient mice to obtain LDLr(-/-), PCPE2(-/-) mice, which had elevated HDL levels compared with LDLr(-/-) mice with similar LDL concentrations. We found that LDLr(-/-), PCPE2(-/-) mice had significantly more neutral lipid and CD68+ infiltration in the aortic root than LDLr(-/-) mice. Surprisingly, in light of their elevated HDL levels, the extent of aortic lipid deposition in LDLr(-/-), PCPE2(-/-) mice was similar to that reported for LDLr(-/-), apoA-I(-/-) mice, which lack any apoA-I/HDL. Furthermore, LDLr(-/-), PCPE2(-/-) mice had reduced HDL apoA-I fractional clearance and macrophage to fecal reverse cholesterol transport rates compared with LDLr(-/-) mice, despite a 2-fold increase in liver SR-BI expression. PCPE2 was shown to enhance SR-BI function by increasing the rate of HDL-associated cholesteryl ester uptake, possibly by optimizing SR-BI localization and/or conformation. We conclude that PCPE2 is atheroprotective and an important component of the reverse cholesterol transport HDL system. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Antioxidant activity and total phenolic and flavonoid content of ...

    African Journals Online (AJOL)

    The antioxidant capacity of the flowering aerial parts of Astragalus squarrosus was determined by 1,1- diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and ferric thiocyanate methods. The phenolic and flavonoid content was also measured. A. squarrosus showed weak free radical scavenging activity with the DPPH ...

  6. In vitro antioxidant activity of polysaccharide from Gardenia jasminoides ellis

    Science.gov (United States)

    Fan, Y.; Ge, Z.; Luo, A.

    2011-01-01

    A water-soluble polysaccharide, GP, was isolated from Gardenia jasminoides Ellis through hot water extraction followed by ethanol precipitation. The in vitro free radicals scavenging tests exhibited that GP has significant scavenging abilities especially for ABTS, DPPH, and hydroxyl radicals, which suggests that the polysaccharide GP is a novel antioxidant. ?? 2011 Academic Journals.

  7. Antioxidant activity, phenol and flavonoid contents of some selected ...

    African Journals Online (AJOL)

    The highest radical scavenging effect was observed in Mellilotus officinalis with IC50 = 0.018 mg ml –1. The potency of radical scavenging effect of M. officinalis extract was about 4 times greater than synthetic antioxidant butylated hydroxy toluene (BHT). The greater amount of phenolic compounds leads to morepotent ...

  8. Screening of various botanical extracts for antioxidant activity using ...

    African Journals Online (AJOL)

    Aiming at the exploration of herbal use by society, crude extracts of the seeds of some commonly used medicinal plants (Vitis vinifera, Tamarindus indica and Glycin max) were screened for their free radical scavenging properties using ascorbic acid as standard antioxidant. Free radical scavenging activity was evaluated ...

  9. Antioxidant activity of acetone and ethanolic leaves extracts of ...

    African Journals Online (AJOL)

    The measured antioxidant properties included free radical scavenging activities against 1, 1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azinobis-3- ethylbenzothizoline 6-sulfonic acid (ABTS), ferric reducing power activities, hydrogen peroxide, nitric oxide scavenging properties and lipid peroxidation. The results show that the ...

  10. Antioxidants in Translational Medicine.

    Science.gov (United States)

    Schmidt, Harald H H W; Stocker, Roland; Vollbracht, Claudia; Paulsen, Gøran; Riley, Dennis; Daiber, Andreas; Cuadrado, Antonio

    2015-11-10

    It is generally accepted that reactive oxygen species (ROS) scavenging molecules or antioxidants exert health-promoting effects and thus their consumption as food additives and nutraceuticals has been greatly encouraged. Antioxidants may be beneficial in situations of subclinical deficiency and increased demand or acutely upon high-dose infusion. However, to date, there is little clinical evidence for the long-term benefit of most antioxidants. Alarmingly, recent evidence points even to health risks, in particular for supplements of lipophilic antioxidants. The biological impact of ROS depends not only on their quantities but also on their chemical nature, (sub)cellular and tissue location, and the rates of their formation and degradation. Moreover, ROS serve important physiological functions; thus, inappropriate removal of ROS may cause paradoxical reductive stress and thereby induce or promote disease. Any recommendation on antioxidants must be based on solid clinical evidence and patient-relevant outcomes rather than surrogate parameters. Such evidence-based use may include site-directed application, time-limited high dosing, (functional) pharmacological repair of oxidized biomolecules, and triggers of endogenous antioxidant response systems. Ideally, these approaches need guidance by patient stratification through predictive biomarkers and possibly imaging modalities.

  11. Free radical scavenging activity and reducing power of Acacia nilotica wood lignin.

    Science.gov (United States)

    Aadil, Keshaw Ram; Barapatre, Anand; Sahu, Sudha; Jha, Harit; Tiwary, Bhupendra Nath

    2014-06-01

    Nine different fractions of lignin extracted by alkali, hot water and organosolv methods from Acacia wood powder were assessed for antioxidants activity. Results indicated that methanolic lignin fraction had highest polyphenol content of 393.30±9.2μg/ml (GAE). The oraganosolv lignin with total phenols and phenolic hydroxyl group content exhibited significant antioxidant activity as compared to other lignin fractions. Antioxidant properties of acetone fractions revealed a high antiradical scavenging activity (products for cosmetics and pharmaceutical industries. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Antioxidant and Antimicrobial Activities of Hyptis suaveolens Essential Oil

    OpenAIRE

    Nantitanon, Witayapan; Chowwanapoonpohn, Sombat; Okonogi, Siriporn

    2007-01-01

    The essential oil of Hyptis suaveolens obtained by steam distillation was examined for its antioxidant and antimicrobial activities. The antioxidant activity was determined by means of the DPPH radical scavenging test and ABTS free radical decolorization assay. Results from both methods indicate that the antioxidant activity of H. suaveolens oil is time and concentration dependent. The antioxidant potential of H. suaveolens oil determined by the DPPH method expressed as IC50 was 3.72 mg/ml wh...

  13. Antioxidant, Heavy Metals and Elemental Analysis of Holoptelea integrifolia Planch

    OpenAIRE

    Saraswathy, A.; Devi, S. Nandini; D. Ramasamy

    2008-01-01

    The ethanol crude extract of stem bark of Holoptelea integrifolia Planch. traditionally used in Indian system of medicine was screened for its antioxidant activity using α-tocopherol as standard antioxidant. The free radical scavenging potential of the extract was evaluated by two different antioxidant methods; ferric thiocyanate and thiobarbituric acid method. The ethanol extract was found to exhibit good antioxidant property. Further physicochemical constants, elemental and heavy metal anal...

  14. Ultrasonic-Assisted Enzymolysis to Improve the Antioxidant Activities of Peanut (Arachin conarachin L.) Antioxidant Hydrolysate

    OpenAIRE

    Qingli Yang; Chushu Zhang; Shaofang Liu; Jie Bi; Jie Sun; Lina Yu

    2012-01-01

    The objective of this work is to provide a theoretical basis for preparing peanut antioxidant hydrolysate in order to improve its antioxidant activities. Therefore, response surface methodology (RSM) based on the Box-Behnken design was used to optimize ultrasonic-assisted enzymolysis for the purpose of preparing peanut antioxidant hydrolysate. Results indicated that the DPPH free radical scavenging activity of peanut hydrolysate could reach 90.06% under the following optimum conditions: ultra...

  15. Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property.

    Science.gov (United States)

    Celebioglu, Asli; Kayaci-Senirmak, Fatma; İpek, Semran; Durgun, Engin; Uyar, Tamer

    2016-07-13

    Vanillin/cyclodextrin inclusion complex nanofibers (vanillin/CD-IC NFs) were successfully obtained from three modified CD types (HPβCD, HPγCD and MβCD) in three different solvent systems (water, DMF and DMAc) via an electrospinning technique without using a carrier polymeric matrix. Vanillin/CD-IC NFs with uniform and bead-free fiber morphology were successfully produced and their free-standing nanofibrous webs were obtained. The polymer-free CD/vanillin-IC-NFs allow us to accomplish a much higher vanillin loading (∼12%, w/w) when compared to electrospun polymeric nanofibers containing CD/vanillin-IC (∼5%, w/w). Vanillin has a volatile nature yet, after electrospinning, a significant amount of vanillin was preserved due to complex formation depending on the CD types. Maximum preservation of vanillin was observed for vanillin/MβCD-IC NFs which is up to ∼85% w/w, besides, a considerable amount of vanillin (∼75% w/w) was also preserved for vanillin/HPβCD-IC NFs and vanillin/HPγCD-IC NFs. Phase solubility studies suggested a 1 : 1 molar complexation tendency between guest vanillin and host CD molecules. Molecular modelling studies and experimental findings revealed that vanillin : CD complexation was strongest for MβCD when compared to HPβCD and HPγCD in vanillin/CD-IC NFs. For vanillin/CD-IC NFs, water solubility and the antioxidant property of vanillin was improved significantly owing to inclusion complexation. In brief, polymer-free vanillin/CD-IC NFs are capable of incorporating a much higher loading of vanillin and effectively preserve volatile vanillin. Hence, encapsulation of volatile active agents such as flavor, fragrance and essential oils in electrospun polymer-free CD-IC NFs may have potential for food related applications by integrating the particularly large surface area of NFs with the non-toxic nature of CD and inclusion complexation benefits, such as high temperature stability, improved water solubility and an enhanced

  16. C{sub 60}-based ebselen derivative: synthesis by bingel cyclopropanation and enhanced antioxidative and neuroprotective activity

    Energy Technology Data Exchange (ETDEWEB)

    Xufeng Liu [HuaZhong University of Science and Technology, Wuhan (China). Dept. of Chemistry; Wenchao Guan [Ministry of Education, Wuhan, (China). Hubei University. Key Lab. for the Synthesis and Application of Organic Functional Molecules]. E-mail: wcguan04@yahoo.com.cn; Wengshan Ke [Hubei University, Wuhan (China). College of Life Science

    2007-07-01

    C{sub 60}-based ebselen derivative 3 was synthesized through Bingel cyclopropanation of C{sub 60} with the ebselen malonate 2. Compound 3 was obtained in 42% yield (based on consumed C{sub 60}) in a three-step synthesis starting from 2-(chloroseleno)benzoyl chloride and 2-(2aminoethoxy)ethanol. Its structure was confirmed by {sup 1H} NMR, {sup 13}C NMR, IR, UV and FAB-MS spectroscopy analyses. In order to verify the enhanced antioxidative and neuroprotective activity of 3, a C{sub 60} derivative (4), an ebselen derivative (2), and their mixture (4 plus 2 in equimolar ratio) were employed to treat cortical neuronal cells, following the same procedure used with 3 and at the same final concentration (30 {mu}mol L{sup -1}). Cell viabilities of the four treated groups were estimated by LDH (lactic dehydrogenase) leakage and MTT (3-(4, 5-dimethylthiazole-2yl)-2,5-diphenyl-tetrazolium bromide) assays. Results showed that the antioxidative and protective activities of C{sub 60}-based ebselen derivative 3 against H{sub 2}O{sub 2}-mediated neuronal injury (MTT(OD) 0.364 {+-} 0.028; LDH release (UL{sup -1}) 4.66 {+-} 0.28) were significantly higher than those of C{sub 6})0 derivative 4 (MTT(OD) 0.324 {+-} 0.025; LDH release (UL{sup -1}) 5.39 {+-} 0.17), ebselen derivative 2 (MTT(OD) 0.294 {+-} 0.021; LDH release (UL{sup -1}) 5.71 {+-} 0.27), and the mixture of 4 and 2 (MTT(OD) 0.310 {+-} 0.018; LDH release (UL{sup -1}) 5.54 {+-}0.39). These findings demonstrated that the combination of two molecular units with similar biological activities (C{sub 60} and ebselen) may be a desirable way of obtaining new and more biologically effective C{sub 60}-based compounds. (author)

  17. Microwave Enhanced Synthesis of Chitosan-graft Molecularly Imprinted Polymer (MIP for Selective Extraction of Antioxidants

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2010-01-01

    Full Text Available Polymers have been molecularly imprinted for the purpose of binding specifically to α-tocotrienol (vitamin E. A molecularly imprinted polymer (MIP material was prepared using α-tocotrienol as the imprinted molecule, acrylamide as functional monomer and macroporous chitosan beads as functional matrix. Chitosan-graft-polyacrylamide was synthesized without any radical initiator or catalyst using microwave (MW irradiation. The representative microwave synthesized graft copolymer was characterized by fourier transform-infrared spectroscopy, taking chitosan as a reference. Microwave irradiation was exploited for polyacrylamide grafting on the cross-linked chitosan beads to produce MIP, where both time as well as chemicals can be saved. It can be assumed that the chitosan coated polyacrylamide MIP will have better pH stability and enhanced adsorption capacity. The maximum adsorption capacity was observed to be 3.95 mg/g of MIP, which gave removal efficiency of 93%. After 4 h, the change of adsorption capacities for α-tocotrienol did not show notable effects. The Langmuir and Freundlich adsorption models were also applied to describe the equilibrium isotherms.

  18. Loss of Sigma-1 Receptor Chaperone Promotes Astrocytosis and Enhances the Nrf2 Antioxidant Defense.

    Science.gov (United States)

    Weng, Tzu-Yu; Hung, Denise T; Su, Tsung-Ping; Tsai, Shang-Yi A

    2017-01-01

    Sigma-1 receptor (Sig-1R) functions as a chaperon that interacts with multiple proteins and lipids and is implicated in neurodegenerative and psychiatric diseases. Here, we used Sig-1R KO mice to examine brain expression profiles of astrocytes and ubiquitinated proteins, which are both hallmarks of central nervous system (CNS) pathologies. Our results showed that Sig-1R KO induces increased glial fibrillary acidic protein (GFAP) expression in primary neuron-glia cultures and in the whole brain of fetus mice with concomitantly increased accumulations of ubiquitinated proteins. Astrogliosis was also observed in the neuron-glia culture. Upon proteasome or autophagy inhibitor treatments, the pronounced ubiquitinated proteins were further increased in Sig-1R KO neurons, indicating that the Sig-1R regulates both protein degradation and quality control systems. We found that Nrf2 (nuclear factor erythroid 2-related factor 2), which functions to overcome the stress condition, was enhanced in the Sig-1R KO systems especially when cells were under stressful conditions. Mutation or deficiency of Sig-1Rs has been observed in neurodegenerative models. Our study identifies the critical roles of Sig-1R in CNS homeostasis and supports the idea that functional complementation pathways are triggered in the Sig-1R KO pathology.

  19. Computational Studies of Free Radical-Scavenging Properties of Phenolic Compounds

    Science.gov (United States)

    Alov, Petko; Tsakovska, Ivanka; Pajeva, Ilza

    2015-01-01

    For more than half a century free radical-induced alterations at cellular and organ levels have been investigated as a probable underlying mechanism of a number of adverse health conditions. Consequently, significant research efforts have been spent for discovering more effective and potent antioxidants / free radical scavengers for treatment of these adverse conditions. Being by far the most used antioxidants among natural and synthetic compounds, mono- and polyphenols have been the focus of both experimental and computational research on mechanisms of free radical scavenging. Quantum chemical studies have provided a significant amount of data on mechanisms of reactions between phenolic compounds and free radicals outlining a number of properties with a key role for the radical scavenging activity and capacity of phenolics. The obtained quantum chemical parameters together with other molecular descriptors have been used in quantitative structure-activity relationship (QSAR) analyses for the design of new more effective phenolic antioxidants and for identification of the most useful natural antioxidant phenolics. This review aims at presenting the state of the art in quantum chemical and QSAR studies of phenolic antioxidants and at analysing the trends observed in the field in the last decade. PMID:25547098

  20. The Antioxidant Trolox Enhances the Oxidation of 2’,7’-Dichlorofluorescin to 2’, 7’-Dichlorofluorrescein

    Science.gov (United States)

    1997-01-01

    Trolox Enhances the Oxidation of 2’,7’-Dichlorofluorescin to 2’,7’-Dichlorofluorescein JOHN F. KALINICH,* NARAYANI RAMAKRISHNAN and DAVID E. MCCLAIN...Received 25 March 1996; In revised form 14 June 1996) The use of antioxidants to prevent intracellular free rad- Keywords: Trolox , 2’,7’-dichlorofluorescin...unexpectedly found that incuba- tion of Trolox , a water soluble vitamin E analog, with DCFH-DA in cell-free physiological buffers resulted in Measurements of

  1. Transformation of Lactuca sativa L. with rol C gene results in increased antioxidant potential and enhanced analgesic, anti-inflammatory and antidepressant activities in vivo.

    Science.gov (United States)

    Ismail, Hammad; Dilshad, Erum; Waheed, Mohammad Tahir; Sajid, Moniba; Kayani, Waqas Khan; Mirza, Bushra

    2016-12-01

    Lettuce is an important edible crop which possesses various medicinal properties. In this study Lactuca sativa L. (cv Grand Rapids) was transformed by Agrobacterium-mediated transformation with rol C gene. Transgene integration and expression was confirmed through PCR and semiquantitative RT-PCR. The transformed extracts were evaluated for their in vitro antioxidant and in vivo analgesic, anti-inflammatory and antidepressant activities in rats. The transformed plants showed 53-98 % increase in total phenolic and 45-58 % increase in total flavonoid contents compared with untransformed plants. Results of total reducing power and total antioxidant capacity exhibited 90-118 and 61-75 % increase in transformed plants, respectively. In contrast to control, DPPH, lipid peroxidation and DNA protection assay showed up to 37, 20 and 50 % enhancement in transformed plants, respectively. The extracts showed similar but significant enhancement behavior in hot plate analgesic and carrageenan-induced hind paw edema test. The transformed extracts showed 72.1 and 78.5 % increase for analgesic and anti-inflammatory activities, respectively. The transformants of rol C gene exhibited prominent antidepressant activity with 64-73 % increase compared with untransformed plants. In conclusion, the present work suggests that transformation with rol C gene can be used to generate lettuce with enhanced medicinally important properties, such as antioxidant, analgesic, anti-inflammatory and antidepressant potential.

  2. Radical Scavenging and DNA Cleavage Inhibitory Activities of 2,3-Dihydroxybenzoyl Glycine Obtained from Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Jayesh J. Ahire

    2013-03-01

    Full Text Available A catecholate type of iron chelator (siderophore; 2,3-dihydroxybenzoyl glycine (DHBG was produced by Bacillus sp. under i ron stress conditions. Pure DHBG was subjected for DPPH ( α,α−Diphenyl−β− Picrylhydrazyl radical scavenging activity and radical induced DNA cleavage inhibition assay. In results, DHBG showed the highest radical scavenging effect and DNA cleavage inhibition activity when it was free from iron. This study revealed antioxidative potential of iron chelator DHBG; and its probable mechanism.

  3. Polyphenolic Extract of Euphorbia supina Attenuates Manganese-Induced Neurotoxicity by Enhancing Antioxidant Activity through Regulation of ER Stress and ER Stress-Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Entaz Bahar

    2017-01-01

    Full Text Available Manganese (Mn is an important trace element present in human body, which acts as an enzyme co-factor or activator in various metabolic reactions. While essential in trace amounts, excess levels of Mn in human brain can produce neurotoxicity, including idiopathic Parkinson’s disease (PD-like extrapyramidal manganism symptoms. This study aimed to investigate the protective role of polyphenolic extract of Euphorbia supina (PPEES on Mn-induced neurotoxicity and the underlying mechanism in human neuroblastoma SKNMC cells and Sprague-Dawley (SD male rat brain. PPEES possessed significant amount of total phenolic and flavonoid contents. PPEES also showed significant antioxidant activity in 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging and reducing power capacity (RPC assays. Our results showed that Mn treatment significantly reduced cell viability and increased lactate dehydrogenase (LDH level, which was attenuated by PPEES pretreatment at 100 and 200 µg/mL. Additionally, PPEES pretreatment markedly attenuated Mn-induced antioxidant status alteration by resolving the ROS, MDA and GSH levels and SOD and CAT activities. PPEES pretreatment also significantly attenuated Mn-induced mitochondrial membrane potential (ΔΨm and apoptosis. Meanwhile, PPEES pretreatment significantly reversed the Mn-induced alteration in the GRP78, GADD34, XBP-1, CHOP, Bcl-2, Bax and caspase-3 activities. Furthermore, administration of PPEES (100 and 200 mg/kg to Mn exposed rats showed improvement of histopathological alteration in comparison to Mn-treated rats. Moreover, administration of PPEES to Mn exposed rats showed significant reduction of 8-OHdG and Bax immunoreactivity. The results suggest that PPEES treatment reduces Mn-induced oxidative stress and neuronal cell loss in SKNMC cells and in the rat brain. Therefore, PPEES may be considered as potential treat-ment in Mn-intoxicated patients.

  4. Antioxidant activity and mechanism of Rhizoma Cimicifugae

    Directory of Open Access Journals (Sweden)

    Li Xican

    2012-11-01

    Full Text Available Abstract Background As a typical Chinese herbal medicine, rhizoma Cimicifugae (RC, 升麻 in Chinese possesses various pharmacological effects involved in antioxidant activity. However, its antioxidant activity has not been reported so far. The aim of the present study was to systematically evaluate the antioxidant ability of RC in vitro, then discuss the mechanism. Methods Firstly, five RC extracts (i.e. petroleum ether extract PERC, ethyl acetate extract EARC, absolute ethanol extract AERC, 95% ethanol extract 95ERC, and water extract WRC were prepared and determined by various antioxidant methods, including anti-lipidperoxidation, protection against DNA damage, ·OH scavenging, ·O2- scavenging, DPPH· (1,1-diphenyl-2-picryl-hydrazl radical scavenging, ABTS+· (2,2’-azino-bis (3-ethylbenzo- thiazoline-6-sulfonic acid radical ion scavenging, Cu2+-chelating, and Fe3+ reducing assays. Subsequently, we measured the chemical contents of five RC extracts, including total phenolics, total saponins, total sugars, caffeic acid, ferulic acid and isoferulic acid. Finally, we quantitatively analyzed the correlations between antioxidant levels (1/IC50 values and chemical contents. Results In the study, the antioxidant levels and chemical contents (including total phenolics, total saponins, total sugars, caffeic acid, ferulic acid and isoferulic acid of five RC extracts were determined by various methods. In all antioxidant assays, five RC extracts increased the antioxidant levels in a dose-dependent manner. However, their antioxidant levels (IC50 values and chemical contents significantly differed from each other. Quantitative analysis of the correlation showed that total phenolic was of significant positive correlations (average R value was 0.56 with antioxidant levels; In contrast, total sugars and total saponins had no positive correlation with antioxidant (the average R values were −0.20 and −0.26, for total sugars and total saponins

  5. Antioxidant lignoids from leaves of Ribes nigrum.

    Science.gov (United States)

    Sasaki, Tatsunori; Li, Wei; Zaike, Shinnosuke; Asada, Yoshihisa; Li, Qin; Ma, Fenghua; Zhang, Qingbo; Koike, Kazuo

    2013-11-01

    Phytochemical investigation of the leaves of Ribes nigrum resulted in the isolation of fourteen compounds, including four 7,7'-epoxylignans, three tetrahydrofuran-type sesquilignans, and a spirocyclic dilignan. Their structures were elucidated by extensive spectroscopic analyses and by chemical transformations. The isolated compounds were evaluated for their antioxidant activities using superoxide anion scavenging assay and DPPH free radical scavenging assay. Ribesin D and ribesin G showed the most potent superoxide anion scavenging activity with EC50 values of 1.24 and 1.12 μM, respectively, and the structure-activity relationship was discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Chilling-enhanced photooxidation: evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Wise, R.R.; Naylor, A.W.

    1987-02-01

    Chilling temperatures (5/sup 0/C) and high irradiance (1000 microeinsteins per square meter per second) were used to induce photooxidation in detached leaves of cucumber (Cucumis sativus L.), a chilling-sensitive plant. Chlorophyll a, chlorophyll b, ..beta.. carotene, and three xanthophylls were degraded in a light-dependent fashion at essentially the same rate. Lipid peroxidation (measured as ethane evolution) showed an O/sub 2/ dependency. The levels of three endogenous antioxidants, ascorbate, reduced glutathione, and ..cap alpha.. tocopherol, all showed an irradiance-dependent decline. ..cap alpha..-Tocopherol was the first antioxidant affected and appeared to be the only antioxidant that could be implicated in long-term protection of the photosynthetic pigments. Results from the application of antioxidants having relative selectivity for /sup 1/O/sub 2/, O/sub 2//sup +/, or OH indicated that both /sup 1/O/sub 2/ and O/sub 2//sup -/ were involved in the chilling- and light-induced lipid peroxidation which accompanied photooxidation. Application of D/sub 2/O (which enhances the lifetime of /sup 1/O/sub 2/) corroborated these results. Chilling under high light produced no evidence of photooxidative damage in detached leaves of chilling-resistant pea (Pisum sativum L.). Their results suggest a fundamental difference in the ability of pea to reduce the destructive effects of free-radical and /sup 1/O/sub 2/ production in chloroplasts during chilling in high light.

  7. Activation of Antioxidative Functions by Radon Inhalation Enhances the Mitigation Effects of Pregabalin on Chronic Constriction Injury-Induced Neuropathic Pain in Mice

    Directory of Open Access Journals (Sweden)

    Takahiro Kataoka

    2016-01-01

    Full Text Available Radon inhalation brings pain relief for chronic constriction injury- (CCI- induced neuropathic pain in mice due to the activation of antioxidative functions, which is different from the mechanism of the pregabalin effect. In this study, we assessed whether a combination of radon inhalation and pregabalin administration is more effective against neuropathic pain than radon or pregabalin only. Mice were treated with inhaled radon at a concentration of 1,000 Bq/m3 for 24 hours and pregabalin administration after CCI surgery. In mice treated with pregabalin at a dose of 3 mg/kg weight, the 50% paw withdrawal threshold of mice treated with pregabalin or radon and pregabalin was significantly increased, suggesting pain relief. The therapeutic effects of radon inhalation or the combined effects of radon and pregabalin (3 mg/kg weight were almost equivalent to treatment with pregabalin at a dose of 1.4 mg/kg weight or 4.1 mg/kg weight, respectively. Radon inhalation and the combination of radon and pregabalin increased antioxidant associated substances in the paw. The antioxidant substances increased much more in radon inhalation than in pregabalin administration. These findings suggested that the activation of antioxidative functions by radon inhalation enhances the pain relief of pregabalin and that this combined effect is probably an additive effect.

  8. Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity

    Science.gov (United States)

    Hazman, Mohamed; Hause, Bettina; Eiche, Elisabeth; Nick, Peter; Riemann, Michael

    2015-01-01

    Salinity stress represents a global constraint for rice, the most important staple food worldwide. Therefore the role of the central stress signal jasmonate for the salt response was analysed in rice comparing the responses to salt stress for two jasmonic acid (JA) biosynthesis rice mutants (cpm2 and hebiba) impaired in the function of ALLENE OXIDE CYCLASE (AOC) and their wild type. The aoc mutants were less sensitive to salt stress. Interestingly, both mutants accumulated smaller amounts of Na+ ions in their leaves, and showed better scavenging of reactive oxygen species (ROS) under salt stress. Leaves of the wild type and JA mutants accumulated similar levels of abscisic acid (ABA) under stress conditions, and the levels of JA and its amino acid conjugate, JA–isoleucine (JA-Ile), showed only subtle alterations in the wild type. In contrast, the wild type responded to salt stress by strong induction of the JA precursor 12-oxophytodienoic acid (OPDA), which was not observed in the mutants. Transcript levels of representative salinity-induced genes were induced less in the JA mutants. The absence of 12-OPDA in the mutants correlated not only with a generally increased ROS-scavenging activity, but also with the higher activity of specific enzymes in the antioxidative pathway, such as glutathione S-transferase, and fewer symptoms of damage as, for example, indicated by lower levels of malondialdehyde. The data are interpreted in a model where the absence of OPDA enhanced the antioxidative power in mutant leaves. PMID:25873666

  9. Biochemical characterization of radical scavenging polyphenols from Nyctanthes arbortristis

    Directory of Open Access Journals (Sweden)

    S Meghashri

    2012-01-01

    Full Text Available Context: Antioxidants are quenchers of free radical that are responsible for inducing oxidative stress generated via reactive oxygen species-induced degenerative diseases such as cancer, diabetes, and cardiovascular diseases etc. Plant and plant products are recognized as safe and potential health promoting and nutritive sources. Aims: To investigate the antioxidant potency of polyphenol extract (PE of Nyctanthes arbortristis leaves and identification of the active constituent by HPLC. Materials and Methods: PE of N. arbortristis leaves was investigated for antioxidant activity employing various established in vitro systems, such as lipid peroxidation in liposome, DPPH and hydroxyl radical scavenging, reducing power assay, and iron ion chelation. Identification of active constituent in PE of N. arbortristis responsible for antioxidant activity by HPLC. Statistical analysis used: All experiments were carried out in triplicates. Data were shown as mean ± standard deviation (SD. SPSS 10.0.5 version for windows (SPSS software Inc., USA computer program was used for statistical analysis. Results: Identification of active constituent in PE revealed gallic acid 75.8 ± 0.21, protocatechuic acid 14.6 ± 0.5, chlorogenic acid 6.79 ± 0.43, and caffeic acid 5.34 ± 0.2 μg/ml. PE showed strong inhibitory activity of 73% at 200 μg/ml toward lipid peroxidation in egg lecithin, concentration-dependent inhibition of deoxyribose oxidation at 200 μg/ml was 85% inhibition, and considerable antioxidant activity in DPPH radical assay system at 200 μg/ml was 79% inhibition. BHA and gallic acid showed significant observations. Conclusion: The antioxidant potency significantly correlated with the phenolic content of PE. Considering that medicinal herbs contain potent phytochemicals, which is effectively utilized for various degenerative disease, these in vitro results showed that N. arbortristis leaves could be effectively employed in functional food, to

  10. Ultra-flexible nanocarriers for enhanced topical delivery of a highly lipophilic antioxidative molecule for skin cancer chemoprevention.

    Science.gov (United States)

    Boakye, Cedar H A; Patel, Ketan; Doddapaneni, Ravi; Bagde, Arvind; Behl, Gautam; Chowdhury, Nusrat; Safe, Stephen; Singh, Mandip

    2016-07-01

    In this study, we developed cationic ultra-flexible nanocarriers (UltraFLEX-Nano) to surmount the skin barrier structure and to potentiate the topical delivery of a highly lipophilic antioxidative diindolylmethane derivative (DIM-D) for the inhibition of UV-induced DNA damage and skin carcinogenesis. UltraFLEX-Nano was prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-3-trimethylammonium-propane, cholesterol and tween-80 by ethanolic injection method; was characterized by Differential Scanning Calorimetric (DSC), Fourier Transform Infrared (FT-IR) and Atomic Force Microscopic (phase-imaging) analyses and permeation studies were performed in dermatomed human skin. The efficacy of DIM-D-UltraFLEX-Nano for skin cancer chemoprevention was evaluated in UVB-induced skin cancer model in vivo. DIM-D-UltraFLEX-Nano formed a stable mono-dispersion (110.50±0.71nm) with >90% encapsulation of DIM-D that was supported by HPLC, DSC, FT-IR and AFM phase imaging. The blank formulation was non-toxic to human embryonic kidney cells. UltraFLEX-Nano was vastly deformable and highly permeable across the stratum corneum; there was significant (pskin deposition of DIM-D for UltraFLEX-Nano that was superior to PEG solution (13.83-fold). DIM-D-UltraFLEX-Nano pretreatment delayed the onset of UVB-induced tumorigenesis (2 weeks) and reduced (pskin inflammation (PCNA), epidermal hyperplasia (c-myc, CyclinD1), immunosuppression (IL10), cell survival (AKT), metastasis (Vimentin, MMP-9, TIMP1) but increase in apoptosis (p53 and p21). UltraFLEX-Nano was efficient in enhancing the topical delivery of DIM-D. DIM-D-UltraFLEX-Nano was efficacious in delaying skin tumor incidence and multiplicity in SKH mice comparable to sunscreen (SPF30). Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Aqueous extract of Crataegus azarolus protects against DNA damage in human lymphoblast Cell K562 and enhances antioxidant activity.

    Science.gov (United States)

    Mustapha, Nadia; Bouhlel, Inès; Chaabane, Fadwa; Bzéouich, Imèn Mokdad; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2014-02-01

    The present study was carried out to characterize the cellular antioxidant effect of the aqueous extract of Crataegus azarolus and its antigenotoxic potential using human myelogenous cells, K562. The antioxidant capacity of this extract was evaluated by determining its cellular antioxidant activity (CAA) in K562 cells. Also, preceding antigenotoxicity assessment, its eventual genotoxicity property was investigated by evaluating its capacity to induce the DNA degradation of treated cell nuclei. As no genotoxicity was detected at different exposure times, its ability to protect cell DNA against H2O2 oxidative effect was investigated, using the "comet assay." It appears that 800 μg/mL of extract inhibited the genotoxicity induced by H2O2 with a rate of 41.30 %, after 4 h of incubation. In addition, this extract revealed a significant cellular antioxidant capacity against the reactive oxygen species in K562 cells.

  12. Enhancement of antioxidant activity of Radix Puerariae and red yeast rice by mixed fermentation with Monascus purpureus.

    Science.gov (United States)

    Huang, Qin; Zhang, Hao; Xue, Dan

    2017-07-01

    In this work, a new functional food combined Radix Puerariae and red yeast rice was explored. The pigment intensity, antioxidant activities and the main isoflavones of it were evaluated and compared with traditional red yeast rice and Radix Puerariae. The fermented mixture showed higher contents of isoflavones and pigment intensities than red yeast rice and Radix Puerariae. The DPPH, OH, FRAP and total antioxidant activity results of fermented mixture also showed higher antioxidant potential than those of Radix Puerariae and red yeast rice, owing to the higher pigment intensity and total phenolic contents. It is concluded that the fermented mixture of Radix Puerariae and rice could be widely used as a source of polyphenols with high antioxidative potential, thus introducing numerous health benefits for the consumer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Gamma irradiation induced enhancement of phenylalanine ammonia-lyase (PAL) and antioxidant activity in peach ( Prunus persica Bausch, Cv. Elberta)

    Science.gov (United States)

    Hussain, Peerzada R.; Wani, Ali M.; Meena, Raghuveer S.; Dar, Mohd A.

    2010-09-01

    Effect of medium dose gamma irradiation on PAL and antioxidant activity of peach fruit was investigated. Peach fruit after harvest at commercial maturity was irradiated in the dose range 1.0-2.0 kGy, stored under refrigerated conditions (3±1 °C, RH 80%) and evaluated at intervals of 7 days. The antioxidant activity as determined by DPPH and FRAP methods revealed significant ( p≤0.05) increase particularly in the dose range 1.6-2.0 kGy. During storage, maximum increase in both PAL and antioxidant activity was observed after 21 days. Positive correlation ( r=0.75) existed between antioxidant activity and total phenols. EC 50 values as obtained from DPPH and FRAP experiments were significantly ( p≤0.05) lower in irradiated fruits compared to control.

  14. Gamma irradiation induced enhancement of phenylalanine ammonia-lyase (PAL) and antioxidant activity in peach (Prunus persica Bausch, Cv. Elberta)

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Peerzada R., E-mail: hussainpr@rediffmail.co [Nuclear Research Laboratory, Bhabha Atomic Research Centre, Zakura, Srinagar 190006, Kashmir (India); Wani, Ali M.; Meena, Raghuveer S.; Dar, Mohd A. [Nuclear Research Laboratory, Bhabha Atomic Research Centre, Zakura, Srinagar 190006, Kashmir (India)

    2010-09-15

    Effect of medium dose gamma irradiation on PAL and antioxidant activity of peach fruit was investigated. Peach fruit after harvest at commercial maturity was irradiated in the dose range 1.0-2.0 kGy, stored under refrigerated conditions (3{+-}1 {sup o}C, RH 80%) and evaluated at intervals of 7 days. The antioxidant activity as determined by DPPH and FRAP methods revealed significant (p{<=}0.05) increase particularly in the dose range 1.6-2.0 kGy. During storage, maximum increase in both PAL and antioxidant activity was observed after 21 days. Positive correlation (r=0.75) existed between antioxidant activity and total phenols. EC{sub 50} values as obtained from DPPH and FRAP experiments were significantly (p{<=}0.05) lower in irradiated fruits compared to control.

  15. A method for red-violet pigments extraction from fruits of Malabar spinach (Basella rubra) with enhanced antioxidant potential under fermentation.

    Science.gov (United States)

    Sravan Kumar, S; Manoj, P; Giridhar, P

    2015-05-01

    Basella rubra fruit juice with a total soluble solids content of 5 to 9 (0)Brix was fermented using the wine yeast Saccharomyces cerevisiae. An 87.5 % of conversion of fermentable sugar was achieved. The TSS ((0)Brix) reduced from 0.60 (0)Brix to 0.17 (0)Brix (71.67 % decrease in TSS) upon performing fermentation of fruit juice water extract with Saccharomyces cerevisiae strain 2. There was 8 folds reduction in pigment quality as evidenced from fermentation. Besides, the potential increase of phenolics, thanks to a higher content of total betalains in general and betacyanins in particular when fermentation was carried out with S. cerevisiae strain 3. The DPPH (2, 2 -diphenyl-1-picrylhydrazyl hydrate) free radical scavenging potential (IC50) of fermented juice (1.9 mg.ml(-1)) was significant over control (2.4 mg.ml(-1)) extracts of B. rubra. The reducing power of fermented extracts was significantly high compared to control samples. The multiple antioxidant activity of fermented extract was also evident by significant reducing power assay when compared to its control samples.

  16. Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin.

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegar

    Full Text Available Curcumin has many pharmaceutical applications, many of which arise from its potent antioxidant properties. The present research examined the antioxidant activities of curcumin in polar solvents by a comparative study using ESR, reduction of ferric iron in aqueous medium and intracellular ROS/toxicity assays. ESR data indicated that the steric hindrance among adjacent big size groups within a galvinoxyl molecule limited the curcumin to scavenge galvinoxyl radicals effectively, while curcumin showed a powerful capacity for scavenging intracellular smaller oxidative molecules such as H₂O₂, HO•, ROO•. Cell viability and ROS assays demonstrated that curcumin was able to penetrate into the polar medium inside the cells and to protect them against the highly toxic and lethal effects of cumene hydroperoxide. Curcumin also showed good electron-transfer capability, with greater activity than trolox in aqueous solution. Curcumin can readily transfer electron or easily donate H-atom from two phenolic sites to scavenge free radicals. The excellent electron transfer capability of curcumin is because of its unique structure and different functional groups, including a β-diketone and several π electrons that have the capacity to conjugate between two phenyl rings. Therfore, since curcumin is inherently a lipophilic compound, because of its superb intracellular ROS scavenging activity, it can be used as an effective antioxidant for ROS protection within the polar cytoplasm.

  17. Antioxidant Studies on Ethanol Extracts from Two Selected Genera of Indian Lamiaceae

    OpenAIRE

    Ramu, G.; Dhanabal, S. P.

    2015-01-01

    The present work is targeted to evaluate antioxidant activity of ethanol extracts from the leaves of Plectranthus mollis and Salvia officinalis belonging to family Lamiaceae using nitric oxide scavenging, hydrogen peroxide scavenging, ferric reducing antioxidant power assay and lipid peroxidation methods. The results of the study indicate that the leaf extracts of both the plants possess in vitro antioxidant activity. The higher amount of flavanoids and phenolic compounds may correspond to th...

  18. Antioxidant-Enhancing Property of the Polar Fraction of Mangosteen Pericarp Extract and Evaluation of Its Safety in Humans

    OpenAIRE

    Wichit Suthammarak; Pornpayom Numpraphrut; Ratiya Charoensakdi; Neelobol Neungton; Vachara Tunrungruangtavee; Nattapon Jaisupa; Suwit Charoensak; Primchanien Moongkarndi; Weerasak Muangpaisan

    2016-01-01

    Crude extract from the pericarp of the mangosteen (mangosteen extract [ME]) has exhibited several medicinal properties in both animal models and human cell lines. Interestingly, the cytotoxic activities were always observed in nonpolar fraction of the extract whereas the potent antioxidant was often found in polar fraction. Although it has been demonstrated that the polar fraction of ME exhibited the antioxidant activity, the safety of the polar fraction of ME has never been thoroughly invest...

  19. Novel spectroscopic sensor for the hydroxyl radical scavenging activity measurement of biological samples.

    Science.gov (United States)

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Apak, Reşat

    2012-09-15

    A novel spectroscopic sensor was developed and validated for hydroxyl radical scavenging (HRS) activity estimation using terephthalate (TP) as probe. This sensor was designed by electrostatic immobilization of the chromogenic oxidizing agent of the CUPric Reducing Antioxidant Capacity (CUPRAC) method, Cu(II)-Neocuproine (Cu(II)-Nc) complex, on a Nafion cation-exchange membrane, and the spectrophotometric assay developed in aqueous-alcoholic solutions was integrated to the CUPRAC sensor. Hydroxyl radicals ((•)OH) generated from an equivalent mixture of Fe(II)+EDTA with hydrogen peroxide attacked both the probe and the (•)OH scavengers in 37 °C-incubated solutions for 1/2h. The HRS activity was measured using the decrease in CUPRAC absorbance at 450 nm - arising from the reduction of Cu(II)-Nc reagent to the Cu(I)-neocuproine chelate - of the hydroxylated probe (TP) undergoing radical attack in the presence of (•)OH scavengers. The HRS activity was evaluated as the second-order rate constants of biologically active compounds for (•)OH scavenging and also as the percentage scavenging of a measured compound or sample relative to a reference compound. Using this reaction, a kinetic approach was adopted to assess the HRS activity of amino acids, plasma- and thiol-antioxidants. This assay, applicable to small molecule antioxidants and tissue homogenates, proved to be efficient for serine and albumin for which the widely used TBARS (thiobarbituric acid-reactive substances) test is nonresponsive. Under optimal conditions, about half of the probe (TP) was converted into 2-hydroxyterephthalate (hTP), and this monohydroxylated derivative, being the only product of hydroxylation, was a more specific marker of (•)OH than the non-specific malondialdehyde end-product of the TBARS test. The sensor gave a linear response to scavenger concentration in the competition kinetic equation. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Antioxidant Activities of 4-Methylumbelliferone Derivatives.

    Directory of Open Access Journals (Sweden)

    Yasameen K Al-Majedy

    Full Text Available The synthesis of derivatives of 4-Methylumbelliferone (4-MUs, which are structurally interesting antioxidants, was performed in this study. The modification of 4-Methylumbelliferone (4-MU by different reaction steps was performed to yield the target compounds, the 4-MUs. The 4-MUs were characterized by different spectroscopic techniques (Fourier transform infrared; FT-IR and Nuclear magnetic resonance; NMR and micro-elemental analysis (CHNS. The in vitro antioxidant activity of the 4-MUs was evaluated in terms of their free radical scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH, Nitric oxide radical scavenging activity assay, chelating activity and their (FRAP ferric-reducing antioxidant power, which were compared with a standard antioxidant. Our results reveal that the 4-MUs exhibit excellent radical scavenging activities. The antioxidant mechanisms of the 4-MUs were also studied. Density Function Theory (DFT-based quantum chemical studies were performed with the basis set at 3-21G. Molecular models of the synthesized compounds were studied to understand the antioxidant activity. The electron levels, namely HOMO (highest occupied molecular orbital and LUMO (lowest unoccupied molecular orbital, for these synthesized antioxidants were also studied.

  1. The antioxidant activitives of mango peel among different cultivars

    Science.gov (United States)

    Liu, Yu-Ge; Zhang, Xiu-Mei; Ma, Fei-Yue; Fu, Qiong

    2017-04-01

    In this paper, the contents of total phenol and total flavonoid of 8 mango cultivars were determined. Their antioxidant abilities were also evaluated by 1,1-diphenyl-2-pireyhydrazyl (DPPH) radical scavenging, trolox equivalent antioxidant capacity (TEAC) and ferric reducing antioxidant power (FRAP). Correlations between total phenol, total flavonoid and FRAP as well as TEAC were also analyzed. Results showed that mango peels were rich in natural antioxidant compounds the antioxidant abilities were different among different cultivars. The correlations between total phenol, total flavonoid and FRAP indicated phenolics represent a major part of antioxidant capacity in mango peels. This was also useful in the utilization of mango processing waste.

  2. rhEPO Enhances Cellular Anti-oxidant Capacity to Protect Long-Term Cultured Aging Primary Nerve Cells.

    Science.gov (United States)

    Wang, Huqing; Fan, Jiaxin; Chen, Mengyi; Yao, Qingling; Gao, Zhen; Zhang, Guilian; Wu, Haiqin; Yu, Xiaorui

    2017-08-01

    Erythropoietin (EPO) may protect the nervous system of animals against aging damage, making it a potential anti-aging drug for the nervous system. However, experimental evidence from natural aging nerve cell models is lacking, and the efficacy of EPO and underlying mechanism of this effect warrant further study. Thus, the present study used long-term cultured primary nerve cells to successfully mimic the natural aging process of nerve cells. Starting on the 11th day of culture, cells were treated with different concentrations of recombinant human erythropoietin (rhEPO). Using double immunofluorescence labeling, we found that rhEPO significantly improved the morphology of long-term cultured primary nerve cells and increased the total number of long-term cultured primary cells. However, rhEPO did not improve the ratio of nerve cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure nerve cell activity and showed that rhEPO significantly improved the activity of long-term cultured primary nerve cells. Moreover, Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double immunofluorescence labeling flow cytometry revealed that rhEPO reduced the apoptotic rate of long-term cultured primary nerve cells. Senescence-associated β-galactosidase (SA-β-gal) immunohistochemistry staining showed that rhEPO significantly reduced the aging rate of long-term cultured primary nerve cells. Immunochemistry revealed that rhEPO enhanced intracellular superoxide dismutase (SOD) activity and glutathione (GSH) abundance and reduced the intracellular malondialdehyde (MDA) level. In addition, this effect depended on the dose, was maximized at a dose of 100 U/ml and was more pronounced than that of vitamin E. In summary, this study finds that rhEPO protects long-term cultured primary nerve cells from aging in a dose-dependent manner. The mechanism of this effect may be associated with the enhancement of the intracellular anti-oxidant

  3. Probiotics as potential antioxidants: a systematic review.

    Science.gov (United States)

    Mishra, Vijendra; Shah, Chandni; Mokashe, Narendra; Chavan, Rupesh; Yadav, Hariom; Prajapati, Jashbhai

    2015-04-15

    Probiotics are known for their health beneficial effects and are established as dietary adjuncts. Probiotics have been known for many beneficial health effects. In this view, there is interest to find the potential probiotic strains that can exhibit antioxidant properties along with health benefits. In vitro and in vivo studies indicate that probiotics exhibit antioxidant potential. In this view, consumption of probiotics alone or foods supplemented with probiotics may reduce oxidative damage, free radical scavenging rate, and modification in activity of crucial antioxidative enzymes in human cells. Incorporation of probiotics in foods can provide a good strategy to supply dietary antioxidants, but more studies are needed to standardize methods and evaluate antioxidant properties of probiotics before they can be recommended for antioxidant potential. In this paper, the literature related to known antioxidant potential of probiotics and proposing future perspectives to conduct such studies has been reviewed.

  4. Fe3O4-citrate-curcumin: Promising conjugates for superoxide scavenging, tumor suppression and cancer hyperthermia

    Science.gov (United States)

    Kitture, Rohini; Ghosh, Sougata; Kulkarni, Parag; Liu, X. L.; Maity, Dipak; Patil, S. I.; Jun, Ding; Dushing, Yogesh; Laware, S. L.; Chopade, B. A.; Kale, S. N.

    2012-03-01

    Fe3O4 nanoparticles have been conjugated to curcumin (CU) molecules via a citrate (CA) linker (Fe-CA-CU) and have been explored for superoxide scavenging, tumor suppression, and cancer hyperthermia. The conjugation chemistry reveals that Fe3+ ions on the nanoparticle surface readily conjugates to the available carboxyl sites on the CA molecule, which further conjugates to CU at its central enol -OH group. As seen from the UV-vis spectroscopy, the therapeutically active chromophore group of CU, which is seen at 423 nm, was intact, ensuring the activity the molecule. Magnetization measurements showed good hysteresis curves of Fe3O4 and Fe-CA-CU, indicating the presence of magnetism after conjugation. The loading percentage of citrate-curcumin was seen to be ˜10% from the thermo-gravimetric analysis. The systems when subjected to radio-frequency fields of 240 KHz, were seen to get heated up. The Fe3O4 heating exhibited better slope (1 °C/s) as compared to the Fe-CA-CU system (˜0.7 °C/s) for a sample of concentration 10 mg/ml in average time of ˜20 s to reach the required hyperthermia threshold temperature of ˜45 °C. Tumor suppression studies were done using potato assay, which showed that while only CU showed 100% suppression in 7 days, it was about 89% by the Fe-CA-CU. Upon subjecting these systems to the superoxide anion scavenging assay and superoxide radical scavenging assay (riboflavin), it was observed that the activity was enhanced in the Fe-CA-CU to 40% (from 38% in only CU) and 100% (from 5.75% in only CU). These studies promise Fe-CA-CU as a good cancer hyperthermia-cum-tumor suppressant and antioxidant agent.

  5. Antioxidant effect of leaf extracts fromCressa creticaagainst oxidation process in soybean oil.

    Science.gov (United States)

    Afshari, Afsaneh; Sayyed-Alangi, S Zahra

    2017-03-01

    Phenolic compounds from Cressa cretica leaves were extracted using different solvents (water and ethanol 70%) during 3-24 h by immersion method and were determined according to the Folin-Ciocalteu method. The antioxidant activities of the extracts were investigated by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging, ferric reduction activity potential and total antioxidant capacity assays compared with synthetic antioxidant namely BHT. The results were shown that the most total phenol content was outcome of the ethanolic extract after 18 h (68.512 ± 0.36   mg gallic acid/g dry extract) extraction. The results of different assays for determination of antioxidant potential of the extracts as well as their EC 50 values were indicated antioxidant activities in order: BHT>ethanolic extract>aqueous extract. Also, the antioxidant activities were enhanced with increasing of the extracts and BHT concentrations. The results of Peroxide value (PV) and Thiobarbituric acid (TBA) tests were revealed that the ethanolic extract with various concentrations (200-1000 ppm) were suppressed the oxidation of soybean oil. The highest oxidation inhibitor was belonged to 1000 ppm concentration of the ethanolic extract so that can be good alternative for BHT.

  6. Chemical Constituents and their DPPH Radical Scavenging Activity of Nepalese Crude Drug Begonia picta

    Directory of Open Access Journals (Sweden)

    Khem Raj Joshi

    2015-04-01

    Full Text Available Vitexin (1, isovitexin (2, orientin (3, isoorientin (4 and 1, 3 - dih y d roxy - 6, 7 - dimethoxyxanthone (5 were isolated from the whole plant of Begonia picta , a Nepalese crude drug commonly known as “ Magarkaanche ”. Structures were elucidated on the basis of chemical and spectroscopic methods. All of these compounds were isolated for the first time from B. picta and their in vitro antioxidant activity was evaluated by diphenyl-2-picrylhydrazyl ( DPPH free radical scavenging assay. Compounds 3 and 4 showed significant free radical scavenging activity.

  7. New phenanthrene derivatives with nitric oxide inhibitory and radical-scavenging activities from Pholidota imbricata Hook.

    Science.gov (United States)

    Wang, Jue; Wang, Tiejie; Xie, Pu; Yin, Guo; Li, Xiaofan

    2014-01-01

    One new phenanthrene derivative phoimbrtol A (1) with seven known compounds, loddigesiinol B (2), shanciol B (3), (-)-medioresinol (4), (-)-pinoresinol (5), quercetin 3-O-β-L-arabinofuranoside (6), luteolin 7-O-β-glucoside (7) and platycaryanin D (8) have been isolated from the ethyl acetate extract of the air-dried whole plant of Pholidota imbricata Hook. Their inhibitory effects on nitric oxide (NO) production and 1,1-diphenyl-2-picrylhydrazil (DPPH) radical scavenging activity were examined. Among these compounds, 8 exhibited the most potent activity at NO production inhibitory assay and DPPH radical scavenging assay, stronger than those of the familiar antioxidative agents, quercetin and resveratrol.

  8. Hydroxybenzoic acids and their derivatives as peroxynitrite scavengers.

    Science.gov (United States)

    Hubková, Beáta; Veliká, Beáta; Birková, Anna; Guzy, Juraj; Mareková, Mária

    2014-10-01

    A social challenge of the 21(st) century is to reduce the incidence of chronic diseases. A balanced diet rich in polyphenols could contribute to reduce the risk and to the prevention of diabetes, coronary heart disease, cancer, Alzheimer's diseases and cataract(1). Hydroxybenzoic acids (HBA) and their derivatives, which are one of the substances responsible for these beneficial properties, are known mainly due to their antioxidant properties(2). They are effective scavengers of free radicals and reactive nitrogen species, such as peroxynitrite. Peroxynitrite is resulting from the reaction of nitric oxide with superoxide, causes lipid peroxidation and subsequent cellular damage and is responsible for the inactivation of many enzymes, activation of stress signalling pathways, release of proapoptotic factors, as well as cardiovascular dysfunction in septic schock(3). In this study we have tested 2-HBA, 3-HBA, 4-HBA, acetylsalicylic acid, 4-HBA methyl and propyl esters, 2,3-dihydroxybenzoic acid (DHBA), 2,5-DHBA, 2,4-DHBA, 2,6-DHBA, 3,5-DHBA, 3,4-DHBA, gallic acid and caffeic acid, by UV/VIS spectroscopy. The best ability to scavenge peroxynitrite was observed for gallic acid, 2,4-DHBA, 3,5-DHBA and caffeic acid. Improved comprehension of the complex relationship between the antioxidant properties of substances and their structure is important to understand their proper use in the prevention and treatment of diseases and for the detection of pathological processes. Monitoring and improved understanding of the antioxidant properties of hydroxybenzoic acid derivatives are important due to their frequent use in modern medical nutrition therapies. Copyright © 2014. Published by Elsevier Inc.

  9. Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress.

    Science.gov (United States)

    Ahmadinejad, Fereshteh; Geir Møller, Simon; Hashemzadeh-Chaleshtori, Morteza; Bidkhori, Gholamreza; Jami, Mohammad-Saeid

    2017-07-10

    Accumulating evidence shows that oxidative stress is involved in a wide variety of human diseases: rheumatoid arthritis, Alzheimer's disease, Parkinson's disease, cancers, etc. Here, we discuss the significance of oxidative conditions in different disease, with the focus on neurodegenerative disease including Parkinson's disease, which is mainly caused by oxidative stress. Reactive oxygen and nitrogen species (ROS and RNS, respectively), collectively known as RONS, are produced by cellular enzymes such as myeloperoxidase, NADPH-oxidase (nicotinamide adenine dinucleotide phosphate-oxidase) and nitric oxide synthase (NOS). Natural antioxidant systems are categorized into enzymatic and non-enzymatic antioxidant groups. The former includes a number of enzymes such as catalase and glutathione peroxidase, while the latter contains a number of antioxidants acquired from dietary sources including vitamin C, carotenoids, flavonoids and polyphenols. There are also scavengers used for therapeutic purposes, such as 3,4-dihydroxyphenylalanine (L-DOPA) used routinely in the treatment of Parkinson's disease (not as a free radical scavenger), and 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone) that acts as a free radical detoxifier frequently used in acute ischemic stroke. The cell surviving properties of L-DOPA and Edaravone against oxidative stress conditions rely on the alteration of a number of stress proteins such as Annexin A1, Peroxiredoxin-6 and PARK7/DJ-1 (Parkinson disease protein 7, also known as Protein deglycase DJ-1). Although they share the targets in reversing the cytotoxic effects of H₂O₂, they seem to have distinct mechanism of function. Exposure to L-DOPA may result in hypoxia condition and further induction of ORP150 (150-kDa oxygen-regulated protein) with its concomitant cytoprotective effects but Edaravone seems to protect cells via direct induction of Peroxiredoxin-2 and inhibition of apoptosis.

  10. Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Fereshteh Ahmadinejad

    2017-07-01

    Full Text Available Accumulating evidence shows that oxidative stress is involved in a wide variety of human diseases: rheumatoid arthritis, Alzheimer’s disease, Parkinson’s disease, cancers, etc. Here, we discuss the significance of oxidative conditions in different disease, with the focus on neurodegenerative disease including Parkinson’s disease, which is mainly caused by oxidative stress. Reactive oxygen and nitrogen species (ROS and RNS, respectively, collectively known as RONS, are produced by cellular enzymes such as myeloperoxidase, NADPH-oxidase (nicotinamide adenine dinucleotide phosphate-oxidase and nitric oxide synthase (NOS. Natural antioxidant systems are categorized into enzymatic and non-enzymatic antioxidant groups. The former includes a number of enzymes such as catalase and glutathione peroxidase, while the latter contains a number of antioxidants acquired from dietary sources including vitamin C, carotenoids, flavonoids and polyphenols. There are also scavengers used for therapeutic purposes, such as 3,4-dihydroxyphenylalanine (L-DOPA used routinely in the treatment of Parkinson’s disease (not as a free radical scavenger, and 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone that acts as a free radical detoxifier frequently used in acute ischemic stroke. The cell surviving properties of L-DOPA and Edaravone against oxidative stress conditions rely on the alteration of a number of stress proteins such as Annexin A1, Peroxiredoxin-6 and PARK7/DJ-1 (Parkinson disease protein 7, also known as Protein deglycase DJ-1. Although they share the targets in reversing the cytotoxic effects of H2O2, they seem to have distinct mechanism of function. Exposure to L-DOPA may result in hypoxia condition and further induction of ORP150 (150-kDa oxygen-regulated protein with its concomitant cytoprotective effects but Edaravone seems to protect cells via direct induction of Peroxiredoxin-2 and inhibition of apoptosis.

  11. Supplementary health benefits of soy aglycons of isoflavone by improvement of serum biochemical attributes, enhancement of liver antioxidative capacities and protection of vaginal epithelium of ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Lo Dan-Yuan

    2009-04-01

    Full Text Available Abstract Background In the literature, supplement of soy aglycons of isoflavone as estrogen agonists in improvement of serum biochemical attributes, liver antioxidative capacities and vaginal epithelium protection has been meagerly investigated. In this study, ovariectomized (OVX rats were used as an animal model to simulate post-menopausal status. Supplementary health benefits of soy aglycons of isoflavone (SAI on improvement of growth and serum biochemical attributes, enhancement of liver antioxidation-related capacities and protection of vaginal epithelium of the OVX rats were assessed. Methods As an in vivo study, 30 OVX Sprague-Dawley rats were distributed into OVX (positive control, OVX/LSAI (low SAI group – supplemented with 0.0135% SAI being equivalent to 80 mg per day for a 60 Kg-human, and OVX/HSAI (high SAI group – supplemented with 0.027% SAI and 10 rats with sham operation as negative control fed with basal diet. Results The average daily gain (ADG, feed intake and feed/gain ratio were higher for the OVX groups than the sham group (P P P P Conclusion Diets supplemented with soy aglycons of isoflavone have conferred health benefits to the OVX rats, in comparison to the sham rats fed with basal diet, by detection of higher serum isoflavone concentrations, significantly lower contents of serum cholesterol and LDL, and higher contents of serum HDL, increased iron chelating ability, lower contents of TBARS (thiobarbituric acid-reactive substance and enhanced catalase and total antioxidative (as trolox equivalency activities of the liver extracts, and protection of the epithelial cellular linings of vagina in the former rather than in the latter. This evidences that estrogen-agonist chemoprevention of menopausal-related cardiovascular diseases, decreased liver antioxidative capacities and epithelial degeneration of vagina could be achieved by dietary supplementation with soy aglycons of isoflavone.

  12. The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins.

    Science.gov (United States)

    Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H

    2013-08-01

    The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries. Copyright © 2013 American Dairy Science Association

  13. Antioxidant Activities of Lactic Acid Bacteria for Quality Improvement of Fermented Sausage.

    Science.gov (United States)

    Zhang, Yulong; Hu, Ping; Lou, Lijiao; Zhan, Jianlong; Fan, Min; Li, Dan; Liao, Qianwei

    2017-12-01

    Lactobacillus curvatus (SR6) and Lactobacillus paracasei (SR10-1) were assessed for their antioxidant activities and inoculated into sausages to investigate their effects on quality during fermentation. The results showed that L. curvatus SR6 had better DPPH• scavenging activity (59.67% ± 6.68%) and reducing power (47.31% ± 4.62%) and L. paracasei SR10-1 had better OH• scavenging activity (285.67% ± 2.00%) and anti-lipid peroxidation capacity (63.89% ± 0.93%). The superoxide dismutase activity of the cell culture fluid was greater than 47.00 U/mL, and the catalase activity of the cell-free extracts was greater than 1.00 U/mL. In the sausage model, lactic acid bacteria rapidly became the dominant microflora and reduced the moisture content, water activity, nitrite, and pH. The bacteria significantly enhanced the antioxidant activity of the sausage extracts, which improved the sensory characteristics and safety of the sausages. These results illustrate that both strains have excellent antioxidant activities and can be used as antioxidant starters in fermented meat products. The study illustrated the antioxidant and antioxidase activities of Lactobacillus curvatus SR6 and Lactobacillus paracasei SR10-1 and demonstrated the changes in the quality characteristics and antioxidant activities of fermented sausages. The findings provide valuable information for the meat industry on the application of functional starters in fermented meat products. © 2017 Institute of Food Technologists®.

  14. Hyaluronidase inhibiting activity and radical scavenging potential of flavonols in processed onion.

    Science.gov (United States)

    González-Peña, Diana; Colina-Coca, Clara; Char, Cielo D; Cano, M Pilar; de Ancos, Begoña; Sánchez-Moreno, Concepción

    2013-05-22

    The flavonol content and anti-inflammatory and antioxidant activities of onion treated by high-pressure processing (HPP) and HPP combined with freeze-drying and pulverization (HPP-FD-P) were evaluated. Allium cepa L. var. cepa, 'Recas' was treated at T1 (200 MPa/25 °C/5 min), T2 (400 MPa/25 °C/5 min), and T3 (600 MPa/25 °C/5 min). After treatment, HP-treated and untreated samples were frozen (diced onion, HP-treated). Subsequently, part of the diced samples was freeze-dried and pulverized (pulverized onion, HP-treated and freeze-dried). Flavonol content and anti-inflammatory and antioxidant activities (hyaluronidase inhibiting activity, NO(•), ABTS(•+), and DPPH(•) scavenging capacity, ferric reducing antioxidant power, and antioxidative capacity by photochemiluminescence) were measured in nonhydrolyzed and hydrolyzed extracts. Hydrolysis was carried out in order to evaluate the effect of HPP and HPP-FD-P on both anti-inflammatory and antioxidant activities of extracts mainly containing aglycone forms. HPP-FD-P increased quercetin 3,4'-diglucoside, quercetin 4'-glucoside, quercetin 3-glucoside, and isorhamnetin 3,4'-diglucoside extractability. The present study suggests that HPP (especially treatment at 400 MPa) and HPP-FD-P may be of benefit for obtaining functional ingredients from onion, as suggested by increased NO(•) scavenging capacity and maintenance of the antioxidant activity mainly in hydrolyzed extracts.

  15. Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions

    Directory of Open Access Journals (Sweden)

    Daljit Singh Arora

    2010-10-01

    Full Text Available The objective of this work was to screen fungi isolated from soil of different areas of Punjab, India for antioxidant activity by dot blot assay and around 45% of fungal isolates demonstrated antioxidant potential. Two selected strains of Aspergillus spp (Aspergillus PR78 and Aspergillus PR66 showing quantitatively best antioxidant activity by DPPH assay were further tested for their reducing power, ferrous ion and nitric oxide ion scavenging activity, FRAP assay and total phenolic content. Different physio-chemical parameters were optimized for enhancement of the activity. This revealed stationary culture grown for 10 days at 25ºC at pH 7 to be the best for antioxidant activity. Sucrose in the medium as carbon source resulted in highest antioxidant activity. Sodium nitrate, yeast extract, and peptone were good sources of nitrogen but sodium nitrate was the best among these. The extraction of the broth culture filtrates with different solvents revealed ethyl acetate extract to possess the best antioxidant activity. The activity as expressed by ethyl acetate extract of Aspergillus PR78 was equally effective as that of commonly used antioxidant standard, ascorbic acid.

  16. Effect of fermentation with Monascus pilosus on the antioxidant activities and phenolic acid contents of adzuki bean (Vigna angularis

    Directory of Open Access Journals (Sweden)

    Jinhua Cheng

    2015-04-01

    Full Text Available Objective: To enhance physiological activities of adzuki bean (Vigna angularis via fermentation with Monascus pilosus (M. pilosus. Methods: The adzuki bean fermentation conditions with M. pilosus were optimized, and the effect of Monascus-fermentation on the antioxidant capacity and phenolic acid contents of adzuki bean was investigated. Results: Optimal fermentation conditions were determined by the production of monacolin K. The highest monacolin K production was observed in 5% inoculum sized on day 15 in fermentation. Free and bound phenolic acids were isolated from native and fermented adzuki bean. A 1.9-fold decrease was observed in bound p-coumaric acid content, whereas the contents of bound ferulic and sinapic acids were increased by 28- and 1.7-fold, respectively. However, the contents of free phenolic acids such as p-coumaric, ferulic, and sinapic acids were increased by 2.6-, 5.2-, and 7.2-fold, respectively. The fermentation of adzuki bean by M. pilosus enhanced the activities of DPPH● radical scavenging, ferrous ion-chelating, nitric oxide scavenging, and ferric antioxidant reducing activities 2.2-, 1.7-, 1.2-, and 1.8-fold, respectively. Conclusions: Results from our study suggest that the contents of p-coumaric, ferulic, and sinapic acids in adzuki bean were highly increased by fermentation with M. pilosus, resulting in enhanced various antioxidant activities

  17. Role of pH on antioxidants production by Spirulina (Arthrospira) platensis.

    Science.gov (United States)

    Ismaiel, Mostafa Mahmoud Sami; El-Ayouty, Yassin Mahmoud; Piercey-Normore, Michele

    2016-01-01

    Algae can tolerate a broad range of growing conditions but extreme conditions may lead to the generation of highly dangerous reactive oxygen species (ROS), which may cause the deterioration of cell metabolism and damage cellular components. The antioxidants produced by algae alleviate the harmful effects of ROS. While the enhancement of antioxidant production in blue green algae under stress has been reported, the antioxidant response to changes in pH levels requires further investigation. This study presents the effect of pH changes on the antioxidant activity and productivity of the blue green alga Spirulina (Arthrospira) platensis. The algal dry weight (DW) was greatly enhanced at pH 9.0. The highest content of chlorophyll a and carotenoids (10.6 and 2.4mg/g DW, respectively) was recorded at pH 8.5. The highest phenolic content (12.1mg gallic acid equivalent (GAE)/g DW) was recorded at pH 9.5. The maximum production of total phycobiliprotein (159mg/g DW) was obtained at pH 9.0. The antioxidant activities of radical scavenging activity, reducing power and chelating activity were highest at pH 9.0 with an increase of 567, 250 and 206% compared to the positive control, respectively. Variation in the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was also reported. While the high alkaline pH may favor the overproduction of antioxidants, normal cell metabolism and membrane function is unaffected, as shown by growth and chlorophyll content, which suggests that these conditions are suitable for further studies on the harvest of antioxidants from S. platensis. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. Role of pH on antioxidants production by Spirulina (Arthrospira platensis

    Directory of Open Access Journals (Sweden)

    Mostafa Mahmoud Sami Ismaiel

    2016-06-01

    Full Text Available Abstract Algae can tolerate a broad range of growing conditions but extreme conditions may lead to the generation of highly dangerous reactive oxygen species (ROS, which may cause the deterioration of cell metabolism and damage cellular components. The antioxidants produced by algae alleviate the harmful effects of ROS. While the enhancement of antioxidant production in blue green algae under stress has been reported, the antioxidant response to changes in pH levels requires further investigation. This study presents the effect of pH changes on the antioxidant activity and productivity of the blue green alga Spirulina (Arthrospira platensis. The algal dry weight (DW was greatly enhanced at pH 9.0. The highest content of chlorophyll a and carotenoids (10.6 and 2.4 mg/g DW, respectively was recorded at pH 8.5. The highest phenolic content (12.1 mg gallic acid equivalent (GAE/g DW was recorded at pH 9.5. The maximum production of total phycobiliprotein (159 mg/g DW was obtained at pH 9.0. The antioxidant activities of radical scavenging activity, reducing power and chelating activity were highest at pH 9.0 with an increase of 567, 250 and 206% compared to the positive control, respectively. Variation in the activity of the antioxidant enzymes superoxide dismutase (SOD, catalase (CAT and peroxidase (POD was also reported. While the high alkaline pH may favor the overproduction of antioxidants, normal cell metabolism and membrane function is unaffected, as shown by growth and chlorophyll content, which suggests that these conditions are suitable for further studies on the harvest of antioxidants from S. platensis.

  19. Phytochemicals enhance antioxidant enzyme expression to protect against NSAID-induced oxidative damage of the gastrointestinal mucosa.

    Science.gov (United States)

    Cheng, Yu-Ting; Lu, Chi-Cheng; Yen, Gow-Chin

    2017-06-01

    The gastrointestinal (GI) mucosa provides the first protective barrier for digested food and xenobiotics, which are easily attacked by toxic substances. Nonsteroidal anti-inflammatory drugs, including aspirin, diclofenac, indomethacin, and ketoprofen, are widely used in clinical medicine, but these drugs may cause oxidative stress, leading to GI damage such as ulcers. Lansoprazol, omeprazole, and other clinical drugs are widely used to treat duodenal and gastric ulcers and have been shown to have multiple biological functions, such as antioxidant activity and the ability to upregulate antioxidant enzymes in vivo. Therefore, the reduction of oxidative stress may be an effective curative strategy for preventing and treating nonsteroidal anti-inflammatory drug induced ulcers of the GI mucosa. Phytochemicals, such as dietary phenolic compounds, phenolic acids, flavan-3-ols, flavonols, flavonoids, gingerols, carotenes, and organosulfur, are common antioxidants in fruits, vegetables, and beverages. A large amount of evidence has demonstrated that natural phytochemicals possess bioactivity and potential health benefits, such as antioxidant, anti-inflammatory, and antibacterial benefits, and they can prevent digestive disease processes. In this review, we summarize the literature on phytochemicals with biological effects, such as angiogenic, antioxidant, antiapoptotic, anti-inflammatory, and antiulceration effects, and their related mechanisms are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of different cooking conditions on phenolic compounds and antioxidant capacity of some selected Brazilian bean (Phaseolus vulgaris L.) cultivars.

    Science.gov (United States)

    Ranilla, Lena Gálvez; Genovese, Maria Inés; Lajolo, Franco Maria

    2009-07-08

    The effects of different cooking conditions such as soaking, atmospheric (100 degrees C) or pressure boiling (121 degrees C), and draining of cooking water following thermal treatment on phenolic compounds and the DPPH radical scavenging capacity from two selected Brazilian bean cultivars (black and yellow-brown seed coat color) were investigated using a factorial design (2(3)). Factors that significantly reduced the total phenolic contents and antioxidant capacity in both cultivars were the soaking and draining stage. Independent of cooking temperature, total phenolics and antioxidant capacities were enhanced in treatments without soaking and where cooking water was not discarded, and this was likely linked to an increase of specific phenolic compounds detected by high performance liquid chromatography such as flavonols and free phenolic acids in both cultivars. Cooking of beans either at 100 or 121 degrees C, without a soaking stage and keeping the cooking water, would be recommendable for retaining antioxidant phenolic compounds.

  1. Antioxidant activity, phenolic and flavonoid content in leaves, flowers ...

    African Journals Online (AJOL)

    The nutraceutical composition (phenolics and flavonoids) of all leaves, flowers, stems and seeds of mallow, Malva sylvestris L., as well as their antioxidant properties were studied using in vitro methods: ferric reducing antioxidant power (FRAP) assay, by scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and total ...

  2. Determination of antioxidant activity in methanolic and chloroformic ...

    African Journals Online (AJOL)

    Administrator

    2011-06-06

    Jun 6, 2011 ... The aim of this study was to determine and compare the antioxidant activity of methanolic and chloroformic extracts of Momordica charantia (MC) fruit. In this study, the total antioxidant and free radical scavenging activities in methanolic and chloroformic were measured by ferric thiocyanate. (FTC) ...

  3. Assessment of antioxidant potential of Moringa stenopetala leaf extract

    African Journals Online (AJOL)

    This study was conducted to assess the antioxidant potential of Moringa stenopetala leaf obtained from a private garden in Bahir Dar City and powdered Moringa leaf purchased from a supermarket in Bahir Dar City by using ferric reducing antioxidant power, 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity, ...

  4. Antioxidant activities of solvent extracts from endemic Cyclamen ...

    African Journals Online (AJOL)

    In this study, solvent extracts were prepared from different parts of Cyclamen mirabile (CM) and their antioxidant activities were evaluated. Other antioxidant properties of all extracts of CM tubers and leaves, including free radical scavenging activity, reducing power and total phenolic compound content, were also ...

  5. Antioxidant and Anti-Fatigue Activities of Flavonoids from Puerariae ...

    African Journals Online (AJOL)

    This study evaluated the antioxidant and anti-fatigue activities of flavonoids from Puerariae radix (FPR). In vitro antioxidant activities of FPR were investigated through hydroxyl and superoxide radical scavenging activities. In vivo anti-fatigue activity of FPR was investigated through loaded swimming exercise of mice. Results ...

  6. Phytochemicals and in vitro antioxidant potentials of defatted ...

    African Journals Online (AJOL)

    ONOS

    2010-01-18

    Jan 18, 2010 ... Antioxidant potential of Ecklonia cavaon reactive oxygen species scavenging, metal chelating, reducing power and lipid peroxidation inhibition. Food Sci. Technol Int. 12: 27-38. Marcocci l, Maguire JJ, Droy-Lefai MT, Parker L (1994). Antioxidant action of ginkgo biloba extracts EGb761. Biochem. Biosphys.

  7. Antioxidant activity of extracts from Acanthopanax senticosus | Park ...

    African Journals Online (AJOL)

    Realizing the fact that, this study was carried out to determine the antioxidant activity of water extract of Acanthopanax senticosus. Water extract (0.5 g/50 ml) of A. senticosus (ASE) were prepared and total phenol contents (TPC) and radical scavenging activity (RSA) of the extracts was determined for antioxidant activity.

  8. Antibacterial and antioxidant potential of stem bark extract of ...

    African Journals Online (AJOL)

    Materials and Methods: In the present work, we evaluated antibacterial and antioxidant activity of methanolic extract of Bombax ceiba stem bark. Total phenolic and flavonoid contents were also assessed in the extract. The antioxidant capacity was determined by DPPH, Nitric Oxide scavenging and reducing power activity.

  9. Antioxidative response mechanisms in halophytes: their role in ...

    Indian Academy of Sciences (India)

    There are a number of general reviews on oxidative stress in plants and few on the role of ROS scavengers during stress conditions. Here we review the regulation of antioxidant enzymes during salt stress in halophytes, especially mangroves. We conclude that. antioxidant enzymes protect halophytes from deleterious ROS ...

  10. Evaluation of antioxidant and antimutagenic potential of Justicia ...

    African Journals Online (AJOL)

    sunny t

    In the present study our aim was to determine the antioxidant and antimutagenic ... antioxidant activity with minimum IC50 value (< 105.33 µg/ml) whereas, hexane, chloroform and aqueous fractions exhibits ..... (b) reducing power assay; (c) Cuprac assay; (d) superoxide anion scavenging assay and (e) ABTS+ radical cation.

  11. Evaluation of antioxidant potential of medicinal plants from ...

    African Journals Online (AJOL)

    The standard vitamin C and BHT showed IC50 values of 12.8, and 5.6 mg/ml, respectively. A good correlation was observed between total phenolic content and radical-scavenging activities. The medicinal plants in this study tested are expected to be good sources of natural antioxidants. Keywords: Antioxidant, Rubiaceae ...

  12. Preliminary Phytochemical Screening and In vitro Antioxidant Prop ...

    African Journals Online (AJOL)

    The in vitro antioxidant potential of the extracts were also determined using the reducing power and 2, 2-diphenyl-1-picryl-hydrazyl radical (DPPH) scavenging tests respectively. Total phenol content of ... with oxida-tive stress. Keywords: Phytochemicals, total phenol content, reducing power, DPPH, antioxidant, free radicals.

  13. ANTIOXIDANT POTENCY OF WATER KEFIR

    Directory of Open Access Journals (Sweden)

    Muneer Alsayadi M.S.

    2013-06-01

    Full Text Available Reactive oxygen species (ROS have strong relationship with several diseases. Many fermented foods were reported to be important sources for antioxidant compounds. Antioxidant activity of water kefir never reported in the scientific literature. The objective of this study was to detect and investigate the antioxidant potency of water kefir. Water kefir was prepared by fermentation of sugar solution with kefir grains for 24h. Antioxidant activity of fresh water kefir drink and its extract with (0.125–5 mg/ml was evaluated using 2,2,-diphenyl-1-pricrylhydrozyl (DPPH scavenging method, and inhibition of ascorbate autoxidation and the reducing power of water kefir were determined, Butylated hydroxyanisole (BHA and ascorbic acid were used for comparison. Water kefir demonstrated great ability to DPPH scavenging ranged (9.88-63.17%. And inhibit ascorbate oxidation by (6.08-25.57% increased in consequent with concentration raising. These results prime to conclude that water kefir could be promisor source of natural antioxidants with good potency in health developing.

  14. Melatonin and its precursors scavenge nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Y.; Mori, A.; Liburdy, R.; Packer, L.

    1998-12-01

    Nitric oxide (NO) scavenging activity of melatonin, N-acetyl-5-hydroxytryptamine, serotonin, 5-hydroxytryptophan and L-tryptophan was examined by the Griess reaction using flow injection analysis. 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene(NOC-7) was used as NO generator. The Griess reagent stoichiometrically reacts with NO2-, which was converted by a cadmium-copper reduction column from the stable end products of NO oxidation. Except for tryptophan, all the compounds examined scavenged NO in a dose-dependent manner. Melatonin, which has a methoxy group in the 5-position and an acetyl side chain, exhibited the most potent scavenging activity among the compounds tested. Serotonin, N-acetyl-5-hydroxytryptamine, and 5-hydroxytryptophan, respectively, showed moderate scavenging activity compared to melatonin. Tryptophan, which has neither a methoxy nor a hydroxyl group in the 5-position, exhibited the least NO scavenging activity.

  15. Evaluation of phytochemical constituents and antioxidant activities of successive solvent extracts of leaves of Indigofera caerulea Roxb using various in vitro antioxidant assay systems

    Directory of Open Access Journals (Sweden)

    Ponmari Guruvaiah

    2012-05-01

    Full Text Available Objective: To evaluate the phytochemical constituents and antioxidant activities of successive solvent extracts of Indigofera caerulea Roxb using various in vitro antioxidant assay systems. Methods: Total phenol and antioxidant activity of different solvent extracts of Indigofera caerulea Roxb leaves were investigated. Extraction was done sequentially in soxhlet apparatus using various solvents (Petroleum ether, Ethyl acetate and Methanol. Antioxidant activity was evaluated by 2, 2-diphenyl-1-picryl hydrazyl free radical scavenging assay, hydroxyl radical scavenging assay, superoxide anion radical scavenging assay and Total ion reducing power assay. Total phenol and flavonoid contents were also measured. Results: Methanolic extract had more total phenol content and more antioxidant activities, confirming to the hypothesis that phenol content and antioxidant activity has a direct correlation. Conclusions: All the results of the in vitro antioxidant assays revealed that the methanolic extract of Indigofera caerulea Roxb leaves had notable antioxidant and free radical scavenging activity. The results obtained appeared to confirm the antioxidant and free radical scavenging potential of Indigofera caerulea Roxb.

  16. In vitro radical scavenging activity of two Columbian Magnoliaceae

    Science.gov (United States)

    Puertas M., Miguel A.; Mesa v., Ana M.; Sáez v., Jairo A.

    2005-08-01

    The recent interest in the conservation of the tropical forest is due, at least in part, to the potential economic and health benefits that can be exploited from several plants. This report shows the in vitro antioxidant activity of some fractions isolated from leaves of two Columbian Magnoliaceae, Talauma hernandezii G. Lozano-C and Dugandiodendron yarumalense Lozano. The activity was determined using the radical monocation 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+) and the stable free radical 2-2-diphenyl-1-picrylhydrazyl (DPPH·), as part of general biological screening of these plants. The antioxidant capacity obtained from fractions was similar to those of α-tocopherol, tert-butylated hydroxyanisole (BHA), and ascorbic acid. The most active scavenger extract was the fraction 7 (TAA = 48.6 mmol Trolox/kg extract and IC50 ≤ 0.01 kg extract/mmol DPPH); and the least active was the fraction 1 (TAA = 11.23 mmol Trolox/kg extract and IC50 = 0.21 kg extract/mmol DPPH) all of them isolated from D. yarumalense. These results suggest that these plants can be attractive as source of antioxidant compounds with the ability to reduce radicals like ATBS and DPPH.

  17. Dietary alpha-ketoglutarate increases cold tolerance in Drosophila melanogaster and enhances protein pool and antioxidant defense in sex-specific manner.

    Science.gov (United States)

    Bayliak, Maria M; Lylyk, Maria P; Shmihel, Halyna V; Sorochynska, Oksana M; Manyukh, Oksana V; Pierzynowski, Stefan G; Lushchak, Volodymyr I

    2016-08-01

    Alpha-ketoglutarate (AKG) is an important intermediate in Krebs cycle which bridges the metabolism of amino acids and carbohydrates. Its effects as a dietary supplement on cold tolerance were studied in Drosophila melanogaster Canton S. Two-day-old adult flies fed at larval and adult stages with AKG at moderate concentrations (5-10mM) recovered faster from chill coma (0°C for 15min or 3h) than control ones. The beneficial effect of AKG on chill coma recovery was not found at its higher concentrations, which suggests hormetic like action of this keto acid. Time of 50% observed mortality after 2h recovery from continuous cold exposure (-1°C for 3-31h) (LTi50) was higher for flies reared on 10mM AKG compared with control ones, showing that the diet with AKG enhanced insect cold tolerance. In parallel with enhancement of cold tolerance, dietary AKG improved fly locomotor activity. Metabolic effects of AKG differed partly in males and females. In males fed on AKG, there were no differences in total protein and free amino acid levels, but the total antioxidant capacity, catalase activity and low molecular mass thiol content were higher than in control animals. In females, dietary AKG promoted higher total antioxidant capacity and higher levels of proteins, total amino acids, proline and low molecular mass thiols. The levels of lipid peroxides were lower in both fly sexes reared on AKG as compared with control ones. We conclude that both enhancement of antioxidant system capacity and synthesis of amino acids can be important for AKG-promoted cold tolerance in D. melanogaster. The involvement of AKG in metabolic pathways of Drosophila males and females is discussed. Copyright © 2016. Published by Elsevier Ltd.

  18. Antioxidant properties of fermented mango leaf extracts.

    Science.gov (United States)

    Park, Anna; Ku, Taekyu; Yoo, Ilsou

    2015-01-01

    Antioxidant properties of mango (Mangifera indica) leaves were evaluated. Hydroalcoholic leaf extracts that were lyophilized were subsequently fermented with either Lactobacillus casei or effective microorganisms (EM) such as probiotic bacteria and/or other anaerobic organisms. Antioxidant properties were measured as a function of the mango leaf extract concentration in the fermentation broth. Tests for radical scavenging using the 1,1-diphenyl-2-picrylhydrazyl radical showed higher antioxidant activity for Lactobacillus- and EM-fermented mango leaf extracts than for the synthetic antioxidant butylated hydroxytoluene. Antioxidant activity generally increased with increasing fermented extract concentration as did the fermented extracts' polyphenol and flavonoid contents. Fermented extracts reduced reactive oxygen species generation by lipopolysaccharide in RAW 264.7 cells when measured via fluorescence of dichlorodihydrofluorescein acetate treated cells using flow cytometry. RAW 264.7 cells also showed a concentration-dependent cytotoxic effect of the fermented extracts using the 3-(4,5-dimethylthialol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Inhibition of mushroom tyrosinase activity as well as nitrite scavenging by the fermented extracts increased as fermented extract concentrations increased. Tyrosinase activity was assayed with 3,4-dihydroxyphenylalanine as substrate. Nitrite scavenging was assessed via measurement of inhibition of chromophore production from nitrite-naphthylamine-sulfanilic acid mixtures. The antioxidant properties of fermented mango leaf extracts suggest the fermented extracts may be useful in developing health food and fermentation-based beauty products.

  19. Enhancement of Antioxidant Mechanisms and Reduction of Oxidative Stress in Chickens after the Administration of Drinking Water Enriched with Polyphenolic Powder from Olive Mill Waste Waters

    Directory of Open Access Journals (Sweden)

    Aliki Papadopoulou

    2017-01-01

    Full Text Available The aim of the study was to examine the effects of a polyphenolic powder from olive mill wastewater (OMWW administered through drinking water, on chickens’ redox status. Thus, 75 chickens were divided into three groups. Group A was given just drinking water, while groups B and C were given drinking water containing 20 and 50 μg/ml of polyphenols, respectively, for 45 days. The antioxidant effects of the polyphenolic powder were assessed by measuring oxidative stress biomarkers in blood after 25 and 45 days of treatment. These markers were total antioxidant capacity (TAC, protein carbonyls (CARB, thiobarbituric acid reactive species (TBARS and superoxide dismutase activity (SOD in plasma, and glutathione (GSH and catalase activity in erythrocytes. The results showed that CARB and TBARS were decreased significantly in groups B and C, and SOD decreased in group B compared to that in group A. TAC was increased significantly in group C and GSH was increased in group B, while catalase activity was increased in groups B and C compared to that in group A. In conclusion, this is the first study showing that supplementation of chickens with polyphenols from OMWW through drinking water enhanced their antioxidant mechanisms and reduced oxidative stress-induced damage.

  20. Effects of intratracheal exposure of 2-chloroethyl ethyl sulfide (CEES) on the activation of CCAAT-enhancer-binding protein (C/EBP) and its protection by antioxidant liposome.

    Science.gov (United States)

    Roy, Somdutta Sinha; Mukherjee, Shyamali; Das, Salil K

    2017-05-01

    Exposure of 2-chloroethyl ethyl sulfide (CEES) to guinea pigs causes lung injury by infiltration of neutrophils in interstitial lung spaces. A unique MAPK-regulated transcription factor, C/EBP (CCAAT-enhancer-binding protein), regulates the expression of intracellular adhesion molecule-1 (ICAM-1), involved in recruiting neutrophils in lung. The present study was to determine if CEES exposure causes activation of C/EBP, in particular the predominant β-isoform and if so whether it can be prevented by intratracheal delivery of an antioxidant liposome containing N-acetyl cysteine and tocopherols. Lung injury was developed in guinea pigs by intratracheal exposure of CEES (0.5 mg/kg). The antioxidant liposome was given intratracheally 5 min after CEES exposure, and the animals were sacrificed after 30 days. CEES exposure caused a 2.3-fold increase in the activation of C/EBP accompanied with a 45% and 121% increase in the protein level of C/EBP β and ICAM-1, respectively, and this effect was counteracted by the antioxidant liposome. © 2016 Wiley Periodicals, Inc.

  1. Enhancement of antioxidant activity, α-glucosidase and α-amylase inhibitory activities by spontaneous and bacterial monoculture fermentation of Indonesian black grape juices

    Science.gov (United States)

    Frediansyah, Andri; Nurhayati, Rifa; Romadhoni, Fitrio

    2017-01-01

    This study was conducted to evaluate the in vitro antioxidant activity, α-glucosidase and α-amylase inhibitor activity of fermented black grape (Vitisvinifera) juice. In the present study black grape juice was prepared using spontaneous (SF) and monoculture fermentation (FL) of Lactobacillus plantarum FNCC 0027 and incubated for 48 h. The antioxidant capacity increased after fermentation. FL had the highest DPPH inhibition (81.32±3.45; p ≤ 0.05) compared to SF and unfermented (UF) black grape juice (75.17±1.47 and 65.63±1.02%, respectively). The pH values decreased during fermentation for both, SF and FL. M also had highest inhibition of α-glucosidase (80.15±3.23) and α-amylase (39.95±0.88). Fermentation of black grape juice using monoculture of L. plantarum has higher antioxidant activities and enzyme inhibitor effect than spontaneous and unfermented black grape juices (p ≤ 0.05). Thus fermented black grape juice may have the potential to serve as enhanced functional juice with anti-diabetic properties.

  2. Germination and microwave processing of barley (Hordeum vulgare L) changes the structural and physicochemical properties of β-d-glucan & enhances its antioxidant potential.

    Science.gov (United States)

    Ahmad, Mudasir; Gani, Adil; Shah, Asima; Gani, Asir; Masoodi, F A

    2016-11-20

    The nutraceutical potential of β-d-glucan is largely dependent on its structure, size and viscosity. The present study analyzed the effect of germination and microwave processing of barley on the structural, size, antioxidant and thermal characteristics of β-d-glucan. The molecular weight and viscosity of β-d-glucan obtained from germinated barley (GGB) were the lowest (144kDa and 37.33cp) as compared to β-d-glucan from microwave processed barley (GMB) and unprocessed barley (GUB). The GGB exhibited higher antioxidant potential than GMB and GUB. The Structural elucidation by ATR-FTIR revealed scission in polymeric chain and β glycosydic linkage of β-d-glucan obtained from processed barley. The highest peak intensity at glycosydic linkage in GGB confirms more scission in the molecule. The DSC curve of GGB showed the highest transition temperature. It was concluded that germination of barley can be a good approach for enhancing the antioxidant potential of β-d-glucan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Enhancement of Antioxidant Mechanisms and Reduction of Oxidative Stress in Chickens after the Administration of Drinking Water Enriched with Polyphenolic Powder from Olive Mill Waste Waters.

    Science.gov (United States)

    Papadopoulou, Aliki; Petrotos, Konstantinos; Stagos, Dimitrios; Gerasopoulos, Konstantinos; Maimaris, Antonios; Makris, Haralampos; Kafantaris, Ioannis; Makri, Sotiria; Kerasioti, Efthalia; Halabalaki, Maria; Brieudes, Vincent; Ntasi, Georgia; Kokkas, Stylianos; Tzimas, Pavlos; Goulas, Panagiotis; Zakharenko, Alexander M; Golokhvast, Kirill S; Tsatsakis, Aristidis; Kouretas, Demetrios

    2017-01-01

    The aim of the study was to examine the effects of a polyphenolic powder from olive mill wastewater (OMWW) administered through drinking water, on chickens' redox status. Thus, 75 chickens were divided into three groups. Group A was given just drinking water, while groups B and C were given drinking water containing 20 and 50 μg/ml of polyphenols, respectively, for 45 days. The antioxidant effects of the polyphenolic powder were assessed by measuring oxidative stress biomarkers in blood after 25 and 45 days of treatment. These markers were total antioxidant capacity (TAC), protein carbonyls (CARB), thiobarbituric acid reactive species (TBARS) and superoxide dismutase activity (SOD) in plasma, and glutathione (GSH) and catalase activity in erythrocytes. The results showed that CARB and TBARS were decreased significantly in groups B and C, and SOD decreased in group B compared to that in group A. TAC was increased significantly in group C and GSH was increased in group B, while catalase activity was increased in groups B and C compared to that in group A. In conclusion, this is the first study showing that supplementation of chickens with polyphenols from OMWW through drinking water enhanced their antioxidant mechanisms and reduced oxidative stress-induced damage.

  4. Treatment with 24-epibrassinolide mitigates NaCl-induced toxicity by enhancing carbohydrate metabolism, osmolyte accumulation, and antioxidant activity in Pisum sativum

    OpenAIRE

    SHAHID, Muhammad Adnan; BALAL, Rashad Mukhtar; PERVEZ, Muhammad Aslam

    2014-01-01

    A pot culture study was performed to evaluate the differences between salt-stressed pea (Pisum sativum L.) plants of tolerant (Climax and Samarina Zard) and sensitive (Ambassidar and PF-400) genotypes, and to determine whether treatment with 24-epibrassinolide (EBL) could enhance the accumulation of osmolytes and antioxidant activity and thereby induce tolerance in salt-stressed plants. Three-week-old seedlings were subjected to +NaCl (5 dS m-1) and -NaCl conditions (0 dS m-1). After 4 days o...

  5. A comparison of the antioxidant activity with the Total Phenolic and ...

    African Journals Online (AJOL)

    A comparison of the antioxidant activity with the Total Phenolic and Total Flavonoid Contents of the leaves and stem-bark of Anogeissus leiocarpa (DC.) ... The extracts were subjected to DPPH Free Radical Scavenging Activity, Ferric Reducing Antioxidant Power (FRAP), Total Antioxidant Capacity (TAC), ABTS Cation ...

  6. Antioxidants of Edible Mushrooms.

    Science.gov (United States)

    Kozarski, Maja; Klaus, Anita; Jakovljevic, Dragica; Todorovic, Nina; Vunduk, Jovana; Petrović, Predrag; Niksic, Miomir; Vrvic, Miroslav M; van Griensven, Leo

    2015-10-27

    Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  7. Antioxidants of Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Maja Kozarski

    2015-10-01

    Full Text Available Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  8. Anaesthesia machine: Checklist, hazards, scavenging

    Directory of Open Access Journals (Sweden)

    Umesh Goneppanavar

    2013-01-01

    Full Text Available From a simple pneumatic device of the early 20 th century, the anaesthesia machine has evolved to incorporate various mechanical, electrical and electronic components to be more appropriately called anaesthesia workstation. Modern machines have overcome many drawbacks associated with the older machines. However, addition of several mechanical, electronic and electric components has contributed to recurrence of some of the older problems such as leak or obstruction attributable to newer gadgets and development of newer problems. No single checklist can satisfactorily test the integrity and safety of all existing anaesthesia machines due to their complex nature as well as variations in design among manufacturers. Human factors have contributed to greater complications than machine faults. Therefore, better understanding of the basics of anaesthesia machine and checking each component of the machine for proper functioning prior to use is essential to minimise these hazards. Clear documentation of regular and appropriate servicing of the anaesthesia machine, its components and their satisfactory functioning following servicing and repair is also equally important. Trace anaesthetic gases polluting the theatre atmosphere can have several adverse effects on the health of theatre personnel. Therefore, safe disposal of these gases away from the workplace with efficiently functioning scavenging system is necessary. Other ways of minimising atmospheric pollution such as gas delivery equipment with negligible leaks, low flow anaesthesia, minimal leak around the airway equipment (facemask, tracheal tube, laryngeal mask airway, etc. more than 15 air changes/hour and total intravenous anaesthesia should also be considered.

  9. Food-grade argan oil supplementation in molasses enhances fermentative performance and antioxidant defenses of active dry wine yeast.

    Science.gov (United States)

    Gamero-Sandemetrio, Esther; Torrellas, Max; Rábena, María Teresa; Gómez-Pastor, Rocío; Aranda, Agustín; Matallana, Emilia

    2015-12-01

    The tolerance of the yeast Saccharomyces cerevisiae to desiccation is important for the use of this microorganism in the wine industry, since active dry yeast (ADY) is routinely used as starter for must fermentations. Both biomass propagation and dehydration cause cellular oxidative stress, therefore negatively affecting yeast performance. Protective treatments against oxidative damage, such as natural antioxidants, may have important biotechnological implications. In this study we analysed the antioxidant capacity of pure chemical compounds (quercetin, ascorbic acid, caffeic acid, oleic acid, and glutathione) added to molasses during biomass propagation, and we determine several oxidative damage/response parameters (lipid peroxidation, protein carbonylation, protective metabolites and enzymatic activities) to assess their molecular effects. Supplementation with ascorbic, caffeic or oleic acids diminished the oxidative damage associated to ADY production. Based on these results, we tested supplementation of molasses with argan oil, a natural food-grade ingredient rich in these three antioxidants, and we showed that it improved both biomass yield and fermentative performance of ADY. Therefore, we propose the use of natural, food-grade antioxidant ingredients, such as argan oil, in industrial processes involving high cellular oxidative stress, such as the biotechnological production of the dry starter.

  10. Antioxidative activity of the hydrolytic enzyme treated Sorbus commixta Hedl. and its inhibitory effect on matrix metalloproteinase-1 in UV irradiated human dermal fibroblasts.

    Science.gov (United States)

    Bae, Jun-Tae; Sim, Gwan-Sub; Kim, Jin-Hwa; Pyo, Hyeong-Bae; Yun, Jong-Won; Lee, Bum-Chun

    2007-09-01

    Superoxide radical scavenging activity and DPPH radical scavenging activity were assessed in order to evaluate the antioxidant effect of the Sorbus commixta Hedl. extract (SCoE). SCoE was also treated with several carbohydrate-hydrolytic enzymes that significantly increased the total phenol and flavonoid composition of SCoE. The enzymatically treated SCoE was then assessed for antioxidative activity. The most efficient radical scavenging activity was observed when SCoE was treated with -glucanase. The radical scavenging activity of beta-glucanase-treated SCoE (beta-GSCoE) enhanced the viability of human dermal fibroblasts (HDFs) exposed to ultraviolet (UV) light. The intracellular reactive oxygen species (ROS) scavenging activity of beta-GSCoE was assessed using UVB (20 mJ/cm2)-irradiated HDFs. UVB irradiation increased dichlorofluorescein (DCF) fluorescence, which was measured by a 5-(6-)chloromethyl-2',7'- dichlorodihydrofluorescein diacetate (CM-H2DCFDA). DCF-fluorescence was significantly decreased in the beta-GSCoE-containing culture medium, suggesting that beta-GSCoE scavenges free radicals. The protective effect was further verified by assessing the expression of matrix metalloproteinase-1 (MMP-1) in UVA-irradiated HDFs. The treatment of UVA-irradiated HDFs with beta-GSCoE resulted in a dose-dependent decrease in the expression level of MMP-1 protein and mRNA. These results suggest that beta-GSCoE may mitigate the effects of photoaging in skin by reducing UV-induced adverse skin reactions.

  11. Reassessment of antioxidant activity of arbutin: multifaceted evaluation using five antioxidant assay systems.

    Science.gov (United States)

    Takebayashi, Jun; Ishii, Rie; Chen, Jianbin; Matsumoto, Teruki; Ishimi, Yoshiko; Tai, Akihiro

    2010-04-01

    Arbutin, a practically used skin-lightening agent, has been reported to possess a weak antioxidant activity compared to that of its precursor, hydroquinone. However, its antioxidant activity has not been systematically evaluated. Hence, this study reassessed its activity using five assay systems. Assays were first performed using model radicals, DPPH radical and ABTS(*+). Arbutin showed weak DPPH radical-scavenging activity compared