WorldWideScience

Sample records for scattering x-ray diffraction

  1. Grazing Incidence X-ray Scattering and Diffraction

    Indian Academy of Sciences (India)

    ... Journals; Resonance – Journal of Science Education; Volume 19; Issue 12. Grazing Incidence X-ray Scattering and Diffraction. Jaydeep K Basu. General Article Volume 19 Issue 12 December ... Keywords. X-ray reflectivity; X-ray diffuse scattering; grazing incident diffraction; grazing incident; small angle X-ray scattering.

  2. Measurement and Interpretation of Diffuse Scattering in X-Ray Diffraction for Macromolecular Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Michael E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-16

    X-ray diffraction from macromolecular crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering reflects the mean electron density in the unit cells of the crystal. The diffuse scattering arises from correlations in the variations of electron density that may occur from one unit cell to another, and therefore contains information about collective motions in proteins.

  3. Imaging of Biological Materials and Cells by X-ray Scattering and Diffraction.

    Science.gov (United States)

    Hémonnot, Clément Y J; Köster, Sarah

    2017-09-26

    Cells and biological materials are large objects in comparison to the size of internal components such as organelles and proteins. An understanding of the functions of these nanoscale elements is key to elucidating cellular function. In this review, we describe the advances in X-ray scattering and diffraction techniques for imaging biological systems at the nanoscale. We present a number of principal technological advances in X-ray optics and development of sample environments. We identify radiation damage as one of the most severe challenges in the field, thus rendering the dose an important parameter when putting different X-ray methods in perspective. Furthermore, we describe different successful approaches, including scanning and full-field techniques, along with prominent examples. Finally, we present a few recent studies that combined several techniques in one experiment in order to collect highly complementary data for a multidimensional sample characterization.

  4. Computer simulation tools for X-ray analysis scattering and diffraction methods

    CERN Document Server

    Morelhão, Sérgio Luiz

    2016-01-01

    The main goal of this book is to break down the huge barrier of difficulties faced by beginners from many fields (Engineering, Physics, Chemistry, Biology, Medicine, Material Science, etc.) in using X-rays as an analytical tool in their research. Besides fundamental concepts, MatLab routines are provided, showing how to test and implement the concepts. The major difficult in analyzing materials by X-ray techniques is that it strongly depends on simulation software. This book teaches the users on how to construct a library of routines to simulate scattering and diffraction by almost any kind of samples. It provides to a young student the knowledge that would take more than 20 years to acquire by working on X-rays and relying on the available textbooks. In this book, fundamental concepts in applied X-ray physics are demonstrated through available computer simulation tools. Using MatLab, more than eighty routines are developed for solving the proposed exercises, most of which can be directly used in experimental...

  5. Preliminary small-angle X-ray scattering and X-ray diffraction studies of the BTB domain of lola protein from Drosophila melanogaster

    Science.gov (United States)

    Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Dorovatovskii, P. V.; Popov, V. O.

    2017-11-01

    The Drosophila genome has several dozens of transcription factors (TTK group) containing BTB domains assembled into octamers. The LOLA protein belongs to this family. The purification, crystallization, and preliminary X-ray diffraction and small-angle X-ray scattering (SAXS) studies of the BTB domain of this protein are reported. The crystallization conditions were found by the vapor-diffusion technique. A very low diffraction resolution (8.7 Å resolution) of the crystals was insufficient for the determination of the threedimensional structure of the BTB domain. The SAXS study demonstrated that the BTB domain of the LOLA protein exists as an octamer in solution.

  6. Multiple beam x-ray diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kewish, C.M.; Davis, J.R.; Coyle, R.A. [Monash University, Clayton, VIC (Australia). Department of Physics

    1999-12-01

    Full text: X-ray diffraction computed tomography (XDT) is an imaging modality that utilises scattered x-rays to reconstruct an image. Since its inception in 1985, various detection scenarios and imaging techniques have been developed to demonstrate the accuracy and applicability of XDT. Many of the previous methods for measuring the scattered x-rays from an object utilise detectors that accept x-rays scattered from the entire length of the raypath through the object. The detector apertures must therefore have dimensions similar to the largest width of the scanned object. This creates a situation where the detected x-rays are not derived from a single scattering angle. A new method of scanning the x-rays scattered from an object is presented which allows quantitative determination of the spatial distribution of differential scattering cross section within a cross-sectional plane of the object. The new method incorporates a position sensitive detector and an arrangement of Soller slits. The acquired data represents both spatial and angular information. For each raypath through the object, a partial diffraction projection is measured at the off-axis detector and a set of diffraction projections is assembled by combining the diffracted signal from all rays through the object. A reconstruction strategy that accounts for attenuation of the primary beam and the scattered beam allows us to reconstruct a map of the differential scattering cross section in the sample for a given angle. Copyright (1999) Australian X-ray Analytical Association Inc. 3 refs.

  7. X-ray Diffraction and Neutron Scattering Analysis of Natural and Synthetic Spider Silk Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Randolph [Utah State Univ., Logan, UT (United States)

    2013-11-11

    Spider silks have the potential to provide new bio-inspired materials for numerous applications in bioenergetics and products ranging from protective clothing to artificial ligaments and tendons. A number of spider silk genes have been cloned and sequenced by the Lewis laboratory revealing the basis for understanding the key elements of spider silk proteins with respect to their materials performance. In particular, specific amino acid motifs have been identified which have been conserved for over 125 million years in all spiders that use their silk to physically trap prey. The key element in taking the next step toward generating bio-based materials from spider silks will be to move from the current descriptive data to predictive knowledge. Current efforts are focused on mimicking spider silk through synthetic proteins. In developing synthetic silk fibers, we first need to understand the complete secondary and tertiary structure of natural silk so that we can compare synthetic constructs to the natural material. Being able to compare the structure on a single fiber level is critical to the future of molecular directed mimic development because we can vary mechanical properties by different spinning methods. The new generation of synchrotron x-ray diffraction and neutron beamlines will allow, for the first time, determination of the molecular structure of silk fibers and synthetic mimics. We propose an exciting new collaborative research team working jointly between Argonne National Laboratory, Arizona State U. and the University of Wyoming to address the ?characterization of synthetic and natural spider silk fibers using x-ray and neutron diffraction.? Thus these new methodologies will provide understanding of current fibers and determine changes needed to produce fibers with specific properties. The following specific aims are proposed: ? Synthesize spider silk fibers with molecular structures mimicking that of natural silks. Test the mechanic properties of these

  8. Multiple scattering in grazing-incidence X-ray diffraction: impact on lattice-constant determination in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Resel, Roland, E-mail: roland.resel@tugraz.at; Bainschab, Markus; Pichler, Alexander [Graz University of Technology, Graz (Austria); Dingemans, Theo [Delft University of Technology, Delft (Netherlands); Simbrunner, Clemens [Johannes Kepler University, Linz (Austria); University of Bremen, Bremen (Germany); Stangl, Julian [Johannes Kepler University, Linz (Austria); Salzmann, Ingo [Humboldt University, Berlin (Germany)

    2016-04-20

    The use of grazing-incidence X-ray diffraction to determine the crystal structure from thin films requires accurate positions of Bragg peaks. Refraction effects and multiple scattering events have to be corrected or minimized. Dynamical scattering effects are observed in grazing-incidence X-ray diffraction experiments using an organic thin film of 2,2′:6′,2′′-ternaphthalene grown on oxidized silicon as substrate. Here, a splitting of all Bragg peaks in the out-of-plane direction (z-direction) has been observed, the magnitude of which depends both on the incidence angle of the primary beam and the out-of-plane angle of the scattered beam. The incident angle was varied between 0.09° and 0.25° for synchrotron radiation of 10.5 keV. This study reveals comparable intensities of the split peaks with a maximum for incidence angles close to the critical angle of total external reflection of the substrate. This observation is rationalized by two different scattering pathways resulting in diffraction peaks at different positions at the detector. In order to minimize the splitting, the data suggest either using incident angles well below the critical angle of total reflection or angles well above, which sufficiently attenuates the contributions from the second scattering path. This study highlights that the refraction of X-rays in (organic) thin films has to be corrected accordingly to allow for the determination of peak positions with sufficient accuracy. Based thereon, a reliable determination of the lattice constants becomes feasible, which is required for crystallographic structure solutions from thin films.

  9. Structural studies coupling X-ray diffraction and high-energy X-ray scattering in the UO2(2+)-HBr(aq) system.

    Science.gov (United States)

    Wilson, Richard E; Skanthakumar, S; Cahill, C L; Soderholm, L

    2011-11-07

    The structural chemistry of uranium(VI) in concentrated aqueous hydrobromic acid solutions was investigated using both single crystal X-ray diffraction and synchrotron-based high-energy X-ray scattering (HEXS) to reveal the structure of the uranium(VI) complexes in solution prior to crystallization. The crystal structures of a series of uranyl tetrabromide salts are reported, including Cs(2)UO(2)Br(4), Rb(2)UO(2)Br(4)·2H(2)O, K(2)UO(2)Br(4)·2H(2)O, and (NH(4))(2)UO(2)Br(4)·2H(2)O, as well as a molecular dimer of uranium(VI), (UO(2))(2)(OH)(2)Br(2)(H(2)O)(4). Limited correspondence exists between the structures observed in the solid state and those in solution. Quantitative analysis of the HEXS data show an average U-Br coordination number of 1.9(2) in solution, in contrast to the U-Br coordination number of 4 in the solid salts. © 2011 American Chemical Society

  10. Measuring Shock Stage of ltokawa Regolith Grains by Electron Back-Scattered Diffraction and Synchrotron X-Ray Diffraction

    Science.gov (United States)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Martinez, James; Hagiya, Kenji; Sitzman, Scott; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; hide

    2017-01-01

    We have been analyzing Itokawa samples in order to definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by electron and X-ray diffraction techniques. We are making measurements of olivine crystal structures and using these to elucidate critical regolith impact processes. We use electron back-scattered diffraction (EBSD) and synchrotron X-ray diffraction (SXRD). We are comparing the Itokawa samples to L and LL chondrite meteorites chosen to span the shock scale experienced by Itokawa, specifically Chainpur (LL3.4, Shock Stage 1), Semarkona (LL3.00, S2), Kilabo (LL6, S3), NWA100 (L6, S4) and Chelyabinsk (LL5, S4). In SXRD we measure the line broadening of olivine reflections as a measure of shock stage. In this presentation we concentrate on the EBSD work. We employed JSC's Supra 55 variable pressure FEG-SEM and Bruker EBSD system. We are not seeking actual strain values, but rather indirect strain-related measurements such as extent of intra-grain lattice rotation, and determining whether shock state "standards" (meteorite samples of accepted shock state, and appropriate small grain size) show strain measurements that may be statistically differentiated, using a sampling of particles (number and size range) typical of asteroid regoliths. Using our system we determined that a column pressure of 9 Pa and no C-coating on the sample was optimal. We varied camera exposure time and gain to optimize mapping performance, concluding that 320x240 pattern pixilation, frame averaging of 3, 15 kV, and low extractor voltage yielded an acceptable balance of hit rate (>90%), speed (11 fps) and map quality using an exposure time of 30 ms (gain 650). We found that there was no strong effect of step size on Grain Orientation Spread (GOS) and Grain Reference Orientation Deviation angle (GROD-a) distribution; there was some

  11. High-pressure X-ray diffraction and Raman scattering of LiTaO sub 3

    CERN Document Server

    Zhang Wei; Pan Yue Wu; Dong Shu Shan; Zou Guang Tian; Liu Jing

    2002-01-01

    The authors study the energy-dispersive x-ray diffraction and Raman scattering of LiTaO sub 3 at high pressure. The result remains stable up to 36 GPa. The average isothermal bulk modulus and its pressure derivative are obtained to be k sub 0 =(225 +- 6) GPa and k sub 0 '=1.3 +- 0.5 at zero pressure by the Birch-Murnaghan equation of state and the 'universal' equation of state. The linear incompressibility of LiTaO sub 3 between the a- and c-directions differs by a factor of four, which shows that the compression is anisotropic

  12. X-ray diffraction and scattering studies of coal constituents. Final technical report, January 1-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, A. S.; Renton, J. T.

    1984-03-15

    The general objective of this work has been to use x-ray diffraction and scattering to examine whole coals, coal macerals and minerals in order to perform the following studies: (1) to identify and explain differences in vitrinites and framboids from various coals; (2) to correlate differences with basic coal compositions and properties; and (3) to determine the systematic variability in the micro compositional variation of macerals. The accomplishments have been: (a) the development of the Fourier transform technique to do proximate and ultimate analyses in a quick fashion; and (b) the investigation of the structure of pyrite framboids and preliminary studies of coal macerals. 3 figures, 12 tables.

  13. Operando Grazing Incidence Small-Angle X-ray Scattering/X-ray Diffraction of Model Ordered Mesoporous Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Bhaway, Sarang M; Qiang, Zhe; Xia, Yanfeng; Xia, Xuhui; Lee, Byeongdu; Yager, Kevin G; Zhang, Lihua; Kisslinger, Kim; Chen, Yu-Ming; Liu, Kewei; Zhu, Yu; Vogt, Bryan D

    2017-02-28

    Emergent lithium-ion (Li+) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li+ ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li+, but in many cases these nanostructures evolve during electrochemical charging-discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporous NiCo2O4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge-discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Conversely, anodes with larger ordered mesopores (17-28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. This preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; however, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge-discharge cycles leads to capacity decay in battery performance. These multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) are translated to the nanostructure during battery operation. Moreover, small changes in the nanostructure

  14. Diffractive X-ray Telescopes

    OpenAIRE

    Skinner, Gerald K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted space- time in the immediate vicinity of the super...

  15. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Langkilde, Annette E., E-mail: annette.langkilde@sund.ku.dk [University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark); Morris, Kyle L.; Serpell, Louise C. [University of Sussex, Falmer, Brighton (United Kingdom); Svergun, Dmitri I. [European Molecular Biology Laboratory, Hamburg Outstation, 22607 Hamburg (Germany); Vestergaard, Bente [University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark)

    2015-04-01

    The aggregation process and the fibril state of an amyloidogenic peptide suggest monomer addition to be the prevailing mechanism of elongation and a model of the peptide packing in the fibrils has been obtained. Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the peptide fragment. The elongation of these fibrils proceeds without the accumulation of any detectable amount of intermediate oligomeric species, as is otherwise reported for, for example, glucagon, insulin and α-synuclein. Ribbons constituted of linearly arranged protofilaments are formed. An additional hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a β-sheet arrangement reminiscent of the β-zipper structures evident from high-resolution crystal structures, with specific differences in the relative peptide orientation. The complexity of protein fibrillation and structure emphasizes the need to use multiple complementary methods.

  16. Diffractive X-Ray Telescopes

    Science.gov (United States)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  17. Glancing angle synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cernik, R.J. [Daresbury Lab., Warrington, WA (United States)

    1996-09-01

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school.

  18. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings

    NARCIS (Netherlands)

    Schmitt, Thorsten; de Groot, Frank M. F.; Rubensson, Jan-Erik

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for

  19. Resonant x-ray scattering in correlated systems

    CERN Document Server

    Ishihara, Sumio

    2017-01-01

    The research and its outcomes presented here is devoted to the use of x-ray scattering to study correlated electron systems and magnetism. Different x-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with x-ray diffraction is shown.

  20. Resonant X-ray scattering in correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Youichi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan). Inst. of Materials Structure Science; Ishihara, Sumio (ed.) [Tohoku Univ., Sendai, Miyagi (Japan). Dept. of Physics

    2017-03-01

    The research and its outcomes presented here is devoted to the use of X-ray scattering to study correlated electron systems and magnetism. Different X-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with X-ray diffraction is shown.

  1. Theory of time-resolved inelastic x-ray diffraction

    DEFF Research Database (Denmark)

    Lorenz, Ulf; Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2010-01-01

    Starting from a general theory of time-resolved x-ray scattering, we derive a convenient expression for the diffraction signal based on a careful analysis of the relevant inelastic scattering processes. We demonstrate that the resulting inelastic limit applies to a wider variety of experimental...... conditions than similar, previously derived formulas, and it directly allows the application of selection rules when interpreting diffraction signals. Furthermore, we present a simple extension to systems simultaneously illuminated by x rays and a laser beam....

  2. X-ray diffraction with novel geometry

    Energy Technology Data Exchange (ETDEWEB)

    Prokopiou, Danae [Department of Engineering and Applied Science Cranfield University, Shrivenham Campus, Swindon (United Kingdom); Rogers, Keith, E-mail: k.d.rogers@cranfield.ac.uk [Department of Engineering and Applied Science Cranfield University, Shrivenham Campus, Swindon (United Kingdom); Evans, Paul; Godber, Simon [Imaging Science Group, School of Science and Technology, Nottingham Trent University Clifton Campus, Nottingham (United Kingdom); Shackel, James [Department of Engineering and Applied Science Cranfield University, Shrivenham Campus, Swindon (United Kingdom); Dicken, Anthony [Imaging Science Group, School of Science and Technology, Nottingham Trent University Clifton Campus, Nottingham (United Kingdom)

    2014-01-21

    An innovative geometry for high efficiency harvesting of diffracted X-rays is explored. Further to previous work where planar samples were fixed normal to the primary axis, this work extends focal construct geometry (FCG), to samples randomly oriented with respect to the incident beam. The effect of independent sample rotation around two axes upon the scattering distributions was investigated in analytical, simulation and empirical manners. It was found that, although the profile of Bragg maxima were modified when the sample was rotated, high intensity diffraction data was still acquired. Modelling produced a good match to the empirical data and it was shown that the distortions caused by sample rotation were not severe and predictable even when sample rotations were large. The implications for this are discussed.

  3. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  4. Assessment of firing conditions in old fired-clay bricks. The contribution of X-ray powder diffraction with the Rietveld method and small angle neutron scattering

    Czech Academy of Sciences Publication Activity Database

    Viani, Alberto; Sotiriadis, Konstantinos; Len, A.; Šašek, Petr; Ševčík, Radek

    2016-01-01

    Roč. 116, June (2016), s. 33-43 ISSN 1044-5803 R&D Projects: GA MŠk(CZ) LO1219 Keywords : fired- clay brick * Rietveld method * small angle neutron scattering * X-ray diffraction * firing temperature Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.714, year: 2016 http://www.sciencedirect.com/science/article/pii/S1044580316300870

  5. X-ray diffraction microtomography using synchrotron radiation

    CERN Document Server

    Barroso, R C; Jesus, E F O; Oliveira, L F

    2001-01-01

    The X-ray diffraction computed tomography technique is based on the interference phenomena of the coherent scatter. For low-momentum transfer, it is most probable that the scattering interaction will be coherent. A selective discrimination of a given element in a scanned specimen can be realized by fixing the Bragg angle which produces an interference peak and then, to carry out the computed tomography in the standard mode. The image reconstructed exalts the presence of this element with respect to other ones in a sample. This work reports the feasibility of a non-destructive synchrotron radiation X-ray diffraction imaging technique. This research was performed at the X-ray Diffraction beam line of the National Synchrotron Light Laboratory (LNLS) in Brazil. The coherent scattering properties of different tissue and bone substitute materials were evaluated. Furthermore, diffraction patterns of some polycrystalline solids were studied due to industrial and environmental human exposure to these metals. The obtai...

  6. Single Particle X-ray Diffractive Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bogan, M J; Benner, W H; Boutet, S; Rohner, U; Frank, M; Seibert, M; Maia, F; Barty, A; Bajt, S; Riot, V; Woods, B; Marchesini, S; Hau-Riege, S P; Svenda, M; Marklund, E; Spiller, E; Hajdu, J; Chapman, H N

    2007-10-01

    In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at sub-optical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.

  7. X-ray filter for x-ray powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  8. A comparison of the effect of multiple scattering on first and second order X-ray diffraction from textured polycrystals, for the investigation of secondary extinction

    Energy Technology Data Exchange (ETDEWEB)

    Palacios G, J., E-mail: jpalacios@ipn.mx [IPN, Escuela Superior de Fisica y Matematicas, San Pedro Zacatenco 07738, Ciudad de Mexico (Mexico)

    2016-11-01

    The integrated intensity of Debye-Scherrer (D-S) rings, arising from an eventual second diffraction process of a diffracted X-ray beam, was calculated. This represents the amount of intensity not arriving at the detector as oriented to register the first diffraction process, and as result, a measure of secondary extinction. Thus the objective is to investigate in this way if secondary extinction affects measurements of X-ray diffraction from textured polycrystals. This has been suggested by differences of pole density maxima observed between measured first and second order pole figures in strongly textured materials. Calculations are performed for a detector scan (varying only 2θ), and the integrated intensity is determined for first and second order diffraction conditions of a general plane (hkl). Normalization through corresponding powder is performed. It is found that this special case of multiple scattering effect, indeed affects both orders essentially in the same way. If corresponding detector scan measurements verify this, then the observed differences between pole density maxima of pole figures of different order cannot be attributed to secondary extinction. Instead, they can be attributed to heterogeneous texture or error propagation. On the other hand, if the detector scans do exhibit a difference as that of pole density maxima, these differences can possibly be attributed to primary extinction. (Author)

  9. X-ray diffraction crystallography. Introduction, examples and solved problems

    Energy Technology Data Exchange (ETDEWEB)

    Waseda, Yoshio; Shinoda, Kozo [Tohoku Univ., Sendai (Japan). Inst. of Multidisciplinary Research for Advanced Materials; Matsubara, Eiichiro [Kyoto Univ. (Japan). Dept. of Materials Science and Engineering

    2011-07-01

    X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements. (orig.)

  10. Quantum effets in nonresonant X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Slowik, Jan Malte

    2015-11-15

    experiments. In the quantum theory it has however been revealed that X-ray scattering patterns of electronic motion are related to complex spatio-temporal correlations, instead of the instantaneous electron density. I scrutinize the time-resolved scattering pattern from coherent electronic wave packets. I show that timeresolved PCI recovers the instantaneous electron density of electronic motion. For the far-field diffraction scattering pattern, I analyze the influence of photon energy resolution of the detector. Moreover, I demonstrate that X-ray scattering from a crystal of identical wave packets also recovers the instantaneous electron density. I point out that a generalized electron density propagator of the wave packet can be reconstructed from a scattering experiment. Finally, I propose timeresolved Compton scattering of electronic wave packets. I show that X-ray scattering with large energy transfer can be used to recover the instantaneous momentum space density of the target. The third topic of this dissertation is Compton scattering in single molecule coherent diffractive imaging (CDI). The structure determination of single macromolecules via CDI is one of the key applications of XFELs. The structure of the molecule can be reconstructed from the elastic diffraction pattern. Inelastic X-ray scattering generates a background signal, which I determine for typical high-intensity imaging conditions. I find that at high X-ray fluence the background signal becomes dominating, posing a problem for high resolution imaging. The strong ionization by the X-ray pulse may ionize several electrons per atom. Scattering from these free electrons makes a major contribution to the background signal. I present and discuss detailed numerical studies for different X-ray fluence and photon energy.

  11. Strain in nanoscale Germanium hut clusters on Si(001) studied by x-ray diffraction

    DEFF Research Database (Denmark)

    Steinfort, A.J.; Scholte, P.M.L.O.; Ettema, A.

    1996-01-01

    Scanning tunneling microscopy and synchrotron x-ray diffraction have been used to investigate nanoscale Ge hut clusters on Si(001). We have been able to identify the contributions to the scattered x-ray intensity which arise solely from the hut clusters and have shown that x-ray diffraction can b...

  12. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  13. Amorphous Analogs of Martian Global Soil: Pair Distribution Function Analyses and Implications for Scattering Models of Chemin X-ray Diffraction Data

    Science.gov (United States)

    Achilles, C. N.; Bish, D. L.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Soils on Mars have been analyzed by the Mars Exploration Rovers (MER) and most recently by the Mars Science Laboratory (MSL) rover. Chemical analyses from a majority of soil samples suggest that there is a relatively uniform global soil composition across much of the planet. A soil site, Rocknest, was sampled by the MSL science payload including the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS). Che- Min X-ray diffraction (XRD) data revealed crystalline phases and a broad, elevated background, indicating the presence of amorphous or poorly ordered materials (Fig 1). Based on the chemical composition of the bulk soil measured by APXS and the composition of crystalline phases derived from unit-cell parameters determined with CheMin data, the percentages of crystalline and amorphous phases were calculated at 51% and 49%, respectively. Attempts to model the amorphous contribution to CheMin XRD patterns were made using amorphous standards and full-pattern fitting methods and show that the broad, elevated background region can be fitted by basaltic glass, allophane, and palagonite. However, the modeling shows only that these phases have scattering patterns similar to that for the soil, not that they represent unique solutions. Here, we use pair distribution function (PDF) analysis to determine the short-range order of amorphous analogs in martian soils and better constrain the amorphous material detected by CheMin.

  14. Calculation of x-ray scattering patterns from nanocrystals at high x-ray intensity

    Directory of Open Access Journals (Sweden)

    Malik Muhammad Abdullah

    2016-09-01

    Full Text Available We present a generalized method to describe the x-ray scattering intensity of the Bragg spots in a diffraction pattern from nanocrystals exposed to intense x-ray pulses. Our method involves the subdivision of a crystal into smaller units. In order to calculate the dynamics within every unit, we employ a Monte-Carlo-molecular dynamics-ab-initio hybrid framework using real space periodic boundary conditions. By combining all the units, we simulate the diffraction pattern of a crystal larger than the transverse x-ray beam profile, a situation commonly encountered in femtosecond nanocrystallography experiments with focused x-ray free-electron laser radiation. Radiation damage is not spatially uniform and depends on the fluence associated with each specific region inside the crystal. To investigate the effects of uniform and non-uniform fluence distribution, we have used two different spatial beam profiles, Gaussian and flattop.

  15. In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating

    Science.gov (United States)

    Kenel, C.; Schloth, P.; Van Petegem, S.; Fife, J. L.; Grolimund, D.; Menzel, A.; Van Swygenhoven, H.; Leinenbach, C.

    2016-03-01

    Beam-based additive manufacturing (AM) typically involves high cooling rates in a range of 103-104 K/s. Therefore, new techniques are required to understand the non-equilibrium evolution of materials at appropriate time scales. Most technical alloys have not been optimized for such rapid solidification, and microstructural, phase, and elemental solubility behavior can be very different. In this work, the combination of complementary in situ synchrotron micro-x-ray diffraction (microXRD) and small angle x-ray scattering (SAXS) studies with laser-based heating and rapid cooling is presented as an approach to study alloy behavior under processing conditions similar to AM techniques. In rapidly solidified Ti-48Al, the full solidification and phase transformation sequences are observed using microXRD with high temporal resolution. The high cooling rates are achieved by fast heat extraction. Further, the temperature- and cooling rate-dependent precipitation of sub-nanometer clusters in an Al-Cu-Mg alloy can be studied by SAXS. The sensitivity of SAXS on the length scales of the newly formed phases allows their size and fraction to be determined. These techniques are unique tools to help provide a deeper understanding of underlying alloy behavior and its influence on resulting microstructures and properties after AM. Their availability to materials scientists is crucial for both in-depth investigations of novel alloys and also future production of high-quality parts using AM.

  16. X-ray diffraction contrast tomography (DCT) system, and an X-ray diffraction contrast tomography (DCT) method

    DEFF Research Database (Denmark)

    2012-01-01

    Source: US2012008736A An X-ray diffraction contrast tomography system (DCT) comprising a laboratory X-ray source (2), a staging device (5) rotating a polycrystalline material sample in the direct path of the X-ray beam, a first X-ray detector (6) detecting the direct X-ray beam being transmitted...

  17. Basic of X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Giacovazzo, C. [Bari Univ. (Italy). Dip. Geomineralogico

    1996-09-01

    The basic concepts of X-ray diffraction may be more easily understood if it is made preliminary use of a mathematical background. In these pages the authors will first define the delta function and its use for the representation of a lattice. Then the concepts of Fourier transform and convolution are given. At the end of this talk one should realize that a crystal is the convolution of the lattice with a function representing the content of the unit cell.

  18. Simulating X-ray diffraction of textured films

    DEFF Research Database (Denmark)

    Breiby, Dag W.; Bunk, Oliver; Andreasen, Jens Wenzel

    2008-01-01

    Computationally efficient simulations of grazing-incidence X-ray diffraction (GIXD) are discussed, with particular attention given to textured thin polycrystalline films on supporting substrates. A computer program has been developed for simulating scattering from thin films exhibiting varying...... from the totally substrate-reflected beam ( two-beam approximation) and refraction effects are also included in the program, together with the geometrical intensity corrections associated with GIXD measurements. To achieve 'user friendliness' for scientists less familiar with diffraction...

  19. Nanoporous active carbons at ambient conditions: a comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption

    Science.gov (United States)

    Shiryaev, A. A.; Voloshchuk, A. M.; Volkov, V. V.; Averin, A. A.; Artamonova, S. D.

    2017-05-01

    Furfural-derived sorbents and activated carbonaceous fibers were studied using Small- and Wide-angle X-ray scattering (SWAXS), X-ray diffraction and multiwavelength Raman spectroscopy after storage at ambient conditions. Correlations between structural features with degree of activation and with sorption parameters are observed for samples obtained from a common precursor and differing in duration of activation. However, the correlations are not necessarily applicable to the carbons obtained from different precursors. Using two independent approaches we show that treatment of SWAXS results should be performed with careful analysis of applicability of the Porod law to the sample under study. In general case of a pore with rough/corrugated surface deviations from the Porod law may became significant and reflect structure of the pore-carbon interface. Ignorance of these features may invalidate extraction of closed porosity values. In most cases the pore-matrix interface in the studied samples is not atomically sharp, but is characterized by 1D or 2D fluctuations of electronic density responsible for deviations from the Porod law. Intensity of the pores-related small-angle scattering correlates positively with SBET values obtained from N2 adsorption.

  20. Picosecond X-ray diffraction from laser-irradiated crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hironaka, Yoichiro; Yazaki, Akio; Kishimura, Hiroaki; Nakamura, Kazutaka G.; Kondo, Ken-ichi

    2002-09-30

    We performed time-resolved X-ray diffraction for laser-irradiated Si(1 1 1) single crystal. A tabletop TW laser system was used for the generation of the ultra-short pulsed X-rays. We discussed the generation of laser induced ultra-short pulsed X-rays concerning about broadening of diffracted signal due to the electron scattering in the pre-plasma. We measured laser induced acoustic wave propagation inside of Si crystal by the laser irradiation, and the maximum lattice strain of -1.05% was measured at the irradiation power density of 4.7x10{sup 9} W/cm{sup 2} with picosecond time resolution. Stress distribution analysis on the observed data under laser irradiation is also dised.

  1. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xueming [Beijing Univ. of Chemical Technology (China); Duan, Yonghao [Beijing Univ. of Chemical Technology (China); He, Lilin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Seema [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Simmons, Blake [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Gang [Beijing Univ. of Chemical Technology (China); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-02-08

    A systematic study was done to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110 °C for 3 h at biomass loadings of 5, 10, 15, 20 and 25 wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ~25 to 625 Å, enabling assessment of contributions of pores with different sizes to increased porosity after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role.

  2. Faradaurate-940: synthesis, mass spectrometry, electron microscopy, high-energy X-ray diffraction, and X-ray scattering study of Au∼940±20(SR)∼160±4 nanocrystals.

    Science.gov (United States)

    Kumara, Chanaka; Zuo, Xiaobing; Cullen, David A; Dass, Amala

    2014-06-24

    Obtaining monodisperse nanocrystals and determining their composition to the atomic level and their atomic structure is highly desirable but is generally lacking. Here, we report the discovery and comprehensive characterization of a 2.9 nm plasmonic nanocrystal with a composition of Au940±20(SCH2CH2Ph)160±4, which is the largest mass spectrometrically characterized gold thiolate nanoparticle produced to date. The compositional assignment has been made using electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry (MS). The MS results show an unprecedented size monodispersity, where the number of Au atoms varies by only 40 atoms (940 ± 20). The mass spectrometrically determined composition and size are supported by aberration-corrected scanning transmission electron microscopy (STEM) and synchrotron-based methods such as atomic pair distribution function (PDF) and small-angle X-ray scattering (SAXS). Lower-resolution STEM images show an ensemble of particles-1000s per frame-visually demonstrating monodispersity. Modeling of SAXS data on statistically significant nanoparticle population-approximately 10(12) individual nanoparticles-shows that the diameter is 3.0 ± 0.2 nm, supporting mass spectrometry and electron microscopy results on monodispersity. Atomic PDF based on high-energy X-ray diffraction experiments shows decent match with either a Marks decahedral or truncated octahedral structure. Atomic resolution STEM images of single particles and their fast Fourier transform suggest face-centered cubic arrangement. UV-visible spectroscopy data show that Faradaurate-940 supports a surface plasmon resonance peak at ̃505 nm. These monodisperse plasmonic nanoparticles minimize averaging effects and have potential application in solar cells, nano-optical devices, catalysis, and drug delivery.

  3. Spatiotemporal response of crystals in x-ray Bragg diffraction

    Science.gov (United States)

    Shvyd'ko, Yuri; Lindberg, Ryan

    2012-10-01

    The spatiotemporal response of crystals in x-ray Bragg diffraction resulting from excitation by an ultrashort, laterally confined x-ray pulse is studied theoretically. The theory presents an extension of the analysis in symmetric reflection geometry [R. R. Lindberg and Y. V. Shvyd’ko, Phys. Rev. ST Accel. Beams 15, 050706 (2012)PRABFM1098-440210.1103/PhysRevSTAB.15.050706] to the generic case, which includes Bragg diffraction both in reflection (Bragg) and transmission (Laue) asymmetric scattering geometries. The spatiotemporal response is presented as a product of a crystal-intrinsic plane-wave spatiotemporal response function and an envelope function defined by the crystal-independent transverse profile of the incident beam and the scattering geometry. The diffracted wave fields exhibit amplitude modulation perpendicular to the propagation direction due to both angular dispersion and the dispersion due to Bragg’s law. The characteristic measure of the spatiotemporal response is expressed in terms of a few parameters: the extinction length, crystal thickness, Bragg angle, asymmetry angle, and the speed of light. Applications to self-seeding of hard x-ray free-electron lasers are discussed, with particular emphasis on the relative advantages of using either the Bragg or Laue scattering geometries. Intensity front inclination in asymmetric diffraction can be used to make snapshots of ultrafast processes with femtosecond resolution.

  4. Spatiotemporal response of crystals in x-ray Bragg diffraction

    Directory of Open Access Journals (Sweden)

    Yuri Shvyd’ko

    2012-10-01

    Full Text Available The spatiotemporal response of crystals in x-ray Bragg diffraction resulting from excitation by an ultrashort, laterally confined x-ray pulse is studied theoretically. The theory presents an extension of the analysis in symmetric reflection geometry [R. R. Lindberg and Y. V. Shvyd’ko, Phys. Rev. ST Accel. Beams 15, 050706 (2012PRABFM1098-440210.1103/PhysRevSTAB.15.050706] to the generic case, which includes Bragg diffraction both in reflection (Bragg and transmission (Laue asymmetric scattering geometries. The spatiotemporal response is presented as a product of a crystal-intrinsic plane-wave spatiotemporal response function and an envelope function defined by the crystal-independent transverse profile of the incident beam and the scattering geometry. The diffracted wave fields exhibit amplitude modulation perpendicular to the propagation direction due to both angular dispersion and the dispersion due to Bragg’s law. The characteristic measure of the spatiotemporal response is expressed in terms of a few parameters: the extinction length, crystal thickness, Bragg angle, asymmetry angle, and the speed of light. Applications to self-seeding of hard x-ray free-electron lasers are discussed, with particular emphasis on the relative advantages of using either the Bragg or Laue scattering geometries. Intensity front inclination in asymmetric diffraction can be used to make snapshots of ultrafast processes with femtosecond resolution.

  5. X-ray microimaging by diffractive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kirz, Janos; Jacobsen, Chris

    2001-07-31

    The report summarizes the development of soft x-ray microscopes at the National Synchrotron Light Source X-1A beamline. We have developed a soft x-ray microscopy beamline (X-1A) at the National Synchrotron Light Source at Brookhaven National Laboratory. This beamline has been upgraded recently to provide two endstations dedicated to microscopy experiments. One endstation hosts a brand new copy of the redesigned room temperature scanning x-ray microscope (STXM), and the other end station hosts a cryo STXM and the original redesigned room temperature microscope, which has been commissioned and has started operation. Cryo STXM and the new microscope use the same new software package, running under the LINUX operating system. The new microscope is showing improved image resolution and extends spectromicroscopy to the nitrogen, oxygen and iron edges. These microscopes are used by us, and by users of the facility, to image hydrated specimens at 50 nm or better spatial resolution and with 0.1-0.5 eV energy resolution. This allows us to carry out chemical state mapping in biological, materials science, and environmental and colloidal science specimens. In the cryo microscope, we are able to do chemical state mapping and tomography of frozen hydrated specimens, and this is of special importance for radiation-sensitive biological specimens. for spectromicroscopic analysis, and methods for obtaining real-space images from the soft x-ray diffraction patterns of non-crystalline specimens. The user program provides opportunities for collaborators and other groups to exploit the techniques available and to develop them further. We have also developed new techniques such as an automated method for acquiring ''stacks'' of images.

  6. X-ray diffraction imaging of material microstructures

    KAUST Repository

    Varga, Laszlo

    2016-10-20

    Various examples are provided for x-ray imaging of the microstructure of materials. In one example, a system for non-destructive material testing includes an x-ray source configured to generate a beam spot on a test item; a grid detector configured to receive x- rays diffracted from the test object; and a computing device configured to determine a microstructure image based at least in part upon a diffraction pattern of the x-rays diffracted from the test object. In another example, a method for determining a microstructure of a material includes illuminating a beam spot on the material with a beam of incident x-rays; detecting, with a grid detector, x-rays diffracted from the material; and determining, by a computing device, a microstructure image based at least in part upon a diffraction pattern of the x-rays diffracted from the material.

  7. Assessment of firing conditions in old fired-clay bricks: The contribution of X-ray powder diffraction with the Rietveld method and small angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Viani, Alberto, E-mail: viani@itam.cas.cz [Institute of Theoretical and Applied Mechanics AS CR, Centre of Excellence Telč, Batelovská 485, CZ-58856 Telč (Czech Republic); Sotiriadis, Konstantinos [Institute of Theoretical and Applied Mechanics AS CR, Centre of Excellence Telč, Batelovská 485, CZ-58856 Telč (Czech Republic); Len, Adél [Wigner Research Centre for Physics HAS, Konkoly-Thege 29-33, 1121 Budapest (Hungary); Šašek, Petr; Ševčík, Radek [Institute of Theoretical and Applied Mechanics AS CR, Centre of Excellence Telč, Batelovská 485, CZ-58856 Telč (Czech Republic)

    2016-06-15

    Full characterization of fired-clay bricks is crucial for the improvement of process variables in manufacturing and, in case of old bricks, for restoration/replacement purposes. To this aim, five bricks produced in a plant in Czech Republic in the past have been investigated with a combination of analytical techniques in order to derive information on the firing process. An additional old brick from another brickyard was also used to study the influence of different raw materials on sample microstructure. The potential of X-ray diffraction with the Rietveld method and small angle neutron scattering technique has been exploited to describe the phase transformations taking place during firing and characterize the brick microstructure. Unit-cell parameter of spinel and amount of hematite are proposed as indicators of the maximum firing temperature, although for the latter, limited to bricks produced from the same raw material. The fractal quality of the surface area of pores obtained from small angle neutron scattering is also suggested as a method to distinguish between bricks produced from different raw clays. - Highlights: • Rietveld method helps in describing microstructure and physical properties of bricks. • XRPD derived cell parameter of spinel is proposed as an indicator of firing temperature. • SANS effectively describes brick micro and nanostructure, including closed porosity. • Fractal quality of pore surface is proposed as ‘fingerprint’ of brick manufacturing.

  8. X-ray diffraction and Raman scattering study of Cr-doped ZnFe{sub 2}O{sub 4} spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashwini; Sharma, Poorva; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhawan, Devi Ahilya University, Khandwa Road Campus, Indore-452001 (India)

    2015-06-24

    XRD and Raman scattering measurements were made on polycrystalline ZnFe{sub 2-x}Cr{sub x}O{sub 4} (x=0.0, 0.1, 0.2) spinel ferrites as prepared by solid-state reaction route. Rietveld refined X-ray diffraction pattern confirmed the formation of single-phase and are indexed in cubic structure with Fd3m space group. Slight reduction in the lattice parameter from 8.435 to 8.410 Ǻ, with Cr{sup 3+} ion substitution has been observed. From Raman scattering spectra, the modes of ZnFe{sub 1.9}Cr{sub 0.1}O{sub 4} and ZnFe{sub 1.8}Cr{sub 0.2}O{sub 4} are shifted towards the lower frequency side as compared to ZnFe{sub 2}O{sub 4}, this red shift is attributed to higher atomic mass of Zn (65.39 amu) as compared to Fe (55.84 amu)

  9. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa, E.J. [University of Michigan; Huntington, C.M. [University of Michigan; Trantham, M.R. [University of Michigan; Keiter, P.A [University of Michigan; Drake, R.P. [University of Michigan; Montgomery, David [Los Alamos National Laboratory; Benage, John F. [Los Alamos National Laboratory; Letzring, Samuel A. [Los Alamos National Laboratory

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  10. X-ray photoelectron spectroscopy, high-resolution X-ray diffraction ...

    Indian Academy of Sciences (India)

    Powder X-ray diffraction studies were carried out on doped lithium niobate for phase identification. High-resolution X-ray diffraction technique was used to study the crystalline quality through full-width at half-maximum values. The refractive index values are more for doped samples than for pure sample as determined by ...

  11. Ultrafast X-ray diffraction of laser-irradiated crystals

    CERN Document Server

    Heimann, P A; Kang, I; Johnson, S; Missalla, T; Chang, Z; Falcone, R W; Schönlein, R W; Glover, T E; Padmore, H A

    2001-01-01

    Coherent acoustic phonons have been observed in the X-ray diffraction of a laser-excited InSb crystal. Modeling based on time-dependent dynamical diffraction theory has allowed the extraction of fundamental constants, such as the electron-acoustic phonon coupling time. A dedicated beamline for time-resolved studies has been developed at the Advanced Light Source with special considerations toward high transmission, low scattering and a wide photon energy range. The facility combines a bend magnet beamline, time-resolved detectors and a femtosecond laser system.

  12. Brillouin scattering, DSC, dielectric and X-ray diffraction studies of phase transitions in antiferroelectric PbHfO{sub 3}:Sn

    Energy Technology Data Exchange (ETDEWEB)

    Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Kim, Tae Hyun [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Gągor, Anna [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Jankowska-Sumara, Irena [Institute of Physics, Pedagogical University, ul. Podchorążych 2, 30-084 Kraków (Poland); Majchrowski, Andrzej [Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Kojima, Seiji [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2015-02-15

    Highlights: • Phase transition mechanisms were studied in antiferroelectric PbHf{sub 0.975}Sn{sub 0.025}O{sub 3.} • Acoustic phonons showed anomalies at 472 and 426 K due to phase transitions. • Brillouin data showed evidence for presence of polar clusters in paraelectric phase. • An order-disorder mechanism of the PE to AFE2 transition was proved. - Abstract: Specific heat, dielectric, powder X-ray diffraction and Brillouin scattering studies of phase transitions in antiferroelectric PbHf{sub 0.975}Sn{sub 0.025}O{sub 3} crystal were performed. The specific heat data revealed clear anomalies at T{sub 1} = 473.5 and T{sub 2} = 426.3 K on cooling, which could be attributed to onset of first order phase transitions from the paraelectric (PE) phase to an intermediate antiferroelectric phase (AFE2) and the AFE2 phase to another antiferroelectric phase (AFE1), respectively. The estimated entropy changes at T{sub 1} and T{sub 2} pointed to mainly an order-disorder and displacive character of these transitions, respectively. X-ray diffraction data showed a complex superstructure of the intermediate phase with a = 11.895(6) Å, b = 11.936(4) Å, c = 8.223(3) Å at 453 K. Brillouin studies revealed pronounced softening of longitudinal acoustic (LA) mode in the PE phase associated with its broadening. The broadening and softening exhibited maximum values at T{sub 1}. Additional acoustic anomalies, that is, abrupt frequency shifts for LA and transverse acoustic (TA) modes were also observed at T{sub 2}. Brillouin scattering data also showed presence of a broad central peak (CP) that exhibited highest intensity at T{sub 1}. The observed temperature dependences of acoustic modes and CP indicate order-disorder character of the FE to AFE2 phase transition and importance of polar precursor clusters in the PE phase. The obtained data also suggest that the intermediate antiferroelectric phases in Sn{sup 4+} doped PbHfO{sub 3} and PbZrO{sub 3} may have very similar structures

  13. Oxides neutron and synchrotron X-ray diffraction studies

    CERN Document Server

    Sosnowska, I M

    1999-01-01

    We review some results from several areas of oxide science in which neutron scattering and X-ray synchrotron scattering exercise a complementary role to high-resolution transmission electron microscopy. The very high-resolution time-of-flight neutron diffraction technique and its role in studies of the magnetic structure of oxides is especially reviewed. The selected topics of structural studies for the chosen oxides are: crystal and magnetic structure of the so-called cellular random systems, magnetic structure and phase transitions in ferrites and the behaviour of water in non-stoichiometric protonic conductors and in the opal silica-water system. (40 refs).

  14. Nano structured materials studied by coherent X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gulden, Johannes

    2013-03-15

    Structure determination with X-rays in crystallography is a rapidly evolving field. Crystallographic methods for structure determination are based on the assumptions about the crystallinity of the sample. It is vital to understand the structure of possible defects in the crystal, because they can influence the structure determination. All conventional methods to characterize defects require a modelling through simulated data. No direct methods exist to image the core of defects in crystals. Here a new method is proposed, which will enable to visualize the individual scatterers around and at defects in crystals. The method is based on coherent X-ray scattering. X-rays are perfectly suited since they can penetrate thick samples and buried structures can be investigated Recent developments increased the coherent flux of X-Ray sources such as synchrotrons by orders of magnitude. As a result, the use of the coherent properties of X-rays is emerging as a new aspect of X-ray science. New upcoming and operating X-ray laser sources will accelerate this trend. One new method which has the capacity to recover structural information from the coherently scattered photons is Coherent X-ray Diffraction Imaging (CXDI). The main focus of this thesis is the investigation of the structure and the dynamics of colloidal crystals. Colloidal crystals can be used as a model for atomic crystals in order to understand the growth and defect structure. Despite the large interest in these structures, many details are still unknown.Therefore, it is vital to develop new approaches to measure the core of defects in colloidal crystals. After an introduction into the basics of the field of coherent X-ray scattering, this thesis introduces a novel method, Small Angle Bragg Coherent Diffractive Imaging, (SAB-CDI). This new measurement technique which besides the relevance to colloidal crystals can be applied to a large variety of nano structured materials. To verify the experimental possibilities the

  15. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    Directory of Open Access Journals (Sweden)

    Robert M. Lawrence

    2015-07-01

    Full Text Available Serial femtosecond crystallography (SFX using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ∼700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ∼40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is an important step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  16. Healing X-ray scattering images.

    Science.gov (United States)

    Liu, Jiliang; Lhermitte, Julien; Tian, Ye; Zhang, Zheng; Yu, Dantong; Yager, Kevin G

    2017-07-01

    X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuse versus sharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS) data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.

  17. Healing X-ray scattering images

    Directory of Open Access Journals (Sweden)

    Jiliang Liu

    2017-07-01

    Full Text Available X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuse versus sharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.

  18. Reflection surface x-ray diffraction patterns: k-space images

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hawoong [Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 438D, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Wu, Z. [Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana, Illinois 61801-2902 (United States); Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, Illinois 61801-2980 (United States); Chiang, T.-C. [Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana, Illinois 61801-2902 (United States); Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080 (United States); Zschack, P. [Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 438D, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Jemian, P. [Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 438D, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Chen, Haydn [Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana, Illinois 61801-2902 (United States); Aburano, R. D. [Cypress Semiconductor, 3901 North First Street, San Jose, California 95134 (United States)

    2000-08-01

    For the past two decades, x-ray diffraction has been utilized for surface structural determination. Unlike reflection high-energy electron diffraction (RHEED) which is a complicated dynamical scattering process, x-ray surface analysis is simple and straightforward due to the kinematic nature of x rays. Using high brilliance x rays from an undulator beamline and a highly sensitive charge coupled device detector, we successfully observed RHEED-like x-ray diffraction patterns. The patterns were recorded during the preparation of Si(111)-(7x7), transformation to Ge/Si(111)-(5x5) and Ge growth. Also, simultaneous measurements of x-ray reflectivity and crystal truncation rods are shown feasible with this technique. (c) 2000 American Institute of Physics.

  19. On the theory of time-resolved x-ray diffraction

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2008-01-01

    of the experimental diffraction signal for both types of X-ray sources. We present a simple analysis of time-resolved X-ray scattering for direct bond breaking in diatomic molecules. This essentially analytical approach highlights the relation between the signal and the time-dependent quantum distribution...

  20. Advancing X-ray scattering metrology using inverse genetic algorithms.

    Science.gov (United States)

    Hannon, Adam F; Sunday, Daniel F; Windover, Donald; Kline, R Joseph

    2016-01-01

    We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real space structure in periodic gratings measured using critical dimension small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real space structure of our nanogratings. The study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.

  1. Coherent methods in X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gorobtsov, Oleg

    2017-05-15

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  2. Characterization by Raman scattering, x-ray diffraction, and transmission electron microscopy of (AlAs)m(InAs)m short period superlattices grown by migration enhanced epitaxy

    DEFF Research Database (Denmark)

    Bradshaw, J.; Song, X.J.; Shealy, J.R.

    1992-01-01

    We report growth of (InAs)1(AlAs)1 and (InAs)2(AlAs)2 strained layer superlattices by migration enhanced epitaxy. The samples were grown on InP (001) substrates and characterized by Raman spectroscopy, x-ray diffraction, and transmission electron microscopy. Satellite peaks in the x-ray data...... confirm the intended periodicity and indicate the presence of some disorder in the monolayer sample. The energies of the zone folded and quantum confined optic phonons are in reasonable agreement with calculations based on one-dimensional elastic continuum and linear chain models. Journal of Applied...... Physics is copyrighted by The American Institute of Physics....

  3. A compact high vacuum heating chamber for in-situ x-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, F.; Deiter, C.; Pflaum, K.; Seeck, O. H. [Hamburger Synchrotronstrahlungslabor am Deutschen Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg (Germany)

    2012-08-15

    A very compact multi purpose high vacuum heating chamber for x-ray scattering techniques was developed. The compact design allows the chamber to be installed on high precision diffractometers which usually cannot support heavy and/or large equipment. The chamber is covered by a Be dome allowing full access to the hemisphere above the sample which is required for in-plane grazing incident x-ray diffraction and out-off plane wide angle x-ray diffraction.

  4. Resonant magnetic scattering of polarized soft x rays

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, M. [Centre Universitaire Paris-Sud, Orsay (France); Hague, C.F. [Universite Pierre et Marie Curie, Paris (France); Gullikson, E.M.; Underwood, J. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  5. X-ray diffraction-based electronic structure calculations and experimental x-ray analysis for medical and materials applications

    Science.gov (United States)

    Mahato, Dip Narayan

    This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles

  6. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  7. Single shot diffraction of picosecond 8.7-keV x-ray pulses

    Directory of Open Access Journals (Sweden)

    F. H. O’Shea

    2012-02-01

    Full Text Available We demonstrate multiphoton, single shot diffraction images of x rays produced by inverse Compton scattering a high-power CO_{2} laser from a relativistic electron beam, creating a pulse of 8.7 keV x rays. The tightly focused, relatively high peak brightness electron beam and high photon density from the 2 J CO_{2} laser yielded 6×10^{7} x-ray photons over the full opening angle in a single shot. Single shot x-ray diffraction is performed by passing the x rays though a vertical slit and on to a flat silicon (111 crystal. 10^{2} diffracted photons were detected. The spectrum of the detected x rays is compared to simulation. The diffraction and detection of 10^{2} x rays is a key step to a more efficient time resolved diagnostic in which the number of observed x rays might reach 10^{4}; enabling a unique, flexible x-ray source as a sub-ps resolution diagnostic for studying the evolution of chemical reactions, lattice deformation and melting, and magnetism.

  8. Total X-Ray Scattering of Spider Dragline Silk

    Science.gov (United States)

    Benmore, C. J.; Izdebski, T.; Yarger, J. L.

    2012-04-01

    Total x-ray scattering measurements of spider dragline silk fibers from Nephila clavipes, Argiope aurantia, and Latrodectus hesperus all yield similar structure factors, with only small variations between the different species. Wide-angle x-ray scattering from fibers orientated perpendicular to the beam shows a high degree of anisotropy, and differential pair distribution functions obtained by integrating over wedges of the equatorial and meridian planes indicate that, on average, the majority (95%) of the atom-atom correlations do not extend beyond 1 nm. Futhermore, the atom-atom correlations between 1 and 3 nm are not associated with the most intense diffraction peaks at Q=1-2Å-1. Disordered molecular orientations along the fiber axis are consistent with proteins in similar structural arrangements to those in the equatorial plane, which may be associated with the silk’s greater flexibility in this direction.

  9. Thin film characterisation by advanced X-ray diffraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cappuccio, G.; Terranova, M.L. [eds.] [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1996-09-01

    This report described the papers presented at the 5. School on X-ray diffraction from polycrystalline materials held at Frascati (Rome) in 2-5 October 1996. A separate abstract was prepared for each of the papers.

  10. X-ray optics the diffraction of X-rays by finite and imperfect crystals

    CERN Document Server

    Wilson, Arthur J C

    1949-01-01

    This fascinating text contains a detailed treatise on the use of X-Ray optics in the taxonomy of minerals and gem stones. An interesting and informative book on the subject, X-Ray Optics - The Diffraction of X-Rays by Finite and Imperfect Crystals is a must-have for anyone with an interest the study of crystals and constitutes a great addition to any gemmological collection. Arthur James Cochran Wilson (28 November 1914 - 1 July 1995) was a Canadian crystallographer, most famous for his contributions to X-ray crystallography and elected as a Fellow of the Royal Society in 1963. This book has been elected for republication now due to its immense educational value, and is proudly republished here complete with a new introduction to the subject.

  11. Multimodal x-ray scatter imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bunk, O; Menzel, A [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bech, M; Pfeiffer, F [Department Physik (E17), Technische Universitaet Muenchen, James-Franck-Strausse, 85748 Garching (Germany); Jensen, T H; Feidenhans' l, R [Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Binderup, T [Rigshospitalet and Faculty of Health Science, University of Copenhagen, 2100 Copenhagen (Denmark)], E-mail: oliver.bunk@psi.ch

    2009-12-15

    We describe a small-angle x-ray scattering-based imaging technique that reveals the distribution and orientation of nano-scale structures over extended areas. By combining two measurement and analysis schemes, complementary structural information is available which renders the technique suitable for a broad range of applications, e.g. in materials science and bio-imaging. Through a combination of current techniques and on-line analysis schemes, measurements with a so far unprecedented combination of speed, dynamic range and point density became feasible. This is illustrated by data recorded for a section of a mouse soleus muscle visualizing fine muscle and Achilles tendon structures down to the 10 nm range over a 10 mm{sup 2} sample area.

  12. Resonant inelastic x-ray scattering studies of elementary excitations

    NARCIS (Netherlands)

    Ament, Lucas Johannes Peter (Luuk)

    2010-01-01

    Resonant Inelastic X-ray Scattering (RIXS) is an X-ray in, X-ray out technique that enables one to study the dispersion of excitations in solids. In this thesis, we investigated how various elementary excitations of transition metal oxides show up in RIXS spectra.

  13. Magnetic X-Ray Scattering with Synchrotron Radiation

    DEFF Research Database (Denmark)

    Moncton, D. E.; Gibbs, D.; Bohr, Jakob

    1986-01-01

    With the availability of high-brilliance synchrotron radiation from multiple wigglers, magnetic X-ray scattering has become a powerful new probe of magnetic structure and phase transitions. Similar to the well-established magnetic neutron scattering technique, magnetic X-ray scattering methods have...

  14. Introducing an Optimized Method for Obtaining X-ray Diffraction Patterns of Biological Tissues

    Directory of Open Access Journals (Sweden)

    Ali Chaparian

    2012-03-01

    Full Text Available Introduction Individual X-Ray diffraction patterns of biological tissues are obtained via interference of coherent scattering with their electrons. Many scientists have distinguished normal and cancerous breast tissue, bone density, and urinary stone types using the X-Ray diffraction patterns resulting from coherent scattering. The goal of this study was to introduce an optimized method for obtaining X-ray diffraction patterns of different types from biological tissues. Materials and Methods A special tool constituting primary and scatter collimators as well as a sample holder was designed and built. All measurements were done using an X-ray tube, the above-mentioned tool, and a semiconductor detector (HPGe. The X-ray diffraction patterns of some tissue-equivalent materials (acrylic, polyethylene, nylon, and calcium carbonate and biological tissues (adipose, muscle, and bone were obtained. Results The corresponding peak positions for adipose, muscle, bone, acrylic, polyethylene, nylon, and calcium carbonate in corresponding X-ray diffraction patterns are located in 1.1±0.055 nm-1, 1.41±0.072, 1.6±0.08 nm-1, 0.8±0.04 nm-1, 1.03±0.051 nm-1, 1.22±0.061 nm-1, and 1.7 ± 0.085 nm-1, respectively. Conclusion The X-ray diffraction patterns obtained in this study were in good agreement relative to previous measurements in terms of peak position. This study introduces a useful setup for extraction of X-ray diffraction patterns from different biological tissues.

  15. X-ray characterization by energy-resolved powder diffraction

    Directory of Open Access Journals (Sweden)

    G. Cheung

    2016-08-01

    Full Text Available A method for single-shot, nondestructive characterization of broadband x-ray beams, based on energy-resolved powder diffraction, is described. Monte-Carlo simulations are used to simulate data for x-ray beams in the keV range with parameters similar to those generated by betatron oscillations in a laser-driven plasma accelerator. The retrieved x-ray spectra are found to be in excellent agreement with those of the input beams for realistic numbers of incident photons. It is demonstrated that the angular divergence of the x rays can be deduced from the deviation of the detected photons from the Debye-Scherrer rings which would be produced by a parallel beam. It is shown that the angular divergence can be measured as a function of the photon energy, yielding the angularly resolved spectrum of the input x-ray beam.

  16. Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging.

    Science.gov (United States)

    Vila-Comamala, Joan; Diaz, Ana; Guizar-Sicairos, Manuel; Mantion, Alexandre; Kewish, Cameron M; Menzel, Andreas; Bunk, Oliver; David, Christian

    2011-10-24

    We have employed ptychographic coherent diffractive imaging to completely characterize the focal spot wavefield and wavefront aberrations of a high-resolution diffractive X-ray lens. The ptychographic data from a strongly scattering object was acquired using the radiation cone emanating from a coherently illuminated Fresnel zone plate at a photon energy of 6.2 keV. Reconstructed images of the object were retrieved with a spatial resolution of 8 nm by combining the difference-map phase retrieval algorithm with a non-linear optimization refinement. By numerically propagating the reconstructed illumination function, we have obtained the X-ray wavefield profile of the 23 nm round focus of the Fresnel zone plate (outermost zone width, Δr = 20 nm) as well as the X-ray wavefront at the exit pupil of the lens. The measurements of the wavefront aberrations were repeatable to within a root mean square error of 0.006 waves, and we demonstrate that they can be related to manufacturing aspects of the diffractive optical element and to errors on the incident X-ray wavefront introduced by the upstream beamline optics. © 2011 Optical Society of America

  17. Enhancement of coherent X-ray diffraction from nanocrystals by introduction of X-ray optics.

    Science.gov (United States)

    Robinson, Ian; Pfeiffer, Franz; Vartanyants, Ivan; Sun, Yugang; Xia, Younan

    2003-09-22

    Coherent X-ray Diffraction is applied to investigate the structure of individual nanocrystalline silver particles in the 100nm size range. In order to enhance the available signal, Kirkpatrick-Baez focusing optics have been introduced in the 34-ID-C beamline at APS. Concerns about the preservation of coherence under these circumstances are addressed through experiment and by calculations.

  18. Characterization of Metalloproteins and Biomaterials by X-ray Absorption Spectroscopy and X-ray Diffraction

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl

    This thesis presents thework on combining complementary X-rays techniques for studying the structures of proteins and other biomaterials, and consists of three different projects: (i) Characterization of protein powders with X-ray powder diffraction (XRPD). (ii) The combination of X-ray crystallo......This thesis presents thework on combining complementary X-rays techniques for studying the structures of proteins and other biomaterials, and consists of three different projects: (i) Characterization of protein powders with X-ray powder diffraction (XRPD). (ii) The combination of X......, nickel and copper, and their XRD crystal structures were solved to 1.90 Å, 1.50 Å and 1.45 Å resolution, respectively. As the affinity to iron is low, iron insulin crystals were grown in presence of small amounts of zinc. The two metal sites in the XRD structure thus contained respectively one Fe2......+ and one Zn2+ ion, with respectively tetrahedral and octahedral coordination geometry. The metal sites in nickel and copper insulin were studied by XAS. Coordination distances were refined from EXAFS showing a very regular octahedral coordination of Ni2+, which was further verified by calculated XANES...

  19. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimental fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.

  20. Calculated x-ray powder diffraction patterns of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Roof, R.B.

    1977-10-01

    The X-ray powder diffraction patterns of the six phases of plutonium were calculated for Cu K..cap alpha../sub 1/ (lambda = 1.540598 A.) The results listed are 2 theta, sin/sup 2/ theta, d values, integrated intensities, and diffraction indices hkl.

  1. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator combination is used to study the irradiation induced defects in flux grown Sr-hexaferrite crystals irradiated with 50 MeV Li3+ ion beams at room temperature with a fluence value of 1 × 1014 ions/cm2. The diffraction curves of the ...

  2. Dual Energy X-Ray CT by Compton Scattering Hard X-Ray Source

    CERN Document Server

    Uesaka, Mitsuru; Kaneyasu, Tatsuo; Torikoshi, Masami

    2005-01-01

    We have developed a compact Compton scattering hard X-ray source at Nuclear Engineering Research Laboratory, University of Tokyo. The compact hard X-ray source can produce tunable monochromatic hard X-rays. The monochromatic hard X-rays are required in large field of medical and biological applications. We are planning to perform dual-energy X-ray CT, which enables us to measure atomic number Z distribution and electron density re distribution in a material. The hard X-ray source has an advantage to perform dual-energy X-ray CT. The X-ray energy can be changed quickly by introducing a fundamental frequency and a second harmonic frequency lasers. This quick energy change is indispensable to medical imaging and very difficult in a large SR light source and others. The information on the atomic number and electron density will be used for treatment plan in radiotherapy as well as for identification of materials in a nondestructive test. We examined applicability of the dual-energy X-ray CT for atomic number meas...

  3. An x-ray diffraction study of ribosome structure.

    Science.gov (United States)

    Dolgov, A D; Ivanov, D A; Kapitonova, K A; Mokul'skii, M A

    1975-01-01

    Dense gels of E. coli 70 S ribosomes, their 50 S subunits, CM-like particles, RNP strands and their fragments, 38 S particles obtained from RNP strand folding upon addition of Mg2+ ions, and of unoriented salt-free and free rRNA sodium and magnesium salts were studied by X-ray diffraction. It was shown that under dense gel conditions RNA molecules contained in ribosomes unfolded by desalting, like all other particles considered here, have helical regions. Under these conditions free desalted RNA has no helical regions. Experimental data on X-ray scattering at medium angles were compared with the diffraction curves calculated for homogeneous prolate and oblate ellipsoids, for various ellipsoids containing a dense region or an internal cavity, and for ellipsoids containing internal periodic regions. The results indicate that the internal structure of the 50 S ribosome is periodic, i. e., its components form a periodic lattice. The lattice spacings are approximately 42 and 28 A with a 0.8g/g dry weight sample water content. When the 50 S particle water content drops below 0.2 g/g dry weight the periodic structure is disrupted. This disruption is reversible. It was shown that CM-like particles at high ionic strenght (2 M LiCl) have approximately the same internal periodicity as the 50 S particles, but in contrast they lose this periodicity at low ionic strength (10-2M tris-HCl and 5-10-3 M MgCl2).

  4. Resonance magnetic x-ray scattering study of erbium

    DEFF Research Database (Denmark)

    Sanyal, M.K.; Gibbs, D.; Bohr, J.

    1994-01-01

    The magnetic phases of erbium have been studied by resonance x-ray-scattering techniques. When the incident x-ray energy is tuned near the L(III) absorption edge, large resonant enhancements of the magnetic scattering are observed above 18 K. We have measured the energy and polarization dependence...

  5. X-ray diffraction study of directionally grown perylene crystallites

    DEFF Research Database (Denmark)

    Breiby, Dag W.; Lemke, H. T.; Hammershøj, P.

    2008-01-01

    Using grazing incidence X-ray diffraction, perylene crystallites grown on thin highly oriented poly(tetrafluoroethylene) (PTFE) films on silicon substrates have been investigated. All the perylene crystallites are found to orient with the ab plane of the monoclinic unit cell parallel to the subst......Using grazing incidence X-ray diffraction, perylene crystallites grown on thin highly oriented poly(tetrafluoroethylene) (PTFE) films on silicon substrates have been investigated. All the perylene crystallites are found to orient with the ab plane of the monoclinic unit cell parallel...

  6. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  7. Optical properties of X-rays--dynamical diffraction.

    Science.gov (United States)

    Authier, André

    2012-01-01

    The first attempts at measuring the optical properties of X-rays such as refraction, reflection and diffraction are described. The main ideas forming the basis of Ewald's thesis in 1912 are then summarized. The first extension of Ewald's thesis to the X-ray case is the introduction of the reciprocal lattice. In the next step, the principles of the three versions of the dynamical theory of diffraction, by Darwin, Ewald and Laue, are given. It is shown how the comparison of the dynamical and geometrical theories of diffraction led Darwin to propose his extinction theory. The main optical properties of X-ray wavefields at the Bragg incidence are then reviewed: Pendellösung, shift of the Bragg peak, fine structure of Kossel lines, standing waves, anomalous absorption, paths of wavefields inside the crystal, Borrmann fan and double refraction. Lastly, some of the modern applications of the dynamical theory are briefly outlined: X-ray topography, location of adsorbed atoms at crystal surfaces, optical devices for synchrotron radiation and X-ray interferometry.

  8. Heterodyne x-ray diffuse scattering from coherent phonons.

    Science.gov (United States)

    Kozina, M; Trigo, M; Chollet, M; Clark, J N; Glownia, J M; Gossard, A C; Henighan, T; Jiang, M P; Lu, H; Majumdar, A; Zhu, D; Reis, D A

    2017-09-01

    Here, we report Fourier-transform inelastic x-ray scattering measurements of photoexcited GaAs with embedded ErAs nanoparticles. We observe temporal oscillations in the x-ray scattering intensity, which we attribute to inelastic scattering from coherent acoustic phonons. Unlike in thermal equilibrium, where inelastic x-ray scattering is proportional to the phonon occupation, we show that the scattering is proportional to the phonon amplitude for coherent states. The wavevectors of the observed phonons extend beyond the excitation wavevector. The nanoparticles break the discrete translational symmetry of the lattice, enabling the generation of large wavevector coherent phonons. Elastic scattering of x-ray photons from the nanoparticles provides a reference for heterodyne mixing, yielding signals proportional to the phonon amplitude.

  9. Fusion bonding of Si wafers investigated by x ray diffraction

    DEFF Research Database (Denmark)

    Weichel, Steen; Grey, Francois; Rasmussen, Kurt

    2000-01-01

    The interface structure of bonded Si(001) wafers with twist angle 6.5 degrees is studied as a function of annealing temperature. An ordered structure is observed in x-ray diffraction by monitoring a satellite reflection due to the periodic modulation near the interface, which results from...

  10. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator ... observed by high-resolution electron microscopy in both ..... 1988 Nucl. Instrum. Meth. B34 228. Kato N 1992 J. Acta Crystallogr. A48 834. Kaur B, Bhat M, Licci F, Kumar R, Kotru P N and Bamzai K K. 2004 Nucl. Instrum. Meth ...

  11. X-Ray-Scattering Measurements Of Strain In PEEK

    Science.gov (United States)

    Cebe, Peggy; Lowry, Lynn E.; Chung, Shirley Y.; Yavrouian, Andre H.; Gupta, Amitava

    1988-01-01

    Internal stress relieved by heating above glass-transition temperature. Report describes wide-angle x-ray scattering and differential scanning calorimetry of specimens of poly(etheretherketone) having undergone various thermal treatments. Wide-angle x-ray scattering particularly useful in determining distances between atoms, crystallinity, and related microstructurally generated phenomena, as thermal expansion and strain. Calorimetric measurements aid interpretation of scattering measurements by enabling correlation with thermal effects.

  12. Morphology of nanocermet thin films: X-ray scattering study

    Science.gov (United States)

    Hazra, S.; Gibaud, A.; Désert, A.; Sella, C.; Naudon, A.

    2000-06-01

    The morphology of ceramic-metal (cermet) thin films is studied by surface-sensitive X-ray scattering techniques. Grazing incidence small angle X-ray scattering (GISAXS) experiments carried out at LURE with a 2D detector show that metal clusters of nanometer size, known as nanoparticles, are dispersed in the thin film. Analyses of the X-ray reflectivity along with the diffuse scattering allow to predict the formation of layers of nanoparticles along the growth direction of the films. The formation of such cumulative-disordered layers in one direction is likely to be related to the boundary condition in the reduced dimension.

  13. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...... in a test quadrant of the telescope structure and from ASTRO-D foils held in a simple fixture. The X-ray data is compared with laser data and other surface structure data such as STM, atomic force microscopy (AFM), TEM, and electron micrography. The data obtained at Cu K-alpha(1), (8.05 keV) from all...

  14. A CdZnTe array for the detection of explosives in baggage by energy-dispersive X-ray diffraction signatures at multiple scatter angles

    CERN Document Server

    Malden, C H

    2000-01-01

    CdZnTe detectors were used to collect energy-dispersive diffraction spectra at a range of scatter angles, from sheets of explosives hidden in baggage. It is shown that the combined information from these 'signatures' can be used to determine whether an explosive sample is present or not. The geometrical configuration of the collimation and the position of the baggage within the scanner must be taken into careful consideration when optimising the capabilities of such a system. The CdZnTe array lends itself well to the detection of explosives in baggage since multiple signals may be collected simultaneously providing more rapid detection than achieved using a single detector.

  15. Coherent X-ray scattering beamline at port 9C of Pohang Light Source II.

    Science.gov (United States)

    Yu, Chung-Jong; Lee, Hae Cheol; Kim, Chan; Cha, Wonsuk; Carnis, Jerome; Kim, Yoonhee; Noh, Do Young; Kim, Hyunjung

    2014-01-01

    The coherent X-ray scattering beamline at the 9C port of the upgraded Pohang Light Source (PLS-II) at Pohang Accelerator Laboratory in Korea is introduced. This beamline provides X-rays of 5-20 keV, and targets coherent X-ray experiments such as coherent diffraction imaging and X-ray photon correlation spectroscopy. The main parameters of the beamline are summarized, and some preliminary experimental results are described.

  16. Determination of organic crystal structures by X ray powder diffraction

    CERN Document Server

    McBride, L

    2000-01-01

    The crystal structure of Ibuprofen has been solved from synchrotron X-ray powder diffraction data using a genetic algorithm (GA). The performance of the GA is improved by incorporating prior chemical information in the form of hard limits on the values that can be taken by the flexible torsion angles within the molecule. Powder X-ray diffraction data were collected for the anti-convulsant compounds remacemide, remacemide nitrate and remacemide acetate at 130 K on BM 16 at the X-ray European Synchrotron Radiation Facility (ESRF) at Grenoble. High quality crystal structures were obtained using data collected to a resolution of typically 1.5 A. The structure determinations were performed using a simulated annealing (SA) method and constrained Rietveld refinements for the structures converged to chi sup 2 values of 1.64, 1.84 and 1.76 for the free base, nitrate and acetate respectively. The previously unknown crystal structure of the drug famotidine Form B has been solved using X-ray powder diffraction data colle...

  17. MSL Chemistry and Mineralogy X-Ray Diffraction X-Ray Fluorescence (CheMin) Instrument

    Science.gov (United States)

    Zimmerman, Wayne; Blake, Dave; Harris, William; Morookian, John Michael; Randall, Dave; Reder, Leonard J.; Sarrazin, Phillipe

    2013-01-01

    This paper provides an overview of the Mars Science Laboratory (MSL) Chemistry and Mineralogy Xray Diffraction (XRD), X-ray Fluorescence (XRF) (CheMin) Instrument, an element of the landed Curiosity rover payload, which landed on Mars in August of 2012. The scientific goal of the MSL mission is to explore and quantitatively assess regions in Gale Crater as a potential habitat for life - past or present. The CheMin instrument will receive Martian rock and soil samples from the MSL Sample Acquisition/Sample Processing and Handling (SA/SPaH) system, and process it utilizing X-Ray spectroscopy methods to determine mineral composition. The Chemin instrument will analyze Martian soil and rocks to enable scientists to investigate geophysical processes occurring on Mars. The CheMin science objectives and proposed surface operations are described along with the CheMin hardware with an emphasis on the system engineering challenges associated with developing such a complex instrument.

  18. Spectral feature variations in x-ray diffraction imaging systems

    Science.gov (United States)

    Wolter, Scott D.; Greenberg, Joel A.

    2016-05-01

    Materials with different atomic or molecular structures give rise to unique scatter spectra when measured by X-ray diffraction. The details of these spectra, though, can vary based on both intrinsic (e.g., degree of crystallinity or doping) and extrinsic (e.g., pressure or temperature) conditions. While this sensitivity is useful for detailed characterizations of the material properties, these dependences make it difficult to perform more general classification tasks, such as explosives threat detection in aviation security. A number of challenges, therefore, currently exist for reliable substance detection including the similarity in spectral features among some categories of materials combined with spectral feature variations from materials processing and environmental factors. These factors complicate the creation of a material dictionary and the implementation of conventional classification and detection algorithms. Herein, we report on two prominent factors that lead to variations in spectral features: crystalline texture and temperature variations. Spectral feature comparisons between materials categories will be described for solid metallic sheet, aqueous liquids, polymer sheet, and metallic, organic, and inorganic powder specimens. While liquids are largely immune to texture effects, they are susceptible to temperature changes that can modify their density or produce phase changes. We will describe in situ temperature-dependent measurement of aqueous-based commercial goods in the temperature range of -20°C to 35°C.

  19. X-ray magnetic diffraction of ferromagnets with synchrotron radiation

    CERN Document Server

    Ito, M

    2002-01-01

    X-ray magnetic diffraction experiment of ferromagnets that utilizes elliptically polarized synchrotron radiation is presented. First we have reviewed shortly historical backgrounds and theoretical aspects of the experiment. We have presented how the magnetic form factors are measured and are separated into the spin-moment component and the orbital-moment component in this experiment. Peculiar features of the polarization factor of this experiment have been explained. We have introduced two examples of the experiment. One is the measurement of the spin-magnetic form factor of SmAl sub 2 with white X-rays from a bending magnet at the Photon Factory. The other is the measurement of the orbital-magnetic form factor of Holmium Iron Garnets with monochromatic X-rays from an undulator at the SPring-8. Finally we summarize the article and show some future prospects of this experiment. (author)

  20. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    Science.gov (United States)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  1. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation

    Science.gov (United States)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  2. Wavefront aberrations of x-ray dynamical diffraction beams.

    Science.gov (United States)

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  3. Electron Dynamics by Inelastic X-Ray Scattering

    CERN Document Server

    Schülke, Winfried

    2007-01-01

    The book offers the first comprehensive review of experimental methods, theory, and successful applications of synchrotron radiation based inelastic X-ray scattering (IXS) spectroscopy, which enables the investigation of electron dynamics in condensed matter (correlated motion and excitation).

  4. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael

    2016-01-01

    In liquid phase chemistry dynamic solute solvent interactions often govern the path, ultimate outcome, and efficiency of chemical reactions. These steps involve many-body movements on subpicosecond time scales and thus ultrafast structural tools capable of capturing both intramolecular electronic......, confirming previous ab initio molecular dynamics simulations. Structural changes in the aqueous solvent associated with density and temperature changes occur with similar to 1 ps time constants, characteristic for structural dynamics in water. This slower time scale of the solvent response allows us...... rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering atterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited...

  5. XDS: a flexible beamline for X-ray diffraction and spectroscopy at the Brazilian synchrotron.

    Science.gov (United States)

    Lima, F A; Saleta, M E; Pagliuca, R J S; Eleotério, M A; Reis, R D; Fonseca Júnior, J; Meyer, B; Bittar, E M; Souza-Neto, N M; Granado, E

    2016-11-01

    The majority of the beamlines at the Brazilian Synchrotron Light Source Laboratory (LNLS) use radiation produced in the storage-ring bending magnets and are therefore currently limited in the flux that can be used in the harder part of the X-ray spectrum (above ∼10 keV). A 4 T superconducting multipolar wiggler (SCW) was recently installed at LNLS in order to improve the photon flux above 10 keV and fulfill the demands set by the materials science community. A new multi-purpose beamline was then installed at the LNLS using the SCW as a photon source. The XDS is a flexible beamline operating in the energy range between 5 and 30 keV, designed to perform experiments using absorption, diffraction and scattering techniques. Most of the work performed at the XDS beamline concentrates on X-ray absorption spectroscopy at energies above 18 keV and high-resolution diffraction experiments. More recently, new setups and photon-hungry experiments such as total X-ray scattering, X-ray diffraction under high pressures, resonant X-ray emission spectroscopy, among others, have started to become routine at XDS. Here, the XDS beamline characteristics, performance and a few new experimental possibilities are described.

  6. X-ray diffraction tomography with limited projection information.

    Science.gov (United States)

    Zhu, Zheyuan; Katsevich, Alexander; Kapadia, Anuj J; Greenberg, Joel A; Pang, Shuo

    2018-01-11

    X-ray diffraction tomography (XDT) records the spatially-resolved X-ray diffraction profile of an extended object. Compared to conventional transmission-based tomography, XDT displays high intrinsic contrast among materials of similar electron density and improves the accuracy in material identification thanks to the molecular structural information carried by diffracted photons. However, due to the weak diffraction signal, a tomographic scan covering the entire object typically requires a synchrotron facility to make the acquisition time more manageable. Imaging applications in medical and industrial settings usually do not require the examination of the entire object. Therefore, a diffraction tomography modality covering only the region of interest (ROI) and subsequent image reconstruction techniques with truncated projections are highly desirable. Here we propose a table-top diffraction tomography system that can resolve the spatially-variant diffraction form factor from internal regions within extended samples. We demonstrate that the interior reconstruction maintains the material contrast while reducing the imaging time by 6 folds. The presented method could accelerate the acquisition of XDT and be applied in portable imaging applications with a reduced radiation dose.

  7. Nanofabrication of Diffractive Soft X-ray Optics

    OpenAIRE

    Lindblom, Magnus

    2009-01-01

    This thesis summarizes the present status of the nanofabrication of diffractive optics, i.e. zone plates, and test objects for soft x-ray microscopy at KTH. The emphasis is on new and improved fabrication processes for nickel and germanium zone plates. A new concept in which nickel and germanium are combined in a zone plate is also presented. The main techniques used in the fabrication are electron beam lithography for the patterning, followed by plasma etching and electroplating for the stru...

  8. Coherent X-ray diffraction from collagenous soft tissues

    Energy Technology Data Exchange (ETDEWEB)

    Berenguer de la Cuesta, Felisa; Wenger, Marco P.E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.; (UCL)

    2009-09-11

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.

  9. X-ray diffraction from single GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas

    2012-11-12

    In recent years, developments in X-ray focussing optics have allowed to produce highly intense, coherent X-ray beams with spot sizes in the range of 100 nm and below. Together with the development of new experimental stations, X-ray diffraction techniques can now be applied to study single nanometer-sized objects. In the present work, X-ray diffraction is applied to study different aspects of the epitaxial growth of GaAs nanowires. Besides conventional diffraction methods, which employ X-ray beams with dimensions of several tens of {mu}m, special emphasis lies on the use of nanodiffraction methods which allow to study single nanowires in their as-grown state without further preparation. In particular, coherent X-ray diffraction is applied to measure simultaneously the 3-dimensional shape and lattice parameters of GaAs nanowires grown by metal-organic vapor phase epitaxy. It is observed that due to a high density of zinc-blende rotational twins within the nanowires, their lattice parameter deviates systematically from the bulk zinc-blende phase. In a second step, the initial stage in the growth of GaAs nanowires on Si (1 1 1) surfaces is studied. This nanowires, obtained by Ga-assisted growth in molecular beam epitaxy, grow predominantly in the cubic zinc-blende structure, but contain inclusions of the hexagonal wurtzite phase close to their bottom interface. Using nanodiffraction methods, the position of the different structural units along the growth axis is determined. Because the GaAs lattice is 4% larger than silicon, these nanowires release their lattice mismatch by the inclusion of dislocations at the interface. Whereas NWs with diameters below 50 nm are free of strain, a rough interface structure in nanowires with diameters above 100 nm prevents a complete plastic relaxation, leading to a residual strain at the interface that decays elastically along the growth direction. Finally, measurements on GaAs-core/InAs-shell nanowire heterostructures are presented

  10. Crystallization kinetics of amorphous griseofulvin by pattern fitting procedure using X-ray diffraction data.

    Science.gov (United States)

    Yamamura, Shigeo; Takahira, Rieko; Momose, Yasunori

    2007-05-01

    A pattern fitting procedure using X-ray powder diffraction patterns was applied to study the crystallization kinetics of amorphous griseofulvin. From the optimized parameters obtained by pattern fitting, a change in the quantity and quality of griseofulvin crystals with crystallization was also investigated. Amorphous griseofulvin was prepared by cooling the melts followed by pulverization. X-ray diffraction patterns of amorphous griseofulvin were repeatedly measured every 20 h. The observed pattern was separated into crystalline diffraction intensity and amorphous scattering intensity by the nonlinear least-squares procedure. The fitting between the observed and simulated diffraction patterns was satisfactorily independent of the degree of crystallinity. Since a good linear relationship was found in a plot of amorphous scattering intensity against crystalline diffraction intensity, the degree of crystallinity can be determined according to Hermans' method. The diffraction peak width increased with higher diffraction angles with crystallization. The crystallization was biphasic: fast and slow crystallization with the growth of low disordered crystals and disordered crystals, respectively. The pattern fitting procedure is a powerful tool to analyze the X-ray diffraction patterns of semicrystalline materials. This procedure can simultaneously analyze the degree of crystallinity and crystal disorder in semicrystalline samples during crystallization.

  11. Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Cuevas, Ariadna, E-mail: ariadna@mail.or [Archaeometry Laboratory, Colegio Universitario San Geronimo de La Habana, Obispo, entre San Ignacio y Mercaderes, Habana Vieja, cp 10 100, Havana (Cuba); Perez Gravie, Homero, E-mail: homero.perezgravie@mail.co [Archaeometry Laboratory, Colegio Universitario San Geronimo de La Habana, Obispo, entre San Ignacio y Mercaderes, Habana Vieja, cp 10 100, Havana (Cuba)

    2011-03-21

    Starting on a laboratory developed portable X-ray fluorescence (PXRF) spectrometer; three different analytical results can be performed: analysis of chemical elements, analysis of major chemical crystalline phase and structural analysis, which represents a contribution to a new, low cost development of portable X-ray analyzer; since these results are respectively obtained with independent equipments for X-ray fluorescence, X-ray diffraction and radiography. Detection limits of PXRF were characterized using standard reference materials for ceramics, glass, bronze and bones, which are the main materials requiring quantitative analysis in art and archeological objects. A setup for simultaneous energy dispersive X-ray fluorescence and diffraction (ED (XRF-XRD)) in the reflection mode has been tested for in situ and non-destructive analysis according to the requirements of art objects inspection. The system uses a single low power X-ray tube and an X-ray energy dispersive detector to measure X-ray diffraction spectrum at a fixed angle. Application to the identification of jadeite-jade mineral in archeological objects by XRD is presented. A local high resolution radiography image obtained with the same low power X-ray tube allows for studies in painting and archeological bones.

  12. Electronic properties of crystalline materials observed in X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lovesey, S.W. [Diamond Light Source Ltd., ISIS Facility, RAL, Oxfordshire OX11 0QX (United Kingdom) and RIKEN Harima Institute, SPring-8, Hyogo 679-5148 (Japan)]. E-mail: s.w.lovesey@rl.ac.uk; Balcar, E. [Vienna University of Technology, Atominstitut, Stadionallee 2, A1020, Vienna (Austria); Knight, K.S. [Diamond Light Source Ltd., ISIS Facility, RAL, Oxfordshire OX11 0QX (United Kingdom); Department of Mineralogy, Natural History Museum, London SW7 5BD (United Kingdom); Fernandez Rodriguez, J. [Departamento de Fisica, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2005-05-01

    The few electrons in valence states of a material participate in many of its physical properties, including both structural and transport properties. In the diffraction of X-rays, or neutrons, valence electrons can lead to weak Bragg reflections that are extremely sensitive signatures of their charge and magnetic degrees of freedom. In this regard, diffraction instruments supplied with X-rays from a synchrotron source are particularly useful because the brightness, tuneability and polarization of the X-rays are all helpful in making valuable observations. The data obtained from Bragg diffraction can be analyzed on the basis of an atomic model, which has the virtue that it can be used as a common platform for the analysis of X-ray and neutron diffraction and, in addition, the analysis of observations made with X-ray absorption, NMR, EPR, muon and Mossbauer spectroscopies. We present the salient features for the calculation of structure factors based on an atomic model and applied to the analysis of Bragg diffraction by non-magnetic and magnetic materials, with an emphasis on resonant X-ray Bragg diffraction. The presentation contains a new treatment of parity-odd events found in the mixed electric dipole-electric quadrupole channel of scattering. In addition we discuss the complementary observation of dichroic signals, including natural circular and magnetochiral dichroism. The survey of available analytical tools is complemented by a series of worked examples demonstrating the application of the formalism to different materials with different crystal structures and resonant ions: dysprosium borocarbide (DyB{sub 2}C{sub 2}), vanadium sesquioxide (V{sub 2}O{sub 3}), gadolinium tetraboride (GdB{sub 4}), chromium sesquioxide (Cr{sub 2}O{sub 3}), haematite and perovskite-type manganites.

  13. Controlled molecules for X-ray diffraction experiments at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Stephan

    2013-12-15

    X-ray diffractive imaging is at the very heart of materials science and has been utilized for decades to solve unknown molecular structures. Nowadays, it serves as the key method of structural biology to solve molecular structures of large biological molecules comprising several thousand or even millions of atoms. However, X-ray diffraction from isolated molecules is very weak. Therefore, the regular and periodic arrangement of a huge number of identical copies of a certain molecule of interest within a crystal lattice has been a necessary condition in order to exploit Bragg diffraction of X-rays. This results in a huge increase in scattered signal and a strongly improved signal-to-noise ratio compared to diffraction from non-crystalline samples. The major bottleneck of structural biology is that many of biologically interesting molecules refuse to form crystals of sufficient size to be used at synchrotron X-ray lightsources. However, novel X-ray free-electron lasers (XFELs), which became operational very recently, promise to address this issue. X-ray pulses provided by XFELs are many orders of magnitude more intense than X-ray pulses from a synchrotron source and at the same time as short as only several tens of femtoseconds. Combined with wavelengths in the nm-pm range, XFELs are well-suited to study ultrafast atomic and molecular dynamics. Additionally, the ultrashort pulses can be utilized to circumvent the damage threshold which set a limit to the incident intensity in X-ray diffraction experiments before. At XFELs, though eventually destroying the investigated sample, no significant sample deterioration happens on the ultrashort timescale of the XFEL pulse and the measured diffraction pattern is due to an (almost) unharmed sample. In the framework of this thesis, the approach of utilizing the highly intense XFEL pulses for X-ray diffraction of weakly-scattering non-crystalline samples was taken to the limit of small isolated molecules. X-ray diffraction was

  14. Raman scattering and x-ray diffraction studies of polycrystalline CaCu3Ti4O12 under high-pressure

    DEFF Research Database (Denmark)

    Valim, D.; Filho, A. G. S.; Freire, P. T. C.

    2004-01-01

    remains stable up to the maximum pressure (5.3 GPa) we reached in this experiment. The pressure coefficients for the observed Raman modes were determined. This set of parameters was used for evaluating the stress developed in CCTO thin films. The high-pressure x-ray studies were extended up to 46 GPa...... and the data confirmed that the T-h structure remains stable up to this pressure. The pressure-volume data are well described by the Birch's equation of state. The experimental value of the zero pressure bulk modulus is B-0=212+/-2 GPa. Gruneisen parameters of CCTO were also determined....

  15. Determination of diagnostic X ray spectra scattered by a phantom

    Energy Technology Data Exchange (ETDEWEB)

    Fehrenbacher, G.; Panzer, W.; Regulla, D. [GSF - National Research Center for Environment and Health, Neuherberg (Germany). Inst. of Radiation Protection; Tesfu, K. [Addis Ababa Univ. (Ethiopia)

    1997-12-01

    Photon spectra are reported that result from the scatter of diagnostic X rays at an appropriate water phantom that represents a patient. The tube voltages considered are between 52 kV and 110 kV, the scatter angles from 10{sup o} to 142{sup o} to the normal radiation incidence direction. All spectral measurements were performed with a high-purity germanium detector. Spectral photon fluences are computed from the measured pulse height distribution by using an unfolding procedure. The required response functions of the detection system were obtained by using Monte Carlo methods. Reference is made to a catalogue compiling 35 spectra of scattered X rays in diagnostics resulting from a human substitute, together with information on relevant primary field parameters as well as air kerma for the scattered X rays. (Author).

  16. X-ray diffraction in temporally and spatially resolved biomolecular science.

    Science.gov (United States)

    Helliwell, John R; Brink, Alice; Kaenket, Surasak; Starkey, Victoria Laurina; Tanley, Simon W M

    2015-01-01

    Time-resolved Laue protein crystallography at the European Synchrotron Radiation Facility (ESRF) opened up the field of sub-nanosecond protein crystal structure analyses. There are a limited number of such time-resolved studies in the literature. Why is this? The X-ray laser now gives us femtosecond (fs) duration pulses, typically 10 fs up to ∼50 fs. Their use is attractive for the fastest time-resolved protein crystallography studies. It has been proposed that single molecules could even be studied with the advantage of being able to measure X-ray diffraction from a 'crystal lattice free' single molecule, with or without temporal resolved structural changes. This is altogether very challenging R&D. So as to assist this effort we have undertaken studies of metal clusters that bind to proteins, both 'fresh' and after repeated X-ray irradiation to assess their X-ray-photo-dynamics, namely Ta6Br12, K2PtI6 and K2PtBr6 bound to a test protein, hen egg white lysozyme. These metal complexes have the major advantage of being very recognisable shapes (pseudo spherical or octahedral) and thereby offer a start to (probably very difficult) single molecule electron density map interpretations, both static and dynamic. A further approach is to investigate the X-ray laser beam diffraction strength of a well scattering nano-cluster; an example from nature being the iron containing ferritin. Electron crystallography and single particle electron microscopy imaging offers alternatives to X-ray structural studies; our structural studies of crustacyanin, a 320 kDa protein carotenoid complex, can be extended either by electron based techniques or with the X-ray laser representing a fascinating range of options. General outlook remarks concerning X-ray, electron and neutron macromolecular crystallography as well as 'NMR crystallography' conclude the article.

  17. Diffraction enhanced kinetic depth X-ray imaging

    Science.gov (United States)

    Dicken, A.

    An increasing number of fields would benefit from a single analytical probe that can characterise bulk objects that vary in morphology and/or material composition. These fields include security screening, medicine and material science. In this study the X-ray region is shown to be an effective probe for the characterisation of materials. The most prominent analytical techniques that utilise X-radiation are reviewed. The study then focuses on methods of amalgamating the three dimensional power of kinetic depth X-ray (KDFX) imaging with the materials discrimination of angular dispersive X-ray diffraction (ADXRD), thus providing KDEX with a much needed material specific counterpart. A knowledge of the sample position is essential for the correct interpretation of diffraction signatures. Two different sensor geometries (i.e. circumferential and linear) that are able to collect end interpret multiple unknown material diffraction patterns and attribute them to their respective loci within an inspection volume are investigated. The circumferential and linear detector geometries are hypothesised, simulated and then tested in an experimental setting with the later demonstrating a greater ability at discerning between mixed diffraction patterns produced by differing materials. Factors known to confound the linear diffraction method such as sample thickness and radiation energy have been explored and quantified with a possible means of mitigation being identified (i.e. via increasing the sample to detector distance). A series of diffraction patterns (following the linear diffraction approach) were obtained from a single phantom object that was simultaneously interrogated via KDEX imaging. Areas containing diffraction signatures matched from a threat library have been highlighted in the KDEX imagery via colour encoding and match index is inferred by intensity. This union is the first example of its kind and is called diffraction enhanced KDEX imagery. Finally an additional

  18. X-ray scattering on quantum cross-bars

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenko, Igor [Department of Physics, Ben-Gurion University, Beer-Sheva 84105 (Israel)]. E-mail: igorkuz@bgumail.bgu.ac.il

    2005-04-30

    X-ray scattering on quantum cross-bars (QCB) leads to creation of QCB plasmon. Such a process corresponds to a sharp peak of frequency dependence of the differential scattering cross-section. The peak frequency strongly depends on the direction of the scattered light. As a result, 1D->2D cross-over can be observed in the scattering spectrum. It manifests itself in special directions as an appearance of doublets instead of a single line.

  19. X-ray Diffraction from Isolated and Strongly Aligned Gas-Phase Molecules with a Free-Electron Laser

    DEFF Research Database (Denmark)

    Küpper, Jochen; Stern, Stephan; Holmegaard, Lotte

    2014-01-01

    imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredients of single molecule diffraction experiments: the abilities to detect and count individual scattered x-ray photons in single shot diffraction data, to deliver state-selected, e. g., structural......We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive......-isomer-selected, ensembles of molecules to the x-ray interaction volume, and to strongly align the scattering molecules. Our approach, using ultrashort x-ray pulses, is suitable to study ultrafast dynamics of isolated molecules....

  20. Dense Plasma X-ray Scattering: Methods and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S H; Lee, H J; Davis, P; Doppner, T; Falcone, R W; Fortmann, C; Hammel, B A; Kritcher, A L; Landen, O L; Lee, R W; Munro, D H; Redmer, R; Weber, S

    2009-08-19

    We have developed accurate x-ray scattering techniques to measure the physical properties of dense plasmas. Temperature and density are inferred from inelastic x-ray scattering data whose interpretation is model-independent for low to moderately coupled systems. Specifically, the spectral shape of the non-collective Compton scattering spectrum directly reflects the electron velocity distribution. In partially Fermi degenerate systems that have been investigated experimentally in laser shock-compressed beryllium, the Compton scattering spectrum provides the Fermi energy and hence the electron density. We show that forward scattering spectra that observe collective plasmon oscillations yield densities in agreement with Compton scattering. In addition, electron temperatures inferred from the dispersion of the plasmon feature are consistent with the ion temperature sensitive elastic scattering feature. Hence, theoretical models of the static ion-ion structure factor and consequently the equation of state of dense matter can be directly tested.

  1. X-ray scattering signatures of {beta}-thalassemia

    Energy Technology Data Exchange (ETDEWEB)

    Desouky, Omar S. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT) (Egypt); Elshemey, Wael M. [Biophysics Department, Faculty of Science, Cairo University (Egypt)], E-mail: waelelshemey@yahoo.com; Selim, Nabila S. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT) (Egypt)

    2009-08-11

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm{sup -1}, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; {beta}-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of {beta}-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm{sup -1}, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  2. Energy-windowed, pixellated X-ray diffraction using the Pixirad CdTe detector

    Science.gov (United States)

    O'Flynn, D.; Bellazzini, R.; Minuti, M.; Brez, A.; Pinchera, M.; Spandre, G.; Moss, R.; Speller, R. D.

    2017-01-01

    X-ray diffraction (XRD) is a powerful tool for material identification. In order to interpret XRD data, knowledge is required of the scattering angles and energies of X-rays which interact with the sample. By using a pixellated, energy-resolving detector, this knowledge can be gained when using a spectrum of unfiltered X-rays, and without the need to collimate the scattered radiation. Here we present results of XRD measurements taken with the Pixirad detector and a laboratory-based X-ray source. The cadmium telluride sensor allows energy windows to be selected, and the 62 μm pixel pitch enables accurate spatial information to be preserved for XRD measurements, in addition to the ability to take high resolution radiographic images. Diffraction data are presented for a variety of samples to demonstrate the capability of the technique for materials discrimination in laboratory, security and pharmaceutical environments. Distinct diffraction patterns were obtained, from which details on the molecular structures of the items under study were determined.

  3. High-Energy X-Ray Diffraction Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-29

    The functionality of heRXD includes the following: distance and angular calibration and viewing flat-panel detector images used for X-ray diffraction; image (polar) rebinning or "caking"; line position fitting in powder diffraction images; image segmentation or "blob finding"; crystal orentation indesing; and lattice vector refinement. These functionalities encompass a critical set analyzing teh data for high-energy diffraction measurements that are currently performed at synchrotron sources such as the Advanced Photon Source (APS). The software design modular and open source under LGPL. The intent is to provide a common framework and graphical user interface that has the ability to utillize internal as well as external subroutines to provide various optins for performing the fuctionalities listed above. The software will initially be deployed at several national user facilities--including APS, ALS, and CHESS--and then made available for download using a hosting service such as sourceforge.

  4. Ultrafast X-Ray Diffraction of Heterogeneous Solid Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Levitan, Abraham [Olin College of Engineering, Needham, MA (United States)

    2015-08-19

    Angularly resolved x-ray diffraction at 5.5 keV establishes the structure of a 5 µm diameter solid hydrogen jet, providing a foundation for analysis of hydrogen in a warm dense matter state. The jet was composed of approximately 65 % ± 5% HCP and 35 % ± 5% FCC by volume with an average crystallite size on the order of hundreds of nanometers. Broadening in the angularly resolved spectrum provided strong evidence for anisotropic strain up to approximately 3 % in the HCP lattice. Finally, we found no evidence for orientational ordering of the crystal domains.

  5. X-ray Laue diffraction from crystals of xylose isomerase.

    OpenAIRE

    Farber, G. K.; Machin, P; Almo, S C; Petsko, G A; Hajdu, J.

    1988-01-01

    The Laue method (stationary crystal, polychromatic x-rays) was used to collect native and heavy-atom-derivative data on crystals of xylose isomerase (EC 5.3.1.5). These data were used to find the heavy-atom positions. The positions found by use of Laue data are the same as those found by use of monochromatic data collected on a diffractometer. These results confirm that Laue diffraction data sets, which can be obtained on a millisecond time scale, can be used to locate small molecules bound t...

  6. The three dimensional X-ray diffraction technique

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte; Poulsen, Henning Friis

    2012-01-01

    This introductory tutorial describes the so called 3 dimensional X-ray diffraction (3DXRD) technique, which allows bulk non-destructive structural characterizations of crystalline materials. The motivations and history behind the development of this technique are described and its potentials are ...... are sketched. Examples of the use of the technique are given and future trends and developments are suggested. The primary aim of the paper is to give 3DXRD novices an easy introduction to the technique and to describe a way from a dream to reality and new results....

  7. X-ray diffraction study of oriented gels of titin

    Energy Technology Data Exchange (ETDEWEB)

    Vazina, A.A. [Institute of Theoretical and Experimental Biophysics of RAS, Institutskaya st. 3, Pushchino, Moscow region 142290 (Russian Federation); Gorbunova, N.P. [Institute of Theoretical and Experimental Biophysics of RAS, Institutskaya st. 3, Pushchino, Moscow region 142290 (Russian Federation); Lanina, N.F. [Institute of Theoretical and Experimental Biophysics of RAS, Institutskaya st. 3, Pushchino, Moscow region 142290 (Russian Federation)]. E-mail: lanina@iteb.ru; Dolbnya, I.P. [DUBBLE-CRG/ESRF, B.P.220, F-38043 Grenoble (France); Bras, W. [DUBBLE-CRG/ESRF, B.P.220, F-38043 Grenoble (France); Snigireva, I. [ESRF, B.P.220, F-38043 Grenoble (France)

    2005-05-01

    This work is concerned with the X-ray diffraction study of oriented gels of titin. A topological zig-zag model of a giant fibrillar molecule of titin is proposed. The model suggests that a titin molecule consists of successively joined anisotropic domains, and the long axes of adjacent domains are connected at a nearly right angle relative to each other but are not necessarily inclined at equal angles relative to the fibril axis. The structural mechanism of the high elasticity of the titin molecule is discussed in terms of the physics of structural transitions in crystalline polymers.

  8. Synchrotron X-ray diffraction characterization of healthy and fluorotic human dental enamel

    Science.gov (United States)

    Colaço, M. V.; Barroso, R. C.; Porto, I. M.; Gerlach, R. F.; Costa, F. N.; Braz, D.; Droppa, R.; de Sousa, F. B.

    2012-10-01

    With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basic physical-chemistry reactions of demineralization and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using Synchrotron X-ray diffraction. All the scattering profile measurements were carried out at the X-ray diffraction beamline (XRD1) at the Brazilian Synchrotron Light Laboratory—LNLS, Campinas, Brazil. X-ray diffraction experiments were performed both in powder samples and polished surfaces. The powder samples were analyzed to obtain the characterization of a typical healthy enamel pattern. The polished surfaces were analyzed in specific areas that have been identified as fluorotic ones. X-ray diffraction data were obtained for all samples and these data were compared with the control samples and also with the literature data.

  9. Warm, Dense Plasma Characterization by X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S H; Cauble, R C; Lee, R W; Edwards, J E; Degroot, J S

    2000-07-18

    We describe how the powerful technique of spectrally resolved Thomson scattering can be extended to the x-ray regime, for direct measurements of the ionization state, density, temperature, and the microscopic behavior of dense cool plasmas. Such a direct measurement of microscopic parameters of solid density plasmas could eventually be used to properly interpret laboratory measurements of material properties such as thermal and electrical conductivity, EUS and opacity. In addition, x-ray Thomson scattering will provide new information on the characteristics of rarely and hitherto difficult to diagnose Fermi degenerate and strongly coupled plasmas.

  10. X-ray holography with an atomic scatterer

    Energy Technology Data Exchange (ETDEWEB)

    Mityureva, A.A.; Smirnov, V.V., E-mail: valery_smirnov@mail.ru

    2016-08-15

    X-ray holography scheme with reference scatterer consisting of heavy atom as reference center and its link to an object consisting of several light atoms and using controlled variation of the alignment is represented. The scheme can reproduce an object in three dimensions with atomic resolution. The distorting factors of reconstruction are considered. - Highlights: • X-ray holography scheme with a reference wave formed by atomic scatterer. • 3D object reconstruction with atomic resolution from the set of holograms. • Simple formula for the distorting factor in reconstruction.

  11. X-ray Diffraction Study of Arsenopyrite at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    D Fan; M Ma; W Zhou; S Wei; Z Chen; H Xie

    2011-12-31

    The high-pressure X-ray diffraction study of a natural arsenopyrite was investigated up to 28.2 GPa using in situ angle-dispersive X-ray diffraction and a diamond anvil cell at National Synchrotron Light Source, Brookhaven National Laboratory. The 16:3:1 methanol-ethanol-water mixture was used as a pressure-transmitting medium. Pressures were measured using the ruby-fluorescence method. No phase change has been observed up to 28.2 GPa. The isothermal equation of state (EOS) was determined. The values of K{sub 0}, and K'{sub 0} refined with a third-order Birch-Murnaghan EOS are K{sub 0} = 123(9) GPa, and K'{sub 0} = 5.2(8). Furthermore, we confirm that the linear compressibilities ({beta}) along a, b and c directions of arsenopyrite is elastically isotropic ({beta}{sub a} = 6.82 x 10{sup -4}, {beta}{sub b} = 6.17 x 10{sup -4} and {beta}{sub c} = 6.57 x 10{sup -4} GPa{sup -1}).

  12. Basic X-ray scattering for soft matter

    CERN Document Server

    De Jeu, Wim H

    2016-01-01

    X-ray scattering is a well-established technique in materials science. Several excellent textbooks exist in the field, typically written by physicists who use mathematics to make things clear. Often these books do not reach students and scientists in the field of soft matter (polymers, liquid crystals, colloids, and self-assembled organic systems), who usually have a chemical-oriented background with limited mathematics. Moreover, often these people like to know more about x-ray scattering as a technique to be used, but do not necessarily intend to become an expert. This volume is unique in trying to accommodate both points. The aim of the book is to explain basic principles and applications of x-ray scattering in a simple way. The intention is a paperback of limited size that people will like to have on hand rather than on a shelf. Second, it includes a large variety of examples of x-ray scattering of soft matter with, at the end of each chapter, a more elaborate case study. Third, the book contains a separa...

  13. X-ray scattering from surfaces of organic crystals

    DEFF Research Database (Denmark)

    Gidalevitz, D.; Feidenhans'l, R.; Smilgies, D.-M.

    1997-01-01

    X-ray scattering experiments have been performed on the surfaces of organic crystals. The (010) cleavage planes of beta-alanine and alpha-glycine were investigated, and both specular and off-specular crystal truncation rods were measured. This allowed a determination of the molecular layering...

  14. Fabrication of large area X-ray diffraction grating for X-ray phase imaging

    Science.gov (United States)

    Noda, Daiji; Tokuoka, Atsushi; Katori, Megumi; Minamiyama, Yasuto; Yamashita, Kenji; Nishida, Satoshi; Hattori, Tadashi

    2012-07-01

    X-ray lithography, which uses highly directional synchrotron radiation, is one of the technologies that can be used for fabricating micrometer-sized structures. In X-ray lithography, the accuracy of the fabricated structure depends largely on the accuracy of the X-ray mask. Since X-ray radiation is highly directional, a micro-fabrication technology that produces un-tapered and high aspect ratio highly absorbent structures on a low absorbent membrane is required. Conventionally, a resin material is used as the support membrane for large area X-ray masks. However, resin membranes have the disadvantage that they can sag after several cycles of X-ray exposure due to the heat generated by the X-rays. Therefore, we proposed and used thin carbon wafers for the membrane material because carbon has an extremely small thermal expansion coefficient. We fabricated new carbon membrane X-ray masks, and these results of X-ray lithography demonstrate the superior performance.

  15. Detection of charge scattering associated with stripe order in La1.775Sr0.225NiO4 by hard-x-ray diffraction

    DEFF Research Database (Denmark)

    Vigliante, A.; Zimmermann, M. von; Schneider, J.R.

    1997-01-01

    In the past few years neutron-scattering experiments have shown very intriguing stripe correlations of spins and holes in hole-doped La2NiO4 and La2CuO4. As yet, no x-ray-diffraction experiment has confirmed the neutron results and the topic is still controversial. In this paper we report...

  16. Simultaneous X-ray fluorescence and scanning X-ray diffraction microscopy at the Australian Synchrotron XFM beamline

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.; Abbey, Brian; Vine, David J.; Nashed, Youssef S. G.; Mudie, Stephen T.; Afshar, Nader; Kirkham, Robin; Chen, Bo; Balaur, Eugeniu; de Jonge, Martin D.

    2016-08-11

    Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.

  17. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for analysis of mineralogical composition of regolith,...

  18. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop LUNA, a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for mineralogical analysis of regolith, rock...

  19. Development of general X-ray scattering model

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Joe, E-mail: jngray@iastate.edu; Wendt, Scott, E-mail: jngray@iastate.edu [Center for NDE, Iowa State University, Ames, IA 50011 (United States)

    2015-03-31

    X-ray scattering is a complex process made difficult to describe due to the effects of a complex energy spectrum interacting with a wide range of material types in complex geometry. The scattering is further complicated by the volume of material illuminated and the experimental configuration of the data acquisition. The importance of accounting for the key physics in scattering modeling is critical to the viability of the model. For example, scattering in the detector and the speed of the detector, as measured by the absorbed dose needed to produce a signal, are important in capturing undercut effects. Another example is the noise properties of the detectors are dependent on photon energy. We report on a semi-empirical treatment of x-ray scattering that includes a full energy treatment for a wide range of material types. We also include complex geometry effects that the part shape introduces. The treatment is based on experimental measurements using an energy dispersive germanium detector over energies from treatment is showing good results with experimental measurements of the scattering component agreeing with the model results to the 10% level over the range of x-ray energies and materials typical in industrial applications. Computation times for this model are in the 20 keV to 320 keV. Detector stripping routines for detector artifacts were developed. The computation time is in the range of a few minutes on a typical PC.

  20. Crystal defect studies using x-ray diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  1. Acemetacin cocrystal structures by powder X-ray diffraction

    Directory of Open Access Journals (Sweden)

    Geetha Bolla

    2017-05-01

    Full Text Available Cocrystals of acemetacin drug (ACM with nicotinamide (NAM, p-aminobenzoic acid (PABA, valerolactam (VLM and 2-pyridone (2HP were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM–NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid–amide dimer three-point synthon R32(9R22(8R32(9 with three different syn amides (VLM, 2HP and caprolactam. The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I or syn (type II. ACM hydrate, ACM—NAM, ACM–NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O...H, N...H, Cl...H and C...H interactions. The physicochemical properties of these cocrystals are under study.

  2. The first X-ray diffraction measurements on Mars

    Directory of Open Access Journals (Sweden)

    David Bish

    2014-11-01

    Full Text Available The Mars Science Laboratory landed in Gale crater on Mars in August 2012, and the Curiosity rover then began field studies on its drive toward Mount Sharp, a central peak made of ancient sediments. CheMin is one of ten instruments on or inside the rover, all designed to provide detailed information on the rocks, soils and atmosphere in this region. CheMin is a miniaturized X-ray diffraction/X-ray fluorescence (XRD/XRF instrument that uses transmission geometry with an energy-discriminating CCD detector. CheMin uses onboard standards for XRD and XRF calibration, and beryl:quartz mixtures constitute the primary XRD standards. Four samples have been analysed by CheMin, namely a soil sample, two samples drilled from mudstones and a sample drilled from a sandstone. Rietveld and full-pattern analysis of the XRD data reveal a complex mineralogy, with contributions from parent igneous rocks, amorphous components and several minerals relating to aqueous alteration. In particular, the mudstone samples all contain one or more phyllosilicates consistent with alteration in liquid water. In addition to quantitative mineralogy, Rietveld refinements also provide unit-cell parameters for the major phases, which can be used to infer the chemical compositions of individual minerals and, by difference, the composition of the amorphous component.

  3. Theory of inelastic scattering and absorption of X-rays

    CERN Document Server

    Veenendaal, Michel van

    2015-01-01

    This comprehensive, self-contained guide to X-ray spectroscopy will equip you with everything you need to begin extracting the maximum amount of information available from X-ray spectra. Key topics such as the interaction between X-rays and matter, the basic theory of spectroscopy, and selection and sum rules, are introduced from the ground up, providing a solid theoretical grounding. The book also introduces core underlying concepts such as atomic structure, solid-state effects, the fundamentals of tensor algebra and group theory, many-body interactions, scattering theory, and response functions, placing spectroscopy within a broader conceptual framework, and encouraging a deep understanding of this essential theoretical background. Suitable for graduate students, researchers, materials scientists and optical engineers, this is the definitive guide to the theory behind this powerful and widely used technique.

  4. X-ray wavefront modeling of Bragg diffraction from crystals

    Science.gov (United States)

    Sutter, John P.

    2011-09-01

    The diffraction of an X-ray wavefront from a slightly distorted crystal can be modeled by the Takagi-Taupin theory, an extension of the well-known dynamical diffraction theory for perfect crystals. Maxwell's equations applied to a perturbed periodic medium yield two coupled differential equations in the incident and diffracted amplitude. These equations are discretized for numerical calculation into the determination of the two amplitudes on the points of an integration mesh, beginning with the incident amplitudes at the crystal's top surface. The result is a set of diffracted amplitudes on the top surface (in the Bragg geometry) or the bottom surface (in the Laue geometry), forming a wavefront that in turn can be propagated through free space using the Fresnel- Huygens equations. The performance of the Diamond Light Source I20 dispersive spectrometer has here been simulated using this method. Methods are shown for transforming displacements calculated by finite element analysis into local lattice distortions, and for efficiently performing 3-D linear interpolations from these onto the Takagi-Taupin integration mesh, allowing this method to be extended to crystals under thermal load or novel mechanical bender designs.

  5. Line x-ray source for diffraction enhanced imaging in clinical and industrial applications

    Science.gov (United States)

    Wang, Xiaoqin

    Mammography is one type of imaging modalities that uses a low-dose x-ray or other radiation sources for examination of breasts. It plays a central role in early detection of breast cancers. The material similarity of tumor-cell and health cell, breast implants surgery and other factors, make the breast cancers hard to visualize and detect. Diffraction enhanced imaging (DEI), first proposed and investigated by D. Chapman is a new x-ray radiographic imaging modality using monochromatic x-rays from a synchrotron source, which produced images of thick absorbing objects that are almost completely free of scatter. It shows dramatically improved contrast over standard imaging when applied to the same phantom. The contrast is based not only on attenuation but also on the refraction and diffraction properties of the sample. This imaging method may improve image quality of mammography, other medical applications, industrial radiography for non-destructive testing and x-ray computed tomography. However, the size, and cost, of a synchrotron source limits the application of the new modality to be applicable at clinical levels. This research investigates the feasibility of a designed line x-ray source to produce intensity compatible to synchrotron sources. It is composed of a 2-cm in length tungsten filament, installed on a carbon steel filament cup (backing plate), as the cathode and a stationary oxygen-free copper anode with molybdenum coating on the front surface serves as the target. Characteristic properties of the line x-ray source were computationally studied and the prototype was experimentally investigated. SIMIION code was used to computationally study the electron trajectories emanating from the filament towards the molybdenum target. A Faraday cup on the prototype device, proof-of-principle, was used to measure the distribution of electrons on the target, which compares favorably to computational results. The intensities of characteristic x-ray for molybdenum

  6. X-ray Scattering Techniques for Characterization of Nanosystems in Lifescience

    Energy Technology Data Exchange (ETDEWEB)

    Saw, C K

    2005-04-11

    The intent of this chapter is to provide the basics of using x-ray diffraction techniques in order to obtain information on the structure and morphology of the nanosystems, and also to point out some of its strengths and weaknesses when compare to other characterization techniques. X-ray scattering examines over a wide range of density domains from a tenth to a thousandth angstrom. Essentially, this covers a whole range of condensed matter, including the structure and morphology of nanosystems, particularly useful for examining nanostructures in lifescience. This range of domain size requires both the wide-angle x-ray scattering (WAXS) and small-angle (SAXS) x-ray scattering techniques. Roughly WAXS covers from 2 nm down, and SAXS covers from .5 nm to 100 nm and possibly 1,000 nm for a finely tuned instrument. Brief theoretical description of both WAXS and SAXS will be given in this chapter. WAXS, by itself is a powerful technique in providing information on the crystallographic structure or lack of structure, atomic positions and sizes in a unit cell, to some extend, chemical compositions and as well as chemical stoichiometry. Examples of such experiments will also be given. In order to be able to describe the technique of x-ray scattering, some historical and theoretical background will be given in the hope of making this subject interesting and simple.

  7. Coherent Diffraction Imaging with Hard X-Ray Waveguides

    Science.gov (United States)

    Caro, Liberato De; Giannini, Cinzia; Pelliccia, Daniele; Cedola, Alessia; Lagomarsino, Stefano

    2013-01-01

    Coherent X-ray diffraction imaging (CXDI) has been widely applied in the nanoscopic world, offering nanometric-scale imaging of noncrystallographic samples, and permitting the next-generation structural studies on living cells, single virus particles and biomolecules. The use of curved wavefronts in CXDI has caused a tidal wave in the already promising application of this emergent technique. The non-planarity of the wavefront allows to accelerate any iterative phase-retrieval process and to guarantee a reliable and unique solution. Nowadays, successful experiments have been performed with Fresnel zone plates and planar waveguides as optical elements. Here we describe the use of a single planar waveguide as well as two crossed waveguides in the experiments which first showed this optical element a promising tool for producing a line- or point-like coherent source, respectively.

  8. Quantitative biological imaging by ptychographic X-ray diffraction microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus; Kalbfleisch, Sebastian; Beerlink, Andre; Salditt, Tim [Institut fuer Roentgenphysik, Georg-August-Universitaet Goettingen (Germany); Thibault, Pierre; Dierolf, Martin; Pfeiffer, Franz [Department Physik (E17), Technische Universitaet Muenchen, Garching (Germany); Kewish, Cameron M. [Paul Scherrer Institut, Villigen PSI (Switzerland)

    2010-07-01

    Mesoscopic structures with specific functions are abundant in many cellular systems and have been well characterized by electron microscopy in the past. However, the quantitative study of the three-dimensional structure and density of subcellular components remains a difficult problem. In this contribution we show how these limitations could be overcome in the future by the application of recently introduced and now rapidly evolving coherent X-ray imaging techniques for quantitative biological imaging on the nanoscale. More specifically, we report on a recent scanning (ptychographic) diffraction experiment on unstained and unsliced freeze-dried cells of the bacterium Deinococcus radiourans using only a pinhole as beam defining optical element. As a result quantitative density projections well below optical resolution have been achieved.

  9. Triple crystal x-ray diffraction analysis of chemical-mechanical polished gallium arsenide

    Science.gov (United States)

    Wang, V. S.; Matyi, R. J.

    1992-12-01

    High-resolution triple crystal x-ray diffraction has been used to monitor the magnitude of diffuse scattering from chemical-mechanical (CM) polished GaAs. The diffuse scattering, which is attributed to kinematic scattering arising from polish-induced crystallographic defects, was found to be only slightly affected when each of four CM polish parameters (bromine concentration in Br2/methanol, total polish time, polish pad rotation speed, and force on sample) was varied individually. The combined effect of increases in both the pad rotation speed and the force on the sample increased the magnitude of the diffuse scattering, suggesting the generation of mechanical damage. When all four variables were increased to their maximum values, the diffuse scattering increased dramatically and became anisotropic. We have expressed the magnitude of the diffuse scattering in terms of an ``excess intensity'' in reciprocal space to provide a semi-quantitative relation between CM polish parameters and the generation of polish-induced damage.

  10. Anisotropic x-ray scattering and orientation fields in cardiac tissue cells

    Science.gov (United States)

    Bernhardt, M.; Nicolas, J.-D.; Eckermann, M.; Eltzner, B.; Rehfeldt, F.; Salditt, T.

    2017-01-01

    X-ray diffraction from biomolecular assemblies is a powerful technique which can provide structural information about complex architectures such as the locomotor systems underlying muscle contraction. However, in its conventional form, macromolecular diffraction averages over large ensembles. Progress in x-ray optics has now enabled to probe structures on sub-cellular scales, with the beam confined to a distinct organelle. Here, we use scanning small angle x-ray scattering (scanning SAXS) to probe the diffraction from cytoskeleton networks in cardiac tissue cells. In particular, we focus on actin-myosin composites, which we identify as the dominating contribution to the anisotropic diffraction patterns, by correlation with optical fluorescence microscopy. To this end, we use a principal component analysis approach to quantify direction, degree of orientation, nematic order, and the second moment of the scattering distribution in each scan point. We compare the fiber orientation from micrographs of fluorescently labeled actin fibers to the structure orientation of the x-ray dataset and thus correlate signals of two different measurements: the native electron density distribution of the local probing area versus specifically labeled constituents of the sample. Further, we develop a robust and automated fitting approach based on a power law expansion, in order to describe the local structure factor in each scan point over a broad range of the momentum transfer {q}{{r}}. Finally, we demonstrate how the methodology shown for freeze dried cells in the first part of the paper can be translated to alive cell recordings.

  11. A CCD area detector for X-ray diffraction under high pressure for ...

    Indian Academy of Sciences (India)

    Details of a two-dimensional X-ray area detector developed using a charge coupled device, a image intensifier and a fibre optic taper are given. The detector system is especially optimized for angle dispersive X-ray diffraction set up using rotating anode generator as X-ray source. The performance of this detector was ...

  12. A CCD area detector for X-ray diffraction under high pressure for ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Details of a two-dimensional X-ray area detector developed using a charge coupled device, a image intensifier and a fibre optic taper are given. The detector system is especially optimized for angle dispersive X-ray diffraction set up using rotating anode generator as X-ray source. The performance of this detector ...

  13. Polarized X-ray Scattering and Birefringence in Magnetars

    Science.gov (United States)

    Barchas, Joseph; Baring, Matthew G.

    2017-01-01

    Interest in radiative processes in the super-strong magnetic regime germane to magnetars has grown over the last two decades. These processes have an inherently anisotropic and polarization-dependent character. Of particular interest is the resonant cyclotron scattering domain, where the Compton cross section is enhanced by orders of magnitude very near the cyclotron frequency -- for electrons in magnetar atmospheres, this is above 10 MeV in energy, and for protons this can be at 1-10 keV. The Compton process is dominant in the highly optically thick environs of magnetar atmospheres, and also in the magnetospheric locales for the production of the hard X-ray bursts. The detailed forms of X-ray spectra will depend intimately on the character of the Compton cross section and the emission zone geometry. The practical determination of the rate of Compton scattering depends on the polarization configuration of incoming photons. This in turn is sensitive to the details of radiation dispersion and transport in hot plasmaspheres near neutron stars. This birefringent dispersion present in strongly-magnetized plasmas can profoundly influence the determination of scattering probabilities. Such polarization transfer is usually addressed by simplifying to the transfer two normal mode intensities. The assumptions involved in this simplification such as orthonormality and "large Faraday depolarization" are valid for a wide range of parameter space, but are known to break down in important cases, such as near a cyclotron resonance. We explore the polarization transfer problem for Compton scattering including the regime where Faraday depolarization is not large. Accordingly, plasma birefringence and the generalized Faraday effect are considered explicitly as part of the transfer problem. Spectra generated from two Monte Carlo models of the transfer problem are presented, one treating isothermal atmospheres in the normal X-ray band, and the other addressing hard X-ray flares in

  14. Linear dichroism in molecular resonant inelastic x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, D W; Stolte, W C [Department of Chemistry, University of Nevada, Las Vegas, NV 89154-4003 (United States); Guillemint, R; Carniato, S; Journel, L; Taieb, R; Simon, M, E-mail: lindle@unlv.nevada.ed [UPMC, CNRS U Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France)

    2009-11-01

    Polarization-dependent resonant inelastic x-ray scattering (RIXS) is shown to be a new probe of molecular-field effects on molecular electronic structure. Combining experiment and theory, linear dichroism in Cl 2p RIXS following Cl 1s excitation in HCl, Cl{sub 2}, and CF{sub 3}Cl is ascribed to molecular-field effects, indicating polarized-RIXS provides a direct probe of spin-orbit-state populations generally applicable to all molecules.

  15. Dense Matter Characterization by X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S H; Edwards, M J; Lee, R W; Collins, G W; Cauble, R C; Hsing, W W; Hammel, B A

    2000-12-29

    We discuss the extension of the powerful technique of Thomson scattering to the x-ray regime for providing an independent measure of plasma parameters for dense plasmas. By spectrally-resolving the scattering, the coherent (Rayleigh) unshifted scattering component can be separated from the incoherent Thomson component, which is both Compton and Doppler shifted. The free electron density and temperature can then be inferred from the spectral shape of the high frequency Thomson scattering component. In addition, as the plasma temperature is decreased, the electron velocity distribution as measured by incoherent Thomson scattering will make a transition from the traditional Gaussian Boltzmann distribution to a density-dependent parabolic Fermi distribution to. We also present a discussion for a proof-of-principle experiment appropriate for a high energy laser facility.

  16. RASOR: An advanced instrument for soft x-ray reflectivity and diffraction

    Science.gov (United States)

    Beale, T. A. W.; Hase, T. P. A.; Iida, T.; Endo, K.; Steadman, P.; Marshall, A. R.; Dhesi, S. S.; van der Laan, G.; Hatton, P. D.

    2010-07-01

    We report the design and construction of a novel soft x-ray diffractometer installed at Diamond Light Source. The beamline endstation RASOR is constructed for general users and designed primarily for the study of single crystal diffraction and thin film reflectivity. The instrument is comprised of a limited three circle (θ, 2θ, and χ) diffractometer with an additional removable rotation (ϕ) stage. It is equipped with a liquid helium cryostat, and post-scatter polarization analysis. Motorized motions are provided for the precise positioning of the sample onto the diffractometer center of rotation, and for positioning the center of rotation onto the x-ray beam. The functions of the instrument have been tested at Diamond Light Source, and initial test measurements are provided, demonstrating the potential of the instrument.

  17. Structure determination of thin CoFe films by anomalous x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gloskovskii, Andrei; Stryganyuk, Gregory; Ouardi, Siham [Institut fuer Anorganische und Analytische Chemie, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Fecher, Gerhard H.; Felser, Claudia [Institut fuer Anorganische und Analytische Chemie, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden (Germany); Hamrle, Jaroslav; Pistora, Jaromir [Department of Physics and Nanotechnology Centre, VSB-Technical University of Ostrava, 70833 Ostrava (Czech Republic); Bosu, Subrojati; Saito, Kesami; Sakuraba, Yuya; Takanashi, Koki [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan)

    2012-10-01

    This work reports on the investigation of structure-property relationships in thin CoFe films grown on MgO. Because of the very similar scattering factors of Fe and Co, it is not possible to distinguish the random A2 (W-type) structure from the ordered B2 (CsCl-type) structure with commonly used x-ray sources. Synchrotron radiation based anomalous x-ray diffraction overcomes this problem. It is shown that as grown thin films and 300 K post annealed films exhibit the A2 structure with a random distribution of Co and Fe. In contrast, films annealed at 400 K adopt the ordered B2 structure.

  18. Automated high pressure cell for pressure jump x-ray diffraction.

    Science.gov (United States)

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  19. RASOR: an advanced instrument for soft x-ray reflectivity and diffraction.

    Science.gov (United States)

    Beale, T A W; Hase, T P A; Iida, T; Endo, K; Steadman, P; Marshall, A R; Dhesi, S S; van der Laan, G; Hatton, P D

    2010-07-01

    We report the design and construction of a novel soft x-ray diffractometer installed at Diamond Light Source. The beamline endstation RASOR is constructed for general users and designed primarily for the study of single crystal diffraction and thin film reflectivity. The instrument is comprised of a limited three circle (theta, 2theta, and chi) diffractometer with an additional removable rotation (phi) stage. It is equipped with a liquid helium cryostat, and post-scatter polarization analysis. Motorized motions are provided for the precise positioning of the sample onto the diffractometer center of rotation, and for positioning the center of rotation onto the x-ray beam. The functions of the instrument have been tested at Diamond Light Source, and initial test measurements are provided, demonstrating the potential of the instrument.

  20. Monitoring protein precipitates by in-house X-ray powder diffraction

    DEFF Research Database (Denmark)

    Ståhl, Kenny; Frankær, Christian Grundahl; Petersen, Jakob

    2013-01-01

    Powder diffraction from protein powders using in-house diffractometers is an effective tool for identification and monitoring of protein crystal forms and artifacts. As an alternative to conventional powder diffractometers a single crystal diffractometer equipped with an X-ray micro-source can...... of protein data sets in the database some problems can be foreseen due to the large number of overlapping peaks in the low-angle region, and small differences in unit cell parameters between pdb-data and powder data. It is suggested that protein entries are supplied with more searchable keywords as protein...... be used to collect powder patterns from 1 l samples. Using a small-angle X-ray scattering (SAXS) camera it is possible to collect data within minutes. A streamlined program has been developed for the calculation of powder patterns from pdb-coordinates, and includes correction for bulk-solvent. A number...

  1. X-ray diffraction and X-ray absorption spectroscopic analyses for intercalative nanohybrids with low crystallinity

    Directory of Open Access Journals (Sweden)

    Dae-Hwan Park

    2016-03-01

    Full Text Available Intercalation reactions can be achieved through ion-exchange, pillaring, and exfoliation–reassembling reactions to explore new intercalation compounds with desired electronic, electrochemical, and optical functions. Such intercalative nanohybrids with lamellar or porous structure have received much attention due to their potential applications such as catalysts, electrodes, selective adsorbents, stabilizing agents, and even drug delivery systems. In this review, we briefly introduce and highlight X-ray diffraction and X-ray absorption spectroscopy studies on the intercalative nanohybrids to understand their intracrystalline and electronic structures along with physicochemical functions.

  2. High duty cycle inverse Compton scattering X-ray source

    Science.gov (United States)

    Ovodenko, A.; Agustsson, R.; Babzien, M.; Campese, T.; Fedurin, M.; Murokh, A.; Pogorelsky, I.; Polyanskiy, M.; Rosenzweig, J.; Sakai, Y.; Shaftan, T.; Swinson, C.

    2016-12-01

    Inverse Compton Scattering (ICS) is an emerging compact X-ray source technology, where the small source size and high spectral brightness are of interest for multitude of applications. However, to satisfy the practical flux requirements, a high-repetition-rate ICS system needs to be developed. To this end, this paper reports the experimental demonstration of a high peak brightness ICS source operating in a burst mode at 40 MHz. A pulse train interaction has been achieved by recirculating a picosecond CO2 laser pulse inside an active optical cavity synchronized to the electron beam. The pulse train ICS performance has been characterized at 5- and 15- pulses per train and compared to a single pulse operation under the same operating conditions. With the observed near-linear X-ray photon yield gain due to recirculation, as well as noticeably higher operational reliability, the burst-mode ICS offers a great potential for practical scalability towards high duty cycles.

  3. INELASTIC X-RAY SCATTERING AT ULTRAHIGH PRESSURES.

    Energy Technology Data Exchange (ETDEWEB)

    MAO, H.K.; HEMLEY, J.; KAO, C.C.

    2000-08-28

    Inelastic x-ray scattering (IXS) provides high-pressure research with an arsenal of analytical capabilities for key measurements that were previously unattainable, and high pressure research provides IXS with numerous applications where the technique has unique advantages over other methods. High-pressure investigations can now be conducted using non-resonant IXS, resonant IXS, nuclear resonant IXS, and x-ray emission spectroscopy with energy resolutions of 100 meV to 1 eV for electronic transitions and 1 to 10 meV for phonon studies. By pressure-tuning materials over a wide range, we are able to investigate fundamental physics of electron gases, strongly correlated electron systems, high-energy electronic excitations, and phonons in energy and momentum space. The results will have a profound influence on materials applications as well as providing basic information for understanding the deep interior of the Earth and other planets.

  4. X-Ray Powder Diffraction with Guinier - Haegg Focusing Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Allan

    1970-12-15

    The Guinier - Haegg focusing camera is discussed with reference to its use as an instrument for rapid phase analysis. An actual camera and the alignment procedure employed in its setting up are described. The results obtained with the instrument are compared with those obtained with Debye - Scherrer cameras and powder diffractometers. Exposure times of 15 - 30 minutes with compounds of simple structure are roughly one-sixth of those required for Debye - Scherrer patterns. Coupled with the lower background resulting from the use of a monochromatic X-ray beam, the shorter exposure time gives a ten-fold increase in sensitivity for the detection of minor phases as compared with the Debye - Scherrer camera. Attention is paid to the precautions taken to obtain reliable Bragg angles from Guinier - Haegg film measurements, with particular reference to calibration procedures. The evaluation of unit cell parameters from Guinier - Haegg data is discussed together with the application of tests for the presence of angle-dependent systematic errors. It is concluded that with proper calibration procedures and least squares treatment of the data, accuracies of the order of 0.005% are attainable. A compilation of diffraction data for a number of compounds examined in the Active Central Laboratory at Studsvik is presented to exemplify the scope of this type of powder camera.

  5. Federated repositories of X-ray diffraction images.

    Science.gov (United States)

    Androulakis, Steve; Schmidberger, Jason; Bate, Mark A; DeGori, Ross; Beitz, Anthony; Keong, Cyrus; Cameron, Bob; McGowan, Sheena; Porter, Corrine J; Harrison, Andrew; Hunter, Jane; Martin, Jennifer L; Kobe, Bostjan; Dobson, Renwick C J; Parker, Michael W; Whisstock, James C; Gray, Joan; Treloar, Andrew; Groenewegen, David; Dickson, Neil; Buckle, Ashley M

    2008-07-01

    There is a pressing need for the archiving and curation of raw X-ray diffraction data. This information is critical for validation, methods development and improvement of archived structures. However, the relatively large size of these data sets has presented challenges for storage in a single worldwide repository such as the Protein Data Bank archive. This problem can be avoided by using a federated approach, where each institution utilizes its institutional repository for storage, with a discovery service overlaid. Institutional repositories are relatively stable and adequately funded, ensuring persistence. Here, a simple repository solution is described, utilizing Fedora open-source database software and data-annotation and deposition tools that can be deployed at any site cheaply and easily. Data sets and associated metadata from federated repositories are given a unique and persistent handle, providing a simple mechanism for search and retrieval via web interfaces. In addition to ensuring that valuable data is not lost, the provision of raw data has several uses for the crystallographic community. Most importantly, structure determination can only be truly repeated or verified when the raw data are available. Moreover, the availability of raw data is extremely useful for the development of improved methods of image analysis and data processing.

  6. DETERMINATION OF REACTION KINETICS USING ONLINE X-RAY DIFFRACTION

    Directory of Open Access Journals (Sweden)

    Elida Purba

    2010-06-01

    Full Text Available X-ray diffraction (XRD is a powerful technique for the study of polymorphism and polymorphic phase transformations. Monitoring of phase transformation directly has been very limited to-date. The XRD system used in this study was used to determine the rate of transformation of pure glutamic acid a form to b form in a solution mediated phase. On every run starting from the pure a form, the transformation process was monitored continuously at fixed temperature, and separate experiments were performed as a function of temperature. The operating temperature was varied from 36 to 57 °C with 10% w/w solid concentration. Data were taken every 200 seconds until the transformation was completed. This paper is concerned with a study of the transformation of the alpha (a form of L-glutamic acid (L-GA to the beta (b form in order to determine the kinetic reaction. The rate constant (k, activation energy (Ea and pre-exponential factor (A were obtained. Sensitivity tests were also carried out to examine minimum detection limit when both a and b present in the mixture. In addition, effect of particle size on XRD patterns was also determined. The results show that XRD gives useful information to observe polymorphism for pharmaceutical industry.     Keywords: XRD, polymorphism, glutamic acid, reaction kinetics

  7. Double-confocal resonator for X-ray generation via intracavity Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, M. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    There has been a growing interest in developing compact X-ray sources through Thomson scattering of a laser beam by a relativistic electron beam. For higher X-ray flux it is desirable to have the scattering to occur inside an optical resonator where the laser power is higher. In this paper I propose a double-confocal resonator design optimized for head-on Thomson scattering inside an FEL oscillator and analyze its performance taking into account the diffraction and FEL gain. A double confocal resonator is equivalent to two confocal resonators in series. Such a resonator has several advantages: it couples electron beam through and X-ray out of the cavity with holes on cavity mirrors, thus allowing the system to be compact; it supports the FEL mode with minimal diffraction loss through the holes; it provides a laser focus in the forward direction for a better mode overlap with the electron beam; and it provides a focus at the same location in the backward direction for higher Thomson scattering efficiency; in addition, the mode size at the focal point and hence the Rayleigh range can be adjusted simply through intracavity apertures; furthermore, it gives a large mode size at the mirrors to reduce power loading. Simulations as well as analytical results will be presented. Also other configurations of intracavity Thomson scattering where the double-confocal resonator could be useful will be discussed.

  8. Characterization of Polycrystalline Materials Using Synchrotron X-ray Imaging and Diffraction Techniques

    DEFF Research Database (Denmark)

    Ludwig, Wolfgang; King, A.; Herbig, M.

    2010-01-01

    The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using...... propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray...

  9. Scattering of X-rays on the surface acoustic wave in the case of grazing geometry

    CERN Document Server

    Mkrtchyan, A R; Petrosian, A

    2000-01-01

    The scattering of X-rays on a crystal is considered in grazing geometry when a surface acoustic wave is excited normal to the diffraction vector. The intensity of wave field at finite distance from crystal to detector is obtained. It is shown that in the presence of surface acoustic wave the magnitude of the main peak of specular reflected diffracted wave intensity decreases and intensity of satellites increases. The main peak of specular reflected diffracted wave intensity is split up as the grazing observation angle increases.

  10. A Spectrometer for X-Ray Energy-Dispersive Diffraction using Synchrotron Radiation

    DEFF Research Database (Denmark)

    Staun Olsen, Janus; Buras, B; Gerward, Leif

    1981-01-01

    Describes a white-beam X-ray energy-dispersive diffractometer built for Hasylab in Hamburg, FRG, using the synchrotron radiation from the electron storage ring DORIS. The following features of the instrument are discussed: horizontal or vertical scattering plane, collimators, sample environment......, remote control of the goniometer, data acquisition, energy-sensitive detectors using small-area and large-area detector crystals, modes of operation, powder and single crystal diffraction. An example is given from a high-pressure study of YbH2 using a diamond anvil cell....

  11. Characterization of Gas-Solid Reactions using In Situ Powder X-ray Diffraction

    DEFF Research Database (Denmark)

    Møller, Kasper Trans; Hansen, Bjarne Rosenlund Søndertoft; Dippel, Ann-Christin

    2014-01-01

    X-ray diffraction is a superior technique for structural characterization of crystalline matter. Here we review the use of in situ powder X-ray diffraction (PXD) mainly for real-time studies of solid/gas reactions, data analysis and the extraction of valuable knowledge of structural, chemical...

  12. X-Ray Diffraction Studies on the Thermal Stability of Calcium ...

    African Journals Online (AJOL)

    acer

    X-Ray Diffraction Studies on the Thermal Stability of Calcium-Strontium Hydroxyapatite ... X- ray diffraction technique has been used by several researchers to investigate the individual effect of some elements on the formation and some properties of apatite in synthetic and .... is consistent with the larger ionic radius of.

  13. X-Ray Diffraction and the Discovery of the Structure of DNA

    Science.gov (United States)

    Crouse, David T.

    2007-01-01

    A method is described for teaching the analysis of X-ray diffraction of DNA through a series of steps utilizing the original methods used by James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin. The X-ray diffraction pattern led to the conclusion of the basic helical structure of DNA and its dimensions while basic chemical principles…

  14. DEVELOPMENT OF NEW INSTRUMENTATION AND TECHNIQUES IN X-RAY DIFFRACTION.

    Science.gov (United States)

    This Project had as its original objectives the development of new instrumentation and techniques in x-ray diffraction and the improvement of...recent years emphasis was shifted to, or was concentrated on, the development of low-temperature x-ray diffraction methods and on studies carried out

  15. Resonant inelastic scattering at intermediate X-ray energies

    CERN Document Server

    Hague, C F; Journel, L; Gallet, J J; Rogalev, A; Krill, G; Kappler, J P

    2000-01-01

    We describe resonant inelastic X-ray scattering (RIXS) experiments and magnetic circular dichroism (MCD) in X-ray fluorescence performed in the 3-5 keV range. The examples chosen are X-ray fluorescence MCD of FeRh and RIXS experiments performed at the L/sub 3/ edge of Ce. Fe Rh is antiferromagnetic at room temperature but has a transition to the ferromagnetic state above 400 K. The Rh MCD signal is compared with an augmented spherical wave calculation. The experiment confirms the predicted spin polarization of the Rh 4d valence states. The RIXS measurements on Ce compounds and intermetallics address the problem of mixed valency especially in systems where degeneracy with the Fermi level remains small. Examples are taken from the 2p to (4f5d) /sup +1/ followed by 3d to 2p RIXS for a highly ionic compound CeF /sub 3/ and for almost gamma -like CeCuSi. (38 refs).

  16. Microbubbles as x-ray scattering contrast agents using analyzer-based imaging

    Energy Technology Data Exchange (ETDEWEB)

    Arfelli, F [Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste (Italy); Rigon, L [Istituto Nazionale di Fisica Nucleare-Sezione di Trieste, Via Valerio 2, 34127 Trieste (Italy); Menk, R H [Sincrotrone Trieste S.C.p.A., Strada Statale 14-km 163.5 in AREA Science Park, 34012 Basovizza, Trieste (Italy)

    2010-03-21

    Conventional contrast agents utilized in diagnostic radiology are based on x-ray absorption properties; alternative physical principles capable of providing a contrast enhancement in radiographs have never been applied. This study exploits the possibility of using a novel type of contrast media based on x-ray scattering. The contrast agents consist of microbubble echo-enhancing agents, usually applied in ultrasound examinations, which are invisible with conventional x-ray absorption techniques. The experiment was carried out at the medical beamline of the synchrotron radiation laboratory ELETTRA in Trieste, Italy. A flat silicon analyzer crystal typically used for diffraction-enhanced imaging was utilized as a tool for detecting the scattering properties of the contrast agents. In analyzer-based imaging, it is possible to detect the scattering properties of the sample by shifting the analyzer crystal to selected positions of its reflectivity curve. In particular, when the sample consists of a large number of micro-particles an overall effect can be observed. Phantoms containing contrast agents based on microbubbles were imaged at different angular positions of the analyzer crystal. High visibility of the details was demonstrated, and a strong contrast enhancement was measured compared to normal x-ray absorption techniques.

  17. IN SITU SURFACE X-RAY SCATTERING STUDIES OF ELECTROSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    WANG,J.X.; ADZIC,R.R.; OCKO,B.M.

    1998-07-01

    A short review of the application of surface x-ray scattering techniques to the electrode/electrolyte interfaces is presented. Recent results on metal, halide, and metal-halide adlayers with three specific systems: Bi on Au(100) and Au(110); Br on Au(100) and Ag(100); and the coadsorption of Tl with Br or I on Au(111), are given as an illustration. Factors affecting ordering of pure metal and halide adlayers and the metal-halide surface compounds are discussed in some detail.

  18. Microfocus X-ray scattering investigations of eggshell nanotexture.

    Science.gov (United States)

    Lammie, Donna; Bain, Maureen M; Wess, Tim J

    2005-11-01

    The avian eggshell is a highly ordered calcitic bioceramic composite, with both inorganic and organic constituents. The interactions between the inorganic and organic components within the structure are poorly understood but are likely to occur at the nanometre level. Thus structural variation at this level may impinge on the overall structural integrity and mechanical performance of the eggshell, and therefore analysis at this level is fundamental in fully understanding this ordered structure. In this study, structural changes in the mineral crystallites were investigated by microfocus small-angle X-ray scattering (microSAXS) using synchrotron radiation. Small-angle X-ray scattering (SAXS) can be used to investigate structures on the nanometre scale such as size, shape, arrangement and internal porosity. A microfocused X-ray beam, 1.5 microm vertically by 7 microm, was used to produce vertical linear scans of the eggshell section. SAXS patterns were taken from the eggshell membrane (inner surface of the eggshell) to the cuticle (outer surface of the eggshell). This allowed textural variations within the eggshell to be mapped. The scattering intensity profile was then used to derive the dimension of scattering objects that define the nanotexture. The nanotexture observed may result from the presence of the organic matrix, which is embedded as intracrystalline particles producing voids within the calcified framework of large (>1 microm) calcite crystals. Porod analysis revealed the average size of a scattering interface to be approximately 4.5 nm with small changes that had a depth-dependent variation. These were largest at the mammillary layer/membrane boundary. The palisade layer displayed a small upward trend in size of scattering object. Parallel scans showed that the textural variations observed within the palisade layer are significant and indicate local subtextures. In addition, many of the patterns exhibit diffuse scattering streaks that could result from

  19. Low-angle X-ray scattering from spices

    Energy Technology Data Exchange (ETDEWEB)

    Desouky, O.S. E-mail: omardesouky@yahoo.com; Ashour, Ahmed H.; Abdullah, Mohamed I.; Elshemey, Wael M

    2002-07-01

    Low-angle scattering of X-rays is characterized by the presence of one or more peaks in the forward direction of scattering. These peaks are due to the interference of photons coherently scattered from the molecules of the medium. Thus these patterns are closely linked to the molecular structure of the investigated medium. In this work, low-angle X-ray scattering (LAXS) profiles of five spices; pimpinella anisum (anise), coriandrum sativum (coriander), cuminum cyminum (cumin), foenculum vulgare (fennel) and nigella sativa (nigella or black cumin) are presented after extensive measurements. It is found that all spices exhibit one characteristic peak at a scattering angle around 10 deg. This is equivalent to a value x=0.0565 A{sup -1}, where x=sin({theta}/2)/{lambda}. The full width at half maximum (FWHM) of this peak is found to be characteristic for each type of the investigated spices. The possibility to detect the irradiation of these spices from their LAXS profiles is also examined after 10, 20, 30 and 40 kGy doses of gamma radiation. Except for anise, coriander and cumin at 40 kGy, there are no detectable deviations from the control samples in the scattering profiles of irradiated samples. These results comply with the recommendations of the FDA (US Food and Drug Administration) which defines 30 kGy as the maximum dose for irradiation of spices. The present technique could be used to detect over-irradiation, which causes damage to the molecular structure of some spices.

  20. Low-angle X-ray scattering from spices

    Science.gov (United States)

    Desouky, Omar S.; Ashour, Ahmed H.; Abdullah, Mohamed I.; Elshemey, Wael M.

    2002-07-01

    Low-angle scattering of X-rays is characterized by the presence of one or more peaks in the forward direction of scattering. These peaks are due to the interference of photons coherently scattered from the molecules of the medium. Thus these patterns are closely linked to the molecular structure of the investigated medium. In this work, low-angle X-ray scattering (LAXS) profiles of five spices; pimpinella anisum (anise), coriandrum sativum (coriander), cuminum cyminum (cumin), foenculum vulgare (fennel) and nigella sativa (nigella or black cumin) are presented after extensive measurements. It is found that all spices exhibit one characteristic peak at a scattering angle around 10°. This is equivalent to a value x=0.0565 Å -1, where x=sin( θ⧸2)⧸ λ. The full width at half maximum (FWHM) of this peak is found to be characteristic for each type of the investigated spices. The possibility to detect the irradiation of these spices from their LAXS profiles is also examined after 10, 20, 30 and 40 kGy doses of gamma radiation. Except for anise, coriander and cumin at 40 kGy, there are no detectable deviations from the control samples in the scattering profiles of irradiated samples. These results comply with the recommendations of the FDA (US Food and Drug Administration) which defines 30 kGy as the maximum dose for irradiation of spices. The present technique could be used to detect over-irradiation, which causes damage to the molecular structure of some spices.

  1. Cross-sectional X-ray nanobeam diffraction analysis of a compositionally graded CrN{sub x} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Bartosik, M., E-mail: matthias.bartosik@tuwien.ac.at [Department of Materials Physics, Montanuniversität Leoben and Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (Austria); Christian Doppler Laboratory for Application Oriented Coating Development, Montanuniversitat Leoben and Vienna University of Technology (Austria); Daniel, R.; Mitterer, C. [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben (Austria); Matko, I. [Institute of Physics, Slovak Academy of Sciences, Bratislava (Slovakia); Burghammer, M. [European Synchrotron Radiation Facility, Grenoble (France); Mayrhofer, P.H. [Christian Doppler Laboratory for Application Oriented Coating Development, Montanuniversitat Leoben and Vienna University of Technology (Austria); Institute of Materials Science and Technology, Vienna University of Technology (Austria); Keckes, J. [Department of Materials Physics, Montanuniversität Leoben and Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (Austria); Materials Center Leoben GmbH, Leoben (Austria)

    2013-09-02

    Synchrotron X-ray nanodiffraction is used for the position-resolved characterization of a nanocrystalline graded CrN{sub x} thin film deposited with continuously increasing nitrogen content over the 6 μm film thickness. The diffraction experiment is performed in wide angle X-ray scattering transmission geometry using a monochromatic beam of 100 nm in diameter. The results reveal a complex microstructure and texture evolution in hexagonal Cr{sub 2}N and cubic CrN{sub x} phases as well as a compressive strain increase in CrN{sub x} towards the film surface. - Highlights: • Cross-sectional X-ray nanodiffraction analysis of a graded thin film • Position-resolved characterization of microstructure, strain and phases • Comparison of cross-sectional TEM and X-ray nanodiffraction.

  2. X-ray grazing incidence diffraction from multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tixier, S.; Boeni, P.; Swygenhoven, H. van; Horisberger, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Grazing incidence scattering geometries using synchrotron radiation have been applied in order to characterise the roughness profiles and the structural coherence of multilayers. The lateral correlation length of the roughness profiles was evaluated using diffuse reflectivity in the `out of plane` geometry. This type of measurement is the only diffuse reflectivity technique allowing large lateral momentum transfer. It is typically suitable for correlation lengths smaller than 1000 A. The lateral structural coherence length of Ni{sub 3}Al/Ni multilayers as a function of the layer thickness was obtained by grazing incidence diffraction (GID). 3 figs., 1 ref.

  3. The 100th anniversary of the discovery of X-ray diffraction

    Science.gov (United States)

    Ilyushin, A. S.; Kovalchuk, M. V.

    2012-09-01

    A general historical essay on studies related to the discovery of X-ray diffraction, beginning with the first works by W.C. Roentgen, W. Friedrich, P. Knipping, and M. Laue, is presented. The coming of age of X-ray diffraction as an efficient tool for determining crystal structure is considered. The pioneering studies by W.G. Bragg, W.L. Bragg, Yu.V. Wulf, and E.C. Fedorov are briefly reviewed. The contribution of the Russian scientific school to the development of X-ray studies is indicated. The modern state and the directions of development of X-ray physics are discussed.

  4. Resonant X-ray scattering studies of concentrated aqueous solutions

    CERN Document Server

    Ramos, S

    2001-01-01

    structure of the three cations is also presented in this thesis. This work illustrates one of the main advantages of RXD: the possibility of carrying out systematic structural studies on all elements with atomic number greater than 28 (Ni). Finally, a critical discussion on the actual stage of development of RXD is presented. The results shown offer evidence of the future prospects of the technique and justify further efforts to develop it to the level of reliability and ease of use that NDIS has reached after more than three decades of development. The microscopic structure of concentrated aqueous electrolyte solutions has been studied by resonant X-ray diffraction (RXD). This technique provides a method for the measurement of the structure around a specific atom or ion in solution. In that sense, RXD is the X-ray equivalent of neutron diffraction with isotopic substitution (NDIS). The use of RXD as an alternative to NDIS has been considered of interest for some time; it is potentially one of the best method...

  5. Femtosecond X-ray scattering in condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Korff Schmising, Clemens von

    2008-11-24

    This thesis investigates the manifold couplings between electronic and structural properties in crystalline Perovskite oxides and a polar molecular crystal. Ultrashort optical excitation changes the electronic structure and the dynamics of the connected reversible lattice rearrangement is imaged in real time by femtosecond X-ray scattering experiments. An epitaxially grown superlattice consisting of alternating nanolayers of metallic and ferromagnetic strontium ruthenate (SRO) and dielectric strontium titanate serves as a model system to study optically generated stress. In the ferromagnetic phase, phonon-mediated and magnetostrictive stress in SRO display similar sub-picosecond dynamics, similar strengths but opposite sign and different excitation spectra. The amplitude of the magnetic component follows the temperature dependent magnetization square, whereas the strength of phononic stress is determined by the amount of deposited energy only. The ultrafast, phonon-mediated stress in SRO compresses ferroelectric nanolayers of lead zirconate titanate in a further superlattice system. This change of tetragonal distortion of the ferroelectric layer reaches up to 2 percent within 1.5 picoseconds and couples to the ferroelectric soft mode, or ion displacement within the unit cell. As a result, the macroscopic polarization is reduced by up to 100 percent with a 500 femtosecond delay that is due to final elongation time of the two anharmonically coupled modes. Femtosecond photoexcitation of organic chromophores in a molecular, polar crystal induces strong changes of the electronic dipole moment via intramolecular charge transfer. Ultrafast changes of transmitted X-ray intensity evidence an angular rotation of molecules around excited dipoles following the 10 picosecond kinetics of the charge transfer reaction. Transient X-ray scattering is governed by solvation, masking changes of the chromophore's molecular structure. (orig.)

  6. The life science x-ray scattering beamline at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    DiFabio, Jonathan; Chodankar, Shirish; Pjerov, Sal; Jakoncic, Jean; Lucas, Michael; Graziano, Vito; Yang, Lin, E-mail: lyang@bnl.gov [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York (United States); Krywka, Christina [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York (United States); On leave from Institut für Werkstoffforschung, Helmholtz-Zentrum Geesthacht, Hamburg (Germany)

    2016-07-27

    We report the current development status of the High Brightness X-ray Scattering for Life Sciences (or Life Science X-ray Scattering, LiX) beamline at the NSLS-II facility of Brookhaven National Laboratory. This instrument will operate in the x-ray energy range of 2.1-18 keV, provide variable beam sizes from 1 micron to ∼0.5 mm, and support user experiments in three scientific areas: (1) high-throughput solution scattering, in-line size exclusion chromatography and flow mixers-based time-resolved solution scattering of biological macro-molecules, (2) diffraction from single- and multi-layered lipid membranes, and (3) scattering-based scanning probe imaging of biological tissues. In order to satisfy the beam stability required for these experiments and to switch rapidly between different types of experiments, we have adopted a secondary source with refractive lenses for secondary focusing, a detector system consisting of three Pilatus detectors, and specialized experimental modules that can be quickly exchanged and each dedicated to a defined set of experiments. The construction of this beamline is on schedule for completion in September 2015. User experiments are expected to start in Spring 2016.

  7. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Van Benschoten, Andrew H. [University of California San Francisco, San Francisco, CA 94158 (United States); Afonine, Pavel V. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Terwilliger, Thomas C.; Wall, Michael E. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Jackson, Colin J. [Australian National University, Canberra, ACT 2601 (Australia); Sauter, Nicholas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California Berkeley, Berkeley, CA 94720 (United States); Urzhumtsev, Alexandre [Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Université de Lorraine, BP 239, 54506 Vandoeuvre-les-Nancy (France); Fraser, James S., E-mail: james.fraser@ucsf.edu [University of California San Francisco, San Francisco, CA 94158 (United States)

    2015-07-28

    A method of simulating X-ray diffuse scattering from multi-model PDB files is presented. Despite similar agreement with Bragg data, different translation–libration–screw refinement strategies produce unique diffuse intensity patterns. Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls-as-xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.

  8. A high-pressure vessel for X-ray diffraction experiments for liquids in a wide temperature range

    CERN Document Server

    Hosokawa, S

    2001-01-01

    An internally heated high-pressure vessel was developed for angle-dispersive X-ray scattering experiments on liquids at high-temperatures and high-pressures. It consists of a closed-end Al cylinder and a steel flange. Continuous windows made of Be cover a scattering angle range up to 55 deg. In combination with a single-crystal sapphire cell and a small heating system inside the vessel, we were able to carry out diffraction measurements for liquids in a wide temperature range up to 2000 K at high pressures up to 150 bars. Some of our recent X-ray scattering experiments using synchrotron radiation, such as inelastic scattering, high-energy elastic scattering, and anomalous scattering, are also reported.

  9. Imaging Nonequilibrium Atomic Vibrations with X-ray Diffuse Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Trigo, M.; Chen, J.; Vishwanath, V.H.; /SLAC; Sheu, Y.M.; /Michigan U.; Graber, T.; Henning, R.; /U. Chicago; Reis, D; /SLAC /Stanford U., Appl. Phys. Dept.

    2011-03-03

    We use picosecond x-ray diffuse scattering to image the nonequilibrium vibrations of the lattice following ultrafast laser excitation. We present images of nonequilibrium phonons in InP and InSb throughout the Brillouin-zone which remain out of equilibrium up to nanoseconds. The results are analyzed using a Born model that helps identify the phonon branches contributing to the observed features in the time-resolved diffuse scattering. In InP this analysis shows a delayed increase in the transverse acoustic (TA) phonon population along high-symmetry directions accompanied by a decrease in the longitudinal acoustic (LA) phonons. In InSb the increase in TA phonon population is less directional.

  10. Note: Construction of x-ray scattering and x-ray absorption fine structure beamline at the Pohang Light Source.

    Science.gov (United States)

    Lee, Ik-Jae; Yu, Chung-Jong; Yun, Young-Duck; Lee, Chae-Soon; Seo, In Deuk; Kim, Hyo-Yun; Lee, Woul-Woo; Chae, Keun Hwa

    2010-02-01

    A new hard x-ray beamline, 10B KIST-PAL beamline (BL10B), has been designed and constructed at the Pohang Light Source (PLS) in Korea. The beamline, operated by Pohang Accelerator Laboratory-Korean Institute of Science and Technology consortium, is dedicated to x-ray scattering (XRS) and x-ray absorption fine structure (XAFS) experiments. X rays with photon energies from 4.0 to 16.0 keV are delivered to the experimental station passing a collimating mirror, a fixed-exit double-crystal Si(111) monochromator, and a toroidal mirror. Basic experimental equipment for XAFS measurement, a high resolution diffractometry, an image plate detector system, and a hot stage have been prepared for the station. From our initial commissioning and performance testing of the beamline, it is observed that BL10B beamline can perform XRS and XAFS measurements successfully.

  11. Revisiting Bragg's X-ray microscope: scatter based optical transient grating detection of pulsed ionising radiation.

    Science.gov (United States)

    Fullagar, Wilfred K; Paganin, David M; Hall, Chris J

    2011-06-01

    Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Three-dimensional coherent X-ray surface scattering imaging near total external reflection

    Science.gov (United States)

    Sun, Tao; Jiang, Zhang; Strzalka, Joseph; Ocola, Leonidas; Wang, Jin

    2012-09-01

    Lensless X-ray coherent diffraction imaging (CDI) has emerged as a thriving field promising applications in materials and biological sciences with a theoretical imaging resolution only limited by the X-ray wavelength. Most CDI methods use transmission geometry, which is not suitable for nanostructures grown on opaque substrates or for objects of interest comprising only surfaces or interfaces. Attempts have been made to perform CDI experiments in reflection geometry, both optically and with X-rays, but the reconstruction resulted in mostly planar images, with less success in the third dimension. Here, we discuss the development of coherent surface scattering imaging in grazing-incidence geometry that takes advantage of enhanced X-ray surface scattering and interference near total external reflection. We demonstrate the successful reconstruction of substrate-supported non-periodic surface patterns in three dimensions with nanometre resolution in the direction normal to the substrate, promising wide applications in elucidating structures in substrate-supported and buried nanoelectronics and photonics.

  13. Analysis of synchrotron X-ray diffraction patterns from fluorotic enamel samples

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ana P.G.; Braz, Delson, E-mail: anapaulagalmeida@gmail.co [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Colaco, Marcos V.; Barroso, Regina C., E-mail: cely@uerj.b [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica; Porto, Isabel M., E-mail: belporto@ig.com.b [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Faculdade de Odontologia; Gerlach, Raquel F., E-mail: rfgerlach@forp.usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Odontologia; Droppa Junior, Roosevelt, E-mail: rdroppa@lnls.b [Associacao Brasileira de Tecnologia de Luz Sincrotron (ABTLuS), Campinas, SP (Brazil)

    2009-07-01

    With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basics physical-chemistry reactions of demineralisation and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The hexagonal symmetry seems to work well with the powder diffraction data, and the crystal structure of HAp is usually described in space group P63/m. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using technique Synchrotron X-ray diffraction in order to determine the crystal structure and crystallinity of on fluoroapatite (FAp) crystal present in fluoritic enamel. All the scattering profile measurements was carried out at the X-ray diffraction beamline (XRD1) at the National Synchrotron Light Laboratory - LNLS, Campinas, Brazil. (author)

  14. Applications of X-ray powder diffraction in materials chemistry.

    Science.gov (United States)

    Skakle, Jan

    2005-01-01

    X-ray powder diffraction is a standard technique in materials chemistry, yet it is often still used in the laboratory as a "one-hit" technique, e.g. for fingerprinting and following the progress of reactions. It is important, however, that the wealth of information available from powder data is not overlooked. While it is only possible here to scratch the surface of possibilities, a range of examples from our research is used to emphasize some of the more accessible techniques and to highlight successes as well as potential problems. The first example is the study of solid solution formation in the oxide systems Ba(3-3x)La(2x)V2O8 and Sr(4-x)Ba(x)Mn3O10 and in the silicate-hydroxyapatite bioceramic, Ca10(PO4)6-x(SiO4)x(OH)2-x. Database mining is also explored, using three phases within the pseudobinary phase diagram Li3SbO4-CuO as examples. All three phases presented different challenges: the structure of Li3SbO4 had been previously reported in higher symmetry than was actually the case, Li3Cu2SbO6 was found to be isostructural with Li2TiO3 but the cation ordering had to be rationalized, and Li3CuSbO5 was believed to be triclinic, presenting challenges in indexing the powder pattern. Quantitative phase analysis is briefly discussed, with the emphasis both on success (determination of amorphous phase content in a novel cadmium arsenate phase) and on possible failure (compositional analysis in bone mineral); the reasons for the problems in the latter are also explored. Finally, the use of an area detector system has been shown to be of value in the study of orientational effects (or lack of them) in non- and partially-ordered biomaterials, including p-HEMA, annulus fibrosis of lumbar discs, and keratin in the horn of cow's hooves. Copyright 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc

  15. Low angle X-ray scattering in biological tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Carla; Braz, Delson; Pinto, Nivia G.V.; Lima, Joao C.; Castro, Carlos R.F.; Filgueiras, R.A.; Mendonca, Leonardo; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mail: delson@lin.ufrj.br; Barroso, Regina C. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: cely@uerj.br

    2007-07-01

    Low-angle x-ray scatter (LAXS) for tissue characterization is based on the differences which result from the interference of photons coherently scattered from molecules of each sample. Biological samples (bone, blood and blood components) have been studied in recent years in our laboratory using powder diffractometer. The scattering information was obtained using a Shimadzu DRX 6000 diffractometer at the Nuclear Instrumentation Laboratory, Rio de Janeiro, Brazil. Unpolarized monoenergetic K{alpha} radiation from Cu provided 8.04 keV photons. The measurements were made in reflection mode ({theta}-2{theta} geometry), with the sample stationary on a goniometer which rotates the sample and detector about an axis lying in the plane of the top of the sample holder. LAXS profiles from whole blood, plasma and formed elements were measured to investigate the nature of scattering from such lyophilized samples. The statistical analysis shows that the variation found for the characterization parameters is significant for whole blood considering the age. Gender was positively associated with the variation of the second peak position for the profiles obtained for formed elements. The correlation of the measured relative coherent intensity with the mineral content in the bone samples was investigated. These results suggest that the measurement of bone mineral content within trabecular bone can be performed by using quantitative coherent scattering information. (author)

  16. X-ray micro diffraction study on mesostructured silica thin films

    CERN Document Server

    Noma, T; Miyata, H; Iida, A

    2001-01-01

    The local structure of highly ordered mesostructured silica films was investigated by using a synchrotron X-ray microbeam and a CCD X-ray detector. Two-dimensional X-ray diffraction patterns clearly showed the detailed arrangement of the mesostructures, in which the hexagonal mesochannels aligned uniaxially in the mesostructured silica films formed on a silica glass substrate with a rubbing-treated thin polyimide coating. The alignment direction was shown to be perpendicular to the rubbing direction. The grazing incidence condition revealed the structural anisotropy of the mesostructures, while normal incidence X-ray diffraction data indicated the in-plane structural uniformity of the films. Extra spots were observed in the diffraction patterns. This suggested that the X-ray beam reflected at the boundary of the mesostructured silica film and the substrate.

  17. Three-beam resonant X-ray diffraction in germanium - Laue transmission cases.

    Science.gov (United States)

    Thorkildsen, Gunnar; Larsen, Helge B; Weckert, Edgar; Mo, Frode; Mathiesen, Ragnvald H

    2005-07-01

    Perturbation of the two-beam diffracted power owing to the influence of a third lattice node has been examined for various three-beam cases in a small finite germanium crystal in the vicinity of the K-absorption edge. Although the crystal was slightly imperfect, the main parts of the experimental results are very well described within the framework of the fundamental theory of X-ray diffraction in conjunction with Cromer-Liberman calculations for the resonant scattering terms. Beam divergence and dynamical block size are treated as adjustable parameters in the analysis. Observed changes in the three-beam profile asymmetry are mainly attributed to size and not to resonance effects associated with the triplet phase sum of the involved reflections. Close to the absorption edge there is however some evidence indicating that f' values should be reduced in magnitude compared to the tabulated ones.

  18. Internal strains and stresses measured in cortical bone via high-energy x-ray diffraction.

    Energy Technology Data Exchange (ETDEWEB)

    Almer, J. D.; Stock, S. R.; Experimental Facilities Division (APS); Northwestern Univ.,

    2005-01-01

    High-energy synchrotron X-ray diffraction was used to study internal stresses in bone under in situ compressive loading. A transverse cross-section of a 12-14 year old beagle fibula was studied with 80.7 keV radiation, and the transmission geometry was used to quantify internal strains and corresponding stresses in the mineral phase, carbonated hydroxyapatite. The diffraction patterns agreed with tabulated patterns, and the distribution of diffracted intensity around 00.2/00.4 and 22.2 diffraction rings was consistent with the imperfect 00.1 fiber texture expected along the axis of a long bone. Residual compressive stress along the bone's longitudinal axis was observed in the specimen prior to testing: for 22.2 this stress equaled -95 MPa and for 00.2/00.4 was between -160 and -240 MPa. Diffraction patterns were collected for applied compressive stresses up to -110 MPa, and, up to about -100 MPa, internal stresses rose proportionally with applied stress but at a higher rate, corresponding to stress concentration in the mineral of 2.8 times the stress applied. The widths of the 00.2 and 00.4 diffraction peaks indicated that crystallite size perpendicular to the 00.1 planes increased from t = 41 nm before stress was applied to t = 44 nm at -118 MPa applied stress and that rms strain {var_epsilon}{sub rms} rose from 2200 {mu}{var_epsilon} before loading to 4600 {mu}{var_epsilon} at the maximum applied stress. Small angle X-ray scattering of the unloaded sample, recorded after deformation was complete, showed a collagen D-period of 66.4 nm (along the bone axis).

  19. Three-dimensional structure determination protocol for noncrystalline biomolecules using x-ray free-electron laser diffraction imaging.

    Science.gov (United States)

    Oroguchi, Tomotaka; Nakasako, Masayoshi

    2013-02-01

    Coherent and intense x-ray pulses generated by x-ray free-electron laser (XFEL) sources are paving the way for structural determination of noncrystalline biomolecules. However, due to the small scattering cross section of electrons for x rays, the available incident x-ray intensity of XFEL sources, which is currently in the range of 10(12)-10(13) photons/μm(2)/pulse, is lower than that necessary to perform single-molecule diffraction experiments for noncrystalline biomolecules even with the molecular masses of megadalton and submicrometer dimensions. Here, we propose an experimental protocol and analysis method for visualizing the structure of those biomolecules by the combined application of coherent x-ray diffraction imaging and three-dimensional reconstruction methods. To compensate the small scattering cross section of biomolecules, in our protocol, a thin vitreous ice plate containing several hundred biomolecules/μm(2) is used as sample, a setup similar to that utilized by single-molecule cryoelectron microscopy. The scattering cross section of such an ice plate is far larger than that of a single particle. The images of biomolecules contained within irradiated areas are then retrieved from each diffraction pattern, and finally provide the three-dimensional electron density model. A realistic atomic simulation using large-scale computations proposed that the three-dimensional structure determination of the 50S ribosomal subunit embedded in a vitreous ice plate is possible at a resolution of 0.8 nm when an x-ray beam of 10(16) photons/500×500 nm(2)/pulse is available.

  20. Beam-induced damage on diffractive hard X-ray optics.

    Science.gov (United States)

    Nygård, K; Gorelick, S; Vila-Comamala, J; Färm, E; Bergamaschi, A; Cervellino, A; Gozzo, F; Patterson, B D; Ritala, M; David, C

    2010-11-01

    The issue of beam-induced damage on diffractive hard X-ray optics is addressed. For this purpose a systematic study on the radiation damage induced by a high-power X-ray beam is carried out in both ambient and inert atmospheres. Diffraction gratings fabricated by three different techniques are considered: electroplated Au gratings both with and without the polymer mold, and Ir-coated Si gratings. The beam-induced damage is monitored by X-ray diffraction and evaluated using scanning electron microscopy.

  1. Interaction between lipid monolayers and poloxamer 188: An X-ray reflectivity and diffraction study

    DEFF Research Database (Denmark)

    Wu, G.H.; Majewski, J.; Ege, C.

    2005-01-01

    The mechanism by which poloxamer 188 (P188) seals a damaged cell membrane is examined using the lipid monolayer as a model system. X-ray reflectivity and grazing-incidence x-ray diffraction results show that at low nominal lipid density, P188, by physically occupying the available area and phase...

  2. A Furnace for Diffraction Studies using Synchrotron X-Ray Radiation

    DEFF Research Database (Denmark)

    Buras, B.; Lebech, Bente; Kofoed, W.

    1984-01-01

    A furnace for diffraction studies using synchrotron X-ray radiation is described. The furnace can be operated between ambient temperature and 1 800 °C with a temperature stability better than 5 °C for temperatures above 300 °C. Kapton windows allow almost 360° access for the X-ray beam...

  3. Crystallization via tubing microfluidics permits both in situ and ex situ X-ray diffraction.

    Science.gov (United States)

    Gerard, Charline J J; Ferry, Gilles; Vuillard, Laurent M; Boutin, Jean A; Chavas, Leonard M G; Huet, Tiphaine; Ferte, Nathalie; Grossier, Romain; Candoni, Nadine; Veesler, Stéphane

    2017-10-01

    A microfluidic platform was used to address the problems of obtaining diffraction-quality crystals and crystal handling during transfer to the X-ray diffractometer. Crystallization conditions of a protein of pharmaceutical interest were optimized and X-ray data were collected both in situ and ex situ.

  4. Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals

    Science.gov (United States)

    Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.

    2017-08-01

    We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.

  5. Time-Resolved X-Ray Diffraction: The Dynamics of the Chemical Bond

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2012-01-01

    We review the basic theoretical formulation for pulsed X-ray scattering on nonstationary molecular states. Relevant time scales are discussed for coherent as well as incpherent X-ray pulses. The general formalism is applied to a nonstationary diatomic molecule in order to highlight the relation b...

  6. Inelastic x-ray scattering measurements of liquid waterglycerol mixtures

    Science.gov (United States)

    Kajihara, Yukio; Shibata, Nanako; Inui, Masanori; Matsuda, Kazuhiro; Tsutsui, Satoshi

    2017-08-01

    We have carried out inelastic x-ray scattering measurements on liquid water-glycerol mixtures. The data are analyzed by a damped harmonic oscillator model with two excitations, longitudinal and transverse modes. The sound velocity of the longitudinal mode is almost constant (about 3.1 km/s), being independent of the composition. Thus the strength of 'fast sound' which we define the ratio of this IXS sound velocity to ultrasonic one is largest at pure water and gradually decrease with increasing mole fraction of glycerol. This result indicates that the relaxation phenomena of pure water gradually reduce with increasing the fraction of the solute: the scenario which we proposed for water-monohydric alcohol mixtures hold true for this water-trihydric alcohol mixtures.

  7. Transmission X-ray scattering as a probe for complex liquid-surface structures.

    Science.gov (United States)

    Fukuto, Masafumi; Yang, Lin; Nykypanchuk, Dmytro; Kuzmenko, Ivan

    2016-03-01

    The need for functional materials calls for increasing complexity in self-assembly systems. As a result, the ability to probe both local structure and heterogeneities, such as phase-coexistence and domain morphologies, has become increasingly important to controlling self-assembly processes, including those at liquid surfaces. The traditional X-ray scattering methods for liquid surfaces, such as specular reflectivity and grazing-incidence diffraction, are not well suited to spatially resolving lateral heterogeneities due to large illuminated footprint. A possible alternative approach is to use scanning transmission X-ray scattering to simultaneously probe local intermolecular structures and heterogeneous domain morphologies on liquid surfaces. To test the feasibility of this approach, transmission small- and wide-angle X-ray scattering (TSAXS/TWAXS) studies of Langmuir films formed on water meniscus against a vertically immersed hydrophilic Si substrate were recently carried out. First-order diffraction rings were observed in TSAXS patterns from a monolayer of hexagonally packed gold nanoparticles and in TWAXS patterns from a monolayer of fluorinated fatty acids, both as a Langmuir monolayer on water meniscus and as a Langmuir-Blodgett monolayer on the substrate. The patterns taken at multiple spots have been analyzed to extract the shape of the meniscus surface and the ordered-monolayer coverage as a function of spot position. These results, together with continual improvement in the brightness and spot size of X-ray beams available at synchrotron facilities, support the possibility of using scanning-probe TSAXS/TWAXS to characterize heterogeneous structures at liquid surfaces.

  8. Transmission X-ray scattering as a probe for complex liquid-surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuto, Masafumi; Yang, Lin; Nykypanchuk, Dmytro; Kuzmenko, Ivan

    2016-01-28

    The need for functional materials calls for increasing complexity in self-assembly systems. As a result, the ability to probe both local structure and heterogeneities, such as phase-coexistence and domain morphologies, has become increasingly important to controlling self-assembly processes, including those at liquid surfaces. The traditional X-ray scattering methods for liquid surfaces, such as specular reflectivity and grazing-incidence diffraction, are not well suited to spatially resolving lateral heterogeneities due to large illuminated footprint. A possible alternative approach is to use scanning transmission X-ray scattering to simultaneously probe local intermolecular structures and heterogeneous domain morphologies on liquid surfaces. To test the feasibility of this approach, transmission small- and wide-angle X-ray scattering (TSAXS/TWAXS) studies of Langmuir films formed on water meniscus against a vertically immersed hydrophilic Si substrate were recently carried out. First-order diffraction rings were observed in TSAXS patterns from a monolayer of hexagonally packed gold nanoparticles and in TWAXS patterns from a monolayer of fluorinated fatty acids, both as a Langmuir monolayer on water meniscus and as a Langmuir–Blodgett monolayer on the substrate. The patterns taken at multiple spots have been analyzed to extract the shape of the meniscus surface and the ordered-monolayer coverage as a function of spot position. These results, together with continual improvement in the brightness and spot size of X-ray beams available at synchrotron facilities, support the possibility of using scanning-probe TSAXS/TWAXS to characterize heterogeneous structures at liquid surfaces.

  9. Characteristic, parametric, and diffracted transition X-ray radiation for observation of accelerated particle beam profile

    Science.gov (United States)

    Chaikovska, I.; Chehab, R.; Artru, X.; Shchagin, A. V.

    2017-07-01

    The applicability of X-ray radiation for the observation of accelerated particle beam profiles is studied. Three types of quasi-monochromatic X-ray radiation excited by the particles in crystals are considered: characteristic X-ray radiation, parametric X-ray radiation, diffracted transition X-ray radiation. Radiation is collected at the right angle to the particle beam direction. It is show that the most intensive differential yield of X-ray radiation from Si crystal can be provided by characteristic radiation at incident electron energies up to tens MeV, by parametric radiation at incident electron energies from tens to hundreds MeV, by diffracted transition X-ray radiation at GeV and multi-GeV electron energies. Therefore these kinds of radiation are proposed for application to beam profile observation in the corresponding energy ranges of incident electrons. Some elements of X-ray optics for observation of the beam profile are discussed. The application of the DTR as a source of powerful tunable monochromatic linearly polarized X-ray beam excited by a multi-GeV electron beam on the crystal surface is proposed.

  10. X-ray Intermolecular Structure Factor (XISF): separation of intra- and intermolecular interactions from total X-ray scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Mou, Q.; Benmore, C. J.; Yarger, J. L.

    2015-06-01

    XISF is a MATLAB program developed to separate intermolecular structure factors from total X-ray scattering structure factors for molecular liquids and amorphous solids. The program is built on a trust-region-reflective optimization routine with the r.m.s. deviations of atoms physically constrained. XISF has been optimized for performance and can separate intermolecular structure factors of complex molecules.

  11. Determination of interfacial roughness using X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Munkholm, Anneli [Stanford Univ., CA (United States)

    1997-05-01

    Crystal truncation rod (CTR) scattering is shown to be a powerful technique for determining interfacial roughness non-destructively. By measuring the decay of scattering away from a Bragg reflection in the surface direction an rms roughness of the surface or interface can be extracted. The authors obtain rms roughness values with an accuracy of ± 0.1 Å. Sensitivity to lateral length scale roughness ranges from the wavelength of the x-rays to between 1,000--10,000 Å depending on the instrument function and the specific truncation rod. The influence of different cleans, as well as the thermal oxidation process, on the Si-SiO2 interface is investigated. A hot water treatment prior to the thermal oxidation is shown to roughen the Si-SiO2 interface. CTR scattering results also show a smoothing of the interface as a result of the oxidation process even for as little as 60 Å of thermal oxidation. Comparison between AFM and CTR scattering gives a consistent picture of the relative roughness of the wafers, although the absolute numbers do not agree. The differences in the absolute values can be explained by the lateral roughness scale that the two techniques measure, indicating that it is at periodicities below ~ 100 Å that the increased roughness observed by the x-ray is found. Crystal truncation rods are shown to be perpendicular to the surface and not along the crystallographic axes of a miscut crystal. It is shown that for a crystal terminated by a regular step array both an atomistic and a continuum description of CTR scattering give identical results. Furthermore, the atomistic approach is used to show that a diamond cubic surface with a miscut is inherently rough. Even for a small miscut the tilt of the CTR with respect to the crystallographic axes results in complications for measuring the rod intensity. The authors present schemes for determining the exact position of the CTR in reciprocal space and for measuring the miscut of a single

  12. Time-Resolved Soft X-ray Diffraction Reveals Transient Structural Distortions of Ternary Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Klaus Mann

    2009-11-01

    Full Text Available Home-based soft X-ray time-resolved scattering experiments with nanosecond time resolution (10 ns and nanometer spatial resolution were carried out at a table top soft X-ray plasma source (2.2–5.2 nm. The investigated system was the lyotropic liquid crystal C16E7/paraffin/glycerol/formamide/IR 5. Usually, major changes in physical, chemical, and/or optical properties of the sample occur as a result of structural changes and shrinking morphology. Here, these effects occur as a consequence of the energy absorption in the sample upon optical laser excitation in the IR regime. The liquid crystal shows changes in the structural response within few hundred nanoseconds showing a time decay of 182 ns. A decrease of the Bragg peak diffracted intensity of 30% and a coherent macroscopic movement of the Bragg reflection are found as a response to the optical pump. The Bragg reflection movement is established to be isotropic and diffusion controlled (1 μs. Structural processes are analyzed in the Patterson analysis framework of the time-varying diffraction peaks revealing that the inter-lamellar distance increases by 2.7 Å resulting in an elongation of the coherently expanding lamella crystallite. The present studies emphasize the possibility of applying TR-SXRD techniques for studying the mechanical dynamics of nanosystems.

  13. Development of an ultra-high resolution diffraction grating forsoft x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Voronov, Dmitriy L.; Cambie, Rossana; Feshchenko, Ruslan M.; Gullikson, Eric M.; Padmore, Howard A.; Vinogradov, Alexander V.; Yashchuk, Valeriy V.

    2007-08-21

    Resonant Inelastic X-ray Scattering (RIXS) is the one of themost powerful methods for investigation of the electronic structure ofmaterials, specifically of excitations in correlated electron systems.However the potential of the RIXS technique has not been fully exploitedbecause conventional grating spectrometers have not been capable ofachieving the extreme resolving powers that RIXS can utilize. State ofthe art spectrometers in the soft x-ray energy range achieve ~;0.25 eVresolution, compared to the energy scales of soft excitations andsuperconducting gap openings down to a few meV. Development ofdiffraction gratings with super high resolving power is necessary tosolve this problem. In this paper we study the possibilities offabrication of gratings of resolving power of up to 106 for the 0.5 1.5KeV energy range. This energy range corresponds to all or most of theuseful dipole transitions for elements of interest in most correlatedelectronic systems, i.e., oxygen K-edge of relevance to all oxides, thetransition metal L2,3 edges, and the M4,5 edges of the rare earths.Various approaches based on different kinds of diffraction gratings suchas deep-etched multilayer gratings, and multilayer coated echelettes arediscussed. We also present simulations of diffraction efficiency for suchgratings, and investigate the necessary fabricationtolerances.

  14. Small-angle techniques for the asymptotic analysis of X-ray diffraction peaks

    Energy Technology Data Exchange (ETDEWEB)

    Ciccariello, S. (Padua Univ. (Italy). Dipt. di Fisica ' G. Galilei' )

    1990-03-01

    Any wide-angle X-ray scattering (WAXS) peak, relevant to a powder sample of crystallites with negligible internal disorder, is the Fourier transform of the so-called oriented stick probability function (oSPF) of the filled part of the sample, with the stick orientated along the reflexion direction. From this observation the following consequences are obtained: The correlation function used in small-angle X-ray scattering (SAXS) is the average of the former oSPF's over all possible stick orientations; any peak profile asymptotically vanishes as S{sub r}h{sup -2}, where S{sub r} is the (specific) area of the interphase surface presented by the sample along the reflexion direction; oscillatory deviations, behaving as S{sub r,parallel}cos (hL)h{sup -2}, are present only when a subset (having area S{sub r,parallel}) of the interface, after having been translated by L along the reflexion direction, superposes on itself; the angularity of the interphase surface can be measured by a natural modification of the Porod integral relation. For samples really isotropic, the above quantities should not depend on the reflexion direction and thus they should be equal to those measured by SAXS experiments. These results are applied to three ideal isotropic powder samples made up, respectively, of monodisperse spherical, cubic and cylindrical crystallites as well as to the analysis of two WAXS peaks diffracted by two real samples of zirconia powders. (orig.).

  15. Probing deformation substructure by synchrotron X-ray diffraction and dislocation dynamics modelling.

    Science.gov (United States)

    Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P

    2010-09-01

    Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data.

  16. Definitive Mineralogy of Rocky and Icy Planets and Planetesimals Using Powder X-Ray Diffraction

    Science.gov (United States)

    Blake, D. F.; Sarrazin, P.

    2017-02-01

    X-ray diffraction is a definitive technique for mineral identification, quantification, and composition. Definitive mineralogical analysis can identify modern and ancient habitable environments and provide context for other measurements.

  17. Powder Handling Device for X-ray Diffraction Analysis with Minimal Sample Preparation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project consists of developing a Vibrating Sample Holder (VSH) for planetary X-Ray Diffraction (XRD) instruments. The principle of this novel sample handling...

  18. Powder Handling Device for X-ray Diffraction Analysis with Minimal Sample Preparation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project consists in developing a Vibrating Powder Handling System for planetary X-Ray Diffraction instruments. The principle of this novel sample handling...

  19. X-ray diffraction characterization of suspended structures forMEMS applications

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, P.; Tamura, N.; Lavelle, B.; Rigo, S.; Masri, T.; Bosseboeuf, A.; Sarnet, T.; Petit, J.-A.; Desmarres, J.-M.

    2005-09-15

    Mechanical stress control is becoming one of the major challenges for the future of micro and nanotechnologies. Micro scanning X-ray diffraction is one of the promising techniques that allows stress characterization in such complex structures at sub micron scales. Two types of MEMS structure have been studied: a bilayer cantilever composed of a gold film deposited on poly-silicon and a boron doped silicon bridge. X-ray diffraction results are discussed in view of numerical simulation experiments.

  20. Probing surface and interface morphology with Grazing Incidence Small Angle X-Ray Scattering

    National Research Council Canada - National Science Library

    Renaud, Gilles; Lazzari, Rémi; Leroy, Frédéric

    2009-01-01

    .... their shapes, their sizes and their spatial organization. This calls for dedicated morphological characterization tools, among which is the Grazing Incidence Small Angle X-Ray Scattering (GISAXS...

  1. Small angle neutron scattering and small angle X-ray scattering ...

    Indian Academy of Sciences (India)

    Abstract. The morphology of carbon nanofoam samples comprising platinum nanopar- ticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature ...

  2. Near diffraction limited coherent diffractive imaging with tabletop soft x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Richard L; Raymondson, Daisy A; La-O-Vorakiat, Chan; Paul, Ariel; Murnane, Margaret M; Kapteyn, Henry C [Department of Physics and JILA, University of Colorado and NIST, Boulder, Colorado (United States); Schlotter, William F [Stanford Synchrotron Radiation Laboratory, SLAC, Menlo Park, California (United States); Raines, Kevin; Miao Jianwei, E-mail: richard.sandberg@colorado.ed [Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California (United States)

    2009-09-01

    Tabletop coherent x-ray sources hold great promise for practical nanoscale imaging, in particular when coupled with diffractive imaging techniques. In initial work, we demonstrated lensless diffraction imaging using a tabletop high harmonic generation (HHG) source at 29 nm, achieving resolutions {approx} 200 nm. In recent work, we significantly enhanced our diffractive imaging resolution by implementing a new high numerical aperture (up to NA=0.6) scheme and field curvature correction where we achieved sub-100 nm resolution. Here we report the first demonstration of Fourier transform holography (FTH) with a tabletop SXR source, to acquire images with a resolution {approx} 90 nm. The resolution can be refined by applying phase retrieval. Additionally, we show initial results from FTH with 13.5 nm HHG radiation and demonstrate {approx} 180 nm resolution.

  3. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry.

    Science.gov (United States)

    Young, Matthias J; Bedford, Nicholas M; Jiang, Naisheng; Lin, Deqing; Dai, Liming

    2017-07-01

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically for in situ high-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Z cell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurements and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO2 under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO2 diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.

  4. X-ray diffraction and scanning electron microscopy of galvannealed coatings on steel.

    Science.gov (United States)

    Schmid, P; Uran, K; Macherey, F; Ebert, M; Ullrich, H-J; Sommer, D; Friedel, F

    2009-04-01

    The formation of Fe-Zn intermetallic compounds, as relevant in the commercial product galvannealed steel sheet, was investigated by scanning electron microscopy and different methods of X-ray diffraction. A scanning electron microscope with high resolution was applied to investigate the layers of the galvannealed coating and its topography. Grazing incidence X-ray diffraction (GID) was preferred over conventional Bragg-Brentano geometry for analysing thin crystalline layers because of its lower incidence angle alpha and its lower depth of information. Furthermore, in situ experiments at an environmental scanning electron microscope (ESEM) with an internal heating plate and at an X-ray diffractometer equipped with a high-temperature chamber were carried out. Thus, it was possible to investigate the phase evolution during heat treatment by X-ray diffraction and to display the growth of the zeta crystals in the ESEM.

  5. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    Science.gov (United States)

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-06-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions.

  6. Taking X-ray Diffraction to the Limit: Macromolecular Structures from Femtosecond X-ray Pulses and Diffraction Microscopy of Cells with Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, H N; Miao, J; Kirz, J; Sayre, D; Hodgson, K O

    2003-10-01

    The methodology of X-ray crystallography has recently been successfully extended to the structure determination of non-crystalline specimens. The phase problem was solved by using the oversampling method, which takes advantage of ''continuous'' diffraction pattern from non-crystalline specimens. Here we review the principle of this newly developed technique and discuss the ongoing experiments of imaging non-periodic objects, like cells and cellular structures using coherent and bright X-rays from the 3rd generation synchrotron radiation. In the longer run, the technique may be applied to image single biomolecules by using the anticipated X-ray free electron lasers. Computer simulations have so far demonstrated two important steps: (1) by using an extremely intense femtosecond X-ray pulse, a diffraction pattern can be recorded from a macromolecule before radiation damage manifests itself, and (2) the phase information can be ab initio retrieved from a set of calculated noisy diffraction patterns of single protein molecules.

  7. Dynamical x-ray diffraction from an icosahedral Al-Pd-Mn quasicrystal

    Energy Technology Data Exchange (ETDEWEB)

    Kycia, S.

    1996-04-23

    Primary extinction effects in diffraction from single grains of Al-Pd- Mn, and presumably many other FCI alloys, may be significant and should be corrected for prior to use of diffraction data in structural determinations. Probes based on dynamical diffraction effects, such as x-ray standing wave fluorescence, multiple beam interference, and x-ray transmission topographs, may now be used to study the bulk and surface structure of some quasicrystals. The observation of dynamical diffraction from icosahedral Al-Pd-Mn is a striking confirmation of the fact that quasicrystals can present a degree of structural perfection comparable to that found in the best periodic intermetallic crystals.

  8. In situ coherent x-ray scattering and STM studies of hexagonally reconstructed Au(001) in Electrolytes

    Science.gov (United States)

    Pierce, Michael S.; Komanicky, Vladimir; Barbour, Andi; Hennessy, Daniel; Su, Jun-Dar; Sandy, Alec; You, Hoydoo

    2011-03-01

    We have studied the dynamics of Au(001) and Au(111) surfaces in situ in 0.1 M HClO4 electrolyte solution using coherent x-ray scattering experiments and STM microscopy. Our coherent x-ray scattering experiments measure a correlation time for the surface as a function of applied potentials. Coherent x-ray scattering differs from the ordinary x-ray diffraction in sensitivity to the structural and temporal details. The correlation times were obtained from measurements conducted while the surface is in equilibrium and the ordinary surface scattering intensity is constant. The correlation time changes from high 103 seconds to low 102 seconds. The correlation times of reconstructed surfaces at low potential are at least an order of magnitude smaller than those measured at the reconstructed surfaces in vacuum. The correlation times also change dramatically in response to the applied potential. These experiments also represent the first successful application of coherent x-ray scattering to the study of electrochemical interfaces in situ. Work at ANL is supported by DOE-BES and work at SU by VEGA.

  9. Resource Letter on Stimulated Inelastic X-ray Scattering at an XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Bruce D.; /SLAC

    2010-09-02

    At sufficient X-ray intensity, stimulated effects in inelastic scattering will become important. These coherent, non-linear optical phenomena may be used to impulsively produce a high degree of collective excitation in, for example, correlated electron materials, suitable for performing ultrafast time-resolved spectroscopy. This Resource Letter collects information on fundamental aspects of stimulated X-ray scattering and evaluates the prospect for successful experiments at a present or future X-ray free electron laser (XFEL) facility.

  10. Interior tomographic imaging for x-ray coherent scattering (Conference Presentation)

    Science.gov (United States)

    Pang, Sean; Zhu, Zheyuan

    2017-05-01

    Conventional computed tomography reconstructs the attenuation only high-dimensional images. Coherent scatter computed tomography, which reconstructs the angular dependent scattering profiles of 3D objects, can provide molecular signatures that improves the accuracy of material identification and classification. Coherent scatter tomography are traditionally acquired by setups similar to x-ray powder diffraction machine; a collimated source in combination with 2D or 1D detector collimation in order to localize the scattering point. In addition, the coherent scatter cross-section is often 3 orders of magnitude lower than that of the absorption cross-section for the same material. Coded aperture and structured illumination approaches has been shown to greatly improve the collection efficiency. In many applications, especially in security imaging and medical diagnosis, fast and accurate identification of the material composition of a small volume within the whole object would lead to an accelerated imaging procedure and reduced radiation dose. Here, we report an imaging method to reconstruct the material coherent scatter profile within a small volume. The reconstruction along one radial direction can reconstruct a scalar coherent scattering tomographic image. Our methods takes advantage of the finite support of the scattering profile in small angle regime. Our system uses a pencil beam setup without using any detector side collimation. Coherent scatter profile of a 10 mm scattering sample embedded in a 30 mm diameter phantom was reconstructed. The setup has small form factor and is suitable for various portable non-destructive detection applications.

  11. Spectroscopic and X-ray Diffraction Study of Structural Disorder in Cryomilled and Amorphous Griseofulvin

    Energy Technology Data Exchange (ETDEWEB)

    A Zarow; B Zhou; X Wang; R Pinal; Z Iqbal

    2011-12-31

    Structural disorder induced by cryogenic milling and by heating to the amorphous phase in the active pharmaceutical ingredient Griseofulvin has been studied using Raman spectroscopy, X-ray powder diffraction (XRPD), and fluorescence spectroscopy. A broad, exciting-frequency-independent scattering background in the Raman spectra and changes in intensities and splitting of some of the Raman lines due to lattice and molecular modes have been observed. In the cryomilled samples this strong background is deconvoluted into two components: one due to lattice disorder induced by cryomilling and the other due to Mie scattering from nanosized crystallites. A single-component background scattering attributed to lattice disorder is seen in the Raman spectrum of the amorphous sample. Fluorescence measurements showed an intrinsic fluorescence signal in as-received Griseofulvin that does not correspond to the inelastic background in the Raman spectra and, moreover, decreases in intensity upon cryomilling, thus excluding an assignment of the Raman background intensity to impurity- or molecular-defect-induced fluorescence. Wide-angle XRPD measurements on cryomilled Griseofulvin shows a broad two-component background consistent with the background-scattering component in the Raman data associated with lattice disorder, but at longer correlation lengths. Persistence of this disorder to even longer lengths is evident in small-angle synchrotron XRPD data on micronized Griseofulvin taken as a function of temperature from the crystalline to the amorphous phase.

  12. An in-vacuum diffractometer for resonant elastic soft x-ray scattering

    NARCIS (Netherlands)

    Hawthorn, D. G.; He, F.; Davis, H.; Achkar, A. J.; Zhang, J.; Sutarto, R.; Wadati, H.; Radi, A.; Wilson, T.; Wright, G.; Shen, K. M.; Geck, J.; Zhang, H.; Novak, V.; Sawatzky, G. A.; Venema, L.C.

    We describe the design, construction, and performance of a 4-circle in-vacuum diffractometer for resonant elastic soft x-ray scattering. The diffractometer, installed on the resonant elastic and inelastic x-ray scattering beamline at the Canadian Light Source, includes 9 in-vacuum motions driven by

  13. High energy x-ray reflectivity and scattering study from spectrum-x-gamma flight mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Budtz-Jørgensen, Carl; Frederiksen, P. Kk

    1993-01-01

    Line radiation from Fe K-alpha(1), Cu K-alpha(1), and Ag K-alpha(1) is used to study the high energy X-ray reflectivity and scattering behavior of flight-quality X-ray mirrors having various Al substrates. When both the specular and the scattered radiation are integrated, near theoretical...

  14. Densitometry and temperature measurement of combustion gas by X-ray Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Hiroshi, E-mail: sakuraih@gunma-u.ac.jp [Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Kawahara, Nobuyuki [Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Itou, Masayoshi [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Tomita, Eiji [Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Suzuki, Kosuke [Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2016-02-17

    Measurement of combustion gas by high-energy X-ray Compton scattering is reported. Measurement of combustion gas by high-energy X-ray Compton scattering is reported. The intensity of Compton-scattered X-rays has shown a position dependence across the flame of the combustion gas, allowing us to estimate the temperature distribution of the combustion flame. The energy spectra of Compton-scattered X-rays have revealed a significant difference across the combustion reaction zone, which enables us to detect the combustion reaction. These results demonstrate that high-energy X-ray Compton scattering can be employed as an in situ technique to probe inside a combustion reaction.

  15. Carbon Fiber Morphology. 2. Expanded Wide-Angle X-Ray Diffraction Studies of Carbon Fibers

    Science.gov (United States)

    1991-02-01

    X- Ray Diffraction," JPS. Polym. Phys. Ed., 16, 939 (1978). 17. Rosalind E. Franklin , "The Structure of Graphitic Carbons," Acta Cryst., 4, 253 (1951...18. Rosalind E. Franklin , "The Interpretation of Diffuse X-ray Diagrams of Carbon," Acta CrL, 3, 107 (1950). 19. K. Jain and A. S. Abhiraman...been generally mentioned much earlier by Franklin [17,18]. Jain and Abhiraman [19] demonstrated that these corrections can make significant differences

  16. Model experiment of in vivo synchrotron X-ray diffraction of human kidney stones

    Energy Technology Data Exchange (ETDEWEB)

    Ancharov, A.I. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk (Russian Federation)]. E-mail: ancharov@mail.ru; Potapov, S.S. [Institute of Mineralogy UB RAS, Miass (Russian Federation); Moiseenko, T.N. [The State Regional Clinical Hospital, Novosibirsk (Russian Federation); Feofilov, I.V. [The State Regional Clinical Hospital, Novosibirsk (Russian Federation); Nizovskii, A.I. [Boreskov Institute of Catalysis SB RAS, Novosibirsk (Russian Federation)

    2007-05-21

    The diffraction of synchrotron radiation (SR) was used to explore the phase composition of kidney stones placed into a specific object phantom, which imitated the human body. As an imitation of the patient breath, the kidney stone was moved vertically and rotated to an angle of 15{sup o} during the recording of the X-ray pattern. It was shown that rotation and displacement did not distort the X-ray pattern.

  17. Thermal expansion in UO 2 determined by high-energy X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, M.; Benmore, C. J.; Skinner, L. B.; Alderman, O. L. G.; Weber, J. K. R.; Parise, J. B.; Williamson, M.

    2016-10-01

    Here we present crystallographic analyses of high-energy X-ray diffraction data on polycrystalline UO2 up to the melting temperature. The Rietveld refinements of our X-ray data are in agreement with previous measurements, but are systematically located around the upper bound of their uncertainty, indicating a slightly steeper trend of thermal expansion compared to established values. This observation is consistent with recent first principles calculations.

  18. KMC-2: an X-ray beamline with dedicated diffraction and XAS endstations at BESSY II

    Directory of Open Access Journals (Sweden)

    Daniel M. Többens

    2016-02-01

    Full Text Available The KMC-2 beamline is dedicated to provide X-ray radiation with high energy stability and resolution. The experimental setup is optimized towards offering a wide range of methods and sample environments. Two permanent endstations can be used in alternation. DIFFRACTION is a flexible multi-purpose diffractometer, based on a Huber six circle diffractometer in psi geometry. XANES provides the possibility for EXAFS, XANES and X-ray fluorescence measurements at-air.

  19. X-ray diffraction from intact tau aggregates in human brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Landahl, Eric C.; Antipova, Olga; Bongaarts, Angela; Barrea, Raul; Berry, Robert; Binder, Lester I.; Irving, Thomas; Orgel, Joseph; Vana, Laurel; Rice, Sarah E. (DePaul); (IIT); (NWU)

    2011-09-15

    We describe an instrument to record X-ray diffraction patterns from diseased regions of human brain tissue by combining an in-line visible light fluorescence microscope with an X-ray diffraction microprobe. We use thiazine red fluorescence to specifically label and detect the filamentous tau protein pathology associated with Pick's disease, as several laboratories have done previously. We demonstrate that thiazine red-enhanced regions within the tissue show periodic structure in X-ray diffraction, which is not observed in healthy tissue. One observed periodicity (4.2 {angstrom}) is characteristic of cross-beta sheet structure, consistent with previous results from powder diffraction studies performed on purified, dried tau protein.

  20. X-ray diffraction from intact tau aggregates in human brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Landahl, Eric C. [DePaul University, Department of Physics, 2219 N. Kenmore Ave., IL 60614, Chicago (United States); Antipova, Olga [Illinois Institute of Technology, Department of Biological Chemical and Physical Sciences, 3101 South Dearborn St., IL 60616, Chicago (United States); Bongaarts, Angela [Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Ave., IL 60611, Chicago (United States); Barrea, Raul [Illinois Institute of Technology, Department of Biological Chemical and Physical Sciences, 3101 South Dearborn St., IL 60616, Chicago (United States); Berry, Robert; Binder, Lester I. [Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Ave., IL 60611, Chicago (United States); Irving, Thomas; Orgel, Joseph [Illinois Institute of Technology, Department of Biological Chemical and Physical Sciences, 3101 South Dearborn St., IL 60616, Chicago (United States); Vana, Laurel [Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Ave., IL 60611, Chicago (United States); Rice, Sarah E., E-mail: s-rice@northwestern.edu [Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Ave., IL 60611, Chicago (United States)

    2011-09-01

    We describe an instrument to record X-ray diffraction patterns from diseased regions of human brain tissue by combining an in-line visible light fluorescence microscope with an X-ray diffraction microprobe. We use thiazine red fluorescence to specifically label and detect the filamentous tau protein pathology associated with Pick's disease, as several laboratories have done previously. We demonstrate that thiazine red-enhanced regions within the tissue show periodic structure in X-ray diffraction, which is not observed in healthy tissue. One observed periodicity (4.2 A) is characteristic of cross-beta sheet structure, consistent with previous results from powder diffraction studies performed on purified, dried tau protein.

  1. Nanosecond x-ray Laue diffraction apparatus suitable for laser shock compression experiments.

    Science.gov (United States)

    Suggit, Matthew; Kimminau, Giles; Hawreliak, James; Remington, Bruce; Park, Nigel; Wark, Justin

    2010-08-01

    We have used nanosecond bursts of x-rays emitted from a laser-produced plasma, comprised of a mixture of mid-Z elements, to produce a quasiwhite-light spectrum suitable for performing Laue diffraction from single crystals. The laser-produced plasma emits x-rays ranging in energy from 3 to in excess of 10 keV, and is sufficiently bright for single shot nanosecond diffraction patterns to be recorded. The geometry is suitable for the study of laser-shocked crystals, and single-shot diffraction patterns from both unshocked and shocked silicon crystals are presented.

  2. Time Resolved X-Ray Scattering of molecules in Solution

    DEFF Research Database (Denmark)

    Brandt van Driel, Tim

    of bringing the data from measurement to analysis. Bridging the experimental design and challenges of the experiments from X-ray synchrotrons to the newly available X-ray Free Electron Laser sources (XFEL).LCLS in California is the first XFEL to come online and delivers intense 30fs X-ray pulses, orders...... in the purpose built CSPAD detector is presented and applied to the data to highlight the relevance of this work. Thereby showing the ability to capture a molecular movie on the sub-ps time-scale....

  3. The Multi-Frame X-ray Diffraction and Imaging Detector at the Dynamic Compression Sector

    Science.gov (United States)

    Sinclair, Nicholas; Wang, Yuxin; Turneaure, Stefan; Zimmerman, Kurt; Toyoda, Yoshi; Gupta, Yogendra

    2017-06-01

    The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory, enables x-ray diffraction and imaging measurements on samples during single event, dynamic compression experiments. Since bright x-ray pulses arrive from the synchrotron at a high frequency, `movies' may be captured with these x-ray measurements. However, the ideal detector system capable of these measurements is not yet commercially available and, instead, a composite optical system has been developed to achieve the required time resolution and sensitivity. In this presentation, the current x-ray diffraction and imaging detector system at DCS will be discussed. This system is capable of capturing four frames from x-ray pulses separated by 153 ns -- the pulse separation in the most common APS storage ring mode -- and sensitive enough to capture x-ray powder diffraction patterns from a single 80 ps duration pulse. Several data post-processing issues will be discussed, including the correction of phosphor after-images, determination of sample exposure times with respect to other diagnostics, and spatial distortion correction. Work supported by DOE/NNSA.

  4. Structural studies of tropomyosin by cryoelectron microscopy and x-ray diffraction.

    Science.gov (United States)

    Cabral-Lilly, D; Phillips, G N; Sosinsky, G E; Melanson, L; Chacko, S; Cohen, C

    1991-04-01

    A comparison has been made between cryoelectron microscope images and the x-ray structure of one projection of the Bailey tropomyosin crystal. The computed transforms of the electron micrographs extend to a resolution of approximately 18 A compared with the reflections from x-ray crystallography which extend to 15 A. After correction of the images for lattice distortions and the contrast transfer function, the structure factors were constrained to the plane group (pmg) symmetry of this projection. Amplitude and phase data for five images were compared with the corresponding view from the three-dimensional x-ray diffraction data (Phillips, G.N., Jr., J.P. Fillers, and C. Cohen. 1986. J. Mol. Biol. 192: 111-131). The average R factor between the electron microscopy and x-ray amplitudes was 15%, with an amplitude-weighted mean phase difference of 4.8 degrees. The density maps derived from cryoelectron microscopy contain structural features similar to those from x-ray diffraction: these include the width and run of the filaments and their woven appearance at the crossover regions. Preliminary images obtained from frozen-hydrated tropomyosin/troponin cocrystals suggest that this approach may provide structural details not readily obtainable from x-ray diffraction studies.

  5. Energy-dispersive X-ray diffraction beamline at Indus-2 synchrotron ...

    Indian Academy of Sciences (India)

    Abstract. An energy-dispersive X-ray diffraction beamline has been designed, developed and commissioned at BL-11 bending magnet port of the Indian synchrotron source, Indus-2. The performance of this beamline has been benchmarked by measuring diffraction patterns from var- ious elemental metals and standard ...

  6. Titration of a Solid Acid Monitored by X-Ray Diffraction

    Science.gov (United States)

    Dungey, Keenan E.; Epstein, Paul

    2007-01-01

    An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…

  7. High-resolution X-ray diffraction imaging of non-Bragg diffracting materials using phase retrieval X-ray diffractometry (PRXRD) technique

    Energy Technology Data Exchange (ETDEWEB)

    Nikulin, A.Y.; Darahanau, A.V.; Horney, R.; Ishikawa, T

    2004-06-15

    An X-ray diffraction technique has recently been developed and successfully applied to comprehensively, including both phase and amplitude contrast, map the complex refractive index of non-crystalline materials with submicron spatial resolution. The methodology is based on the measurement of a high angular resolution X-ray Fraunhofer diffraction pattern with further application of the phase-retrieval formalism using a logarithmic dispersion relation. The technique is reviewed from the perspective of its ability to deliver ultra-high, order of several nanometres, spatial resolution and to uniquely determine both the real and imaginary components of the complex refractive index of the material under analysis. Potential niche of practical applications is discussed in terms of the spatial resolution and field of view achievable by the method.

  8. A short-pulse X-ray beamline for spectroscopy and scattering.

    Science.gov (United States)

    Reininger, R; Dufresne, E M; Borland, M; Beno, M A; Young, L; Evans, P G

    2014-09-01

    Experimental facilities for picosecond X-ray spectroscopy and scattering based on RF deflection of stored electron beams face a series of optical design challenges. Beamlines designed around such a source enable time-resolved diffraction, spectroscopy and imaging studies in chemical, condensed matter and nanoscale materials science using few-picosecond-duration pulses possessing the stability, high repetition rate and spectral range of synchrotron light sources. The RF-deflected chirped electron beam produces a vertical fan of undulator radiation with a correlation between angle and time. The duration of the X-ray pulses delivered to experiments is selected by a vertical aperture. In addition to the radiation at the fundamental photon energy in the central cone, the undulator also emits the same photon energy in concentric rings around the central cone, which can potentially compromise the time resolution of experiments. A detailed analysis of this issue is presented for the proposed SPXSS beamline for the Advanced Photon Source. An optical design that minimizes the effects of off-axis radiation in lengthening the duration of pulses and provides variable X-ray pulse duration between 2.4 and 16 ps is presented.

  9. Magnetic hysteresis of an artificial square ice studied by in-plane Bragg x-ray resonant magnetic scattering

    Directory of Open Access Journals (Sweden)

    J. P. Morgan

    2012-06-01

    Full Text Available We report X-ray resonant magnetic scattering studies of a Permalloy artificial square ice nanomagnet array, focussing on the field-driven evolution of the sum Σ and difference Δ signals of left and right handed circularly polarized synchrotron X-rays at different lateral positions in reciprocal space Qx. We used X-rays tuned to the Fe L3 resonance energy, with the scattering plane aligned along a principal symmetry axis of the array. Details of the specular Δ hysteresis curve are discussed, following the system magnetization from an initial demagnetized state. The periodic structure gives rise to distinct peaks at in-plane reciprocal Bragg positions, as shown by fitting Σ(Qx to a model based on a simple unit cell structure. Diffraction order-dependent hysteresis in Δ is observed, indicative of the reordering of magnetization on the system's two interpenetrating sublattices, which markedly deviates from an ideal Ising picture under strong applied fields.

  10. Magnetic hysteresis of an artificial square ice studied by in-plane Bragg x-ray resonant magnetic scattering

    Science.gov (United States)

    Morgan, J. P.; Kinane, C. J.; Charlton, T. R.; Stein, A.; Sánchez-Hanke, C.; Arena, D. A.; Langridge, S.; Marrows, C. H.

    2012-06-01

    We report X-ray resonant magnetic scattering studies of a Permalloy artificial square ice nanomagnet array, focussing on the field-driven evolution of the sum Σ and difference Δ signals of left and right handed circularly polarized synchrotron X-rays at different lateral positions in reciprocal space Qx. We used X-rays tuned to the Fe L3 resonance energy, with the scattering plane aligned along a principal symmetry axis of the array. Details of the specular Δ hysteresis curve are discussed, following the system magnetization from an initial demagnetized state. The periodic structure gives rise to distinct peaks at in-plane reciprocal Bragg positions, as shown by fitting Σ(Qx) to a model based on a simple unit cell structure. Diffraction order-dependent hysteresis in Δ is observed, indicative of the reordering of magnetization on the system's two interpenetrating sublattices, which markedly deviates from an ideal Ising picture under strong applied fields.

  11. X-ray, neutron, and electron scattering. Report of a materials sciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    The ERDA Workshop on X-ray, Neutron, and Electron Scattering to assess needs and establish priorities for energy-related basic research on materials. The general goals of the Workshop were: (1) to review various energy technologies where x-ray, neutron, and electron scattering techniques might make significant contributions, (2) to identify present and future materials problems in the energy technologies and translate these problems into requirements for basic research by x-ray, neutron, and electron scattering techniques, (3) to recommend research areas utilizing these three scattering techniques that should be supported by the DPR Materials Sciences Program, and (4) to assign priorities to these research areas.

  12. Toward atomic resolution diffractive imaging of isolated molecules with x-ray free-electron lasers

    DEFF Research Database (Denmark)

    Stern, Stephan; Holmegaard, Lotte; Filsinger, Frank

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Cohere...... Light Source [Phys. Rev. Lett. 112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i. e., picometers and femtoseconds, using x-ray free-electron lasers.......We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent...

  13. In-laboratory diffraction-enhanced X-ray imaging for articular cartilage.

    Science.gov (United States)

    Muehleman, Carol; Fogarty, Daniel; Reinhart, Benjamin; Tzvetkov, Tochko; Li, Jun; Nesch, Ivan

    2010-07-01

    The loss of articular cartilage characteristic of osteoarthritis can only be diagnosed by joint space narrowing when conventional radiography is used. This is due to the lack of X-ray contrast of soft tissues. Whereas conventional radiography harnesses the X-ray attenuation properties of tissues, Diffraction Enhanced Imaging (DEI), a novel radiographic technique, allows the visualization of soft tissues simultaneous with calcified tissues by virtue of its ability to not only harness X-ray attenuation but also the X-ray refraction from tissue boundaries. Previously, DEI was dependent upon synchrotron X-rays, but more recently, the development of nonsynchrotron DEI units has been explored. These developments serve to elaborate the full potential of radiography. Here, we tested the potential of an in-laboratory DEI system, called Diffraction-Enhanced X-ray Imaging (DEXI), to render images of articular cartilage displaying varying degrees of degradation, ex vivo. DEXI allowed visualization of even early stages of cartilage degeneration such as surface fibrillation. This may be of eventual clinical significance for the diagnosis of early stages of degeneration, or at the very least, to visualize soft tissue degeneration simultaneous with bone changes. (c) 2010 Wiley-Liss, Inc.

  14. Nano-structured titanium and aluminium nitride coatings: Study by grazing incidence X-ray diffraction and X-ray absorption and anomalous diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tuilier, M.-H., E-mail: marie-helene.tuilier@uha.fr [Universite de Haute Alsace (UHA), Laboratoire Physique et Mecanique Textile (LPMT), EA 4365 -conventionnee au CNRS, Equipe PPMR, F-68093 Mulhouse (France); Pac, M.-J. [Universite de Haute Alsace (UHA), Laboratoire Physique et Mecanique Textile (LPMT), EA 4365 - conventionnee au CNRS, Equipe PPMR, F-68093 Mulhouse (France); Anokhin, D.V. [Universite de Haute Alsace (UHA), CNRS, Institut de Science des Materiaux de Mulhouse (IS2M), LRC 7228, F-68093 Mulhouse (France); Moscow State University, Faculty of Fundamental Physical and Chemical Engineering, 119991, Moscow, GSP-1, 1-51 Leninskie Gory (Russian Federation); Ivanov, D.A. [Universite de Haute Alsace (UHA), CNRS, Institut de Science des Materiaux de Mulhouse (IS2M), LRC 7228, F-68093 Mulhouse (France); Rousselot, C. [Universite de Franche-Comte, FEMTO-ST (UMR CNRS 6174), F-25211 Montbeliard (France); Thiaudiere, D. [Synchrotron Soleil, Saint Aubin, F-91192 Gif sur Yvette (France)

    2012-12-30

    Titanium and aluminium nitride thin films, Ti{sub 1-x}Al{sub x}N (x = 0, x = 0.5, x = 0.68), deposited by reactive magnetron sputtering on silicon substrates are investigated by combining two different X-ray diffraction experiments carried out using synchrotron radiation. Grazing-incidence X-ray diffraction and Ti K-edge diffraction anomalous near edge structure spectroscopy provide information on the micro- and nano-structure of the films respectively, which play a crucial role in the functionality of coatings. The spectroscopic data of Ti{sub 0.50}Al{sub 0.50}N film show that Ti atoms in crystallized domains and grain boundaries are all in octahedral cubic local order, but their growth mode is quite different. It is found that the crystallized part of the Ti{sub 0.50}Al{sub 0.50}N film has a single-crystalline nature, whereas the TiN one presents a fibrillar microstructure. For Ti{sub 0.32}Al{sub 0.68}N film, grazing-incidence X-ray diffraction provides information on the uniaxial texture along the [001] direction of the hexagonal lattice. A sharp Ti K pre-edge peak is observed in diffraction anomalous near edge spectrum that definitely shows that Ti atoms are incorporated in the hexagonal lattice of those fibrillar domains. Moreover, the difference observed between Ti K-edge diffraction anomalous and X-ray absorption pre-edge regions proves that a significant part of Ti atoms is located in nanocrystallites with cubic symmetry outside of the crystallized domains. - Highlights: Black-Right-Pointing-Pointer We study nano and micro-structures of TiN, Ti{sub 0.50}Al{sub 0.50}N and Ti{sub 0.32}Al{sub 0.68}N films. Black-Right-Pointing-Pointer Anomalous diffraction solves the crystallized part regardless of grain boundaries. Black-Right-Pointing-Pointer TiN microstructure is fibrillar, Ti{sub 0.5}Al{sub 0.5}N presents single crystalline domains. Black-Right-Pointing-Pointer For Ti{sub 0.32}Al{sub 0.68}N, Ti atoms are located in nanocrystallites with cubic symmetry

  15. Magnetic nanoparticles studied by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiano Luis Pinto [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Grupo de Fluidos Complexos; Antonel, Soledad; Negri, Martin [Universidad de Buenos Aires (UBA) (Argentina). Facultad de Ciencias Exactas y Naturales. Dept. de Quimica Inorganica, Analitica y Quimica Fisica

    2011-07-01

    nanoparticles are very interesting because they exhibit magnetic (ferromagnetic) and electrical properties in the same material. Then, the nickel nanoparticles could be used for the development of electroelastic materials. In this case, the electrical conductivity of the material can be strongly dependent on the applied magnetic field, for example the case of nickel metal nanoparticles dispersed in a polymer, resulting in an anisotropic material with combined piezomagnetic and piezoelectric properties. In order to investigate the structural characteristics of cobalt-iron oxides and nickel nanoparticles, powder samples of those magnetic materials were studied by Small-Angle X-Ray Scattering. As will be shown, from the analysis and modeling of the scattering data, structural information could be obtained, enabling a detailed description of the structural properties of the studied samples which could be directly correlated to the magnetic properties. (author)

  16. Coherent x-ray diffraction imaging of paint pigmentparticles by scanning a phase plate modulator

    Energy Technology Data Exchange (ETDEWEB)

    Chu Y. S.; Chen B.; Zhang F.; Berenguer F.; Bean R.; Kewish C.; Vila-Comamala J.; Rodenburg J.; Robinson I.

    2011-10-19

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  17. Coherent x-ray diffraction imaging of paint pigment particles by scanning a phase plate modulator

    Science.gov (United States)

    Chen, Bo; Zhang, Fucai; Berenguer, Felisa; Bean, Richard J.; Kewish, Cameron M.; Vila-Comamala, Joan; Chu, Yong S.; Rodenburg, John M.; Robinson, Ian K.

    2011-10-01

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  18. X-ray diffraction microscopy based on refractive optics

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis; Jakobsen, A. C.; Simons, Hugh

    2017-01-01

    A formalism is presented for dark‐field X‐ray microscopy using refractive optics. The new technique can produce three‐dimensional maps of lattice orientation and axial strain within millimetre‐sized sampling volumes and is particularly suited to in situ studies of materials at hard X‐ray energies....... An objective lens in the diffracted beam magnifies the image and acts as a very efficient filter in reciprocal space, enabling the imaging of individual domains of interest with a resolution of 100 nm. Analytical expressions for optical parameters such as numerical aperture, vignetting, and the resolution...

  19. APPLICATION OF X-RAY DIFFRACTION AND BARKHAUSEN NOISE ANALYSIS FOR STABILITY CONTROL DURING MACHINING

    Directory of Open Access Journals (Sweden)

    Kamil Kolařík

    2011-07-01

    Full Text Available The contribution is focused on the recent experience of X-ray Diffraction Laboratory of the Czech Technical University in Prague and Department of Machining and Assembly of the Technical University of Liberec with industrial applications of X-ray diffraction residual stress measurement and Barkhausen noise analysis. Both methods are used for control and optimization of technological parameters during final surface machining of camshafts. They verify whether the required level of residual stresses in given subsurface areas was achieved and serve also as a fast output inspection of machine parts´ surface quality.

  20. Improved theory of noncomplanar diffraction of X-Rays under specular reflection conditions

    CERN Document Server

    Balyan, M K

    2000-01-01

    In two-wave approximation the equations describing the dynamical diffraction of X-ray spatially modulated waves in ideal and deformed crystals in grazing noncomplanar incidence geometry are obtained. The solutions of obtained equations for diffraction of arbitrary spatially modulated incidence wave in ideal half-infinite crystal are found. As a special case of the obtained solutions, the diffraction of incidence spherical wave under small grazing angle is briefly considered.

  1. Simultaneous X-ray diffraction from multiple single crystals of macromolecules

    DEFF Research Database (Denmark)

    Paithankar, Karthik S.; Sørensen, Henning Osholm; Wright, Jonathan P.

    2011-01-01

    The potential in macromolecular crystallography for using multiple crystals to collect X-ray diffraction data simultaneously from assemblies of up to seven crystals is explored. The basic features of the algorithms used to extract data and their practical implementation are described. The procedu...... could be useful both in relation to diffraction data obtained from intergrown crystals and to alleviate the problem of rapid diffraction decay arising from the effects of radiation damage....

  2. X-Ray and Neutron Scattering Study of the Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Als-Nielsen, Jens Aage; McEwen, K. A.

    1979-01-01

    A combined x-ray and neutron diffraction study has shown that the so-called "triple-q⃗" structure is not the correct model of the magnetic structure of neodymium. The x-ray data showed only the Bragg reflections originating from the double-hcp lattice. Hence, all additional reflections observed...

  3. Resonant soft x-ray scattering from stepped surfaces of SrTiO3

    NARCIS (Netherlands)

    Schlappa, J.; Chang, C.F.; Hu, Z.; Schierle, E.; Ott, H.; Weschke, E.; Kaindl, G.; Huijben, Mark; Rijnders, Augustinus J.H.M.; Blank, David H.A.; Tjeng, L.H.; Schüssler-Langeheine, C.

    2012-01-01

    We studied the resonant diffraction signal from stepped surfaces of SrTiO3 at the Ti 2p ¿ 3d (L2,3) resonance in comparison with x-ray absorption (XAS) and specular reflectivity data. The steps on the surface form an artificial superstructure suitable as a model system for resonant soft x-ray

  4. Protegrin interaction with lipid monolayers: Grazing incidence X-ray diffraction and X-ray reflectivity study

    Science.gov (United States)

    Neville, Frances; Ishitsuka, Yuji; Hodges, Chris S.; Konovalov, Oleg; Waring, Alan J.; Lehrer, Robert; Lee, Ka Yee C.; Gidalevitz, David

    2009-01-01

    Interactions of the antimicrobial peptide protegrin-1 (PG-1) with phospholipid monolayers have been investigated by using grazing incidence X-ray diffraction (GIXD) and specular X-ray reflectivity (XR). The structure of a PG-1 film at the air-aqueous interface was also investigated by XR for the first time. Lipid A, dipalmitoyl-phosphatidylglycerol (DPPG) and dipalmitoyl-phosphatidylcholine (DPPC) monolayers were formed at the air-aqueous interface to mimic the surface of the bacterial cell wall and the outer leaflet of the erythrocyte cell membrane, respectively. Experiments were carried out under constant area conditions where the pressure changes upon insertion of peptide into the monolayer. GIXD data suggest that the greatest monolayer disruption produced by PG-1 is seen with the DPPG system at 20 mN/m since the Bragg peaks completely disappear after introduction of PG-1 to the system. PG-1 shows greater insertion into the lipid A system compared to the DPPC system when both films are held at the same initial surface pressure of 20 mN/m. The degree of insertion lessens at 30 mN/m with both DPPC and DPPG monolayer systems. XR data further reveal that PG-1 inserts primarily in the head group region of lipid monolayers. However, only the XR data of the anionic lipids suggest the existence of an additional adsorbed peptide layer below the head group of the monolayer. Overall the data show that the extent of peptide/lipid interaction and lipid monolayer disruption depends not only on the lipid composition of the monolayer, but the packing density of the lipids in the monolayer prior to the introduction of peptide to the subphase. PMID:19672319

  5. X-ray scattered halo around IGR J17544–2619

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Junjie; Ling, Zhixing; Zhang, Shuang-Nan, E-mail: zhangsn@ihep.ac.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-04-10

    X-ray photons coming from an X-ray point source not only arrive at the detector directly, but also can be strongly forward-scattered by the interstellar dust along the line of sight (LOS), leading to a detectable diffuse halo around the X-ray point source. The geometry of small-angle X-ray scattering is straightforward, namely, the scattered photons travel longer paths and thus arrive later than the unscattered ones; thus, the delay time of X-ray scattered halo photons can reveal information of the distances of the interstellar dust and the point source. Here we present a study of the X-ray scattered halo around IGR J17544–2619, which is one of the so-called supergiant fast X-ray transients. IGR J17544–2619 underwent a striking outburst when observed with Chandra on 2004 July 3, providing a near δ-function light curve. We find that the X-ray scattered halo around IGR J17544–2619 is produced by two interstellar dust clouds along the LOS. The one that is closer to the observer gives the X-ray scattered halo at larger observational angles, whereas the farther one, which is in the vicinity of the point source, explains the halo with a smaller angular size. By comparing the observational angle of the scattered halo photons with that predicted by different dust grain models, we are able to determine the normalized dust distance. With the delay times of the scattered halo photons, we can determine the point source distance, given a dust grain model. Alternatively, we can discriminate between the dust grain models, if the point source distance is known independently.

  6. Characterization of Precipitates in a Microalloyed Steel Using Quantitative X-ray Diffraction

    Directory of Open Access Journals (Sweden)

    J. Barry Wiskel

    2016-04-01

    Full Text Available Quantitative X-ray diffraction (QXRD (also known as the Rietveld method was used to analyze the precipitates present in Grade 100 microalloyed steel. The precipitates were extracted from the steel using electrolytic dissolution and the residue from the dissolution was analyzed using XRD. The XRD pattern exhibited three (3 distinct diffraction peaks, and significant broadening of a fourth peak corresponding to the <10 nm size precipitates. QXRD analysis was applied to the XRD pattern to obtain precipitate size, composition, and weight fraction data for each of the four diffraction peaks observed. The predicted mean precipitate diameter and average atomic composition of the nano-size (<10 nm precipitates was 4.7 nm and (Nb0.50Ti0.32Mo0.18(C0.59N0.41, respectively. The predicted precipitate size correlates well with the average size of precipitates measured in previous work by the authors using both transmission electron microscopy (TEM and small angle neutron scattering (SANS. The average atomic composition correlates well with the composition measured in this work using energy dispersive X-ray (EDX analysis of individual nano-sized precipitates. The calculated weight fraction of the nano-size precipitates in the extracted residue was 42.2 wt. %. The calculated atomic compositions of the other three diffraction peaks were TiN, (Ti0.87Nb0.13N, and (Nb0.82Ti0.18(C0.87N0.13 with weight fraction values of 12.9 wt. %, 31.7 wt. %, and 13.1 wt. %, respectively. The sizes of both the (Ti0.87Nb0.13N and the (Nb0.82Ti0.18(C0.87N0.13 groups of precipitates were directly measured and were observed to range from 150 nm to 570 nm and from 90 nm to 475 nm, respectively. QXRD was unable to determine a reasonable mean precipitate size for either of these two groups of precipitates. The wide compositional range (i.e., varying levels of Nb and Ti of these precipitates (as measured by EDX resulted in XRD peak broadening that was erroneously interpreted as a size

  7. Advances in the understanding of multiferroics through soft X-ray diffraction

    Science.gov (United States)

    Beale, T. A. W.; Wilkins, S. B.; Johnson, R. D.; Prabhakaran, D.; Boothroyd, A. T.; Steadman, P.; Dhesi, S. S.; Hatton, P. D.

    2012-06-01

    The magneto-electric multiferroic TbMn2O5 has a complex magnetic structure in three different magnetically ordered phases. We have determined the nature of the induced magnetic order on the oxygen sites in the commensurate magnetic phase through full linear X-ray polarisation analysis at the oxygen K edge. This has been achieved rotating the linear polarisation of the incident beam at the source, and using multilayers to analyse the polarisation state of the scattered X-ray beam. We have confirmed that the anisotropy of the magnetic scattering at the oxygen edge is consistent with the anisotropy of the manganese magnetic structure.

  8. Mapping strain fields in ultrathin bonded Si wafers by x-ray scattering

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Poulsen, Mette; Bunk, Oliver

    2002-01-01

    X-ray scattering reveals the atomic displacements arising from rotational misalignment in ultrathin silicon bonded wafers. For a 4.3 nm top wafer, the strain field penetrates from the bonded interface to the surface and produces distinctive finite-size oscillations in x-ray data. Analytical...... calculations permit the atomic displacements throughout the thin top wafer to be modeled....

  9. Femtosecond X-ray diffraction from two-dimensional protein crystals

    Directory of Open Access Journals (Sweden)

    Matthias Frank

    2014-03-01

    Full Text Available X-ray diffraction patterns from two-dimensional (2-D protein crystals obtained using femtosecond X-ray pulses from an X-ray free-electron laser (XFEL are presented. To date, it has not been possible to acquire transmission X-ray diffraction patterns from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permit a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy approach at the Linac Coherent Light Source, Bragg diffraction was acquired to better than 8.5 Å resolution for two different 2-D protein crystal samples each less than 10 nm thick and maintained at room temperature. These proof-of-principle results show promise for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.

  10. Observation of parametric X-ray radiation in an anomalous diffraction region

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyev, V.I., E-mail: vial@x4u.lebedev.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Eliseyev, A.N., E-mail: elisseev@pluton.lpi.troitsk.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Irribarra, E., E-mail: esteban.irribarra@epn.edu.ec [Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito (Ecuador); Kishin, I.A., E-mail: ivan.kishin@mail.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Kubankin, A.S., E-mail: kubankin@bsu.edu.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Nazhmudinov, R.M., E-mail: fizeg@bk.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation)

    2016-08-19

    A new possibility to expand the energy region of diffraction processes based on the interaction of relativistic charged particles with crystalline structures is presented. Diffracted photons related to parametric X-ray radiation produced by relativistic electrons are detected below the low energy threshold for the X-ray diffraction mechanism in crystalline structures for the first time. The measurements were performed during the interaction of 7 MeV electrons with a textured polycrystalline tungsten foil and a highly oriented pyrolytic graphite crystal. The experiment results are in good agreement with a developed model based on the PXR kinematical theory. The developed experimental approach can be applied to separate the contributions of real and virtual photons to the total diffracted radiation generated during the interaction of relativistic charged particles with crystalline targets. - Highlights: • Parametric X-ray radiation below the low energy threshold for diffraction of free X-rays. • Experimental separation of the contributions from different radiation mechanisms. • PXR from relativistic electrons in mosaic crystals and textured polycrystlas.

  11. New software to model energy dispersive X-ray diffraction in polycrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Ghammraoui, B., E-mail: bahaa.ghammraoui@cea.fr [CEA-Leti, MINATEC Campus, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Tabary, J. [CEA-Leti, MINATEC Campus, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Pouget, S. [CEA-INAC Sciences de la matieres, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Paulus, C.; Moulin, V.; Verger, L. [CEA-Leti, MINATEC Campus, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Duvauchelle, Ph. [CNDRI-Insa Lyon, Universite de Lyon, F-69621, Villeurbanne Cedex (France)

    2012-02-01

    Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.

  12. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    Science.gov (United States)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  13. A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, N; Ohta, N; Matsuo, T [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Tanaka, T; Terada, Y; Kamasaka, H; Kometani, T, E-mail: yagi@spring8.or.j [Ezaki Glico Co. Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502 (Japan)

    2010-10-01

    The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6{mu}m at BL40XU and 50{mu}m at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.

  14. Two new tensile devices for X-ray diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Freri, N.; Tintori, A.; Depero, L.E.; Sangaletti, L. [Brescia Univ. (Italy); Cernuschi, F.; Ghia, S. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-12-01

    Two tensile devices were designed to be used with parallel beam and parafocusing-geometry diffractometers. In thefirst case the device was designed to be attached to a strainflex diffractometer by Rigaku Inc., dedicated to stress analysis and commonly used in metallurgical industry. Since the sample does not move during the measurement, the tensile device can be kept fixed on the experimental table. The device design takes into account the steric hindrance by moving parts of diffractometer. The maximun load that can be applied to the sample is 60.000 N. An attachement to a Siemens D5000 diffractometer with Eulerian cradle has also benn designed for applying a load up tp 6000 N to a sample in the parafocusing-geometry. The installation does not require a re-alignment of the diffractometer. In both cases strain gages were applied to both sides of the specimen for the simultaneous determination of the macroscopic strains. Experiments based on the use of these devices are planned to determine the crystallographic elastic constants and study the influence of the microstructure on the mechanical behaviour of residual stresses in the zone of almost static stresses as well as the influence of residual stresses on uniaxially loaded samples. In addition, by using these devices, it is possible to measure the unstressed d-0 spacings providing useful information in the neutron diffraction study fo stress fields in steel samples.

  15. X-ray diffraction study of structural stability of giant proteoglycan molecules of mucus

    Science.gov (United States)

    Vazina, A. A.; Lanina, N. F.; Vasilieva, A. A.; Korneev, V. N.; Zabelin, A. V.; Polyakova, E. P.

    2009-05-01

    X-ray diffraction study of various native and modified gastrointestinal mucins was carried out using synchrotron radiation. The mucus X-ray patterns of mammals and invertebrates are very similar and display a large number of sharp diffraction rings at the spacing of about 4.65 nm, which are due to the helical packing of polysaccharide chains covalently connected to the protein core. A comparative analysis of the X-ray patterns obtained earlier by us from various samples of mucus and biological tissues showed that the 4.65(±0.15) nm spacing is a nanoscale structural invariant of giant proteoglycan molecules of both the mucus and the extracellular matrix of tissues. A role of structural dynamics of proteoglycan scaffolding of biological systems in mechanism of modifying adaptation of organisms to significant changes of temperature is discussed.

  16. X-ray diffraction study of structural stability of giant proteoglycan molecules of mucus

    Energy Technology Data Exchange (ETDEWEB)

    Vazina, A.A. [Institute of Theoretical and Experimental Biophysics, RAS, Institutskaya St. 3, 142290 Pushchino, Moscow Region (Russian Federation); Russian Research Center ' Kurchatov Institute' , 123182 Moscow (Russian Federation)], E-mail: vazina@iteb.ru; Lanina, N.F.; Vasilieva, A.A. [Institute of Theoretical and Experimental Biophysics, RAS, Institutskaya St. 3, 142290 Pushchino, Moscow Region (Russian Federation); Korneev, V.N. [Institute of Cell Biophysics, RAS, 142290 Pushchino (Russian Federation); Zabelin, A.V. [Russian Research Center ' Kurchatov Institute' , 123182 Moscow (Russian Federation); Polyakova, E.P. [Timiryazev Moscow Agricultural Academy, 127550 Moscow (Russian Federation)

    2009-05-11

    X-ray diffraction study of various native and modified gastrointestinal mucins was carried out using synchrotron radiation. The mucus X-ray patterns of mammals and invertebrates are very similar and display a large number of sharp diffraction rings at the spacing of about 4.65 nm, which are due to the helical packing of polysaccharide chains covalently connected to the protein core. A comparative analysis of the X-ray patterns obtained earlier by us from various samples of mucus and biological tissues showed that the 4.65({+-}0.15) nm spacing is a nanoscale structural invariant of giant proteoglycan molecules of both the mucus and the extracellular matrix of tissues. A role of structural dynamics of proteoglycan scaffolding of biological systems in mechanism of modifying adaptation of organisms to significant changes of temperature is discussed.

  17. A curved image-plate detector system for high-resolution synchrotron X-ray diffraction.

    Science.gov (United States)

    Sarin, P; Haggerty, R P; Yoon, W; Knapp, M; Berghaeuser, A; Zschack, P; Karapetrova, E; Yang, N; Kriven, W M

    2009-03-01

    The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 degrees 2theta range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in response is not compromised in the unsaturated regions of the image plate, regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.

  18. Hydrothermal formation of tobermorite studied by in situ X-ray diffraction under autoclave condition.

    Science.gov (United States)

    Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Matsui, Kunio; Sato, Masugu

    2009-09-01

    Hydrothermal formation of tobermorite from a pre-cured cake has been investigated by transmission X-ray diffraction (XRD) using high-energy X-rays from a synchrotron radiation source in combination with a newly designed autoclave cell. The autoclave cell has a large and thin beryllium window for wide-angle X-ray diffraction; nevertheless, it withstands a steam pressure of more than 1.2 MPa, which enables in situ XRD measurements in a temperature range of 373 to 463 K under a saturated steam pressure. Formation and/or decomposition of several components has been successfully observed during 7.5 h of reaction time. From the intensity changes of the intermediate materials, namely non-crystalline C-S-H and hydroxylellestadite, two pathways for tobermorite formation have been confirmed. Thus, the newly developed autoclave cell can be used for the analyses of reaction mechanisms under specific atmospheres and temperatures.

  19. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  20. X-ray scattering studies of lanthanides magnetism

    DEFF Research Database (Denmark)

    McMorrow, D.; Bohr, Jakob; Gibbs, D.

    1999-01-01

    Interest in the applications of X-ray synchrotron radiation has grown rapidly during the last decade. At the present time, intense, ultra-bright synchrotron radiation is available on a routine basis from third-generation sources located in Europe (ESRF), North America (APS) and Japan (Spring8...

  1. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders

    Directory of Open Access Journals (Sweden)

    Yifeng Yun

    2015-03-01

    Full Text Available Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED data collection, namely automated diffraction tomography (ADT and rotation electron diffraction (RED, have been developed. Compared with X-ray diffraction (XRD and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni–Se–O–Cl crystals, zeolites, germanates, metal–organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three

  2. Mössbauer effect studies and X-ray diffraction analysis of cobalt ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Cobalt ferrite (CoxFe3–xO4) is prepared in powder form by thermal decomposition of iron and cobalt salts and is analysed by X-ray diffraction and Mössbauer spectroscopic techniques. The variation of. Mössbauer parameters, lattice parameters and crystallite size of the products formed with variation in the.

  3. Non-destructive characterization of recrystallization kinetics using three-dimensional X-ray diffraction microscopy

    DEFF Research Database (Denmark)

    Lauridsen, E.M.; Schmidt, Søren; Fæster Nielsen, Søren

    2006-01-01

    Three-dimensional X-ray diffraction (3DXRD) is used to characterize the nucleation and early growth of individual bulk nuclei in situ during recrystallization of 92% cold-rolled copper. It is found that some cube nuclei, but not all, have a significantly faster initial growth than the average...

  4. Analysis of urinary stone constituents using powder X-ray diffraction ...

    Indian Academy of Sciences (India)

    Constituents of urinary stones obtained from various patients from western part of India, which is a highly urinary stone disease-prone area, have been analysed. Eight stones from four patients were collected through urologists and have been analysed using powder X-ray diffraction and FT-IR. Thermogravimetric analysis ...

  5. Synthesis and X-ray diffraction studies of ,, Al2 O3 using aluminium ...

    African Journals Online (AJOL)

    The crystalline particles of the powder obtained were examined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, while the surface area of the oxide powder was obtained by nitrogen adsorption BET surface area measurement. The result obtained indicated that the -Al2O3 is cubic ...

  6. X-ray diffraction and spectral studies of biological native and modified tissues

    Energy Technology Data Exchange (ETDEWEB)

    Vazina, A.A. [Institute of Theoretical and Experimental Biophysics of RAS, 142290 Pushchino Institutskaya st., 3, Moscow region (Russian Federation)]. E-mail: vazina@iteb.ru; Budantsev, A.Yu. [Institute of Theoretical and Experimental Biophysics of RAS, 142290 Pushchino Institutskaya st., 3, Moscow region (Russian Federation); Bras, W. [DUBBLE-CRG/ESRF, Grenoble (France)] [and others

    2005-05-01

    X-ray diffraction and spectral data obtained by studying different types of native and modified human and animal tissues are reported. It has been found that the proteoglycan structure undergoes transformation upon interaction with calcium cations. The role of the extracellular matrix in the structure of the native tissue is discussed.

  7. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    Science.gov (United States)

    Smither, Robert K [Hinsdale, IL

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  8. Positional order in Langmuir monolayers: An X-ray diffraction study

    DEFF Research Database (Denmark)

    Kaganer, V.M.; Brezesinski, G.; Möhwald, H.

    1999-01-01

    The structural phase transition from the hexagonal to a distorted-hexagonal (centered rectangular) phase (the LS-S transition) in Langmuir monolayers of octadecanol is studied in a grazing incidence x-ray diffraction experiment. We find algebraic decay of positional correlations, which suggests...

  9. Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling

    Energy Technology Data Exchange (ETDEWEB)

    Veluraja, K., E-mail: veluraja@msuniv.ac.in [Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu 627012 (India); Vennila, K.N. [CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamilnadu 600025 (India); Umamakeshvari, K.; Jasmine, A. [Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu 627012 (India); Velmurugan, D. [CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamilnadu 600025 (India)

    2011-03-25

    Research highlights: {yields} Techniques to get oriented mucin fibre. {yields} X-ray fibre diffraction pattern for mucin. {yields} Molecular modeling of mucin based on X-ray fibre diffraction pattern. -- Abstract: The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 A. The high intense d-spacing signal at 4.22 A is attributed to the antiparallel {beta}-sheet structure identified in the fraction of the homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 A reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.

  10. X-ray diffraction results from mars science laboratory: Mineralogy of rocknest at Gale crater

    NARCIS (Netherlands)

    Bish, D.L.; Blake, D.F.; Vaniman, D.T.; Chipera, S.J.; Morris, R.V.; Ming, D.W.; Treiman, A.H.; Sarrazin, P.; Morrison, S.M.; Downs, R.T.; Achilles, C.N.; Yen, A.S.; Bristow, T.F.; Crisp, J.A.; Morookian, J.M.; Farmer, J.D.; Rampe, E.B.; Stolper, E.M.; Spanovich, N.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2013-01-01

    The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite,

  11. A three-dimensional X-ray diffraction microscope for deformation studies of polycrystals

    DEFF Research Database (Denmark)

    Fæster Nielsen, Søren; Lauridsen, E.M.; Juul Jensen, D.

    2001-01-01

    -dimensional X-ray diffraction (3DXRD) microscope installed at the European Synchrotron Radiation Facility in Grenoble provides a fast and non-destructive technique for mapping the embedded grains within thick samples in three dimensions. All essential features like the position, volume, orientation, stress...

  12. Modelling the X-ray powder diffraction of nitrogen-expanded austenite using the Debye formula

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2008-01-01

    Stress-free and homogeneous samples of nitrogen-expanded austenite, a defect-rich f.c.c. structure with a high interstitial nitrogen occupancy (between 0.36 and 0.61), have been studied using X-ray powder diffraction and Debye simulations. The simulations confirm the presence of deformation stack...

  13. Localization of ferrocene in NaY zeolite by powder x-ray and neutron diffraction

    NARCIS (Netherlands)

    Kemner, E.; Overweg, A.R.; Van Eijck, L.; Fitch, A.N.; Suard, E.; De Schepper, I.M.; Kearley, G.J.

    2002-01-01

    We study the inclusion of the metallocene ferrocene Fe(C5H5)2 molecules in the supercages of NaY zeolite. To find the exact location of the ferrocene molecules within the supercages we perform neutron and powder x-ray diffraction on bare NaY zeolite, and on NaY zeolite loaded with one or two

  14. Monolayers of CF4 Adsorbed on Graphite, Studied by Synchrotron X-Ray Diffraction

    DEFF Research Database (Denmark)

    Kjær, Kristian; Nielsen, Mourits; Bohr, Jakob

    1982-01-01

    With synchrotron x-ray diffraction we have measured the phase diagram of CF4 monolayers adsorbed on the graphite substrate UCAR-ZYX. We have found four two-dimensional crystalline phases including the 2×2 commensurate structure. Between this and the denser incommensurate hexagonal phase we find...

  15. Mössbauer effect studies and X-ray diffraction analysis of cobalt ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 26; Issue 5. Mössbauer effect studies and X-ray diffraction analysis of cobalt ferrite prepared in powder form by thermal decomposition method. M D Joseph Sebastian B Rudraswamy M C Radhakrishna Ramani. Magnetic Materials Volume 26 Issue 5 August 2003 pp ...

  16. Origin of nondetectable x-ray diffraction peaks in nanocomposite CuTiZr alloys

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Kato, H.; Ohsuna, T.

    2003-01-01

    Microscopic structures of Cu60Ti10+xZr30-x (x=0 and 10) alloys have been investigated by transmission electron microscopy, x-ray diffraction (XRD) and differential scanning calorimeter (DSC). In the Cu60Ti10Zr30 samples annealed at 708 K for times ranging from 0 to 130 min, where the enthalpy of ...

  17. An introduction to three-dimensional X-ray diffraction microscopy

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis

    2012-01-01

    penetrating hard X-rays from a synchrotron source and the application of tomographic reconstruction algorithms for the analysis of the diffraction data. In favourable cases, the position, morphology, phase and crystallographic orientation can be derived for up to 1000 elements simultaneously. For each grain...

  18. Mineralogy by X-ray Diffraction on Mars: The Chemin Instrument on Mars Science Laboratory

    Science.gov (United States)

    Vaniman, D. T.; Bristow, T. F.; Bish, D. L.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Rampe, E. B.; Chipera, S. J.; Treiman, A. H.; Morrison, S. M.; hide

    2014-01-01

    To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.

  19. High-pressure X-ray diffraction of L-ALANINE crystal

    DEFF Research Database (Denmark)

    Olsen, J.S.; Gerward, Leif; Souza, A.G.

    2006-01-01

    L-ALANINE has been studied by X-ray diffraction at ambient temperature and pressure up to 10.3 GPa. The material is found to transform to a tetragonal structure between 2 and 3 GPa. and to a monoclinic structure between 8 and 10 GPa. The experimental bulk modulus is 25(5) GPa for the orthorhombic...

  20. Electrostatic Molecular Interaction from X-ray Diffraction Data. II. Test on Theoretical Pyrazine Data

    NARCIS (Netherlands)

    Feil, Dirk; Moss, Grant

    1983-01-01

    In a previous paper [Moss & Feil (1981). Acta Cryst. A37, 414-421] a method was reported to calculate the electrostatic potential and the electrostatic interaction energy from single-crystal X-ray diffraction data. The method was applied to experimental pyrazine data; however, owing to the

  1. Study of caprine bones after moist and dry heat processes by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Caroline M., E-mail: carolmattosb@yahoo.com.br [Instituto de Arqueologia Brasileira (IAB), Belford Roxo, RJ (Brazil); Azeredo, Soraia R.; Lopes, Ricardo T., E-mail: soraia@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/LIN/UFRJ), Rio de Janeiro, RJ (Brazil). Laboratorio de Instrumentacao Nuclear; Souza, Sheila M.F.M de, E-mail: sferraz@ensp.fiocruz.br [Fundacao Oswaldo Cruz (ENSP/FIOCRUZ), Rio de Janeiro, RJ (Brazil). Escola Nacional de Saude Publica Sergio Arouca

    2013-07-01

    Bone tissue is a biological material composed of hydroxyapatite (HAp) and collagen matrix. The bone X-ray diffraction (XRD) pattern presents characteristics of the hydroxyapatite crystallography planes. This paper presents the characterization by X-ray diffraction of caprine bone powder pattern and the comparison of this pattern with moist or dry heat cooked bone patterns. The parameters chosen to characterize the X-ray diffraction peaks were: angular position (2θ), full width at half maximumt (FWHM), and relative intensity (I{sub rel}). The X-ray diffraction patterns were obtained with a Shimadzu XRD-6000 diffractometer. The caprine bone XRD pattern revealed a significant correlation of several crystallographic parameters (lattice data) with hydroxyapatite. The profiles of the three bone types analyzed presented differences. The study showed as small angular displacement (decrease of the 2θ angle) of some peaks was observed after moist and dry heat cooking processes. The characterization of bone tissue aimed to contribute to future analysis in the field of archeology. (author)

  2. High-pressure x-ray diffraction of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, Karel; Rasmussen, Helge Kildahl

    2001-01-01

    The effect of pressure on the structural stability of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals forming from a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass with a supercooled liquid region of 44 K has been investigated by in situ high-pressure angle-dispersive x-ray powder diffraction at ambient temperat...

  3. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto

    OpenAIRE

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio

    2010-01-01

    Nattokinase, a protein found in high levels in the traditional Japanese food natto, has been reported to have high thrombolytic activity. In the present study, the crystallization of native nattokinase and the collection of X-ray diffraction date from a nattokinase crystal to a resolution of 1.74 Å are reported.

  4. Small angles X-ray diffraction and Mössbauer characterization of ...

    Indian Academy of Sciences (India)

    Abstract. The effect of thermal annealing on the structure and magnetic properties of crystalline Tb/Fe multilayers has been studied using conversion electron Mössbauer spectrometry and small-angle X-ray diffraction. The growth of Tb–Fe amorphous alloy from the interface is observed with increasing annealing ...

  5. A X-ray diffraction analysis on graphene layers of Assam coal

    Indian Academy of Sciences (India)

    The so-called turbostatic structure of carbons in coal with randomly oriented stacking of the lamellae (graphene) produces intense peaks, which are the dominant features in its X-ray diffraction profiles. The diffractogram may be conveniently divided into two regions of reciprocal space, the medium S region (1 < S < 3 Å) and ...

  6. A-DNA and B-DNA: Comparing Their Historical X-Ray Fiber Diffraction Images

    Science.gov (United States)

    Lucas, Amand A.

    2008-01-01

    A-DNA and B-DNA are two secondary molecular conformations (among other allomorphs) that double-stranded DNA drawn into a fiber can assume, depending on the relative water content and other chemical parameters of the fiber. They were the first two forms to be observed by X-ray fiber diffraction in the early 1950s, respectively by Wilkins and…

  7. Advances in thin film diffraction instrumentation by X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Haase, A. [Rich. Seifert and Co., Analytical X-ray Systems, Ahrensburg (Germany)

    1996-09-01

    The structural characterisation of thin films requires a parallel X-ray beam of high intensity. Parallel beam geometry is commonly used in high resolution and single crystal experiments, but also in the field of X-ray diffraction for polycrystalline material (e.g. in phase, texture and stress analysis). For grazing incidence diffraction (GID), the use of small slits on the primary side and of long soller slits with a flat monochromator on the secondary side is standard. New optical elements have been introduced with polychromatic or monochromatic radiation. By means of different applications the results are compared with those of classical beam optics. X-ray fiber optics utilize total external reflection of X-rays on smooth surfaces. Effects of monochromatization are presented. In many fields of application, fiber optics may replace conventional collimators. The use of primary and secondary channel cut crystals can also produce a high parallel monochromatic X-ray beam. A parabolically bent graded multilayer produces a monochromatic parallel beam of high intensity. Compared with classical Bragg-Brentano (focussing) geometry, excellent results have been obtained, especially for samples with an irregular shape. In combination with a channel cut monochromator there is a substantial gain in intensity leading to an increase of the dynamic intensity range of rocking curves.

  8. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Joshua J., E-mail: joshuat@slac.stanford.edu; Dakovski, Georgi L.; Hoffmann, Matthias C. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Hwang, Harold Y. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Zarem, Alex; Schlotter, William F.; Moeller, Stefan; Minitti, Michael P. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Staub, Urs [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Johnson, Steven [ETH Zurich, Institute for Quantum Electronics, Wolfgang-Pauli-Strasse 16, 8093 Zurich (Switzerland); Mitra, Ankush; Swiggers, Michele; Noonan, Peter; Curiel, G. Ivan; Holmes, Michael [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-11

    This paper describes new instrumentation developments at the LCLS for materials studies using THz laser excitation and resonant soft X-ray scattering. This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm{sup −1} electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  9. A Monte Carlo simulation of scattering reduction in spectral x-ray computed tomography

    DEFF Research Database (Denmark)

    Busi, Matteo; Olsen, Ulrik Lund; Bergbäck Knudsen, Erik

    2017-01-01

    In X-ray computed tomography (CT), scattered radiation plays an important role in the accurate reconstruction of the inspected object, leading to a loss of contrast between the different materials in the reconstruction volume and cupping artifacts in the images. We present a Monte Carlo simulation...... photons, enabling spectral analysis of X-ray images. This technique is useful to extract efficiently more information on energy dependent quantities (e.g. mass attenuations coefficients) and study matter interactions (e.g. X-ray scattering, photoelectric absorption, etc...). Having a good knowledge...... of the spectral distribution of the scattered X-rays is fundamental to establish methods attempting to correct for it. The simulations are validated by real measurements using a CdTe spectral resolving detector (Multix ME-100). We observed the effect of the scattered radiation on the image reconstruction...

  10. Small-Angle X-ray Scattering Screening Complements Conventional Biophysical Analysis

    DEFF Research Database (Denmark)

    Tian, Xinsheng; Langkilde, Annette Eva; Thorolfsson, Matthias

    2014-01-01

    introduce small-angle X-ray scattering (SAXS) to characterize antibody solution behavior, which strongly complements conventional biophysical analysis. First, we apply a variety of conventional biophysical techniques for the evaluation of structural, conformational, and colloidal stability and report...

  11. Graphical method for analyzing wide-angle x-ray diffraction

    Science.gov (United States)

    Chen, XiaoHui; Xue, Tao; Liu, DongBing; Yang, QingGuo; Luo, BinQiang; Li, Mu; Li, XiaoYa; Li, Jun

    2018-01-01

    Wide-angle X-ray diffraction on large-scale laser facility is a well-established experimental method, which is used to study the shock response of single crystal materials by recording X-rays diffracted from numerous lattice planes. We present a three-dimensional graphical method for extracting physical understanding from the raw diffraction data in shocked experiments. This method advances beyond the previous iterative process by turning abstract diffraction theories in shock physics into mathematic issues, providing three-dimensional visualization and quick extraction of data characteristics. The capability and versatility of the method are exhibited by identifying lattice planes for single crystal samples with different orientations and quantitatively measuring the lattice compression and rotation under dynamic loading.

  12. Real Structure and Resudal Stresses in Advanced Welds Determined by X-ray and Neutron Diffraction

    Czech Academy of Sciences Publication Activity Database

    Trojan, K.; Hervoches, Charles; Ganev, N.; Mikula, Pavol; Čapek, J.

    2017-01-01

    Roč. 9, SEP (2017), s. 32-38 E-ISSN 2336-5382 R&D Projects: GA MŠk LM2015056; GA ČR GB14-36566G Institutional support: RVO:61389005 Keywords : laser and MAG welding * residual stresses * X-ray diffraction * neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism https://ojs.cvut.cz/ojs/index.php/APP/article/view/4401/4298

  13. High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution

    OpenAIRE

    Sandberg, Richard L.; Song, Changyong; Wachulak, Przemyslaw W.; Raymondson, Daisy A.; Paul, Ariel; Amirbekian, Bagrat; Lee, Edwin; Sakdinawat, Anne E.; La-O-Vorakiat, Chan; Marconi, Mario C.; Menoni, Carmen S.; Murnane, Margaret M.; Rocca, Jorge J.; Kapteyn, Henry C.; Miao, Jianwei

    2007-01-01

    Light microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to ≈200 nm. By using imaging and labeling technologies, resolutions beyond the diffraction limit can be achieved for specialized specimens with techniques such as near-field scanning optical microscopy, stimulated emission depletion microscopy, and photoactivated localization microscopy. Here, we report a versatile soft x-ray diffraction microscope with 70- ...

  14. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction

    OpenAIRE

    Huang, J.W.; E, J. C.; Huang, J. Y.; Sun, T.; Fezzaa, K.; Luo, S.N.

    2016-01-01

    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250?350?ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters, i.e. instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion o...

  15. Synchrotron X-ray diffraction imaging studies of dislocations in Kyropoulos grown Ti doped sapphire crystal

    Science.gov (United States)

    Sen, Gourav; Tran Caliste, Thu Nhi; Stelian, Carmen; Baruchel, José; Barthalay, Nicolas; Duffar, Thierry

    2017-06-01

    In this study, X-ray diffraction and X-ray topography, using synchrotron radiation source, were used to analyse the nature of defects in a sapphire single crystal sample grown by Kyropoulos method. Qualitative and quantitative analysis were carried out on the results of the topography experiments. The dislocation density was found to be around 103-104 dislocations/cm2 indicating a crystal of good crystalline quality. Also, the variation of dislocation density with respect to the position on the sample was observed and discussed.

  16. X-ray powder diffraction study of poly/carbon monofluoride/, CF/1.12/

    Science.gov (United States)

    Mahajan, V. K.; Badachhape, R. B.; Margrave, J. L.

    1974-01-01

    Data from X-ray diffraction studies of the poly(carbon monofluoride) with empirical formula CF(1.09-1.15) are reported, and possible intercalation arrangements for the substance are discussed. The data do not conform to true hexagonal symmetry, indicating that the carbon atoms are not coplanar. Each bond angle of carbon is 118.8 deg, and the carbon-carbon distance is 1.47 A. The interlayer distance is 5.76 A. A total absence of (hkl) reflections in the X-ray pattern shows that the separate CF layers are not regularly arranged with respect to one another.

  17. Interaction between Lipid Monolayers and Poloxamer 188: An X-Ray Reflectivity and Diffraction Study

    Science.gov (United States)

    Wu, Guohui; Majewski, Jaroslaw; Ege, Canay; Kjaer, Kristian; Weygand, Markus Jan; Lee, Ka Yee C.

    2005-01-01

    The mechanism by which poloxamer 188 (P188) seals a damaged cell membrane is examined using the lipid monolayer as a model system. X-ray reflectivity and grazing-incidence x-ray diffraction results show that at low nominal lipid density, P188, by physically occupying the available area and phase separating from the lipids, forces the lipid molecules to pack tightly and restore the barrier function of the membrane. Upon compression to bilayer equivalent pressure, P188 is squeezed out from the lipid monolayer, allowing a graceful exit of P188 when the membrane integrity is restored. PMID:16100276

  18. A sample holder for in-house X-ray powder diffraction studies of protein powders

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl; Harris, Pernille; Ståhl, Kenny

    2011-01-01

    A sample holder for handling samples of protein for in-house X-ray powder diffraction (XRPD) analysis has been made and tested on lysozyme. The use of an integrated pinhole reduced the background, and good signal-to-noise ratios were obtained from only 7 l of sample, corresponding to approximately...... 2-3 mg of dry protein. The sample holder is further adaptable to X-ray absorption spectroscopy (XAS) measurements. Both XRPD and XAS at the Zn K-edge were tested with hexameric Zn insulin....

  19. X-ray generation by inverse Compton scattering at the superconducting RF test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Hirotaka, E-mail: hirotaka@post.kek.jp [KEK, 1-1 Oho, Tsukuba 305-0801, Ibaraki (Japan); Akemoto, Mitsuo; Arai, Yasuo; Araki, Sakae; Aryshev, Alexander; Fukuda, Masafumi; Fukuda, Shigeki; Haba, Junji; Hara, Kazufumi; Hayano, Hitoshi; Higashi, Yasuo; Honda, Yosuke; Honma, Teruya; Kako, Eiji; Kojima, Yuji; Kondo, Yoshinari; Lekomtsev, Konstantin; Matsumoto, Toshihiro; Michizono, Shinichiro; Miyoshi, Toshinobu [KEK, 1-1 Oho, Tsukuba 305-0801, Ibaraki (Japan); and others

    2015-02-01

    Quasi-monochromatic X-rays with high brightness have a broad range of applications in fields such as life sciences, bio-, medical applications, and microlithography. One method for generating such X-rays is via inverse Compton scattering (ICS). X-ray generation experiments using ICS were carried out at the superconducting RF test facility (STF) accelerator at KEK. A new beam line, newly developed four-mirror optical cavity system, and new X-ray detector system were prepared for experiments downstream section of the STF electron accelerator. Amplified pulsed photons were accumulated into a four-mirror optical cavity and collided with an incoming 40 MeV electron beam. The generated X-rays were detected using a microchannel plate (MCP) detector for X-ray yield measurements and a new silicon-on-insulator (SOI) detector system for energy measurements. The detected X-ray yield by the MCP detector was 1756.8±272.2 photons/(244 electron bunches). To extrapolate this result to 1 ms train length under 5 Hz operations, 4.60×10{sup 5} photons/1%-bandwidth were obtained. The peak X-ray energy, which was confirmed by the SOI detector, was 29 keV, and this is consistent with ICS X-rays.

  20. Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics

    Science.gov (United States)

    Chang, Chieh; Sakdinawat, Anne

    2014-06-01

    Although diffractive optics have played a major role in nanoscale soft X-ray imaging, high-resolution and high-efficiency diffractive optics have largely been unavailable for hard X-rays where many scientific, technological and biomedical applications exist. This is owing to the long-standing challenge of fabricating ultra-high aspect ratio high-resolution dense nanostructures. Here we report significant progress in ultra-high aspect ratio nanofabrication of high-resolution, dense silicon nanostructures using vertical directionality controlled metal-assisted chemical etching. The resulting structures have very smooth sidewalls and can be used to pattern arbitrary features, not limited to linear or circular. We focus on the application of X-ray zone plate fabrication for high-efficiency, high-resolution diffractive optics, and demonstrate the process with linear, circular, and spiral zone plates. X-ray measurements demonstrate high efficiency in the critical outer layers. This method has broad applications including patterning for thermoelectric materials, battery anodes and sensors among others.

  1. A laboratory based system for laue micro x-ray diffraction.

    Science.gov (United States)

    Lynch, P A; Stevenson, A W; Liang, D; Parry, D; Wilkins, S; Tamura, N

    2007-02-01

    A laboratory diffraction system capable of illuminating individual grains in a polycrystalline matrix is described. Using a microfocus x-ray source equipped with a tungsten anode and prefigured monocapillary optic, a micro-x-ray diffraction system with a 10 microm beam was developed. The beam profile generated by the ellipsoidal capillary was determined using the "knife edge" approach. Measurement of the capillary performance, indicated a beam divergence of 14 mrad and a useable energy bandpass from 5.5 to 19 keV. Utilizing the polychromatic nature of the incident x-ray beam and application of the Laue indexing software package X-Ray Micro-Diffraction Analysis Software, the orientation and deviatoric strain of single grains in a polycrystalline material can be studied. To highlight the system potential the grain orientation and strain distribution of individual grains in a polycrystalline magnesium alloy (Mg 0.2 wt % Nd) was mapped before and after tensile loading. A basal (0002) orientation was identified in the as-rolled annealed alloy; after tensile loading some grains were observed to undergo an orientation change of 30 degrees with respect to (0002). The applied uniaxial load was measured as an increase in the deviatoric tensile strain parallel to the load axis.

  2. Crystallization and X-ray diffraction data of Thermus flavus 5S rRNA helices

    Science.gov (United States)

    Vallazza, Marco; Senge, Andrea; Lippmann, Corinna; Perbandt, Markus; Betzel, Christian; Bald, Rolf; Erdmann, Volker A.

    2001-11-01

    5S rRNA is an essential component of the large ribosomal subunit in prokaryotes and eukaryotes. Its unknown function in the ribosome will eventually be revealed in part by structural studies. To promote crystallization and enhance resolution in X-ray diffraction the molecule was subdivided into five domains A-E. Several RNA oligonucleotides were chemically produced by solid-phase phosphoramidite synthesis in order to construct the domains of the 5S rRNA. An improved RNA-MPD-screen was applied in crystallization which covers a complete 2D matrix for the components used. Crystallization analysis resulted in preferred combinations of pH, polyamine, monovalent and divalent cations for short RNA molecules. Six types of crystals corresponding to the domains B, C and E of Thermus flavus 5S rRNA could be obtained which were suitable for X-ray diffraction. Four RNA helices consist of seven base pairs and two of eight base pairs. As special features, they contain two adenines in a bulge position or G : U wobble base pairs assumed to be involved in RNA-protein recognition. With an increase in crystal size an increase in resolution by X-ray analysis was observed. X-ray diffraction data were collected to 1.5 Å resolution using synchrotron radiation and cryogenic cooling techniques.

  3. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Michael W.M., E-mail: michael.jones@latrobe.edu.au [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Dearnley, Megan K. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia); Riessen, Grant A. van [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Abbey, Brian [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Melbourne Centre for Nanofabrication, Victoria 3168 (Australia); Putkunz, Corey T. [ARC Centre of Excellence for Coherent X-Ray Science, School of Physics, The University of Melbourne, Victoria 3010 (Australia); Junker, Mark D. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Vine, David J. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); McNulty, Ian [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Centre for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Nugent, Keith A. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Peele, Andrew G. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Australian Synchrotron, 800 Blackburn Road, Clayton 3168 (Australia); Tilley, Leann [ARC Centre of Excellence for Coherent X-Ray Science, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia)

    2014-08-01

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. - Highlights: • Phase-diverse coherent X-ray diffraction microscopy provides high-resolution and high-contrast images of intact biological samples. • Rapid nanoscale resolution imaging is demonstrated at orders of magnitude lower dose than previously possible. • Phase-diverse coherent X-ray diffraction microscopy is a robust technique for rapid, quantitative, and correlative X-ray phase imaging.

  4. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    Science.gov (United States)

    Emamzadah, Soheila; Petty, Tom J.; De Almeida, Victor; Nishimura, Taisuke; Joly, Jacques; Ferrer, Jean-Luc; Halazonetis, Thanos D.

    2009-01-01

    Microfluidics is a promising technology for the rapid iden­tification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts. PMID:19690369

  5. Ultrafast Structural Dynamics by X-Ray Diffraction and Structural Spectroscopy

    Science.gov (United States)

    Weber, Peter M.

    2015-05-01

    The ability to observe molecular reactions in real time is expected to aid the exploration of new reaction mechanisms, the development of catalysts, the understanding of biomolecular processes and the control of chemical reactions and material properties on a molecular level. To reach this goal, we have developed a gas-phase x-ray diffraction experiment that uses the ultrashort x-ray pulses from the Linac Coherent Light Source (LCLS) to capture atomic motions within molecules in a dilute gas (movie'' of the observed dynamics is constructed by comparing ab initio quantum molecular dynamics simulations with the experimental diffraction signal to derive weighted trajectories that provide a good representation of the structural dynamics, with the weighted ensemble of trajectories corresponding to the nuclear flux during the chemical reaction. The x-ray structural data thus provide reaction pathways for which ionization energies can be calculated at each step. We use ultrafast time-resolved multiphoton - ionization photoelectron spectroscopy to measure the travel time required for the molecule to reach certain resonance windows to Rydberg states. By so combining the results from the ultrafast x-ray diffraction with observations from ultrafast (structural) spectroscopy, it appears that we can make significant progress towards the ultimate goal: a comprehensive understanding of the spatially resolved photochemical reaction dynamics.

  6. Low-energy shelf response in thin energy-dispersive X-ray detectors from Compton scattering of hard X-rays

    Science.gov (United States)

    Michel-Hart, N.; Elam, W. T.

    2017-08-01

    Silicon drift detectors have been successfully employed in both soft and hard X-ray spectroscopy. The response function to incident radiation at soft X-ray levels has been well studied and modeled, but less research has been published on response functions for these detectors to hard X-ray input spectra above 20 keV. When used with hard X-ray sources a significant low energy, non-peak response exists which can adversely affect detection limits for lighter elements in, for example, X-ray fluorescence spectroscopy. We present a numerical model that explains the non-peak response function of silicon drift detectors to hard X-rays based on incoherent Compton scattering within the detector volume. Experimental results are presented and numerically compared to model results.

  7. Single-shot structural analysis by high-energy X-ray diffraction using an ultrashort all-optical source.

    Science.gov (United States)

    Rakowski, R; Golovin, G; O'Neal, J; Zhang, J; Zhang, P; Zhao, B; Wilson, M D; Veale, M C; Seller, P; Chen, S; Banerjee, S; Umstadter, D; Fuchs, M

    2017-11-30

    High-energy X-rays (HEX-rays) with photon energies on order of 100 keV have attractive characteristics, such as comparably low absorption, high spatial resolution and the ability to access inner-shell states of heavy atoms. These properties are advantageous for many applications ranging from studies of bulk materials to the investigation of materials in extreme conditions. Ultrafast X-ray diffraction allows the direct imaging of atomic dynamics simultaneously on its natural time and length scale. However, using HEX-rays for ultrafast studies has been limited due to the lack of sources that can generate pulses of sufficiently short (femtosecond) duration in this wavelength range. Here we show single-crystal diffraction using ultrashort ~90 keV HEX-ray pulses generated by an all-optical source based on inverse Compton scattering. We also demonstrate a method for measuring the crystal lattice spacing in a single shot that contains only ~105 photons in a spectral bandwidth of ~50% full width at half maximum (FWHM). Our approach allows us to obtain structural information from the full X-ray spectrum. As target we use a cylindrically bent Ge crystal in Laue transmission geometry. This experiment constitutes a first step towards measurements of ultrafast atomic dynamics using femtosecond HEX-ray pulses.

  8. Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study

    Energy Technology Data Exchange (ETDEWEB)

    Van de Voorde, Lien, E-mail: lien.vandevoorde@ugent.be [Ghent University, Department of Analytical Chemistry, X-ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Gent (Belgium); Vekemans, Bart [Ghent University, Department of Analytical Chemistry, X-ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Gent (Belgium); Verhaeven, Eddy [Antwerp University, Faculty of Design Sciences, Mutsaardstraat 31, B-2000 Antwerpen (Belgium); Tack, Pieter; De Wolf, Robin; Garrevoet, Jan [Ghent University, Department of Analytical Chemistry, X-ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Gent (Belgium); Vandenabeele, Peter [Ghent University, Department of Archaeology, Archaeometry Research Group, Sint-Pietersnieuwstraat 35, B-9000 Gent (Belgium); Vincze, Laszlo [Ghent University, Department of Analytical Chemistry, X-ray Microspectroscopy and Imaging Research Group, Krijgslaan 281 S12, B-9000 Gent (Belgium)

    2015-08-01

    A new, commercially available, mobile system combining X-ray diffraction and X-ray fluorescence has been evaluated which enables both elemental analysis and phase identification simultaneously. The instrument makes use of a copper or molybdenum based miniature X-ray tube and a silicon-Pin diode energy-dispersive detector to count the photons originating from the samples. The X-ray tube and detector are both mounted on an X-ray diffraction protractor in a Bragg–Brentano θ:θ geometry. The mobile instrument is one of the lightest and most compact instruments of its kind (3.5 kg) and it is thus very useful for in situ purposes such as the direct (non-destructive) analysis of cultural heritage objects which need to be analyzed on site without any displacement. The supplied software allows both the operation of the instrument for data collection and in-depth data analysis using the International Centre for Diffraction Data database. This paper focuses on the characterization of the instrument, combined with a case study on pigment identification and an illustrative example for the analysis of lead alloyed printing letters. The results show that this commercially available light-weight instrument is able to identify the main crystalline phases non-destructively, present in a variety of samples, with a high degree of flexibility regarding sample size and position. - Highlights: • New X-ray fluorescence and X-ray diffraction instrument for non-destructive analysis • Commercially available, mobile system • One of the lightest and most compact of its kind • Characterization, data acquisition and analysis are performed. • Results of measurements on pigment model samples and cultural heritage materials.

  9. Double-slit dynamical diffraction of X-rays in ideal crystals (Laue case).

    Science.gov (United States)

    Balyan, Minas K

    2010-11-01

    The theoretical investigation of double-slit dynamical X-ray diffraction in ideal crystals shows that, on the exit surface of crystals, interference fringes similar to Young's fringes are formed. An expression for the period of the fringes was obtained. The visibility of the fringes depending on temporal and spatial coherent properties of the incident beam is studied. The polarization state of the incident beam also affects the visibility of the fringes, which in turn depends on the size of the slits. The deviation from Bragg's exact angle causes a shift of the fringes and can also affect the amplitude of the intensity. One of the parameters on which the visibility of the fringes depends is the source-crystal distance. The proposed scheme can be used as a Rayleigh X-ray interferometer. Use of the scheme as a Michelson X-ray stellar interferometer is also possible.

  10. Disputed discovery: the beginnings of X-ray diffraction in crystals in 1912 and its repercussions.

    Science.gov (United States)

    Eckert, Michael

    2012-01-01

    The discovery of X-ray diffraction is reviewed from the perspective of the contemporary knowledge in 1912 about the nature of X-rays. Laue's inspiration that led to the experiments by Friedrich and Knipping in Sommerfeld's institute was based on erroneous expectations. The ensuing discoveries of the Braggs clarified the phenomenon (although they, too, emerged from dubious assumptions about the nature of X-rays). The early misapprehensions had no impact on the Nobel Prizes to Laue in 1914 and the Braggs in 1915; but when the prizes were finally awarded after the war, the circumstances of `Laue's discovery' gave rise to repercussions. Many years later, they resulted in a dispute about the `myths of origins' of the community of crystallographers.

  11. Inelastic X-ray scattering of Sm-filled Skutterudite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, S. [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan)]. E-mail: satoshi@spring8.or.jp; Kobayashi, H. [Graduate school of Materials Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan); CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 (Japan); Baron, A.Q.R. [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); RIKEN, SPring-8, Sayo, Hyogo 679-5148 (Japan); Sutter, J.P. [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Yoda, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012 (Japan); Onodera, H. [Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Kikuchi, D. [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0937 (Japan); Sugawara, H. [Faculty of Integrated Arts and Sciences, University of Tokushima, Tokushima, Tokushima 770-8502 (Japan); Sato, H. [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0937 (Japan); Sekine, C. [Department of Electronic and Electric Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan); Shirotani, I. [Department of Electronic and Electric Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan)

    2007-03-15

    We have carried out inelastic X-ray scattering and {sup 149}Sm nuclear resonant inelastic scattering of SmRu{sub 4}P{sub 12} to investigate its metal-insulator transition. We have not observed any significant change in both inelastic X-ray scattering spectra and nuclear resonant inelastic scattering spectra at the transition temperature. In spite of the proposal of the Fermi surface nesting at q =(1 0 0) by the recent band calculation, the anomalies correlated with the metal-insulator transition were not found in the inelastic X-ray scattering spectrum at the longitudinal zone boundary along the [1 0 0] direction. The results of {sup 149}Sm nuclear resonant inelastic scattering also suggest that the Sm vibration modes are not correlated with the metal-insulator transition.

  12. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Emamzadah, Soheila [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Petty, Tom J. [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Biomedical Graduate Studies Genomics and Computational Biology Group, University of Pennsylvania, Philadelphia, PA 19104 (United States); De Almeida, Victor [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Nishimura, Taisuke [Department of Plant Biology, University of Geneva, CH-1205 Geneva (Switzerland); Joly, Jacques; Ferrer, Jean-Luc [Institut de Biologie Structurale J.-P. Ebel, CEA-CNRS-University J. Fourier, 38027 Grenoble CEDEX 1 (France); Halazonetis, Thanos D., E-mail: thanos.halazonetis@unige.ch [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland)

    2009-09-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  13. X-ray scattering and the chemical bond in N2 and CN

    NARCIS (Netherlands)

    Groenewegen, P.P.M.; Zeevalkink, J.; Feil, D.

    1971-01-01

    X-ray scattering from the chemical bond within N2 and CN- has been studied in detail. Differences in scattering from these systems, derived from bonding and non-bonding models, are characterized by R values of ~ 0.04. Partitioning of the scattering into core and valence electron parts clearly

  14. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto.

    Science.gov (United States)

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio

    2010-12-01

    Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27,724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a=74.3, b=49.9, c=56.3 Å, β=95.2°. Diffraction images were processed to a resolution of 1.74 Å with an Rmerge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase.

  15. Rosalind Franklin's X-ray photo of DNA as an undergraduate optical diffraction experiment

    Science.gov (United States)

    Thompson, J.; Braun, G.; Tierney, D.; Wessels, L.; Schmitzer, H.; Rossa, B.; Wagner, H. P.; Dultz, W.

    2018-02-01

    Rosalind Franklin's X-ray diffraction patterns of DNA molecules rendered the important clue that DNA has the structure of a double helix. The most famous X-ray photograph, Photo 51, is still printed in most Biology textbooks. We suggest two optical experiments for undergraduates that make this historic achievement comprehensible for students by using macromodels of DNA and visible light to recreate a diffraction pattern similar to Photo 51. In these macromodels, we replace the double helix both mathematically and experimentally with its two-dimensional (flat) projection and explain why this is permissible. Basic optical concepts are used to infer certain well-known characteristics of DNA from the diffraction pattern.

  16. Correct interpretation of diffraction properties of quartz crystals for X-ray optics applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xian-Rong; Gog, Thomas; Kim, Jungho; Kasman, Elina; Said, Ayman H.; Casa, Diego M.; Wieczorek, Michael; Hönnicke, Marcelo G.; Assoufid, Lahsen

    2018-02-01

    Quartz has hundreds of strong Bragg reflections that may offer a great number of choices for making fixed-angle X-ray analyzers and polarizers at virtually any hard X-ray energies with selectable resolution. However, quartz crystals, unlike silicon and germanium, are chiral and may thus appear in two different forms of handedness that are mirror images. Furthermore, because of the threefold rotational symmetry along thecaxis, the {h1h2h3L} and {h2h1h3L} Bragg reflections may have quite different Darwin bandwidth, reflectivity and angular acceptance, although they have the same Bragg angle. The design of X-ray optics from quartz crystals therefore requires unambiguous determination of the orientation, handedness and polarity of the crystals. The Laue method and single-axis diffraction technique can provide such information, but the variety of conventions used in the literature to describe quartz structures has caused widespread confusion. The current studies give detailed guidelines for design and fabrication of quartz X-ray optics, with special emphasis on the correct interpretation of Laue patterns in terms of the crystallography and diffraction properties of quartz. Meanwhile, the quartz crystals examined were confirmed by X-ray topography to have acceptably low densities of dislocations and other defects, which is the foundation for developing high-resolution quartz-based X-ray optics.

  17. Morphological and structural characterization of PHBV/organoclay nanocomposites by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Carli, Larissa N., E-mail: lncarli@ucs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, Porto Alegre, 91501-970, RS (Brazil); Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, Caxias do Sul, 95070-560, RS (Brazil); Bianchi, Otavio, E-mail: obianchi@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, Caxias do Sul, 95070-560, RS (Brazil); Machado, Giovanna, E-mail: giovannamachado@uol.com.br [Centro de Tecnologias Estrategicas do Nordeste, Av. Prof. Luiz Freire, 01, Cidade Universitaria, Recife, 50740-540, PE (Brazil); Programa de Pos-Graduacao de Materiais, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, 50670-901, PE (Brazil); Crespo, Janaina S., E-mail: jscrespo@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, Caxias do Sul, 95070-560, RS (Brazil); Mauler, Raquel S., E-mail: raquel.mauler@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, Porto Alegre, 91501-970, RS (Brazil)

    2013-03-01

    In this work, the morphological and structural behaviors of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposites were investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The nanocomposites with 1, 3 and 5 wt.% of organically modified montmorillonite Cloisite Registered-Sign 30B (OMMT) were prepared by melt processing in a twin screw extruder using two different processing conditions (low and high shear intensity). The lamellar long period of the polymer was lower for the nanocomposites, with high polydispersity values. However, the crystalline thickness increased with the clay content and was independent of the processing conditions. This behavior resulted in a high linear crystallinity of the nanocomposites with 3 and 5 wt.% OMMT. The disruption factor ({beta}) was in agreement with the WAXD and TEM findings, indicating a good dispersion of the nanoparticles in the PHBV matrix with 3 wt.% of OMMT during the high shear intensity of melt processing. Highlights: Black-Right-Pointing-Pointer SAXS was used for morphological and crystalline studies of PHBV/OMMT nanocomposites. Black-Right-Pointing-Pointer The crystalline structure was influenced by the presence of clay. Black-Right-Pointing-Pointer The degree of clay dispersion in a polymer matrix was quantified. Black-Right-Pointing-Pointer The morphology comprised exfoliated particles, nanoscale and microscale clusters. Black-Right-Pointing-Pointer The results obtained by SAXS agreed well with TEM and WAXD results.

  18. JMFA2—a graphically interactive Java program that fits microfibril angle X-ray diffraction data

    Science.gov (United States)

    Steve P. Verrill; David E. Kretschmann; Victoria L. Herian

    2006-01-01

    X-ray diffraction techniques have the potential to decrease the time required to determine microfibril angles dramatically. In this paper, we discuss the latest version of a curve-fitting toll that permits us to reduce the time required to evaluate MFA X-ray diffraction patterns. Further, because this tool reflects the underlying physics more accurately than existing...

  19. Nano-Second Time-Resolved Synchrotron X-Ray Diffraction Study of Olivine Under Laser-induced Shock Compression

    Science.gov (United States)

    Mikouchi, T.; Ohsumi, K.; Ichiyanagi, K.; Adachi, S.; Nozawa, S.; Koshihara, S.; Zolensky, M.

    2009-03-01

    We performed in-situ nano-second time-resolved synchrotron X-ray diffraction analysis of olivine by synchronization of X-ray and laser pulses. We could successfully obtain 0-30 ns Laue diffraction images at the shock pressure of 1.2-6.5 GPa.

  20. Low-lying optical modes in filled skutterudites using inelastic x-ray scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, S [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Kobayashi, H [Graduate School of Materials Science, University of Hyogo, Kamigori, Hyogo 678-1298 (Japan); Sutter, J P [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan (Japan); Baron, A R [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Hasegawa, T [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Ogita, N [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Udagawa, M [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Yoda, Y [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Sekine, C [Department of Electric and Electronic Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan); Shirotani, I [Department of Electric and Electronic Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan); Kikuchi, D [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0937 (Japan); Sugawara, H [Faculty of Integrated Arts and Sciences, University of Tokushima, Tokushima, Tokushima 770-8502 (Japan); Sato, H [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0937 (Japan)

    2007-12-15

    We have carried out high resolution inelastic x-ray scattering and {sup 149}Sm nuclear resonant inelastic scattering of a skutterudite SmRu{sub 4}P{sub 12}. The inelastic x-ray scattering spectra and dispersion show q-dependence and zone-dependence except for the modes lying at 9 meV. The dispersionless modes, which are zone-independent, are observed at 9 meV. The energy of this mode agrees with that obtained by {sup 149}Sm nuclear resonant inelastic scattering. The dispersion suggests the presence of strong hybridization between low-lying optical mode at 9 meV and acoustic ones.

  1. Charge and orbital ordered states studied by using x-ray anomalous scattering terms

    CERN Document Server

    Nakao, H

    2002-01-01

    Recently, the studies utilizing anomalous scattering term of atomic scattering factor near absorption edge, so called x-ray anomalous scattering and resonant x-ray scattering, have been rapidly developed. This technique has especially contributed to the determination of the charge-orbital ordered structure in strongly correlated electron system. In this paper, we present the typical examples - the charge ordering of V sup 4 sup + and V sup 5 sup + in NaV sub 2 O sub 5 and the antiferro-quadrupole ordering (orbital ordering) of Ge sup 3 sup + ions in CeB sub 6 (author)

  2. Vibrational effects in x-ray absorption and resonant inelastic x-ray scattering using a semiclassical scheme

    Science.gov (United States)

    Ljungberg, Mathias P.

    2017-12-01

    A method is presented for describing vibrational effects in x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS) using a combination of the classical Franck-Condon (FC) approximation and classical trajectories run on the core-excited state. The formulation of RIXS is an extension of the semiclassical Kramers-Heisenberg formalism of Ljungberg et al. [Phys. Rev. B 82, 245115 (2010), 10.1103/PhysRevB.82.245115] to the resonant case, retaining approximately the same computational cost. To overcome difficulties with connecting the absorption and emission processes in RIXS, the classical FC approximation is used for the absorption, which is seen to work well provided that a zero-point-energy correction is included. In the case of core-excited states with dissociative character, the method is capable of closely reproducing the main features for one-dimensional test systems, compared to the quantum-mechanical formulation. Due to the good accuracy combined with the relatively low computational cost, the method has great potential of being used for complex systems with many degrees of freedom, such as liquids and surface adsorbates.

  3. Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study

    Science.gov (United States)

    Van de Voorde, Lien; Vekemans, Bart; Verhaeven, Eddy; Tack, Pieter; De Wolf, Robin; Garrevoet, Jan; Vandenabeele, Peter; Vincze, Laszlo

    2015-08-01

    A new, commercially available, mobile system combining X-ray diffraction and X-ray fluorescence has been evaluated which enables both elemental analysis and phase identification simultaneously. The instrument makes use of a copper or molybdenum based miniature X-ray tube and a silicon-Pin diode energy-dispersive detector to count the photons originating from the samples. The X-ray tube and detector are both mounted on an X-ray diffraction protractor in a Bragg-Brentano θ:θ geometry. The mobile instrument is one of the lightest and most compact instruments of its kind (3.5 kg) and it is thus very useful for in situ purposes such as the direct (non-destructive) analysis of cultural heritage objects which need to be analyzed on site without any displacement. The supplied software allows both the operation of the instrument for data collection and in-depth data analysis using the International Centre for Diffraction Data database. This paper focuses on the characterization of the instrument, combined with a case study on pigment identification and an illustrative example for the analysis of lead alloyed printing letters. The results show that this commercially available light-weight instrument is able to identify the main crystalline phases non-destructively, present in a variety of samples, with a high degree of flexibility regarding sample size and position.

  4. Capillary-based micro-battery cell for in situ X-ray powder diffraction studies of working batteries: a study of the initial intercalation and deintercalation of lithium into graphite

    DEFF Research Database (Denmark)

    Johnsen, Rune; Norby, Poul

    2013-01-01

    to obtain diffraction from a single electrode at a time, which facilitates detailed structural and microstructural studies of the electrode materials. The micro-battery cell is potentially also applicable for in situ X-ray absorption spectroscopy and smallangle X-ray scattering experiments. The in situ XRPD...

  5. Coherent convergent-beam time-resolved X-ray diffraction.

    Science.gov (United States)

    Spence, John C H; Zatsepin, Nadia A; Li, Chufeng

    2014-07-17

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Fluid bilayer structure determination: Joint refinement in composition space using X-ray and neutron diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    White, S.H. [Univ. of California, Irvine, CA (United States); Wiener, M.C. [Univ. of California, San Francisco, CA (United States)

    1994-12-31

    Experimentally-determined structural models of fluid lipid bilayers are essential for verifying molecular dynamics simulations of bilayers and for understanding the structural consequences of peptide interactions. The extreme thermal motion of bilayers precludes the possibility of atomic-level structural models. Defining {open_quote}the structure{close_quote} of a bilayer as the time-averaged transbilayer distribution of the water and the principal lipid structural groups such as the carbonyls and double-bonds (quasimolecular fragments), one can represent the bilayer structure as a sum of Gaussian functions referred to collectively as the quasimolecular structure. One method of determining the structure is by neutron diffraction combined with exhaustive specific deuteration. This method is impractical because of the expense of the chemical syntheses and the limited amount of neutron beam time currently available. We have therefore developed the composition space refinement method for combining X-ray and minimal neutron diffraction data to arrive at remarkably detailed and accurate structures of fluid bilayers. The composition space representation of the bilayer describes the probability of occupancy per unit length across the width of the bilayer of each quasimolecular component and permits the joint refinement of X-ray and neutron lamellar diffraction data by means of a single quasimolecular structure that is fitted simultaneously to both data sets. Scaling of each component by the appropriate neutron or X-ray scattering length maps the composition-space profile to the appropriate scattering length space for comparison to experimental data. The difficulty with the method is that fluid bilayer structures are generally only marginally determined by the experimental data. This means that the space of possible solutions must be extensively explored in conjunction with a thorough analysis of errors.

  7. X-Ray Diffraction Study of the Internal Structure of Supercooled Water

    Science.gov (United States)

    Dorsch, Robert G.; Boyd, Bemrose

    1951-01-01

    A Bragg X-ray spectrometer equipped with a volume-sensitive Geiger counter and Soller slits and employing filtered molybdenum Ka radiation was used to obtain a set of diffracted intensity curves as a Punction of angle for supercooled water. Diffracted intensity curves in the temperature region of 21 to -16 C were obtained. The minimum between the two main diffraction peaks deepened continuously with lowering temperature, indicating a gradual change in the internal structure of the water. No discontinuity in this trend was noted at the melting point. The internal structure of supercooled water was concluded to become progressively more ice-like as the temperature is lowered.

  8. X-ray plane-wave diffraction effects in a crystal with third-order nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Balyan, M. K., E-mail: mbalyan@ysu.am [Yerevan State University, Faculty of Physics (Armenia)

    2016-12-15

    The two-wave dynamical diffraction in the Laue geometry has been theoretically considered for a plane X-ray wave in a crystal with a third-order nonlinear response to the external field. An analytical solution to the problem stated is found for certain diffraction conditions. A nonlinear pendulum effect is analyzed. The nonlinear extinction length is found to depend on the incident-wave intensity. A pendulum effect of a new type is revealed: the intensities of the transmitted and diffracted waves periodically depend on the incidentwave intensity at a fixed crystal thickness. The rocking curves and Borrmann nonlinear effect are numerically calculated.

  9. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction.

    Science.gov (United States)

    Huang, J W; E, J C; Huang, J Y; Sun, T; Fezzaa, K; Luo, S N

    2016-05-01

    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250-350 ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters, i.e. instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion of crystals, including translation and rotation, can be tracked in real time via simultaneous imaging and diffraction.

  10. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J. W.; E, J. C.; Huang, J. Y.; Sun, T.; Fezzaa, K.; Luo, S. N.

    2016-03-30

    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250–350 ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters,i.e.instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion of crystals, including translation and rotation, can be tracked in real timeviasimultaneous imaging and diffraction.

  11. Simulation study of an X-ray diffraction system for breast tumor detection

    Science.gov (United States)

    Marticke, F.; Montémont, G.; Paulus, C.; Michel, O.; Mars, J. I.; Verger, L.

    2017-09-01

    X-ray diffraction (XRD) is a powerful technique used to determine the molecular structure of biological tissues. In breast tissues for example, the scattering signatures of dense fibroglandular tissue and carcinoma have been shown to be significantly different. In this study, XRD was used as a second control level when conventional mammography results were unclear, for instance because of overly high breast density. A system optimized for this issue, called multifocal XRD, was developed combining energy dispersive spectral information at different scattering angles. This system allows depth-imaging in one go but needs an x,y-direction scan to image the region conventional mammography identified as suspect. The scan-time for about 10 cm3 with an incident flux of about 4.8·107 photons per second would be around 2 s. For this study, breast phantoms with and without cancerous nodule were simulated to assess the separation power of the method and to determine the radiation dose required to obtain nearly ideal separation. For tumors situated in the center of the breast, the required dose was only about 0.3 mGy, even for breasts with high density. The tumor position was shown to have a low impact on detectability provided it remained in a zone where the system was sufficiently sensitive. The influence of incident spectrum maximum energy was also studied. The required dose remained very low with any of the incident spectra tested. Finally, an image slice was reconstructed in the x-direction and showed that the system can detect the presence of a small tumor (4 mm). Hence, XRD is a very promising tool to reduce the number of unnecessary invasive breast biopsies.

  12. Imaging outside the box: Resolution enhancement in X-ray coherent diffraction imaging by extrapolation of diffraction patterns

    Energy Technology Data Exchange (ETDEWEB)

    Latychevskaia, Tatiana, E-mail: tatiana@physik.uzh.ch; Fink, Hans-Werner [Physics Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland); Chushkin, Yuriy; Zontone, Federico [The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble (France)

    2015-11-02

    Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed.

  13. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals.

    Science.gov (United States)

    Dao, E Han; Sierra, Raymond G; Laksmono, Hartawan; Lemke, Henrik T; Alonso-Mori, Roberto; Coey, Aaron; Larsen, Kevin; Baxter, Elizabeth L; Cohen, Aina E; Soltis, S Michael; DeMirci, Hasan

    2015-07-01

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecond X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.

  14. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    Directory of Open Access Journals (Sweden)

    E. Han Dao

    2015-07-01

    Full Text Available In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecond X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.

  15. Identification of inversion domains in KTiOPO{sub 4}via resonant X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizi, Federica, E-mail: federica.fabrizi@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom); Thomas, Pamela A. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Nisbet, Gareth; Collins, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom)

    2015-05-14

    The identification and high-resolution mapping of the absolute crystallographic structure in multi-domain ferroelectric KTiOPO{sub 4} is achieved through a novel synchrotron X-ray diffraction method. On a single Bragg reflection, the intensity ratio in resonant diffraction below and above the Ti absorption K edge demonstrates a domain contrast up to a factor of ∼270, thus implementing a non-contact, non-destructive imaging technique with micrometre spatial resolution, applicable to samples of arbitrarily large dimensions. A novel method is presented for the identification of the absolute crystallographic structure in multi-domain polar materials such as ferroelectric KTiOPO{sub 4}. Resonant (or ‘anomalous’) X-ray diffraction spectra collected across the absorption K edge of Ti (4.966 keV) on a single Bragg reflection demonstrate a huge intensity ratio above and below the edge, providing a polar domain contrast of ∼270. This allows one to map the spatial domain distribution in a periodically inverted sample, with a resolution of ∼1 µm achieved with a microfocused beam. This non-contact, non-destructive technique is well suited for samples of large dimensions (in contrast with traditional resonant X-ray methods based on diffraction from Friedel pairs), and its potential is particularly relevant in the context of physical phenomena connected with an absence of inversion symmetry, which require characterization of the underlying absolute atomic structure (such as in the case of magnetoelectric coupling and multiferroics)

  16. Influence of preferred orientation of minerals in the mineralogical identification process by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Amanda Luzia da; Oliveira, Arno H. de [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Fernandes, Maria Lourdes Souza, E-mail: lourdesfernandes@ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de GeoCiencias. Centro de Pesquisa Professor Manoel Teixeira da Costa

    2011-07-01

    The X-ray diffraction corresponds to one of the main techniques for characterization of microstructures in crystalline materials, widely used in the identification of minerals in samples of geological materials. Some minerals have a property called preferred orientation which corresponds to the orientation tendency of the crystals of ground minerals to orient themselves in certain directions according to a preferred crystallographic plane. This property affects the analysis by X-ray diffraction and this fact can generates erroneous results in the characterization. The purpose of this study is to identify the negative influence of the preferred orientation of a mineral in the generation of diffraction patterns obtained in the X-ray diffraction analysis. For this, a sample of muscovite, a mineral of mica group, was prepared by two different methods: the frontal method and the back loading method. In the analysis using the frontal method there was displacement of the XRD pattern in the abscissa axis, where it was observed changes in interplanar distance and angle 2{theta} values, which are essential information for characterization and identification of a mineral. In the analysis using the back loading method, the generated XRD pattern showed no displacement in the axis of abscissas and showed interplanar distance and angle 2{theta} values closer to the real values for the muscovite. The results showed that one can only make improvements to the process of sample preparation minimizing the effect of preferred orientation in the analysis. There is no need to change conditions of diffractometer measurements. (author)

  17. SU-E-I-44: Some Preliminary Analysis of Angular Distribution of X-Ray Scattered On Soft Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ganezer, K; Krmar, M; Cvejic, Z; Rakic, S; Pajic, B [University of Novi Sad, Novi Sad Serbia (Serbia)

    2015-06-15

    Purpose: The angular distribution of x-radiation scattered at small angles (up to 16 degrees) from several different animal soft tissue (skin, fat, muscle, retina, etc) were measured using standard equipment devoted to study of crystal structure which provides excellent geometry conditions of measurements. showed measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Methods: An x-ray scattering profile usually consists of sharp diffraction peak; however some properties of the spatial profiles of scattered radiation as intensity, the peak position, height, area, FWHM, the ratio of peak heights, etc. Results: The data contained measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Measurements of different samples in the very preliminary phase showed that simple biological material used in study showed slightly different scattering pattern, especially at higher angles (around 10degrees). Intensity of radiation scattered from same tissue type is very dependent on water content and several more parameters. Conclusion: This preliminary study using animal soft tissues on the angular distributions of scattered x-rays suggests that angular distributions of X-rays scattered off of soft tissues might be useful in distinguishing healthy tissue from malignant soft tissue.

  18. X-ray scattering for the determination of fat content in dairy products

    Science.gov (United States)

    Elshemey, Wael M.

    2011-07-01

    The scattering of X-rays from biological samples has been shown to produce characteristic profiles, which depend on their molecular structure. The highly ordered fat molecules in an adipose tissue result in a relatively sharp scattering peak at 1.1 nm -1 with a scattering profile, which is considerably different from the scattering profile of a water-rich tissue. The latter is characterized by a broad scattering peak at about 1.6 nm -1. A biological sample consisting of a mixture of both adipose and a water-rich tissue is expected to show a scattering profile, which is directly linked to the relative contribution of each component and would reflect the percentage by volume of each component in the mixture. In this work, X-ray scattering profiles of a number of dairy products and water are measured. The values of two selected X-ray scattering characterization parameters ( I1/ I2% and areas A1/ A2% of the scattering peaks at 1.1 and 1.6 nm -1, respectively) are plotted against the fat content of each of the measured dairy samples. Results show a strong linear dependence of each of the X-ray scattering parameters and the fat content of the investigated dairy products. These results suggest a possible use of such technique as a new, simple and straight forward method for determination of fat content of dairy products that would join and support the currently available techniques.

  19. X-ray coherent scattering tomography of textured material (Conference Presentation)

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2017-05-01

    Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.

  20. Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature

    Science.gov (United States)

    Willa, K.; Diao, Z.; Campanini, D.; Welp, U.; Divan, R.; Hudl, M.; Islam, Z.; Kwok, W.-K.; Rydh, A.

    2017-12-01

    Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification of beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-δ crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.

  1. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  2. International Conference on Surface X-ray and Neutron Scattering (SXNS-11)

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Bedzyk

    2011-06-17

    The 11th International Surface X-ray and Neutron Scattering (SXNS) Conference was held on July 13-17, 2010, on the Northwestern University (NU) campus, in Evanston Illinois and hosted by the NU Materials Research Science and Engineering Center. This biennial conference brought together a community of 164 attendees from 16 countries. The field now makes use of a broad range of new experimental capabilities that have been made possible through the development of increasingly brilliant X-ray and neutron sources around the world, including third generation synchrotron sources, neutron reactor and spallation sources, as well as the recent development of X-ray lasers.

  3. Soft X-ray production by photon scattering in pulsating binary neutron star sources

    Science.gov (United States)

    Bussard, R. W.; Meszaros, P.; Alexander, S.

    1985-01-01

    A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column.

  4. A Monte Carlo simulation of scattering reduction in spectral x-ray computed tomography

    Science.gov (United States)

    Busi, Matteo; Olsen, Ulrik L.; Knudsen, Erik B.; Frisvad, Jeppe R.; Kehres, Jan; Christensen, Erik D.; Khalil, Mohamad; Haldrup, Kristoffer

    2017-08-01

    In X-ray computed tomography (CT), scattered radiation plays an important role in the accurate reconstruction of the inspected object, leading to a loss of contrast between the different materials in the reconstruction volume and cupping artifacts in the images. We present a Monte Carlo simulation tool for spectral X-ray CT to predict the scattered radiation generated by complex samples. An experimental setup is presented to isolate the energy distribution of scattered radiation. Spectral CT is a novel technique implementing photon-counting detectors able to discriminate the energy of incoming photons, enabling spectral analysis of X-ray images. This technique is useful to extract efficiently more information on energy dependent quantities (e.g. mass attenuations coefficients) and study matter interactions (e.g. X-ray scattering, photoelectric absorption, etc...). Having a good knowledge of the spectral distribution of the scattered X-rays is fundamental to establish methods attempting to correct for it. The simulations are validated by real measurements using a CdTe spectral resolving detector (Multix ME-100). We observed the effect of the scattered radiation on the image reconstruction, becoming relevant in the energy range where the Compton events are dominant (i.e. above 50keV).

  5. Performance of the micro-PIC gaseous area detector in small-angle X-ray scattering experiments.

    Science.gov (United States)

    Hattori, Kaori; Tsuchiya, Ken'ichi; Ito, Kazuki; Okada, Yoko; Fujii, Kotaro; Kubo, Hidetoshi; Miuchi, Kentaro; Takata, Masaki; Tanimori, Toru; Uekusa, Hidehiro

    2009-03-01

    The application of a two-dimensional photon-counting detector based on a micro-pixel gas chamber (micro-PIC) to high-resolution small-angle X-ray scattering (SAXS), and its performance, are reported. The micro-PIC is a micro-pattern gaseous detector fabricated by printed circuit board technology. This article describes the performance of the micro-PIC in SAXS experiments at SPring-8. A dynamic range of >10(5) was obtained for X-ray scattering from a polystyrene sphere solution. A maximum counting rate of up to 5 MHz was observed with good linearity and without saturation. For a diffraction pattern of collagen, weak peaks were observed in the high-angle region in one accumulation of photons.

  6. Structural investigation of GaInP nanowires using X-ray diffraction

    DEFF Research Database (Denmark)

    Kriegner, D.; Persson, Johan Mikael; Etzelstorfer, T.

    2013-01-01

    In this work the structure of ternary GaxIn1−xP nanowires is investigated with respect to the chemical composition and homogeneity. The nanowires were grown by metal–organic vapor-phase epitaxy. For the investigation of ensemble fluctuations on several lateral length scales, X-ray diffraction...... gradients along the sample by recording diffraction patterns at different positions. In addition, compositional variations were found also within single nanowires in X-ray energy dispersive spectroscopy measurements....... reciprocal space maps have been analyzed. The data reveal a complicated varying materials composition across the sample and in the nanowires on the order of 20%. The use of modern synchrotron sources, where beam-sizes in the order of several 10μm are available, enables us to investigate compositional...

  7. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    Energy Technology Data Exchange (ETDEWEB)

    Kiyota, Eduardo [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Sousa, Sylvia Morais de [Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP (Brazil); Santos, Marcelo Leite dos; Costa Lima, Aline da [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil); Menossi, Marcelo [Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Yunes, José Andrés [Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas-SP (Brazil); Aparicio, Ricardo, E-mail: aparicio@iqm.unicamp.br [Laboratório de Biologia Estrutural, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP (Brazil)

    2007-11-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  8. Electrochemical cell for in situ x-ray diffraction under ultrapure conditions

    DEFF Research Database (Denmark)

    Koop, T.; Schindler, W.; Kazimirov, A.

    1998-01-01

    of the crystal using a Luggin capillary and a standard reference electrode. We demonstrate the performance of our cell by in situ synchrotron x-ray diffraction measurements on ultrathin Co layers electrodeposited on Cu(001) in an aqueous H(2)SO(4)/CoSO(4) solution. (C) 1998 American Institute of Physics.......An electrochemical cell has been developed for in situ x-ray diffraction from a working electrode under clean conditions equivalent to ultrahigh vacuum conditions of 5 x 10(-10) mbar. The substrate crystals can be prepared ex situ and transferred into the cell under protection of ultrapure water...... within a few seconds. The oxygen level in the electrolyte is reduced by continuous N(2) flow to less than 0.2% compared to that of a fresh electrolyte. This can be done while rotating the cell by 360 degrees about the surface normal. The electrode potential is accurately measured at the position...

  9. Synchrotron radiation X-ray powder diffraction techniques applied in hydrogen storage materials - A review

    Directory of Open Access Journals (Sweden)

    Honghui Cheng

    2017-02-01

    Full Text Available Synchrotron radiation is an advanced collimated light source with high intensity. It has particular advantages in structural characterization of materials on the atomic or molecular scale. Synchrotron radiation X-ray powder diffraction (SR-XRPD has been successfully exploited to various areas of hydrogen storage materials. In the paper, we will give a brief introduction on hydrogen storage materials, X-ray powder diffraction (XRPD, and synchrotron radiation light source. The applications of ex situ and in situ time-resolved SR-XRPD in hydrogen storage materials, are reviewed in detail. Future trends and proposals in the applications of the advanced XRPD techniques in hydrogen storage materials are also discussed.

  10. Crystallographic Characterization of Extraterrestrial Materials by Energy-Scanning X-ray Diffraction

    Science.gov (United States)

    Hagiya, Kenji; Mikouchi, Takashi; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Yamaguchi, Shoki; Hirata, Arashi; Kurokawa, Ayaka; Zolensky, Michael E. (Principal Investigator)

    2016-01-01

    We have continued our long-term project using X-ray diffraction to characterize a wide range of extraterrestrial samples. The stationary sample method with polychromatic X-rays is advantageous because the irradiated area of the sample is always same and fixed, meaning that all diffraction spots occur from the same area of the sample, however, unit cell parameters cannot be directly obtained by this method though they are very important for identification of mineral and for determination of crystal structures. In order to obtain the cell parameters even in the case of the sample stationary method, we apply energy scanning of a micro-beam of monochromatic SR at SPring-8.

  11. A novel method for resonant inelastic soft X-ray scattering via photoelectron spectroscopy detection.

    Science.gov (United States)

    Dakovski, Georgi L; Lin, Ming Fu; Damiani, Daniel S; Schlotter, William F; Turner, Joshua J; Nordlund, Dennis; Ogasawara, Hirohito

    2017-11-01

    A method for measuring resonant inelastic X-ray scattering based on the conversion of X-ray photons into photoelectrons is presented. The setup is compact, relies on commercially available detectors, and offers significant flexibility. This method is demonstrated at the Linac Coherent Light Source with ∼0.5 eV resolution at the cobalt L3-edge, with signal rates comparable with traditional grating spectrometers.

  12. Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering

    KAUST Repository

    Accardo, Angelo

    2013-01-01

    Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates. © 2013 The Royal Society of Chemistry.

  13. Resonant X-ray Raman scattering on molecules: A benchmark study on HCl

    Energy Technology Data Exchange (ETDEWEB)

    Carniato, Stephane [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); Taieb, Richard, E-mail: richard.taieb@upmc.f [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); Journel, Loic; Guillemin, Renaud [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); Stolte, Wayne C.; Lindle, Dennis W. [Department of Chemistry, University of Nevada, Las Vegas, NV 89154-4003 (United States); Gel' mukhanov, Faris [Theoretical Chemistry, Roslagstullsbacken 15, Royal Institute of Technology, S-106 91 Stockholm (Sweden); Simon, Marc [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France)

    2010-08-15

    Resonant X-ray Raman scattering is a powerful tool to study molecular dynamics and subtle chemical effects like the molecular field beyond vibrational and lifetime limitations. Using this technique in the tender X-ray region, gas phase HCl is studied as a benchmark molecule for other compounds like freons, which play an important role in physical-chemical properties of the ozone layer of atmosphere.

  14. Temperature measurement through detailed balance in X-ray Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Doppner, T; Landen, O L; Lee, H J; Neumayer, P; Regan, S P; Glenzer, S H

    2009-02-02

    The plasma conditions in isochorically heated beryllium are measured by x-ray Thomson scattering in the collective regime with a Cl Ly-{alpha} x-ray source at 2.96 keV. In addition to the down-shifted plasmon shape which provides electron density and temperature information, an up-shifted plasmon signal is observed allowing a model independent determination of the plasma temperature from the detailed balance relation.

  15. Optimization of the genetic algorithm of jointly fitting different types of X-ray scattering curves

    Energy Technology Data Exchange (ETDEWEB)

    Sutyrin, A. G.; Imamov, R. M., E-mail: imamov@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-01-15

    A method for jointly processing X-ray scattering data of different types is developed. It is shown that, by optimizing the genetic algorithm of the joint solution of the inverse problem of X-ray diffractometry and reflectometry, one can reduce the amount of calculations and reliably determine the parameters of layers in the structure under study, even when the information about them is a priori limited.

  16. A secondary graphite crystal spectrometer for anomalous X-ray diffraction experiments

    CERN Document Server

    Stachs, O; Himmel, B; Gerber, T

    1999-01-01

    A new design for implementation of anomalous X-ray diffraction experiments is proposed. The exploitation of a graphite crystal spectrometer with good energy resolution in combination with an acceptable counting rate opens new possibilities to carry out AWAXS experiments and calculate partial structure functions. The proof of this measurement principle is demonstrated by presentation of the partial structure factor and radial distribution function for rubidium germanate glasses around the germanium component. (author)

  17. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    Directory of Open Access Journals (Sweden)

    M. S. Conconi

    2014-12-01

    Full Text Available The firing transformations of traditional (clay based ceramics are of technological and archeological interest, and are usually reported qualitatively or semiquantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite, the low crystalline (metakaolinite and/or spinel type pre-mullite and glassy phases evolution of a triaxial (clay-quartz-feldspar ceramic fired in a wide temperature range between 900 and 1300 ºC. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 ºC spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and

  18. Polymorphism in B-DNA: X-ray diffraction studies on Li-DNA fibres

    Indian Academy of Sciences (India)

    tribpo

    Abstract. From X-ray diffraction studies it is generally believed that B-DNA has the structural parameters n = 10 and h = 3·4 Å. However, for the first time we report that polymorphism in the B-form can be observed in DNA fibres. This was achieved by the precise control of salt and humidity in fibres and by the application of the ...

  19. High-pressure powder x-ray diffraction experiments on Zn at low temperature

    CERN Document Server

    Takemura, K; Fujihisa, H; Kikegawa, T

    2002-01-01

    High-pressure powder x-ray diffraction experiments have been performed on Zn with a He-pressure medium at low temperature. When the sample was compressed in the He medium at low temperature, large nonhydrostaticity developed, yielding erroneous lattice parameters. On the other hand, when the pressure was changed at high temperatures, good hydrostaticity was maintained. No anomaly in the volume dependence of the c/a axial ratio has been found.

  20. Simulations of Time-Resolved X-Ray Diffraction in Laue Geometry

    OpenAIRE

    Lings, B.; DeCamp, M. F.; Reis, D.A.; Fahy, S.; Wark, J. S.

    2005-01-01

    A method of computer simulation of Time-Resolved X-ray Diffraction (TRXD) in asymmetric Laue (transmission) geometry with an arbitrary propagating strain perpendicular to the crystal surface is presented. We present two case studies for possible strain generation by short-pulse laser irradiation: (i) a thermoelastic-like analytic model; (ii) a numerical model including effects of electron-hole diffusion, Auger recombination, deformation potential and thermal diffusion. A comparison with recen...

  1. X-ray diffraction peak profiles from threading dislocations in GaN epitaxial films

    OpenAIRE

    Kaganer, V M; Brandt, O.; Trampert, A.; Ploog, K. H.

    2004-01-01

    We analyze the lineshape of x-ray diffraction profiles of GaN epitaxial layers with large densities of randomly distributed threading dislocations. The peaks are Gaussian only in the central, most intense part of the peak, while the tails obey a power law. The $q^{-3}$ decay typical for random dislocations is observed in double-crystal rocking curves. The entire profile is well fitted by a restricted random dislocation distribution. The densities of both edge and screw threading dislocations ...

  2. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    Energy Technology Data Exchange (ETDEWEB)

    Conconi, M.S.; Gauna, M.R.; Serra, M.F. [Centro de Tecnologia de Recursos Minerales y Ceramica (CETMIC), Buenos Aires (Argentina); Suarez, G.; Aglietti, E.F.; Rendtorff, N.M., E-mail: rendtorff@cetmic.unlp.edu.ar [Universidad Nacional de La Plata (UNLP), Buenos Aires (Argentina). Fac. de Ciencias Exactas. Dept. de Quimica

    2014-10-15

    The firing transformations of traditional (clay based) ceramics are of technological and archaeological interest, and are usually reported qualitatively or semi quantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite), the low crystalline (metakaolinite and/or spinel type pre-mullite) and glassy phases evolution of a triaxial (clay-quartz-feldspar) ceramic fired in a wide temperature range between 900 and 1300 deg C. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 deg C) spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy) phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and materials

  3. X-ray diffraction and molecular-dynamics studies: Structural analysis of phases in diglyceride monolayers

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Larsen, Niels Bent; Bjørnholm, T.

    1998-01-01

    We report a detailed structural analysis of the phases of 1,2-sn-dipalmitoylglycerol Langmuir monolayers at room temperature. Pressure-induced transitions have been investigated by combination of molecular-dynamics simulations and grazing-incidence x-ray diffraction (XRD). The diglyceride film...... indicate that in the simulated monolayer the finite size with periodic boundary conditions imposes a higher degree of order....

  4. Analysis of diatomite sediments from a paleolake in central Mexico using PIXE, X-ray tomography and X-ray diffraction

    Science.gov (United States)

    Miranda, J.; Oliver, A.; Vilaclara, G.; Rico-Montiel, R.; Macías, V. M.; Ruvalcaba, J. L.; Zenteno, M. A.

    1994-03-01

    Diatomite samples from paleolake Tlaxcala, in Central Mexico, have been analyzed using proton induced X-ray emission (PIXE), X-ray tomography and X-ray diffraction. Chiseled blocks were scanned with a 0.7 MeV proton beam, 0.1 mm in diameter, in 0.25 mm steps across the sediments. X-ray tomography with the same step sizes was then applied, in order to compare the concentrations obtained with PIXE and the material density in the sediment layers. Three different kinds of layers were found, related to their colors: dark, white and gray. The composition of the layers is fairly uniform. The dark zone is enriched in Al, K, Ca, Ti, Mn, and Fe. This dark layer may be associated with eruptions of the Malitzin volcano. The white zone is found to contain diatomite of a high purity, with traces of K, Ca, and Fe, while the gray zones are also Al enriched, suggesting a clay contamination of the diatomite. X-ray diffraction of materials obtained from each main layer showed that the white and gray phases are highly amorphous, with a small component of cristobalite, as expected from the diatom sediment diagenesis, while the dark layer contains also important amounts of anorthite and orthoclase, supporting the volcanic origin of this layer.

  5. Toroidal silicon polarization analyzer for resonant inelastic x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xuan [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Casa, Diego; Kim, Jungho; Gog, Thomas [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Li, Chengyang [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Department of Physics, South University of Science and Technology of China, Shenzhen 518055 (China); Burns, Clement [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States)

    2016-08-15

    Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Here we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals.

  6. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C. [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vecchio, K. S. [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States); Huskins, E. L. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Casem, D. T. [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Gruner, S. M. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853 (United States); Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Woll, A. R. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kannan, V.; Ramesh, K. T. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Kenesei, P.; Okasinski, J. S.; Almer, J. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼10{sup 3}–10{sup 4} s{sup −1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  7. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals.

    Science.gov (United States)

    Haugh, M J; Wu, M; Jacoby, K D; Loisel, G P

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  8. Residual stress characterization of welds and post-weld processes using x-ray diffraction techniques

    Science.gov (United States)

    Brauss, Michael E.; Pineault, James A.; Eckersley, John S.

    1998-03-01

    This paper illustrates the importance of residual stress characterization in welds and post weld processes. The failure to characterize residual stresses created during welding and/or post weld processes can lead to unexpected occurrences of stress corrosion cracking, distortion, fatigue cracking as well as instances of over design or over processing. The development of automated residual stress mapping and the availability of portable and fast equipment have now made the characterization of residual stresses using x-ray diffraction practical for process control and optimization. The paper presents examples where x-ray diffraction residual stress characterization techniques were applied on various kinds of welds including arc welds, TIG welds, resistance welds, laser welds and electron beam welds. The nondestructive nature of the x-ray diffraction technique has made the residual stress characterization of welds a useful tool for process optimization and failure analysis, particularly since components can be measured before and after welding and post welding processes. Some examples presented show the residual stresses before and after the application of post weld processes such as shot peening, grinding and heat treatment.

  9. AUSPEX: a graphical tool for X-ray diffraction data analysis.

    Science.gov (United States)

    Thorn, Andrea; Parkhurst, James; Emsley, Paul; Nicholls, Robert A; Vollmar, Melanie; Evans, Gwyndaf; Murshudov, Garib N

    2017-09-01

    In this paper, AUSPEX, a new software tool for experimental X-ray data analysis, is presented. Exploring the behaviour of diffraction intensities and the associated estimated uncertainties facilitates the discovery of underlying problems and can help users to improve their data acquisition and processing in order to obtain better structural models. The program enables users to inspect the distribution of observed intensities (or amplitudes) against resolution as well as the associated estimated uncertainties (sigmas). It is demonstrated how AUSPEX can be used to visually and automatically detect ice-ring artefacts in integrated X-ray diffraction data. Such artefacts can hamper structure determination, but may be difficult to identify from the raw diffraction images produced by modern pixel detectors. The analysis suggests that a significant portion of the data sets deposited in the PDB contain ice-ring artefacts. Furthermore, it is demonstrated how other problems in experimental X-ray data caused, for example, by scaling and data-conversion procedures can be detected by AUSPEX.

  10. X-Ray diffraction observation of surface damage in chemical-mechanical polished gallium arsenide

    Science.gov (United States)

    Wang, V. S.; Matyi, R. J.

    1992-01-01

    Two novel x-ray diffraction techniques with enhanced surface sensitivity, grazing incidence x-ray diffraction (GIXD) and inclined Bragg plane x-ray diffraction (IBXD), have been used to study surface damage in gallium arsenide (GaAs) due to bromine/methanol (Br2/MeOH) chemical mechanical (CM) polishing. A factorial design was implemented to determine the effects of four polishing variables on the surface structure of GaAs. Precise lattice parameter measurements were made in both the surface regions using GIXD and deeper into subsurface regions using IBXD after the various CM polishing treatments. Bromine concentration was found to primarily affect the surface lattice parameter, while the total polish time influenced both the surface and subsurface lattice parameters in GaAs samples that were heavily damaged prior to CM polishing. The combined effect of polishing pad rotation speed and the force exerted on the sample was found to have a much greater effect on the surface lattice parameter than either variable had alone.

  11. Quantitative energy-dispersive x-ray diffraction for identification of counterfeit medicines: a preliminary study

    Science.gov (United States)

    Crews, Chiaki C. E.; O'Flynn, Daniel; Sidebottom, Aiden; Speller, Robert D.

    2015-06-01

    The prevalence of counterfeit and substandard medicines has been growing rapidly over the past decade, and fast, nondestructive techniques for their detection are urgently needed to counter this trend. In this study, energy-dispersive X-ray diffraction (EDXRD) combined with chemometrics was assessed for its effectiveness in quantitative analysis of compressed powder mixtures. Although EDXRD produces lower-resolution diffraction patterns than angular-dispersive X-ray diffraction (ADXRD), it is of interest for this application as it carries the advantage of allowing the analysis of tablets within their packaging, due to the higher energy X-rays used. A series of caffeine, paracetamol and microcrystalline cellulose mixtures were prepared with compositions between 0 - 100 weight% in 20 weight% steps (22 samples in total, including a centroid mixture), and were pressed into tablets. EDXRD spectra were collected in triplicate, and a principal component analysis (PCA) separated these into their correct positions in the ternary mixture design. A partial least-squares (PLS) regression model calibrated using this training set was validated using both segmented cross-validation, and with a test set of six samples (mixtures in 8:1:1 and 5⅓:2⅓:2⅓ ratios) - the latter giving a root-mean square error of prediction (RMSEP) of 1.30, 2.25 and 2.03 weight% for caffeine, paracetamol and cellulose respectively. These initial results are promising, with RMSEP values on a par with those reported in the ADXRD literature.

  12. Thorough small-angle X-ray scattering analysis of the instability of liquid micro-jets in air.

    Science.gov (United States)

    Marmiroli, Benedetta; Cacho-Nerin, Fernando; Sartori, Barbara; Pérez, Javier; Amenitsch, Heinz

    2014-01-01

    Liquid jets are of interest, both for their industrial relevance and for scientific applications (more important, in particular for X-rays, after the advent of free-electron lasers that require liquid jets as sample carrier). Instability mechanisms have been described theoretically and by numerical simulation, but confirmed by few experimental techniques. In fact, these are mainly based on cameras, which is limited by the imaging resolution, and on light scattering, which is hindered by absorption, reflection, Mie scattering and multiple scattering due to complex air/liquid interfaces during jet break-up. In this communication it is demonstrated that synchrotron small-angle X-ray scattering (SAXS) can give quantitative information on liquid jet dynamics at the nanoscale, by detecting time-dependent morphology and break-up length. Jets ejected from circular tubes of different diameters (100-450 µm) and speeds (0.7-21 m s(-1)) have been explored to cover the Rayleigh and first wind-induced regimes. Various solvents (water, ethanol, 2-propanol) and their mixtures have been examined. The determination of the liquid jet behaviour becomes essential, as it provides background data in subsequent studies of chemical and biological reactions using SAXS or X-ray diffraction based on synchrotron radiation and free-electron lasers.

  13. X-ray resonant Raman scattering in the rare earths

    NARCIS (Netherlands)

    van Veenendaal, M.A.; Carra, P.; Thole, B.T

    1996-01-01

    This paper develops a theory of resonant Raman scattering within the framework of a localized model. Expressions for the scattering amplitude and cross section are derived by employing the methods of spherical-tensor analysis. a simple factorization is obtained for the geometrical (angular

  14. Multiple-wave diffraction in high energy resolution back-reflecting x-ray optics.

    Science.gov (United States)

    Stetsko, Yuri P; Keister, J W; Coburn, D S; Kodituwakku, C N; Cunsolo, A; Cai, Y Q

    2011-10-07

    We have studied the effects of multiple-wave diffraction in a novel optical scheme recently published by Shvyd'ko et al. utilizing Bragg diffraction of x rays in backscattering geometry from asymmetrically cut crystals for achieving energy resolutions beyond the intrinsic width of the Bragg reflection. By numerical simulations based on dynamic x-ray diffraction and by experimentation involving two-dimensional angular scans of the back-reflecting crystal, multiple-wave diffraction was found to contribute up to several tens percent loss of efficiency but can be avoided without degrading the energy resolution of the original scheme by careful choice of azimuthal orientation of the diffracting crystal surface and by tilting of the crystal perpendicular to the dispersion plane.

  15. Imaging outside the box: Resolution enhancement in X-ray coherent diffraction imaging by extrapolation of diffraction patterns

    CERN Document Server

    Latychevskaia, Tatiana; Zontone, Federico; Fink, Hans-Werner

    2015-01-01

    We demonstrate enhancement in resolution of a noncrystalline object reconstructed from an experimental X-ray diffraction pattern by extrapolating the measured diffraction intensities beyond the detector area. The experimental record contains about 10% missing information, including the pixels in the center of the diffraction pattern. The extrapolation is done by applying an iterative routine. The optimal parameters for implementing the iterative routine, including initial padding distribution and an object support, are studied. Extrapolation results in resolution enhancement and better matching between the recovered and experimental amplitudes in the Fourier domain. The limits of the extrapolation procedure are discussed.

  16. X-ray diffraction studies on single and mixed confectionery fats using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    MacMillan, S.C.; Roberts, K.J.; Wells, M.; Polgreen, M.; Smith, I. [Heriot-Watt University, Edinburgh, (United Kingdom). Department of Mechanical and Chemical Engineering, Centre for Molecular and Interface Engineering

    1999-12-01

    Full text: Understanding and refining the molecular-scale processes involved in the manufacture of structured materials such as long-chain hydrocarbon compounds is important in many commercial areas such as the petrochemical, biochemical, food, pharmaceutical and soap industries. In such processes crystallisation is an important separation, purification and preparation technique. Despite this our knowledge of the crystallisation process itself is surprisingly limited. In order to improve the crystallisation of confectionery fats, the crystallisation of it`s main component, cocoa butter fat, must be properly understood. Cocoa butter fat can exhibit up to 6 polymorphic forms of different crystallographic structures with melting points varying from 17.3 deg C to 36.3 deg C. During the production of chocolate it is essential to control the polymorphic form of fats present, in order to produce a final product with the correct physical and rheological properties. Both shear rate and temperature are thought to play a crucial role in this process. The most widely used method for studying polymorphism is X-ray diffraction. Typical X-ray diffraction patterns of fats exhibit two groups of diffraction lines corresponding to the long and short spacings. The long spacings correspond to the planes formed by the methyl end groups and are dependent on the chain length and the angle of tilt of the component fatty acids of the glyceride molecules. The short spacings refer to the cross sectional packing of the hydrocarbon chain and are independent of the chain length. The relationship between crystallisation rate, polymorphic form, shear and the fat composition has for the first time been quantified, which will enable more accurate control of the polymorhic form in chocolate production. This has been achieved by developing an improved in-situ cell for X-ray studies. The X-ray studies are necessary for the examination of on-line studies under well controlled conditions of temperature

  17. Technical Development of Profile Measurement for the Soft X-Ray Via Compton Backward Scattering

    CERN Document Server

    Saito, Taku; Hayano, Hitoshi; Hidume, Kentaro; Kashiwagi, Shigeru; Kuroda, Ryunosuke; Minamiguchi, Shuichi; Oshima, Akihiro; Ueyama, Daisuke; Urakawa, Junji; Washio, Masakazu

    2005-01-01

    A compact X-ray source is called for such various fields as material development, biological science, and medical treatment. At Waseda University, we have already succeeded to generate the soft X-ray of the wavelength within so-called water window region (250-500eV) via Compton backward scattering between 1047nm Nd:YLF laser and 4.2MeV high quality electron beam. Although this method equips some useful characters, e.g. high intensity, short pulse, energy variableness, etc, the X-ray generating system is compact enough to fit in tabletop size. In the next step, there rises two principal tasks, that is, to make the soft X-ray intensity higher, and to progress X-ray profile measurement techniques as preliminary experiments for biomicroscopy. Specifically, we utilize two-pass amp for the former, and irradiate X-ray to a resist film which is previously exposed by UV lamp or get images with X-ray CCD for the latter. In this conference, we will show the experimental results and some future plans.

  18. The Operation Modes of Kharkov X-Ray Generator Based on Compton Scattering NESTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.V.; Gladkikh, P.; Karnaukhov, I.M.; Mytsykov, A.; Shcherbakov, A.A.; Zelinsky, A.Y.; /Kharkov, KIPT; Tatchyn, R.; /SLAC, SSRL

    2005-05-09

    The results of theoretical and numerical considerations of linear Compton scattering are used to evaluate characteristics of X-rays produced by collision between a low emittance electron beam and intensive laser light in an X-ray generator NESTOR of NSC KIPT. Two main generation modes have been under consideration at preliminary NESTOR design. There are the operation mode for medicine 33.4 keV X-rays production using 43 Mev electron beam and Nd:YAG laser beam and higher energy X-rays production mode providing X-rays with energy up to 900 keV with 225 MeV electron beam and Nd:YAG laser beam. It was supposed to use an optical cavity for laser beam accumulation of about 2.6 m long and an interaction angle of about 3{sup o} in both operation modes. A few more operation modes provide possibility to expand operation range of NESTOR. Using interaction angle 10{sup o} and 150{sup o} along with optical resonator of 42 cm long and the second mode of laser light it is possible to produce X-rays in energy range from a few keV till 1.5 MeV. The intensity and spectral brightness of the X-rays is expected to be {approx} 10{sup 13} phot/s and {approx}10{sup 13} phot/s/mm{sup 2}/mrad{sup 2}/0.1%BW respectively.

  19. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Alessandro S.; Ferrarezi, Thiago [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970 (Brazil); Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A. [Facultad de Ciencias Bioquímicas y Farmacéuticas, Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario (Argentina); Polikarpov, Igor, E-mail: ipolikarpov@if.sc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970 (Brazil)

    2006-07-01

    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP{sup +} reductase. Ferredoxin-NADP{sup +} reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source.

  20. Diffraction of short X-ray pulses in the general asymmetric Laue case - an analytic treatment.

    Science.gov (United States)

    Malgrange, C; Graeff, W

    2003-05-01

    After briefly describing the concept of short X-ray pulses (delta-function), the diffraction of such a short pulse by a crystal in the asymmetric Laue case is given. The results of the dynamical theory are adopted and an analytic result for the intensity distribution behind the crystal in the diffracted direction as well as in the forward direction is given and discussed in detail. The incoming delta pulse is no longer infinitely short but shows a pronounced structure over a limited temporal or spatial region which is connected to the well known Pendellösung effect. Also the limitations of these findings are critically inspected.

  1. X-ray third-order nonlinear dynamical diffraction in a crystal

    Energy Technology Data Exchange (ETDEWEB)

    Balyan, M. K., E-mail: mbalyan@ysu.am [Yerevan State University, Faculty of Physics (Armenia)

    2015-12-15

    The dynamic diffraction of an X-ray wave in a crystal with a third-order nonlinear response to external field strength has been theoretically investigated. General equations for the wave propagation in crystal and nonlinear Takagi equations for both ideal and deformed crystals are derived. Integrals of motion are determined for the nonlinear problem of dynamic diffraction. The results of the numerical calculations of reflectivity in the symmetric Laue geometry for an incident plane wave and the intensity distributions on the output crystal surface for a point source are reported as an example.

  2. Hard X-ray nanoimaging method using local diffraction from metal wire

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Hidekazu, E-mail: htakano@sci.u-hyogo.ac.jp; Konishi, Shigeki; Shimomura, Sho; Azuma, Hiroaki; Tsusaka, Yoshiyuki; Kagoshima, Yasushi [Center for Novel Material Science under Multi-Extreme Conditions, Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan)

    2014-01-13

    A simple hard X-ray imaging method achieving a high spatial resolution is proposed. Images are obtained by scanning a metal wire through the wave field to be measured and rotating the sample to collect data for back projection calculations; the local diffraction occurring at the edges of the metal wire operates as a narrow line probe. In-line holograms of a test sample were obtained with a spatial resolution of better than 100 nm. The potential high spatial resolution of this method is shown by calculations using diffraction theory.

  3. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    Directory of Open Access Journals (Sweden)

    Sorapong Aootaphao

    2016-01-01

    Full Text Available Soft tissue images from portable cone beam computed tomography (CBCT scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain.

  4. X-ray Thomson scattering for partially ionized plasmas including the effect of bound levels

    CERN Document Server

    Nilsen, J; Cheng, K T

    2013-01-01

    X-ray Thomson scattering is being developed as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. Most experiments are currently done at large laser facilities that can create bright X-ray sources, however the advent of the X-ray free electron laser (X-FEL) provides a new bright source to use in these experiments. One challenge with X-ray Thomson scattering experiments is understanding how to model the scattering for partially ionized plasmas in order to include the contributions of the bound electrons in the scattered intensity. In this work we take the existing models of Thomson scattering that include elastic ion-ion scattering and the electron-electron plasmon scattering and add the contribution of the bound electrons in the partially ionized plasmas. We validated our model by analyzing existing beryllium experimental data. We then consider several higher Z materials such as Cr and predict the existe...

  5. Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction

    Directory of Open Access Journals (Sweden)

    Bahige G. Abdallah

    2015-07-01

    Full Text Available The advent and application of the X-ray free-electron laser (XFEL has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors lead to the requirement of large data sets (and thus 10–100 mg of protein for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles can be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ∼4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. This method will also

  6. Experimental elucidation: microscopic mechanism of resonant X-ray scattering in manganite films

    CERN Document Server

    Ohsumi, H; Kiyama, T

    2003-01-01

    Resonant X-ray scattering experiments have been performed on perovskite manganite La sub 0 sub . sub 5 Sr sub 0 sub . sub 5 MnO sub 3 thin films, which are grown on three distinct perovskite with a coherent epitaxial strain and have a forced ferro-type orbital ordering of Mn 3d orbitals. Using an interference technique, we have successfully observed the resonant X-ray scattering signal from the system having the ferro-type orbital ordering and also revealed the energy scheme of Mn 4p bands. For the forced ferro-type orbital ordering system, the present results evidence that the resonant X-ray scattering signal originates from the band structure effect due to the Jahn-Teller distortion of a MnO sub 6 octahedron, and not from the Coulomb interaction between 3d and 4p electrons. (author)

  7. A study of X-ray multiple diffraction by means of section topography.

    Science.gov (United States)

    Kohn, V G; Smirnova, I A

    2015-09-01

    The results of theoretical and experimental study are presented for the question of how the X-ray multiple diffraction in a silicon single crystal influences the interference fringes of section topography for the 400 reflection in the Laue case. Two different cases of multiple diffraction are discovered for zero and very small values of the azimuthal angle for the sample in the form of a plate with the surface normal to the 001 direction. The cases are seen on the same topogram without rotation of the crystal. Accurate computer simulations of the section topogram for the case of X-ray multiple diffraction are performed for the first time. It is shown that the structure of interference fringes on the section topogram in the region of multiple diffraction becomes more complicated. It has a very sharp dependence on the azimuthal angle. The experiment is carried out using a laboratory source under conditions of low resolution over the azimuthal angle. Nevertheless, the characteristic inclination of the interference fringes on the tails of the multiple diffraction region is easily seen. This phenomenon corresponds completely to the computer simulations.

  8. Communication: X-ray coherent diffractive imaging by immersion in nanodroplets

    Directory of Open Access Journals (Sweden)

    Rico Mayro P. Tanyag

    2015-09-01

    Full Text Available Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. Images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.

  9. In situ X-ray diffraction studies on the piezoelectric response of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Davydok, A., E-mail: davydok@mpie.de [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France); Max-Planck-Institut für Eisenforschung, Department Structure and Nano-/Micromechanics of Materials, D-40237 Düsseldorf (Germany); Cornelius, T.W. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France); Mocuta, C. [SOLEIL Synchrotron, DiffAbs beamline, L' Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex (France); Lima, E.C. [Universidade Federal do Tocantins, 77500-000 Porto Nacional, TO (Brazil); Araujo, E.B. [Departamento de Fisica e Quimica, Universidade Estadual Paulista, Av. Brasil, 56 Centro, 15385-000 Ilha Solteira, SP (Brazil); Thomas, O. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France)

    2016-03-31

    Piezoelectric properties of randomly oriented self-polarized PbZr{sub 0.50}Ti{sub 0.50}O{sub 3} (PZT) thin films were investigated using in situ synchrotron X-ray diffraction. Possibilities for investigating the piezoelectric effect using micro-sized hard X-ray beams are demonstrated and perspectives for future dynamical measurements on PZT samples with variety of compositions and thicknesses are given. Studies performed on the crystalline [100, 110] directions evidenced piezoelectric anisotropy. The piezoelectric coefficient d{sub 33} was calculated in terms of the lab reference frame (d{sub perp}) and found to be two times larger along the [100] direction than along the [110] direction. The absolute values for the d{sub perp} amount to 120 and 230 pm/V being in good agreement with experimental and theoretical values found in literature for bulk PZT ceramics. - Highlights: • We performed in situ synchrotron X-ray diffraction studies on (PZT) thin films. • We discuss anisotropy of piezo effect in different crystallographic directions. • Perpendicular component Piezo coefficient of thin PZT layer is defined.

  10. Mineral identification in Colombian coals using Moessbauer spectroscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, M. [Universidad del Valle, A.A, Departamento de Fisica (Colombia); Mojica, J. [Instituto Nacional de Investigaciones en Geociencia, Mineria y Quimica (INGEOMINAS) (Colombia); Barraza, J. [Universidad del Valle, A.A, Departamento de Procesos Quimicos, Facultad de Ingenieria (Colombia); Perez Alcazar, G.A.; Tabares, J.A. [Universidad del Valle, A.A, Departamento de Fisica (Colombia)

    1999-11-15

    Minerals were identified in three Colombian coal samples from the Southwest of the country using Moessbauer spectroscopy and X-ray diffraction. Original and sink separated coal fractions of specific gravity 1.40 and 1.60 with particle size less than 600 {mu}m were used in the study. Using Moessbauer spectroscopy, the minerals identified in the original coal samples were pyrite jarosite, ankerite, illite and ferrous sulfate, whereas by means of X-ray diffraction, minerals identified were kaolinite, quartz, pyrite, and jarosite. Differences in mineral composition were found in the original and sink separated fractions using both techniques. Moessbauer spectra show that the mineral phases in low concentrations such as illite, ankerite and ferrous sulfate do not always appear in the spectra of sink coals, despite of those minerals occurring in the original coal, due to the fact that they are associated with the organic matter and not liberated in the grinding process. X-ray results show that the peak intensity grows as the specific gravity is increased indicating that the density separation method could be an effective process to clean coal.

  11. Investigation of electronic order using resonant soft X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Schlappa, J.

    2006-12-01

    The aim of this PhD work was the application of resonant soft X-ray diffraction technique for the investigation of electronic order in transition metal oxides at the TM L{sub 2,3}-edge, trying to obtain a quantitative understanding of the data. The method was first systematically explored through application to a model system in order to test the feasibility of the technique and to understand of how X-ray optical effects have to be taken into account. Two more complex systems were investigated; stripe order in La{sub 1.8}Sr{sub 0.2}NiO{sub 4} and charge and orbital order in Fe{sub 3}O{sub 4}. The main focus of the work was on the spectroscopic potential of the technique, trying to obtain a level of quantitative description of the data. For X-ray absorption spectroscopy (XAS) from transition metal oxides, cluster configuration interaction calculation provides a powerful and realistic microscopic theory. In the frame work of this thesis cluster theory, considering explicit hybridization effects between the TM-ion and the surrounding oxygen ligands, has been applied for the first time to describe resonant diffraction data. (orig.)

  12. Performance calculations of the X-ray powder diffraction beamline at NSLS-II.

    Science.gov (United States)

    Shi, Xianbo; Ghose, Sanjit; Dooryhee, Eric

    2013-03-01

    The X-ray Powder Diffraction (XPD) beamline at the National Synchrotron Light Source II is a multi-purpose high-energy X-ray diffraction beamline with high throughput and high resolution. The beamline uses a sagittally bent double-Laue crystal monochromator to provide X-rays over a large energy range (30-70 keV). In this paper the optical design and the calculated performance of the XPD beamline are presented. The damping wiggler source is simulated by the SRW code and a filter system is designed to optimize the photon flux as well as to reduce the heat load on the first optics. The final beamline performance under two operation modes is simulated using the SHADOW program. For the first time a multi-lamellar model is introduced and implemented in the ray tracing of the bent Laue crystal monochromator. The optimization and the optical properties of the vertical focusing mirror are also discussed. Finally, the instrumental resolution function of the XPD beamline is described in an analytical method.

  13. Microelemental and mineral compositions of pathogenic biomineral concrements: SRXFA, X-ray powder diffraction and vibrational spectroscopy data

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, T.N. [Institute of Geology and Mineralogy, SB RAS, Pr. Akad. Koptyuga, 3, 630090 Novosibirsk (Russian Federation)], E-mail: moroz@uiggm.nsc.ru; Palchik, N.A.; Dar' in, A.V. [Institute of Geology and Mineralogy, SB RAS, Pr. Akad. Koptyuga, 3, 630090 Novosibirsk (Russian Federation)

    2009-05-11

    X-ray fluorescence analysis using synchrotron radiation (SRXRF), X-ray powder diffraction, infrared and Raman spectroscopy had been applied for determination of microelemental and mineral composition of the kidney stones, gallstones and salivalities from natives of Novosibirsk and Novosibirsk region, Russia. The relationship between mineral, organic and microelemental composition of pathogenic calcilus was shown.

  14. The use of X-ray diffraction for analyzing biomodification of crystalline cellulose by wood decay fungi

    DEFF Research Database (Denmark)

    Howell, Caitlin; Hastrup, Anne Christine Steenkjær; Jellison, Jody

    2007-01-01

    X-ray diffraction (XRD) is based on the creation of an interference pattern by x-rays when they encounter a regularly spaced matrix. In wood, this process has been used to determine, among other things, the average width of the cellulose microcrystals, the percent of crystalline cellulose within...

  15. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Nicoul, Matthieu

    2010-09-01

    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0{+-}0.3) ps, and the ratio of the Grueneisen parameters was found to be {gamma}{sub e} / {gamma}{sub i} = (0.5{+-}0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A{sub 1g} mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase

  16. Electronic Excitations in Vanadium Oxide Phthalocyanine Studied via Resonant Soft X-ray Emission and Resonant Inelastic X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang,Y.; Wang, S.; Learmonth, T.; Plucinski, L.; Matsuura, A.; Bernardis, S.; ODonnell, C.; Downes, J.; Smith, K.

    2005-01-01

    The electronic structure of the organic semiconductor vanadium oxide phthalocyanine has been studied using resonant inelastic X-ray scattering and X-ray emission spectroscopy. The vanadyl species in the films is shown to be highly localized, and good agreement between the measurements and a density functional calculation is obtained. Both dipole forbidden V 3d to V 3d*, and O 2p to V 3d* charge transfer transitions are observed, and explained in a local molecular orbital model.

  17. Synchrotron X-ray diffraction and fluorescence study of the astrolabe

    Energy Technology Data Exchange (ETDEWEB)

    Notis, Michael [Lehigh University, Bethlehem, PA (United States); Newbury, Brian [ExxonMobil Development Company, Houston, TX (United States); Stephenson, Bruce [Adler Planetarium and Astronomy Museum, Chicago, IL (United States); Stephenson, G.B. [Argonne National Laboratory, Argonne, IL (United States)

    2013-04-15

    The astrolabe is an ancient analogue astronomical computing device used for calculations relating to position and time of the observer's location. In its most common form (the planispheric astrolabe), it consists of an engraved plate or series of plates held together and pinned in a housing, the assembly usually being made of brass. The present study describes the use of X-ray diffraction (XRD) and X-ray fluorescence (XRF) in a synchrotron to elucidate the composition of, and fabrication techniques used for, the major component parts of the astrolabe. The synchrotron XRF studies are compared to similar studies made with a handheld XRF instrument and the advantages and disadvantages of both approaches are discussed. (orig.)

  18. Synchrotron X-ray diffraction and fluorescence study of the astrolabe

    Science.gov (United States)

    Notis, Michael; Newbury, Brian; Stephenson, Bruce; Stephenson, G. Brian

    2013-04-01

    The astrolabe is an ancient analogue astronomical computing device used for calculations relating to position and time of the observer's location. In its most common form (the planispheric astrolabe), it consists of an engraved plate or series of plates held together and pinned in a housing, the assembly usually being made of brass. The present study describes the use of X-ray diffraction (XRD) and X-ray fluorescence (XRF) in a synchrotron to elucidate the composition of, and fabrication techniques used for, the major component parts of the astrolabe. The synchrotron XRF studies are compared to similar studies made with a handheld XRF instrument and the advantages and disadvantages of both approaches are discussed.

  19. Reactor for nano-focused x-ray diffraction and imaging under catalytic in situ conditions

    Science.gov (United States)

    Richard, M.-I.; Fernández, S.; Hofmann, J. P.; Gao, L.; Chahine, G. A.; Leake, S. J.; Djazouli, H.; De Bortoli, Y.; Petit, L.; Boesecke, P.; Labat, S.; Hensen, E. J. M.; Thomas, O.; Schülli, T.

    2017-09-01

    A reactor cell for in situ studies of individual catalyst nanoparticles or surfaces by nano-focused (coherent) x-ray diffraction has been developed. Catalytic reactions can be studied in flow mode in a pressure range of 10-2-103 mbar and temperatures up to 900 °C. This instrument bridges the pressure and materials gap at the same time within one experimental setup. It allows us to probe in situ the structure (e.g., shape, size, strain, faceting, composition, and defects) of individual nanoparticles using a nano-focused x-ray beam. Here, the setup was used to observe strain and facet evolution of individual model Pt catalysts during in situ experiments. It can be used for heating other (non-catalytically active) nanoparticles (e.g., nanowires) in inert or reactive gas atmospheres or vacuum as well.

  20. In Situ X-ray Diffraction Studies of (De)lithiation Mechanism in Silicon Nanowire Anodes

    KAUST Repository

    Misra, Sumohan

    2012-06-26

    Figure Persented: Silicon is a promising anode material for Li-ion batteries due to its high theoretical specific capacity. From previous work, silicon nanowires (SiNWs) are known to undergo amorphorization during lithiation, and no crystalline Li-Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during electrochemical cycling. At deep lithiation voltages the known metastable Li 15Si 4 phase forms, and we show that avoiding the formation of this phase, by modifying the SiNW growth temperature, improves the cycling performance of SiNW anodes. Our results provide insight on the (de)lithiation mechanism and a correlation between phase evolution and electrochemical performance for SiNW anodes. © 2012 American Chemical Society.

  1. In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes.

    Science.gov (United States)

    Misra, Sumohan; Liu, Nian; Nelson, Johanna; Hong, Seung Sae; Cui, Yi; Toney, Michael F

    2012-06-26

    Silicon is a promising anode material for Li-ion batteries due to its high theoretical specific capacity. From previous work, silicon nanowires (SiNWs) are known to undergo amorphorization during lithiation, and no crystalline Li-Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during electrochemical cycling. At deep lithiation voltages the known metastable Li(15)Si(4) phase forms, and we show that avoiding the formation of this phase, by modifying the SiNW growth temperature, improves the cycling performance of SiNW anodes. Our results provide insight on the (de)lithiation mechanism and a correlation between phase evolution and electrochemical performance for SiNW anodes.

  2. X-ray diffraction results from Mars Science Laboratory: mineralogy of Rocknest at Gale crater.

    Science.gov (United States)

    Bish, D L; Blake, D F; Vaniman, D T; Chipera, S J; Morris, R V; Ming, D W; Treiman, A H; Sarrazin, P; Morrison, S M; Downs, R T; Achilles, C N; Yen, A S; Bristow, T F; Crisp, J A; Morookian, J M; Farmer, J D; Rampe, E B; Stolper, E M; Spanovich, N

    2013-09-27

    The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite, with minor K-feldspar, magnetite, quartz, anhydrite, hematite, and ilmenite. The minor phases are present at, or near, detection limits. The soil also contains 27 ± 14 weight percent x-ray amorphous material, likely containing multiple Fe(3+)- and volatile-bearing phases, including possibly a substance resembling hisingerite. The crystalline component is similar to the normative mineralogy of certain basaltic rocks from Gusev crater on Mars and of martian basaltic meteorites. The amorphous component is similar to that found on Earth in places such as soils on the Mauna Kea volcano, Hawaii.

  3. Pathway of a damaging mechanism - Analyzing chloride attack by synchrotron based X-ray diffraction

    Science.gov (United States)

    Schlegel, M. C.; Stroh, J.; Malaga, K.; Meng, B.; Panne, U.; Emmerling, F.

    2015-06-01

    Typically, the changes of the phase compositions due to the chemical attack are studied in-situ only by chemical analysis or microscopy. In this study, the chloride transport and binding in the cement matrix in different cementitious materials was analyzed by synchrotron based X-ray diffraction (SyXRD) and energy dispersive X-ray spectroscopy (EDX). Sample materials consisting of cement paste were embedded in high concentrated sodium chloride solution over different time spans. Afterwards, the phase and chemical compositions were determined. The high spatial resolution and the information about the chloride distribution offer a detailed view of chloride binding in the cement matrix and allow the conclusions about the degradation mechanisms. The results are discussed related to the influence of different supplementary cementitious materials on the damaging mechanism.

  4. Source assemblage types for cratonic diamonds from X-ray synchrotron diffraction

    Science.gov (United States)

    Nestola, F.; Alvaro, M.; Casati, M. N.; Wilhelm, H.; Kleppe, A. K.; Jephcoat, A. P.; Domeneghetti, M. C.; Harris, J. W.

    2016-11-01

    Three single crystals of clinopyroxene trapped within three different gem-quality diamonds from the Udachnaya kimberlite (Siberia, Russia) were analysed in situ by single-crystal synchrotron X-ray diffraction in order to obtain information on their chemical composition and infer source assemblage type. A non-destructive approach was used with high-energy (≈ 60 keV; λ ≈ 0.206 Å) at I15, the extreme-conditions beamline at Diamond Light Source. A dedicated protocol was used to center the mineral inclusions located deep inside the diamonds in the X-ray beam. Our results reveal that two of the inclusions can be associated with peridotitic paragenesis whereas the third is eclogitic. This study also demonstrates that this non-destructive experimental approach is extremely efficient in evaluating the origin of minerals trapped in their diamond hosts.

  5. International workshop on resonant X-ray scattering in electrically-ordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S.P.; Pettifer, R.F.; Laundy, D.; Ishida, K.; Kokubun, J.; Giles, C.; Yokaichiya, F.; Song, C.; Lee, K.B.; Ji, S.; Koo, J.; Park, Y.J.; Kim, J.Y.; Park, J.H.; Shin, H.J.; Rhyee, J.S.; Oh, B.H.; Cho, B.K.; Wilkins Stuart, B.; Paixao, J.A.; Caciuffo, R.; Javorsky, P.; Wastin, F.; Rebizant, J.; Detlefs, C.; Bernheoft, N.; Lander, G.H.; Bombardi, A.; Bergevin, F. de; Matteo, S. di; Paolasini, L.; Rodriguez-Carvajal, J.; Carretta, P.; Millet, P.; Caciuffo, R.; Goff, J.P.; Deen, P.P.; Lee, S.; Stunault, A.; Brown, S.; Mannix, D.; McIntyre, G.J.; Ward, R.C.C.; Wells, M.R.; Lorenzo, J.E.; Joly, Y.; Nazarenko, E.; Staub, U.; Srajer, G.; Haskel, D.; Choi, Y.; Lee, D.R.; Lang, J.C.; Meersschaut, J.; Jiang, J.S.; Bader, S.D.; Bouchenoire, L.; Brown, S.D.; Beesley, A.; Herring, A.; Thomas, M.; Thompson, P.; Langridge, S.; Stirling, W.G.; Mirone, A.; Lander, G.; Wilkins, S.; Ward, R.C.C.; Wells, M.R.; Zochowski, S.W.; Garcia, J.; Subias, G.; Blasco, J.; Sanchez, M.C.; Proietti, M.G.; Lovesey, S.W.; Dmitrienko, V.E.; Ovchinnikova, E.N.; Ishida, K.; Kokubun, J.; Kirfel, A.; Collins, S.P.; Laundy, D.; Oreshko, A.P.; Strange, P.; Horne, M.; Arola, E.; Winter, H.; Szotek, Z.; Temmerman, W.M.; Igarashi, J.; Usuda, M.; Takahashi, M.; Matteo, S. di; Bernhoeft, N.; Hill, J.P.; Lang, J.C.; McWhan, D.; Lee, D.R.; Haskel, D.; Srajer, G.; Hatton Peter, D.; Katsumata, K.; Braithwaite, D

    2004-07-01

    The research field of Resonant X-ray Scattering (RXS) has achieved tremendous progress in the last years. Nowadays RXS is rapidly becoming the crucial technique for investigating the subtleties of microscopic magnetism in systems where the ground state properties reflect a delicate balance between several different correlated processes. The aim of this workshop is to discuss present and future possibilities for RXS investigations of electronic order, including studies of charge, magnetic, and multipolar ordered states. The sessions will cover experimental and theoretical aspects of hard and soft X-ray resonant scattering from single crystals and thin films. This document gathers the summaries of the presentations.

  6. Dust scattering X-ray expanding rings around gamma-ray bursts

    OpenAIRE

    Mereghetti, S.; Tiengo, A.; Vianello, G.

    2006-01-01

    Scattering by dust grains in our Galaxy can produce X-ray halos, visible as expanding rings, around GRBs. This has been observed in three GRBs to date, allowing to derive accurate distances for the dust clouds as well as some constraints on the prompt GRB X-ray emission that was not directly observed. We developed a new analysis method to study dust scattering expanding rings and have applied it to all the XMM-Newton and Swift/XRT follow-up observations of GRBs.

  7. X-ray reflection and scatter measurements on selected optical samples

    Science.gov (United States)

    Fields, S. A.; Reynolds, J. M.; Holland, R. L.

    1975-01-01

    The results from an experimental program to determine the reflection efficiency and scatter parameters of selected optical samples are presented. The measurements were made using 8.34A X-rays at various angles of incidence. Selected samples were contaminated after being measured and then remeasured to determine the effects of contamination. The instrumentation involved in taking the data, including the X-ray reflectometer and data processing equipment, is discussed in detail. The condition of the optical surfaces, the total reflection measurements, the scatter measurements, and the analysis are discussed.

  8. Imaging at the X-ray Frontier: Coherent Diffraction Imaging (CDI) for Nano and Bioscience

    Science.gov (United States)

    Miao, Jianwei (John)

    2013-03-01

    For centuries, lens-based microscopy, such as light, phase-contrast, fluorescence, confocal and electron microscopy, has played an important role in the evolution of modern sciences and technologies. In 1999, a novel form of microscopy, i.e. coherent diffraction imaging (also termed coherent diffraction microscopy or lensless imaging) was developed and transformed our traditional view of microscopy, in which the diffraction pattern of a noncrystalline object or a nanocrystal is first measured and then directly phased to obtain a high resolution image. The well-known phase problem is solved by the oversampling method in combination with iterative algorithms whose principle can be traced back to the Shannon sampling theorem. In this talk, I will briefly discuss the principle of coherent diffraction imaging and illustrate its broad application in nano and bioscience by using synchrotron radiation, high harmonic generation and X-ray free electron lasers.

  9. Observation of charge ordering by X-ray anomalous scattering

    CERN Document Server

    Sasaki, S; Konoike, Y; Yamawaki, K; Tanaka, M

    2001-01-01

    Anomalous scattering technique was applied for the detection of charge ordering of Fe sub 3 O sub 4 and Eu sub 3 S sub 4 at low temperatures. The energy and temperature dependent features were clearly observed for forbidden and superlattice reflections in the systems. The energy-dependence curve for Fe sub 3 O sub 4 gives a minimum intensity at E=7.122 keV, which can be related to the valence contrast by ion pairings. Energy dependence experiments on critical scattering have revealed the existence of valence-ions correlation.

  10. Tomographic imaging of bone composition using coherently scattered x rays

    Science.gov (United States)

    Batchelar, Deidre L.; Dabrowski, W.; Cunningham, Ian A.

    2000-04-01

    Bone tissue consists primarily of calcium hydroxyapatite crystals (bone mineral) and collagen fibrils. Bone mineral density (BMD) is commonly used as an indicator of bone health. Techniques available at present for assessing bone health provide a measure of BMD, but do not provide information about the degree of mineralization of the bone tissue. This may be adequate for assessing diseases in which the collagen-mineral ratio remains constant, as assumed in osteoporosis, but is insufficient when the mineralization state is known to change, as in osteomalacia. No tool exists for the in situ examination of collagen and hydroxyapatite density distributions independently. Coherent-scatter computed tomography (CSCT) is a technique we are developing that produces images of the low- angle scatter properties of tissue. These depend on the molecular structure of the scatterer making it possible to produce material-specific maps of each component in a conglomerate. After corrections to compensate for exposure fluctuations, self-attenuation of scatter and the temporal response of the image intensifier, material-specific images of mineral, collagen, fat and water distributions are obtained. The gray-level in these images provides the volumetric density of each component independently.

  11. Determining the C60 molecular arrangement in thin films by means of X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Elschner, Chris; Levin, Alexandr A.; Leo, Karl; Riede, Moritz [TU Dresden (Germany). Inst. fuer Angewandte Photophysik; Wilde, Lutz [Fraunhofer CNT Dresden (Germany).; Grenzer, Joerg [Helmholtz-Zentrum Dresden-Rossendorf (Germany); Schroer, Christian [TU Dresden (Germany). Inst. fuer Strukturphysik

    2011-10-15

    The electrical and optical properties of molecular thin films are widely used, for instance in organic electronics, and depend strongly on the molecular arrangement of the organic layers. It is shown here how atomic structural information can be obtained from molecular films without further knowledge of the single-crystal structure. C60 fullerene was chosen as a representative test material. A 250 nm C60 film was investigated by grazing-incidence X-ray diffraction and the data compared with a Bragg-Brentano X-ray diffraction measurement of the corresponding C60 powder. The diffraction patterns of both powder and film were used to calculate the pair distribution function (PDF), which allowed an investigation of the short-range order of the structures. With the help of the PDF, a structure model for the C60 molecular arrangement was determined for both C60 powder and thin film. The results agree very well with a classical whole-pattern fitting approach for the C60 diffraction patterns. (orig.)

  12. Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data.

    Science.gov (United States)

    Sikorski, Pawel; Hori, Ritsuko; Wada, Masahisa

    2009-05-11

    High resolution synchrotron X-ray fiber diffraction data recorded from crab tendon chitin have been used to describe the crystal structure of alpha-chitin. Crystal structures at 100 and 300 K have been solved using restrained crystallographic refinement against diffraction intensities measured from the fiber diffraction patterns. The unit cell contains two polymer chains in a 2(1) helix conformation and in the antiparallel orientation. The best agreement between predicated and observed X-ray diffraction intensities is obtained for a model that includes two distinctive conformations of C6-O6 hydroxymethl group. Those conformations are different from what is proposed in the generally accepted alpha-chitin crystal structure (J. Mol. Biol. 1978, 120, 167-181). Based on refined positions of the O6 atoms, a network of hydrogen bonds involving O6 is proposed. This network of hydrogen bonds can explain the main features of the polarized FTIR spectra of alpha-chitin and sheds some light on the origin of splitting of the amide I band observed on alpha-chitin IR spectra.

  13. Calculated efficiencies of three-material low stress coatings for diffractive x-ray transmission optics

    Energy Technology Data Exchange (ETDEWEB)

    Kubec, Adam, E-mail: adam.kubec@iws.fraunhofer.de; Braun, Stefan; Gawlitza, Peter; Menzel, Maik; Leson, Andreas [Fraunhofer IWS Dresden, Winterbergstr. 28, 01277 Dresden (Germany)

    2016-07-27

    Diffractive X-ray optical elements made by thin film coating techniques such as multilayer Laue lenses (MLL) and multilayer zone plates (MZP) are promising approaches to achieve resolutions in hard X-ray microscopy applications of less than 10 nm. The challenge is to make a lens with a large numerical aperture on the one hand and a decent working distance on the other hand. One of the limiting factors with the coated structures is the internal stress in the films, which can lead to significant bending of the substrate and various types of unwanted diffraction effects. Several approaches have been discussed to overcome this challenge. One of these is a three-material combination such as Mo/MoSi{sub 2}/Si, where four single layers per period are deposited. Mo and Si represent the absorber and spacer in this case while MoSi{sub 2} forms a diffusion barrier; in addition the thicknesses of absorber and spacer are chosen to minimize residual stress of the overall coating. Here the diffraction efficiency as well as the profile of the beam in the focal plane are discussed in order to find a tradeoff between lowest residual stress and best diffraction properties.

  14. Inorganic pyrophosphatase crystals from Thermococcus thioreducens for X-ray and neutron diffraction.

    Science.gov (United States)

    Hughes, Ronny C; Coates, Leighton; Blakeley, Matthew P; Tomanicek, Steve J; Langan, Paul; Kovalevsky, Andrey Y; García-Ruiz, Juan M; Ng, Joseph D

    2012-12-01

    Inorganic pyrophosphatase (IPPase) from the archaeon Thermococcus thioreducens was cloned, overexpressed in Escherichia coli, purified and crystallized in restricted geometry, resulting in large crystal volumes exceeding 5 mm3. IPPase is thermally stable and is able to resist denaturation at temperatures above 348 K. Owing to the high temperature tolerance of the enzyme, the protein was amenable to room-temperature manipulation at the level of protein preparation, crystallization and X-ray and neutron diffraction analyses. A complete synchrotron X-ray diffraction data set to 1.85 Å resolution was collected at room temperature from a single crystal of IPPase (monoclinic space group C2, unit-cell parameters a=106.11, b=95.46, c=113.68 Å, α=γ=90.0, β=98.12°). As large-volume crystals of IPPase can be obtained, preliminary neutron diffraction tests were undertaken. Consequently, Laue diffraction images were obtained, with reflections observed to 2.1 Å resolution with I/σ(I) greater than 2.5. The preliminary crystallographic results reported here set in place future structure-function and mechanism studies of IPPase.

  15. Diffraction and imaging study of imperfections of crystallized lysozyme with coherent X-rays

    Science.gov (United States)

    Hu, Z. W.; Chu, Y. S.; Lai, B.; Thomas, B. R.; Chernov, A. A.

    2004-01-01

    Phase-contrast X-ray diffraction imaging and high-angular-resolution diffraction combined with phase-contrast radiographic imaging were employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in the symmetric Laue case. The full-width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal was approximately 16.7 arcsec and imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Inclusions of impurities or formations of foreign particles in the central growth region are resolved in the images with high sensitivity to defects. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in X-ray diffraction images. The details of the observed defects and the significant change in the revealed microstructures with drying provide insight into the nature of imperfections, nucleation and growth, and the properties of protein crystals.

  16. X-ray, synchrotron, and neutron diffraction analysis of Roman cavalry parade helmet fragment

    Energy Technology Data Exchange (ETDEWEB)

    Smrcok, L' . [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84536 Bratislava (Slovakia); Petrik, I. [Geological Institute, Slovak Academy of Sciences, Dubravska cesta 9, 84005 Bratislava (Slovakia); Langer, V. [Environmental Inorganic Chemistry, Chalmers University of Technology, 412 96 Gothenburg (Sweden); Filinchuk, Y. [Swiss-Norwegian Beam Lines, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP-220, 38043 Grenoble CEDEX (France); Beran, P. [Nuclear Physics Institute ASCR v.v.i. and Research Centre Rez Ltd., 25068 Rez (Czech Republic)

    2010-10-15

    A partially corroded fragment of the neck guard of a Roman cavalry helmet excavated in the former military camp of Gerulata, a part of the Limes Romanus on the River Danube, was analysed by laboratory X-ray, synchrotron and neutron powder diffraction. The approximate phase composition determined by the neutron diffraction of the bulk, 82% (wt) of the copper alloy phase, 12 % (wt) of cuprite and 6% of nantokite indicate a significant degree of corrosion of the artefact. Elemental EDX analysis of cleaned surface showed that the chemical composition of the original alloy is 78 to 82 % (wt) of Cu and 21.4 to 16.5 % of Zn with minute amounts of Sn, Si and S. High contents of Cu and Zn with the negligible amount of Sn showed that the body of the helmet was made of brass and not of bronze as expected before. The amount of zinc in the copper alloy calculated from the refined lattice parameter agrees fairly well with the value determined by EDX. The most abundant phase in the synchrotron powder diffraction pattern of the corrosion products scrapped from the artefact is cuprite, but presence of atacamite, malachite, brochantite, nantokite, mixed Cu-Zn hydroxyl carbonates and probably also of simonkolleite (Zn{sub 5}(OH){sub 8}Cl{sub 2}.H{sub 2}O) have been detected. In contrast, the X-ray pattern taken directly from the surface of the artefact is dominated by atacamite with some traces of malachite and quartz. Because the penetration depth of laboratory X-rays is in order of tens of microns, the phase analysis based only on a diffraction pattern taken from a surface can lead to erroneous conclusions concerning the phase composition of the patina. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Advanced combined application of micro-X-ray diffraction/micro-X-ray fluorescence with conventional techniques for the identification of pictorial materials from Baroque Andalusia paintings.

    Science.gov (United States)

    Herrera, L K; Montalbani, S; Chiavari, G; Cotte, M; Solé, V A; Bueno, J; Duran, A; Justo, A; Perez-Rodriguez, J L

    2009-11-15

    The process of investigating paintings includes the identification of materials to solve technical and historical art questions, to aid in the deduction of the original appearance, and in the establishment of the chemical and physical conditions for adequate restoration and conservation. In particular, we have focused on the identification of several samples taken from six famous canvases painted by Pedro Atanasio Bocanegra, who created a very special collection depicting the life of San Ignacio, which is located in the church of San Justo y Pastor of Granada, Spain. The characterization of the inorganic and organic compounds of the textiles, preparation layers, and pictorial layers have been carried out using an XRD diffractometer, SEM observations, EDX spectrometry, FT-IR spectrometry (both in reflection and transmission mode), pyrolysis/gas chromatography/mass spectrometry and synchrotron-based micro-X-ray techniques. In this work, the advantages over conventional X-ray diffraction of using combined synchrotron-based micro-X-ray diffraction and micro-X-ray fluorescence in the identification of multi-layer paintings is demonstrated.

  18. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.

    Science.gov (United States)

    Martí-Rujas, Javier; Kawano, Masaki

    2013-02-19

    Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific

  19. A camera for coherent diffractive imaging and holography with a soft-X-ray free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Bajt, S; Chapman, H N; Spiller, E; Alameda, J; Woods, B; Frank, M; Bogan, M J; Barty, A; Boutet, S; Marchesini, S; Hau-Riege, S P; Hajdu, J; Shapiro, D

    2007-09-24

    We describe a camera to record coherent scattering patterns with a soft-X-ray free-electron laser. The camera consists of a laterally-graded multilayer mirror which reflects the diffraction pattern onto a CCD detector. The mirror acts as a bandpass filter both for wavelength and angle, which isolates the desired scattering pattern from non-sample scattering or incoherent emission from the sample. The mirror also solves the particular problem of the extreme intensity of the FEL pulses, which are focused to greater than 10{sup 14} W/cm{sup 2}. The strong undiffracted pulse passes through a hole in the mirror and propagates on to a beam dump at a distance behind the instrument rather than interacting with a beamstop placed near the CCD. The camera concept is extendable for the full range of the fundamental wavelength of the FLASH FEL (i.e. between 6 nm and 60 nm) and into the water window. We have fabricated and tested various multilayer mirrors for wavelengths of 32 nm, 16 nm, 13.5 nm, and 4.5 nm. At the shorter wavelengths mirror roughness must be minimized to reduce scattering from the mirror. We have recorded over 30,000 diffraction patterns at the FLASH free-electron laser with no observable mirror damage or degradation of performance.

  20. Theoretical concepts of X-ray nanoscale analysis theory and applications

    CERN Document Server

    Benediktovitch, Andrei; Ulyanenkov, Alexander

    2013-01-01

    This book provides a concise survey of modern theoretical concepts of X-ray materials analysis. The principle features of the book are: basics of X-ray scattering, interaction between X-rays and matter and new theoretical concepts of X-ray scattering. The various X-ray techniques are considered in detail: high-resolution X-ray diffraction, X-ray reflectivity, grazing-incidence small-angle X-ray scattering and X-ray residual stress analysis. All the theoretical methods presented use the unified physical approach. This makes the book especially useful for readers learning and performing data ana

  1. Using the X-FEL to understand X-ray Thomson scattering for partially ionized plasmas

    CERN Document Server

    Nilsen, J; Cheng, K T

    2012-01-01

    For the last decade numerous researchers have been trying to develop experimental techniques to use X-ray Thomson scattering as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. With the advent of the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) we now have such a source available in the keV regime. One challenge with X-ray Thomson scattering experiments is understanding how to model the scattering for partially ionized plasmas. Most Thomson scattering codes used to model experimental data greatly simplify or neglect the contributions of the bound electrons to the scattered intensity. In this work we take the existing models of Thomson scattering that include elastic ion-ion scattering and the electron-electron plasmon scattering and add the contribution of the bound electrons in the partially ionized plasmas. Except for hydrogen plasmas almost every plasma that is st...

  2. Filming nuclear dynamics of iodine using x-ray diffraction at the LCLS

    Science.gov (United States)

    Ware, Matthew; Natan, Adi; Glownia, James; Cryan, James; Bucksbaum, Phil

    2017-04-01

    We will provide an overview of our analysis of the nuclear dynamics of iodine. At the LCLS, we pumped a gas cell of iodine with a weak 520nm, 50 fs pulse, and the nuclear dynamics are then probed with 9 keV, 40 fs x-rays with variable time delay. This allows us to simultaneously image nuclear wavepackets on the dissociating A state, on the bound B state, and even Raman wavepackets in the ground electronic state. We will explain at length how we isolate each of these signals using a Legendre decomposition of our x-ray data and the selection rules for each of the transitions. Likewise, we will discuss how we convert the x-ray diffraction patterns into real-space movies of the nuclear dynamics. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Atomic, Molecular, and Optical Science Program. Use of LCLS supported under DOE Contract No. DE-AC02-76F00515.

  3. Integrating macromolecular X-ray diffraction data with the graphical user interface iMosflm.

    Science.gov (United States)

    Powell, Harold R; Battye, T Geoff G; Kontogiannis, Luke; Johnson, Owen; Leslie, Andrew G W

    2017-07-01

    X-ray crystallography is the predominant source of structural information for biological macromolecules, providing fundamental insights into biological function. The availability of robust and user-friendly software to process the collected X-ray diffraction images makes the technique accessible to a wider range of scientists. iMosflm/MOSFLM (http://www.mrc-lmb.cam.ac.uk/harry/imosflm) is a software package designed to achieve this goal. The graphical user interface (GUI) version of MOSFLM (called iMosflm) is designed to guide inexperienced users through the steps of data integration, while retaining powerful features for more experienced users. Images from almost all commercially available X-ray detectors can be handled using this software. Although the program uses only 2D profile fitting, it can readily integrate data collected in the 'fine phi-slicing' mode (in which the rotation angle per image is less than the crystal mosaic spread by a factor of at least 2), which is commonly used with modern very fast readout detectors. The GUI provides real-time feedback on the success of the indexing step and the progress of data processing. This feedback includes the ability to monitor detector and crystal parameter refinement and to display the average spot shape in different regions of the detector. Data scaling and merging tasks can be initiated directly from the interface. Using this protocol, a data set of 360 images with ∼2,000 reflections per image can be processed in ∼4 min.

  4. Simultaneous X-ray imaging and diffraction study of shock propagation and phase transition in silicon

    Science.gov (United States)

    Galtier, Eric

    2017-06-01

    X-ray phase contrast imaging technique using a free electron laser have observed the propagation of laser-driven shock waves directly inside materials. While providing images with few hundred nanometers spatial resolution, access to more quantitative information like the material density and the various shock front speeds remain challenging due to imperfections in the images limiting the convergence in the reconstruction algorithm. Alternatively, pump-probe X-ray diffraction (XRD) is a robust technique to extract atomic crystalline structure of compressed matter, providing insight into the kinetics of phase transformation and material response to stress. However, XRD by itself is not sufficient to extract the equation of state of the material under study. Here we report on the use of the LCLS free electron laser as a source of a high-resolution X-ray microscopy enabling the direct imaging of shock waves and phase transitions in optically opaque silicon. In this configuration, no algorithm is necessary to extract the material density and the position of the shock fronts. Simultaneously, we probed the crystalline structure via XRD of the various phases in laser compressed silicon. E. Galtier, B. Nagler, H. J. Lee, S. Brown, E. Granados, A. Hashim, E. McBride, A. Mackinnon, I. Nam, J. Zimmerman (SLAC) A. Gleason (Stanford, LANL) A. Higginbotham (University of York) A. Schropp, F. Seiboth (DESY).

  5. Reconstruction of Stress and Composition Profiles from X-ray Diffraction Experiments - How to Avoid Ghost Stresses?

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A.J.

    2004-01-01

    On evaluating lattice strain-depth or stress-depth profiles with X-ray diffraction, the variation of the information depth while combining various tilt angles,psi, in combination with lattice spacing gradients leads to artefacts,so-called ghost or fictitious stresses. X-ray diffraction lattice...... method for the evaluation of stress/strain and composition profiles, while minimising the risk for ghost stresses....

  6. Real-time x-ray diffraction measurements of shocked polycrystalline tin and aluminum

    Science.gov (United States)

    Morgan, Dane V.; Macy, Don; Stevens, Gerald

    2008-11-01

    A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35 ns pulse. The characteristic Kα lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic Kβ line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3×6 mm2 spot and 1° full width half maximum angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5°. A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device camera through a coherent fiber-optic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1 mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic aluminum lattice with no phase transformation.

  7. Identification of cremains using X-ray diffraction spectroscopy and a comparison to trace element analysis.

    Science.gov (United States)

    Bergslien, Elisa T; Bush, Mary; Bush, Peter J

    2008-03-05

    The ability to distinguish human cremains from filler materials can be important in a variety of situations, the most notorious recent example being the Tri-State Crematorium incident. However, the majority of the papers in the recent literature present methods that rely on trace or minor element analysis, usually followed by a statistical or variable cluster analysis, to determine attribution. This approach is inherently risky, as there is significant natural variation in the trace and minor element body burdens within the human population and no real baseline for comparison. Bones and teeth are a form of calcium phosphate that is part of the mineral group apatite, often referred to as bioapatite. X-ray diffraction (XRD) spectroscopy is a technique that is used to identify minerals by their crystalline structures rather than their elemental composition. The members of the mineral group apatite have a highly flexible hexagonal (6/m) structure that is able to incorporate small amounts of a wide variety of elements. However, its structure, and therefore its X-ray diffraction pattern, is distinct from the crystalline structures of all of the commonly reported filler materials, most of which are composed of some combination of Portland cement, limestone aggregate and quartz sand. XRD has several advantages over other analytical techniques for the identification of cremains. It is non-destructive, requires relatively small amounts of material, is unaffected by the elemental variations found in bioapatite, and can be used to semi-quantify the components of a mixture, thus determining the relative level of contamination of a sample. This paper presents the results of X-ray diffraction spectroscopy analysis of human cremains and a variety of common filler materials.

  8. X-ray diffraction analysis of residual stress in zirconia dental composites

    Science.gov (United States)

    Allahkarami, Masoud

    Dental restoration ceramic is a complex system to be characterized. Beside its essential biocompatibility, and pleasant appearance, it requires being mechanically strong in a catastrophic loading environment. Any design is restricted with geometry boundary and material property limits. Inspired by natural teeth, a multilayer ceramic is a smart way of achieving an enhanced restoration. Bi-layers of zirconia core covered by porcelain are known as one of the best multilayer restorations. Residual stresses may be introduced into a bi-layer dental ceramic restoration during its entire manufacturing process due to thermal expansion and elastic property mismatch. It is impossible to achieve a free of residual stresses bi-layer zirconia-porcelain restoration. The idea is to take the advantage of residual stress in design in such a way to prevent the crack initiation and progression. The hypothesis is a compressive residual stress at external contact surface would be enabling the restoration to endure a greater tensile stress. Optimizing the layers thickness, manufacturing process, and validating 3D simulations require development of new techniques of thickness, residual stresses and phase transformation measurement. In the present work, a combined mirco-tomography and finite element based method were adapted for thickness measurement. Two new 2D X-ray diffraction based techniques were adapted for phase transformation area mapping and combined phase transformation and residual stress measurement. Concerning the complex geometry of crown, an efficient method for X-ray diffraction data collection mapping on a given curved surface was developed. Finally a novel method for 3D dimensional x-ray diffraction data collection and visualization were introduced.

  9. Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.-H.; Huang, J.-H.; Chen, Haydn

    2002-10-15

    Measurements of residual stresses in textured thin films have always been problematic. In this article, a new experimental method using grazing-incidence X-ray diffraction is presented with its principles based upon the conventional sin{sup 2}{psi} method. Instead of using the Bragg-Brentano (B-B) or Seemann-Bohlin geometry, the proposed method utilizes an asymmetrical diffraction geometry for which the X-ray beam is incident at a grazing angle {gamma} to the sample surface, while the angle {psi} is the tilt angle of the sample surface as defined by the conventional sin{sup 2}{psi} method. Basic equations involved in the X-ray residual stress analysis are described, along with exemplified experimental data. Analysis shows that, for an isotropic medium, strain measured using this grazing-incidence geometry assumes a linear relationship with the geometrical parameter cos{sup 2}{alpha} sin{sup 2}{psi}, where the angle {alpha} is a constant and is defined as the Bragg angle at {psi}=0 deg., {theta}{sub o}, minus the grazing incidence angle {gamma}, i.e. {alpha}={theta}{sub o}-{gamma}. The grazing-incidence diffraction geometry effectively increases the irradiation volume from a thin-film specimen, thereby giving rise to higher intensity for high-angle Bragg peaks than the conventional B-B geometry. The proposed analysis has another advantage, in that the inhomogeneous sample casts little effect on the residual stress results when compared to the traditional sin{sup 2}{psi} method.

  10. Fundamental parameters approach applied to focal construct geometry for X-ray diffraction

    Science.gov (United States)

    Rogers, K.; Evans, P.; Prokopiou, D.; Dicken, A.; Godber, S.; Rogers, J.

    2012-10-01

    A novel geometry for the acquisition of powder X-ray diffraction data, referred to as focal construct geometry (FCG), is presented. Diffraction data obtained by FCG have been shown to possess significantly enhanced intensity due to the hollow tube beam arrangement utilized. In contrast to conventional diffraction, the detector is translated to collect images along a primary axis and record the location of Bragg maxima. These high intensity condensation foci are unique to FCG and appear due to the convergence of Debye cones at single points on the primary axis. This work focuses on a two dimensional, fundamental parameter's approach to simulate experimental data and subsequently aid with interpretation. This convolution method is shown to favorably reproduce the experimental diffractograms and can also accommodate preferred orientation effects in some circumstances.

  11. Setup for in situ X-ray diffraction studies of thin film growth by magnetron sputtering

    CERN Document Server

    Ellmer, K; Weiss, V; Rossner, H

    2001-01-01

    A novel method is described for the in situ-investigation of nucleation and growth of thin films during magnetron sputtering. Energy dispersive X-ray diffraction with synchrotron light is used for the structural analysis during film growth. An in situ-magnetron sputtering chamber was constructed and installed at a synchrotron radiation beam line with a bending magnet. The white synchrotron light (1-70 keV) passes the sputtering chamber through Kapton windows and hits one of the substrates on a four-fold sample holder. The diffracted beam, observed under a fixed diffraction angle between 3 deg. and 10 deg., is energy analyzed by a high purity Ge-detector. The in situ-EDXRD setup is demonstrated for the growth of tin-doped indium oxide (ITO) films prepared by reactive magnetron sputtering from a metallic target.

  12. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-12-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering—density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization—to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.

  13. Purification, crystallization and preliminary X-ray diffraction analysis of royal palm tree (Roystonea regia) peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Leandra; Nascimento, Alessandro S. [Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, CEP 13566-590 São Carlos, SP (Brazil); Zamorano, Laura S. [Departamento de Química Física, Facultad de Química, Universidad de Salamanca, 37008 Salamanca (Spain); Shnyrov, Valery L. [Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Salamanca, 37007 Salamanca (Spain); Polikarpov, Igor, E-mail: ipolikarpov@if.sc.usp.br [Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, CEP 13566-590 São Carlos, SP (Brazil); Laboratório Nacional de Luz Síncrotron, Campinas, SP (Brazil)

    2007-09-01

    The purification, crystallization, X-ray diffraction data acquisition and molecular-replacement results of royal palm tree (R. regia) peroxidase are described. Royal palm tree peroxidase (RPTP), which was isolated from Roystonea regia leaves, has an unusually high stability that makes it a promising candidate for diverse applications in industry and analytical chemistry [Caramyshev et al. (2005 ▶), Biomacromolecules, 6, 1360–1366]. Here, the purification and crystallization of this plant peroxidase and its X-ray diffraction data collection are described. RPTP crystals were obtained by the hanging-drop vapour-diffusion method and diffraction data were collected to a resolution of 2.8 Å. The crystals belong to the trigonal space group P3{sub 1}21, with unit-cell parameters a = b = 116.83, c = 92.24 Å, and contain one protein molecule per asymmetric unit. The V{sub M} value and solvent content are 4.07 Å{sup 3} Da{sup −1} and 69.8%, respectively.

  14. Analysis of Local Rheological Properties of Crystalline Polymer by Dynamic X-ray Diffraction

    Science.gov (United States)

    Nozaki, Shuhei; Kojio, Ken; Takahara, Atsushi; Aoyama, Kohki; Masunaga, Hiroyasu

    Polymer materials form the hierarchical structure from nanometer to micrometer scales. Since the mechanical properties are correlated with the hierarchical structure, the precise evaluation of mechanical properties considering the size of the hierarchical structure is important. Recently, the time-resolved measurement of molecular aggregation structure using microbeam have been carried out diffraction at synchrotron radiation facilities. Analyzing change of crystal structure using microbeam X-ray diffraction under cyclic dynamic strain will give rheological properties of local region of crystalline polymers. In this study, a time-resolved microbeam wide-angle X-ray diffraction was used to study local rheological properties for inside and outside of isotactic polypropylene (iPP) spherulite under cyclic dynamic strain. Local dynamic storage modulus (E) and loss modulus (E\\x9D) were obtained from change of d-spacing in (110) planes of alpha form of iPP crystal for inside and outside of iPP spherulite at a condition with strain of 0.01 and 0.1 Hz. The local E values were larger than those obtained from dynamic viscoelastic property measurement. This might be due to lower modulus of amorphous phase of bulk iPP.

  15. Structural characterization of substituted lanthanum tungstates with X-ray and neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fantin, Andrea; Scherb, Tobias; Schumacher, Gerhard [Helmholtz-Zentrum Berlin fuer Materialen und Energie (Germany); Seeger, Janka; Meulenberg, Wilhelm A. [Forschungszentrum Juelich (Germany)

    2015-07-01

    Our work on proton conducting materials deals with structural characterization of two different series of substituted lanthanum tungstates: La5.4W(1-x)MxO12-delta with M=Mo,Re and 0<=x<=0.2. The main methods used to understand their crystal structure are Neutron Diffraction (ND) and High-Resolution X-Ray Diffraction (HRXRD). Experiments were carried at ILL (Grenoble, France) and PSI (Villigen, Switzerland). Different elemental contrast is reached with these complementary diffraction techniques. Our specimens consist of three cations (La, W, Mo or Re) and oxygen anions. In order to distinguish W (Z=74, b=4.86fm) and Re (Z=75, b=9.2fm) neutrons are needed, while for La (Z=57, b=8.2fm), W(Z=74, b=4.86fm) and Mo (Z=42, b=6.7fm) good contrast is also given by X-Rays. Combined refinements to model accurately anti-site disorder, position of the substituted elements and oxygen (Z=8, b=5.8fm) positions in this highly disordered material are mandatory. Measurements in dependence of temperature down to 1.5K confirm the structural model suggested by one of the coauthors without any unmodeled static disorder. Substitution and deuteration/humidification show no relevant structural changes.

  16. Effect of grain size on stability of X-ray diffraction patterns used for threat detection

    Energy Technology Data Exchange (ETDEWEB)

    Ghammraoui, B., E-mail: bahaa.ghammraoui@cea.fr [CEA-Leti, MINATEC Campus, Recherche Technologique, F-38054 Grenoble (France); Rebuffel, V.; Tabary, J.; Paulus, C.; Verger, L. [CEA-Leti, MINATEC Campus, Recherche Technologique, F-38054 Grenoble (France); Duvauchelle, Ph. [CNDRI-Insa Lyon, Universite de Lyon, F-69621 Villeurbanne Cedex (France)

    2012-08-11

    Energy Dispersive X-ray Diffraction (EDXRD) is well-suited to detecting narcotics and a wide range of explosives. The integrated intensity of an X-ray diffraction peak is proportional to the number of grains in the inspected object which are oriented such that they satisfy Bragg's condition. Several parameters have a significant influence on this number. Among them, we can list grain size and the fill rate for polycrystalline materials that both may significantly vary for a same material according to its way of production. Consequently, peak intensity may change significantly from one measurement to another one, thus increasing the risk of losing peaks. This instability is one of the many causes of false alarms. To help avoid these, we have developed a model to quantify the stability of the diffraction patterns measured. Two methods (extension of the detector in a direction perpendicular to the diffractometer plane and slow rotation of both source and detector) can be used to decrease the coefficient of variation, leading to a more stable spectral measurement.

  17. Coherent Resonant Soft X-ray Scattering Study of Magnetic Textures in FeGe

    Directory of Open Access Journals (Sweden)

    Victor Ukleev

    2018-01-01

    Full Text Available Coherent resonant soft X-ray scattering was utilized to examine the magnetic textures in a thin plate of the cubic B20 compound FeGe. Small-angle scattering patterns were measured with controlled temperatures and magnetic fields exhibiting magnetic scattering from a helical texture and skyrmion lattice. By measuring the scattering pattern in a saturation magnetic field, magnetic and charge scattering were distinguished and an iterative phase retrieval algorithm was applied to reconstruct the magnetic texture in the real-space. Results of the real-space reconstruction of magnetic texture from two independently measured datasets were used to compare the reliability of the retrieval.

  18. Reconstruction of the X-ray tube spectrum from a scattering measurement

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Jorge E., E-mail: jorge.fernandez@unibo.it [Laboratory of Montecuccolino, Department of Energy, Nuclear and Environmental Control Engineering (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli,16, I-40136, Bologna (Italy); Scot, Viviana [Laboratory of Montecuccolino, Department of Energy, Nuclear and Environmental Control Engineering (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli,16, I-40136, Bologna (Italy); Bare, Jonathan [Laboratory of Montecuccolino, Department of Energy, Nuclear and Environmental Control Engineering (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli,16, I-40136, Bologna (Italy); Laboratory of Nuclear and Radiological Physics, Institut Superieur Industriel de Bruxelles (ISIB) (Belgium); Tondeur, Francois [Laboratory of Nuclear and Radiological Physics, Institut Superieur Industriel de Bruxelles (ISIB) (Belgium); Gallardo, Sergio; Rodenas, Jose [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia (Spain); Rossi, Pier Luca [Operational Unit of Health Physics, Alma Mater Studiorum University of Bologna (Italy)

    2012-07-15

    An inverse technique has been designed to unfold the x-ray tube spectrum from the measurement of the photons scattered by a target interposed in the path of the beam. A special strategy is necessary to circumvent the ill-conditioning of the forward transport algebraic problem. The proposed method is based on the calculation of both, the forward and adjoint analytical solutions of the Boltzmann transport equation. After testing the method with numerical simulations, a simple prototype built at the Operational Unit of Health Physics of the University of Bologna was used to test the method experimentally. The reconstructed spectrum was validated by comparison with a straightforward measurement of the X-ray beam. The influence of the detector was corrected in both cases using standard unfolding techniques. The method is capable to accurately characterize the intensity distribution of an X-ray tube spectrum, even at low energies where other methods fail. - Highlights: Black-Right-Pointing-Pointer A complete inverse technique of source unfolding is presented. Black-Right-Pointing-Pointer The X-ray tube spectrum is recovered from a scattering measurement. Black-Right-Pointing-Pointer The ill conditioning of the plain forward transport algebraic problem is avoided. Black-Right-Pointing-Pointer Forward and adjoint solutions of the Boltzmann transport equation are used. Black-Right-Pointing-Pointer The technique characterizes X-ray tube spectra even at low energies.

  19. A greedy method for reconstructing polycrystals from three-dimensional X-ray diffraction data

    DEFF Research Database (Denmark)

    Kulshreshth, Arun Kumar; Alpers, Andreas; Herman, Gabor T.

    2009-01-01

    An iterative search method is proposed for obtaining orientation maps inside polycrystals from three-dimensional X-ray diffraction (3DXRD) data. In each step, detector pixel intensities are calculated by a forward model based on the current estimate of the orientation map. The pixel at which...... be achieved by changing the orientation in only a few possible ways. The method selects the location/orientation pair indicated as best by a function that measures data consistency combined with prior information on orientation maps. The superiority of the method to a previously published forward projection...

  20. Determination of Ni(II) crystal structure by powder x-ray diffraction ...

    African Journals Online (AJOL)

    X-ray powder diffraction pattern was used to determine the length of the unit cell, “a”, the lattice structure type, and the number of atoms per unit cell of Ni(II) crystal. The “a” value was determined to be 23.66 ± 0.005 Å, particle size of 34.87 nm, volume 13.24 Å and Strain value ε = 9.8 x 10-3. The cell search on PXRD patterns ...

  1. [Study on bamboo treated with gamma rays by X-ray diffraction].

    Science.gov (United States)

    Sun, Feng-Bo; Fei, Ben-Hua; Jiang, Ze-Hui; Yu, Zi-Xuan; Tian, Gen-Lin; Yang, Quan-Wen

    2011-06-01

    The microfibril angle and crystallinity of bamboo treated with gamma rays were tested by X-ray diffraction (XRD). The result indicated that crystallinity in bamboo increased when irradiation dose was less than 100 kGy, while the irradiation dose was raised to about 100 kGy, crystallinity in bamboo reduced. But during the whole irradiation process, the influence on microfibril angle was not obvious, so it was not the dominant factors on variation in physical-mechanical properties of bamboo during the process of irradiation.

  2. Final Report for X-ray Diffraction Sample Preparation Method Development

    Energy Technology Data Exchange (ETDEWEB)

    Ely, T. M.; Meznarich, H. K.; Valero, T.

    2018-01-30

    WRPS-1500790, “X-ray Diffraction Saltcake Sample Preparation Method Development Plan/Procedure,” was originally prepared with the intent of improving the specimen preparation methodology used to generate saltcake specimens suitable for XRD-based solid phase characterization. At the time that this test plan document was originally developed, packed powder in cavity supports with collodion binder was the established XRD specimen preparation method. An alternate specimen preparation method less vulnerable, if not completely invulnerable to preferred orientation effects, was desired as a replacement for the method.

  3. Massive Submandibular Sialolith: Complete Radiographic Registration and Biochemical Analysis through X-Ray Diffraction

    Directory of Open Access Journals (Sweden)

    Ademir Franco

    2014-01-01

    Full Text Available Sialolithiasis is a pathologic condition that affects 60 million people per year, which is caused by the presence of calcified structures, named sialoliths, inside the salivary glands and their salivary ducts. Despite the large incidence of sialolithiasis, its etiology is still unknown. In the present case report, a 47-year-old female patient, presenting with local pain and hampered mouth opening, underwent a surgical approach for the removal of a 20 mm sialolith, which was further analyzed through X-ray diffraction. In parallel, a radiographic registration of 8 years, covering all the period for sialolith formation, is presented along the case report.

  4. In situ X-ray diffraction environments for high-pressure reactions

    DEFF Research Database (Denmark)

    R. S. Hansen, Bjarne; Møller, Kasper Trans; Paskevicius, Mark

    2015-01-01

    New sample environments and techniques specifically designed for in situ powder X-ray diffraction studies up to 1000 bar (1 bar = 105 Pa) gas pressure are reported and discussed. The cells can be utilized for multiple purposes in a range of research fields. Specifically, investigations of gas......–solid reactions and sample handling under inert conditions are undertaken here. Sample containers allowing the introduction of gas from one or both ends are considered, enabling the possibility of flow-through studies. Various containment materials are evaluated, e.g. capillaries of single-crystal sapphire (Al2O3...

  5. Interface structure in directly bonded silicon crystals studied by synchrotron X-ray diffraction

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Feidenhans'l, R.; Howes, P.B.

    1999-01-01

    Fusion-bonded silicon wafers exhibit a superstructure at their common interface due to the spatial beating of the two crystal lattices. The superstructure consists of a network of screw dislocations with a period determined by the twist angle theta. By synchrotron X-ray diffraction, the periodic...... elastic modulation in the two crystals resulting from the dislocation network has been measured. The characteristic thickness of the modulated region is found to be inversely proportional to theta, reaching over 160 Angstrom for theta = 0.4 degrees. This behavior is reproduced in numerical simulations...

  6. High Pressure X-ray Diffraction Study on Icosahedral Boron Arsenide (B12As2)

    Energy Technology Data Exchange (ETDEWEB)

    J Wu; H Zhu; D Hou; C Ji; C Whiteley; J Edgar; Y Ma

    2011-12-31

    The high pressure properties of icosahedral boron arsenide (B12As2) were studied by in situ X-ray diffraction measurements at pressures up to 25.5 GPa at room temperature. B12As2 retains its rhombohedral structure; no phase transition was observed in the pressure range. The bulk modulus was determined to be 216 GPa with the pressure derivative 2.2. Anisotropy was observed in the compressibility of B12As2-c-axis was 16.2% more compressible than a-axis. The boron icosahedron plays a dominant role in the compressibility of boron-rich compounds.

  7. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: y-hayashi@mosk.tytlabs.co.jp; Hirose, Y.; Seno, Y. [Toyota Central R& D Toyota Central R& D Labs., Inc., 41-1 Nagakute Aichi 480-1192 Japan (Japan)

    2016-07-27

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 {sup 3} voxels was obtained.

  8. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    Science.gov (United States)

    Smither, Robert K [Hinsdale, IL

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  9. Sol-Gel Synthesis, X-Ray Diffraction Studies, and Electric Conductivity of Sodium Europium Silicate

    Directory of Open Access Journals (Sweden)

    Ekaterina V. Borisova

    2013-01-01

    Full Text Available Sodium europium silicate, NaEu9(SiO46O2, with apatite structure has been obtained and studied using X-ray diffraction and SEM. It has been shown that sodium sublimation does not take place upon synthesis by the sol-gel method. Rietveld refinement has revealed that sodium atoms are ordered and occupy the 4f position. O(4 atoms not related to silicate ions are placed at the centers of Eu(2 triangles. DC and AC electric conductivity and activation energy have been determined for the compound studied.

  10. Lattice deformation in laser-irradiated silicon crystal studied by picosecond X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kishimura, Hiroaki; Yazaki, Akio; Hironaka, Yoichiro; Nakamura, Kazutaka G.; Kondo, Ken-ichi

    2003-02-28

    Lattice deformation in laser-irradiated Si(1 1 1) has been studied by picosecond X-ray diffraction at a delay time of 350 ps. The rapid thermal expansion (0.24% at maximum) was observed at 2.0 GW/cm{sup 2} irradiation. By irradiation above dielectric breakdown threshold (10.0 GW/cm{sup 2}), the intense lattice compression (2.1% at maximum) was observed. The compression is caused by the laser ablation due to dielectric breakdown.

  11. Effects of Fluoride on NiTi Orthodontic Archwires: An X-ray Diffraction Study

    Directory of Open Access Journals (Sweden)

    Sumit Kumar Yadav

    2013-01-01

    Results: Unloading force values of NiTi orthodontic wires were significantly decreased after exposure to both fluoride solutions (p < 0.001. Corrosive changes in surface topography were observed for both fluoride solutions. Wires exposed to acidic fluoride appeared as more severely affected. X-ray diffraction analysis showed no change in crystal lattice of NiTi wires in both solutions. Conclusion: The results suggest that using topical fluoride agents with NiTi wire could decrease the functional unloading mechanical properties of the wire and contribute to prolonged orthodontic treatment.

  12. Characterization of As-Grown Dislocation Structure in Niobium by X-Ray Diffraction Topography.

    Science.gov (United States)

    1981-09-01

    JIOBIUM BY X-RAY DIFFRACTION TOPOGRAPHY, ?’R. Stock, Haydn /Chnand H rn ba urn ONR Contract USNJ0014-75-C-1O12, University of Illinois at Urbana-Champaign...TOPOGRAPHY by S. R. Stock, Haydn Chen and H. K. Bi rnba um Depdrtment Of >’,etd I Iurcy and I’i ni ngE Lng inee ri ng and th. aeral s Resea rch Labo!rdtory...Ty.pe of report and inclusive date*) Technical Report September 1981 S AUTHOR(S) (Last name, first name. initial) Stock, Stuart S., Chen, Haydn and

  13. X-ray and neutron scattering on disordered nanosize clusters: a case study of lead-zirconate-titanate solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Frantti, Johannes; Fujioka, Yukari [Finnish Research and Engineering, Helsinki (Finland)

    2015-04-01

    Defects and frequently used defect models of solids are reviewed. Signatures for identifying the disorder from x-ray and neutron scattering data are given. To give illustrative examples how technologically important defects contribute to x-ray and neutron scattering numerical method able to treat non-periodical solids possessing several simultaneous defect types is given for simulating scattering in nanosize disordered clusters. The approach takes particle size, shape, and defects into account and isolates element specific signals. As a case study a statistical approximation model for lead-zirconate titanate [Pb(Zr{sub x}Ti{sub 1-x})O{sub 3}, PZT] is introduced. PZT is a material possessing several defect types, including substitutional, displacement and surface defects. Spatial composition variation is taken into account by introducing a model in which the edge lengths of each cell depend on the distribution of Zr and Ti ions in the cluster. Spatially varying edge lengths and angles is referred to as microstrain. The model is applied to compute the scattering from ellipsoid shaped PZT clusters and to simulate the structural changes as a function of average composition. Two-phase co-existence range, the so called morphotropic phase boundary composition is given correctly. The composition at which the rhombohedral and tetragonal cells are equally abundant was x ∼ 0.51. Selected x-ray and neutron Bragg reflection intensities and line shapes were simulated. Examples of the effect of size and shape of the scattering clusters on diffraction patterns are given and the particle dimensions, computed through Scherrer equation, are compared with the exact cluster dimensions. Scattering from two types of 180 domains in spherical particles, one type assigned to Ti-rich PZT and the second to the MPB and Zr-rich PZT, is computed. We show how the method can be used for modelling polarization reversal. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    Energy Technology Data Exchange (ETDEWEB)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng; Lin, Deqing; Dai, Liming

    2017-05-26

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurements and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.

  15. Data Analysis Of Small Angle X-Ray Solution Scattering And Its ...

    African Journals Online (AJOL)

    Small Angle X-ray Scattering analysis was used for the study of the protein, Human Tumour Necrosis Factor (TNF) homogeneously dispersed in solution. The experiment consisted in sending a well collimated beam of synchrotron radiation of wavelength, λ through the sample and measuring the variation of the intensity as a ...

  16. Predictions of x-ray scattering spectra in warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Starrett, Charles E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Saumon, Didier [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Souza, Andre N. [Univ. of Michigan, Ann Arbor, MI (United States); Perkins, David J. [Univ. of California, Los Angeles, CA (United States); Hansen, Stephanie B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-12

    This presentation gives an Introduction to our model of warm dense matter; How x-ray scattering spectra are calculated from it; Comparisons with experiments: Room temperature/pressure beryllium Warm dense beryllium Warm dense aluminum; Predictions for warm dense beryllium and titanium; and, Conclusions.

  17. Oil classification using X-ray scattering and principal component analysis

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Danielle S.; Souza, Amanda S.; Lopes, Ricardo T., E-mail: dani.almeida84@gmail.com, E-mail: ricardo@lin.ufrj.br, E-mail: amandass@bioqmed.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Oliveira, Davi F.; Anjos, Marcelino J., E-mail: davi.oliveira@uerj.br, E-mail: marcelin@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica Armando Dias Tavares

    2015-07-01

    X-ray scattering techniques have been considered promising for the classification and characterization of many types of samples. This study employed this technique combined with chemical analysis and multivariate analysis to characterize 54 vegetable oil samples (being 25 olive oils)with different properties obtained in commercial establishments in Rio de Janeiro city. The samples were chemically analyzed using the following indexes: iodine, acidity, saponification and peroxide. In order to obtain the X-ray scattering spectrum, an X-ray tube with a silver anode operating at 40kV and 50 μA was used. The results showed that oils cab ne divided in tow large groups: olive oils and non-olive oils. Additionally, in a multivariate analysis (Principal Component Analysis - PCA), two components were obtained and accounted for more than 80% of the variance. One component was associated with chemical parameters and the other with scattering profiles of each sample. Results showed that use of X-ray scattering spectra combined with chemical analysis and PCA can be a fast, cheap and efficient method for vegetable oil characterization. (author)

  18. Small angle X-ray scattering study of calreticulin reveals conformational plasticity

    DEFF Research Database (Denmark)

    Toft, Katrine Nørgaard; Larsen, Nanna; Jørgensen, Flemming Steen

    2008-01-01

    Calreticulin plays a central role in vital cell processes such as protein folding, Ca(2+) homeostasis and immunogenicity. Even so, only limited three-dimensional structural information is presently available. We present a series of Small-Angle X-ray Scattering data on human placenta calreticulin...

  19. Three-dimensional Morphology and X-ray Scattering Structure of ...

    Indian Academy of Sciences (India)

    Abstract. It is well established that water-alcohol mixtures exhibit anomalous properties at very low as well ... of water and tert-butanol (TBA) by using simulated X-ray scattering structure function, S(q), real space radial and spatial ... which is due to polar-polar and nonpolar-polar correlations in pure TBA, seems to appear.

  20. High resolution X-ray scattering studies of substrates and multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland

    1988-01-01

    High resolution X-ray scattering measurements on multilayer substrates and surfaces are reviewed. It is shown that the usual substrates of float glass and Si-wafers are dominated by large scale figure error, whereas samples of super polished SiC substrates are comparable in flatness and roughness...

  1. Diffuse X-ray scattering and far infrared absorption of barium and lead β" aluminas

    DEFF Research Database (Denmark)

    Hayes, W.; Kjær, Kristian; Pratt, F. L.

    1985-01-01

    The authors have carried out high-momentum-resolution studies in diffuse X-ray scattering of barium and lead B" aluminas in the temperature range 20-700 degrees C. They have also measured the vibrational spectra of these compounds between 2K and 300K in the energy range 10-100 cm-1. The results...

  2. X-ray scatter correction method for dedicated breast computed tomography: improvements and initial patient testing

    NARCIS (Netherlands)

    Ramamurthy, S.; D'Orsi, C.J.; Sechopoulos, I.

    2016-01-01

    A previously proposed x-ray scatter correction method for dedicated breast computed tomography was further developed and implemented so as to allow for initial patient testing. The method involves the acquisition of a complete second set of breast CT projections covering 360 degrees with a

  3. X-ray measurements of total reflectivity and scattering from Au-coated foils

    DEFF Research Database (Denmark)

    Hornstrup, Allan; Christensen, Finn Erland; Jespersen, Ellen

    1990-01-01

    We present x-ray measurements of total reflectivity and scattering from gold-coated foils. The foils are two sorts of 0.3 mm thick dip-lacquered aluminum, 0.125 mm thick plastic (Upilex) and 0.5 mm thick dip-lacquered nickel. The analysis of the data shows a high reflectivity for all...

  4. X-Ray Measurements Of Total Reflectivity And Scattering From Au-Coated Foils

    DEFF Research Database (Denmark)

    Hornstrup, Allan; Christensen, Finn Erland; Schnopper, H. W.

    1989-01-01

    We present X-ray measurements of total reflectivity and scattering from gold coated foils. The foils are two sorts of 0.3 mm thick dip-lacquered aluminum, 0.125 mm thick plastic (Upilex) and 0.5 mm thick dip-lacquered nickel. The analysis of the data show a high reflectivity for all but the plastic...

  5. Resonant soft x-ray scattering and charge density waves in correlated systems

    NARCIS (Netherlands)

    Rusydi, Andrivo

    2006-01-01

    Summary This work describes results obtained on the study of charge density waves (CDW) in strongly correlated systems with a new experimental method: resonant soft x-ray scattering (RSXS). The basic motivation is the 1986 discovery by Bednorz and Müler of a new type of superconductor, based on Cu

  6. Ultra Small-angle X-ray Scattering Study of Flocculation in Silica-filled Rubber

    NARCIS (Netherlands)

    Mihara, S.; Datta, Rabin; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.; Amino, N.; Ishikawa, Y.; Nishitsuji, S.; Takenaka, M.

    2014-01-01

    The flocculation of silica during vulcanization is monitored using the ultra small-angle X-ray scattering technique for two different types of silica: a highly dispersible silica (HD) and a conventional silica (CV), mixed into a blend of S-SBR and BR rubbers. The cutoff length of the silica

  7. Antiferromagnetic order in superconducting UPt[sub 3]: An x-ray magnetic scattering study (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E.D. (AT T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (United States)); Zschack, P. (Oak Ridge Institute for Science and Education, Brookhaven National Laboratory, Upton, New York 11973 (United States)); Ramirez, A.P.; Oglesby, C.S.; Bucher, E. (AT T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (United States))

    1994-11-15

    The temperature dependence of the antiferromagnetic order in superconducting UPt[sub 3] has been measured using x-ray resonance magnetic scattering. The magnetic Bragg intensity at [ital Q]=(1/2,0,2) grows linearly from [ital T][sub [ital N

  8. Lattice dynamics of Al-based quasicrystals studied by high-resolution inelastic X-ray scattering with synchrotron radiation

    CERN Document Server

    Burkel, E; Ponkratz, U; Sinn, H; Alatas, A; Alp, E E

    2003-01-01

    Quasicrystals are aperiodic long-range ordered solids expected to exhibit peculiar dynamical properties. For these new intermetallic phases, previous theoretical work predicted the existence of phason dynamics and a highly structured vibrational density of states. We used the high-resolution inelastic X-ray scattering method to investigate the lattice dynamics of Al-Cu-Fe and Al-Pd-Mn quasicrystals, near the (18,29) diffraction peak situated on the fivefold axis. Phonon dispersion relations were determined for both quasicrystals. In addition to propagating acoustic modes, dispersionless ('optic') low-energy modes were observed.

  9. Elementary scattering theory for X-ray and neutron users

    CERN Document Server

    Sivia, D S

    2011-01-01

    The opportunities for doing scattering experiments at synchrotron and neutron facilities have grown rapidly in recent years and are set to continue to do so into the foreseeable future. This text provides a basic understanding of how these techniques enable the structure and dynamics of materials to be studied at the atomic and molecular level. Although mathematics cannot be avoided in a theoretical discussion, the aim has been to write a book that most scientists will still find approachable. To this end, the first two chapters are devoted to providing a tutorial background in the mathematics and physics that are implicitly assumed in other texts. Thereafter, the philosophy has been one of keeping things as simple as possible.

  10. A United Effort for Crystal Growth, Neutron Scattering, and X-ray Scattering Studies of Novel Correlated Electron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-02-12

    The research accomplishments during the award involved experimental studies of correlated electron systems and quantum magnetism. The techniques of crystal growth, neutron scattering, x-ray scattering, and thermodynamic & transport measurements were employed, and graduate students and postdoctoral research associates were trained in these techniques.

  11. Soft X-Ray Thomson Scattering in Warm Dense Hydrogen at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Faustlin, R R; Toleikis, S; Bornath, T; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Mithen, J; Przystawik, A; Redlin, H; Redmer, R; Reinholz, H; Ropke, G; Tavella, F; Thiele, R; Tiggesbaumker, J; Uschmann, I; Zastrau, U; Tschentscher, T

    2009-07-15

    We present collective Thomson scattering with soft x-ray free electron laser radiation as a method to track the evolution of warm dense matter plasmas with {approx}200 fs time resolution. In a pump-probe scheme an 800 nm laser heats a 20 {micro}m hydrogen droplet to the plasma state. After a variable time delay in the order of ps the plasma is probed by an x-ray ultra violet (XUV) pulse which scatters from the target and is recorded spectrally. Alternatively, in a self-Thomson scattering experiment, a single XUV pulse heats the target while a portion of its photons are being scattered probing the target. From such inelastic x-ray scattering spectra free electron temperature and density can be inferred giving insight on relaxation time scales in plasmas as well as the equation of state. We prove the feasibility of this method in the XUV range utilizing the free electron laser facility in Hamburg, FLASH. We recorded Thomson scattering spectra for hydrogen plasma, both in the self-scattering and in the pump-probe mode using optical laser heating.

  12. Application of Small-Angle Neutron and X-ray Scattering in Determining Lipid Bilayer Structure

    Science.gov (United States)

    Pan, Jianjun; Heberle, Frederick A.; Kucerka, Norbert; Tristram-Nagle, Stephanie; Szymanski, Michelle; Koepfinger, Mary; Katsaras, John

    2012-02-01

    Accurately determining lipid structure in biologically relevant fluid bilayers is not straightforward. We have recently developed a hybrid experimental/computational technique (i.e., the scattering density profile, or SDP model), which exploits the fact that neutron and X-ray scattering are sensitive to different bilayer thicknesses - the large difference in neutron scattering length density (SLD) between proteated lipid and deuterated water defines the overall bilayer thickness, while X-ray scattering resolves the headgroup-headgroup distance due to the large scattering contrast between the electron-rich phosphate groups and the hydrocarbon/aqueous medium. A key step in the SDP analysis is the use of MD simulations to parse the lipid molecule into fragments whose volume probability distributions follow simple analytical functional forms. Given the appropriate atomic scattering lengths, these volume probabilities can simultaneously predict both the neutron and X-ray SLD profiles, and hence the scattering form factors. Structural results for commonly used phosphatidylcholine and phosphatidylglycerol lipids will be given.

  13. Synthesis of Novel Amphiphilic Azobenzenes and X-ray Scattering Studies of Their Langmuir Monolayers

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Kjær, Kristian; Breiby, Dag Werner

    2008-01-01

    . At the air-water interface, the amphiphilic azobenzenes form noncrystalline but stable Langmuir films that display an unusual reversible monolayer collapse close to 35 mN/m. The structures and phase transitions were studied by X-ray reflectivity (XR) and grazing-incidence X-ray diffraction, both utilizing...... synchrotron radiation. Compression beyond the collapse point does not change the XR data, showing that the film is unchanged at the molecular level, even at areas less than half of that of the collapse. This leads to the conclusion that few macroscopic collapse sites are responsible for reversibly removing...

  14. Cholesterol-phospholipid interactions: new insights from surface x-ray scattering data.

    Science.gov (United States)

    Ivankin, Andrey; Kuzmenko, Ivan; Gidalevitz, David

    2010-03-12

    We report a structural study of cholesterol-DPPC (1,2-dipalmitoyl-sn-glycero-3-phophocholine) monolayers using x-ray reflectivity and grazing incidence x-ray diffraction. Reflectivity reveals that the vertical position of cholesterol relative to phospholipids strongly depends on its mole fraction (chi(CHOL)). Moreover, we find that at a broad range of chi(CHOL) cholesterol and DPPC form alloylike mixed domains of short-range order and the same stoichiometry as that of the film. Based on the data presented, we propose a new model of cholesterol-phospholipid organization in mixed monolayers.

  15. Fast scattering simulation tool for multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, A., E-mail: artur.sossin@cea.fr [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Tabary, J.; Rebuffel, V. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)

    2015-12-01

    A combination of Monte Carlo (MC) and deterministic approaches was employed as a means of creating a simulation tool capable of providing energy resolved x-ray primary and scatter images within a reasonable time interval. Libraries of Sindbad, a previously developed x-ray simulation software, were used in the development. The scatter simulation capabilities of the tool were validated through simulation with the aid of GATE and through experimentation by using a spectrometric CdTe detector. A simple cylindrical phantom with cavities and an aluminum insert was used. Cross-validation with GATE showed good agreement with a global spatial error of 1.5% and a maximum scatter spectrum error of around 6%. Experimental validation also supported the accuracy of the simulations obtained from the developed software with a global spatial error of 1.8% and a maximum error of around 8.5% in the scatter spectra.

  16. Nonlinear resonance scattering of femtosecond X-ray pulses on atoms in plasmas

    Science.gov (United States)

    Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.; Moroz, N. N.

    2017-11-01

    It is shown that for sufficiently short pulses the resonance scattering probability becomes a nonlinear function of the pulse duration. For fs X-ray pulses scattered on atoms in plasmas maxima and minima develop in the nonlinear regime whereas in the limit of long pulses the probability becomes linear and turns over into the standard description of the electromagnetic pulse scattering. Numerical calculations are carried out in terms of a generalized scattering probability for the total time of pulse duration including fine structure splitting and ion Doppler broadening in hot plasmas. For projected X-ray monocycles, the generalized nonlinear approach differs by 1-2 orders of magnitude from the standard theory.

  17. Low-angle polarized neutron and X-ray scattering from magnetic nanolayers and nanostructures

    CERN Document Server

    Paul, Amitesh

    2017-01-01

    This research monograph presents the latest results related to the characterization of low dimensional systems. Low-angle polarized neutron scattering and X-ray scattering at grazing incidence are used as the two main techniques to explore various physical phenomena of these systems. Special focus is put on systems like thin film transition metal and rare-earth layers, oxide heterostructures, hybrid systems, self-assembled nanostructures and self-diffusion.  Readers will gain in-depth knowledge about the usage of specular scattering and off-specular scattering techniques. Investigation of in-plane and out-of-plane structures and magnetism with vector magnetometric information is illustrated comprehensively. The book caters to a wide audience working in the field of nano-dimensional magnetic systems and the neutron and X-ray reflectometry community in particular.

  18. Characteristics of a molybdenum X-pinch X-ray source as a probe source for X-ray diffraction studies

    Science.gov (United States)

    Zucchini, F.; Bland, S. N.; Chauvin, C.; Combes, P.; Sol, D.; Loyen, A.; Roques, B.; Grunenwald, J.

    2015-03-01

    X-ray emission from a molybdenum X-pinch has been investigated as a potential probe for the high pressure states made in dynamic compression experiments. Studies were performed on a novel 300 kA, 400 ns generator which coupled the load directly to a low inductance capacitor and switch combination. The X-pinch load consisted of 4 crossed molybdenum wires of 13 μm diameter, crossed at an angle of 62°. The load height was 10 mm. An initial x-ray burst generated at the wire crossing point, radiated in the soft x-ray range (hυ x-ray burst (hυ > 10 keV) whose power ranged from 1 to 7 MW. Time integrated spectral measurements showed that the harder bursts were dominated by K-alpha emission; though, a lower level, wide band continuum up to at least 30 keV was also present. Initial tests demonstrated that the source was capable of driving Laue diffraction experiments, probing uncompressed samples of LiF and aluminium.

  19. Solving atomic structures using statistical mechanical searches on x-ray scattering derived potential energy surfaces

    Science.gov (United States)

    Wright, Christopher James

    Engineering the next generation of materials, especially nanomaterials, requires a detailed understanding of the material's underlying atomic structure. These structures give us better insight into structure-property relationships, allowing for property driven material design on the atomic level. Even more importantly, understanding structures in-situ will translate stimuli and responses on the macroscopic scale to changes on the nanoscale. Despite the importance of precise atomic structures for materials design, solving atomic structures is difficult both experimentally and computationally. Atomic pair distribution functions (PDFs) provide information on atomic structure, but the difficulty of extracting the PDF from x-ray total scattering measurements limits their use. Translating the PDF into an atomic structure requires the search of a very high dimensional space, the set of all potential atomic configurations. The large computational cost of running these simulations also limits the use of PDF as an atomistic probe. This work aims to address these issues by developing 1) novel statistical mechanical approaches to solving material structures, 2) fast simulation of x-ray total scattering and atomic pair distribution functions (PDFs), and 3) data processing procedures for experimental x-ray total scattering measurements. First, experimentally derived potential energy surfaces (PES) and the statistical mechanical ensembles used to search them are developed. Then the mathematical and computational framework for the PDF and its gradients will be discussed. The combined PDF-PES-ensemble system will be benchmarked against a series of nanoparticle structures to ascertain the efficiency and effectiveness of the system. Experimental data processing procedures, which maximize the usable data, will be presented. Finally, preliminary results from experimental x-ray total scattering measurements will be discussed. This work presents one of the most complete end

  20. Strength and structural phase transitions of gadolinium at high pressure from radial X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Lun, E-mail: xionglun@ihep.ac.cn; Liu, Jing; Bai, Ligang; Li, Xiaodong; Lin, Chuanlong [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Lin, Jung-Fu [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Texas 78712 (United States)

    2014-12-28

    Lattice strength and structural phase transitions of gadolinium (Gd) were determined under nonhydrostatic compression up to 55 GPa using an angle-dispersive radial x-ray diffraction technique in a diamond-anvil cell at room temperature. Three new phases of fcc structure, dfcc structure, and new monoclinic structure were observed at 25 GPa, 34 GPa, and 53 GPa, respectively. The radial x-ray diffraction data yield a bulk modulus K{sub 0} = 36(1) GPa with its pressure derivate K{sub 0}′ = 3.8(1) at the azimuthal angle between the diamond cell loading axis and the diffraction plane normal and diffraction plane ψ = 54.7°. With K{sub 0}′ fixed at 4, the derived K{sub 0} is 34(1) GPa. In addition, analysis of diffraction data with lattice strain theory indicates that the ratio of differential stress to shear modulus (t/G) ranges from 0.011 to 0.014 at pressures of 12–55 GPa. Together with estimated high-pressure shear moduli, our results show that Gd can support a maximum differential stress of 0.41 GPa, while it starts to yield to plastic deformation at 16 GPa under uniaxial compression. The yield strength of Gd remains approximately a constant with increasing pressure, and reaches 0.46 GPa at 55 GPa.