WorldWideScience

Sample records for scattering takes place

  1. The albedo problem in the case of multiple synthetic scattering taking place in a plane-symmetric slab

    International Nuclear Information System (INIS)

    Shafiq, A.; Meyer, H.E. de; Grosjean, C.C.

    1985-01-01

    An approximate model based on an improved diffusion-type theory is established for treating multiple synthetic scattering in a homogeneous slab of finite thickness. As in the case of the exact treatment given in the preceding paper (Part I), it appears possible to transform the considered transport problem into an equivalent fictitious one involving multiple isotropic scattering, therefore permitting the application of an established corrected diffusion theory for treating isotropic scattering taking place in a convex homogeneous medium bounded by a vacuum in the presence of various types of sources. The approximate values of the reflection and transmission coefficients are compared with the rigorous values listed in Part I. In this way, the high accuracy of the approximation is clearly demonstrated. (author)

  2. Raman scattering in condensed media placed in photon traps

    Science.gov (United States)

    Goncharov, A. P.; Gorelik, V. S.; Krawtsow, A. V.

    2007-11-01

    A new type of resonator cells (photon traps) has been worked out, which ensures the Raman opalescence regime (i.e., the conditions under which the relative Raman scattering intensity at the outlet of the cells increases significantly as compared to the exciting line intensity. The Raman scattering spectra of a number of organic and inorganic compounds placed in photon traps are studied under pulse-periodic excitation by a copper-vapor laser.

  3. Taking place, screening place

    DEFF Research Database (Denmark)

    Hansen, Kim Toft; Waade, Anne Marit

    2019-01-01

    We introduce location studies as a new empirical approach to screen studies. Location studies represent an interdisciplinary perspective, including media, aesthetics and geography, and reflect a growing interest in places in a global media and consumption culture. The chapter analyses two recent......) with one being traditional and the other being commercial; both dramas include discussions of localities and social heritage, and both use local sports as a common metaphor for social cohesion; and both series have been partly funded by a local film Danish commissioner. However, The Legacy is shot...... to a large extent in studios, while Norskov is shot entirely on location. The study is based on interviews with producers, broadcasters, location scouts, production designers and writers, as well as quantitative and qualitative textual analyses of television drama series, the geographical places, and related...

  4. πd scattering lengths taking into account the pion and nucleon mass differences

    International Nuclear Information System (INIS)

    Pupyshev, V.V.; Rakityanskii, S.A.

    1985-01-01

    The scattering lengths and s-wave phase shifts for πd elastic scattering are calculated in the framework of an isotopically noninvariant approach that takes into account the mass splitting of the pionic and nucleonic isomultiplets. It is shown that the particle mass differences lead to appearance of the imaginary parts in the πd scattering lengths (approx.10 -4 fm) not associated with pion absorption. The sensitivity of the mass-difference effects to variation of the parameters of the πN potential is studied and turns out to be small

  5. Compton scattering at high intensities

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas, E-mail: thomas.heinzl@plymouth.ac.u [University of Plymouth, School of Mathematics and Statistics, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-12-01

    High-intensity Compton scattering takes place when an electron beam is brought into collision with a high power laser. We briefly review the main intensity signatures using the formalism of strong-field quantum electrodynamics.

  6. Critical current oscillations in superconductor-ferromagnet-superconductor structure taking into account s-d scattering

    International Nuclear Information System (INIS)

    Vedyaev, A.V.; Ryzhanova, N.V.; Pugach, N.G.

    2007-01-01

    One calculated the critical current in the Josephson contact with the transition metal slightly ferromagnetic alloy interlayer. One solved the Gorkov equations taking into account s-d-scattering in a ferromagnet. The account of the mentioned scattering breaking down the Cooper pairs is shown to enable to ensure the conformity with the experiment [ru

  7. Model of Wagons’ Placing-In and Taking-Out Problem in a Railway Station and Its Heuristic Algorithm

    Directory of Open Access Journals (Sweden)

    Chuijiang Guo

    2014-01-01

    Full Text Available Placing-in and taking-out wagons timely can decrease wagons’ dwell time in railway stations, improve the efficiency of railway transportation, and reduce the cost of goods transportation. We took the locomotive running times between goods operation sites as weights, so the wagons’ placing-in and taking-out problem could be regarded as a single machine scheduling problem, 1pijCmax, which could be transformed into the shortest circle problem in a Hamilton graph whose relaxation problem was an assignment problem. We used a Hungarian algorithm to calculate the optimal solution of the assignment problem. Then we applied a broken circle and connection method, whose computational complexity was O(n2, to find the available satisfactory order of wagons’ placing-in and taking-out. Complex problems, such as placing-in and transferring combined, taking-out and transferring combined, placing-in and taking-out combined, or placing-in, transferring, and taking-out combined, could also be resolved with the extended algorithm. A representative instance was given to illustrate the reliability and efficiency of our results.

  8. DETERMINING THE FEATURES OF SPORTSWEAR TAKING PLACE IN FAST FASHION COLLECTIONS

    Directory of Open Access Journals (Sweden)

    Birsen ÇİLEROĞLU

    2014-07-01

    Full Text Available Spor ts occupies the first place among most siginificant factors increasing quality of life . It has b ecome difficult to allocate proper time for sports in the course of heavy work pace and flow of life . Such circumstances have led people to increase minor sport activities which could be done during short times allocated from daily living, thus, orienting people‟s clothing preference towards sportswear . The feeling of easiness and comfort sportswear offer to individuals enhances further such preference . The feeling of comfort individuals feel in their clothing depends on the presence of physiologic and psy chologic coherence between their bodies and environment . Demand for sportswear allowing easy - movement increased upon rise in life dynamism and standards, it began to be preferred regarding comfort of use and to take its place in daily clothing, too, define d as “casual” clothing . Spor tswear being preferred very much ; has caused the firms making and producing fashion and clothing design to give place in their collections to sportswear category . Particularly, in firms where model and clothing varieties are pl enty and new model design is made in short intervals, named as, “fast fashion” , tendency towards sportswear is growing increasingly . The sale rates of sportswear, utilization rates of which are growing increasingly, has maximum value among total clothing s ales in E - business field, too. In this research, it has been aimed to determine the features of sportswear taking place in “fast fashion” clothing collections . In order to accomplish this aim, 2014 collections of four different brands taking place in natio nal and international markets have been examined through visual analysis method . In the examinations; sportswear styles of the brand, model and style differences between brands and states of using 2014 fashion trends have been taken into account. The data obtained at the end of the analyses made have been

  9. Then Daddy Takes His Place in an Australian Landscape

    OpenAIRE

    ERIN GAYLE CROUCH

    2018-01-01

    This writing accompanies a 62 minute, single channel, digital film work also titled Then Daddy Takes His Place in an Australian Landscape. The research considers themes of loss and disorientation in the above film and the film practice of Belgian filmmaker Chantal Akerman. Formally, the following writing interweaves critical engagements with Akerman’s films including No Home Movie (2015), Jeanne Dielman, 23 Commerce Quay, 1080 Brussels(1975), Là Bas (2006), with personal stories and reflecti...

  10. DSC studies of retrogradation and amylose-lipid transition taking place in gamma-irradiated wheat starch

    International Nuclear Information System (INIS)

    Ciesla, K.; Gluszewski, W.; Eliasson, A.C.

    2006-01-01

    It has been already shown that degradation resulting from gamma irradiation induces a decrease in order of starch granules and influences gelatinisation taking place during heating of starch and flour suspensions. In presented paper, DSC (differential scanning calorimetry) studies were carried out for wheat starch, non-irradiated and irradiated using doses in the range from 5 to 30 kGy. The influence of the conditions applied during DSC measurements on the possibility to observe differences between the amylose-lipid complex transition and retrogradation taking place in the non-irradiated and particularly irradiated starch samples was checked. The better differentiation between the amylose-lipid complex transition taking place in particular samples accompanied by the better reproducity were obtained in the case of dense suspensions as compared to the watery suspensions as well as during the first analysis performed for the recrystallised gels

  11. Theory of differential and integral scattering of laser radiation by a dielectric surface taking a defect layer into account

    NARCIS (Netherlands)

    Azarova, VV; Dmitriev, VG; Lokhov, YN; Malitskii, KN

    The differential and integral light scattering by dielectric surfaces is studied theoretically taking a thin nearsurface defect layer into account. The expressions for the intensities of differential and total integral scattering are found by the Green function method. Conditions are found under

  12. Exchange interaction in scattering on the bound state

    International Nuclear Information System (INIS)

    Arkhipov, A.A.; Savrin, V.I.

    1975-01-01

    In the framework of the one-time formulation of three-body problem in quantum field theory, the problem of scattering on the bound state is considered for the case when one of the incident particles is identical to one of the particles of the target. It is shown that due to the identical nature of these particles the exchange interaction takes place which can be connected with the mechanism of scattering on the bound state with the rearrangement

  13. In-place HEPA filter penetration test

    International Nuclear Information System (INIS)

    Bergman, W.; Wilson, K.; Elliott, J.; Bettencourt, B.; Slawski, J.W.

    1997-01-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in- place penetration test is practical

  14. Modification of the collective Thomson scattering radiometer in the search for parametric decay on TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bongers, W.

    2012-01-01

    Strong scattering of high-power millimeter waves at 140 GHz has been shown to take place in heating and current-drive experiments at TEXTOR when a tearing mode is present in the plasma. The scattering signal is at present supposed to be generated by the parametric decay instability. Here we descr...

  15. Transition radiation and transition scattering

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1982-01-01

    Transition radiation is a process of a rather general character. It occurs when some source, which does not have a proper frequency (for example, a charge) moves at a constant velocity in an inhomogeneous and (or) nonstationary medium or near such a medium. The simplest type of transition radiation takes place when a charge crosses a boundary between two media (the role of one of the media may be played by vacuum). In the case of periodic variation of the medium, transition radiation possesses some specific features (resonance transition radiation or transition scattering). Transition scattering occurs, in particular, when a permittivity wave falls onto an nonmoving (fixed) charge. Transition scattering is closely connected with transition bremsstrahlung radiation. All these transition processes are essential for plasma physics. Transition radiation and transition scattering have analogues outside the framework of electrodynamics (like in the case of Vavilov-Cherenkov radiation). In the present report the corresponding range of phenomena is elucidated, as far as possible, in a generally physical aspect. (Auth.)

  16. Mathematical modeling of phase interaction taking place in materials processing

    International Nuclear Information System (INIS)

    Zinigrad, M.

    2002-01-01

    The quality of metallic products depends on their composition and structure. The composition and the structure are determined by various physico-chemical and technological factors. One of the most important and complicated problems in the modern industry is to obtain materials with required composition, structure and properties. For example, deep refining is a difficult task by itself, but the problem of obtaining the material with the required specific level of refining is much more complicated. It will take a lot of time and will require a lot of expanses to solve this problem empirically and the result will be far from the optimal solution. The most effective way to solve such problems is to carry out research in two parallel direction. Comprehensive analysis of thermodynamics, kinetics and mechanisms of the processes taking place at solid-liquid-gaseous phase interface and building of the clear well-based physico-chemical model of the above processes taking into account their interaction. Development of mathematical models of the specific technologies which would allow to optimize technological processes and to ensure obtaining of the required properties of the products by choosing the optimal composition of the raw materials. We apply the above unique methods. We developed unique methods of mathematical modeling of phase interaction at high temperatures. These methods allows us to build models taking into account: thermodynamic characteristics of the processes, influence of the initial composition and temperature on the equilibrium state of the reactions, kinetics of homogeneous and heterogeneous processes, influence of the temperature, composition, speed of the gas flows, hydrodynamic and thermal factors on the velocity of the chemical and diffusion processes. The models can be implemented in optimization of various metallurgical processes in manufacturing of steels and non-ferrous alloys as well as in materials refining, alloying with special additives

  17. 4th openlab Board of Sponsors Meeting takes place at CERN on July 6, 2005

    CERN Multimedia

    Patrice Loïez

    2005-01-01

    The 4th openlab Board of Sponsors Meeting is taking place at CERN, room 513, 1-024, the 6th July 2005. The meeting will open with an Executive Session in the presence of Dr. Robert Aymar, Director General of CERN

  18. In-place HEPA filter penetration test

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Wilson, K.; Elliott, J. [Lawrence Livermore National Lab., CA (United States)] [and others

    1997-08-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in-place penetration test is practical. 14 refs., 14 figs., 3 tabs.

  19. Multigroup transport calculations of critical and fuel assemblies with taking into account the scattering anisotropy

    International Nuclear Information System (INIS)

    Rubin, I.E.; Dneprovskaya, N.M.

    2005-01-01

    A technique for calculation of reactor lattices by means of the transmission probabilities with taking into account the scattering anisotropy is generalized for the multigroup case. The errors of the calculated multiplication coefficients and energy release distributions do noe exceed practically the errors, of these values, obtained by the Monte Carlo method. The proposed method is most effective when determining the small difference effects [ru

  20. Taking account of the recoil effect under a light particle scattering on two heavy particles

    International Nuclear Information System (INIS)

    Peresypkin, V.V.

    1978-01-01

    Proceeding from the Faddeev equations the derivation of the Bruekner formula describing a light particle scattering by a system of two fixed force centers is presented. Using the zero-range two-particle potential and assuming the ratio of the incident particle mass to the heavy particle mass to be a small perturbation parameter the correction to the Bruekner formula is obtained taking into account the heavy particle recoil

  1. Electron scattering by an atom in the field of resonant laser radiation

    International Nuclear Information System (INIS)

    Agre, M.; Rapoport, L.

    1982-01-01

    The collision of an electron with an atom in the field of intense electromagnetic radiation that is at resonance with two atomic multiplets is investigated theoretically. Expressions are obtained for the amplitudes of the elastic and inelastic scattering with emission (absorption) of photons. The case of a ground state at resonance with a doublet is considered in detail. It is shown that photon absorption takes place predominantly in the case of resonance in inelastic transitions from a state of the lower multiplet, and photon emission takes place in transitions from a state of the upper multiplet

  2. On the influence of resonance photon scattering on atom interference

    International Nuclear Information System (INIS)

    Bozic, M; Arsenovic, D; Sanz, A S; Davidovic, M

    2010-01-01

    Here, the influence of resonance photon-atom scattering on the atom interference pattern at the exit of a three-grating Mach-Zehnder interferometer is studied. It is assumed that the scattering process does not destroy the atomic wave function describing the state of the atom before the scattering process takes place, but only induces a certain shift and change of its phase. We find that the visibility of the interference strongly depends on the statistical distribution of transferred momenta to the atom during the photon-atom scattering event. This also explains the experimentally observed (Chapman et al 1995 Phys. Rev. Lett. 75 2783) dependence of the visibility on the ratio d p /λ i =y' 12 (2π/kdλ i ), where y' 12 is the distance between the place where the scattering event occurs and the first grating, k is the wave number of the atomic centre-of-mass motion, d is the grating constant and λ i is the photon wavelength. Furthermore, it is remarkable that photon-atom scattering events happen experimentally within the Fresnel region, i.e. the near-field region, associated with the first grating, which should be taken into account when drawing conclusions about the relevance of 'which-way' information for the interference visibility.

  3. About effect of the Ramsauer-Townsend type at scattering of relativistic electrons by crystal atomic string

    International Nuclear Information System (INIS)

    Shul'ga, N.F.; Truten', V.I.

    1999-01-01

    It is shown that a considerable decrease in a total cross-section of the elastic scattering of relativistic electrons by a crystal atomic string can take place at certain values of particle incidence angles. This effect is similar to the Ramsauer-Townsend effect of slow electrons scattering by an atom. It is shown that the decrease in the angle of particles incidence on the atomic string essentially changes the process of particles scattering. The phenomena of the particle rainbow scattering and orbiting may occur in this case. 14 refs., 5 figs

  4. A Path Loss Model for Non-Line-of-Sight Ultraviolet Multiple Scattering Channels

    Science.gov (United States)

    2010-01-01

    scattering is self -governed, and the distances and angles for different scattering events are conditioned on previous quantities. Therefore, the arrival...solid angle of the receiver determined by the receiver area and distance rn. Note that no integration over rn is needed because it is a function of...www.eurasip.org). This year edition will take place in Barcelona, capital city of Catalonia (Spain), and will be jointly organized by the Centre Tecnològic de

  5. Waste Disposal: Processes Taking Place (on the way) from the Repository to the Biosphere

    International Nuclear Information System (INIS)

    Put, M.

    2000-01-01

    The main objective of SCK-CEN's R and D programme on the processes taking place on the way from the repository to the biosphere is to provide reliable and defensible models and parameters on the migration of dissolved radionuclides and gases through the host formation (Boom Clay) and the backfill materials of a deep geological repository for high level radioactive waste. The programme and main achievements in this topical area in 1999 are summarised

  6. Investigation of the Stimulated Brillouin Scattering (SBS) Gain Enhancement in Silicon Nano-Waveguides and Applications

    OpenAIRE

    Al-Taiy, Hassanain Majeed

    2017-01-01

    Stimulated Brillouin scattering is a third order non-linear effect with the lowest power threshold in standard single mode optical fiber, by which an interaction between optical and acoustic modes takes place. During the Brillouin scattering process, part of the pump wave power will be transferred to a counter propagating wave (Stokes), with a frequency shift of about 11 GHz for a telecommunication wavelength of 1550 nm in a standard single mode fiber. The frequency shift effective parameters...

  7. Diffusion mechanisms taking place at the early stages of cobalt deposition on Au(111)

    International Nuclear Information System (INIS)

    Oviedo, O A; Leiva, E P M; Mariscal, M M

    2008-01-01

    In the present work a detailed atomic-level analysis of some of the main diffusion mechanisms which take place during cobalt adatom deposition are studied within atom dynamics (AD) and the nudged elastic band (NEB) method. Our computer simulations reveal a very fast exchange between Co and Au atoms when the deposit is a single cobalt adatom. However, when the nucleus size increases, a decrease in the exchange probability is observed. Activation energies for different transitions are obtained using AD in combination with the NEB method

  8. Some aspects of transition radiation and scattering theory

    International Nuclear Information System (INIS)

    Ginzburg, V.L.; Tsytovich, V.N.

    1978-01-01

    Some aspects of transition radiation and transition scattering theory are considered. The transition radiation in vacuum is analysed in the presence of a strong magnetic field. It is shown, that the constant electro-magnetic field makes vacuum similar to the uniaxial ferrodielectric. The appearance of the transition radiation in the nonstationary medium is discussed when its properties in the medium change abruptly in time. It is obtained, that both types of the transition radiation for nonrelativistic particles (on an abrupt boundary of the two media interface and under an abrupt change in time of the medium properties) differ quantitatively (on the order of the value). The role of the radiation transition and scattering in plasma physics has been elucidated from different points. Four most important features of these processes are pointed out. Particularly, essential is shown to be the type of the transition scattering when one plasma wave, being the dielectric constant wave transforms into another one also a plasma wave. In the processes of the transition scattering an essential part is played by the effects of the space dispersion, particularly when the scattering takes place on the small velocity particles. Finally besides transition scattering there exists in plasma or in some cases prevails a Thomson scattering. In this case an important role in plasma is played by the interference between the Thomson and the transition scattering

  9. Scattering by a plane-parallel layer with high concentration of optically soft particles

    International Nuclear Information System (INIS)

    Loiko, Valery A.; Berdnik, Vladimir V.

    2009-01-01

    A method describing light propagation in a plane-parallel light-scattering layer with large concentration of homogeneous particles is developed. It is based on the radiative transfer equation and the doubling method. The interference approximation is used to take into account collective scattering effects. Spectral dependence of transmitted light for a layer of nonabsorbing optically soft particles with subwavelength-sized particles is investigated. At small volume concentration of the particles the weak spectral dependences of wave exponents for coherently transmitted and diffuse light are observed. It is shown that in a layer with large volume concentration of the subwavelength-sized particles the wave exponent can exceed considerably the value of four, which takes place for the Rayleigh particles. The dependence of wave exponents for coherently transmitted and diffuse light on the refractive index and concentration of particles is investigated in detail. Multiple scattering of light results in the reduction of the exponent. The quantitative results are presented and discussed. It is shown that there is a range of wavelengths where the negative values of the wave exponent at the regime of multiple scattering are implemented.

  10. Taking account of sample finite dimensions in processing measurements of double differential cross sections of slow neutron scattering

    International Nuclear Information System (INIS)

    Lisichkin, Yu.V.; Dovbenko, A.G.; Efimenko, B.A.; Novikov, A.G.; Smirenkina, L.D.; Tikhonova, S.I.

    1979-01-01

    Described is a method of taking account of finite sample dimensions in processing measurement results of double differential cross sections (DDCS) of slow neutron scattering. A necessity of corrective approach to the account taken of the effect of sample finite dimensions is shown, and, in particular, the necessity to conduct preliminary processing of DDCS, the account being taken of attenuation coefficients of single scattered neutrons (SSN) for measurements on the sample with a container, and on the container. Correction for multiple scattering (MS) calculated on the base of the dynamic model should be obtained, the account being taken of resolution effects. To minimize the effect of the dynamic model used in calculations it is preferred to make absolute measurements of DDCS and to use the subraction method. The above method was realized in the set of programs for the BESM-5 computer. The FISC program computes the coefficients of SSN attenuation and correction for MS. The DDS program serves to compute a model DDCS averaged as per the resolution function of an instrument. The SCATL program is intended to prepare initial information necessary for the FISC program, and permits to compute the scattering law for all materials. Presented are the results of using the above method while processing experimental data on measuring DDCS of water by the DIN-1M spectrometer

  11. Does olfactory specific satiety take place in a natural setting?

    Science.gov (United States)

    Fernandez, P; Bensafi, M; Rouby, C; Giboreau, A

    2013-01-01

    Olfactory-specific satiety (OSS) is characterized by a specific decrease in the odor pleasantness of a food eaten to satiety or smelled without ingestion. The usual protocol for studying OSS takes place in laboratory, a setting rather removed from the real world. Here, we set out to examine OSS in a natural setting: during a meal in a restaurant. We hypothesized that an aroma contained in a food that is eaten at the beginning of a meal decreases the pleasantness of the flavor of a food with the same aroma eaten at the end of the meal. In the first experiment (Experiment 1), a test group received an appetizer flavored with a test aroma (anise) at the beginning of the meal. After the main dish, they received a dessert flavored with the same aroma. A control group received the same aromatized dessert, but after a non-aromatized appetizer. This experiment was replicated (Experiment 2) using verbena as the test aroma. For both experiments, results revealed that aroma pleasantness, but not intensity or familiarity, significantly decreased in the test groups vs. the control groups. These findings extend the concept of OSS to a realistic eating context. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Experimental determination of the berilium phonon spectra using inelastic neutro scattering

    International Nuclear Information System (INIS)

    Sirota, N.N.; Bulat, I.A.

    1976-01-01

    A study has been made of in elastic scattering of cold neutrons with energies between 0.0022 and 0.00523 eV by polycrystalline beryllium and restoration of its phonon spectrum. The specimen studied is a block of polycrystalline beryllium. In the case of beryllium the averaging of coherent effects upon scattering on a thick specimen takes place as a result of multiple internal Bragg-type reflections of neutrons which undergo inelastic scattering with absorption of phonons. The thickness of the spheric averaging layer for Esub(6) = 0.00523 eV is almost equal to the maximum dimension of the Brillouin band. The phonon spectrum of beryllium for three mean energies used of incident neutrons has been demonstrated. The phonon spectrum of beryllium, measured for the first time, is of interest for quantitative calculations of a number of its physical properties

  13. Cooperative scattering of scalar waves by optimized configurations of point scatterers

    Science.gov (United States)

    Schäfer, Frank; Eckert, Felix; Wellens, Thomas

    2017-12-01

    We investigate multiple scattering of scalar waves by an ensemble of N resonant point scatterers in three dimensions. For up to N = 21 scatterers, we numerically optimize the positions of the individual scatterers, to maximize the total scattering cross section for an incoming plane wave, on the one hand, and to minimize the decay rate associated to a long-lived scattering resonance, on the other. In both cases, the optimum is achieved by configurations where all scatterers are placed on a line parallel to the direction of the incoming plane wave. The associated maximal scattering cross section increases quadratically with the number of scatterers for large N, whereas the minimal decay rate—which is realized by configurations that are not the same as those that maximize the scattering cross section—decreases exponentially as a function of N. Finally, we also analyze the stability of our optimized configurations with respect to small random displacements of the scatterers. These results demonstrate that optimized configurations of scatterers bear a considerable potential for applications such as quantum memories or mirrors consisting of only a few atoms.

  14. Understanding Where Americas Public Discussion Takes Place In Todays Society: Case Studies of Concealed Weapons Carry Reform

    Science.gov (United States)

    2016-06-01

    arguing that concealed carry permit holders are a danger to public safety and that mass shootings are taking place by citizens who are legally armed.2...who worked at an abortion clinic that had recently been bombed and whose life had been threatened was denied a license to carry because he was not...populace. The new law laid out new prohibitions and penalties enforceable statewide. Additionally, the Preemption Act was necessary to set the legal

  15. Small scatterers in the lower mantle observed at German broadband arrays

    Science.gov (United States)

    Thomas, C.; Weber, M.; Wicks, C.W.; Scherbaum, F.

    1999-01-01

    Seismograms of earthquakes from the South Pacific recorded at a German broadband array and network show precursors to PKPdf. These precursors mainly originate from off-path scattering of PKPab or a nearby PKPbc to P (for receiver-side scattering) or from scattering of P to PKPab or PKPbc on the PKPdf path (for source-side scattering). Standard array processing techniques based on plane wave approximations (such as vespagram or frequency-wavenumber analysis) are inadequate for investigating these precursors since scattered waves cannot be approximated as plane waves for arrays and networks larger than 300 x 300 km for short-period waves. We therefore develop a migration method to estimate the location of scatterers in the mantle, at the core-mantle boundary and at the top of the outer core. With our method we are able to find isolated scatterers at the source side and the receiver side, although the depth of the scatterer is not well constrained. However, from looking at the first possible arrival time of precursors at different depth and the region where scattering can take place (scattering volume), we believe that the location of the scatterers is in the lowermost mantle. Since we have detected scatterers in regions where ultralow-velocity zones have been discovered recently, we think that the precursor energy possibly originates from scattering at partial melt at the base of the mantle. Comparing results from broadband and band-pass-filtered data the detection of small-scale structure of the ultralow-velocity zones becomes possible. Copyright 1999 by the American Geophysical Union.

  16. Violation of the Cauchy-Schwarz inequality in collective Raman scattering

    International Nuclear Information System (INIS)

    Shumovskij, A.S.; Tran Quang

    1988-01-01

    The violation of Cauchy-Schwarz (C-S) inequality for correlations between spectrum components of the Reyleigh line and between components of the Stokes line in the collective Raman scattering is discussed. It is shown that the violation of the C-S inequailty occurs only in the Rayleigh line, moreover, for the sidebands of the Rayleigh line the violation of the C-S inequality takes place for a large number of atoms, which means that this quantum effect has the macroscopic nature. 20 refs.; 3 figs

  17. Res-Parity: Parity Violation in Inelastic scattering at Low Q2

    International Nuclear Information System (INIS)

    Paul Reimer; Peter Bosted; John Arrington; Hamlet Mkrtchyan; Xiaochao Zheng

    2006-01-01

    Parity violating electron scattering has become a well established tool which has been used, for example, to probe the Standard Model and the strange-quark contribution to the nucleon. While much of this work has focused on elastic scattering, the RES-Parity experiment, which has been proposed to take place at Jefferson Laboratory, would focus on inelastic scattering in the low-Q 2 , low-W domain. RES-Parity would search for evidence of quark-hadron duality and resonance structure with parity violation in the resonance region. In terms of parity violation, this region is essentially unexplored, but the interpretation of other high-precision electron scattering experiments will rely on a reasonable understanding of scattering at lower energy and low-W through the effects of radiative corrections. RES-Parity would also study nuclear effects with the weak current. Because of the intrinsic broad band energy spectrum of neutrino beams, neutrino experiments are necessarily dependent on an untested, implicit assumption that these effects are identical to electromagnetic nuclear effects. RES-Parity is a relatively straight forward experiment. With a large expected asymmetry (∼ 0.5 x 10 -4 ) these studies may be completed with in a relatively brief period

  18. Inelastic scattering of neutrons by laser photons and excitons in crystals

    International Nuclear Information System (INIS)

    Agranovich, V.M.; Lalov, I.J.

    1975-01-01

    The cross section for the neutron scattering by photons sharply increases in crystals. In view of the fact that a propagating photon in a crystal (polariton), being the superposition of transverse photons and Coulomb excitations (optical phonons, excitons, etc.), involves in the motion also a nucleus subsystem, the cross section for the neutron scattering on the photon turns out to be proportional to the cross section for neutron scattering on nuclei and to the strength function of phonons at the polariton frequency. Numerical estimates for the cross section of the noncoherent photon absorption by a neutron in the case of a LiH crystal in the presence of an intense, electromagnetic radiation point to the possibility of an action of neutron fluxes by laser radiation. A similar effect of involvement (superposition) also takes place for excitons. This fact can be used for calculations of the cross section for neutron inelastic scattering by excitons, which is proportional to the scattering of neutron on nuclei cross section. The paper also discussed the effect of laser radiation of neutron-induced nuclear reaction (radiative capture and threshold reactions)

  19. Compton scattering and γ-quanta monochromatization

    International Nuclear Information System (INIS)

    Goryachev, B.I.; Shevchenko, V.G.

    1979-01-01

    The γ-quanta monochromatization method is proposed for sdudying high-excited states and mechanisms of nuclei photodisintegration. The method is based on the properties of photon Compton scattering. It permits to obtain high energy resolution without accurate analysis of the particle energies taking part in the scattering process. A possible design of the compton γ- monochromator is presented. The γ-quanta scatterer of the elements with a small nucleus charge (e.g. LiH) is placed inside the β-spectrometer of low resolution. The monochromator is expected to operate in the γ-beam of the high-current synchrotron, and it provides for a rather good energy resolution rho(W) while studying the high-excited nucleus states (rho(W) approximately 2% in the range of the giant dipole resonance). With the γ-quanta energy growth rho(W) increases as Wsup(0.6). The monochromator permits to obtain high statistical accuracy for a smaller period of time (at a considerably better energy resolution) than while working with a bremsstrahlung spectrum. The yield of quasimonochromatic photons related to the ΔW(ΔW = rho(W)W) range of energy resolution increases as Wsup(0.6). This fact makes it promjssing to use monochromator in the energy range considerably exceeding the characteristic energy of the gigantic dipole resonance

  20. Thin Places

    OpenAIRE

    Lockwood, Sandra Elizabeth

    2013-01-01

    This inquiry into the three great quests of the twentieth century–the South Pole, Mount Everest, and the Moon–examines our motivations to venture into these sublime, yet life-taking places. The Thin Place was once the destination of the religious pilgrim seeking transcendence in an extreme environment. In our age, the Thin Place quest has morphed into a challenge to evolve beyond the confines of our own physiology; through human ingenuity and invention, we reach places not meant to accommod...

  1. Low energy neutron scattering for energy dependent cross sections. General considerations

    Energy Technology Data Exchange (ETDEWEB)

    Rothenstein, W; Dagan, R [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Mechanical Engineering

    1996-12-01

    We consider in this paper some aspects related to neutron scattering at low energies by nuclei which are subject to thermal agitation. The scattering is determined by a temperature dependent joint scattering kernel, or the corresponding joint probability density, which is a function of two variables, the neutron energy after scattering, and the cosine of the angle of scattering, for a specified energy and direction of motion of the neutron, before the interaction takes place. This joint probability density is easy to calculate, when the nucleus which causes the scattering of the neutron is at rest. It can be expressed by a delta function, since there is a one to one correspondence between the neutron energy change, and the cosine of the scattering angle. If the thermal motion of the target nucleus is taken into account, the calculation is rather more complicated. The delta function relation between the cosine of the angle of scattering and the neutron energy change is now averaged over the spectrum of velocities of the target nucleus, and becomes a joint kernel depending on both these variables. This function has a simple form, if the target nucleus behaves as an ideal gas, which has a scattering cross section independent of energy. An energy dependent scattering cross section complicates the treatment further. An analytic expression is no longer obtained for the ideal gas temperature dependent joint scattering kernel as a function of the neutron energy after the interaction and the cosine of the scattering angle. Instead the kernel is expressed by an inverse Fourier Transform of a complex integrand, which is averaged over the velocity spectrum of the target nucleus. (Abstract Truncated)

  2. Let us play: (unshackling liaisons, (unmasking games and (unhindered dialogue in the arena where theology takes place

    Directory of Open Access Journals (Sweden)

    Tanya van Wyk

    2017-10-01

    Full Text Available This contribution is a political-theological and hermeneutical reflection on the origin, nature, intention and contribution of a research theme identified within the dynamics of an institutional space, by taking a critical look at the �rules� and the �game� of university academia. Specific reference is made to institutional and faculty research themes, namely �reconciling diversity� and �Ecodomy � life in its fullness�. The institutional academic space is compared to a Hunger Games-style panopticon, with its �rules� and �play�. It is argued that these research themes can only make an authentic contribution if the �play� and �game�of the space in which these themes originate, are deconstructed. If this deconstruction can take place, there might be an authentic chance for unhindered dialogue towards the transformation of the academic space and the greater community it serves.

  3. Taking back place-names – from dusty library to digital life

    DEFF Research Database (Denmark)

    Knudsen, Bo Nissen

    Danish place-names have been under publication since 1922 in the scientific series Danmarks Stednavne (Place-Names of Denmark) but only recently the huge project of a digitization of the series has been undertaken. Around 120,000 name articles are now on their way to the web as part of the Digital...... atlas of the Danish historical-administrative geography. Digitization and presentation of a scientific place-names edition poses many interesting problems in itself, especially regarding the variation over time in both the selection of names and the build-up of scholarly knowledge. How are we to convey...... mobility of the book format into a digital context – by making the content available as an application for mobile devices such as smart phones and iPads? Adding geocodes to the name articles could open up the possibility of a digital place-name lexicon allowing the end user to move around in a place...

  4. Theory of near-critical-angle scattering from a curved interface

    International Nuclear Information System (INIS)

    Fiedler-Ferrari, N.; Nussenzveig, H.M.; Wiscombe, W.J.

    1990-01-01

    A new type of diffraction effect, different from the standard semiclassical ones (rainbow, glory, forward peak, orbiting), takes place near the critical angle for total reflection at a curved interface between two homogeneous media. A theoretical treatment of this new effects is given for Mie scattering, e.g., light scattering by an air bubble in water; it can readily be extended to more general curved interface problems in a variety of different fields (quantum mechanics, acoustics, seismic waves). The relatively slowly-varying Mie diffraction pattern associated with near-critical scattering is obscured by rapid fine-structure oscillations due to interference with unrelated farside contributions. These contributions are evaluated and subtracted from the Mie amplitudes to yield the relevant nearside effects. A zero-order transitional CAM (complex angular momentum) approximation to the nearside amplitude is developed. The most important contributions arise from partial and total reflection, represented by two new diffraction integrals, designated Fresnel-Fock and Pearcey-Fock respectively. Also discussed are the WKB approximation, a known physical optics approximation and a new modified version of this approximation: they are compared with the exact nearside Mie amplitude obtained by numerical partial-wave summation, at scatterer size parameters (circumference/wavelength) ranging from 1,000 to 10,000. (author)

  5. Cross plane scattering correction

    International Nuclear Information System (INIS)

    Shao, L.; Karp, J.S.

    1990-01-01

    Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution

  6. Nonlinear cyclotron absorption and stimulated scattering

    International Nuclear Information System (INIS)

    Chung, T.H.

    1986-01-01

    In electron cyclotron resonance heating (ECRH), wave sources heating a plasma linearly with respect to intensity; but as the intensity of ECRH gets larger, there might appear nonlinear effects that would result in cutoff of net absorption. This thesis uses quantum mechanical theory to derive a threshold microwave intensity for nonlinear absorption. The quantum mechanical theory estimates that the threshold microwave intensity for nonlinear absorption is about 10 5 watts/cm 2 for a microwave heating experiment (T/sub e/ = 100 ev, λ = 3,783 cm, B = 2.5 kG). This value seems large considering the present power capabilities of microwave sources (10 2 ∼ 10 3 watts/cm 2 ), but for a low temperature plasma, this threshold will go down. There is another nonlinear phenomenon called stimulated cyclotron scattering that enhances photon scattering by electrons gyrating in a magnetic field. This is expected to prevent incoming photons from arriving at the central region of the fusion plasma, where absorption mainly takes place. Theory based on a photon transport model predicts that the threshold intensity for the stimulated cyclotron scattering is about 10 4 watts/cm 2 for the plasma parameters mentioned above. This value seems large also, but a longer wavelength of microwaves and a larger magnitude magnetic field, which will be the case in reactor type facilities, will lower the threshold intensity to levels comparable with the currently developed microwave sources

  7. The Scattering Outcomes of Kepler Circumbinary Planets: Planet Mass Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yan-Xiang; Ji, Jianghui, E-mail: yxgong@pmo.ac.cn, E-mail: jijh@pmo.ac.cn [CAS Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-11-01

    Recent studies reveal that the free eccentricities of Kepler-34b and Kepler-413b are much larger than their forced eccentricities, implying that scattering events may take place in their formation. The observed orbital configuration of Kepler-34b cannot be well reproduced in disk-driven migration models, whereas a two-planet scattering scenario can play a significant role of shaping the planetary configuration. These studies indicate that circumbinary planets discovered by Kepler may have experienced scattering process. In this work, we extensively investigate the scattering outcomes of circumbinary planets focusing on the effects of planet mass ratio . We find that the planetary mass ratio and the the initial relative locations of planets act as two important parameters that affect the eccentricity distribution of the surviving planets. As an application of our model, we discuss the observed orbital configurations of Kepler-34b and Kepler-413b. We first adopt the results from the disk-driven models as the initial conditions, then simulate the scattering process that occurs in the late evolution stage of circumbinary planets. We show that the present orbital configurations of Kepler-34b and Kepler-413b can be well reproduced when considering a two unequal-mass planet ejection model. Our work further suggests that some of the currently discovered circumbinary single-planet systems may be survivors of original multiple-planet systems. The disk-driven migration and scattering events occurring in the late stage both play an irreplaceable role in sculpting the final systems.

  8. Young People Take Their Rightful Places as Full and Contributing Members of a World Class Workforce: Philadelphia Youth Network Annual Report 2006

    Science.gov (United States)

    Philadelphia Youth Network, 2006

    2006-01-01

    The title of this year's annual report has particular meaning for all of the staff at the Philadelphia Youth Network. The phrase derives from Philadelphia Youth Network's (PYN's) new vision statement, developed as part of its recent strategic planning process, which reads: All of our city's young people take their rightful places as full and…

  9. An l-window formalism for elastic heavy-ion scattering

    International Nuclear Information System (INIS)

    Rowley, N.

    1980-01-01

    It is shown that the heavy-ion elastic scattering amplitude may be written as an exact summation over sharp cut-off Coulomb amplitudes with coefficients which are simply the differences of successive nuclear S-matrix elements. Thus in the case of strong absorption the coefficients are non-zero only over a small range of angular momenta, formally making the elastic amplitude similar to those for inelastic scattering and transfer reactions in that it possesses an 'l window'. Some good approximations to the sharp cut-off Coulomb amplitudes are given enabling the results obtained by the usual integral techniques for dealing with smooth S matrices to be rederived simply. A simple means of studying cases where the transition from no absorption to total absorption takes place over a very small range of angular momenta is also provided. The case of identical spin-zero ions, in particular the system 16 0 + 16 0, is discussed and a qualitative understanding of many of the experimental results and of previous fits to the data obtained. Large-angle scattering of non-identical ions is also mentioned and the l-window formalism suggests that the angular distributions for the elastic and other channels should be very similar in this region. (author)

  10. What it Takes to Successfully Implement Technology for Aging in Place: Focus Groups With Stakeholders.

    Science.gov (United States)

    Peek, Sebastiaan Theodorus Michaël; Wouters, Eveline J M; Luijkx, Katrien G; Vrijhoef, Hubertus J M

    2016-05-03

    There is a growing interest in empowering older adults to age in place by deploying various types of technology (ie, eHealth, ambient assisted living technology, smart home technology, and gerontechnology). However, initiatives aimed at implementing these technologies are complicated by the fact that multiple stakeholder groups are involved. Goals and motives of stakeholders may not always be transparent or aligned, yet research on convergent and divergent positions of stakeholders is scarce. To provide insight into the positions of stakeholder groups involved in the implementation of technology for aging in place by answering the following questions: What kind of technology do stakeholders see as relevant? What do stakeholders aim to achieve by implementing technology? What is needed to achieve successful implementations? Mono-disciplinary focus groups were conducted with participants (n=29) representing five groups of stakeholders: older adults (6/29, 21%), care professionals (7/29, 24%), managers within home care or social work organizations (5/29, 17%), technology designers and suppliers (6/29, 21%), and policy makers (5/29, 17%). Transcripts were analyzed using thematic analysis. Stakeholders considered 26 different types of technologies to be relevant for enabling independent living. Only 6 out of 26 (23%) types of technology were mentioned by all stakeholder groups. Care professionals mentioned fewer different types of technology than other groups. All stakeholder groups felt that the implementation of technology for aging in place can be considered a success when (1) older adults' needs and wishes are prioritized during development and deployment of the technology, (2) the technology is accepted by older adults, (3) the technology provides benefits to older adults, and (4) favorable prerequisites for the use of technology by older adults exist. While stakeholders seemed to have identical aims, several underlying differences emerged, for example, with regard

  11. Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope

    International Nuclear Information System (INIS)

    Mauritsson, J.; Johnsson, P.; Mansten, E.; Swoboda, M.; Ruchon, T.; L'Huillier, A.; Schafer, K. J.

    2008-01-01

    We demonstrate a quantum stroboscope based on a sequence of identical attosecond pulses that are used to release electrons into a strong infrared (IR) laser field exactly once per laser cycle. The resulting electron momentum distributions are recorded as a function of time delay between the IR laser and the attosecond pulse train using a velocity map imaging spectrometer. Because our train of attosecond pulses creates a train of identical electron wave packets, a single ionization event can be studied stroboscopically. This technique has enabled us to image the coherent electron scattering that takes place when the IR field is sufficiently strong to reverse the initial direction of the electron motion causing it to rescatter from its parent ion

  12. Lorentz violation and black-hole thermodynamics: Compton scattering process

    International Nuclear Information System (INIS)

    Kant, E.; Klinkhamer, F.R.; Schreck, M.

    2009-01-01

    A Lorentz-noninvariant modification of quantum electrodynamics (QED) is considered, which has photons described by the nonbirefringent sector of modified Maxwell theory and electrons described by the standard Dirac theory. These photons and electrons are taken to propagate and interact in a Schwarzschild spacetime background. For appropriate Lorentz-violating parameters, the photons have an effective horizon lying outside the Schwarzschild horizon. A particular type of Compton scattering event, taking place between these two horizons (in the photonic ergoregion) and ultimately decreasing the mass of the black hole, is found to have a nonzero probability. These events perhaps allow for a violation of the generalized second law of thermodynamics in the Lorentz-noninvariant theory considered.

  13. Nucleus-nucleus scattering in the Glauber approach

    International Nuclear Information System (INIS)

    Boreskov, K.G.; Kajdalov, A.B.

    1987-01-01

    An analysis of the scattering of two composite objects is carried out in the Glauber approach. A formal solution of this problem is obtained in a form of density expansion. The first term of this expansion, corresponding to summation of all graphs without loops, leads to the optical approximation formula obtained earlier by summing a more limited class of graphs. For realistic nuclear densities all terms of the series are important and its convergence requires a special analysis. It is pointed out that this problem is equivalent to the problem of calculation of the partition function of mixture of two-dimensional liquids with nondiagonal interaction. The phase transition, which takes place in this system at large densities, confirms the conclusion that the virial expansion is not valid for nuclear densities

  14. [Marketing approval and market surveillance of medical devices in Germany: Where does policy integration take place?].

    Science.gov (United States)

    Lang, Achim

    2014-01-01

    Since 2011 new regulatory measures regarding medical devices have been set up with the aim to eliminate obstacles to innovations and to find more coordinated ways to marketing authorisation and market surveillance. This essay investigates whether these new and existing coordination mechanisms build up to a Joined-up Government approach. The analysis shows that the regulatory process should be adjusted along several dimensions. First, many organisations lack awareness regarding their stakeholders and focus solely on their immediate organisational activities. Second, the regulatory process (marketing authorisation and market surveillance) is too fragmented for an effective communication to take place. Finally, the underlying strategy process is an ad-hoc approach lacking continuity and continued involvement of, in particular, the responsible federal ministries. Copyright © 2013. Published by Elsevier GmbH.

  15. Evaluation of dual polarization scattering matrix radar rain backscatter measurements in the X- and Q-bands

    Science.gov (United States)

    Agrawal, A. P.; Carnegie, D. W.; Boerner, W.-M.

    This paper presents an evaluation of polarimetric rain backscatter measurements collected with coherent dual polarization radar systems in the X (8.9 GHz) and Q (45GHz) bands, the first being operated in a pulsed mode and the second being a FM-CW system. The polarimetric measurement data consisted for each band of fifty files of time-sequential scattering matrix measurements expressed in terms of a linear (H, V) antenna polarization state basis. The rain backscattering takes place in a rain cell defined by the beam widths and down range distances of 275 ft through 325 ft and the scattering matrices were measured far below the hydrometeoric scattering center decorrelation time so that ensemble averaging of time-sequential scattering matrices may be applied. In the data evaluation great care was taken in determining: (1) polarimetric Doppler velocities associated with the motion of descending oscillating raindrops and/or eddies within the moving swaths of coastal rain showers, and (2) also the properties of the associated co/cross-polarization rain clutter nulls and their distributions on the Poincare polarization sphere.

  16. An infrared scattering by evaporating droplets at the initial stage of a pool fire suppression by water sprays

    Science.gov (United States)

    Dombrovsky, Leonid A.; Dembele, Siaka; Wen, Jennifer X.

    2018-06-01

    The computational analysis of downward motion and evaporation of water droplets used to suppress a typical transient pool fire shows local regions of a high volume fraction of relatively small droplets. These droplets are comparable in size with the infrared wavelength in the range of intense flame radiation. The estimated scattering of the radiation by these droplets is considerable throughout the entire spectrum except for a narrow region in the vicinity of the main absorption peak of water where the anomalous refraction takes place. The calculations of infrared radiation field in the model pool fire indicate the strong effect of scattering which can be observed experimentally to validate the fire computational model.

  17. Connecting people to place

    NARCIS (Netherlands)

    Horlings, L.G.

    2016-01-01

    The article describes a process of preparing a research design on place-shaping, as outcome of a process of co-design between academic actors and non-academic actors in Brazil, South Africa and The Netherlands, taking place in the context of the project TRANSPLACE. The joint research design

  18. High resolution measurements and study of the neutron inelastic scattering reaction on 56Fe

    International Nuclear Information System (INIS)

    Dupont, E.

    1998-01-01

    High resolution measures of neutrons inelastic scattering cross section, have been performed on 56 Fe from 862 KeV to 3 MeV. The time of flight method has been used on the GELINA source of the IRMM in Geel (Belgium). Four barium fluoride scintillators, placed around the samples, recorded the gamma rays emissions coming from the iron and the boron. A study of the correlations between the partial elastic and inelastic lengths has been performed taking into account first transmission measures realized at Geel. (A.L.B.)

  19. DSC Studies of Retrogradation and Amylose-Lipid Complex Transition Taking Place in Gamma Irradiated Wheat Starch

    International Nuclear Information System (INIS)

    Ciesla, K.

    2006-01-01

    Degradation resulting from gamma irradiation induces decrease in order of starch granules and influences the processes occurring in starch-water system. Differential scanning calorimetry (DSC) was applied at present for studying the effect of radiation with doses of 5 - 30 kGy on amylose-lipid complex transition and retrogradation occurring in wheat starch gels. Influence of the conditions applied during DSC measurements and intermediate storage was tested on the possibility to observe radiation effect. Wheat starch was irradiated with 60 C o gamma rays in a gamma cell Issledovatiel placed in the Department of Radiation Chemistry, INCT. DSC measurements were performed for ca. 50% and ca. 20% gels during heating - cooling - heating cycles (up to 3 cycles) in the temperature range 10 - 150 degree at heating and cooling rates of 10, 5 and 2.5 degree min - 1. The Seiko DSC 6200 calorimeter was used. Decrease in amylose-lipid complex transition temperature was found already after irradiation of wheat starch with a dose of 5 kGy showing modificatin of the complex structure. The differences between the irradiated and the non-irradiated samples became the easier seen in the every foregoing heating or cooling cycle as compared to the preceeding one. It is because that thermal treatment causes decrease of transition temperature in all the irradiated samples, with no effect or increase of that temperature observed in the non-irradiated ones. Irradiation hinders retrogradation taking place in ca. 50% gels but facilitates retrogradation occurring in ca. 20 % gels. Moreover, the expanded differences between the amylose-lipid complex formed in the irradiated and non-irradiated gels result due to their recrystallisation. Storage of the gels induces decrease in the temperature of the complex transition as compared to the last cycle of the first analysis. That decrease was, however, more significant in the case of all the irradiated samples than in the case of the initial sample. In

  20. Scattering on magnetic monopoles

    International Nuclear Information System (INIS)

    Petry, H.R.

    1980-01-01

    The time-dependent scattering theory of charged particles on magnetic monopoles is investigated within a mathematical frame-work, which duely pays attention to the fact that the wavefunctions of the scattered particles are sections in a non-trivial complex line-bundle. It is found that Moeller operators have to be defined in a way which takes into account the peculiar long-range behaviour of the monopole field. Formulas for the scattering matrix and the differential cross-section are derived, and, as a by-product, a momentum space picture for particles, which are described by sections in the underlying complex line-bundle, is presented. (orig.)

  1. Complex scattering dynamics and the quantum Hall effects

    International Nuclear Information System (INIS)

    Trugman, S.A.

    1994-01-01

    We review both classical and quantum potential scattering in two dimensions in a magnetic field, with applications to the quantum Hall effect. Classical scattering is complex, due to the approach of scattering states to an infinite number of dynamically bound states. Quantum scattering follows the classical behavior rather closely, exhibiting sharp resonances in place of the classical bound states. Extended scatterers provide a quantitative explanation for the breakdown of the QHE at a comparatively small Hall voltage as seen by Kawaji et al., and possibly for noise effects

  2. Deep inelastic lepton scattering

    International Nuclear Information System (INIS)

    Nachtmann, O.

    1977-01-01

    Deep inelastic electron (muon) nucleon and neutrino nucleon scattering as well as electron positron annihilation into hadrons are reviewed from a theoretical point of view. The emphasis is placed on comparisons of quantum chromodynamics with the data. (orig.) [de

  3. Time-reversal of electromagnetic scattering for small scatterer classification

    International Nuclear Information System (INIS)

    Smith, J Torquil; Berryman, James G

    2012-01-01

    Time-reversal operators, or the alternatively labelled, but equivalent, multistatic response matrix methods, are used to show how to determine the number of scatterers present in an electromagnetic scattering scenario that might be typical of UneXploded Ordinance (UXO) detection, classification and removal applications. Because the nature of the target UXO application differs from that of many other common inversion problems, emphasis is placed here on classification and enumeration rather than on detailed imaging. The main technical issues necessarily revolve around showing that it is possible to find a sufficient number of constraints via multiple measurements (i.e. using several distinct views at the target site) to solve the enumeration problem. The main results show that five measurements with antenna pairs are generally adequate to solve the classification and enumeration problems. However, these results also demonstrate a need for decreasing noise levels in the multistatic matrix as the number n of scatterers increases for the intended practical applications of the method. (paper)

  4. Low energy ion scattering as a tool for surface structure and composition analysis

    International Nuclear Information System (INIS)

    Armour, D.G.

    1980-01-01

    Low energy ion scattering is finding increasing application in the study of areas such as gas adsorption, thin film deposition and surface damage creation and annealing during ion irradiation where structural and compositional changes occurring in only the outermost atomic layer need to be monitored. The capabilities of the technique and the ways in which it has been developed for different types of analysis depend strongly on the fundamental atomic collision processes taking place at the surface and it is these processes, together with examples of their role in analysis applications, that form the subject of this paper. (author)

  5. Toward a new polyethylene scattering law determined using inelastic neutron scattering

    International Nuclear Information System (INIS)

    Lavelle, C.M.; Liu, C.-Y.; Stone, M.B.

    2013-01-01

    Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S(Q,E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for ambient temperatures (∼300K), and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 294 K which are used to improve the scattering law for HDPE. We review some of the past HDPE scattering laws, describe the experimental methods, and compare computations using these models to the measured S(Q,E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the one phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work. -- Highlights: ► Polyethylene at 5 K and 300 K is measured using inelastic neutron scattering (INS). ► Measurements conducted at the Wide Angular-Range Chopper Spectrometer at SNS. ► Several models for Polyethylene are compared to measurements. ► Improvements to existing models for the polyethylene scattering law are suggested. ► INS is shown to be highly valuable tool for scattering law development

  6. Material classification by fast neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Buffler, A. E-mail: abuffler@physci.uct.ac.za; Brooks, F.D. E-mail: brooks@physci.uct.ac.za; Allie, M.S.; Bharuth-Ram, K.; Nchodu, M.R

    2001-02-01

    The scattering of a beam of fast monoenergetic neutrons is used to determine elemental compositions of bulk samples (0.2-0.8 kg) of materials composed from one or more of the elements H, C, N, O, Al, S, Fe and Pb. Scattered neutrons are detected by liquid scintillators placed at forward and at backward angles. Different elements are identified by their characteristic scattering signatures derived either from a combination of time-of-flight and pulse height measurements, or from pulse height measurements alone. Scattering signatures measured for multi-element samples are analysed to determine atom fractions for H, C, N, O and other elements in the sample. Atom fractions determined from scattering signatures are insensitive to neutron interactions in material surrounding the scattering sample, provided the amount of material is not excessive. The atom fraction data are used to classify scattering material into categories including 'explosives', 'illicit drugs' and 'other materials' for the purpose of contraband detection.

  7. Atom electron scattering

    International Nuclear Information System (INIS)

    Santoso, B.

    1976-01-01

    Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)

  8. First observation of the depolarization of Thomson scattering radiation by a fusion plasma

    Science.gov (United States)

    Giudicotti, L.; Kempenaars, M.; McCormack, O.; Flanagan, J.; Pasqualotto, R.; contributors, JET

    2018-04-01

    We report the first experimental observation of the depolarization of the Thomson scattering (TS) radiation, a relativistic effect expected to occur in very high {{T}e} plasmas and never observed so far in a fusion machine. A set of unused optical fibers in the collection optics of the high resolution Thomson scattering system of JET has been used to detect the depolarized TS radiation during a JET campaign with {{T}e}≤slant 8 keV . A linear polarizer with the axis perpendicular to the direction of the incident E-field was placed in front of a fiber optic pair observing a region close to the plasma core, while another fiber pair with no polariser simultaneously observed an adjacent plasma region. The measured intensity ratio was found to be consistent with the theory, taking into account sensitivity coefficients of the two measurement channels determined with post-experiment calibrations and Raman scattering. This depolarization effect is at the basis of polarimetric TS, a different and complementary method for the analysis of TS spectra that can provide significant advantages for {{T}e} measurements in very hot plasmas such as in ITER ≤ft({{T}e}≤slant 40 keV \\right) .

  9. From sense of place to visualization of place: examining people-place relationships for insight on developing geovisualizations.

    Science.gov (United States)

    Newell, Robert; Canessa, Rosaline

    2018-02-01

    Effective resource planning incorporates people-place relationships, allowing these efforts to be inclusive of the different local beliefs, interests, activities and needs. 'Geovisualizations' can serve as potentially powerful tools for facilitating 'place-conscious' resource planning, as they can be developed with high degrees of realism and accuracy, allowing people to recognize and relate to them as 'real places'. However, little research has been done on this potential, and the place-based applications of these visual tools are poorly understood. This study takes steps toward addressing this gap by exploring the relationship between sense of place and 'visualization of place'. Residents of the Capital Regional District of BC, Canada, were surveyed about their relationship with local coastal places, concerns for the coast, and how they mentally visualize these places. Factor analysis identified four sense of place dimensions - nature protection values, community and economic well-being values, place identity and place dependence, and four coastal concerns dimensions - ecological, private opportunities, public space and boating impacts. Visualization data were coded and treated as dependent variables in a series of logistic regressions that used sense of place and coastal concerns dimensions as predictors. Results indicated that different aspects of sense of place and (to a lesser degree) concerns for places influence the types of elements people include in their mental visualization of place. In addition, sense of place influenced the position and perspective people assume in these visualizations. These findings suggest that key visual elements and perspectives speak to different place relationships, which has implications for developing and using geovisualizations in terms of what elements should be included in tools and (if appropriate) depicted as affected by potential management or development scenarios.

  10. Inelastic neutron scattering from superconducting rings

    International Nuclear Information System (INIS)

    Agafonov, A.I.

    2010-01-01

    For the first time the differential cross section for the inelastic magnetic neutron scattering by superconducting rings is derived taking account of the interaction of the neutron magnetic moment with the magnetic field generated by the superconducting current. Calculations of the scattering cross section are carried out for cold neutrons and thin film rings from type-II superconductors with the magnetic fields not exceeding the first critical field.

  11. Signatures of Earth-scattering in the direct detection of Dark Matter

    DEFF Research Database (Denmark)

    Kavanagh, Bradley J.; Catena, Riccardo; Kouvaris, Chris

    2017-01-01

    Direct detection experiments search for the interactions of Dark Matter (DM) particles with nuclei in terrestrial detectors. But if these interactions are sufficiently strong, DM particles may scatter in the Earth, affecting their distribution in the lab. We present a new analytic calculation...... of this 'Earth-scattering' effect in the regime where DM particles scatter at most once before reaching the detector. We perform the calculation self-consistently, taking into account not only those particles which are scattered away from the detector, but also those particles which are deflected towards...... the detector. Taking into account a realistic model of the Earth and allowing for a range of DM-nucleon interactions, we present the EarthShadow code, which we make publicly available, for calculating the DM velocity distribution after Earth-scattering. Focusing on low-mass DM, we find that Earth...

  12. On the solution of a few problems of multiple scattering by Monte Carlo method

    International Nuclear Information System (INIS)

    Bluet, J.C.

    1966-02-01

    Three problems of multiple scattering arising from neutron cross sections experiments, are reported here. The common hypothesis are: - Elastic scattering is the only possible process - Angular distributions are isotropic - Losses of particle energy are negligible in successive collisions. In the three cases practical results, corresponding to actual experiments are given. Moreover the results are shown in more general way, using dimensionless variable such as the ratio of geometrical dimensions to neutron mean free path. The FORTRAN codes are given together with to the corresponding flow charts, and lexicons of symbols. First problem: Measurement of sodium capture cross-section. A sodium sample of given geometry is submitted to a neutron flux. Induced activity is then measured by means of a sodium iodide cristal. The distribution of active nuclei in the sample, and the counter efficiency are calculated by Monte-Carlo method taking multiple scattering into account. Second problem: absolute measurement of a neutron flux using a glass scintillator. The scintillator is a use of lithium 6 loaded glass, submitted to neutron flux perpendicular to its plane faces. If the glass thickness is not negligible compared with scattering mean free path λ, the mean path e' of neutrons in the glass is different from the thickness. Monte-Carlo calculation are made to compute this path and a relative correction to efficiency equal to (e' - e)/e. Third problem: study of a neutron collimator. A neutron detector is placed at the bottom of a cylinder surrounded with water. A neutron source is placed on the cylinder axis, in front of the water shield. The number of neutron tracks going directly and indirectly through the water from the source to the detector are counted. (author) [fr

  13. Method of taking into account meson and quark-gluon degrees of freedom in hadron-hadron interactions at low and intermediate energies. Application to NN scattering

    International Nuclear Information System (INIS)

    Safronov, A.N.

    1983-01-01

    A system of nonsingular integral equations is formulated for the calculation of hadron-hadron partial amplitudes in the low-and intermediate-energy range taking into account meson and quark-gluon degrees of freedom. The quark-gluon degrees of freedom are included in the framework of the composite-quark-bag model, and the meson degrees of freedom are treated by the methods of the relativistic quantum field theory. It is shown that including the quark-gluon degrees of freedom leads to suppression of meson exchange effects, mostly of heavy meson (rho, ω) exchanges. The method has been applied to the calculation of the 3 S 1 , 1 S 0 , 3 P 0 , 3 P 1 , and 1 P 1 phase shifts for the nucleon-nucleon scattering at the incident nucleon energies T=0-1050 MeV, as well as to the S-wave scattering lengths and effective radii

  14. Taking apart the enhanced backscattering cone: Interference fringes from reciprocal paths in multiple light scattering

    International Nuclear Information System (INIS)

    Bret, Boris P. J.; Ferreira, Flavio P.; Nunes-Pereira, Eduardo J.; Belsley, Michael

    2010-01-01

    We report the decomposition of the enhanced backscattering cone into its constitutive interference fringes. These fringes are due to the constructive interference between reciprocal paths of any multiply scattered wave after ensemble averaging. An optical setup combining a two-point continuous-wave illumination and matching detection allows the observation of the fringes and, therefore, the quantitative characterization of the Green's function for light propagation between the two points in a multiple-scattering media.

  15. The radiation amplification effect in the scattering of a quasi-classical electron by an ion in an electromagnetic field of medium intensity

    International Nuclear Information System (INIS)

    Freiv, A V; Roshchupkin, S P

    2008-01-01

    The possibility of amplification of electromagnetic radiation is theoretically studied in the scattering of a quasi-classical electron by an ion in a field of linearly polarized waves of medium intensity. An expression for the total cross-section (the gain coefficient) for the wide interval of values of the adiabaticity parameter is obtained. It is shown that the wave amplification takes place in the range of values of adiabaticity parameter greater than 2 and can be sufficiently large

  16. Intermediate energy proton and light-ion scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1981-01-01

    A review is presented of recent (1979-81) developments in the field of intermediate-energy proton and light-ion scattering from nuclei. New theoretical and calculational techniques of particular interest to experimentalists are discussed. Emphasis is placed on topics in nuclear structure physics - giant resonances, pion-condensation precursor phenomena, and polarization transfer (spin-flip) experiments - where intermediate energy proton and light-ion scattering has made new and unique contributions

  17. Real-time UV-visible spectroscopy analysis of purple membrane-polyacrylamide film formation taking into account Fano line shapes and scattering.

    Science.gov (United States)

    Gomariz, María; Blaya, Salvador; Acebal, Pablo; Carretero, Luis

    2014-01-01

    We theoretically and experimentally analyze the formation of thick Purple Membrane (PM) polyacrylamide (PA) films by means of optical spectroscopy by considering the absorption of bacteriorhodopsin and scattering. We have applied semiclassical quantum mechanical techniques for the calculation of absorption spectra by taking into account the Fano effects on the ground state of bacteriorhodopsin. A model of the formation of PM-polyacrylamide films has been proposed based on the growth of polymeric chains around purple membrane. Experimentally, the temporal evolution of the polymerization process of acrylamide has been studied as function of the pH solution, obtaining a good correspondence to the proposed model. Thus, due to the formation of intermediate bacteriorhodopsin-doped nanogel, by controlling the polymerization process, an alternative methodology for the synthesis of bacteriorhodopsin-doped nanogels can be provided.

  18. Resonating rays in ion-ion scattering from an optical potential

    International Nuclear Information System (INIS)

    Farhan, A.R.; Stoyanov, B.J.; Nagl, A.; Uberall, H.; de Llano, M.

    1986-01-01

    The amplitude of ion-ion scattering, described, e.g., by an optical potential, separates into a ''surface-wave'' part (which, as shown before, may give rise to resonances) and a ''geometrical-ray'' part. The amplitude as alternately expressed here by the Wentzel-Kramers-Brillouin approximation resolves into an externally reflected ''barrier wave'' and into ''internal'' or ''penetrating rays'' that undergo an internal reflection together with possible additional multiple reflections. Our numerical calculations show that resonances also occur in the penetrating rays, which take place when a characteristic equation is satisfied. The geometrical meaning of the latter is determined by the optical path length of penetration being an integer multiple of π, plus a 1/2π caustic phase jump, and an extra phase shift due to barrier penetration

  19. Incorporation of intraocular scattering in schematic eye models

    International Nuclear Information System (INIS)

    Navarro, R.

    1985-01-01

    Beckmann's theory of scattering from rough surfaces is applied to obtain, from the experimental veiling glare functions, a diffuser that when placed at the pupil plane would produce the same scattering halo as the ocular media. This equivalent diffuser is introduced in a schematic eye model, and its influence on the point-spread function and the modulation-transfer function of the eye is analyzed

  20. Doubly versus singly positively charged oxygen ions back-scattered from a silicon surface under dynamic O2+ bombardment

    International Nuclear Information System (INIS)

    Franzreb, Klaus; Williams, Peter; Loerincik, Jan; Sroubek, Zdenek

    2003-01-01

    Mass-resolved (and emission-charge-state-resolved) low-energy ion back-scattering during dynamic O 2 + bombardment of a silicon surface was applied in a Cameca IMS-3f secondary ion mass spectrometry (SIMS) instrument to determine the bombarding energy dependence of the ratio of back-scattered O 2+ versus O + . While the ratio of O 2+ versus O + drops significantly at reduced bombarding energies, O 2+ back-scattered from silicon was still detectable at an impact energy (in the lab frame) as low as about 1.6 keV per oxygen atom. Assuming neutralization prior to impact, O 2+ ion formation in an asymmetric 16 O→ 28 Si collision is expected to take place via 'collisional double ionization' (i.e. by promotion of two outer O 2p electrons) rather than by the production of an inner-shell (O 2s or O 1s) core hole followed by Auger-type de-excitation during or after ejection. A molecular orbital (MO) correlation diagram calculated for a binary 'head-on' O-Si collision supports this interpretation

  1. FIR laser scattering and heterodyne receiver measurements on Alcator C

    International Nuclear Information System (INIS)

    Woskoboinikow, P.; Praddaude, H.C.; Mulligan, W.J.; Cohn, D.R.; Lax, B.

    1982-01-01

    The MIT program to develop high power collective Thomson scattering diagnostics is presented. The D 2 O laser Thomson scattering system is operational on Alcator C tokamak. The major components include a 0.5 MW, 150 ns D 2 O laser, a heterodyne receiver mixer, a 25 MW, 381 μ DCOOD laser local oscillator and X-band I.F. electronics including a 32 channel multiplexer filter centered at 9.4 GHz with 80 MHz wide channels. Initial scattering measurement showed high level of stray D 2 O laser power. The spectrum was obtained by operating the Thomson scattering diagnostics with no plasma in the tokamak. An X-band notch filter was placed after the Schottky diode mixer to reject a 240 MHz band centered at 9.4 GHz. The stray light level was reduced by 16 to 20 db. Other sources of background noise such as strong non-thermal scattering and ECE did not appear to be a problem. A gas filled cell was placed on the Alcator C scattering system to reduce the level of stray light. Work is underway to improve the transverse mode quality of the laser and receiver to improve matching to the beam and viewing dumps. (Kato, T.)

  2. Advice from Rural Elders: What It Takes to Age in Place

    Science.gov (United States)

    Dye, Cheryl J.; Willoughby, Deborah F.; Battisto, Dina G.

    2011-01-01

    Older adults prefer to age in place (AIP), and there are psychological, physiological, and economic benefits in doing so. However, it is especially challenging to AIP in rural communities. AIP models have been tested in urban settings and age-segregated communities, but they are not appropriate for rural communities. This paper presents rural AIP…

  3. Radiation of ultrarelativistic charge taking into account for multiple scattering

    International Nuclear Information System (INIS)

    Yang, C.

    1977-01-01

    A brief theoretical review of characteristics of X-rays and more hard radiation formed by an ultrarelativistic charged particle passing through a plate or a stack of plates with regard for multiple scattering and the plate material absorptivity is made. Formulas for frequency- angular and frequency distributions of total radiation in the cases of a plate and of a stack of plates with large spacings as well as a stack of sufficiently thick plates are given. A calculation method for the radiation distributions in a general case of an arbitrary stack is pointed out. The frequency distribution of the total radiation consisting of bremsstrahlung and boundary effects is analyzed in detail. A problem of experimental separation of the boundary effect from the total radiation is discussed

  4. Simulation of inverse Compton scattering and its implications on the scattered linewidth

    Science.gov (United States)

    Ranjan, N.; Terzić, B.; Krafft, G. A.; Petrillo, V.; Drebot, I.; Serafini, L.

    2018-03-01

    Rising interest in inverse Compton sources has increased the need for efficient models that properly quantify the behavior of scattered radiation given a set of interaction parameters. The current state-of-the-art simulations rely on Monte Carlo-based methods, which, while properly expressing scattering behavior in high-probability regions of the produced spectra, may not correctly simulate such behavior in low-probability regions (e.g. tails of spectra). Moreover, sampling may take an inordinate amount of time for the desired accuracy to be achieved. In this paper, we present an analytic derivation of the expression describing the scattered radiation linewidth and propose a model to describe the effects of horizontal and vertical emittance on the properties of the scattered radiation. We also present an improved version of the code initially reported in Krafft et al. [Phys. Rev. Accel. Beams 19, 121302 (2016), 10.1103/PhysRevAccelBeams.19.121302], that can perform the same simulations as those present in cain and give accurate results in low-probability regions by integrating over the emissions of the electrons. Finally, we use these codes to carry out simulations that closely verify the behavior predicted by the analytically derived scaling law.

  5. A general framework and review of scatter correction methods in cone beam CT. Part 2: Scatter estimation approaches

    International Nuclear Information System (INIS)

    Ruehrnschopf and, Ernst-Peter; Klingenbeck, Klaus

    2011-01-01

    The main components of scatter correction procedures are scatter estimation and a scatter compensation algorithm. This paper completes a previous paper where a general framework for scatter compensation was presented under the prerequisite that a scatter estimation method is already available. In the current paper, the authors give a systematic review of the variety of scatter estimation approaches. Scatter estimation methods are based on measurements, mathematical-physical models, or combinations of both. For completeness they present an overview of measurement-based methods, but the main topic is the theoretically more demanding models, as analytical, Monte-Carlo, and hybrid models. Further classifications are 3D image-based and 2D projection-based approaches. The authors present a system-theoretic framework, which allows to proceed top-down from a general 3D formulation, by successive approximations, to efficient 2D approaches. A widely useful method is the beam-scatter-kernel superposition approach. Together with the review of standard methods, the authors discuss their limitations and how to take into account the issues of object dependency, spatial variance, deformation of scatter kernels, external and internal absorbers. Open questions for further investigations are indicated. Finally, the authors refer on some special issues and applications, such as bow-tie filter, offset detector, truncated data, and dual-source CT.

  6. Taking climate to the market

    International Nuclear Information System (INIS)

    Boyle, S.

    1998-01-01

    Since the 1997 Kyoto Protocol set binding targets for greenhouse gas reductions, there has been a rapid increase in interest in emissions trading. This is based on the premise that reduction options may be cheaper in countries such as those of eastern Europe and the developing world, than in others such as the USA and Norway. As long as real emission reductions take place, and given that climate change is a global problem, setting up an emissions trading market should provide a much cheaper option than reductions applied solely at a national level. The real prospects for a viable market, what it will look like, and the deals already taking place are examined. (UK)

  7. Spin observables in nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1982-01-01

    The curse of inelastic nucleon scattering and charge exchange has always been the enormous complexity of the nucleon-nucleon (N-N) interaction. This complexity, however, can also be viewed as the ultimate promise of nucleons as probes of nuclear structure. Given an adequate theoretical basis, inelastic nucleon scattering is capable of providing information not obtainable with other probes. Recently a revolution of experimental technique has taken place that makes it desirable to re-examine the question of what physics is ultimately obtainable from inelastic nucleon scattering. It is now feasible to perform complete polarization transfer (PT) experiments for inelastic proton scattering with high efficiency and excellent energy resolution. Programs to measure PT obsevables are underway at several laboratories, and results are beginning to appear. Objectives of this presentation are to examine how such experiments are done, and what physics is presently obtained and may ultimately be learned from them

  8. Neutron small-angle scattering study of phase decomposition in Au-Pt

    International Nuclear Information System (INIS)

    Singhal, S.P.; Herman, H.

    1978-01-01

    Isothermal decomposition of a Au-60 at.% Pt alloy, quenched from the solid as well as the liquid state, has been studied with the D11 neutron small-angle scattering spectrometer at ILL, Grenoble. An incident neutron wavelength of 6.7 A was used and measurements were carried out in the range of scattering vector [β=4π sin theta/lambda] from 2.8x10 -2 to 21x10 -2 A -1 . The preliminary results indicate that decomposition of this alloy at 550 0 C takes place by a spinodal mode, although deviations were observed from linear spinodal theory, even at very early times. Slower aging kinetics were observed in liquid-quenched alloy as compared with solid-quenched. Liquid quenching is more efficient in suppressing quench clustering than is solid quenching. However, liquid quenching yields an extremely fine-grained material, which thereby enhances discontinuous precipitation at grain boundaries, competing with decomposition in the bulk. A Rundman-Hilliard analysis was used for the early stages of the spinodal reaction to obtain an interdiffusion coefficient of the order of 10 -16 cm 2 s -1 at 550 0 C for the solid-quenched alloy. (Auth.)

  9. X-ray scatter removal by deconvolution

    International Nuclear Information System (INIS)

    Seibert, J.A.; Boone, J.M.

    1988-01-01

    The distribution of scattered x rays detected in a two-dimensional projection radiograph at diagnostic x-ray energies is measured as a function of field size and object thickness at a fixed x-ray potential and air gap. An image intensifier-TV based imaging system is used for image acquisition, manipulation, and analysis. A scatter point spread function (PSF) with an assumed linear, spatially invariant response is modeled as a modified Gaussian distribution, and is characterized by two parameters describing the width of the distribution and the fraction of scattered events detected. The PSF parameters are determined from analysis of images obtained with radio-opaque lead disks centrally placed on the source side of a homogeneous phantom. Analytical methods are used to convert the PSF into the frequency domain. Numerical inversion provides an inverse filter that operates on frequency transformed, scatter degraded images. Resultant inverse transformed images demonstrate the nonarbitrary removal of scatter, increased radiographic contrast, and improved quantitative accuracy. The use of the deconvolution method appears to be clinically applicable to a variety of digital projection images

  10. Approximate solutions of some problems of scattering of surface ...

    Indian Academy of Sciences (India)

    A Choudhary

    Abstract. A class of mixed boundary value problems (bvps), occurring in the study of scattering of surface water waves by thin vertical rigid barriers placed in water of finite depth, is examined for their approximate solutions. Two different placings of vertical barriers are analyzed, namely, (i) a partially immersed barrier and.

  11. Ultraviolet Raman scattering from persistent chemical warfare agents

    Science.gov (United States)

    Kullander, Fredrik; Wästerby, Pär.; Landström, Lars

    2016-05-01

    Laser induced Raman scattering at excitation wavelengths in the middle ultraviolet was examined using a pulsed tunable laser based spectrometer system. Droplets of chemical warfare agents, with a volume of 2 μl, were placed on a silicon surface and irradiated with sequences of laser pulses. The Raman scattering from V-series nerve agents, Tabun (GA) and Mustard gas (HD) was studied with the aim of finding the optimum parameters and the requirements for a detection system. A particular emphasis was put on V-agents that have been previously shown to yield relatively weak Raman scattering in this excitation band.

  12. Polarimetric scattering and SAR information retrieval

    CERN Document Server

    Jin, Ya-Qiu

    2013-01-01

    Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative app

  13. Fluorescent and Raman scattering by molecules embedded in small particles: Final report

    International Nuclear Information System (INIS)

    Chew, H.; McNulty, P.J.

    1987-02-01

    The model takes into account the physical properties and the morphology of the particles, as well as the locations of the scatter(s). Brief descriptions of various applications of the model are presented. Brief descriptions of experimental studies of scattering by finite dielectric and cylindrical microstructures in plastic track detector plane surfaces are given

  14. The scattering of a cylindrical invisibility cloak: reduced parameters and optimization

    DEFF Research Database (Denmark)

    Peng, Liang; Ran, L.; Mortensen, Asger

    2011-01-01

    We investigate the scattering of 2D cylindrical invisibility cloaks with simplified constitutive parameters with the assistance of scattering coefficients. We show that the scattering of the cloaks originates not only from the boundary conditions but also from the spatial variation of the component...... of permittivity/permeability. According to our formulation, we propose some restrictions to the invisibility cloak in order to minimize its scattering after the simplification has taken place. With our theoretical analysis, it is possible to design a simplified cloak using some peculiar composites...

  15. Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems

    NARCIS (Netherlands)

    Sprik, R.; Tourin, A.; de Rosny, J.; Fink, M.

    2008-01-01

    We experimentally study the effects of correlations in the propagation of ultrasonic waves in water from a multielement source to a multielement detector through a strongly scattering system of randomly placed vertical rods. Due to the strong scattering, the wave transport in the sample is in the

  16. Regge cuts in γγ scattering

    International Nuclear Information System (INIS)

    Jackson, C.P.

    1976-01-01

    It is shown that the Pomeron-Pomeron cut in γγ scattering has natural C parity and conspires, in contrast to the Pomeron pole which is evasive, and has natural parity and C parity. The constraints this places upon the invariant amplitudes are analyzed

  17. Planned place of birth

    DEFF Research Database (Denmark)

    Overgaard, Charlotte; Coxon, Kirstie; Stewart, Mary

    Title Planned place of birth: issues of choice, access and equity. Outline In Northern European countries, giving birth is generally safe for healthy women with uncomplicated pregnancies, and their babies. However, place of birth can affect women’s outcomes and experiences of birth. Whilst tertiary...... countries, maternity care is provided free to women, through public financing of health care; universal access to care is therefore secured. Nevertheless, different models of care exist, and debates about the appropriateness of providing maternity care in different settings take place in both countries...... in Denmark Coxon K et al: Planned place of birth in England: perceptions of accessing obstetric units, midwife led units and home birth amongst women and their partners. How these papers interrelate These papers draw upon recent research in maternity care, undertaken in Denmark and in England. In both...

  18. Place branding, embeddedness and endogenous rural development

    NARCIS (Netherlands)

    Donner, Mechthild; Horlings, Lummina; Fort, Fatiha; Vellema, Sietze

    2017-01-01

    This article deals with place branding on the regional scale, in the rural context of food and tourism networks in Europe. Place branding is linked to the concepts of endogenous rural development, territory and embeddedness, by analysing how the valorisation of specific rural assets takes shape.

  19. BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION

    International Nuclear Information System (INIS)

    Pynn, Roger; Baker, Shenda Mary; Louca, Despo A.; McGreevy, Robert L.; Ekkebus, Allen E.; Kszos, Lynn A.; Anderson, Ian S.

    2008-01-01

    In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreach program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron scattering education. A

  20. BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, Roger [ORNL; Baker, Shenda Mary [ORNL; Louca, Despo A [ORNL; McGreevy, Robert L [ORNL; Ekkebus, Allen E [ORNL; Kszos, Lynn A [ORNL; Anderson, Ian S [ORNL

    2008-10-01

    In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreach program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron

  1. Inelastic scattering of fast electrons by crystals

    International Nuclear Information System (INIS)

    Allen, L.J.; Josefsson, T.W.

    1995-01-01

    Generalized fundamental equations for electron diffraction in crystals, which include the effect of inelastic scattering described by a nonlocal interaction, are derived. An expression is obtained for the cross section for any specific type of inelastic scattering (e.g. inner-shell ionization, Rutherford backscattering). This result takes into account all other (background) inelastic scattering in the crystal leading to absorption from the dynamical Bragg-reflected beams, in practice mainly due to thermal diffuse scattering. There is a contribution to the cross section from all absorbed electrons, which form a diffuse background, as well as from the dynamical electrons. The approximations involved, assuming that the interactions leading to inelastic scattering can be described by a local potential are discussed, together with the corresponding expression for the cross section. It is demonstrated by means of an example for K-shell electron energy loss spectroscopy that nonlocal effects can be significant. 47 refs., 4 figs

  2. Eikonal representation of N-body Coulomb scattering amplitudes

    International Nuclear Information System (INIS)

    Fried, H.M.; Kang, K.; McKellar, B.H.J.

    1983-01-01

    A new technique for the construction of N-body Coulomb scattering amplitudes is proposed, suggested by the simplest case of N = 2: Calculate the scattering amplitude in eikonal approximation, discard the infinite phase factors which appear upon taking the limit of a Coulomb potential, and treat the remainder as an amplitude whose absolute value squared produces the exact, Coulomb differential cross section. The method easily generalizes to the N-body Coulomb problem for elastic scattering, and for inelastic rearrangement scattering of Coulomb bound states. We give explicit results for N = 3 and 4; in the N = 3 case we extract amplitudes for the processes (12)+3->1+2+3 (breakup), (12)+3->1+(23) (rearrangement), and (12)+3→(12)'+3 (inelastic scattering) as residues at the appropriate poles in the free-free amplitude. The method produces scattering amplitudes f/sub N/ given in terms of explicit quadratures over (N-2) 2 distinct integrands

  3. Scattering process in the Scalar Duffin-Kemmer-Petiau gauge theory

    International Nuclear Information System (INIS)

    Beltran, J; M Pimentel, B; E Soto, D

    2016-01-01

    In this work we calculate the cross section of the scattering process of the Duffin-Kemmer-Petiau theory coupling with the Maxwell’s electromagnetic field. Specifically, we find the propagator of the free theory, the scattering amplitudes and cross sections at Born level for the Moeller and Compton scattering process of this model. For this purpose we use the analytic representation for free propagators and take account the framework of the Causal Perturbation Theory of Epstein and Glaser. (paper)

  4. Conformal bootstrap, universality and gravitational scattering

    Directory of Open Access Journals (Sweden)

    Steven Jackson

    2015-12-01

    Full Text Available We use the conformal bootstrap equations to study the non-perturbative gravitational scattering between infalling and outgoing particles in the vicinity of a black hole horizon in AdS. We focus on irrational 2D CFTs with large c and only Virasoro symmetry. The scattering process is described by the matrix element of two light operators (particles between two heavy states (BTZ black holes. We find that the operator algebra in this regime is (i universal and identical to that of Liouville CFT, and (ii takes the form of an exchange algebra, specified by an R-matrix that exactly matches the scattering amplitude of 2+1 gravity. The R-matrix is given by a quantum 6j-symbol and the scattering phase by the volume of a hyperbolic tetrahedron. We comment on the relevance of our results to scrambling and the holographic reconstruction of the bulk physics near black hole horizons.

  5. Scattering Amplitudes via Algebraic Geometry Methods

    CERN Document Server

    Søgaard, Mads; Damgaard, Poul Henrik

    This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of ...

  6. Nonelastic electron scattering in mercury telluride

    CERN Document Server

    Malik, O P

    2002-01-01

    By exact solution of the Boltzmann equation, the nonequilibrium charge carrier distribution function is obtained. In the temperature range 4.2 - 300 K, main electron scattering mechanisms are considered by taking into account the nonelastic electron interaction with optical vibrations of the crystal lattice.

  7. Low-energy theorems for Compton scattering up to order e/sup 4/. [Scattering amplitudes dispersion relations

    Energy Technology Data Exchange (ETDEWEB)

    Pippig, G

    1975-01-01

    Taking the Compton scattering of pions and deuterons as an example it is shown that low-energy theorems which are valid for the order e/sup 2/ are also valid for the next higher order of electromagnetic interactions. The imaginary component of the scattering amplitude was exactly calculated for the energy of incident photons in the order e/sup 4/ up to the desired one, whereas the real component was obtained from dispersion relations. It is proved that the results derived from the dispersion theory of strong interactions are equivalent to those obtained from quantum electrodynamics for spin 0 and spin 1, respectively.

  8. Scattering of strongly absorbed particles near the Coulomb barrier

    International Nuclear Information System (INIS)

    Fernandez, B.

    1979-01-01

    The elastic scattering of strongly absorbed particles near the Coulomb barrier is sensitive to one size parameter, which is the distance at which the real nuclear potential has some fixed value, 0.2 MeV for α-particle, 1 MeV for 16 O. This size parameter can be related in a simple way to the radial distance of the target nucleus where the density takes some given value, 2x10 -3 nucleon /fm 3 for α-particle scattering and 5x10 -3 nucleon/fm 3 for 16 O scattering

  9. DETERMINING THE FEATURES OF SPORTSWEAR TAKING PLACE IN FAST FASHION COLLECTIONS

    OpenAIRE

    ÇİLEROĞLU, Birsen; KIVILCIMLAR, İnci

    2015-01-01

    Sports occupies the first place among most siginificant factors increasing quality of life. It has become difficult to allocate proper time for sports in the course of heavy work pace and flow of life. Such circumstances have led people to increase minor sport activities which could be done during short times allocated from daily living, thus, orienting people’s clothing preference towards sportswear. The feeling of easiness and comfort sportswear offer to individuals enhances further such pr...

  10. Channel modelling and performance analysis of V2I communication systems in blind bend scattering environments

    KAUST Repository

    Chelli, Ali; Hamdi, Rami; Alouini, Mohamed-Slim

    2014-01-01

    In this paper, we derive a new geometrical blind bend scattering model for vehicle-to- infrastructure (V2I) communications. The proposed model takes into account single-bounce and double- bounce scattering stemming from fixed scatterers located

  11. Effective exchange potentials for electronically inelastic scattering

    International Nuclear Information System (INIS)

    Schwenke, D.W.; Staszewska, G.; Truhlar, D.G.

    1983-01-01

    We propose new methods for solving the electron scattering close coupling equations employing equivalent local exchange potentials in place of the continuum-multiconfiguration-Hartree--Fock-type exchange kernels. The local exchange potentials are Hermitian. They have the correct symmetry for any symmetries of excited electronic states included in the close coupling expansion, and they have the same limit at very high energy as previously employed exchange potentials. Comparison of numerical calculations employing the new exchange potentials with the results obtained with the standard nonlocal exchange kernels shows that the new exchange potentials are more accurate than the local exchange approximations previously available for electronically inelastic scattering. We anticipate that the new approximations will be most useful for intermediate-energy electronically inelastic electron--molecule scattering

  12. Anisotropic scattering in three dimensional differential approximation of radiation heat transfer

    International Nuclear Information System (INIS)

    Condiff, D.W.

    1987-01-01

    The differential approximation is extended to account for anisotropic scattering in invariant three dimensional form. A moment method using polyadic Legendre functions establishes that pressure cross sections should take precedence over extinction cross sections for treating radiation heat transfer in an absorbing, emitting, and scattering medium, and that use of these cross sections accounts for the extent of preferred forward or backwards scattering. The procedure and principle is extended to polyadic P-N approximations

  13. Enacting a Place-Responsive Research Methodology: Walking Interviews with Educators

    Science.gov (United States)

    Lynch, Jonathan; Mannion, Greg

    2016-01-01

    Place-based and place-responsive approaches to outdoor learning and education are developing in many countries but there is dearth of theoretically-supported methodologies to take a more explicit account of place in research in these areas. In response, this article outlines one theoretical framing for place-responsive methodologies for…

  14. Using Critical Path Analysis (CPA) in Place Marketing process

    OpenAIRE

    Metaxas, Theodore; Deffner, Alex

    2013-01-01

    The article awards the use of CPA as a methodological tool in Place Marketing implementation. Taking into account that Place Marketing is a strategic process based on ‘project’ meaning with particular actions in specific time horizon, the article proposed that CPΑ has the capacity to satisfy this hypothesis. For this reason, the article creates a hypothetical scenario of CPA in four phases, planning, programming, implementation and feedback, taking as a case study the city of Rostock in Germa...

  15. Problems in the links between scattering data and interaction potentials

    Energy Technology Data Exchange (ETDEWEB)

    Amos, K.

    1995-10-01

    The scattering function is of paramount importance in any approaches by which quantitative information on the interaction between colliding quantal systems of nuclear, atomic or molecular type, may be sought from measured, elastic scattering data. Therein there are two possible spectral parameters, the energy and the angular momentum. Most experimental results suggest use of fixed energy and variable angular momentum schemes. Such fixed energy data and their analyses are the subject of this report, with particular emphasis placed upon the problems of the link between data and the scattering function. 18 figs.

  16. Problems in the links between scattering data and interaction potentials

    International Nuclear Information System (INIS)

    Amos, K.

    1995-01-01

    The scattering function is of paramount importance in any approaches by which quantitative information on the interaction between colliding quantal systems of nuclear, atomic or molecular type, may be sought from measured, elastic scattering data. Therein there are two possible spectral parameters, the energy and the angular momentum. Most experimental results suggest use of fixed energy and variable angular momentum schemes. Such fixed energy data and their analyses are the subject of this report, with particular emphasis placed upon the problems of the link between data and the scattering function. 18 figs

  17. The scattering of a cylindrical invisibility cloak: reduced parameters and optimization

    International Nuclear Information System (INIS)

    Peng, L; Mortensen, N A; Ran, L

    2011-01-01

    We investigate the scattering of 2D cylindrical invisibility cloaks with simplified constitutive parameters with the assistance of scattering coefficients. We show that the scattering of the cloaks originates not only from the boundary conditions but also from the spatial variation of the component of permittivity/permeability. According to our formulation, we propose some restrictions to the invisibility cloak in order to minimize its scattering after the simplification has taken place. With our theoretical analysis, it is possible to design a simplified cloak using some peculiar composites such as photonic crystals which mimic an effective refractive index landscape rather than offering effective constitutives, meanwhile cancelling the scattering from the inner and outer boundaries.

  18. Key European Grid event to take place in Geneva

    CERN Multimedia

    2006-01-01

    EGEE'06 is the main conference of the EGEE project, which is co-funded by the European Union and hosted by CERN. More than 90 partners all over Europe and beyond are working together in EGEE to provide researchers in both academia and industry with access to major computing resources, independent of their geographic location. The largest user community of the EGEE Grid is the High-Energy Physics community and in particular the LHC experiments, which are already making heavy use of the infrastructure to prepare for data taking. However, with the many new challenges faced by EGEE in its second phase that started in April this year, an even broader audience than at previous EGEE conferences is expected. In particular, a large number of related Grid projects will feature prominently in both plenary and parallel sessions during the 5 days of this event. Industry will also be well represented, highlighting the EGEE project's commitment to technology transfer to industry. CERN is the host of the conference, which i...

  19. Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes

    International Nuclear Information System (INIS)

    Binzoni, T; Leung, T S; Ruefenacht, D; Delpy, D T

    2006-01-01

    Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware

  20. Resonance electronic Raman scattering in rare earth crystals

    International Nuclear Information System (INIS)

    Williams, G.M.

    1988-01-01

    The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce 3+ (4f 1 ) in single crystals of LuPO 4 and Er 3+ (4f 11 ) in single crystals of ErPO 4 . 134 refs., 92 figs., 33 tabs

  1. Elastic π-d scattering at momentum of 552 MeV/c

    International Nuclear Information System (INIS)

    Dakhno, L.G.; Kravtsov, A.V.; Makarov, M.M.; Medvedev, V.I.; Obrant, G.Z.; Poromov, V.I.; Sarantsev, V.V.; Sokolov, G.L.; Sherman, S.G.

    1980-01-01

    The differential cross-section of the elastic π - d-scattering at the momentum of 552 MeV/c has been measured in the range of angles 20-180 deg in the L.s. by a deuterium 35-cm bubble chamber placed in a 14.8 kgf magnetic field. The total cross section of the elastic scattering is 7.9+-0.7 mbn. The results of calculations of the pion elastic scattering by deuteron performed by the Glauber theory are discussed

  2. Thermal evolution of the CO stretching band in carboxy-myoglobin in the light of neutron scattering and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cordone, Lorenzo [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo and CNISM, Via Archirafi 36, I-90123 Palermo (Italy)], E-mail: cordone@fisica.unipa.it; Cottone, Grazia; Giuffrida, Sergio; Librizzi, Fabio [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo and CNISM, Via Archirafi 36, I-90123 Palermo (Italy)

    2008-04-18

    As it is well known, the thermal behaviour of the CO stretching band in MbCO reflects the interconversion among protein's taxonomic and lower tier substates. We compare here FTIR data on the thermal behaviour of the CO stretching band in MbCO embedded in non-liquid, water-trehalose matrixes, and neutron scattering data on dry and hydrated proteins and nucleic acids. The comparison, also in the light of simulative data, gives relevant information on the relationship between the mean square displacements of hydrogen atoms and the heme pocket thermal rearrangements in MbCO, as experienced by the bound CO, in the temperature region 100-200 K, and at higher temperature when large scale protein motions take place, following the so-called dynamic transition. The reported results point out how FTIR is a useful tool to study the protein internal dynamics, and complement information from neutron scattering measurements.

  3. Effects of scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmakov, D.

    1983-01-01

    Expansion of the scattering cross sections into Legendre series is the usual way of solving neutron transport problems. Because of the large space gradients of the neutron flux, the effects of that approximation become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account the scattering anisotropy is presented. From the point od view of the accuracy and computing rate, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations. (author)

  4. Experiencing the enchantment of place and mobility

    DEFF Research Database (Denmark)

    Bærenholdt, Jørgen Ole

    2016-01-01

    in several layers of reality. To better understand experiences taking place in intersections between realities, J.R.R. Tolkien’s concept of how real enchantment produces a Secondary World suggests that we see fantasy as real, and this proposition is compared to Georg Simmel’s more modernist suggestion......Experiences of place and mobility play central roles not only in what was traditionally understood as tourism, but also in the broader practices of travelling and visiting sites and sights. On the one hand, such experiences are performed to an extent where it is difficult to isolate the sites...... and movements experienced per se, since visitors and travellers take part in ‘doing’ places and mobility. On the other, experience sites and routes stand out with specific traces and characteristics affording some – and not other – experiences. This paper discusses conceptual understandings that may help...

  5. Effects of multiple scattering on radiative properties of soot fractal aggregates

    International Nuclear Information System (INIS)

    Yon, Jérôme; Liu, Fengshan; Bescond, Alexandre; Caumont-Prim, Chloé; Rozé, Claude; Ouf, François-Xavier; Coppalle, Alexis

    2014-01-01

    The in situ optical characterization of smokes composed of soot particles relies on light extinction, angular static light scattering (SLS), or laser induced incandescence (LII). These measurements are usually interpreted by using the Rayleigh–Debye–Gans theory for Fractal Aggregates (RDG-FA). RDG-FA is simple to use but it completely neglects the impact of multiple scattering (MS) within soot aggregates. In this paper, based on a scaling approach that takes into account MS effects, an extended form of the RDG-FA theory is proposed in order to take into account these effects. The parameters of this extended theory and their dependency on the number of primary sphere inside the aggregate (1 p <1006) and on the wavelength (266nm<λ<1064nm) are evaluated thanks to rigorous calculations based on discrete dipole approximation (DDA) and generalized multi-sphere Mie-solution (GMM) calculations. This study shows that size determination by SLS is not distorted by MS effect. On the contrary, it is shown that fractal dimension can be misinterpreted by light scattering experiments, especially at short wavelengths. MS effects should be taken into account for the interpretation of absorption measurements that are involved in LII or extinction measurements. -- Highlights: • We incorporate multiple scattering effects in a scaling approach for fractal aggregates. • A generalized structure factor is introduced for implementation in RDG-FA theory. • Forward scattering is affected by multiple scattering as well as power law regime. • Absorption cross sections are affected by multiple scattering. • Absorption cross sections are 11% higher than that for forward scattering

  6. Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings

    Science.gov (United States)

    Chen, X. W.; Zhao, C. Y.; Wang, B. X.

    2018-05-01

    Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.

  7. Hyper-local, directions-based ranking of places

    DEFF Research Database (Denmark)

    Venetis, Petros; Gonzalez, Hector; Jensen, Christian S.

    2011-01-01

    they are numerous and contain precise locations. Specifically, the paper proposes a framework that takes a user location and a collection of near-by places as arguments, producing a ranking of the places. The framework enables a range of aspects of directions queries to be exploited for the ranking of places......, including the frequency with which places have been referred to in directions queries. Next, the paper proposes an algorithm and accompanying data structures capable of ranking places in response to hyper-local web queries. Finally, an empirical study with very large directions query logs offers insight...... into the potential of directions queries for the ranking of places and suggests that the proposed algorithm is suitable for use in real web search engines....

  8. Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe

    International Nuclear Information System (INIS)

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

    2012-01-01

    (SMS). However, to place these two techniques into some perspective with respect to other methods that yield related information, they display their version of a frequently used map of momentum and energy transfer diagram in figure 17.1. Here, various probes like electrons, neutrons, or light, i.e., Brillouin or Raman, and relatively newer forms of X-ray scattering are placed according to their range of energy and momentum transfer taking place during the measurements. Accordingly, NRIXS is a method that needs to be considered as a complementary probe to inelastic neutron and X-ray scattering, while SMS occupies a unique space due to its sensitivity to magnetism, structural deformations, valence, and spin states.

  9. Size, flexibility, and scattering functions of semiflexible polyelectrolytes with excluded volume effects: Monte Carlo simulations and neutron scattering experiments

    DEFF Research Database (Denmark)

    Cannavacciuolo, L.; Sommer, C.; Pedersen, J.S.

    2000-01-01

    outlined in the Odijk-Skolnick-Fixman theory, in which the behavior of charged polymers is described only in terms of increasing local rigidity and excluded volume effects. Moreover, the Monte Carlo data are found to be in very good agreement with experimental scattering measurements with equilibrium......We present a systematic Monte Carlo study of the scattering function S(q) of semiflexible polyelectrolytes at infinite dilution, in solutions with different concentrations of added salt. In the spirit of a theoretical description of polyelectrolytes in terms of the equivalent parameters, namely......, persistence length and excluded volume interactions, we used a modified wormlike chain model, in which the monomers are represented by charged hard spheres placed at distance a. The electrostatic interactions are approximated by a Debye-Huckel potential. We show that the scattering function is quantitatively...

  10. Beyond stereotypes of adolescent risk taking: Placing the adolescent brain in developmental context

    Directory of Open Access Journals (Sweden)

    Daniel Romer

    2017-10-01

    Full Text Available Recent neuroscience models of adolescent brain development attribute the morbidity and mortality of this period to structural and functional imbalances between more fully developed limbic regions that subserve reward and emotion as opposed to those that enable cognitive control. We challenge this interpretation of adolescent development by distinguishing risk-taking that peaks during adolescence (sensation seeking and impulsive action from risk taking that declines monotonically from childhood to adulthood (impulsive choice and other decisions under known risk. Sensation seeking is primarily motivated by exploration of the environment under ambiguous risk contexts, while impulsive action, which is likely to be maladaptive, is more characteristic of a subset of youth with weak control over limbic motivation. Risk taking that declines monotonically from childhood to adulthood occurs primarily under conditions of known risks and reflects increases in executive function as well as aversion to risk based on increases in gist-based reasoning. We propose an alternative Life-span Wisdom Model that highlights the importance of experience gained through exploration during adolescence. We propose, therefore, that brain models that recognize the adaptive roles that cognition and experience play during adolescence provide a more complete and helpful picture of this period of development.

  11. Reduction of the scattered radiation during X-ray examination with screen-film systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V N; Stavitsky, R V [Moscow Research Inst. for Roentgenology and Radiology, Moscow (Russian Federation); Oshomkov, Yu V [Mosroentgen, Moscow Region (Russian Federation)

    1993-01-01

    In diagnostic radiography, during X-ray examination, photons scattered in the patient's body are detected by the intensifying screen and decrease the image contrast. A conventional way to avoid this image degradation is to attenuate the scattered radiation by an antiscatter grid placed between the patient's body and the screen. A grid selectivity effect originates from the greater attenuation of scattered as opposed to primary radiation. Previous authors calculated the primary and scattered radiation transmission factor of photons with initial energy 30-120 keV for a number of typical grids. The primary radiation transmission factor varied from 0.34 to 0.67 and the secondary radiation factor was equal from 0.03 to 0.13. This effect results in a contrast improvement from 2 to 6, but the patient exposure increases up to a factor of 10. In this work we studied the possibility of improving the image contrast by attenuating the scattered radiation by a secondary filter placed between the patient's body and the screen and made of an appropriate material. A selectivity effect due to the secondary filter arises from two circumstances. First, tilting incidence of the scattered radiation results in the path inside the filter being greater than the primary one. Second, the average energy of the scattered radiation is less than the primary and, hence, the attenuation coefficient is greater. (author).

  12. The Aharonov–Bohm effect in scattering theory

    International Nuclear Information System (INIS)

    Sitenko, Yu.A.; Vlasii, N.D.

    2013-01-01

    The Aharonov–Bohm effect is considered as a scattering event with nonrelativistic charged particles of the wavelength which is less than the transverse size of an impenetrable magnetic vortex. The quasiclassical WKB method is shown to be efficient in solving this scattering problem. We find that the scattering cross section consists of two terms, one describing the classical phenomenon of elastic reflection and another one describing the quantum phenomenon of diffraction; the Aharonov–Bohm effect is manifested as a fringe shift in the diffraction pattern. Both the classical and the quantum phenomena are independent of the choice of a boundary condition at the vortex edge, providing that probability is conserved. We show that a propagation of charged particles can be controlled by altering the flux of a magnetic vortex placed on their way. -- Highlights: •Aharonov–Bohm effect as a scattering event. •Impenetrable magnetic vortex of nonzero transverse size. •Scattering cross section is independent of a self-adjoint extension employed. •Classical phenomenon of elastic reflection and quantum phenomenon of diffraction. •Aharonov–Bohm effect as a fringe shift in the diffraction pattern

  13. Enhanced ionized impurity scattering in nanowires

    Science.gov (United States)

    Oh, Jung Hyun; Lee, Seok-Hee; Shin, Mincheol

    2013-06-01

    The electronic resistivity in silicon nanowires is investigated by taking into account scattering as well as the donor deactivation from the dielectric mismatch. The effects of poorly screened dopant atoms from the dielectric mismatch and variable carrier density in nanowires are found to play a crucial role in determining the nanowire resistivity. Using Green's function method within the self-consistent Born approximation, it is shown that donor deactivation and ionized impurity scattering combined with the charged interface traps successfully to explain the increase in the resistivity of Si nanowires while reducing the radius, measured by Björk et al. [Nature Nanotech. 4, 103 (2009)].

  14. Inelastic electron scattering influence on the strong coupling oxide superconductors

    International Nuclear Information System (INIS)

    Gabovich, A.M.; Voitenko, A.I.

    1995-01-01

    The superconducting order parameters Δ and energy gap Δ g are calculated taking into account the pair-breaking inelastic quasiparticle scattering by thermal Bose-excitations, e.g., phonons. The treatment is self-consistent because the scattering amplitude depends on Δ. The superconducting transition for any strength of the inelastic scattering is the phase transition of the first kind and the dependences Δ (T) and Δ g (T) tend to rectangular curve that agrees well with the experiment for high-Tc oxides. On the basis of the developed theory the nuclear spin-lattice relaxation rate R s in the superconducting state is calculated. The Hebel-Slichter peak in R s (T) is shown to disappear for strong enough inelastic scattering

  15. Correlation expansion: a powerful alternative multiple scattering calculation method

    International Nuclear Information System (INIS)

    Zhao Haifeng; Wu Ziyu; Sebilleau, Didier

    2008-01-01

    We introduce a powerful alternative expansion method to perform multiple scattering calculations. In contrast to standard MS series expansion, where the scattering contributions are grouped in terms of scattering order and may diverge in the low energy region, this expansion, called correlation expansion, partitions the scattering process into contributions from different small atom groups and converges at all energies. It converges faster than MS series expansion when the latter is convergent. Furthermore, it takes less memory than the full MS method so it can be used in the near edge region without any divergence problem, even for large clusters. The correlation expansion framework we derive here is very general and can serve to calculate all the elements of the scattering path operator matrix. Photoelectron diffraction calculations in a cluster containing 23 atoms are presented to test the method and compare it to full MS and standard MS series expansion

  16. Transmittance and scattering during wound healing after refractive surgery

    Science.gov (United States)

    Mar, Santiago; Martinez-Garcia, C.; Blanco, J. T.; Torres, R. M.; Gonzalez, V. R.; Najera, S.; Rodriguez, G.; Merayo, J. M.

    2004-10-01

    Photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK) are frequent techniques performed to correct ametropia. Both methods have been compared in their way of healing but there is not comparison about transmittance and light scattering during this process. Scattering in corneal wound healing is due to three parameters: cellular size and density, and the size of scar. Increase in the scattering angular width implies a decrease the contrast sensitivity. During wound healing keratocytes activation is induced and these cells become into fibroblasts and myofibroblasts. Hens were operated using PRK and LASIK techniques. Animals used in this experiment were euthanized, and immediately their corneas were removed and placed carefully into a cornea camera support. All optical measurements have been done with a scatterometer constructed in our laboratory. Scattering measurements are correlated with the transmittance -- the smaller transmittance is the bigger scattering is. The aim of this work is to provide experimental data of the corneal transparency and scattering, in order to supply data that they allow generate a more complete model of the corneal transparency.

  17. Atmospheric scattering corrections to solar radiometry

    International Nuclear Information System (INIS)

    Box, M.A.; Deepak, A.

    1979-01-01

    Whenever a solar radiometer is used to measure direct solar radiation, some diffuse sky radiation invariably enters the detector's field of view along with the direct beam. Therefore, the atmospheric optical depth obtained by the use of Bouguer's transmission law (also called Beer-Lambert's law), that is valid only for direct radiation, needs to be corrected by taking account of the scattered radiation. In this paper we shall discuss the correction factors needed to account for the diffuse (i.e., singly and multiply scattered) radiation and the algorithms developed for retrieving aerosol size distribution from such measurements. For a radiometer with a small field of view (half-cone angle 0 ) and relatively clear skies (optical depths <0.4), it is shown that the total diffuse contributions represents approximately l% of the total intensity. It is assumed here that the main contributions to the diffuse radiation within the detector's view cone are due to single scattering by molecules and aerosols and multiple scattering by molecules alone, aerosol multiple scattering contributions being treated as negligibly small. The theory and the numerical results discussed in this paper will be helpful not only in making corrections to the measured optical depth data but also in designing improved solar radiometers

  18. Matter scattering in quadratic gravity and unitarity

    Science.gov (United States)

    Abe, Yugo; Inami, Takeo; Izumi, Keisuke; Kitamura, Tomotaka

    2018-03-01

    We investigate the ultraviolet (UV) behavior of two-scalar elastic scattering with graviton exchanges in higher-curvature gravity theory. In Einstein gravity, matter scattering is shown not to satisfy the unitarity bound at tree level at high energy. Among some of the possible directions for the UV completion of Einstein gravity, such as string theory, modified gravity, and inclusion of high-mass/high-spin states, we take R_{μν}^2 gravity coupled to matter. We show that matter scattering with graviton interactions satisfies the unitarity bound at high energy, even with negative norm states due to the higher-order derivatives of metric components. The difference in the unitarity property of these two gravity theories is probably connected to that in another UV property, namely, the renormalizability property of the two.

  19. The basic physics of neutron scattering experiments

    International Nuclear Information System (INIS)

    Mezei, F.

    1999-01-01

    The basic physical principles behind the well-established but also developing practice of neutron scattering experiments are presented. A few examples are given either to illustrate the physical principles or to give an idea of the variety, importance or magnitude of various phenomena. The evolution of neutron scattering experimental techniques is investigated from a special aspect: the increasing capability of taking into account more and more important and sometimes decisive finer details by using more and more realistic mathematical models of the evolution of the neutrons from birth do death, eventually passing by the sample and being scattered more than one times. Working with such numerical 'virtual instruments' one will have to go far beyond notions like resolution function, convolution etc, and actually eliminate a large number of approximations currently in use. (K.A.)

  20. On determination of the dynamics of hydrocarbon molecules on catalyst's surfaces by means of neutron scattering

    International Nuclear Information System (INIS)

    Stockmeyer, R.

    1976-01-01

    The intensity distribution of slow neutrons scattered by adsorbed hydrocarbon molecules contains information on the dynamics of the molecules. In this paper the scattering law for incoherently scattering molecules is derived taking into account the very different mobility perpendicular and parallel to the surface. In contrast to the well known scattering law of threedimensionally diffusing particles the scattering law for twodimensional diffusion diverges logarithmically at zero energy transfer. Conclusions relevant to the interpretation of neutron scattering data are discussed. (orig.) [de

  1. Brand new authentic places

    DEFF Research Database (Denmark)

    Stender, Marie

    the relation and interplay between the two. This study strives to fill this gap by ethnographically tracing the process from design to occupancy including the role of branding as a means to create authenticity. The concept of authenticity is often associated with old houses and neighbourhoods, but also in new......How are places and material surroundings ascribed with meaning when new residential neighbourhoods are designed, branded and taken into use? Existing research on housing, neighbourhoods and urban design tends to take the perspective of either the architect or the user rather than to explore...... neighbourhoods stories of authenticity seems to be of great importance giving value and identity to place and people. By way of design and branding new places are implied with notions of the real, the original and the unique referring to e.g. its historical past, architectural uniqueness, sustainability or sense...

  2. Vector Boson Scattering at ATLAS

    CERN Document Server

    Ozcan, V E

    2009-01-01

    While the Higgs model is the best studied scenario of electroweak symmetry breaking, there is no fundamental reason for the physics responsible for the symmetry breaking to be weakly-coupled. Many alternatives exist, predicting highly model-dependent signatures. By measuring the cross-section for the W and Z scattering at the LHC, it will be possible to obtain model-independent evidence for strong symmetry breaking or to constrain these various models. ATLAS Collaboration has recently performed a realistic simulation of this process and its backgrounds, which takes into account the detector effects and has developed new jet-analysis techniques for identifying vector bosons within the immense QCD backgrounds expected at the LHC. These techniques and the prospects for measuring the scattering signal will be presented.

  3. Vector Boson Scattering at ATLAS

    CERN Document Server

    Ozcan, V E

    2008-01-01

    While the Higgs model is the best studied scenario of electroweak symmetry breaking, there is no fundamental reason for the physics responsible for the symmetry breaking to be weakly-coupled. Many alternatives exist, predicting highly model-dependent signatures. By measuring the cross-section for the W and Z scattering at the LHC, it will be possible to obtain model-independent evidence for strong symmetry breaking or to constrain these various models. ATLAS Collaboration has recently performed a realistic simulation of this process and its backgrounds, which takes into account the detector effects and has developed new jet-analysis techniques for identifying vector bosons within the immense QCD backgrounds expected at the LHC. These techniques and the prospects for measuring the scattering signal will be presented.

  4. Subsurface Scattering-Based Object Rendering Techniques for Real-Time Smartphone Games

    Directory of Open Access Journals (Sweden)

    Won-Sun Lee

    2014-01-01

    Full Text Available Subsurface scattering that simulates the path of a light through the material in a scene is one of the advanced rendering techniques in the field of computer graphics society. Since it takes a number of long operations, it cannot be easily implemented in real-time smartphone games. In this paper, we propose a subsurface scattering-based object rendering technique that is optimized for smartphone games. We employ our subsurface scattering method that is utilized for a real-time smartphone game. And an example game is designed to validate how the proposed method can be operated seamlessly in real time. Finally, we show the comparison results between bidirectional reflectance distribution function, bidirectional scattering distribution function, and our proposed subsurface scattering method on a smartphone game.

  5. Study of Cr52 and Ca40 nuclei by electron scattering

    International Nuclear Information System (INIS)

    Blum, Daniel

    1966-01-01

    As high energy electron scattering is a powerful mean to study nuclear structure, this research thesis first reports and comments results obtained while taking the Born approximation into account, and which are useful to interpret electron scattering experiments. The author describes how nucleus charge distribution parameters are obtained from these results of elastic scattering, and then addresses the case of inelastic scattering. Three nuclear models are presented. Then, after a brief presentation of the characteristics of the experimental installation, the author describes how raw results are processed to obtain cross sections, and discusses errors. The last parts address the study of chromium 52 and calcium 40 nuclei

  6. P-TYPE PLANET–PLANET SCATTERING: KEPLER CLOSE BINARY CONFIGURATIONS

    International Nuclear Information System (INIS)

    Gong, Yan-Xiang

    2017-01-01

    A hydrodynamical simulation shows that a circumbinary planet will migrate inward to the edge of the disk cavity. If multiple planets form in a circumbinary disk, successive migration will lead to planet–planet scattering (PPS). PPS of Kepler -like circumbinary planets is discussed in this paper. The aim of this paper is to answer how PPS affects the formation of these planets. We find that a close binary has a significant influence on the scattering process. If PPS occurs near the unstable boundary of a binary, about 10% of the systems can be completely destroyed after PPS. In more than 90% of the systems, there is only one planet left. Unlike the eccentricity distribution produced by PPS in a single star system, the surviving planets generally have low eccentricities if PPS take place near the location of the currently found circumbinary planets. In addition, the ejected planets are generally the innermost of two initial planets. The above results depend on the initial positions of the two planets. If the initial positions of the planets are moved away from the binary, the evolution tends toward statistics similar to those around single stars. In this process, the competition between the planet–planet force and the planet-binary force makes the eccentricity distribution of surviving planets diverse. These new features of P-type PPS will deepen our understanding of the formation of these circumbinary planets.

  7. Elastic neutron diffuse scattering in Zr(Ca, Y)O2-x

    International Nuclear Information System (INIS)

    Barberis, P.; Beuneu, B.; Novion, C.H. de.

    1990-01-01

    Elastic neutron diffuse scattering has been measured in cubic Zr(Ca, Y)O 2-x at room temperature. The very high diffuse scattering (up to 70 Laue) is explained mostly by the oxygen displacements along directions, and by Ca displacements along . The weak short-range order contribution strongly suggests that oxygen vacancies tend to place as second rather than at first neighbours of a Ca stabilizing ion

  8. Computation of the intensities of parametric holographic scattering patterns in photorefractive crystals.

    Science.gov (United States)

    Schwalenberg, Simon

    2005-06-01

    The present work represents a first attempt to perform computations of output intensity distributions for different parametric holographic scattering patterns. Based on the model for parametric four-wave mixing processes in photorefractive crystals and taking into account realistic material properties, we present computed images of selected scattering patterns. We compare these calculated light distributions to the corresponding experimental observations. Our analysis is especially devoted to dark scattering patterns as they make high demands on the underlying model.

  9. Generalized theory of resonance excitation by sound scattering from an elastic spherical shell in a nonviscous fluid.

    Science.gov (United States)

    Mitri, Farid G

    2012-08-01

    This work presents the general theory of resonance scattering (GTRS) by an elastic spherical shell immersed in a nonviscous fluid and placed arbitrarily in an acoustic beam. The GTRS formulation is valid for a spherical shell of any size and material regardless of its location relative to the incident beam. It is shown here that the scattering coefficients derived for a spherical shell immersed in water and placed in an arbitrary beam equal those obtained for plane wave incidence. Numerical examples for an elastic shell placed in the field of acoustical Bessel beams of different types, namely, a zero-order Bessel beam and first-order Bessel vortex and trigonometric (nonvortex) beams are provided. The scattered pressure is expressed using a generalized partial-wave series expansion involving the beam-shape coefficients (BSCs), the scattering coefficients of the spherical shell, and the half-cone angle of the beam. The BSCs are evaluated using the numerical discrete spherical harmonics transform (DSHT). The far-field acoustic resonance scattering directivity diagrams are calculated for an albuminoidal shell immersed in water and filled with perfluoropropane gas, by subtracting an appropriate background from the total far-field form function. The properties related to the arbitrary scattering are analyzed and discussed. The results are of particular importance in acoustical scattering applications involving imaging and beam-forming for transducer design. Moreover, the GTRS method can be applied to investigate the scattering of any beam of arbitrary shape that satisfies the source-free Helmholtz equation, and the method can be readily adapted to viscoelastic spherical shells or spheres.

  10. Incoherent quasielastic neutron scattering from plastic crystals

    International Nuclear Information System (INIS)

    Bee, M.; Amoureux, J.P.

    1980-01-01

    The aim of this paper is to present some applications of a method indicated by Sears in order to correct for multiple scattering. The calculations were performed in the particular case of slow neutron incoherent quasielastic scattering from organic plastic crystals. First, an exact calculation (up to second scattering) is compared with the results of a Monte Carlo simulation technique. Then, an approximation is developed on the basis of a rotational jump model which allows a further analytical treatment. The multiple scattering is expressed in terms of generalized structure factors (which can be regarded as self convolutions of first order structure factors taking into account the instrumental geometry) and lorentzian functions the widths of which are linear combinations of the jump rates. Three examples are given. Two of them correspond to powder samples while in the third we are concerned with the case of a single crystalline slab. In every case, this approximation is shown to be a good approach to the multiple scattering evaluation, its main advantage being the possibility of applying it without any preliminary knowledge of the correlation times for rotational jumps. (author)

  11. Parton distributions extracted from data on deep-inelastic lepton scattering, prompt photon production and the Drell-Yan process

    International Nuclear Information System (INIS)

    Harriman, P.N.; Martin, A.D.; Stirling, W.J.; Roberts, R.G.

    1990-01-01

    We present a next-to-leading-order QCD structure function analysis of deep-inelastic muon and neutrino scattering data. In particular, we incorporate new F 2 μn /F 2 μp data and take account of a recent re-analysis of SLAC data. The fit is performed simultaneously with next-to-leading-order fits to recent prompt photon and Drell-Yan data. As a result we are able to place tighter constraints on the quark and gluon distributions. Two definitive sets of parton distributions are presented according to which set of muon data is included in the global fit. Comparisons with distributions obtained in earlier analyses are made and the consistency of data sets is investigated. (author)

  12. Effects of the scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmarkov, D.

    1983-01-01

    Expansion of the scattering cross-sections into Legendre series is the usual way of solving the neutron transport problem. Because of the large space gradients of the neutron flux, the effects of that approximations become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account scattering anisotropy is presented. From the point of view of the accuracy and computing speed, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations (author) [sr

  13. Numerical solution of the multichannel scattering problem

    International Nuclear Information System (INIS)

    Korobov, V.I.

    1992-01-01

    A numerical algorithm for solving the multichannel elastic and inelastic scattering problem is proposed. The starting point is the system of radial Schroedinger equations with linear boundary conditions imposed at some point R=R m placed somewhere in asymptotic region. It is discussed how the obtained linear equation can be splitted into a zero-order operator and its pertturbative part. It is shown that Lentini - Pereyra variable order finite-difference method appears to be very suitable for solving that kind of problems. The derived procedure is applied to dμ+t→tμ+d inelastic scattering in the framework of the adiabatic multichannel approach. 19 refs.; 1 fig.; 1 tab

  14. Simulating measures of wood density through the surface by Compton scattering

    International Nuclear Information System (INIS)

    Penna, Rodrigo; Oliveira, Arno H.; Braga, Mario R.M.S.S.; Vasconcelos, Danilo C.; Carneiro, Clemente J.G.; Penna, Ariane G.C.

    2009-01-01

    Monte Carlo code (MCNP-4C) was used to simulate a nuclear densimeter for measuring wood densities nondestructively. An Americium source (E = 60 keV) and a NaI (Tl) detector were placed on a wood block surface. Results from MCNP shown that scattered photon fluxes may be used to determining wood densities. Linear regressions between scattered photons fluxes and wood density were calculated and shown correlation coefficients near unity. (author)

  15. Measurement of Scattering Cross Section with a Spectrophotometer with an Integrating Sphere Detector.

    Science.gov (United States)

    Gaigalas, A K; Wang, Lili; Karpiak, V; Zhang, Yu-Zhong; Choquette, Steven

    2012-01-01

    A commercial spectrometer with an integrating sphere (IS) detector was used to measure the scattering cross section of microspheres. Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal spectrometer position, and the second with the cuvette placed inside the IS, provided enough information to separate the contributions from scattering and molecular absorption. Measurements were carried out with microspheres with different diameters. The data was fitted with a model consisting of the difference of two terms. The first term was the Lorenz-Mie (L-M) cross section which modeled the total absorbance due to scattering. The second term was the integral of the L-M differential cross section over the detector acceptance angle. The second term estimated the amount of forward scattered light that entered the detector. A wavelength dependent index of refraction was used in the model. The agreement between the model and the data was good between 300 nm and 800 nm. The fits provided values for the microsphere diameter, the concentration, and the wavelength dependent index of refraction. For wavelengths less than 300 nm, the scattering cross section had significant spectral structure which was inversely related to the molecular absorption. This work addresses the measurement and interpretation of the scattering cross section for wavelengths between 300 nm and 800 nm.

  16. Effect of laser beam filamentation on plasma wave localization and stimulated Raman scattering

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Sharma, R. P.

    2013-01-01

    This paper presents the effect of laser beam filamentation on the localization of electron plasma wave (EPW) and stimulated Raman scattering (SRS) in unmagnitized plasma when both relativistic and ponderomotive nonlinearities are operative. The filamentary dynamics of laser beam is studied and the splitted profile of the laser beam is obtained due to uneven focusing of the off-axial rays. The localization of electron plasma wave takes place due to nonlinear coupling between the laser beam and EPW. Stimulated Raman scattering of this EPW is studied and backreflectivity has been calculated. The localization of EPW also affects the eigenfrequency and damping of plasma wave; consequently, mismatch and modified enhanced Landau damping lead to the disruption of SRS process and a substantial reduction in the backreflectivity. The new enhanced damping of the plasma wave has been calculated and it is found that the SRS process gets suppressed due to the localization of plasma wave in laser beam filamentary structures. For typical laser beam and plasma parameters with wavelength λ (=1064 nm), power flux (=10 16 W/cm 2 ) and plasma density (n/n cr ) = 0.2; the SRS back reflectivity is found to be suppressed by a factor of around 5%. (author)

  17. Management and communication courses – Places available

    CERN Multimedia

    2012-01-01

    There are places available in some management and communication courses taking place in the period January to March 2013.   For more information on the course, click on the course title, which will bring you to the training catalogue. You can then sign-up on-line. For advice, you can contact: Erwin Mosselmans, tel. 74125, erwin.mosselmans@cern.ch Nathalie Dumeaux, tel. 78144, nathalie.dumeaux@cern.ch Courses in English (or bilingual) Session Duration Language Availability How to get, as a supervisor, the most out of the annual interview 21 January 1 day English 2 places Project Engineering 24 and 25 January 2 days English 6 places How to get, as a supervisor, the most out of the annual interview 31 January 1 day English 6 places Conflict Resolution for Managers 19 and 20 February 2 days English One more place Project Scheduling & Costing 6 and 7 March 2 days English 2 places Communicati...

  18. Optical fibre probes in the measurement of scattered light ...

    Indian Academy of Sciences (India)

    2014-01-08

    Jan 8, 2014 ... light reflected/scattered/fluoresced from the sample containing the .... Turbidity of water, for example, is determined by the amount of particulate matter such as soil, sand, ... These packets take random steps whose step size.

  19. Management and communication courses – Places available

    CERN Multimedia

    2013-01-01

    There are places available in some management and communication courses taking place in the period April to June 2013.   For more information on the course, click on the course title, this will bring you to the training catalogue. You can then sign-up online. For advice, you can contact: - Erwin Mosselmans, tel. 74125, erwin.mosselmans@cern.ch - Nathalie Dumeaux, tel. 78144, nathalie.dumeaux@cern.ch Courses in English (or bilingual) Sessions Duration Language Availability Managing stress 29 and 30 May 2 days English 3 places Making Presentations 30, 31 May & 25 June 3 days English 2 places Communicating Effectively - Residential course 4 to 6 June 3 days Bilingual 9 places Handling difficult conversations (Adapted from Dealing with Conflict) 7 and 14 June and 13 September 3 days English 6 places Voice and Nonverbal Behaviour in Speech Communication 17 and 18 June 1 day 4 hours English 7 plac...

  20. Inclusive production of large-p/sub T/ protons and quark-quark elastic scattering

    International Nuclear Information System (INIS)

    Chen, C.K.

    1978-01-01

    A proton-formation process in combination with hard quark-quark scattering is capable of explaining the observed large-p/sub T/ single-proton inclusive production data. This model implies that the inclusive production of two large-p/sub T/ protons at opposite directions is dominated by large-angle elastic scattering of two up quarks, and becomes an ideal place to study elastic quark-quark scattering. This two-proton inclusive production process is also ideal for the study of the spin structure of quark-quark elastic scattering, so the assumptions of pure vector-type quark-quark interaction and of colored quarks can be checked empirically. The consistency of applying the quark-elastic-scattering idea to large-angle elastic proton-proton scattering and to the inclusive production of large-p/sub T/ protons is also demonstrated

  1. Tackling the take-or-pay problem

    International Nuclear Information System (INIS)

    Jackson, Kim.

    1997-01-01

    Centrica, the gas sales, trading and services company previously part of British Gas plc, has renegotiated a number of its take-or-pay contracts with North Sea gas producers since the end of 1996. The contracts - a legacy of the British Gas monopoly era - had placed an increasing financial burden on the company as it was effectively forced to pay above-market prices for gas which it did not always want to take, while trying to remain competitive in a market where an ever growing number of independent gas suppliers were offering low-cost supplies. The author looks at how Centrica has tackled its take-or-pay problem. (author)

  2. Where and How Do Aging Processes Take Place in Everyday Life? Answers From a New Materialist Perspective

    Directory of Open Access Journals (Sweden)

    Grit Höppner

    2018-04-01

    Full Text Available In the last decade, the focus of studies on age and aging has fundamentally changed from biological to symbolic, discursive, and cultural phenomena. Currently, the most studied topic in material gerontology is the materiality of age and aging in the context of everyday life. Scholars in this area have thus been making an important contribution to a material understanding of aging processes. As we understand them, however, both social constructivist and material gerontological concepts reach their limit when it comes to the questions of where and how aging processes actually take place in everyday life. In order to answer these two questions, we review social constructivist ideas with a particular focus on the “doing age” concept and material gerontological assumptions regarding human subjects, their material environments, and their relations. We then suggest rethinking bodily limitations and agencies addressed by scholars in the field of new materialism. The aim is to develop a new materialist-inspired understanding of aging processes that helps to reconstruct the material-discursive co-production of aging processes. These processes are deployed as mutual entanglements of materiality and meaning as well as of humans and non-human agency. This approach emphasizes the decentralization of the human actor and thus helps to map the material-discursive complexity of aging processes as relational co-products of humans and non-humans in everyday life.

  3. Coupling effects of giant resonances on the elastic and inelastic scattering of fast neutrons

    International Nuclear Information System (INIS)

    Delaroche, J.P.; Tornow, W.

    1983-01-01

    While the inelastic scattering of high energy hadrons is commonly used for the study of giant resonances in nuclei, it is just recently that one has thought to take into account these states in the analysis of proton scattering at low incident energies (E 0 and S 1 . (Auth.)

  4. Enhanced Scattering of Diffuse Ions on Front of the Earth's Quasi-Parallel Bow Shock: a Case Study

    Science.gov (United States)

    Kis, A.; Matsukiyo, S.; Otsuka, F.; Hada, T.; Lemperger, I.; Dandouras, I. S.; Barta, V.; Facsko, G. I.

    2017-12-01

    In the analysis we present a case study of three energetic upstream ion events at the Earth's quasi-parallel bow shock based on multi-spacecraft data recorded by Cluster. The CIS-HIA instrument onboard Cluster provides partial energetic ion densities in 4 energy channels between 10 and 32 keV.The difference of the partial ion densities recorded by the individual spacecraft at various distances from the bow shock surface makes possible the determination of the spatial gradient of energetic ions.Using the gradient values we determined the spatial profile of the energetic ion partial densities as a function of distance from the bow shock and we calculated the e-folding distance and the diffusion coefficient for each event and each ion energy range. Results show that in two cases the scattering of diffuse ions takes place in a normal way, as "by the book", and the e-folding distance and diffusion coefficient values are comparable with previous results. On the other hand, in the third case the e-folding distance and the diffusion coefficient values are significantly lower, which suggests that in this case the scattering process -and therefore the diffusive shock acceleration (DSA) mechanism also- is much more efficient. Our analysis provides an explanation for this "enhanced" scattering process recorded in the third case.

  5. Charge state of ions scattered by metal surface

    International Nuclear Information System (INIS)

    Kishinevsky, L.M.; Parilis, E.S.; Verleger, V.K.

    1976-01-01

    A model for description of charge distributions for scattering of heavy ions in the keV region, on metal surfaces developing and improving the method of Van der Weg and Bierman, and taking into account the connection between the ion charge state and scattering kinematics, is proposed. It is shown that multiple charged particles come from ions with a vacancy in the inner shell while the outer shell vacancies give only single charged ions and neutrals. The approximately linear increase of degree of ionization with normal velocity, and the non-monotonic charge dependence of the energy spectrum established by Chicherov and Buck et al is explained by considering irreversible neutralization in the depth of the metal, taking into account the connection of the charge state with the shape of trajectory and its location relative to the metal surface. The dependence of charge state on surface structure is discussed. Some new experiments are proposed. (author)

  6. Wigner representation in scattering problems

    International Nuclear Information System (INIS)

    Remler, E.A.

    1975-01-01

    The basic equations of quantum scattering are translated into the Wigner representation. This puts quantum mechanics in the form of a stochastic process in phase space. Instead of complex valued wavefunctions and transition matrices, one now works with real-valued probability distributions and source functions, objects more responsive to physical intuition. Aside from writing out certain necessary basic expressions, the main purpose is to develop and stress the interpretive picture associated with this representation and to derive results used in applications published elsewhere. The quasiclassical guise assumed by the formalism lends itself particularly to approximations of complex multiparticle scattering problems is laid. The foundation for a systematic application of statistical approximations to such problems. The form of the integral equation for scattering as well as its mulitple scattering expansion in this representation are derived. Since this formalism remains unchanged upon taking the classical limit, these results also constitute a general treatment of classical multiparticle collision theory. Quantum corrections to classical propogators are discussed briefly. The basic approximation used in the Monte Carlo method is derived in a fashion that allows for future refinement and includes bound state production. The close connection that must exist between inclusive production of a bound state and of its constituents is brought out in an especially graphic way by this formalism. In particular one can see how comparisons between such cross sections yield direct physical insight into relevant production mechanisms. A simple illustration of scattering by a bound two-body system is treated. Simple expressions for single- and double-scattering contributions to total and differential cross sections, as well as for all necessary shadow corrections thereto, are obtained and compared to previous results of Glauber and Goldberger

  7. Diffraction dissociation and elastic scattering

    International Nuclear Information System (INIS)

    Verebryusov, V.S.; Ponomarev, L.A.; Smorodinskaya, N.Ya.

    1987-01-01

    In the framework of Regge scheme with supercritical pomeron a model is suggested for the NN-scattering amplitude which takes into account the contribution introduced to the intermediate state by diffraction dissociation (DD) processes. The DD amplitude is written in terms of the Deck model which has been previously applied to describing the main DD features. The calculated NN cross sections are compared with those obtained experimentally. Theoretical predictions for higher energy are presented

  8. On the interplay between phonon-boundary scattering and phonon-point-defect scattering in SiGe thin films

    Science.gov (United States)

    Iskandar, A.; Abou-Khalil, A.; Kazan, M.; Kassem, W.; Volz, S.

    2015-03-01

    This paper provides theoretical understanding of the interplay between the scattering of phonons by the boundaries and point-defects in SiGe thin films. It also provides a tool for the design of SiGe-based high-efficiency thermoelectric devices. The contributions of the alloy composition, grain size, and film thickness to the phonon scattering rate are described by a model for the thermal conductivity based on the single-mode relaxation time approximation. The exact Boltzmann equation including spatial dependence of phonon distribution function is solved to yield an expression for the rate at which phonons scatter by the thin film boundaries in the presence of the other phonon scattering mechanisms. The rates at which phonons scatter via normal and resistive three-phonon processes are calculated by using perturbation theories with taking into account dispersion of confined acoustic phonons in a two dimensional structure. The vibrational parameters of the model are deduced from the dispersion of confined acoustic phonons as functions of temperature and crystallographic direction. The accuracy of the model is demonstrated with reference to recent experimental investigations regarding the thermal conductivity of single-crystal and polycrystalline SiGe films. The paper describes the strength of each of the phonon scattering mechanisms in the full temperature range. Furthermore, it predicts the alloy composition and film thickness that lead to minimum thermal conductivity in a single-crystal SiGe film, and the alloy composition and grain size that lead to minimum thermal conductivity in a polycrystalline SiGe film.

  9. Water dynamics as affected by interaction with biomolecules and change of thermodynamic state: a neutron scattering study

    International Nuclear Information System (INIS)

    Orecchini, A; Paciaroni, A; Petrillo, C; Sebastiani, F; Sacchetti, F; De Francesco, A

    2012-01-01

    The dynamics of water as subtly perturbed by both the interaction with biomolecules and the variation of temperature and pressure has been investigated via neutron scattering spectroscopy. A measurement of inelastic neutron scattering devoted to the study of the coherent THz dynamics of water in a water-rich mixture with DNA (hydration level of 1 g DNA/15 g D 2 O) at room temperature is reported. The DNA hydration water coherent dynamics is characterised by the presence of collective modes, whose dispersion relations are similar to those observed in bulk water. These dispersion relations are well described by the interaction model developed in the case of bulk water, and the existence of a fast sound is experimentally demonstrated. The behaviour of the collective water dynamics was complemented by studying the single-particle dynamics of bulk water along the isotherm T = 298 K in the pressure range 0.1-350 MPa by means of incoherent scattering. This experiment is an attempt to simulate the change of the water molecular arrangement due to the interaction with DNA, by increasing the pressure as the presence of the biomolecule produces an increase in the density. An anomaly is found in the behaviour of the relaxation time derived from the quasi-elastic scattering signal, which can be related to the hypothetical second critical point in water. This anomaly and the transition from slow to fast sound take place in the same Q range, thus suggesting that the two phenomena could be related at some microscopic level.

  10. Classical wave experiments on chaotic scattering

    International Nuclear Information System (INIS)

    Kuhl, U; Stoeckmann, H-J; Weaver, R

    2005-01-01

    We review recent research on the transport properties of classical waves through chaotic systems with special emphasis on microwaves and sound waves. Inasmuch as these experiments use antennas or transducers to couple waves into or out of the systems, scattering theory has to be applied for a quantitative interpretation of the measurements. Most experiments concentrate on tests of predictions from random matrix theory and the random plane wave approximation. In all studied examples a quantitative agreement between experiment and theory is achieved. To this end it is necessary, however, to take absorption and imperfect coupling into account, concepts that were ignored in most previous theoretical investigations. Classical phase space signatures of scattering are being examined in a small number of experiments

  11. SU-E-I-55: The Contribution to Skin Dose Due to Scatter From the Patient Table and the Head Holder During Fluoroscopy

    International Nuclear Information System (INIS)

    Islam, N; Xiong, Z; Vijayan, S; Rudin, S; Bednarek, D

    2015-01-01

    Purpose: To determine contributions to skin dose due to scatter from the table and head holder used during fluoroscopy, and also to explore alternative design material to reduce the scatter dose. Methods: Measurements were made of the primary and scatter components of the xray beam exiting the patient table and a cylindrical head holder used on a Toshiba Infinix c-arm unit as a function of kVp for the various beam filters on the machine and for various field sizes. The primary component of the beam was measured in air with the object placed close to the x-ray tube with an air gap between it and a 6 cc parallel-plate ionization chamber and with the beam collimated to a size just larger than the chamber. The primary plus scatter radiation components were measured with the object moved to a position in the beam next to the chamber for larger field sizes. Both sets of measurements were preformed while keeping the source-to-chamber distance fixed. The scatter fraction was estimated by taking the ratio of the difference between the two measurements and the reading that included both primary and scatter. Similar measurements were also made for a 2.3 cm thick Styrofoam block which could substitute for the patient support. Results: The measured scatter fractions indicate that the patient table as well as the head holder contributes an additional 10–16% to the patient entrance dose depending on field size. Forward scatter was reduced with the Styrofoam block so that the scatter fraction was about 4–5%. Conclusion: The results of this investigation demonstrated that scatter from the table and head holder used in clinical fluoroscopy contribute substantially to the skin dose. The lower contribution of scatter from Styrofoam suggests that there is an opportunity to redesign patient support accessories to reduce the skin dose. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corporation Equipment Grant

  12. SU-E-I-55: The Contribution to Skin Dose Due to Scatter From the Patient Table and the Head Holder During Fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N; Xiong, Z; Vijayan, S; Rudin, S; Bednarek, D [Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY (United States)

    2015-06-15

    Purpose: To determine contributions to skin dose due to scatter from the table and head holder used during fluoroscopy, and also to explore alternative design material to reduce the scatter dose. Methods: Measurements were made of the primary and scatter components of the xray beam exiting the patient table and a cylindrical head holder used on a Toshiba Infinix c-arm unit as a function of kVp for the various beam filters on the machine and for various field sizes. The primary component of the beam was measured in air with the object placed close to the x-ray tube with an air gap between it and a 6 cc parallel-plate ionization chamber and with the beam collimated to a size just larger than the chamber. The primary plus scatter radiation components were measured with the object moved to a position in the beam next to the chamber for larger field sizes. Both sets of measurements were preformed while keeping the source-to-chamber distance fixed. The scatter fraction was estimated by taking the ratio of the difference between the two measurements and the reading that included both primary and scatter. Similar measurements were also made for a 2.3 cm thick Styrofoam block which could substitute for the patient support. Results: The measured scatter fractions indicate that the patient table as well as the head holder contributes an additional 10–16% to the patient entrance dose depending on field size. Forward scatter was reduced with the Styrofoam block so that the scatter fraction was about 4–5%. Conclusion: The results of this investigation demonstrated that scatter from the table and head holder used in clinical fluoroscopy contribute substantially to the skin dose. The lower contribution of scatter from Styrofoam suggests that there is an opportunity to redesign patient support accessories to reduce the skin dose. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corporation Equipment Grant.

  13. Resonance estimates for single spin asymmetries in elastic electron-nucleon scattering

    International Nuclear Information System (INIS)

    Barbara Pasquini; Marc Vanderhaeghen

    2004-01-01

    We discuss the target and beam normal spin asymmetries in elastic electron-nucleon scattering which depend on the imaginary part of two-photon exchange processes between electron and nucleon. We express this imaginary part as a phase space integral over the doubly virtual Compton scattering tensor on the nucleon. We use unitarity to model the doubly virtual Compton scattering tensor in the resonance region in terms of γ* N → π N electroabsorption amplitudes. Taking those amplitudes from a phenomenological analysis of pion electroproduction observables, we present results for beam and target normal single spin asymmetries for elastic electron-nucleon scattering for beam energies below 1 GeV and in the 1-3 GeV region, where several experiments are performed or are in progress

  14. Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range

    International Nuclear Information System (INIS)

    Astapenko, V. A.

    2011-01-01

    The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of “elastic” scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.

  15. Perspective Taking in Workplaces

    Directory of Open Access Journals (Sweden)

    Zappalà Salvatore

    2014-07-01

    Full Text Available Workplaces are often described as places in which individuals are motivated by their self-interests and in which negative events like time pressure, anxiety, conflict with co-workers, miscomprehensions, difficulties in solving problems, not-transmitted or not-exchanged information that lead to mistakes, and in some cases to injuries, stress or control, are part of everyday life (Dormann & Zapf, 2002; Schabracq, Winnubst and Cooper, 2003. Such situations are often the result of the limited comprehension of needs, skills, or information available to colleagues, supervisors, subordinates, clients or providers. However, workplaces are also places in which employees take care of clients, support colleagues and subordinates (Rhoades & Eisenberger, 2002, are enthusiastic about their job (Bakker et al., 2008, are motivated by leaders that encourage employees to transcend their own self-interests for the good of the group or the organization and provide them with the confidence to perform beyond expectations (Bass, 1997. Thus positive relationships at work are becoming a new interdisciplinary domain of inquiry (Dutton & Ragins, 2006. Within this positive relationships framework, in this paper we focus on a positive component of workplaces, and particularly on an individual cognitive and emotional process that has an important role in the workplace because it facilitates interpersonal relations and communications: it is the perspective taking process. In order to describe perspective taking, we will refer to some empirical studies and particularly to the review published by Parker, Atkins and Axtell in 2008 on the International Review of Industrial and Organizational Psychology.

  16. Place branding, embeddedness and endogenous rural development : Four European cases

    NARCIS (Netherlands)

    Donner, Mechthild; Horlings, Lummina; Fort, Fatiha; Vellema, Sietze

    2017-01-01

    This article deals with place branding on the regional scale, in the rural context of food and tourism networks in Europe. Place branding is linked to the concepts of endogenous rural development, territory and embeddedness, by analysing how the valorisation of specific rural assets takes shape. The

  17. Place branding, embeddedness and endogenous rural development : Four European cases

    NARCIS (Netherlands)

    Donner, Mechthild; Horlings, Lummina; Fort, Fatiha; Vellema, Sietze

    This article deals with place branding on the regional scale, in the rural context of food and tourism networks in Europe. Place branding is linked to the concepts of endogenous rural development, territory and embeddedness, by analysing how the valorisation of specific rural assets takes shape. The

  18. Polarized X-ray excitation for scatter reduction in X-ray fluorescence computed tomography.

    Science.gov (United States)

    Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei

    2018-05-25

    X-ray fluorescence computer tomography (XFCT) is a new molecular imaging modality which uses X-ray excitation to stimulate the emission of fluorescent photons in high atomic number contrast agents. Scatter contamination is one of the main challenges in XFCT imaging which limits the molecular sensitivity. When polarized X-rays are used, it is possible to reduce the scatter contamination significantly by placing detectors perpendicular to the polarization direction. This study quantifies scatter contamination for polarized and unpolarized X-ray excitation and determines the advantages of scatter reduction. The amount of scatter in preclinical XFCT is quantified in Monte Carlo simulations. The fluorescent X-rays are emitted isotropically, while scattered X-rays propagate in polarization direction. The magnitude of scatter contamination is studied in XFCT simulations of a mouse phantom. In this study, the contrast agent gold is examined as an example but a scatter reduction from polarized excitation is also expected for other elements. The scatter reduction capability is examined for different polarization intensities with a monoenergetic X-ray excitation energy of 82 keV. The study evaluates two different geometrical shapes of CZT detectors which are modeled with an energy resolution of 1 keV FWHM at an X-ray energy of 80 keV. Benefits of a detector placement perpendicular to the polarization direction are shown in iterative and analytic image reconstruction including scatter correction. The contrast to noise ratio (CNR) and the normalized mean square error (NMSE) are analyzed and compared for the reconstructed images. A substantial scatter reduction for common detector sizes was achieved for 100% and 80% linear polarization while lower polarization intensities provide a decreased scatter reduction. By placing the detector perpendicular to the polarization direction, a scatter reduction by factor up to 5.5 can be achieved for common detector sizes. The image

  19. Multiquark states in the deep inelastic muon-nucleus scattering

    International Nuclear Information System (INIS)

    Titov, A.I.

    1983-01-01

    The deep-inelastic muon-nucleus scattering in the region forbidden by the kinematics for the scattering on free nucleons, is analysed theoretically. The calculations have been performed under the assumption that the main contribution to the cross section in the considered region of the Bjorken scaling variable, 1 -4 -10 -5 for the nuclear structure function at x approximately equal to 1.4. As it is shown, one has to take into account the six-= ' quark states in extracting the scaling parameter of QCD from the muon-nucleus data at approximately 1

  20. Electron - polar acoustical phonon interactions in nitride based diluted magnetic semiconductor quantum well via hot electron magnetotransport

    International Nuclear Information System (INIS)

    Pandya, Ankur; Shinde, Satyam; Jha, Prafulla K.

    2015-01-01

    In this paper the hot electron transport properties like carrier energy and momentum scattering rates and electron energy loss rates are calculated via interactions of electrons with polar acoustical phonons for Mn doped BN quantum well in BN nanosheets via piezoelectric scattering and deformation potential mechanisms at low temperatures with high electric field. Electron energy loss rate increases with the electric field. It is observed that at low temperatures and for low electric field the phonon absorption is taking place whereas, for sufficient large electric field, phonon emission takes place. Under the piezoelectric (polar acoustical phonon) scattering mechanism, the carrier scattering rate decreases with the reduction of electric field at low temperatures wherein, the scattering rate variation with electric field is limited by a specific temperature beyond which there is no any impact of electric field on such scattering

  1. Settings: In a Variety of Place. . .

    Science.gov (United States)

    Cairo, Peter; And Others

    This document consists of the fourth section of a book of readings on issues related to adult career development. The four chapters in this fourth section focus on settings in which adult career development counseling may take place. "Career Planning and Development in Organizations" (Peter Cairo) discusses several concepts and definitions…

  2. Scattered radiation from applicators in clinical electron beams

    International Nuclear Information System (INIS)

    Battum, L J van; Zee, W van der; Huizenga, H

    2003-01-01

    In radiotherapy with high-energy (4-25 MeV) electron beams, scattered radiation from the electron applicator influences the dose distribution in the patient. In most currently available treatment planning systems for radiotherapy this component is not explicitly included and handled only by a slight change of the intensity of the primary beam. The scattered radiation from an applicator changes with the field size and distance from the applicator. The amount of scattered radiation is dependent on the applicator design and on the formation of the electron beam in the treatment head. Electron applicators currently applied in most treatment machines are essentially a set of diaphragms, but still do produce scattered radiation. This paper investigates the present level of scattered dose from electron applicators, and as such provides an extensive set of measured data. The data provided could for instance serve as example input data or benchmark data for advanced treatment planning algorithms which employ a parametrized initial phase space to characterize the clinical electron beam. Central axis depth dose curves of the electron beams have been measured with and without applicators in place, for various applicator sizes and energies, for a Siemens Primus, a Varian 2300 C/D and an Elekta SLi accelerator. Scattered radiation generated by the applicator has been found by subtraction of the central axis depth dose curves, obtained with and without applicator. Scattered radiation from Siemens, Varian and Elekta electron applicators is still significant and cannot be neglected in advanced treatment planning. Scattered radiation at the surface of a water phantom can be as high as 12%. Scattered radiation decreases almost linearly with depth. Scattered radiation from Varian applicators shows clear dependence on beam energy. The Elekta applicators produce less scattered radiation than those of Varian and Siemens, but feature a higher effective angular variance. The scattered

  3. Disintegration of photoemulsion nuclei in 32 GeV/c muon inelastic scattering at small angles. Slow particle emission

    International Nuclear Information System (INIS)

    Rabin, N.V.

    1988-01-01

    Energy, angular and correlation characteristics of slow particles, ≤30 MeV/nucleon emitted in the reaction of 32 GeV/c muon inelastic scattering by photoemulsion heavy nuclei, A≅100, at small values of transfered four momentum square, Q 2 ≅0.1 (GeV/c) 2 , are analyzed. Arguments for formation of multiparticle moving excited cluster in muon events are presented: explanation of observed characteristics of slow particles in the framework of statistic theory is possible if it is assumed that cluster forms initially in the reaction, and then formation of moving excited nucleus - the main source of slow particles - takes place during cluster interaction with nucleus-target. Possibility of formation of other preequilibrium sources of slow particles is mentioned

  4. Thermal-neutron multiple scattering: critical double scattering

    International Nuclear Information System (INIS)

    Holm, W.A.

    1976-01-01

    A quantum mechanical formulation for multiple scattering of thermal-neutrons from macroscopic targets is presented and applied to single and double scattering. Critical nuclear scattering from liquids and critical magnetic scattering from ferromagnets are treated in detail in the quasielastic approximation for target systems slightly above their critical points. Numerical estimates are made of the double scattering contribution to the critical magnetic cross section using relevant parameters from actual experiments performed on various ferromagnets. The effect is to alter the usual Lorentzian line shape dependence on neutron wave vector transfer. Comparison with corresponding deviations in line shape resulting from the use of Fisher's modified form of the Ornstein-Zernike spin correlations within the framework of single scattering theory leads to values for the critical exponent eta of the modified correlations which reproduce the effect of double scattering. In addition, it is shown that by restricting the range of applicability of the multiple scattering theory from the outset to critical scattering, Glauber's high energy approximation can be used to provide a much simpler and more powerful description of multiple scattering effects. When sufficiently close to the critical point, it provides a closed form expression for the differential cross section which includes all orders of scattering and has the same form as the single scattering cross section with a modified exponent for the wave vector transfer

  5. Quantum trajectories in elastic atom-surface scattering: threshold and selective adsorption resonances.

    Science.gov (United States)

    Sanz, A S; Miret-Artés, S

    2005-01-01

    The elastic resonant scattering of He atoms off the Cu(117) surface is fully described with the formalism of quantum trajectories provided by Bohmian mechanics. Within this theory of quantum motion, the concept of trapping is widely studied and discussed. Classically, atoms undergo impulsive collisions with the surface, and then the trapped motion takes place covering at least two consecutive unit cells. However, from a Bohmian viewpoint, atom trajectories can smoothly adjust to the equipotential energy surface profile in a sort of sliding motion; thus the trapping process could eventually occur within one single unit cell. In particular, both threshold and selective adsorption resonances are explained by means of this quantum trapping considering different space and time scales. Furthermore, a mapping between each region of the (initial) incoming plane wave and the different parts of the diffraction and resonance patterns can be easily established, an important issue only provided by a quantum trajectory formalism. (c) 2005 American Institute of Physics.

  6. Modifying infrared scattering effects of single yeast cells with plasmonic metal mesh

    Science.gov (United States)

    Malone, Marvin A.; Prakash, Suraj; Heer, Joseph M.; Corwin, Lloyd D.; Cilwa, Katherine E.; Coe, James V.

    2010-11-01

    The scattering effects in the infrared (IR) spectra of single, isolated bread yeast cells (Saccharomyces cerevisiae) on a ZnSe substrate and in metal microchannels have been probed by Fourier transform infrared imaging microspectroscopy. Absolute extinction [(3.4±0.6)×10-7 cm2 at 3178 cm-1], scattering, and absorption cross sections for a single yeast cell and a vibrational absorption spectrum have been determined by comparing it to the scattering properties of single, isolated, latex microspheres (polystyrene, 5.0 μm in diameter) on ZnSe, which are well modeled by the Mie scattering theory. Single yeast cells were then placed into the holes of the IR plasmonic mesh, i.e., metal films with arrays of subwavelength holes, yielding "scatter-free" IR absorption spectra, which have undistorted vibrational lineshapes and a rising generic IR absorption baseline. Absolute extinction, scattering, and absorption spectral profiles were determined for a single, ellipsoidal yeast cell to characterize the interplay of these effects.

  7. A rigorous phenomenological analysis of the ππ scattering lengths

    International Nuclear Information System (INIS)

    Caprini, I.; Dita, P.; Sararu, M.

    1979-11-01

    The constraining power of the present experimental data, combined with the general theoretical knowledge about ππ scattering, upon the scattering lengths of this process, is investigated by means of a rigorous functional method. We take as input the experimental phase shifts and make no hypotheses about the high energy behaviour of the amplitudes, using only absolute bounds derived from axiomatic field theory and exact consequences of crossing symmetry. In the simplest application of the method, involving only the π 0 π 0 S-wave, we explored numerically a number of values proposed by various authors for the scattering lengths a 0 and a 2 and found that no one appears to be especially favoured. (author)

  8. Electron scattering and reactions from exotic nuclei

    International Nuclear Information System (INIS)

    Karataglidis, S.

    2017-01-01

    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  9. Electron scattering and reactions from exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karataglidis, S. [University of Johannesburg, Department of Physics, Auckland Park (South Africa); University of Melbourne, School of Physics, Victoria (Australia)

    2017-04-15

    The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)

  10. Three dimensional classical theory of rainbow scattering of atoms from surfaces

    International Nuclear Information System (INIS)

    Pollak, Eli; Miret-Artes, Salvador

    2010-01-01

    Graphical abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously. - Abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously.

  11. Raman scattering of Cisplatin near silver nanoparticles

    Science.gov (United States)

    Mirsaleh-Kohan, Nasrin; Duplanty, Michael; Torres, Marjorie; Moazzezi, Mojtaba; Rostovtsev, Yuri V.

    2018-03-01

    The Raman scattering of Cisplatin (the first generation of anticancer drugs) has been studied. In the presence of silver nanoparticles, strong modifications of Raman spectra have been observed. The Raman frequencies have been shifted and the line profiles are broadened. We develop a theoretical model to explain the observed features of the Raman scattering. The model takes into account self-consistently the interaction of molecules with surface plasmonic waves excited in the silver nanoparticles, and it provides a qualitative agreement with the observed Raman spectra. We have demonstrated that the using silver nanoparticles can increase sensitivity of the technique, and potentially it has a broader range of applications to both spectroscopy and microscopy.

  12. Migration of scattered teleseismic body waves

    Science.gov (United States)

    Bostock, M. G.; Rondenay, S.

    1999-06-01

    The retrieval of near-receiver mantle structure from scattered waves associated with teleseismic P and S and recorded on three-component, linear seismic arrays is considered in the context of inverse scattering theory. A Ray + Born formulation is proposed which admits linearization of the forward problem and economy in the computation of the elastic wave Green's function. The high-frequency approximation further simplifies the problem by enabling (1) the use of an earth-flattened, 1-D reference model, (2) a reduction in computations to 2-D through the assumption of 2.5-D experimental geometry, and (3) band-diagonalization of the Hessian matrix in the inverse formulation. The final expressions are in a form reminiscent of the classical diffraction stack of seismic migration. Implementation of this procedure demands an accurate estimate of the scattered wave contribution to the impulse response, and thus requires the removal of both the reference wavefield and the source time signature from the raw record sections. An approximate separation of direct and scattered waves is achieved through application of the inverse free-surface transfer operator to individual station records and a Karhunen-Loeve transform to the resulting record sections. This procedure takes the full displacement field to a wave vector space wherein the first principal component of the incident wave-type section is identified with the direct wave and is used as an estimate of the source time function. The scattered displacement field is reconstituted from the remaining principal components using the forward free-surface transfer operator, and may be reduced to a scattering impulse response upon deconvolution of the source estimate. An example employing pseudo-spectral synthetic seismograms demonstrates an application of the methodology.

  13. Perspectives of in situ/operando resonant inelastic X-ray scattering in catalytic energy materials science

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi-Sheng; Glans, Per-Anders [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Chuang, Cheng-Hao [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, Tamkang University, Tamsui 250, Taiwan, ROC (China); Kapilashrami, Mukes [Center for Engineering Concepts Development, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Guo, Jinghua, E-mail: jguo@lbl.gov [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064 (United States)

    2015-04-15

    Highlights: • In-situ/operando soft X-ray RXES and RIXS offer unique perspectives in the energy material science. - Abstract: Growing environmental concerns have renewed the interest for light induced catalytic reactions to synthesize cleaner chemical fuels from syngas. This, however, requires a sound understanding for the dynamics taking place at molecular level as a result of light – matter interaction. We present herein the principles of soft X-ray resonant emission spectroscopy (RXES) and resonant inelastic scattering (RIXS) and the importance of these spectroscopic techniques in materials science in light of their unique ability to emanate characteristic fingerprints on the geometric structure, chemical bonding charge and spin states in addition to chemical sensitivity. The addition of in situ/operando RXES and RIXS capability offers new opportunities to project important material properties and functionalities under conditions nearly identical to the operational modes.

  14. Perspectives of in situ/operando resonant inelastic X-ray scattering in catalytic energy materials science

    International Nuclear Information System (INIS)

    Liu, Yi-Sheng; Glans, Per-Anders; Chuang, Cheng-Hao; Kapilashrami, Mukes; Guo, Jinghua

    2015-01-01

    Highlights: • In-situ/operando soft X-ray RXES and RIXS offer unique perspectives in the energy material science. - Abstract: Growing environmental concerns have renewed the interest for light induced catalytic reactions to synthesize cleaner chemical fuels from syngas. This, however, requires a sound understanding for the dynamics taking place at molecular level as a result of light – matter interaction. We present herein the principles of soft X-ray resonant emission spectroscopy (RXES) and resonant inelastic scattering (RIXS) and the importance of these spectroscopic techniques in materials science in light of their unique ability to emanate characteristic fingerprints on the geometric structure, chemical bonding charge and spin states in addition to chemical sensitivity. The addition of in situ/operando RXES and RIXS capability offers new opportunities to project important material properties and functionalities under conditions nearly identical to the operational modes.

  15. Study of early laser-induced plasma dynamics: Transient electron density gradients via Thomson scattering and Stark Broadening, and the implications on laser-induced breakdown spectroscopy measurements

    International Nuclear Information System (INIS)

    Diwakar, P.K.; Hahn, D.W.

    2008-01-01

    To further develop laser-induced breakdown spectroscopy (LIBS) as an analytical technique, it is necessary to better understand the fundamental processes and mechanisms taking place during the plasma evolution. This paper addresses the very early plasma dynamics (first 100 ns) using direct plasma imaging, light scattering, and transmission measurements from a synchronized 532-nm probe laser pulse. During the first 50 ns following breakdown, significant Thomson scattering was observed while the probe laser interacted with the laser-induced plasma. The Thomson scattering was observed to peak 15-25 ns following plasma initiation and then decay rapidly, thereby revealing the highly transient nature of the free electron density and plasma equilibrium immediately following breakdown. Such an intense free electron density gradient is suggestive of a non-equilibrium, free electron wave generated by the initial breakdown and growth processes. Additional probe beam transmission measurements and electron density measurements via Stark broadening of the 500.1-nm nitrogen ion line corroborate the Thomson scattering observations. In concert, the data support the finding of a highly transient plasma that deviates from local thermodynamic equilibrium (LTE) conditions during the first tens of nanoseconds of plasma lifetime. The implications of this early plasma transient behavior are discussed in the context of plasma-analyte interactions and the role on LIBS measurements

  16. Dynamically Polarized Sample for Neutron Scattering At the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pierce, Josh; Zhao, J. K.; Crabb, Don

    2009-01-01

    The recently constructed Spallation Neutron Source at the Oak Ridge National Laboratory is quickly becoming the world's leader in neutron scattering sciences. In addition to the world's most intense pulsed neutron source, we are continuously constructing state of the art neutron scattering instruments as well as sample environments to address today and tomorrow's challenges in materials research. The Dynamically Polarized Sample project at the SNS is aimed at taking maximum advantage of polarized neutron scattering from polarized samples, especially biological samples that are abundant in hydrogen. Polarized neutron scattering will allow us drastically increase the signal to noise ratio in experiments such as neutron protein crystallography. The DPS project is near completion and all key components have been tested. Here we report the current status of the project.

  17. PREFACE: Atom-surface scattering Atom-surface scattering

    Science.gov (United States)

    Miret-Artés, Salvador

    2010-08-01

    It has been a privilege and a real pleasure to organize this special issue or festschrift in the general field of atom-surface scattering (and its interaction) in honor of J R Manson. This is a good opportunity and an ideal place to express our deep gratitude to one of the leaders in this field for his fundamental and outstanding scientific contributions. J R Manson, or Dick to his friends and colleagues, is one of the founding fathers, together with N Cabrera and V Celli, of the 'Theory of surface scattering and detection of surface phonons'. This is the title of the very well-known first theoretical paper by Dick published in Physical Review Letters in 1969. My first meeting with Dick was around twenty years ago in Saclay. J Lapujoulade organized a small group seminar about selective adsorption resonances in metal vicinal surfaces. We discussed this important issue in surface physics and many other things as if we had always known each other. This familiarity and warm welcome struck me from the very beginning. During the coming years, I found this to be a very attractive aspect of his personality. During my stays in Göttingen, we had the opportunity to talk widely about science and life at lunch or dinner time, walking or cycling. During these nice meetings, he showed, with humility, an impressive cultural background. It is quite clear that his personal opinions about history, religion, politics, music, etc, come from considering and analyzing them as 'open dynamical systems'. In particular, with good food and better wine in a restaurant or at home, a happy cheerful soirée is guaranteed with him, or even with only a good beer or espresso, and an interesting conversation arises naturally. He likes to listen before speaking. Probably not many people know his interest in tractors. He has an incredible collection of very old tractors at home. In one of my visits to Clemson, he showed me the collection, explaining to me in great detail, their technical properties

  18. Coherent transmission of an ultrasonic shock wave through a multiple scattering medium.

    Science.gov (United States)

    Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe

    2013-08-01

    We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.

  19. Place identity and place scale: the impact of place salience.

    OpenAIRE

    Bernardo, Fátima; Palma-Oliveira, José-Manuel

    2013-01-01

    Research about place, place identity and attachment supports the idea that bonds with places may differ depending on the place scale. Based on the view that identity is context-dependent, this paper brings to the table the impact of manipulating the salience of place on the intensity of place identity and place attachment reported. A study was designed to examine place identity and place attachment in two groups of residents (permanent and temporary) at three different scales (nei...

  20. Very low-energy hydrogen-antihydrogen scattering

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Chamberlain, C.W.

    2003-01-01

    In view of current interest in the trapping of antihydrogen (H-bar) atoms at very low temperatures, we have carried out a calculation of s-wave hydrogen-antihydrogen scattering at very low energies, using the Kohn variational method, taking into account rearrangement scattering into the three channels that contain positronium in its ground state and lie closest to threshold. We find that our values for the elastic cross section are in good agreement with the values obtained by Jonsell et al. [2001 Phys. Rev. A 64 052712] using a distorted wave approximation. However, our values for the total rearrangement cross section are much larger than their values and we predict that cooling of H-bar by cold H would be considerably less efficient than was found to be the case by Jonsell et al.. (author)

  1. Women take the island: nation, profession, place Women take the island: nation, profession, place

    Directory of Open Access Journals (Sweden)

    Ruth Morse

    2008-04-01

    Full Text Available The Tempest has been one of Shakespeare’s most adapted plays. Its stage history is concomitantly a history of the British theatre, from regularized comedy to semi-opera to pantomime to opera. It has had other lives, too, from its position in romantic ideas of Shakespeare’s biography and his so-called farewell to the stage, to a supporting role as witness for the nineteenth-century Darwinians’ idea of the missing link, to a veritable efflorescence of walk-on parts, cameos, and star vehicles in twentieth-century psychoanalytic and social arguments about European expansion.2 The play has given us individual poems and paintings, not to speak of screen-plays for several film adaptations. The Tempest has been one of Shakespeare’s most adapted plays. Its stage history is concomitantly a history of the British theatre, from regularized comedy to semi-opera to pantomime to opera. It has had other lives, too, from its position in romantic ideas of Shakespeare’s biography and his so-called farewell to the stage, to a supporting role as witness for the nineteenth-century Darwinians’ idea of the missing link, to a veritable efflorescence of walk-on parts, cameos, and star vehicles in twentieth-century psychoanalytic and social arguments about European expansion.2 The play has given us individual poems and paintings, not to speak of screen-plays for several film adaptations.

  2. The measurement of plasma temperature by height scattering

    International Nuclear Information System (INIS)

    Katzenstein, J.

    1976-04-01

    One of the most accurate methods for the determination of the electron and ion temperature of a plasma is the measurement of the spectrum of the light scattered from a monoshromatic laser beam by the plasma electrons. The simple case of uncorrelated electrons is treated in detail showing the scattered spectrum to be a simple Gaussian whose half-breadth is proportional to the mean electron thermal velocity hence the square root of electron temperature. The results of a more general treatment are also reviewed which takes into account electron-ion correlations. Experimental requirements on the laser, the spetral instrumentation, and the data analysis are discussed. (author)

  3. Dynamic neutron scattering from conformational dynamics. II. Application using molecular dynamics simulation and Markov modeling.

    Science.gov (United States)

    Yi, Zheng; Lindner, Benjamin; Prinz, Jan-Hendrik; Noé, Frank; Smith, Jeremy C

    2013-11-07

    Neutron scattering experiments directly probe the dynamics of complex molecules on the sub pico- to microsecond time scales. However, the assignment of the relaxations seen experimentally to specific structural rearrangements is difficult, since many of the underlying dynamical processes may exist on similar timescales. In an accompanying article, we present a theoretical approach to the analysis of molecular dynamics simulations with a Markov State Model (MSM) that permits the direct identification of structural transitions leading to each contributing relaxation process. Here, we demonstrate the use of the method by applying it to the configurational dynamics of the well-characterized alanine dipeptide. A practical procedure for deriving the MSM from an MD is introduced. The result is a 9-state MSM in the space of the backbone dihedral angles and the side-chain methyl group. The agreement between the quasielastic spectrum calculated directly from the atomic trajectories and that derived from the Markov state model is excellent. The dependence on the wavevector of the individual Markov processes is described. The procedure means that it is now practicable to interpret quasielastic scattering spectra in terms of well-defined intramolecular transitions with minimal a priori assumptions as to the nature of the dynamics taking place.

  4. Light scattering near phase transitions

    CERN Document Server

    Cummins, HZ

    1983-01-01

    Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.

  5. Dual aerosol detector based on forward light scattering with a single laser beam

    International Nuclear Information System (INIS)

    Kovach, B.J.; Custer, R.A.; Powers, F.L.; Kovach, A.

    1985-01-01

    The in-place leak testing of HEPA filter banks using a single detector can lead to some error in the measurement due to the fluctuation of the aerosol concentration while the single detector is being switched from the upstream to downstream sampling. The time duration of the test also can cause unnecessarily high DOP loading of the HEPA filters and in some cases higher radiation exposure to the testing personnel. The new forward light scattering detector uses one 632.8 nm laser beam for aerosol detection in a dual chamber sampling and detecting aerosol concentration simultaneously both upstream and downstream. This manner of operation eliminates the errors caused by concentration variations between upstream and downstream sample points while the switching takes place. The new detector uses large area silicone photodiodes with a hole in the center, to permit uninterrupted passage of the laser beam through the downstream sample chamber. The nonlinearity due to the aerosol over population of the laser beam volume is calculated to be less than 1% using a Poisson distribution method to determine the average distance of the particles. A simple pneumatic system prevents mixing of the upstream and downstream samples even in wide pressure variations of the duct system

  6. High luminosity muon scattering at FNAL

    International Nuclear Information System (INIS)

    Bazizi, K.; Conrad, J.; Fang, G.; Erdmann, M.; Geesaman, D.; Jackson, H.; Guyot, C.; Virchaux, M.; Holmgren, H.; Malensek, A.; Melanson, H.; Morfin, J.; Schellman, H.; Nickerson, R.

    1990-02-01

    The charge of this group was to evaluate the physics that can be done with a high luminosity μ scattering experiment at FNAL using the upgraded Tevatron muon beam, and consider the apparatus required. In this report, the physics that can be accomplished with a high luminosity μ scattering experiment is evaluated. The CERN and FNAL μ beams are compared in the context of such an experiment. The expected muon flux with the upgraded machine is estimated. Two possible detectors are compared: the air-core toroid experiment proposed by Guyot et al., and an upgraded version of the E665 double-diode apparatus now in place at FNAL. The relative costs of the detectors are considered. A list of detailed questions that need to be answered regarding the double-diode experiment has be compiled. 2 refs., 10 figs., 2 tabs

  7. Reflectance of Biological Turbid Tissues under Wide Area Illumination: Single Backward Scattering Approach

    Directory of Open Access Journals (Sweden)

    Guennadi Saiko

    2014-01-01

    Full Text Available Various scenarios of light propagation paths in turbid media (single backward scattering, multiple backward scattering, banana shape are discussed and their contributions to reflectance spectra are estimated. It has been found that a single backward or multiple forward scattering quasi-1D paths can be the major contributors to reflected spectra in wide area illumination scenario. Such a single backward scattering (SBS approximation allows developing of an analytical approach which can take into account refractive index mismatched boundary conditions and multilayer geometry and can be used for real-time spectral processing. The SBS approach can be potentially applied for the distances between the transport and reduced scattering domains. Its validation versus the Kubelka-Munk model, path integrals, and diffusion approximation of the radiation transport theory is discussed.

  8. Hysteretic characteristics of 1/λ⁴ scattering of light during adsorption and desorption of water in porous Vycor glass with nanopores.

    Science.gov (United States)

    Ogawa, Shigeo; Nakamura, Jiro

    2013-10-01

    Porous Vycor glass with nanopores is transparent in the visible region and is often used in colorimetric chemical sensing when impregnated with selectively reacting reagents. However, it has some disadvantages in sensing, since changes in the humidity of ambient air strongly affect its transmission. In this work, by combining a humidity-controlled thermostatic chamber and an ultraviolet-visible and near-infrared spectrophotometer through fiber optics, we analyzed the effect of increasing and decreasing humidity in the ambient air on the transparency change of the nanoporous glass. The transparency response in the visible region to changes in humidity is analyzed to correlate the turbidity response of the glass with the amount of water in it. The turbidity is found to be dependent on the inverse fourth power of the wavelength (1/λ⁴), which implies that Rayleigh-type scattering takes place for both adsorption and desorption of water. We show that measures of the extent of the optical inhomogeneity that causes the scattering, such as the effective radius of scatterers and their number density, exhibit a pronounced hysteretic characteristic for the imbibition and drainage of water, while the absorption inherent to imbibed water also shows another type of hysteresis that is quite similar to the sorption isotherms of water. On the basis of the above observations, we show that the transitory white turbidity of nanoporous glasses during changes in humidity can be consistently interpreted and quantitatively analyzed by a simple Rayleigh scattering mechanism.

  9. Value of αs from deep-inelastic-scattering data

    International Nuclear Information System (INIS)

    Alekhin, S.I.

    2003-01-01

    We report the value of α s obtained from QCD analysis of existing data on deep-inelastic scattering of charged leptons off proton and deuterium and estimate its theoretical uncertainties with particular attention paid to impact of the high-twist contribution to the deep-inelastic-scattering structure functions. Taking into account the major uncertainties the value αNNLO s (M Z )=0.1143±0.0014(exp.)±0.0013(theor.) is obtained. An extrapolation of the LO-NLO-NNLO results to the higher orders makes it possible to estimate αN 3 LO s (M Z )∼0.113. (author)

  10. Scattering in an intense radiation field: Time-independent methods

    International Nuclear Information System (INIS)

    Rosenberg, L.

    1977-01-01

    The standard time-independent formulation of nonrelativistic scattering theory is here extended to take into account the presence of an intense external radiation field. In the case of scattering by a static potential the extension is accomplished by the introduction of asymptotic states and intermediate-state propagators which account for the absorption and induced emission of photons by the projectile as it propagates through the field. Self-energy contributions to the propagator are included by a systematic summation of forward-scattering terms. The self-energy analysis is summarized in the form of a modified perturbation expansion of the type introduced by Watson some time ago in the context of nuclear-scattering theory. This expansion, which has a simple continued-fraction structure in the case of a single-mode field, provides a generally applicable successive approximation procedure for the propagator and the asymptotic states. The problem of scattering by a composite target is formulated using the effective-potential method. The modified perturbation expansion which accounts for self-energy effects is applicable here as well. A discussion of a coupled two-state model is included to summarize and clarify the calculational procedures

  11. TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic

    International Nuclear Information System (INIS)

    Machuzak, J.S.; Woskov, P.P.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Bindslev, H.

    1995-03-01

    A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies

  12. Raman and fluorescent scattering by molecules embedded in small particles

    International Nuclear Information System (INIS)

    Chew, H.W.; McNulty, P.J.

    1983-01-01

    We have formulated a model for fluorescent and Raman scattering by molecules embedded in or in the vicinity of small particles. The model takes into account the size, shape, refractive index, and morphology of the host particles. Analytic and numerical results have been obtained for spherical (one and more layers, including magnetic dipole transitions) cylindrical and spheroidal particles. Particular attention has been given to the spherical case with fluorescent/Raman scatterers uniformly distributed in the particles radiating both coherently and incohorently. Depolarization effects have been studied with suitable averaging process, and good agreement with experiment has been obtained. Analytic and numerical results have been obtained for the elastic scattering of evanescent waves; these results are useful for the study of fluorescent under excitation by evanescent waves

  13. Phase separation process in FeCr alloys studied by neutron small angle scattering

    International Nuclear Information System (INIS)

    Furusaka, Michihiro; Ishikawa, Yoshikazu; Yamaguchi, Sadae; Fujino, Yutaka.

    1986-01-01

    The very early stage as well as late stage of phase separation process in FeCr alloys (Fe-20, 30, 40, 60 at%Cr) have been studied by pulsed cold neutron small angle scattering instrument (SAN). At the early stage, scattering intensity I(q) obeys q -2 dependence at the high q side of the scattering function. The results are in accord with the theory of Langer et al. which takes into account nonlinear and thermal fluctuations effects. At the late stage where I(q) shows q -4 dependence, a dynamical scaling law holds, while it is not the case for the earlier stage. Phase diagram of FeCr system is also determined by critical scattering measurements. (author)

  14. Hanle-Zeeman Scattering Matrix for Magnetic Dipole Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Megha, A.; Sampoorna, M.; Nagendra, K. N.; Sankarasubramanian, K., E-mail: megha@iiap.res.in, E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: sankar@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India)

    2017-06-01

    The polarization of the light that is scattered by the coronal ions is influenced by the anisotropic illumination from the photosphere and the magnetic field structuring in the solar corona. The properties of the coronal magnetic fields can be well studied by understanding the polarization properties of coronal forbidden emission lines that arise from magnetic dipole ( M 1) transitions in the highly ionized atoms that are present in the corona. We present the classical scattering theory of the forbidden lines for a more general case of arbitrary-strength magnetic fields. We derive the scattering matrix for M 1 transitions using the classical magnetic dipole model of Casini and Lin and applying the scattering matrix approach of Stenflo. We consider a two-level atom model and neglect collisional effects. The scattering matrix so derived is used to study the Stokes profiles formed in coronal conditions in those regions where the radiative excitations dominate collisional excitations. To this end, we take into account the integration over a cone of an unpolarized radiation from the solar disk incident on the scattering atoms. Furthermore, we also integrate along the line of sight to calculate the emerging polarized line profiles. We consider radial and dipole magnetic field configurations and spherically symmetric density distributions. For our studies we adopt the atomic parameters corresponding to the [Fe xiii] 10747 Å coronal forbidden line. We also discuss the nature of the scattering matrix for M 1 transitions and compare it with that for the electric dipole ( E 1) transitions.

  15. Synthesis of gold nanostars with fractal structure: application in surface-enhanced Raman scattering

    Science.gov (United States)

    Zhu, Jian; Liu, Mei-Jin; Li, Jian-Jun; Zhao, Jun-Wu

    2017-11-01

    Multi-branched gold nanostars with fractal feature were synthesized using the Triton X-100 participant seed-growth method. By increasing the amount of ascorbic acid, the branch length of gold nanostars could be greatly increased. It has been interesting to find that the secondary growth of new branches takes place from the elementary structure when the aspect ratio of the branches is greater than 8.0 and the corresponding plasmon absorption wavelength is greater than 900 nm. Raman activity of the gold nanostar films has been investigated by using the 4-mercaptobenzoic acid (4-MBA) as Raman active probe. Experimental results show that the surface-enhanced Raman scattering (SERS) ability of the gold nanostars could be efficiently improved when the fractal structure appears. The physical mechanism has been attributed to the intense increased secondary branch number and the increased "hot spots". These unique multi-branched gold nanostars with fractal feature and great SERS activity should have great potential in sensing applications.

  16. Three dimensional classical theory of rainbow scattering of atoms from surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovoth (Israel); Miret-Artes, Salvador [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)

    2010-10-05

    Graphical abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously. - Abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously.

  17. Simulation of an IXS imaging analyzer with an extended scattering source

    Energy Technology Data Exchange (ETDEWEB)

    Suvorov, Alexey [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II; Cai, Yong Q. [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II

    2016-09-15

    A concept of an inelastic x-ray scattering (IXS) spectrograph with an imaging analyzer was proposed recently and discussed in a number of publications (see e.g. Ref.1). The imaging analyzer as proposed combines x-ray lenses with highly dispersive crystal optics. It allows conversion of the x-ray energy spectrum into a spatial image with very high energy resolution. However, the presented theoretical analysis of the spectrograph did not take into account details of the scattered radiation source, i.e. sample, and its impact on the spectrograph performance. Using numerical simulations we investigated the influence of the finite sample thickness, the scattering angle and the incident energy detuning on the analyzer image and the ultimate resolution.

  18. New evaluation of thermal neutron scattering libraries for light and heavy water

    Directory of Open Access Journals (Sweden)

    Marquez Damian Jose Ignacio

    2017-01-01

    Full Text Available In order to improve the design and safety of thermal nuclear reactors and for verification of criticality safety conditions on systems with significant amount of fissile materials and water, it is necessary to perform high-precision neutron transport calculations and estimate uncertainties of the results. These calculations are based on neutron interaction data distributed in evaluated nuclear data libraries. To improve the evaluations of thermal scattering sub-libraries, we developed a set of thermal neutron scattering cross sections (scattering kernels for hydrogen bound in light water, and deuterium and oxygen bound in heavy water, in the ENDF-6 format from room temperature up to the critical temperatures of molecular liquids. The new evaluations were generated and processable with NJOY99 and also with NJOY-2012 with minor modifications (updates, and with the new version of NJOY-2016. The new TSL libraries are based on molecular dynamics simulations with GROMACS and recent experimental data, and result in an improvement of the calculation of single neutron scattering quantities. In this work, we discuss the importance of taking into account self-diffusion in liquids to accurately describe the neutron scattering at low neutron energies (quasi-elastic peak problem. To improve modeling of heavy water, it is important to take into account temperature-dependent static structure factors and apply Sköld approximation to the coherent inelastic components of the scattering matrix. The usage of the new set of scattering matrices and cross-sections improves the calculation of thermal critical systems moderated and/or reflected with light/heavy water obtained from the International Criticality Safety Benchmark Evaluation Project (ICSBEP handbook. For example, the use of the new thermal scattering library for heavy water, combined with the ROSFOND-2010 evaluation of the cross sections for deuterium, results in an improvement of the C/E ratio in 48 out of

  19. New evaluation of thermal neutron scattering libraries for light and heavy water

    Science.gov (United States)

    Marquez Damian, Jose Ignacio; Granada, Jose Rolando; Cantargi, Florencia; Roubtsov, Danila

    2017-09-01

    In order to improve the design and safety of thermal nuclear reactors and for verification of criticality safety conditions on systems with significant amount of fissile materials and water, it is necessary to perform high-precision neutron transport calculations and estimate uncertainties of the results. These calculations are based on neutron interaction data distributed in evaluated nuclear data libraries. To improve the evaluations of thermal scattering sub-libraries, we developed a set of thermal neutron scattering cross sections (scattering kernels) for hydrogen bound in light water, and deuterium and oxygen bound in heavy water, in the ENDF-6 format from room temperature up to the critical temperatures of molecular liquids. The new evaluations were generated and processable with NJOY99 and also with NJOY-2012 with minor modifications (updates), and with the new version of NJOY-2016. The new TSL libraries are based on molecular dynamics simulations with GROMACS and recent experimental data, and result in an improvement of the calculation of single neutron scattering quantities. In this work, we discuss the importance of taking into account self-diffusion in liquids to accurately describe the neutron scattering at low neutron energies (quasi-elastic peak problem). To improve modeling of heavy water, it is important to take into account temperature-dependent static structure factors and apply Sköld approximation to the coherent inelastic components of the scattering matrix. The usage of the new set of scattering matrices and cross-sections improves the calculation of thermal critical systems moderated and/or reflected with light/heavy water obtained from the International Criticality Safety Benchmark Evaluation Project (ICSBEP) handbook. For example, the use of the new thermal scattering library for heavy water, combined with the ROSFOND-2010 evaluation of the cross sections for deuterium, results in an improvement of the C/E ratio in 48 out of 65

  20. Elastic scattering of antiprotons on 4He at 600 MeV/c

    International Nuclear Information System (INIS)

    Batusov, Yu.A.; Bunyatov, S.A.; Pontekorvo, D.B.

    1990-01-01

    The differential cross sections for antiproton elastic scattering on 4 He at 607.7 MeV/c are measured. The total elastic cross section σ el =120.9±2.5 mb and the total p-bar 4 He interaction cross section σ tot =360.1±5.6 mb are determined. Partial wave analysis reveals that the P,D and F waves are dominant in the scattering. The angular dependence of Differential cross sections exhibits the diffraction pattern typical of scattering on a strongly absorbing disk. Simply taking into account diffuseness of the black disk edge provides good agreement of calculations with the experimental data

  1. Elastic scattering of antiprotons on 4He at 600 MeV/c

    International Nuclear Information System (INIS)

    Batusov, Yu.A.; Bunyatov, S.A.; Falomkin, I.V.

    1990-01-01

    The differential cross section for antiproton elastic scattering on 4 He at 607.7 MeV/c momentum is measured. The total elastic cross section σ el =(120.9±2.5) mb and the total p -4 He interaction cross section σ tot =(360.1±5.6) mb are determined. Partial wave analysis reveals that the P,D and F-waves are dominant in the scattering. The angular dependence of differential cross section exhibits the diffraction pattern typical of scattering on a strongly absorbing disk. Simply taking into account diffuseness of the disk provides good agreement of calculations with the experimental data. 17 refs.; 8 figs.; 1 tab

  2. Electron scattering by native defects in III-V nitrides and their alloys

    International Nuclear Information System (INIS)

    Hsu, L.; Walukiewicz, W.

    1996-03-01

    We have calculated the electron mobilities in GaN and InN taking into consideration scattering by short range potentials, in addition to all standard scattering mechanisms. These potentials are produced by the native defects which are responsible for the high electron concentrations in nominally undoped nitrides. Comparison of the calculated mobilities with experimental data shows that scattering by short range potentials is the dominant mechanism limiting the electron mobilities in unintentionally doped nitrides with large electron concentrations. In the case of Al x Ga 1-x N alloys, the reduction in the electron concentration due to the upward shift of the conduction band relative to the native defect level can account for the experimentally measured mobilities. Resonant scattering is shown to be important when the defect and Fermi levels are close in energy

  3. Diffraction scattering of 7Be and 8B on 12C taking into account the coulomb interaction

    International Nuclear Information System (INIS)

    Davydovskyy, V.V.; Evlanov, M.V.; Tartakovsky, V.K.

    2004-01-01

    The differential cross sections for scattering of 7 Be and 8 B nuclei on 12 C nuclei are calculated in the framework of general theory of diffraction interactions of nuclei consisting of two charged weakly-bound clusters. Available experimental data are analyzed. (author)

  4. Research on the Ancient Mongolian Place-Name Along the Silk Road

    Science.gov (United States)

    Nashunwuritu; Baiyinbateer; Duoxi

    2016-06-01

    "Silk Road" is an ancient commercial trade channel connecting China with Asia, Africa and Europe and a major link of the economy, politics and culture of the East and West as well. In the 13th Century, with the westward expedition of Mongolian, the communication and integration of culture among different countries was accelerated, which led to many Mongolian place-names scattered in the countries along the silk-road, such as Khwarezmia, Armenia, Mesopotamia, Kipchak, Persian, involving today's Russia, Poland, Ukraine, Bulgaria, Hungary, Austria, Italy, Serbia, Syria, Iran, Afghanistan, Iraq, Uzbekistan, Turkmenistan, India and many other countries and regions. The place-name is a kind of important factor that can represent the changes of culture, economic in history. We analyzed the current place-names in different countries or regions with different language to find out ancient Mongolian place-names, and marked the names on the digital map. Through the changes and transition of the place-name, we explored the development of Mongolian language changes itself, Mongolian blends with other languages, and furtherly reveal information of culture exchange.

  5. RESEARCH ON THE ANCIENT MONGOLIAN PLACE-NAME ALONG THE SILK ROAD

    Directory of Open Access Journals (Sweden)

    Nashunwuritu

    2016-06-01

    Full Text Available “Silk Road” is an ancient commercial trade channel connecting China with Asia, Africa and Europe and a major link of the economy, politics and culture of the East and West as well. In the 13th Century, with the westward expedition of Mongolian, the communication and integration of culture among different countries was accelerated, which led to many Mongolian place-names scattered in the countries along the silk-road, such as Khwarezmia, Armenia, Mesopotamia, Kipchak, Persian, involving today's Russia, Poland, Ukraine, Bulgaria, Hungary, Austria, Italy, Serbia, Syria, Iran, Afghanistan, Iraq, Uzbekistan, Turkmenistan, India and many other countries and regions. The place-name is a kind of important factor that can represent the changes of culture, economic in history. We analyzed the current place-names in different countries or regions with different language to find out ancient Mongolian place-names, and marked the names on the digital map. Through the changes and transition of the place-name, we explored the development of Mongolian language changes itself, Mongolian blends with other languages, and furtherly reveal information of culture exchange.

  6. Lepton-hadron scattering from scaling violation to HERA

    International Nuclear Information System (INIS)

    Sciulli, F.

    1992-01-01

    The author starts his lecture with a personal remembrance of the appearance of scaling, and its experimental verification with data from Gargamelle and SLAC. Feynmann's parton model was developing, and the discovery and acceptance of quarks fit into this model. He covers areas of the parton model related to u, d, and strange quark densities, and effects of nuclear environment on the parton densities. Deep inelastic scattering results provided significant data and many results for theoretical interpretation. The development and application of quantum chromodynamics (QCD) is reviewed and applied to deep inelastic scattering results. He reviews major sum rules, and takes a phenomenological perspective to describe how the sum rules follow simply from the quark model, and how experiments compare to the predictions. Finally he touches on the many new processes found and sought through the use of the deep inelastic process. The 'new' field of deep inelastic scattering is still going strong

  7. Experimental observation of energy dependence of saturation thickness of multiply scattered gamma photons

    International Nuclear Information System (INIS)

    Singh, Manpreet; Singh, Gurvinderjit; Singh, Bhajan; Sandhu, B.S.

    2008-01-01

    The gamma photons continue to soften in energy as the number of scatterings increases in the target having finite dimensions both in depth and lateral dimensions. The number of multiply scattered photons increases with an increase in target thickness, and saturates at a particular value of the target thickness known as saturation thickness (depth). The present measurements are carried out to study the energy dependence of saturation thickness of multiply scattered gamma photons from targets of various thicknesses. The scattered photons are detected by a properly shielded NaI(Tl) gamma ray detector placed at 90 deg. to the incident beam. We observe that the saturation thickness increases with increasing incident gamma photon energy. Monte Carlo calculations based upon the package developed by Bauer and Pattison [Compton scattering experiments at the HMI (1981), HMI-B 364, pp. 1-106] support the present experimental results

  8. Essential qualities of children’s favorite places

    Science.gov (United States)

    Prakoso, S.

    2018-03-01

    This paper builds on an existential-phenomenology framework to better understand the essential qualities of children’s favorite places. Based on grounded theory, this study focused on the everyday life experiences of 25 children (14 girls and 11 boys), aged 9–12 years and living in Jakarta, whose housing environments reflected various spatial qualities. The results showed that all children reported having one or more favorite places. Despite differences in type, scale, form, and location of children’s favorite places, each existential place was a supportive urban space conceived, perceived, and lived through the meaning and symbolic use given to it by a child. The essential qualities of children’s favorite places were accessibility, a location within route from home to other destinations (such as a friend’s house or school), and a space providing a sense of comfort, security, and social affiliation, as well as experiences that were restorative, personal, sensory, and materialistic. This study may have implications for the design of urban places that foster the formation of children’s favorite spaces by taking into account these essential qualities of children’s lived-existential spaces.

  9. Subsurface Scattered Photons: Friend or Foe? Improving visible light laser altimeter elevation estimates, and measuring surface properties using subsurface scattered photons

    Science.gov (United States)

    Greeley, A.; Kurtz, N. T.; Neumann, T.; Cook, W. B.; Markus, T.

    2016-12-01

    Photon counting laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographical Laser Altimeter System) - use individual photons with visible wavelengths to measure their range to target surfaces. ATLAS, the sole instrument on NASA's upcoming ICESat-2 mission, will provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters such as sea ice freeboard, and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons that travel through snow, ice, or water before scattering back to an altimeter receiving system travel farther than photons taking the shortest path between the observatory and the target of interest. These delayed photons produce a negative elevation bias relative to photons scattered directly off these surfaces. We use laboratory measurements of snow surfaces using a flight-tested laser altimeter (MABEL), and Monte Carlo simulations of backscattered photons from snow to estimate elevation biases from subsurface scattered photons. We also use these techniques to demonstrate the ability to retrieve snow surface properties like snow grain size.

  10. Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows

    DEFF Research Database (Denmark)

    Bekshaev, A. Ya; Angelsky, O. V.; Hanson, Steen Grüner

    2012-01-01

    between the forward- and backward-scattered momentum fluxes in the Rayleigh scattering regime appears due to the spin part of the internal energy flow in the incident beam. The transverse ponderomotive forces exerted on dielectric and conducting particles of different sizes are calculated and special......Based on the Mie theory and on the incident beam model via superposition of two plane waves, we analyze numerically the momentum flux of the field scattered by a spherical, nonmagnetic microparticle placed within the spatially inhomogeneous circularly polarized paraxial light beam. The asymmetry...

  11. Fully 3D iterative scatter-corrected OSEM for HRRT PET using a GPU

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Sang; Ye, Jong Chul, E-mail: kssigari@kaist.ac.kr, E-mail: jong.ye@kaist.ac.kr [Bio-Imaging and Signal Processing Lab., Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-no, Yuseong-gu, Daejon 305-701 (Korea, Republic of)

    2011-08-07

    Accurate scatter correction is especially important for high-resolution 3D positron emission tomographies (PETs) such as high-resolution research tomograph (HRRT) due to large scatter fraction in the data. To address this problem, a fully 3D iterative scatter-corrected ordered subset expectation maximization (OSEM) in which a 3D single scatter simulation (SSS) is alternatively performed with a 3D OSEM reconstruction was recently proposed. However, due to the computational complexity of both SSS and OSEM algorithms for a high-resolution 3D PET, it has not been widely used in practice. The main objective of this paper is, therefore, to accelerate the fully 3D iterative scatter-corrected OSEM using a graphics processing unit (GPU) and verify its performance for an HRRT. We show that to exploit the massive thread structures of the GPU, several algorithmic modifications are necessary. For SSS implementation, a sinogram-driven approach is found to be more appropriate compared to a detector-driven approach, as fast linear interpolation can be performed in the sinogram domain through the use of texture memory. Furthermore, a pixel-driven backprojector and a ray-driven projector can be significantly accelerated by assigning threads to voxels and sinograms, respectively. Using Nvidia's GPU and compute unified device architecture (CUDA), the execution time of a SSS is less than 6 s, a single iteration of OSEM with 16 subsets takes 16 s, and a single iteration of the fully 3D scatter-corrected OSEM composed of a SSS and six iterations of OSEM takes under 105 s for the HRRT geometry, which corresponds to acceleration factors of 125x and 141x for OSEM and SSS, respectively. The fully 3D iterative scatter-corrected OSEM algorithm is validated in simulations using Geant4 application for tomographic emission and in actual experiments using an HRRT.

  12. Back scattering interferometry revisited – A theoretical and experimental investigation

    DEFF Research Database (Denmark)

    Jørgensen, Thomas Martini; Jepsen, S. T.; Sørensen, Henrik Schiøtt

    2015-01-01

    A refractive index based detector based on so called back scattering interferometry (BSI) has been described in the literature as a unique optical method for measuring biomolecular binding interactions in solution. In this paper, we take a detailed look at the optical principle underlying this te...

  13. The role transverse momentum and spin in unpolarised semi inclusive deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, Francesca

    2008-10-15

    The azimuthal modulations of hadron production has been measured in Semi Inclusive Deep Inelastic Scattering processes at HERMES, and the results, compatible between different data taking periods, have been presented. Several systematic checks were performed in order to estimate possible biases, and finally the results are corrected for acceptance and QED higher order contributions. The corrected cosine moments are provided in 500 independent kinematical bins providing for the first time a full differential description of the cross-section azimuthal dependent terms. Their projections in the relevant kinematical variables have been presented for comparison with expectations. The results extracted for hydrogen and deuterium data do not show significative discrepancies, and this can be explained taking into account the u-dominance hypothesis in deep inelastic scattering. (orig.)

  14. The role transverse momentum and spin in unpolarised semi inclusive deep inelastic scattering

    International Nuclear Information System (INIS)

    Giordano, Francesca

    2008-10-01

    The azimuthal modulations of hadron production has been measured in Semi Inclusive Deep Inelastic Scattering processes at HERMES, and the results, compatible between different data taking periods, have been presented. Several systematic checks were performed in order to estimate possible biases, and finally the results are corrected for acceptance and QED higher order contributions. The corrected cosine moments are provided in 500 independent kinematical bins providing for the first time a full differential description of the cross-section azimuthal dependent terms. Their projections in the relevant kinematical variables have been presented for comparison with expectations. The results extracted for hydrogen and deuterium data do not show significative discrepancies, and this can be explained taking into account the u-dominance hypothesis in deep inelastic scattering. (orig.)

  15. 76 FR 54433 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to a...

    Science.gov (United States)

    2011-09-01

    ... from the 10- airgun array and a single airgun at shallow, intermediate, and deep water depths. The 180... signals and transfer the data to the on- board processing system. In addition, at least 72 sonobuoys will... the survey effort (55%) will occur in water 100-1,000 m (328-3,281 ft) deep, 32% will take place in...

  16. Polarization measurements in p-p elastic scattering between 398 and 572 MeV

    International Nuclear Information System (INIS)

    Aebischer, D.; Favier, B.; Greeniaus, L.G.; Hess, R.; Junod, A.; Lechanoine, C.; Nikles, J.C.; Rapin, D.; Werren, D.W.

    1977-01-01

    Measurements of the analyzing power for p-p elastic scattering at 398, 455, 497, 530, and 572 MeV are reported. A system of multiwire proportional chambers placed directly in a polarized beam was used to observe the angular region 1.5 0 0 . An increase in P(theta) is observed as a function of both scattering angle and incident kinetic energy. Electromagnetic-nuclear interference is used to obtain direct information in the nuclear interaction. (Auth.)

  17. HOMING PLACE: TOWARDS A PARTICIPATORY, AMBULANT AND CONVERSIVE METHODOLOGY

    OpenAIRE

    Myers, Misha

    2009-01-01

    The practice-as-research project Homing Place proposes a transferable percipient-led methodology of performance and research activated by ambulant and conversive mechanisms as the culmination of this research. The thesis is comprised of a range of activity that represents a moment and way of writing practice. Three artworks that comprise part of the practical component of this thesis--- way from home, Take me to a place and Yodel Rodeo-- each involved participation and contribu...

  18. Upcoming training sessions (up to end October) - Places available

    CERN Multimedia

    2016-01-01

    Please find below a list of training sessions scheduled to take place up to the end of October with places available.   Safety and Language courses are not included here, you will find an up-to-date list in the Training Catalogue. If you need a course which is not featured  in the catalogue, please contact one of the following: your supervisor, your Departmental Training Officer or the relevant learning specialist.  

  19. Application of multiple scattering theory in electron dosimetry

    International Nuclear Information System (INIS)

    Oliveira, M.J.G.S. de.

    1984-01-01

    A theoretical model, based on the Fermi-Eyges scattering theory, which takes into account the different heterogeneous media, is proposed. Heterogeneous phantoms were built in order to obtain curves of distribution of the absorbed dose. The agreement between the theoretical and experimental data prove that presented theory model is useful to describe the absorbed dose in homogeneous media. (M.A.C.) [pt

  20. A new potential of π-nucleus scattering and its application to nuclear structure study using elastic scattering and charge exchange reactions

    International Nuclear Information System (INIS)

    Durand, Gerard.

    1974-01-01

    First the different theories used for studying pion-nucleus scattering and especially Glauber microscopic model and Kisslinger optical model are summarized. From the comparison of these two theories it was concluded that Kisslinger's was better for studying pion-nucleus scattering near the (3/2-3/2) resonance. The potential was developed, with a local corrective term, proposed by this author. This new term arises from taking into account correctly the Lorentz transformation from the pion-nucleon center of mass to the pion nucleus center of mass system. A coupled-channel formalism was developed allowing the study of pion-nucleus elastic scattering and also the study of single and double charge exchange reactions on nucleus with N>Z. The influence of the new term and the shape of nucleon densities on π- 12 C scattering was studied near 200MeV. It was found that at the nucleus surface the neutron density was larger than the proton density. On the other hand, a maximum of sensibility to the different nuclear parameters was found near 180MeV and for elastic scattering angles greater than 100 deg. The calculations of the total cross section for simple and double charge exchange for 13 C and 63 Cu yielded results simular to those of previous theories and showed the same discrepancy between theory and experiment in the resonance region [fr

  1. What it takes to successfully implement technology for aging in place: focus groups with stakeholders

    NARCIS (Netherlands)

    Eveline J.M. Wouters; Katrien G. Luijkx; Hubertus J.M. Vrijhoef; Sebastiaan Theodorus Michaël Peek MSc

    2016-01-01

    BACKGROUND: There is a growing interest in empowering older adults to age in place by deploying various types of technology (ie, eHealth, ambient assisted living technology, smart home technology, and gerontechnology). However, initiatives aimed at implementing these technologies are complicated by

  2. Neutrino-electron scattering with a new source of CP violation

    International Nuclear Information System (INIS)

    Barranco, J; Delepine, D; Napsuciale, M; Yebra, A

    2016-01-01

    According to previous works, there is a possibility for increasing the difference between Dirac and Majorana cross section for a neutrino-electron scattering process if we take into account that the neutrino longitudinal polarization can be different from minus one. In this work, we study the difference between Dirac and Majorana scattering process but we introduce an additional effective interaction that depends on complex coupling constants for the neutrinos. Thus, in this more general case, we have two additional parameters, the phase of the neutrino couplings and one parameter ϵ related to the effective coupling of the new interaction. (paper)

  3. Theory of direct scattering of neutral and charged atoms

    Science.gov (United States)

    Franco, V.

    1979-01-01

    The theory for direct elastic and inelastic collisions between composite atomic systems formulated within the framework of the Glauber approximation is presented. It is shown that the phase-shift function is the sum of a point Coulomb contribution and of an expression in terms of the known electron-hydrogen-atom and proton-hydrogen-atom phase shift function. The scattering amplitude is reexpressed, the pure Coulomb scattering in the case of elastic collisions between ions is isolated, and the exact optical profile function is approximated by a first-order expansion in Glauber theory which takes into account some multiple collisions. The approximate optical profile function terms corresponding to interactions involving one and two electrons are obtained in forms of Meijer G functions and as a one-dimensional integral, and for collisions involving one or two neutral atoms, the scattering amplitude is further reduced to a simple closed-form expression.

  4. Laser light scatter experiments on plasma focus plant

    International Nuclear Information System (INIS)

    Wenzel, N.

    1985-01-01

    The plasma focus plant is an experiment on nuclear fusion, which is distinguished by a high neutron yield. Constituting an important method of diagnosis in plasma focussing, the laser light scatter method makes it possible, apart from finding the electron temperature and density, to determine the ion temperature resolved according to time and place and further, to study the occurrence of micro-turbulent effects. Starting from the theoretical basis, this dissertation describes light scatter measurements with ruby lasers on the POSEIDON plasma focus. They are given, together with earlier measurements on the Frascati 1 MJ plant and the Heidelberg 12 KJ plant. The development of the plasma parameters and the occurrence of superthermal light scatter events are discussed in connection with the dynamics of the plasma and the neutron emission characteristics of the individual plants. The results support the view that the thermo-nuclear neutron production at the plasma focus is negligible. Although the importance of micro-turbulent mechanisms in producing neutrons cannot be finally judged, important guidelines are given for the spatial and time relationships with plasma dynamics, plasma parameters and neutron emission. The work concludes with a comparison of all light scatter measurements at the plasma focus described in the literature. (orig.) [de

  5. Elastic and charge-exchange scattering of pions from 3He and 3H

    International Nuclear Information System (INIS)

    Gibson, B.F.; Hess, A.T.

    1976-04-01

    We have examined (1) the elastic scattering of pions from the isodoublet 3 He and 3 H and (2) the single charge-exchange reaction 3 H(π + ,π 0 ) 3 He using a formalism which incorporates the π-N multiple scattering to all orders. Emphasis is placed on numerical results which illustrate those features of the differential cross sections that are expected to be of interest to the experimentalist. Realistic nuclear densities corresponding to the form factors of elastic electron scattering were used. Charge-exchange cross sections are presented in terms of angular distributions for both the π 0 and the recoil nucleus. In elastic scattering, Coulomb-nuclear interference effects are significant at incident pion kinetic energies of less than 100 MeV; form factor effects are apparent at large momentum transfer. Comparison of data and theory for π + - 3 He with that for π - - 3 He (or the conjugate π + - 3 H) will provide a test of the convergence of the fixed scatterer, multiple-scattering formalism utilized in this report. 21 figures

  6. On the necessity of taking into account the contribution of multiphoton exchanges into electron-proton deep inelastic scattering

    International Nuclear Information System (INIS)

    Savrin, V.I.

    1979-01-01

    The hypothesis that the multiphoton exchanges give a substantial contribution to the electron-proton inclusive scattering is formulated. The hypothesis explains the observed violation of the Bjorken scaling law. As it is shown, the mechanism of such intensification of multiple exchanges may by connected with the properties of the processes of hadron multiproduction in the deep inelastic field. This results in the necessity to calculate the inclusive cross section in all electromagnetic coupling constant orders. This has been done in the framework of the density matrix method. As a result the deep inelastic scattering cross section calculated without application of the perturbation theory reveals a new property of the scaling invariance and leads to the natural relationship of structural functions with electromagnetic proton form-factors on the exclusive threshold

  7. A drift chamber tracking system for muon scattering tomography applications

    Science.gov (United States)

    Burns, J.; Quillin, S.; Stapleton, M.; Steer, C.; Snow, S.

    2015-10-01

    Muon scattering tomography (MST) allows the identification of shielded high atomic number (high-Z) materials by measuring the scattering angle of cosmic ray muons passing through an inspection region. Cosmic ray muons scatter to a greater degree due to multiple Coulomb scattering in high-Z materials than low-Z materials, which can be measured as the angular difference between the incoming and outgoing trajectories of each muon. Measurements of trajectory are achieved by placing position sensitive particle tracking detectors above and below the inspection volume. By localising scattering information, the point at which a series of muons scatter can be used to reconstruct an image, differentiating high, medium and low density objects. MST is particularly useful for differentiating between materials of varying density in volumes that are difficult to inspect visually or by other means. This paper will outline the experimental work undertaken to develop a prototype MST system based on drift chamber technology. The planar drift chambers used in this prototype measure the longitudinal interaction position of an ionising particle from the time taken for elections, liberated in the argon (92.5%), carbon dioxide (5%), methane (2.5%) gas mixture, to reach a central anode wire. Such a system could be used to enhance the detection of shielded radiological material hidden within regular shipping cargo.

  8. High-Energy String Scattering Amplitudes and Signless Stirling Number Identity

    Directory of Open Access Journals (Sweden)

    Jen-Chi Lee

    2012-07-01

    Full Text Available We give a complete proof of a set of identities (7 proposed recently from calculation of high-energy string scattering amplitudes. These identities allow one to extract ratios among high-energy string scattering amplitudes in the fixed angle regime from high-energy amplitudes in the Regge regime. The proof is based on a signless Stirling number identity in combinatorial theory. The results are valid for arbitrary real values L rather than only for L=0,1 proved previously. The identities for non-integer real value L were recently shown to be realized in high-energy compactified string scattering amplitudes [He S., Lee J.C., Yang Y., arXiv:1012.3158]. The parameter L is related to the mass level of an excited string state and can take non-integer values for Kaluza-Klein modes.

  9. How to simplify transmission-based scatter correction for clinical application

    International Nuclear Information System (INIS)

    Baccarne, V.; Hutton, B.F.

    1998-01-01

    Full text: The performances of ordered subsets (OS) EM reconstruction including attenuation, scatter and spatial resolution correction are evaluated using cardiac Monte Carlo data. We demonstrate how simplifications in the scatter model allow one to correct SPECT data for scatter in terms of quantitation and quality in a reasonable time. Initial reconstruction of the 20% window is performed including attenuation correction (broad beam μ values), to estimate the activity quantitatively (accuracy 3%), but not spatially. A rough reconstruction with 2 iterations (subset size: 8) is sufficient for subsequent scatter correction. Estimation of primary photons is obtained by projecting the previous distribution including attenuation (narrow beam μ values). Estimation of the scatter is obtained by convolving the primary estimates by a depth dependent scatter kernel, and scaling the result by a factor calculated from the attenuation map. The correction can be accelerated by convolving several adjacent planes with the same kernel, and using an average scaling factor. Simulation of the effects of the collimator during the scatter correction was demonstrated to be unnecessary. Final reconstruction is performed using 6 iterations OSEM, including attenuation (narrow beam μ values) and spatial resolution correction. Scatter correction is implemented by incorporating the estimated scatter as a constant offset in the forward projection step. The total correction + reconstruction (64 proj. 40x128 pixel) takes 38 minutes on a Sun Sparc 20. Quantitatively, the accuracy is 7% in a reconstructed slice. The SNR inside the whole myocardium (defined from the original object), is equal to 2.1 and 2.3 - in the corrected and the primary slices respectively. The scatter correction preserves the myocardium to ventricle contrast (primary: 0.79, corrected: 0.82). These simplifications allow acceleration of correction without influencing the quality of the result

  10. Generalized Chou-Yang model for p(antip)p and. lambda. (anti. lambda. )p elastic scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-E-Aleem; Azhar, I.A.

    1988-06-01

    The various characteristics of pp and antipp elastic scattering at high energies are explained by using the generalized Chou-Yang model which takes into consideration the anisotropic scattering of objects constituting colliding particles. The model is also used to extract the form factor and radius of the ..lambda.. particle.

  11. Teachable Moment: Google Earth Takes Us There

    Science.gov (United States)

    Williams, Ann; Davinroy, Thomas C.

    2015-01-01

    In the current educational climate, where clearly articulated learning objectives are required, it is clear that the spontaneous teachable moment still has its place. Authors Ann Williams and Thomas Davinroy think that instructors from almost any discipline can employ Google Earth as a tool to take advantage of teachable moments through the…

  12. On the radiative corrections of deep inelastic scattering of muon neutrino on nucleon

    International Nuclear Information System (INIS)

    So Sang Guk

    1986-01-01

    The radiative corrections of deep inelastic scattering process VΜP→ ΜN are considered. Matrix element which takes Feynman one photon exchange diagrams into account at high transfer momentum are used. Based on calculation of the matrix element one can obtain matrix element for given process. It is shown that the effective cross section which takes one photon exchange into account is obtained. (author)

  13. Impurity scattering in unconventional density waves: non-crossing approximation for arbitrary scattering rate

    International Nuclear Information System (INIS)

    Vanyolos, Andras; Dora, Balazs; Maki, Kazumi; Virosztek, Attila

    2007-01-01

    We present a detailed theoretical study on the thermodynamic properties of impure quasi-one-dimensional unconventional charge and spin density waves in the framework of mean-field theory. The impurities are of the ordinary non-magnetic type. Making use of the full self-energy that takes into account all ladder- and rainbow-type diagrams, we are able to calculate the relevant low temperature quantities for arbitrary scattering rates. These are the density of states, specific heat and the shift in the chemical potential. Our results therefore cover the whole parameter space: they include both the self-consistent Born and the resonant unitary limits, and most importantly give exact results in between

  14. Neutron scattering lengths of molten metals determined by gravity refractometry

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, G.; Waschkowski, W.; Koester, L. (Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik)

    1990-10-01

    Very accurate values of the coherent neutron scattering lengths of the heavy elements Bi and Pb are important quantities for the investigation of the electric interactions of neutrons with atoms. We performed, therefore, a series of experiments to determine accurate scattering lengths by means of neutron gravity refractometry on liquid mirrors of molten metals. The possible perturbations of the necessary reflection measurements have been discussed in details. After taking into account the uncertainties and corrections associated with observable perturbations we obtained the following values for bound atoms: b(Bi)=8.532{plus minus}0.002 fm, b(Pb)=9.405{plus minus}0.003 fm, b(Tl)=8.776{plus minus}0.005 fm, b(Sn)=6.225{plus minus}0.002 fm and b(Ga)=7.288{plus minus}0.002 fm. These data are corrected for the local field effect occuring in the reflection on liquids. The recently reported results for the neutron's electric polarizability and the neutron-electron scattering length are supported by the Bi- and Pb-scattering length of this work. (orig.).

  15. Neutron scattering lengths of molten metals determined by gravity refractometry

    International Nuclear Information System (INIS)

    Reiner, G.; Waschkowski, W.; Koester, L.

    1990-01-01

    Very accurate values of the coherent neutron scattering lengths of the heavy elements Bi and Pb are important quantities for the investigation of the electric interactions of neutrons with atoms. We performed, therefore, a series of experiments to determine accurate scattering lengths by means of neutron gravity refractometry on liquid mirrors of molten metals. The possible perturbations of the necessary reflection measurements have been discussed in details. After taking into account the uncertainties and corrections associated with observable perturbations we obtained the following values for bound atoms: b(Bi)=8.532±0.002 fm, b(Pb)=9.405±0.003 fm, b(Tl)=8.776±0.005 fm, b(Sn)=6.225±0.002 fm and b(Ga)=7.288±0.002 fm. These data are corrected for the local field effect occuring in the reflection on liquids. The recently reported results for the neutron's electric polarizability and the neutron-electron scattering length are supported by the Bi- and Pb-scattering length of this work. (orig.)

  16. Neutron scattering lengths of molten metals determined by gravity refractometry

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, G; Waschkowski, W; Koester, L [Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik

    1990-10-01

    Very accurate values of the coherent neutron scattering lengths of the heavy elements Bi and Pb are important quantities for the investigation of the electric interactions of neutrons with atoms. We performed, therefore, a series of experiments to determine accurate scattering lengths by means of neutron gravity refractometry on liquid mirrors of molten metals. The possible perturbations of the necessary reflection measurements have been discussed in details. After taking into account the uncertainties and corrections associated with observable perturbations we obtained the following values for bound atoms: b(Bi)=8.532{plus minus}0.002 fm, b(Pb)=9.405{plus minus}0.003 fm, b(Tl)=8.776{plus minus}0.005 fm, b(Sn)=6.225{plus minus}0.002 fm and b(Ga)=7.288{plus minus}0.002 fm. These data are corrected for the local field effect occuring in the reflection on liquids. The recently reported results for the neutron's electric polarizability and the neutron-electron scattering length are supported by the Bi- and Pb-scattering length of this work. (orig.).

  17. Impact of optical phonon scattering on inversion channel mobility in 4H-SiC trenched MOSFETs

    Science.gov (United States)

    Kutsuki, Katsuhiro; Kawaji, Sachiko; Watanabe, Yukihiko; Onishi, Toru; Fujiwara, Hirokazu; Yamamoto, Kensaku; Yamamoto, Toshimasa

    2017-04-01

    Temperature characteristics of the channel mobility were investigated for 4H-SiC trenched MOSFETs in the range from 30 to 200 °C. The conventional model of channel mobility limited by carrier scattering is based on Si-MOSFETs and shows a greatly different channel mobility from the experimental value, especially at high temperatures. On the other hand, our improved mobility model taking into account optical phonon scattering yielded results in excellent agreement with experimental results. Moreover, the major factors limiting the channel mobility were found to be Coulomb scattering in a low effective field (<0.7 MV/cm) and optical phonon scattering in a high effective field.

  18. Measurement of elastic light scattering from two optically trapped microspheres and red blood cells in a transparent medium.

    Science.gov (United States)

    Kinnunen, Matti; Kauppila, Antti; Karmenyan, Artashes; Myllylä, Risto

    2011-09-15

    Optical tweezers can be used to manipulate small objects and cells. A trap can be used to fix the position of a particle during light scattering measurements. The places of two separately trapped particles can also be changed. In this Letter we present elastic light scattering measurements as a function of scattering angle when two trapped spheres are illuminated with a He-Ne laser. This setup is suitable for trapping noncharged homogeneous spheres. We also demonstrate measurement of light scattering patterns from two separately trapped red blood cells. Two different illumination schemes are used for both samples.

  19. Rigorous results in quantum theory of stimulated Raman scattering

    International Nuclear Information System (INIS)

    Rupasov, V.I.

    1993-01-01

    The modern theory of stimulated Raman scattering (SRS) of light in resonant media is based on the investigations of appropriate integrable models of the classical field theory by means of the inverse problem method. But, strictly speaking, Raman scattering is a pure spontaneous process and, hence, it is necessary to take into account a quantum nature of the phenomenon. Moreover, there are some questions and problems, for example, the problem of scattered photons statistics, which can be studied only within the framework of the quantum field theory. We have developed an exact quantum theory of SRS for the case of point-like geometry of resonant media (two-level atoms or harmonic oscillators) of the radius r much-lt λ 0 , where λ 0 is the typical wavelength of the light, but all our results are also valid for the case of short extended medium of the length L much-lt l p (l p is the typical size of pulses) when the spatially homogeneous approximation is valid

  20. Variational lower bound on the scattering length

    International Nuclear Information System (INIS)

    Rosenberg, L.; Spruch, L.

    1975-01-01

    The scattering length A characterizes the zero-energy scattering of one system by another. It was shown some time ago that a variational upper bound on A could be obtained using methods, of the Rayleigh-Ritz type, which are commonly employed to obtain upper bounds on energy eigenvalues. Here we formulate a method for obtaining a variational lower bound on A. Once again the essential idea is to express the scattering length as a variational estimate plus an error term and then to reduce the problem of bounding the error term to one involving bounds on energy eigenvalues. In particular, the variational lower bound on A is rigorously established provided a certin modified Hamiltonian can be shown to have no discrete states lying below the level of the continuum threshold. It is unfortunately true that necessary conditions for the existence of bound states are not available for multiparticle systems in general. However, in the case of positron-atom scattering the adiabatic approximation can be introduced as an (essentially) solvable comparison problem to rigorously establish the nonexistence of bound states of the modified Hamiltonian. It has recently been shown how the validity of the variational upper bound on A can be maintained when the target ground-state wave function is imprecisely known. Similar methods can be used to maintain the variational lower bound on A. Since the bound is variational, the error in the calculated scattering length will be of second order in the error in the wave function. The use of the adiabatic approximation in the present context places no limitation in principle on the accuracy achievable

  1. Abstract ID: 176 Geant4 implementation of inter-atomic interference effect in small-angle coherent X-ray scattering for materials of medical interest.

    Science.gov (United States)

    Paternò, Gianfranco; Cardarelli, Paolo; Contillo, Adriano; Gambaccini, Mauro; Taibi, Angelo

    2018-01-01

    Advanced applications of digital mammography such as dual-energy and tomosynthesis require multiple exposures and thus deliver higher dose compared to standard mammograms. A straightforward manner to reduce patient dose without affecting image quality would be removal of the anti-scatter grid, provided that the involved reconstruction algorithms are able to take the scatter figure into account [1]. Monte Carlo simulations are very well suited for the calculation of X-ray scatter distribution and can be used to integrate such information within the reconstruction software. Geant4 is an open source C++ particle tracking code widely used in several physical fields, including medical physics [2,3]. However, the coherent scattering cross section used by the standard Geant4 code does not take into account the influence of molecular interference. According to the independent atomic scattering approximation (the so-called free-atom model), coherent radiation is indistinguishable from primary radiation because its angular distribution is peaked in the forward direction. Since interference effects occur between x-rays scattered by neighbouring atoms in matter, it was shown experimentally that the scatter distribution is affected by the molecular structure of the target, even in amorphous materials. The most important consequence is that the coherent scatter distribution is not peaked in the forward direction, and the position of the maximum is strongly material-dependent [4]. In this contribution, we present the implementation of a method to take into account inter-atomic interference in small-angle coherent scattering in Geant4, including a dedicated data set of suitable molecular form factor values for several materials of clinical interest. Furthermore, we present scatter images of simple geometric phantoms in which the Rayleigh contribution is rigorously evaluated. Copyright © 2017.

  2. Quantum characteristics of occurrence scattering time in two-component non-ideal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang, 712-702 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590 (United States)

    2015-10-30

    The quantum diffraction and plasma screening effects on the occurrence time for the collision process are investigated in two-component non-ideal plasmas. The micropotential model taking into account the quantum diffraction and screening with the eikonal analysis is employed to derive the occurrence time as functions of the collision energy, density parameter, Debye length, de Broglie wavelength, and scattering angle. It is shown that the occurrence time for forward scattering directions decreases the tendency of time-advance with increasing scattering angle and de Broglie wavelength. However, it is found that the occurrence time shows the oscillatory time-advance and time-retarded behaviors with increasing scattering angle. It is found that the plasma screening effect enhances the tendency of time-advance on the occurrence time for forward scattering regions. It is also shown the quantum diffraction effect suppresses the occurrence time advance for forward scattering angles. In addition, it is shown that the occurrence time advance decreases with an increase of the collision energy. - Highlights: • The quantum diffraction and screening effects on the occurrence scattering time are investigated in non-ideal plasmas. • It is shown the quantum diffraction effect suppresses the occurrence time advance for forward scattering angles. • It is found that the plasma screening effect enhances the tendency of time-advance on the occurrence time.

  3. Multiple-scattering theory. New developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Arthur

    2007-12-04

    Multiple-scattering theory (MST) is a very efficient technique for calculating the electronic properties of an assembly of atoms. It provides explicitly the Green function, which can be used in many applications such as magnetism, transport and spectroscopy. This work gives an overview on recent developments of multiple-scattering theory. One of the important innovations is the multiple scattering implementation of the self-interaction correction approach, which enables realistic electronic structure calculations of systems with localized electrons. Combined with the coherent potential approximation (CPA), this method can be applied for studying the electronic structure of alloys and as well as pseudo-alloys representing charge and spin disorder. This formalism is extended to finite temperatures which allows to investigate phase transitions and thermal fluctuations in correlated materials. Another novel development is the implementation of the self-consistent non-local CPA approach, which takes into account charge correlations around the CPA average and chemical short range order. This formalism is generalized to the relativistic treatment of magnetically ordered systems. Furthermore, several improvements are implemented to optimize the computational performance and to increase the accuracy of the KKR Green function method. The versatility of the approach is illustrated in numerous applications. (orig.)

  4. Multiple-scattering theory. New developments and applications

    International Nuclear Information System (INIS)

    Ernst, Arthur

    2007-01-01

    Multiple-scattering theory (MST) is a very efficient technique for calculating the electronic properties of an assembly of atoms. It provides explicitly the Green function, which can be used in many applications such as magnetism, transport and spectroscopy. This work gives an overview on recent developments of multiple-scattering theory. One of the important innovations is the multiple scattering implementation of the self-interaction correction approach, which enables realistic electronic structure calculations of systems with localized electrons. Combined with the coherent potential approximation (CPA), this method can be applied for studying the electronic structure of alloys and as well as pseudo-alloys representing charge and spin disorder. This formalism is extended to finite temperatures which allows to investigate phase transitions and thermal fluctuations in correlated materials. Another novel development is the implementation of the self-consistent non-local CPA approach, which takes into account charge correlations around the CPA average and chemical short range order. This formalism is generalized to the relativistic treatment of magnetically ordered systems. Furthermore, several improvements are implemented to optimize the computational performance and to increase the accuracy of the KKR Green function method. The versatility of the approach is illustrated in numerous applications. (orig.)

  5. A hybrid approach to simulate multiple photon scattering in X-ray imaging

    International Nuclear Information System (INIS)

    Freud, N.; Letang, J.-M.; Babot, D.

    2005-01-01

    A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or γ-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results

  6. A hybrid approach to simulate multiple photon scattering in X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: nicolas.freud@insa-lyon.fr; Letang, J.-M. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2005-01-01

    A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or {gamma}-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results.

  7. Permanent scatterer InSAR processing: Forsmark

    International Nuclear Information System (INIS)

    Dehls, John F.

    2006-04-01

    . Surfaces fitted to the three datasets did not reveal any significant spatial patterns related to the fracture zones. Analysis of movement trends across regional lineaments does not support the hypothesis of slow, aseismic vertical movement taking place along these features. Horizontal movement cannot be ruled out. For future monitoring applications, it would be useful to install artificial reflectors in well chosen locations. It would be advantageous if SKB arranged for the acquisition of both ENVISAT and Radarsat images over possible monitoring sites on a regular basis for future analysis

  8. Permanent scatterer InSAR processing: Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Dehls, John F [Geological Survey of Norway, Trondheim (Norway)

    2006-04-15

    errors. Surfaces fitted to the three datasets did not reveal any significant spatial patterns related to the fracture zones. Analysis of movement trends across regional lineaments does not support the hypothesis of slow, aseismic vertical movement taking place along these features. Horizontal movement cannot be ruled out. For future monitoring applications, it would be useful to install artificial reflectors in well chosen locations. It would be advantageous if SKB arranged for the acquisition of both ENVISAT and Radarsat images over possible monitoring sites on a regular basis for future analysis.

  9. Multiple scattering effects in fast neutron polarization experiments using high-pressure helium-xenon gas scintillators as analyzers

    International Nuclear Information System (INIS)

    Tornow, W.; Mertens, G.

    1977-01-01

    In order to study multiple scattering effects both in the gas and particularly in the solid materials of high-pressure gas scintillators, two asymmetry experiments have been performed by scattering of 15.6 MeV polarized neutrons from helium contained in stainless steel vessels of different wall thicknesses. A monte Carlo computer code taking into account the polarization dependence of the differential scattering cross sections has been written to simulate the experiments and to calculate corrections for multiple scattering on helium, xenon and the gas containment materials. Besides the asymmetries for the various scattering processes involved, the code yields time-of-flight spectra of the scattered neutrons and pulse height spectra of the helium recoil nuclei in the gas scintillator. The agreement between experimental results and Monte Carlo calculations is satisfactory. (Auth.)

  10. Specimen environments in thermal neutron scattering experiments

    International Nuclear Information System (INIS)

    Cebula, D.J.

    1980-11-01

    This report is an attempt to collect into one place outline information concerning the techniques used and basic design of sample environment apparatus employed in neutron scattering experiments. Preliminary recommendations for the specimen environment programme of the SNS are presented. The general conclusion reached is that effort should be devoted towards improving reliability and efficiency of operation of specimen environment apparatus and developing systems which are robust and easy to use, rather than achieving performance at the limits of technology. (author)

  11. Monte Carlo simulation of virtual compton scattering at MAMI

    International Nuclear Information System (INIS)

    D'Hose, N.; Ducret, J.E.; Gousset, TH.; Guichon, P.A.M.; Kerhoas, S.; Lhuillier, D.; Marchand, C.; Marchand, D.; Martino, J.; Mougey, J.; Roche, J.; Vanderhaeghen, M.; Vernin, P.; Bohm, H.; Distler, M.; Edelhoff, R.; Friedrich, J.M.; Geiges, R.; Jennewein, P.; Kahrau, M.; Korn, M.; Kramer, H.; Krygier, K.W.; Kunde, V.; Liesenfeld, A.; Merkel, H.; Merle, K.; Neuhausen, R.; Pospischil, TH.; Rosner, G.; Sauer, P.; Schmieden, H.; Schardt, S.; Tamas, G.; Wagner, A.; Walcher, TH.; Wolf, S.; Hyde-Wright, CH.; Boeglin, W.U.; Van de Wiele, J.

    1996-01-01

    The Monte Carlo simulation developed specially for the VCS experiments taking place at MAMI in fully described. This simulation can generate events according to the Bethe-Heitler + Born cross section behaviour and takes into account resolution deteriorating effects. It is used to determine solid angles for the various experimental settings. (authors)

  12. Effect of the single-scattering phase function on light transmission through disordered media with large inhomogeneities

    International Nuclear Information System (INIS)

    Marinyuk, V V; Sheberstov, S V

    2017-01-01

    We calculate the total transmission coefficient (transmittance) of a disordered medium with large (compared to the light wavelength) inhomogeneities. To model highly forward scattering in the medium we take advantage of the Gegenbauer kernel phase function. In a subdiffusion thickness range, the transmittance is shown to be sensitive to the specific form of the single-scattering phase function. The effect reveals itself at grazing angles of incidence and originates from small-angle multiple scattering of light. Our results are in a good agreement with numerical solutions to the radiative transfer equation. (paper)

  13. Roughness characterization of EUV multilayer coatings and ultra-smooth surfaces by light scattering

    Science.gov (United States)

    Trost, M.; Schröder, S.; Lin, C. C.; Duparré, A.; Tünnermann, A.

    2012-09-01

    Optical components for the extreme ultraviolet (EUV) face stringent requirements for surface finish, because even small amounts of surface and interface roughness can cause significant scattering losses and impair image quality. In this paper, we investigate the roughness evolution of Mo/Si multilayers by analyzing the scattering behavior at a wavelength of 13.5 nm as well as taking atomic force microscopy (AFM) measurements before and after coating. Furthermore, a new approach to measure substrate roughness is presented, which is based on light scattering measurements at 405 nm. The high robustness and sensitivity to roughness of this method are illustrated using an EUV mask blank with a highspatial frequency roughness of as low as 0.04 nm.

  14. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kroes, Geert-Jan, E-mail: g.j.kroes@chem.leidenuniv.nl; Pavanello, Michele [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Blanco-Rey, María [Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20080 Donostia-San Sebastián (Spain); Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Alducin, Maite [Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Auerbach, Daniel J. [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Max Planck Institute for Biophysical Chemistry, Göttingen (Germany); Institute for Physical Chemistry, Georg-August University of Göttingen, Göttingen (Germany)

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction (“EF”) model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated “post” (“p”) the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy

  15. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111).

    Science.gov (United States)

    Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction ("EF") model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated "post" ("p") the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the

  16. The investigation of Fe-Mn-based alloys with shape memory effect by small-angle scattering of polarized neutrons

    International Nuclear Information System (INIS)

    Kopitsa, G.P.; Runov, V.V.; Grigoriev, S.V.; Bliznuk, V.V.; Gavriljuk, V.G.; Glavatska, N.I.

    2003-01-01

    The small-angle polarized neutron scattering (SAPNS) technique has been used to study a nuclear and magnetic homogeneity in the distribution of both substituent (Si, Cr, Ni) and interstitial (C, N) alloying elements on the mesoscopic range in Fe-Mn-based alloys with shape memory effect (SME). The four groups of alloys with various basic compositions: FeMn 18 (wt%), FeMn 20 Si 6 , FeMn 20 Cr 9 N 0.2 and FeMn 17 Cr 9 Ni 4 Si 6 were investigated. It was found that the small-angle scattering of neutrons and depolarization on these alloys are very small altogether. The scattering did not exceed 1.5% from the incident beam and depolarization ∼2% for all samples. It means that these alloys are well nuclear and magnetically homogeneous on the scale of 10-1000 A. However, the difference in the homogeneity depending on the compositions still takes place. Thus, the adding of Si in FeMn 18 and FeMn 20 Cr 9 N 0.2 alloys improves the homogeneity pronouncedly. At once, the effect of the doping by C or N atoms on the homogeneity in FeMn 20 Si 6 and FeMn 17 Cr 9 Ni 4 Si 6 alloys is multivalued and depend on the presence of substitutional atoms (Ni and Cr). The capability of SAPNS as a method for the study of mesoscopic homogeneity in materials with SME and testing of the quality of their preparation is discussed

  17. The calibration of elastic scattering angular distribution at low energies on HIRFL-RIBLL

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.X. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhang, G.L., E-mail: zgl@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Lin, C.J., E-mail: cjlin@ciae.ac.cn [China Institute of Atomic Energy, Beijing 102413 (China); Qu, W.W. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow 215123 (China); Yang, L.; Ma, N.R. [China Institute of Atomic Energy, Beijing 102413 (China); Zheng, L. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Jia, H.M.; Sun, L.J. [China Institute of Atomic Energy, Beijing 102413 (China); Liu, X.X.; Chu, X.T.; Yang, J.C. [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Wang, J.S.; Xu, S.W.; Ma, P.; Ma, J.B.; Jin, S.L.; Bai, Z.; Huang, M.R. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zang, H.L. [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); and others

    2017-02-21

    The precise calibration of angular distribution of heavy-ion elastic scattering induced by Radioactive Ion Beams (RIBs) at energies around Coulomb barrier on the Radioactive Ion Beam Line in Lanzhou (RIBLL) at the Heavy-Ion Research Facility in Lanzhou (HIRFL) is presented. The beam profile and the scattering angles on the target are deduced by a measurement with two Multi Wire Proportional Chambers (MWPC), and four sets of detector telescopes (including Double-sided Silicon Strip Detectors (DSSD) placed systematically along the beam line, incorporating with Monte Carlo simulation. The MWPCs were used to determine the beam trajectory before the target, and the energies and the positions of scattered particles on the detectors were measured by the DSSDs. Minor corrections on the beam spot and the detector position are performed by assuming the pure Rutherford scattering at angles which are smaller than the related grazing angle. This method is applied for the elastic scattering of {sup 17}F on {sup 89}Y target at E{sub lab}=59 MeV and 50 MeV.

  18. The Mathematical Basis of the Inverse Scattering Problem for Cracks from Near-Field Data

    Directory of Open Access Journals (Sweden)

    Yao Mao

    2015-01-01

    Full Text Available We consider the acoustic scattering problem from a crack which has Dirichlet boundary condition on one side and impedance boundary condition on the other side. The inverse scattering problem in this paper tries to determine the shape of the crack and the surface impedance coefficient from the near-field measurements of the scattered waves, while the source point is placed on a closed curve. We firstly establish a near-field operator and focus on the operator’s mathematical analysis. Secondly, we obtain a uniqueness theorem for the shape and surface impedance. Finally, by using the operator’s properties and modified linear sampling method, we reconstruct the shape and surface impedance.

  19. Directional Dipole Model for Subsurface Scattering

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Hachisuka, Toshiya; Kjeldsen, Thomas Kim

    2014-01-01

    Rendering translucent materials using Monte Carlo ray tracing is computationally expensive due to a large number of subsurface scattering events. Faster approaches are based on analytical models derived from diffusion theory. While such analytical models are efficient, they miss out on some...... point source diffusion. A ray source corresponds better to the light that refracts through the surface of a translucent material. Using this ray source, we are able to take the direction of the incident light ray and the direction toward the point of emergence into account. We use a dipole construction...

  20. Fluence determination by scattering measurements

    CERN Document Server

    Albergo, S; Potenza, R; Tricomi, A; Pillon, M; Angarano, M M; Creanza, D; De Palma, M

    2000-01-01

    An alternative method to determine particle fluence is proposed, which is particularly suitable for irradiations with low-energy charged-particle beams. The fluence is obtained by measuring the elastic scattering produced by a composite thin target placed upstream of the sample. The absolute calibration is performed by comparison with the measured radioactivation of vanadium and copper samples. The composite thin target, made of aluminium, carbon and gold, allows not only the fluence to be measured, but also a continuous monitoring of the beam space distribution. Experimental results with a 27 MeV proton beam are reported and compared with Monte Carlo simulations. (7 refs).

  1. On the intensity and polarization of radiation emerging from a thick Rayleigh scattering atmosphere

    Directory of Open Access Journals (Sweden)

    V. Natraj

    2011-09-01

    Full Text Available We compute the intensity and polarization of reflected and transmitted light in optically thick Rayleigh scattering atmospheres. We obtain results accurate to seven decimal places. The results have been validated using a variety of methods.

  2. High-speed scattering of charged and uncharged particles in general relativity

    International Nuclear Information System (INIS)

    Westphal, K.

    1985-01-01

    After a brief consideration of the high-speed scattering of two point charges high-speed scattering is thoroughly discussed for a charged particle by a fixed mass and of two uncharged particles of comparable masses. Perturbation technique is used over Minkowski spacetime in the de Donder gauge and the field equations and the resulting equations of motion (which take the reaction of the particles' quasistatic self-field into account) are solved by iteration. The obtained energy-momentum conservation laws allow the computation of second-order corrections for the scattering angle and the cross section. The asymptotic structure of the far-field indicates synchrotron radiation (electromagnetic and gravitational, respectively) which causes an energy loss whose reaction on the motion is briefly considered in the low-velocity limit including bound motion. (For neutral particles this is a third-order effect.) (author)

  3. Ocular Straylight and Artificial Lenses

    NARCIS (Netherlands)

    G.M. Łabuz (Grzegorz)

    2017-01-01

    markdownabstractDisability glare has often been related to visual symptoms that appear under different light conditions. Disability glare originates from light scattering (straylight) that takes place in the eye, and is a consequence of the projection of the scattered (unwanted) light onto the

  4. High-energy scattering of particles with anomalous magnetic moments in quantum field theory

    International Nuclear Information System (INIS)

    Nguen Suan Khan; Pervushin, V.N.

    1976-01-01

    Eikonal type representations taking into account the anomalous magnetic moments of nucleons are obtained for the amplitude of pion-nucleon and nucleon-nucleon scattering in the asymptotic region s → infinity, (t) (<<) s in the framework of nonrenormalizable quantum field theory. The anomalous magnetic moment leads to additional terms in the amplitude which describe the spin flips in the scattering process. It is shown that the renormalization problem does not arise in the asymptotics s → infinity. As an application the Coulomb interference is considered

  5. Eliminating high-order scattering effects in optical microbubble sizing.

    Science.gov (United States)

    Qiu, Huihe

    2003-04-01

    Measurements of bubble size and velocity in multiphase flows are important in much research and many industrial applications. It has been found that high-order refractions have great impact on microbubble sizing by use of phase-Doppler anemometry (PDA). The problem has been investigated, and a model of phase-size correlation, which also takes high-order refractions into consideration, is introduced to improve the accuracy of bubble sizing. Hence the model relaxes the assumption of a single-scattering mechanism in a conventional PDA system. The results of simulation based on this new model are compared with those based on a single-scattering-mechanism approach or a first-order approach. An optimization method for accurately sizing air bubbles in water has been suggested.

  6. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  7. Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy

    Science.gov (United States)

    Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.

    2017-11-01

    We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.

  8. A multifrequency MUSIC algorithm for locating small inhomogeneities in inverse scattering

    International Nuclear Information System (INIS)

    Griesmaier, Roland; Schmiedecke, Christian

    2017-01-01

    We consider an inverse scattering problem for time-harmonic acoustic or electromagnetic waves with sparse multifrequency far field data-sets. The goal is to localize several small penetrable objects embedded inside an otherwise homogeneous background medium from observations of far fields of scattered waves corresponding to incident plane waves with one fixed incident direction but several different frequencies. We assume that the far field is measured at a few observation directions only. Taking advantage of the smallness of the scatterers with respect to wavelength we utilize an asymptotic representation formula for the far field to design and analyze a MUSIC-type reconstruction method for this setup. We establish lower bounds on the number of frequencies and receiver directions that are required to recover the number and the positions of an ensemble of scatterers from the given measurements. Furthermore we briefly sketch a possible application of the reconstruction method to the practically relevant case of multifrequency backscattering data. Numerical examples are presented to document the potentials and limitations of this approach. (paper)

  9. Effect of detector collimator and sample thickness on 0.662 MeV multiply Compton-scattered gamma rays

    International Nuclear Information System (INIS)

    Singh, Manpreet; Singh, Gurvinderjit; Sandhu, B.S.; Singh, Bhajan

    2006-01-01

    The simultaneous effect of detector collimator and sample thickness on 0.662 MeV multiply Compton-scattered gamma photons was studied experimentally. An intense collimated beam, obtained from 6-Ci 137 Cs source, is allowed to impinge on cylindrical aluminium samples of varying diameter and the scattered photons are detected by a 51 mmx51 mm NaI(Tl) scintillation detector placed at 90 o to the incident beam. The full energy peak corresponding to singly scattered events is reconstructed analytically. The thickness at which the multiply scattered events saturate is determined for different detector collimators. The parameters like signal-to-noise ratio and multiply scatter fraction (MSF) have also been deduced and support the work carried out by Shengli et al. [2000. EGS4 simulation of Compton scattering for nondestructive testing. KEK proceedings 200-20, Tsukuba, Japan, pp. 216-223] and Barnea et al. [1995. A study of multiple scattering background in Compton scatter imaging. NDT and E International 28, 155-162] based upon Monte Carlo calculations

  10. Monte Carlo simulations of increased/decreased scattering inclusions inside a turbid slab

    International Nuclear Information System (INIS)

    Dagdug, Leonardo; Chernomordik, Victor; Weiss, George H; Gandjbakhche, Amir H

    2005-01-01

    We analyse the effect on scattered photons of anomalous optical inclusions in a turbid slab with otherwise uniform properties. Our motivation for doing so is that inclusions affect scattering contrast used to quantify optical properties found from transmitted light intensity measured in transillumination experiments. The analysis is based on a lattice random walk formalism which takes into account effects of both positive and negative deviations of the scattering coefficient from that of the bulk. Our simulations indicate the existence of a qualitative difference between the effects of these two types of perturbations. In the case of positive perturbations the time delay is found to be proportional to the square of the size of the inclusion while for negative perturbations the time delay is a linear function of its volume

  11. Theory of inelastic effects in resonant atom-surface scattering

    International Nuclear Information System (INIS)

    Evans, D.K.

    1983-01-01

    The progress of theoretical and experimental developments in atom-surface scattering is briefly reviewed. The formal theory of atom-surface resonant scattering is reviewed and expanded, with both S and T matrix approaches being explained. The two-potential formalism is shown to be useful for dealing with the problem in question. A detailed theory based on the S-matrix and the two-potential formalism is presented. This theory takes account of interactions between the incident atoms and the surface phonons, with resonant effects being displayed explicitly. The Debye-Waller attenuation is also studied. The case in which the atom-surface potential is divided into an attractive part V/sub a/ and a repulsive part V/sub r/ is considered at length. Several techniques are presented for handling the scattering due to V/sub r/, for the case in which V/sub r/ is taken to be the hard corrugated surface potential. The theory is used to calculate the scattered intensities for the system 4 He/LiF(001). A detailed comparison with experiment is made, with polar scans, azimuthal scans, and time-of-flight measurements being considered. The theory is seen to explain the location and signature of resonant features, and to provide reasonable overall agreement with the experimental results

  12. Evaluation of a scattering correction method for high energy tomography

    Science.gov (United States)

    Tisseur, David; Bhatia, Navnina; Estre, Nicolas; Berge, Léonie; Eck, Daniel; Payan, Emmanuel

    2018-01-01

    experimental complexities must be avoided. This approach has been previously tested successfully in the energy range of 100 keV - 6 MeV. In this paper, the kernels are simulated using MCNP in order to take into account both photons and electronic processes in scattering radiation contribution. We present scatter correction results on a large object scanned with a 9 MeV linear accelerator.

  13. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations

    International Nuclear Information System (INIS)

    Stark, Julian; Rothe, Thomas; Kienle, Alwin; Kieß, Steffen; Simon, Sven

    2016-01-01

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns. (paper)

  14. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations.

    Science.gov (United States)

    Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin

    2016-04-07

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.

  15. A place to share: Some thoughts about the meaning of territory and ...

    African Journals Online (AJOL)

    This article proffers some thoughts in reply to the following question: how can we think about God in a theology that takes into account the concept of place in such a way that we are able to live together in a salvific way with others, sharing a place as equals? Concepts such as “territory” and “territoriality” are helpful, because ...

  16. Scatter fractions from linear accelerators with x-ray energies from 6 to 24 MV.

    Science.gov (United States)

    Taylor, P L; Rodgers, J E; Shobe, J

    1999-08-01

    Computation of shielding requirements for a linear accelerator must take into account the amount of radiation scattered from the patient to areas outside the primary beam. Currently, the most frequently used data are from NCRP 49 that only includes data for x-ray energies up to 6 MV and angles from 30 degrees to 135 degrees. In this work we have determined by Monte Carlo simulation the scattered fractions of dose for a wide range of energies and angles of clinical significance including 6, 10, 18, and 24 MV and scattering angles from 10 degrees to 150 degrees. Calculations were made for a 400 cm2 circular field size impinging onto a spherical phantom. Scattered fractions of dose were determined at 1 m from the phantom. Angles from 10 degrees to 30 degrees are of concern for higher energies where the scatter is primarily in the forward direction. An error in scatter fraction may result in too little secondary shielding near the junction with the primary barrier. The Monte Carlo code ITS (Version 3.0) developed at Sandia National Laboratory and NIST was used to simulate scatter from the patient to the barrier. Of significance was the variation of calculated scattered dose with depth of measurement within the barrier indicating that accurate values may be difficult to obtain. Mean energies of scatter x-ray spectra are presented.

  17. Effects of nuclear structure in the spin-dependent scattering of weakly interacting massive particles

    Science.gov (United States)

    Nikolaev, M. A.; Klapdor-Kleingrothaus, H. V.

    1993-06-01

    We present calculations of the nuclear from factors for spin-dependent elastic scattering of dark matter WIMPs from123Te and131Xe isotopes, proposed to be used for dark matter detection. A method based on the theory of finite Fermi systems was used to describe the reduction of the single-particle spin-dependent matrix elements in the nuclear medium. Nucleon single-particle states were calculated in a realistic shell model potential; pairing effects were treated within the BCS model. The coupling of the lowest single-particle levels in123Te to collective 2+ excitations of the core was taken into account phenomenologically. The calculated nuclear form factors are considerably less then the single-particle ones for low momentum transfer. At high momentum transfer some dynamical amplification takes place due to the pion exchange term in the effective nuclear interaction. But as the momentum transfer increases, the difference disappears, the momentum transfer increases and the quenching effect disappears. The shape of the nuclear form factor for the131Xe isotope differs from the one obtained using an oscillator basis.

  18. Effects of nuclear structure in the spin-dependent scattering of weakly interacting massive particles

    International Nuclear Information System (INIS)

    Nikolaev, M.A.; Klapdor-Kleingrothaus, H.V.

    1993-01-01

    We present calculations of the nuclear from factors for spin-dependent elastic scattering of dark matter WIMPs from 123 Te and 131 Xe isotopes, proposed to be used for dark matter detection. A method based on the theory of finite Fermi systems was used to describe the reduction of the single-particle spin-dependent matrix elements in the nuclear medium. Nucelon single-particle states were calculated in a realistic shell model potential; pairing effects were treated within the BCS model. The coupling of the lowest single-particle levels in 123 Te to collective 2 + excitations of the core was taken into account phenomenologically. The calculated nuclear form factors are considerably less then the single-particle ones for low momentum transfer. At high momentum transfer some dynamical amplification takes place due to the pion exchange term in the effective nuclear interaction. But as the momentum transfer increases, the difference disappears, the momentum transfer increases and quenching effect disappears. The shape of the nuclear form factor for the 131 Xe isotope differs from the one obtained using an oscillator basis. (orig.)

  19. Sacred places in global big cities

    DEFF Research Database (Denmark)

    Greve, Anni

    the relation between the sacred and the profane, and about the role of the sacred in modern societies. The question is if the development of modern societies has implied the gradual abolishment of religious beliefs, rituals and rites, or has it on the contrary implied the installment of new forms of religious...... beliefs and sacred places, which are cultivated through regular rituals and rites, just as some traditional societies have cultivated for instance totemism. This paper will take its point of departure in Durkheim’s study of The Elementary Forms of Religious Life from 1912. Then it will turn......The question of sacred places in modern societies involves an analytical perspective, which is not very prevalent in sociology, namely the anthropological or even better: the ethnological perspective. With this theme we have entered a veritable dispute, or controversy, in sociology about...

  20. Anti-resonance scattering at defect levels in the quantum conductance of a one-dimensional system

    Science.gov (United States)

    Sun, Z. Z.; Wang, Y. P.; Wang, X. R.

    2002-03-01

    For the ballistic quantum transport, the conductance of one channel is quantized to a value of 2e^2/h described by the Landauer formula. In the presence of defects, electrons will be scattered by these defects. Thus the conductance will deviate from the values of the quantized conductance. We show that an anti-resonance scattering can occur when an extra defect level is introduced into a conduction band. At the anti-resonance scattering, exact one quantum conductance is destroyed. The conductance takes a non-zero value when the Fermi energy is away from the anti-resonance scattering. The result is consistent with recent numerical calculations given by H. J. Choi et al. (Phys. Rev. Lett. 84, 2917(2000)) and P. L. McEuen et al. (Phys. Rev. Lett. 83, 5098(1999)).

  1. Understanding stakeholders' attitudes toward water management interventions: Role of place meanings

    Science.gov (United States)

    Jacobs, Maarten H.; Buijs, Arjen E.

    2011-01-01

    Water resource managers increasingly need to take the opinions of stakeholders into account when planning interventions. We studied stakeholders' concerns in two water management planning contexts, focusing on the meanings assigned to places and on attitudes toward proposed interventions. Semistructured interviews were held, and public meetings were observed in order to collect data. Five categories of place meanings emerged from the analysis: beauty (esthetic judgments), functionality (ways of use), attachment (feelings of belonging), biodiversity (meanings pertaining to nature), and risk (worries about current or future events). These categories reflect the basic dimensions of sense of place. Our results suggest that stakeholders' attitudes toward proposed interventions are, to a great extent, derived from their place meanings. Discussing place meanings during participatory planning processes could contribute substantially to successful water management.

  2. Scatter radiation from chest radiographs: is there a risk to infants in a typical NICU?

    International Nuclear Information System (INIS)

    Trinh, Angela M.; Schoenfeld, Alan H.; Levin, Terry L.

    2010-01-01

    To evaluate the dose of scatter radiation to infants in a NICU in order to determine the minimal safe distance between isolettes. Dose secondary to scattered radiation from an acrylic phantom exposed to vertical and horizontal beam exposures at 56 kVp was measured at 93 cm and 125 cm from the center of the phantom. This corresponds to 2 and 3 ft between standard isolettes, respectively. For horizontal exposures, the dosimeter was placed directly behind a CR plate and scatter dose at 90-degrees and 135-degrees from the incident beam was also measured. Exposures were obtained at 160 mAs and the results were extrapolated to correspond to 2.5 mAs. Four measurements were taken at each point and averaged. At 125 cm and 93 cm there was minimal scatter compared to daily natural background radiation dose (8.493 μGy). Greatest scatter dose obtained from a horizontal beam exposure at 135 from the incident beam was still far below background radiation. Scatter radiation dose from a single exposure as well as cumulative scatter dose from numerous exposures is significantly below natural background radiation. Infants in neighboring isolettes are not at added risk from radiation scatter as long as the isolettes are separated by at least 2 ft. (orig.)

  3. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A

    2013-01-01

    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  4. Do places matter? A multi-level analysis of regional variations in health-related behaviour in Britain.

    Science.gov (United States)

    Duncan, C; Jones, K; Moon, G

    1993-09-01

    A number of commentators have argued that there is a distinctive geography of health-related behaviour. Behaviour has to be understood not only in terms of individual characteristics, but also in relation to local cultures. Places matter, and the context in which behaviour takes place is crucial for understanding and policy. Previous empirical research has been unable to operationalize these ideas and take simultaneous account of both individual compositional and aggregate contextual factors. The present paper addresses this shortcoming through a multi-level analysis of smoking and drinking behaviours recorded in a large-scale national survey. It suggests that place, expressed as regional differences, may be less important than previously implied.

  5. Study on Scattering Theory and Perturbative Quantum Chromodynamics: case of quark-antiquark Top pair production

    International Nuclear Information System (INIS)

    Randriamisy, H.D.E.

    2014-01-01

    Nowadays, the study of scattering and production of particles occupies an important place in subatomic physics research. The main ongoing experiments concern high-energy scattering in the colliders, the scattering theory based on quantum field theory is used for the theoretical study. The work presented in this thesis is located in this framework, in fact it concerns a study on the scattering theory and Perturbative Quantum Chromodynamics. We used the path integral formalism of quantum field theory and perturbation theory. As we considered the higher order corrections in perturbative developments, the renormalization theory with the method of dimensional regularization was also used. As an application, the case of the Top quark production was considered. As main results, we can quote the obtention of the cross section of quark-antiquark top pair production up to second order. [fr

  6. Experimental observation of Z-dependence of saturation depth of 0.662 MeV multiply scattered gamma rays

    International Nuclear Information System (INIS)

    Singh, Gurvinderjit; Singh, Manpreet; Singh, Bhajan; Sandhu, B.S.

    2006-01-01

    The gamma photons continue to soften in energy as the number of scatterings increases in the sample having finite dimensions both in depth and lateral dimensions. The number of multiply scattered photons increases with an increase in target thickness and saturates at a particular value of the target thickness known as saturation depth. The present experiment is undertaken to study the effect of atomic number of the target on saturation depth of 0.662 MeV incident gamma photons multiply scattered from targets of various thicknesses. The scattered photons are detected by an HPGe gamma detector placed at 90 o to the incident beam direction. We observe that with an increase in target thickness, the number of multiply scattered photons also increases and saturates at a particular value of the target thickness. The saturation depth decreases with increasing atomic number. The double Compton scattered peak is also observed in the experimental spectra

  7. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  8. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  9. Measurement of the primary and scatter dose in high energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Van der Linden, P M [Catharina Ziekenhuis, Eindhoven (Netherlands). Radiotherapy Dept.; Tiourina, T B; Dries, W

    1995-12-01

    A method is presented to measure the primary and scatter components separately in a water tank using a small cylindrical absorber. Results from this experiment are compared with Monte Carlo calculations. The measurement setup consists of a small cylindrical absorber placed on a central axis of the beam a few centimetres above the radiation detector. Both absorber and detector move along the central axis while absorbed dose is registered. As the primary radiation is fully blocked, only scatter component is measured when a cylindrical absorber is used. Measurements in open fields result in the total absorbed dose being the sum of primary and scatter components. The primary dose component can be derived by substraction. Absorbers with different diameters are used. With decreasing dimensions the relative contribution of the dose due to scatter radiation increases. A steep increase is observed when the range of laterally scattered electrons becomes comparable with the radius of the absorber. Two different Monte Carlo simulations have been performed: with and without secondary electron transport. The data obtained for the former case perfectly agrees with the experiment. The situation where the secondary electron is assumed zero (i.e. local energy deposition) simulates the Cunningham model. Our results show that the Cunningham model predicts lower scatter component under the block edge which can be important for these applications.

  10. Proton-proton elastic scattering at the LHC energy of $\\sqrt{s}$ = 7 TeV

    OpenAIRE

    Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.S.; Calicchio, M.; Catanesi, M.G.; Covault, C.; Csanad, M.

    2011-01-01

    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at √ s = 7 TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (σbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t| , the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of δ t = 0.1 GeV √ |t|. In this letter the...

  11. Places available - Technical training (up to the end of 2015)

    CERN Multimedia

    2015-01-01

    Please find below all the upcoming courses (until December) that are currently missing participants, required for the courses to take place.     *Click on the picture*   For more details about a course and to register, please go to the Training Catalogue.

  12. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2013-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  13. Study of ammonia dynamics in mixed crystals K1-x(NH4)xHal (Hal = Cl, Br, I) by the inelastic neutron scattering

    International Nuclear Information System (INIS)

    Natkanets, I.; Smirnov, L.S.; Solov'ev, A.I.; )

    1997-01-01

    The investigation of the dynamics of ammonium ion in the disordered α-phase of mixed crystals K 1-x (NH 4 ) x Hal (Hal = Cl, Br, I) is carried out by the inelastic incoherent neutron scattering (IINS) method. IINS spectra are measured in the 2-200 meV energy range and the 10-300 K temperature range by the time-of-flight method. The generalized densities of phonon states are defined in the single-phonon approximation. It is found out that the libration mode of ammonium ion has the weak concentration dependence. Resonant modes are observed at low temperature for all concentration range of the existence of the disordered α-phase. The broadening of resonant modes at the expensive of the jump rotation diffusion of ammonium ions takes place at temperature above 10 K [ru

  14. Physical hazards (noise, heat, vibration, illumination) - control at work place, methods and strategies

    International Nuclear Information System (INIS)

    Bose, M.; Srivastava, P.; Ganesh, G.

    2016-01-01

    The industrial work is getting modernized more day by day leading to more physical hazard. It is forcing the line management stressed upon in relation to the work place physical hazard. In order to keep the work place free from physical hazard it is required to use proper tool like work place assessment, measuring the parameters and analyze the end result which force us to take proper control measures to check and eliminate the physical hazard. (author)

  15. Degradation of natural habitats by roads: Comparing land-take and noise effect zone

    International Nuclear Information System (INIS)

    Madadi, Hossein; Moradi, Hossein; Soffianian, Alireza; Salmanmahiny, Abdolrassoul; Senn, Josef; Geneletti, Davide

    2017-01-01

    Roads may act as barriers, negatively influencing the movement of animals, thereby causing disruption in landscapes. Roads cause habitat loss and fragmentation not only through their physical occupation, but also through traffic noise. The aim of this study is to provide a method to quantify the habitat degradation including habitat loss and fragmentation due to road traffic noise and to compare it with those of road land-take. Two types of fragmentation effects are determined: structural fragmentation (based on road land-take only), and functional fragmentation (noise effect zone fragmentation, buffer using a threshold of 40 dB). Noise propagation for roads with a traffic volume of more than 1000 vehicles per day was simulated by Calculation of Road Traffic Noise (CRTN) model. Habitat loss and fragmentation through land-take and noise effect zone were calculated and compared in Zagros Mountains in western Iran. The study area is characterized by three main habitat types (oak forest, scattered woodland and temperate grassland) which host endangered and protected wildlife species. Due to topographic conditions, land cover type, and the traffic volume in the region, the noise effect zone ranged from 50 to 2000 m which covers 18.3% (i.e. 516,929.95 ha) of the total study area. The results showed that the habitat loss due to noise effect zone is dramatically higher than that due to road land-take only (35% versus 1.04% of the total area). Temperate grasslands lost the highest proportion of the original area by both land-take and noise effect zone, but most area was lost in scattered woodland as compared to the other two habitat types. The results showed that considering the noise effect zone for habitat fragmentation resulted in an increase of 25.8% of the area affected (316,810 ha) as compared to using the land-take only (555,874 ha vs. 239,064 ha, respectively). The results revealed that the degree of habitat fragmentation is increasing by considering the noise

  16. A simple method for solving the inverse scattering problem

    International Nuclear Information System (INIS)

    Melnikov, V.N.; Rudyak, B.V.; Zakhariev, V.N.

    1977-01-01

    A new method is proposed for approximate reconstruction of a potential as a step function from scattering data using the completeness relation of solutions of the Schroedinger equation. The suggested method allows one to take into account exactly the additional centrifugal barrier for partial waves with angular momentum l>0, and also the Coulomb potential. The method admits different generalizations. Numerical calculations for checking the method have been performed

  17. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  18. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  19. Sound Scattering and Its Reduction by a Janus Sphere Type

    Directory of Open Access Journals (Sweden)

    Deliya Kim

    2014-01-01

    Full Text Available Sound scattering by a Janus sphere type is considered. The sphere has two surface zones: a soft surface of zero acoustic impedance and a hard surface of infinite acoustic impedance. The zones are arranged such that axisymmetry of the sound field is preserved. The equivalent source method is used to compute the sound field. It is shown that, by varying the sizes of the soft and hard zones on the sphere, a significant reduction can be achieved in the scattered acoustic power and upstream directivity when the sphere is near a free surface and its soft zone faces the incoming wave and vice versa for a hard ground. In both cases the size of the sphere’s hard zone is much larger than that of its soft zone. The boundary location between the two zones coincides with the location of a zero pressure line of the incoming standing sound wave, thus masking the sphere within the sound field reflected by the free surface or the hard ground. The reduction in the scattered acoustic power diminishes when the sphere is placed in free space. Variations of the scattered acoustic power and directivity with the sound frequency are also given and discussed.

  20. Investigation of short range order in Fe-C melts by neutron scattering

    International Nuclear Information System (INIS)

    Weber, M.; Steeb, S.

    1978-01-01

    Neutron diffraction measurements were done with Fe-C-melts (5; 13; and 17 at % C) using the method of isotopic substitution. The neutron small angle scattering effect observed could be explained by magnetic scattering, caused by spin-fluctuations still existing in the molten state far away from the Curie temperature. Total structure factors were calculated from observed intensities taking into account the correction for magnetic scattering. For each carbon concentration two alloys were investigated, one using iron of natural isotopic abundance and the other using enriched 57 Fe. From a comparison of the q-region below the first maximum of the total structure factor as obtained using Fesup(nat) or 57 Fe, respectively, a tendency to the preference of unlike nearest neighbours is concluded, the distance between Fe-C-pairs being 2.2 A. (orig.) [de

  1. The Kinetics of Crystallization of Colloids and Proteins: A Light Scattering Study

    Science.gov (United States)

    McClymer, Jim

    2002-01-01

    Hard-sphere colloidal systems serve as model systems for aggregation, nucleation, crystallization and gelation as well as interesting systems in their own right.There is strong current interest in using colloidal systems to form photonic crystals. A major scientific thrust of NASA's microgravity research is the crystallization of proteins for structural determination. The crystallization of proteins is a complicated process that requires a great deal of trial and error experimentation. In spite of a great deal of work, "better" protein crystals cannot always be grown in microgravity and conditions for crystallization are not well understood. Crystallization of colloidal systems interacting as hard spheres and with an attractive potential induced by entropic forces have been studied in a series of static light scattering experiments. Additionally, aggregation of a protein as a function of pH has been studied using dynamic light scattering. For our experiments we used PMMA (polymethylacrylate) spherical particles interacting as hard spheres, with no attractive potential. These particles have a radius of 304 nanometers, a density of 1.22 gm/ml and an index of refraction of 1.52. A PMMA colloidal sample at a volume fraction of approximately 54% was index matched in a solution of cycloheptyl bromide (CHB) and cis-decalin. The sample is in a glass cylindrical vial that is placed in an ALV static and dynamic light scattering goniometer system. The vial is immersed in a toluene bath for index matching to minimize flair. Vigorous shaking melts any colloidal crystals initially present. The sample is illuminated with diverging laser light (632.8 nanometers) from a 4x microscope objective placed so that the beam is approximately 1 cm in diameter at the sample location. The sample is rotated about its long axis at approximately 3.5 revolutions per minute (highest speed) as the colloidal crystal system is non-ergodic. The scattered light is detected at various angles using the

  2. Certain theories of multiple scattering in random media of discrete scatterers

    International Nuclear Information System (INIS)

    Olsen, R.L.; Kharadly, M.M.Z.; Corr, D.G.

    1976-01-01

    New information is presented on the accuracy of the heuristic approximations in two important theories of multiple scattering in random media of discrete scatterers: Twersky's ''free-space'' and ''two-space scatterer'' formalisms. Two complementary approaches, based primarily on a one-dimensional model and the one-dimensional forms of the theories, are used. For scatterer distributions of low average density, the ''heuristic'' asymptotic forms for the coherent field and the incoherent intensity are compared with asymptotic forms derived from a systematic analysis of the multiple scattering processes. For distributions of higher density, both in the average number of scatterers per wavelength and in the degree of packing of finite-size scatterers, the analysis is carried out ''experimentally'' by means of a Monte Carlo computer simulation. Approximate series expressions based on the systematic approach are numerically evaluated along with the heuristic expressions. The comparison (for both forward- and back-scattered field moments) is made for the worst-case conditions of strong multiple scattering for which the theories have not previously been evaluated. Several significant conclusions are drawn which have certain practical implications: in application of the theories to describe some of the scattering phenomena which occur in the troposphere, and in the further evaluation of the theories using experiments on physical models

  3. Relativistic theory of particles in a scattering flow III: photon transport.

    Science.gov (United States)

    Achterberg, A.; Norman, C. A.

    2018-06-01

    We use the theory developed in Achterberg & Norman (2018a) and Achterberg & Norman (2018b) to calculate the stress due to photons that are scattered elastically by a relativistic flow. We show that the energy-momentum tensor of the radiation takes the form proposed by Eckart (1940). In particular we show that no terms associated with a bulk viscosity appear if one makes the diffusion approximation for radiation transport and treats the radiation as a separate fluid. We find only shear (dynamic) viscosity terms and heat flow terms in our expression for the energy-momentum tensor. This conclusion holds quite generally for different forms of scattering: Krook-type integral scattering, diffusive (Fokker-Planck) scattering and Thomson scattering. We also derive the transport equation in the diffusion approximation that shows the effects of the flow on the photon gas in the form of a combination of adiabatic heating and an irreversible heating term. We find no diffusive changes to the comoving number density and energy density of the scattered photons, in contrast with some published results in Radiation Hydrodynamics. It is demonstrated that these diffusive corrections to the number- and energy density of the photons are in fact higher-order terms that can (and should) be neglected in the diffusion approximation. Our approach eliminates these terms at the root of the expansion that yields the anisotropic terms in the phase-space density of particles and photons, the terms responsible for the photon viscosity.

  4. Arikamedu: Its place in the Ancient Rome - India contacts by S. Suresh

    Digital Repository Service at National Institute of Oceanography (India)

    Tripati, S.

    & Environment, 2008. Vol. 33 (2): 113 Arikamedu: Its Place in the Ancient Rome - India Contacts S. Suresh 2007. Delhi: Embassy of Italy, Pages 126. In this book, Sethuraman Suresh has compiled available data on Arikamedu and other equally significant... scattered in various museums and institutes in India and abroad and some are even in private collections. Investigating the antiquity of Arikamedu, the author concludes that trade contacts with the Mediterranean region began in the late 3rd century B...

  5. Pronounced microheterogeneity in a sorbitol-water mixture observed through variable temperature neutron scattering.

    Science.gov (United States)

    Chou, Shin G; Soper, Alan K; Khodadadi, Sheila; Curtis, Joseph E; Krueger, Susan; Cicerone, Marcus T; Fitch, Andrew N; Shalaev, Evgenyi Y

    2012-04-19

    In this study, the structure of concentrated d-sorbitol-water mixtures is studied by wide- and small-angle neutron scattering (WANS and SANS) as a function of temperature. The mixtures are prepared using both deuterated and regular sorbitol and water at a molar fraction of sorbitol of 0.19 (equivalent to 70% by weight of regular sorbitol in water). Retention of an amorphous structure (i.e., absence of crystallinity) is confirmed for this system over the entire temperature range, 100-298 K. The glass transition temperature, Tg, is found from differential scanning calorimetry to be approximately 200 K. WANS data are analyzed using empirical potential structure refinement, to obtain the site-site radial distribution functions (RDFs) and coordination numbers. This analysis reveals the presence of nanoscaled water clusters surrounded by (and interacting with) sorbitol molecules. The water clusters appear more structured compared to bulk water and, especially at the lowest temperatures, resemble the structure of low-density amorphous ice (LDA). Upon cooling to 100 K the peaks in the water RDFs become markedly sharper, with increased coordination number, indicating enhanced local (nanometer-scale) ordering, with changes taking place both above and well below the Tg. On the mesoscopic (submicrometer) scale, although there are no changes between 298 and 213 K, cooling the sample to 100 K results in a significant increase in the SANS signal, which is indicative of pronounced inhomogeneities. This increase in the scattering is partly reversed during heating, although some hysteresis is observed. Furthermore, a power law analysis of the SANS data indicates the existence of domains with well-defined interfaces on the submicrometer length scale, probably as a result of the appearance and growth of microscopic voids in the glassy matrix. Because of the unusual combination of small and wide scattering data used here, the present results provide new physical insight into the

  6. Results from EDDA at COSY: Spin Observables in Proton-Proton Elastic Scattering

    International Nuclear Information System (INIS)

    Rohdjess, Heiko

    2003-01-01

    Elastic proton-proton scattering as one of the fundamental hadronic reactions has been studied with the internal target experiment EDDA at the Cooler-Synchrotron COSY/Juelich. A precise measurement of differential cross section, analyzing power and three spin-correlation parameters over a large angular (θc.m. ≅ 35 deg. - 90 deg.) and energy (Tp ≅ 0.5 - 2.5 GeV) range has been carried out in the past years. By taking scattering data during the acceleration of the COSY beam, excitation functions were measured in small energy steps and consistent normalization with respect to luminosity and polarization. The experiment uses internal fiber targets and a polarized hydrogen atomic-beam target in conjunction with a double-layered, cylindrical scintillator hodoscope for particle detection. The results on differential cross sections and analyzing powers have been published and helped to improve phase shift solutions. Recently data taking with polarized beam and target has been completed. Preliminary results for the spin-correlation parameters A NN, ASS, and ASL are presented. The observable ASS has been measured the first time above 800 MeV and our results are in sharp contrast to phase-shift predictions at higher energies. Our analysis shows that some of the ambiguities in the direct reconstruction of scattering amplitudes which also show up as differences between available phase-shift solutions, will be reduced by these new measurements

  7. [Fluorescent and Raman scattering by molecules embedded in small particles]: Annual report, 1983

    International Nuclear Information System (INIS)

    Chew, H.; McNulty, P.J.

    1983-01-01

    An overview is given of the model formulated for fluorescent and Raman scattering by molecules embedded in or in the vicinity of small particles. The model takes into account the size, shape, refractive index, and morphology of the host particles. Analytic and numerical results have been obtained for spherical (one and more layers, including magnetic dipole transitions), cylindrical, and spheroidal particles. Particular attention has been given to the spherical case with fluorescent/Raman scatterers uniformly distributed in the particles radiating both coherently and incoherently. Depolarization effects have been studied with suitable averaging process, and good agreement with experiment has been obtained. Analytic and numerical results have been obtained for the elastic scattering of evanescent waves; these results are useful for the study of fluorescence under excitation by evanescent waves

  8. Background studies for the MINER Coherent Neutrino Scattering reactor experiment

    International Nuclear Information System (INIS)

    Agnolet, G.; Baker, W.; Barker, D.; Beck, R.; Carroll, T.J.; Cesar, J.; Cushman, P.; Dent, J.B.; De Rijck, S.; Dutta, B.; Flanagan, W.; Fritts, M.; Gao, Y.; Harris, H.R.; Hays, C.C.; Iyer, V.

    2017-01-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5–20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  9. Background studies for the MINER Coherent Neutrino Scattering reactor experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnolet, G.; Baker, W. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Barker, D. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Beck, R. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Carroll, T.J.; Cesar, J. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Cushman, P. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Dent, J.B. [Department of Physics, University of Louisiana at Lafayette, Lafayette, LA 70504 (United States); De Rijck, S. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Dutta, B. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Flanagan, W. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Fritts, M. [School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Gao, Y. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Department of Physics & Astronomy, Wayne State University, Detroit 48201 (United States); Harris, H.R.; Hays, C.C. [Department of Physics and Astronomy, and the Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Iyer, V. [School of Physical Sciences, National Institute of Science Education and Research, Jatni - 752050 (India); and others

    2017-05-01

    The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5–20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.

  10. Screening-induced surface polar optical phonon scattering in dual-gated graphene field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bo, E-mail: hubo2011@semi.ac.cn

    2015-03-15

    The effect of surface polar optical phonons (SOs) from the dielectric layers on electron mobility in dual-gated graphene field effect transistors (GFETs) is studied theoretically. By taking into account SO scattering of electron as a main scattering mechanism, the electron mobility is calculated by the iterative solution of Boltzmann transport equation. In treating scattering with the SO modes, the dynamic dielectric screening is included and compared to the static dielectric screening and the dielectric screening in the static limit. It is found that the dynamic dielectric screening effect plays an important role in the range of low net carrier density. More importantly, in-plane acoustic phonon scattering and charged impurity scattering are also included in the total mobility for SiO{sub 2}-supported GFETs with various high-κ top-gate dielectric layers considered. The calculated total mobility results suggest both Al{sub 2}O{sub 3} and AlN are the promising candidate dielectric layers for the enhancement in room temperature mobility of graphene in the future.

  11. Study of macromolecules of biological interest by x-ray scattering

    International Nuclear Information System (INIS)

    Beltran, J.R.

    1987-08-01

    A brief review of the SAXS theory and experimental is presented. Solutions of crotamine, crotoxine, phospholipase and crotapotine are studied in several concentrations, extrapolated to infinite dilution and the results obtained are presented. The general shape of these proteins were also evaluated taking in consideration the relationships between the respective surface areas and volumes. A model was then devised taking into account the information available relative to aminoacid sequence, predicted secondary structure and spectroscopic data and its P(r) was calculated using the MULTIBODY program (Glatter (1980)). The P(r) curve is this way obtained showed a considerable agreement with the P(r) obtained resing the scattering curve. (author)

  12. Turn and jump: how time & place fell apart

    CERN Document Server

    Mansfield, Howard

    2013-01-01

    Before Thomas Edison, light and fire were thought to be one and the same. Turns out, they were separate things altogether. This book takes a similar relationship, that of time and place, and shows how they, too, were once inseparable. Time keeping was once a local affair, when small towns set their own pace according to the rising and setting of the sun. Then, in 1883, the expanding railroads necessitated the creation of Standard Time zones, and communities became linked by a universal time. Here Howard Mansfield explores how our sudden interconnectedness, both physically, as through the railroad, and through inventions like the telegraph, changed our concept of time and place forever.

  13. Validation of large-angle scattering data via shadow-bar experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, S., E-mail: ohnishi@nmri.go.jp [National Maritime Research Institute, 6-38-1, Shinkawa, Mitaka, Tokyo 181-0004 (Japan); Tamaki, S.; Murata, I. [Osaka University, 1-14-16-1, Yamadaoka, Suita-si, Osaka 565-0871 (Japan)

    2016-11-15

    Highlights: • An experiment to validate large-angle scattering cross section is conducted. • Pieces of Nb foil are set behind a shadow bar to obtain the {sup 92m}Nb production rates. • The results calculated using ENDF/B-VI library data exhibit a 57% overestimation. • The adjustment of cross section in large-angle region makes the C/E close to 1. - Abstract: An experiment emphasizing the influence of large-angle scattering on nuclear data was conducted, in which a Fe shadow bar and a Fe slab target were placed before a deuterium–tritium fusion (DT) neutron source. Two Nb foils were set on both sides of the shadow bar in order to monitor the neutron source intensity and to measure the neutrons scattered from the slab target. The {sup 93}Nb(n,2n){sup 92m}Nb reaction rate of the foil was measured following the DT neutron irradiation and calculated using the MCNP5 Monte Carlo radiation transportation code. The {sup 92m}Nb production rates calculated using data from the JEFF-3.1 and JENDL-4.0 libraries agreed with that measured in the experiment, while the result calculated using data from the ENDF/B-VI library exhibited a 57% overestimation. Because the sensitivity of the {sup 92m}Nb production rate to the scattering angular distribution was large in the angular region between scattering direction cosines of −0.9 and −0.4, the scattering angular distribution was adjusted in that region. This adjustment resulted in a calculation-to-experiment ratio close to 1, but had little influence on the existing integral benchmark experiment.

  14. Quantum screening effects on the electron-ion occurrence scattering time advance in strongly coupled semiclassical plasmas

    International Nuclear Information System (INIS)

    Song, Mi-Young; Jung, Young-Dae

    2003-01-01

    Quantum screening effects on the occurrence scattering time advance for elastic electron-ion collisions in strongly coupled semiclassical plasmas are investigated using the second-order eikonal analysis. The electron-ion interaction in strongly coupled semiclassical plasmas is obtained by the pseudopotential model taking into account the plasma screening and quantum effects. It is found that the quantum-mechanical effects significantly reduce the occurrence scattering time advance. It is also found that the occurrence scattering time advance increases with increasing Debye length. It is quite interesting to note that the domain of the maximum occurrence time advance is localized for the forward scattering case. The region of the scaled thermal de Broglie wave length (λ-bar) for the maximum occurrence time advance is found to be 0.4≤λ-bar≤1.4

  15. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance

    Science.gov (United States)

    Desta, Derese; Ram, Sanjay K.; Rizzoli, Rita; Bellettato, Michele; Summonte, Caterina; Jeppesen, Bjarke R.; Jensen, Pia B.; Tsao, Yao-Chung; Wiggers, Hartmut; Pereira, Rui N.; Balling, Peter; Larsen, Arne Nylandsted

    2016-06-01

    A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles.

  16. New results from deep inelastic muon-nucleon scattering

    International Nuclear Information System (INIS)

    Coignet, G.

    1982-01-01

    Focusing on the new results gained from deep inelastic muon scatterings, the author details three main topics - the Fz structure function measurements gained from hydrogen, carbon and iron targets, open and hidden charm production, from multimuon events, hardonic production with forward jets and forward protons/antiprotons. He discusses the places of experimentation where these results arose, Berkley - FNAL - Princeton, Bologna,-CERN-DubraMunich-Saclay and the European muon collaboration. Finally, he concludes by reviewing the various results and what might be concluded from them

  17. Scattering amplitude and bosonization duality in general Chern-Simons vector models

    Science.gov (United States)

    Yokoyama, Shuichi

    2016-09-01

    We present the exact large N calculus of four point functions in general Chern-Simons bosonic and fermionic vector models. Applying the LSZ formula to the four point function we determine the two body scattering amplitudes in these theories taking a special care for a non-analytic term to achieve unitarity in the singlet channel. We show that the S-matrix enjoys the bosonization duality, an unusual crossing relation and a non-relativistic reduction to Aharonov-Bohm scattering. We also argue that the S-matrix develops a pole in a certain range of coupling constants, which disappears in the range where the theory reduces to the Chern-Simons theory interacting with free fermions.

  18. A vehicle-to-infrastructure channel model for blind corner scattering environments

    KAUST Repository

    Chelli, Ali

    2013-09-01

    In this paper, we derive a new geometrical blind corner scattering model for vehicle-to-infrastructure (V2I) communications. The proposed model takes into account single-bounce and double-bounce scattering stemming from fixed scatterers located on both sides of the curved street. Starting from the geometrical blind corner model, the exact expression of the angle of departure (AOD) is derived. Based on this expression, the probability density function (PDF) of the AOD and the Doppler power spectrum are determined. Analytical expressions for the channel gain and the temporal autocorrelation function (ACF) are provided under non-line-of-sight (NLOS) conditions. Moreover, we investigate the impact of the position of transmitting vehicle relatively to the receiving road-side unit on the channel statistics. The proposed channel model is useful for the design and analysis of future V2I communication systems. Copyright © 2013 by the Institute of Electrical and Electronic Engineers, Inc.

  19. Study of Coulomb effects using the comparison of positrons and electrons elastic scattering on nuclei

    International Nuclear Information System (INIS)

    Breton, Vincent

    1990-01-01

    We have studied Coulomb effects in the electron-nucleus interaction by measuring electron and positron elastic scattering. The Coulomb field of the nucleus acts differently on theses particles because of their opposite charges. The experiment took place at the Accelerateur Lineaire de Saclay, with 450 MeV electrons and positrons. We measured the emittance of the positron and electron beams. We compared electron and positron beams having the same energy, the same emittance and the same intensity. This way, we measured positron scattering cross sections with 2 % systematic error. By comparing positron and electron elastic scattering cross sections for momentum transfers between 1 and 2 fm -1 , on a Lead 208 target, we showed that the calculations of Coulomb effects in elastic scattering are in perfect agreement with experimental results. The comparison of positron and electron elastic scattering cross sections on Carbon showed that dispersive effects are smaller than 2 % outside the diffraction minima. These two results demonstrate in a definitive way that electron scattering allows to measure charge densities in the center of nuclei with an accuracy of the order of 1 %. (author) [fr

  20. EDS'09: 13th International Conference on Elastic & Diffractive Scattering

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The series of International Conferences on Elastic and Diffractive Scattering was founded in 1985 in the picturesque old French town of Blois, famous for its XIV - XVIIth century château, inside of which the first meeting took place. Since then, meetings have been organised every two years in different places of the world: New York (1987), Evanston (1989), Isola d'Elba (1991), Providence (1993), Blois (1995), Seoul (1997), Protvino (1999), Prague (2001), Helsinki (2003), Blois (2005) and Hamburg (2007). The conference will focus on the most recent experimental and theoretical results in particle physics with an emphasis on Quantum Chromodynamics (QCD). http://cern.ch/eds09/ The conference agenda is now full. No further contributions can be accepted.

  1. Accurate calculation of high harmonics generated by relativistic Thomson scattering

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2008-01-01

    The recent emergence of the field of ultraintense laser pulses, corresponding to beam intensities higher than 10 18 W cm -2 , brings about the problem of the high harmonic generation (HHG) by the relativistic Thomson scattering of the electromagnetic radiation by free electrons. Starting from the equations of the relativistic motion of the electron in the electromagnetic field, we give an exact solution of this problem. Taking into account the Lienard-Wiechert equations, we obtain a periodic scattered electromagnetic field. Without loss of generality, the solution is strongly simplified by observing that the electromagnetic field is always normal to the direction electron-detector. The Fourier series expansion of this field leads to accurate expressions of the high harmonics generated by the Thomson scattering. Our calculations lead to a discrete HHG spectrum, whose shape and angular distribution are in agreement with the experimental data from the literature. Since no approximations were made, our approach is also valid in the ultrarelativistic regime, corresponding to intensities higher than 10 23 W cm -2 , where it predicts a strong increase of the HHG intensities and of the order of harmonics. In this domain, the nonlinear Thomson scattering could be an efficient source of hard x-rays

  2. Learning as Existential Engagement with/in Place: Departing from Vandenberg and the Reams

    Science.gov (United States)

    Hung, Ruyu

    2014-01-01

    This article takes Vandenberg's critique of Ream and Ream's view on the Deweyan learning environment as a departing point to explore the educational meaning of place. The divergence between Vandenberg and the Reams reminds us that the place is not merely a physical site for learners to be located in but also a horizon to be engaged with.…

  3. Process of diffractive scattering and disintegration of complex particles by nonspherical deformed nuclei

    International Nuclear Information System (INIS)

    Evlanov, M.V.

    1989-01-01

    The differential and integral cross sections of diffractive elastic and inelastic scattering and of the disintegration of complex particles by axial and nonaxial deformed nuclei are investigated depending on the shape, deformability and diffuseness of nuclear boundary as well as on the structure of the incident particles and of the rescattering processes. It is shown that the complicated coincidence experiments and experimnts on inelastic scattering with excitation of the target nucleus collective states are satisfactorily described taking simultaneously into account all factors mentioned above and the final-state interaction between the disintegration products of the incident particle

  4. Reframing place promotion, place marketing, and place branding - moving beyond conceptual confusion

    NARCIS (Netherlands)

    Boisen, Martin; Terlouw, Kees; Groote, Peter; Couwenberg, Oscar

    2017-01-01

    The literature and practice of place promotion, place marketing and place branding lack a common understanding of what these three concepts mean and through what kind of policies they can be implemented. Although scholars have provided several theoretical frameworks and definitions, both scholars

  5. Beamstop-based low-background ptychography to image weakly scattering objects

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Juliane, E-mail: juliane.reinhardt@desy.de [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Hoppe, Robert [Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden (Germany); Hofmann, Georg [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Damsgaard, Christian D. [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark); Patommel, Jens; Baumbach, Christoph [Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden (Germany); Baier, Sina; Rochet, Amélie; Grunwaldt, Jan-Dierk [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Falkenberg, Gerald [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Schroer, Christian G. [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Department Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2017-02-15

    In recent years, X-ray ptychography has been established as a valuable tool for high-resolution imaging. Nevertheless, the spatial resolution and sensitivity in coherent diffraction imaging are limited by the signal that is detected over noise and over background scattering. Especially, coherent imaging of weakly scattering specimens suffers from incoherent background that is generated by the interaction of the central beam with matter along its propagation path in particular close to and inside of the detector. Common countermeasures entail evacuated flight tubes or detector-side beamstops, which improve the experimental setup in terms of background reduction or better coverage of high dynamic range in the diffraction patterns. Here, we discuss an alternative approach: we combine two ptychographic scans with and without beamstop and reconstruct them simultaneously taking advantage of the complementary information contained in the two scans. We experimentally demonstrate the potential of this scheme for hard X-ray ptychography by imaging a weakly scattering object composed of catalytic nanoparticles and provide the analysis of the signal-to-background ratio in the diffraction patterns. - Highlights: • An opaque beamstop far-upstream of the detector reduces background scattering. • Increased signal-to-background ratio in the diffraction patterns. • Simultaneous ptychographic reconstruction of two data sets with and without beamstop. • Result shows high spatial resolution of 13 nm of a weakly scattering catalyst sample. • High sensitivity to less than 10{sup 5} atoms.

  6. Scattering and multiple scattering in disordered materials

    International Nuclear Information System (INIS)

    Weaver, R.L.; Butler, W.H.

    1992-01-01

    The papers in this section were presented at a joint session of symposium V on Applications of Multiple Scattering Theory and of Symposium P on Disordered Systems. They show that the ideas of scattering theory can help us to understand a very broad class of phenomena

  7. Places disponibles*/Places available **

    CERN Multimedia

    2003-01-01

    Des places sont disponibles dans les cours suivants : Places are available in the following course : Java 2 Enterprise Edition - Part 2 : Enterprise JavaBeans : 20 - 22.1.03 (3 days) Introduction to PVSS : 27.1.03 (Afternoon) free course but registration necessary Basic PVSS : 28 - 30.1.03 (3 days) MAGNE-03 - Magnétisme pour l'électrotechnique : 28 - 30.1.03 (3 jours) MAGNE-03 - Magnetism for Technical Electronics : 11 - 13.2.03 (3 days) AutoCAD 2002 - niveau 1 : 24, 25.2 et 3, 4.3.03 (4 jours) AutoCAD 2002 - niveau 2 : 10 & 11.3.03 (2 jours) C++ for Particle Physicists : 10 - 14.3.03 (6 X 3 hour lectures) AutoCAD Mechanical 6 PowerPack (F) : 12, 13, 17, 18, 24 & 25.3.03 (6 jours) * Etant donné le délai d'impression du Bulletin, ces places peuvent ne plus être disponibles au moment de sa parution. Veuillez consulter notre site Web pour avoir la dernière mise à jour. ** The number of places available may vary. Please check our Web site to find out the current availability. Si vous désirez ...

  8. Place Branding in Systems of Place

    DEFF Research Database (Denmark)

    Zenker, Sebastian; Andéhn, Mikael

    2015-01-01

    , this presents a challenge, since the role of a place in this system of geographical abstractions constitutes a piece of information more vital than any other in defining the place. Our understanding of places cannot be separated from their scale, and any effort at managing the reputation and meaning.......g. the European Union or Africa). Using the example of nation branding for Sudan and Slovenia, one can identify supranational places such as “sub-Saharan Africa” or “Eastern Europe”, carrying their own highly salient and often negative meaning in much of the Western world. We explore how association to a system...

  9. Thomson scattering upgrade on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Leroux, F., E-mail: fabrice.leroux@cea.f [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Manenc, L.; Moreau, M. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2010-07-15

    The Thomson scattering diagnostic supplies the electron temperature and density of Tore Supra plasmas from the spectrum analysis of scattered light of a very short laser pulse. A new spectrometer has been realized to improve the signal to noise ratio. In order to obtain an efficient noise reduction, a real time calculation is necessary. The current analogue integration of the signal is inadequate. A fast digitalization must be used with a sampling rate of 1 GSamples/s, a bandwidth of 150 MHz and a 12 bits dynamic range. In a first step, fast analogue data acquisition boards for 4 channels were added in 2009 to the VME acquisition system in place. A MATACQ (Matrix for acquisition) board was chosen for sampling analogue data up to 2 GSamples/s over 4 channels with a large bandwidth of 300 MHz and a 14 bits dynamic range. This solution offers a low cost acquisition system that is not available in any other commercial board with this dynamic range. The first results will be obtained on calibration period with a light emitted diode before the summer 2009. This article will present the new data acquisition system and the coming first results.

  10. Diffractive scattering on nuclei in multiple scattering theory with inelastic screening

    International Nuclear Information System (INIS)

    Zoller, V.R.

    1988-01-01

    The cross sections for the diffractive scattering of hadrons on nuclei are calculated in the two-channel approximation of multiple scattering theory. In contrast to the standard Glauber approach, it is not assumed that the nucleon scattering profile is a Gaussian or that the Regge radius of the hadron is small compared to the nuclear radius. The AGK Reggeon diagrammatic technique is used to calculate the topological cross sections and the cross sections for coherent and incoherent diffractive dissociation and quasielastic scattering. The features of hadron-nucleus scattering at superhigh energies are discussed

  11. Design Study for Direction Variable Compton Scattering Gamma Ray

    Science.gov (United States)

    Kii, T.; Omer, M.; Negm, H.; Choi, Y. W.; Kinjo, R.; Yoshida, K.; Konstantin, T.; Kimura, N.; Ishida, K.; Imon, H.; Shibata, M.; Shimahashi, K.; Komai, T.; Okumura, K.; Zen, H.; Masuda, K.; Hori, T.; Ohgaki, H.

    2013-03-01

    A monochromatic gamma ray beam is attractive for isotope-specific material/medical imaging or non-destructive inspection. A laser Compton scattering (LCS) gamma ray source which is based on the backward Compton scattering of laser light on high-energy electrons can generate energy variable quasi-monochromatic gamma ray. Due to the principle of the LCS gamma ray, the direction of the gamma beam is limited to the direction of the high-energy electrons. Then the target object is placed on the beam axis, and is usually moved if spatial scanning is required. In this work, we proposed an electron beam transport system consisting of four bending magnets which can stick the collision point and control the electron beam direction, and a laser system consisting of a spheroidal mirror and a parabolic mirror which can also stick the collision point. Then the collision point can be placed on one focus of the spheroid. Thus gamma ray direction and collision angle between the electron beam and the laser beam can be easily controlled. As the results, travelling direction of the LCS gamma ray can be controlled under the limitation of the beam transport system, energy of the gamma ray can be controlled by controlling incident angle of the colliding beams, and energy spread can be controlled by changing the divergence of the laser beam.

  12. Compton-scatter tissue densitometry: calculation of single and multiple scatter photon fluences

    International Nuclear Information System (INIS)

    Battista, J.J.; Bronskill, M.J.

    1978-01-01

    The accurate measurement of in vivo electron densities by the Compton-scatter method is limited by attenuations and multiple scattering in the patient. Using analytic and Monte Carlo calculation methods, the Clarke tissue density scanner has been modelled for incident monoenergetic photon energies from 300 to 2000 keV and for mean scattering angles of 30 to 130 degrees. For a single detector focussed to a central position in a uniform water phantom (25 x 25 x 25 cm 3 ) it has been demonstrated that: (1) Multiple scatter contamination is an inherent limitation of the Compton-scatter method of densitometry which can be minimised, but not eliminated, by improving the energy resolution of the scattered radiation detector. (2) The choice of the incident photon energy is a compromise between the permissible radiation dose to the patient and the tolerable level of multiple scatter contamination. For a mean scattering angle of 40 degrees, the intrinsic multiple-single scatter ratio decreases from 64 to 35%, and the radiation dose (per measurement) increases from 1.0 to 4.1 rad, as the incident photon energy increases from 300 to 2000 keV. These doses apply to a sampled volume of approximately 0.3 cm 3 and an electron density precision of 0.5%. (3) The forward scatter densitometer configuration is optimum, minimising both the dose and the multiple scatter contamination. For an incident photon energy of 1250 keV, the intrinsic multiple-single scatter ratio reduces from 122 to 27%, and the dose reduces from 14.3 to 1.2 rad, as the mean scattering angle decreases from 130 to 30 degrees. These calculations have been confirmed by experimental measurements. (author)

  13. Studies of coherent/Compton scattering method for bone mineral content measurement

    International Nuclear Information System (INIS)

    Sakurai, Kiyoko; Iwanami, Shigeru; Nakazawa, Keiji; Matsubayashi, Takashi; Imamura, Keiko.

    1980-01-01

    A measurement of bone mineral content by a coherent/Compton scattering method was described. A bone sample was irradiated by a collimated narrow beam of 59.6 keV gamma-rays emitted from a 300 mCi 241 Am source, and the scattered radiations were detected using a collimated pure germanium detector placed at 90 0 to the incident beam. The ratio of coherent to Compton peaks in a spectrum of the scattered radiations depends on the bone mineral content of the bone sample. The advantage of this method is that bone mineral content of a small region in a bone can be accurately measured. Assuming that bone consists of two components, protein and bone mineral, and that the mass absorption coefficient for Compton scattering is independent of material, the coherent to Compton scattering ratio is linearly related to the percentage in weight of bone mineral. A calibration curve was obtained by measuring standard samples which were mixed with Ca 3 (PO 4 ) 2 and H 2 O. The error due to the assumption about the mass absorption coefficient for Compton scattering and to the difference between true bone and standard samples was estimated to be less than 3% within the range from 10 to 60% in weight of bone mineral. The fat in bone affects an estimated value by only 1.5% when it is 20% in weight. For the clinical application of this method, the location to be analyzed should be selected before the measurement with two X-ray images viewed from the source and the detector. These views would be also used to correct the difference in absorption between coherent and Compton scattered radiations whose energies are slightly different from each other. The absorbed dose to the analyzed region was approximately 150 mrad. The time required for one measurement in this study was about 10 minutes. (author)

  14. Scatter kernel estimation with an edge-spread function method for cone-beam computed tomography imaging

    International Nuclear Information System (INIS)

    Li Heng; Mohan, Radhe; Zhu, X Ronald

    2008-01-01

    The clinical applications of kilovoltage x-ray cone-beam computed tomography (CBCT) have been compromised by the limited quality of CBCT images, which typically is due to a substantial scatter component in the projection data. In this paper, we describe an experimental method of deriving the scatter kernel of a CBCT imaging system. The estimated scatter kernel can be used to remove the scatter component from the CBCT projection images, thus improving the quality of the reconstructed image. The scattered radiation was approximated as depth-dependent, pencil-beam kernels, which were derived using an edge-spread function (ESF) method. The ESF geometry was achieved with a half-beam block created by a 3 mm thick lead sheet placed on a stack of slab solid-water phantoms. Measurements for ten water-equivalent thicknesses (WET) ranging from 0 cm to 41 cm were taken with (half-blocked) and without (unblocked) the lead sheet, and corresponding pencil-beam scatter kernels or point-spread functions (PSFs) were then derived without assuming any empirical trial function. The derived scatter kernels were verified with phantom studies. Scatter correction was then incorporated into the reconstruction process to improve image quality. For a 32 cm diameter cylinder phantom, the flatness of the reconstructed image was improved from 22% to 5%. When the method was applied to CBCT images for patients undergoing image-guided therapy of the pelvis and lung, the variation in selected regions of interest (ROIs) was reduced from >300 HU to <100 HU. We conclude that the scatter reduction technique utilizing the scatter kernel effectively suppresses the artifact caused by scatter in CBCT.

  15. Elastic neutrino-electron scattering: a progress report on Exp734 at Brookhaven

    International Nuclear Information System (INIS)

    Abe, K.; Ahrens, L.A.; Amako, K.

    1983-01-01

    I will report preliminary results on elastic neutrino-electron scattering from data taken with the 200 ton segmented liquid scintillator - proportional drift-tube neutrino detector at Brookhaven. Features of the detector (such as the active target and long radiation length) permit a uniquely clean signal. Prospects of results from the completed analysis and further data taking are discussed

  16. Scattering of topological solitons on barriers and holes of deformed Sine-Gordon models

    International Nuclear Information System (INIS)

    Al-Alawi, Jassem H; Zakrzewski, Wojtek J

    2008-01-01

    We study various scattering properties of topological solitons in two classes of models, which are the generalizations of the Sine-Gordon model and which have recently been proposed by Bazeia et al. These two classes of models depend on a positive real nonzero parameter n but in this paper we consider the models only for its integer values as when n = 2 (for the first class) and n = 1 (for the second class), the model reduces to the Sine-Gordon one. We take the soliton solutions of these models (generalizations of the 'kink' solution of the Sine-Gordon model) and consider their scattering on potential holes and barriers. We present our results for n = 1, ..., 6. We find that, like in the Sine-Gordon models, the scattering on the barrier is very elastic while the scattering on the hole is inelastic and can, at times, lead to a reflection. We discuss the dependence of our results on n and find that the critical velocity for the transmission through the hole is lowest for n = 3

  17. Neutron Scattering Software

    Science.gov (United States)

    Home Page | Facilities | Reference | Software | Conferences | Announcements | Mailing Lists Neutron Scattering Banner Neutron Scattering Software A new portal for neutron scattering has just been established sets KUPLOT: data plotting and fitting software ILL/TAS: Matlab probrams for analyzing triple axis data

  18. Energy and Momentum Relaxation Times of 2D Electrons Due to Near Surface Deformation Potential Scattering

    Science.gov (United States)

    Pipa, Viktor; Vasko, Fedor; Mitin, Vladimir

    1997-03-01

    The low temperature energy and momentum relaxation rates of 2D electron gas placed near the free or clamped surface of a semi-infinit sample are calculated. To describe the electron-acoustic phonon interaction with allowance of the surface effect the method of elasticity theory Green functions was used. This method allows to take into account the reflection of acoustic waves from the surface and related mutual conversion of LA and TA waves. It is shown that the strength of the deformation potential scattering at low temperatures substantially depends on the mechanical conditions at the surface: relaxation rates are suppressed for the free surface while for the rigid one the rates are enhanced. The dependence of the conductivity on the distance between the 2D layer and the surface is discussed. The effect is most pronounced in the range of temperatures 2 sl pF < T < (2 hbar s_l)/d, where pF is the Fermi momentum, sl is the velocity of LA waves, d is the width of the quantum well.

  19. Target scattering characteristics for OAM-based radar

    Directory of Open Access Journals (Sweden)

    Kang Liu

    2018-02-01

    Full Text Available The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM based radar system. To illustrate the role of OAM-based radar cross section (ORCS, conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS. The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.

  20. Target scattering characteristics for OAM-based radar

    Science.gov (United States)

    Liu, Kang; Gao, Yue; Li, Xiang; Cheng, Yongqiang

    2018-02-01

    The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM) based radar system. To illustrate the role of OAM-based radar cross section (ORCS), conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS). The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.

  1. Thrown Together: Incorporating Place and Sustainability into Early Literacy Education

    Science.gov (United States)

    Schmidt, Catarina

    2017-01-01

    The development of language and literacy abilities of young multilingual children is important to their future educational engagement and success in school. In this study, the value of taking account of place and sustainability in early literacy education is considered. This research provides ideas for practice-based research on early literacy in…

  2. Teaching Kids with Learning Disabilities to Take Public Transit

    Science.gov (United States)

    Schoenfeld, Jane

    2009-01-01

    Taking public transit can make anyone nervous, especially in a large or medium-sized city where there are many different bus lines going many different places. The author's daughter, Anna, has multiple learning disabilities and may never learn to drive, but she wants to be as independent as possible so the author taught her to ride the bus. This…

  3. The Glauber model and heavy ion reaction and elastic scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Mehndiratta, Ajay [Physics Department, Indian Institute of Technology, Guwahati (India); Shukla, Prashant, E-mail: pshukla@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094 (India)

    2017-05-15

    We revisit the Glauber model to study the heavy ion reaction cross sections and elastic scattering angular distributions at low and intermediate energies. The Glauber model takes nucleon–nucleon cross sections and nuclear densities as inputs and has no free parameter and thus can predict the cross sections for unknown systems. The Glauber model works at low energies down to Coulomb barrier with very simple modifications. We present new parametrization of measured total cross sections as well as ratio of real to imaginary parts of the scattering amplitudes for pp and np collisions as a function of nucleon kinetic energy. The nuclear (charge) densities obtained by electron scattering form factors measured in large momentum transfer range are used in the calculations. The heavy ion reaction cross sections are calculated for light and heavy systems and are compared with available data measured over large energy range. The model gives excellent description of the data. The elastic scattering angular distributions are calculated for various systems at different energies. The model gives good description of the data at small momentum transfer but the calculations deviate from the data at large momentum transfer.

  4. Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Donald C. [Univ. of Virginia, Charlottesville, VA (United States)

    2015-10-01

    The Qweak experiment which ran in Hall C at Jefferson Lab in Newport News, VA, and completed data taking in May 2012, measured the weak charge of the proton QpW via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The helicity of the electron beam was flipped at approximately 1 kHz between left and right spin states. The Standard Model predicts a small parity-violating asymmetry of scattering rates between right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013 [1] with a measured parity-violating asymmetry of -279 ± 35(stat) ± 31 (syst) ppb. This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be pW = 0.064 ± 0.012, in good agreement with the Standard Model prediction of pW(SM) = 0.0708 ± 0.0003[2].

  5. First order correction to quasiclassical scattering amplitude

    International Nuclear Information System (INIS)

    Kuz'menko, A.V.

    1978-01-01

    First order (with respect to h) correction to quasiclassical with the aid of scattering amplitude in nonrelativistic quantum mechanics is considered. This correction is represented by two-loop diagrams and includes the double integrals. With the aid of classical equations of motion, the sum of the contributions of the two-loop diagrams is transformed into the expression which includes one-dimensional integrals only. The specific property of the expression obtained is that the integrand does not possess any singularities in the focal points of the classical trajectory. The general formula takes much simpler form in the case of one-dimensional systems

  6. Coherent scattering X-ray imaging at the Brazilian National Synchrotron Laboratory: Preliminary breast images

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.R.F. [Nuclear Instrumentation Laboratory-COPPE/UFRJ, P.O. Box 68509, Rio de Janeiro 21945-970 (Brazil); Barroso, R.C. [Physics Institute-University of Rio de Janeiro State, Rio de Janeiro 20559-900 (Brazil)]. E-mail: cely@uerij.br; Oliveira, L.F. de [Physics Institute-University of Rio de Janeiro State, Rio de Janeiro 20559-900 (Brazil); Lopes, R.T. [Nuclear Instrumentation Laboratory-COPPE/UFRJ, P.O. Box 68509, Rio de Janeiro 21945-970 (Brazil)

    2005-08-11

    The angular distribution of coherent scatter (low-momentum transfer) carries information about atomic structures, resulting in a pattern, which can be used to reconstruct a series of images. Coherent-scatter computed tomography is a novel imaging method developed to produce cross-sectional images based on the X-ray diffraction properties of an object. A different approach to coherent X-ray imaging is possible by fixing the detector at a given scatter angle {theta}, which produces an interference peak and then, carried out a tomography in the standard way. The cross-sectional images obtained allow determining the spatial dependence of coherent scatter cross-section of selected volume elements of inhomogeneous, extend objects for a single predetermined value of {theta} of interest, leading to a simplification of the data processing and the complexity of the apparatus. This work presents preliminary coherent scattering images carried out at the X-ray Diffraction beamline of the National Synchrotron Light Laboratory in Campinas, Brazil. The specimens were excised human breast tissues fixed in formaline. No frozen procedure was used in order to minimize preferred orientation during sample preparation. About 1mm thick slices cut from each of the fresh samples were mounted in frames without windows and placed on a translator to allow acquisition of scattering spectra. Cylinders containing healthy and cancerous (infiltrating ductal carcinoma) breast tissues were imagined at the characteristic angle for adipose tissue. Transmission and coherent scatter images are compared.

  7. Generalized theory of resonance scattering (GTRS) using the translational addition theorem for spherical wave functions.

    Science.gov (United States)

    Mitri, Farid

    2014-11-01

    The generalized theory of resonance scattering (GTRS) by an elastic spherical target in acoustics is extended to describe the arbitrary scattering of a finite beam using the addition theorem for the spherical wave functions of the first kind under a translation of the coordinate origin. The advantage of the proposed method over the standard discrete spherical harmonics transform previously used in the GTRS formalism is the computation of the off-axial beam-shape coefficients (BSCs) stemming from a closed-form partial-wave series expansion representing the axial BSCs in spherical coordinates. With this general method, the arbitrary acoustical scattering can be evaluated for any particle shape and size, whether the particle is partially or completely illuminated by the incident beam. Numerical examples for the axial and off-axial resonance scattering from an elastic sphere placed arbitrarily in the field of a finite circular piston transducer with uniform vibration are provided. Moreover, the 3-D resonance directivity patterns illustrate the theory and reveal some properties of the scattering. Numerous applications involving the scattering phenomenon in imaging, particle manipulation, and the characterization of multiphase flows can benefit from the present analysis because all physically realizable beams radiate acoustical waves from finite transducers as opposed to waves of infinite extent.

  8. Dose calculation in eye brachytherapy with Ir-192 threads using the Sievert integral and corrected by attenuation and scattering with the Meisberg polynomials

    International Nuclear Information System (INIS)

    Vivanco, M.G. Bernui de; Cardenas R, A.

    2006-01-01

    The ocular brachytherapy many times unique alternative to conserve the visual organ in patients of ocular cancer, one comes carrying out in the National Institute of Neoplastic Illnesses (INEN) using threads of Iridium 192; those which, they are placed in radial form on the interior surface of a spherical cap of gold of 18 K; the cap remains in the eye until reaching the prescribed dose by the doctor. The main objective of this work is to be able to calculate in a correct and practical way the one time that the treatment of ocular brachytherapy should last to reach the dose prescribed by the doctor. To reach this objective I use the Sievert integral corrected by attenuation effects and scattering (Meisberg polynomials); calculating it by the Simpson method. In the calculations by means of the Sievert integral doesn't take into account the scattering produced by the gold cap neither the variation of the constant of frequency of exposure with the distance. The calculations by means of Sievert integral are compared with those obtained using the Monte Carlo Penelope simulation code, where it is observed that they agree at distances of the surface of the cap greater or equal to 2mm. (Author)

  9. Bistatic scattering from submerged unexploded ordnance lying on a sediment.

    Science.gov (United States)

    Bucaro, J A; Simpson, H; Kraus, L; Dragonette, L R; Yoder, T; Houston, B H

    2009-11-01

    The broadband bistatic target strengths (TSs) of two submerged unexploded ordnance (UXO) targets have been measured in the NRL sediment pool facility. The targets-a 5 in. rocket and a 155 mm projectile-were among the targets whose monostatic TSs were measured and reported previously by the authors. Bistatic TS measurements were made for 0 degrees (target front) and 90 degrees (target side) incident source directions, and include both backscattered and forward scattered echo angles over a complete 360 degrees with the targets placed proud of the sediment surface. For the two source angles used, each target exhibits two strong highlights: a backscattered specular-like echo and a forward scattered response. The TS levels of the former are shown to agree reasonably well with predictions, based on scattering from rigid disks and cylinders, while the levels of the latter with predictions from radar cross section models, based on simple geometric optics appropriately modified. The bistatic TS levels observed for the proud case provide comparable or higher levels of broadband TS relative to free-field monostatic measurements. It is concluded that access to bistatic echo information in operations aimed at detecting submerged UXO targets could provide an important capability.

  10. Deep inelastic scattering and disquarks

    International Nuclear Information System (INIS)

    Anselmino, M.

    1993-01-01

    The most comprehensive and detailed analyses of the existing data on the structure function F 2 (x, Q 2 ) of free nucleons, from the deep inelastic scattering (DIS) of charged leptons on hydrogen and deuterium targets, have proved beyond any doubt that higher twist, 1/Q 2 corrections are needed in order to obtain a perfect agreement between perturbative QCD predictions and the data. These higher twist corrections take into account two quark correlations inside the nucleon; it is then natural to try to model them in the quark-diquark model of the proton. In so doing all interactions between the two quarks inside the diquark, both perturbative and non perturbative, are supposed to be taken into account. (orig./HSI)

  11. Designated Places

    Data.gov (United States)

    California Natural Resource Agency — Census 2000 Place Names provides a seamless statewide GIS layer of places, including census designated places (CDP), consolidated cities, and incorporated places,...

  12. ITERATIVE SCATTER CORRECTION FOR GRID-LESS BEDSIDE CHEST RADIOGRAPHY: PERFORMANCE FOR A CHEST PHANTOM.

    Science.gov (United States)

    Mentrup, Detlef; Jockel, Sascha; Menser, Bernd; Neitzel, Ulrich

    2016-06-01

    The aim of this work was to experimentally compare the contrast improvement factors (CIFs) of a newly developed software-based scatter correction to the CIFs achieved by an antiscatter grid. To this end, three aluminium discs were placed in the lung, the retrocardial and the abdominal areas of a thorax phantom, and digital radiographs of the phantom were acquired both with and without a stationary grid. The contrast generated by the discs was measured in both images, and the CIFs achieved by grid usage were determined for each disc. Additionally, the non-grid images were processed with a scatter correction software. The contrasts generated by the discs were determined in the scatter-corrected images, and the corresponding CIFs were calculated. The CIFs obtained with the grid and with the software were in good agreement. In conclusion, the experiment demonstrates quantitatively that software-based scatter correction allows restoring the image contrast of a non-grid image in a manner comparable with an antiscatter grid. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Lensless ghost imaging through the strongly scattering medium

    International Nuclear Information System (INIS)

    Yang Zhe; Zhao Xueliang; Li Junlin; Zhao Lianjie; Qin Wei

    2016-01-01

    Lensless ghost imaging has attracted much interest in recent years due to its profound physics and potential applications. In this paper we report studies of the robust properties of the lensless ghost imaging system with a pseudo-thermal light source in a strongly scattering medium. The effects of the positions of the strong medium on the ghost imaging are investigated. In the lensless ghost imaging system, a pseudo-thermal light is split into two correlated beams by a beam splitter. One beam goes to a charge-coupled detector camera, labeled as CCD2. The other beam goes to an object and then is collected in another charge-coupled detector camera, labeled as CCD1, which serves as a bucket detector. When the strong medium, a pane of ground glass disk, is placed between the object and CCD1, the bucket detector, the quality of ghost imaging is barely affected and a good image could still be obtained. The quality of the ghost imaging can also be maintained, even when the ground glass is rotating, which is the strongest scattering medium so far. However, when the strongly scattering medium is present in the optical path from the light source to CCD2 or the object, the lensless ghost imaging system hardly retrieves the image of the object. A theoretical analysis in terms of the second-order correlation function is also provided. (paper)

  14. Magnetic photon scattering

    International Nuclear Information System (INIS)

    Lovesey, S.W.

    1987-05-01

    The report reviews, at an introductory level, the theory of photon scattering from condensed matter. Magnetic scattering, which arises from first-order relativistic corrections to the Thomson scattering amplitude, is treated in detail and related to the corresponding interaction in the magnetic neutron diffraction amplitude. (author)

  15. Two-magnon Raman scattering in LiMnPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Calderon Filho, C.J. [Instituto de Física ”Gleb Wataghin”, UNICAMP, 13083-859, Campinas, São Paulo (Brazil); Gomes, P.F. [Instituto de Física ”Gleb Wataghin”, UNICAMP, 13083-859, Campinas, São Paulo (Brazil); Universidade Federal de Goiás, 75801-615, Jataí, Goiás (Brazil); García-Flores, A.F.; Barberis, G.E. [Instituto de Física ”Gleb Wataghin”, UNICAMP, 13083-859, Campinas, São Paulo (Brazil); Granado, E., E-mail: egranado@ifi.unicamp.br [Instituto de Física ”Gleb Wataghin”, UNICAMP, 13083-859, Campinas, São Paulo (Brazil)

    2015-03-01

    Two-magnon Raman scattering is observed in the orthophosphate LiMnPO{sub 4}, carrying quantitative information on the magnetic interactions between local Mn{sup 2+} moments. A simulated annealing fitting procedure of the Raman signal to theoretical curves derived from a magnetic Hamiltonian was carried out, taking exchange and anisotropy constants as free fitting parameters. Previously reported inelastic neutron scattering (INS) data [J. Li et al., Phys. Rev. B 79, 144410 (2009)] were also used in the fit. It is shown that the combined application of INS and Raman scattering data in the fit reduces the ambiguity of the determined set of exchange parameters with respect to fitting procedures using INS or Raman data independently. The temperature dependence of the Raman signal does not show a collapse of the two-magnon excitations at the long-range magnetic ordering temperature, T{sub N}=34K, supporting significant short-range spin correlations above T{sub N}. - Highlights: • A two-magnon Raman scattering signal was observed in the orthophosphate LiMnPO{sub 4}. • Calculations under the Fleury–Loudon were carried out to simulate the observed signal. • A combined fit using Raman and neutron data yields a robust set of magnetic parameters. • The nearest-neighbor interaction is largely dominant over the remaining terms. • This work is a step forward in combining techniques to obtain exchange constants.

  16. PREFACE: 7th Meeting of the Spanish Neutron Scattering Association (SETN)

    Science.gov (United States)

    Pérez-Landazábal, J. I.; Recarte, V.

    2015-11-01

    The VII th Meeting of the Spanish Neutron Scattering Association was held on the campus of the Public University of Navarra (UPNa) in Pamplona (Spain) during 22-25 June 2014. It was the seventh edition of a series of biennial meetings that began in San Sebastian in 2002, which followed the meetings of Puerto de La Cruz (2004), Jaca (2006), Sant Feliu de Guixols (2008), Gijón (2010) and Segovia (2012). It is the largest meeting and discussion forum for Spanish scientific users of neutron scattering techniques, whatever the branch of science or technology development their research activity concerns. Throughout these years, the Spanish community of neutron techniques has been consolidating, increasing every year both in the number of users and in the diversity of techniques and topics analyzed. In this sense, the series of biennial meetings of the Society aims to give visibility and summarize the activity taking place in this field. Ongoing with the initiative undertaken in the last two editions, some selected works shown in the conference are published in this edition of Journal of Physics: Conference Series. The conference consisted of plenary lectures issued by relevant researchers in neutron science techniques, as well as invited lectures in which the most significant recent results achieved by Spanish scientists from fundamental science to applied technology were shown. To encourage the participation of as many research groups as possible and in particular young researchers, oral and poster presentations were also included. The VII th SETN meeting was organized by the Physics Department of the Public University of Navarra in collaboration with the Spanish Society for Neutron Techniques (SETN, Sociedad Española de Técnicas Neutrónicas). The meeting attracted around 70 participants from all over the country and foreign researchers were also invited to the conference. We want to emphasize the excellent quality of the presentations and want to thank the support

  17. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A. E., E-mail: schmidt@omrb.pnpi.spb.ru; Shvetsov, A. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Kuklin, A. I. [Joint Institute for Nuclear Research (Russian Federation); Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation)

    2016-01-15

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  18. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    International Nuclear Information System (INIS)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å

  19. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Science.gov (United States)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  20. Possible role of double scattering in electron-atom scattering in a laser field

    International Nuclear Information System (INIS)

    Rabadan, I.; Mendez, L.; Dickinson, A.S.

    1996-01-01

    By considering observations of double-scattering effects in the excitation of the 2 1 P level of He, gas density values estimated for the laser-assisted elastic scattering experiments of Wallbank and Holmes (1993, 1994a,b) for which the Kroll-Watson approximation appears to fail. Using comparable densities for He and lower densities for Ar, and assuming the Kroll-Watson approximation for single-scattering events, differential cross sections are calculated including double scattering for laser-assisted scattering for a range of energies and scattering angles. Comparison with the observed values shows that double-scattering effects can give a semi-quantitative explanation of the apparent breakdown of the Kroll-Watson approximation in both He and Ar. (author)

  1. Literary heritage and place building for communities: the case of Allier, France

    Directory of Open Access Journals (Sweden)

    Pierre-Mathieu Le Bel

    2017-03-01

    Full Text Available Literature’s geography takes an active part in the construction of a social and political space. In a postmodern context of increasing tourist offer and demand, literary tourism is often seen as a niche; an originality factor and a guaranty of authenticity by local development actors and visitors. The present article, consequently, is interested in this dialectic between places and literary heritage. This paper focuses on a participatory action research on citizen associations that promote literary heritage of the County of Allier, France. We look at how local associations build on literary heritage to produce places and representations of those places are aimed at tourist consumption.

  2. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering

    Science.gov (United States)

    Dierker, S. B.; Aronson, M. C.

    2018-05-01

    We describe a new design and use of a high pressure anvil cell that significantly reduces the Raman scattering and fluorescence from the anvils in high pressure Raman scattering experiments. The approach is particularly useful in Raman scattering studies of opaque, weakly scattering samples. The effectiveness of the technique is illustrated with measurements of two-magnon Raman scattering in La2CuO4.

  3. FDTD scattered field formulation for scatterers in stratified dispersive media.

    Science.gov (United States)

    Olkkonen, Juuso

    2010-03-01

    We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.

  4. Amorphous Calcium Phosphate Formation and Aggregation Process Revealed by Light Scattering Techniques

    Directory of Open Access Journals (Sweden)

    Vida Čadež

    2018-06-01

    Full Text Available Amorphous calcium phosphate (ACP attracts attention as a precursor of crystalline calcium phosphates (CaPs formation in vitro and in vivo as well as due to its excellent biological properties. Its formation can be considered to be an aggregation process. Although aggregation of ACP is of interest for both gaining a fundamental understanding of biominerals formation and in the synthesis of novel materials, it has still not been investigated in detail. In this work, the ACP aggregation was followed by two widely applied techniques suitable for following nanoparticles aggregation in general: dynamic light scattering (DLS and laser diffraction (LD. In addition, the ACP formation was followed by potentiometric measurements and formed precipitates were characterized by Fourier transform infrared spectroscopy (FTIR, powder X-ray diffraction (PXRD, transmission electron microscopy (TEM, and atomic force microscopy (AFM. The results showed that aggregation of ACP particles is a process which from the earliest stages simultaneously takes place at wide length scales, from nanometers to micrometers, leading to a highly polydisperse precipitation system, with polydispersity and vol. % of larger aggregates increasing with concentration. Obtained results provide insight into developing a way of regulating ACP and consequently CaP formation by controlling aggregation on the scale of interest.

  5. Inventing and naming America:  Place and Place Names in Vladimir Nabokov’s Lolita

    Directory of Open Access Journals (Sweden)

    Monica Manolescu-Oancea

    2009-06-01

    Full Text Available In the afterword to Lolita, Nabokov claimed that in this book he had to invent both Lolita and America after having invented Europe in his previous fiction. This paper focuses precisely on the various ways in which Nabokov “invented” America in his best-known novel. This invention is first of all the result of the author’s evolving stance on the complexity of what he called “average ‘reality’” in his works. Through a survey of Nabokov’s statements on the choice and role of place in the forewords to his Russian works and in his critical texts, I show that Lolita is indeed considered by Nabokov to be a “recreation” of American reality, to a much greater extent than his Russian works had been recreations of a given milieu. I take the metaphor of the “crazy quilt” mentioned in Lolita to suggest complexity, chromatic exuberance, hybridity. The invention of America is also the result of a process of naming. Place names will be examined, not only those which make up Quilty’s “cryptogrammic paperchase”, but also Humbert’s choice of place names. The problem of referentiality is discussed and the way recent criticism has dealt with it. Finally, the interplay between one and many is emphasized, the way in which the diversity of the “crazy quilt” is counterbalanced by the uniqueness of the mastermind having produced it. The American motto “From many make one” could be reinterpreted as “From one make many”.

  6. Scattering from extended targets in range-dependent fluctuating ocean-waveguides with clutter from theory and experiments.

    Science.gov (United States)

    Jagannathan, Srinivasan; Küsel, Elizabeth T; Ratilal, Purnima; Makris, Nicholas C

    2012-08-01

    Bistatic, long-range measurements of acoustic scattered returns from vertically extended, air-filled tubular targets were made during three distinct field experiments in fluctuating continental shelf waveguides. It is shown that Sonar Equation estimates of mean target-scattered intensity lead to large errors, differing by an order of magnitude from both the measurements and waveguide scattering theory. The use of the Ingenito scattering model is also shown to lead to significant errors in estimating mean target-scattered intensity in the field experiments because they were conducted in range-dependent ocean environments with large variations in sound speed structure over the depth of the targets, scenarios that violate basic assumptions of the Ingenito model. Green's theorem based full-field modeling that describes scattering from vertically extended tubular targets in range-dependent ocean waveguides by taking into account nonuniform sound speed structure over the target's depth extent is shown to accurately describe the statistics of the targets' scattered field in all three field experiments. Returns from the man-made targets are also shown to have a very different spectral dependence from the natural target-like clutter of the dominant fish schools observed, suggesting that judicious multi-frequency sensing may often provide a useful means of distinguishing fish from man-made targets.

  7. Ab initio calculations of scattering cross sections of the three-body system (p ¯,e+,e- ) between the e-+H ¯(n =2 ) and e-+H ¯(n =3 ) thresholds

    Science.gov (United States)

    Valdes, Mateo; Dufour, Marianne; Lazauskas, Rimantas; Hervieux, Paul-Antoine

    2018-01-01

    The ab initio method based on the Faddeev-Merkuriev equations is used to calculate cross sections involving the (p ¯,e+,e-) three-body system, with an emphasis on antihydrogen formation (H ¯) via antiproton (p ¯) scattering on positronium. This system is studied in the energy range between the e-+H ¯(n =2 ) and the e-+H ¯(n =3 ) thresholds, where precisely calculated cross sections can be useful for future experiments (GBAR, AEGIS, etc.) aiming to produce antihydrogen atoms. A special treatment is developed to take into account the long-range charge-dipole interaction effect on the wave function. Emphasis is placed on the impact of Feshbach resonances and Gailitis-Damburg oscillations appearing in the vicinity of the p ¯+Ps (n =2 ) threshold.

  8. Study of the atomic motion in methanol by slow neutron scattering

    International Nuclear Information System (INIS)

    Rodrigues, C.

    1979-01-01

    Cold neutron scattering data are reported for methyl alcohol in the liquid phase at room temperature. The quasielastic scattering was interpreted using the Larsson and Bergstedt model, that takes into account intramolecular motions and molecular diffusion. On the basis of this model, one finds for the relaxation time of the hindered rotation of the CH 3 group within the molecule a value 2,4 x 10 -12 sec. The analysis of the quasielastic scattering to the L-B model explain in a consistent way our experimental results in a range of momentum transfers of about 0.80 - 1.55A -1 . In the inelastic region some structure is observed at energy transfers of 22, 17 and 5 meV. The 17 meV energy transfer is associated with the 1→0 transition of the torsional oscillations of the methyl group. The activation energy for the above motion was calculated to be E=1.3 kcal/mol, in good agreement with the value of the barrier height for internal rotation of the CH 3 in methanol, obtained by microwave methods. (Author) [pt

  9. Extension of nano-scaled exploration into solution/liquid systems using tip-enhanced Raman scattering

    Science.gov (United States)

    Pienpinijtham, Prompong; Vantasin, Sanpon; Kitahama, Yasutaka; Ekgasit, Sanong; Ozaki, Yukihiro

    2017-08-01

    This review shows updated experimental cases of tip-enhanced Raman scattering (TERS) operated in solution/liquid systems. TERS in solution/liquid is still infancy, but very essential and challenging because crucial and complicated biological processes such as photosynthesis, biological electron transfer, and cellular respiration take place and undergo in water, electrolytes, or buffers. The measurements of dry samples do not reflect real activities in those kinds of systems. To deeply understand them, TERS in solution/liquid is needed to be developed. The first TERS experiment in solution/liquid is successfully performed in 2009. After that time, TERS in solution/liquid has gradually been developed. It shows a potential to study structural changes of biomembranes, opening the world of dynamic living cells. TERS is combined with electrochemical techniques, establishing electrochemical TERS (EC-TERS) in 2015. EC-TERS creates an interesting path to fulfil the knowledge about electrochemical-related reactions or processes. TERS tip can be functionalized with sensitive molecules to act as a "surface-enhanced Raman scattering (SERS) at tip" for investigating distinct properties of systems in solution/liquid e.g., pH and electron transfer mechanism. TERS setup is continuously under developing. Versatile geometry of the setup and a guideline of a systematic implementation for a setup of TERS in solution/liquid are proposed. New style of setup is also reported for TERS imaging in solution/liquid. From all of these, TERS in solution/liquid will expand a nano-scaled exploration into solution/liquid systems of various fields e.g., energy storages, catalysts, electronic devices, medicines, alternative energy sources, and build a next step of nanoscience and nanotechnology.

  10. Collective laser light scattering from electron density fluctuations in fusion research plasmas (invited)

    International Nuclear Information System (INIS)

    Holzhauer, E.; Dodel, G.

    1990-01-01

    In magnetically confined plasmas density fluctuations of apparently turbulent nature with broad spectra in wave number and frequency space are observed which are thought to be the cause for anomalous energy and particle transport across the confining magnetic field. Collective laser light scattering has been used to study the nature of these fluctuations. Specific problems of scattering from fusion plasmas are addressed and illustrated with experimental results from the 119 μm far infrared laser scattering experiment operated on the ASDEX tokamak. Using the system in the heterodyne mode the direction of propagation with respect to the laboratory frame can be determined. Spatial resolution has bean improved by making use of the change in pitch of the total magnetic field across the minor plasma radius. Special emphasis is placed on the ohmic phase where a number of parameter variations including electron density, electron temperature, toroidal magnetic field, and filling gas were performed

  11. The high brightness temperature of B0529+483 revealed by RadioAstron and implications for interstellar scattering

    Science.gov (United States)

    Pilipenko, S. V.; Kovalev, Y. Y.; Andrianov, A. S.; Bach, U.; Buttaccio, S.; Cassaro, P.; Cimò, G.; Edwards, P. G.; Gawroński, M. P.; Gurvits, L. I.; Hovatta, T.; Jauncey, D. L.; Johnson, M. D.; Kovalev, Yu A.; Kutkin, A. M.; Lisakov, M. M.; Melnikov, A. E.; Orlati, A.; Rudnitskiy, A. G.; Sokolovsky, K. V.; Stanghellini, C.; de Vicente, P.; Voitsik, P. A.; Wolak, P.; Zhekanis, G. V.

    2018-03-01

    The high brightness temperatures, Tb ≳ 1013 K, detected in several active galactic nuclei by RadioAstron space VLBI observations challenge theoretical limits. Refractive scattering by the interstellar medium may affect such measurements. We quantify the scattering properties and the sub-mas scale source parameters for the quasar B0529+483. Using RadioAstron correlated flux density measurements at 1.7, 4.8, and 22 GHz on projected baselines up to 240 000 km we find two characteristic angular scales in the quasar core, about 100 and 10 μas. Some indications of scattering substructure are found. Very high brightness temperatures, Tb ≥ 1013 K, are estimated at 4.8 and 22 GHz even taking into account the refractive scattering. Our findings suggest a clear dominance of the particle energy density over the magnetic field energy density in the core of this quasar.

  12. Offenders' risk-taking attitude inside and outside the prison walls.

    Science.gov (United States)

    Gummerum, Michaela; Hanoch, Yaniv; Rolison, Jonathan J

    2014-10-01

    It has long been assumed that risk taking is closely associated with criminal behavior. One reason for placing criminals behind bars--aside from punishment and protecting the public--is to prevent them from engaging in further risky criminal activities. Limited attention has been paid to whether being inside or outside prison affects offenders' risk-taking behaviors and attitudes. We compared risk-taking behaviors and attitudes in five risk domains (ethical, financial, health/safety, recreational, social) among 75 incarcerated offenders (i.e., offenders who are currently in prison) and 45 ex-offenders (i.e., offenders who have just been released from prison). Ex-offenders reported higher likelihood of engaging in risky behavior, driven largely by a willingness to take more risks in the recreational and ethical domains. Benefits attributed to risk taking as well as risk perception did not differ between incarcerated and ex-offenders, indicating that the opportunity to take risks might underlie behavioral risk intentions. Our results also indicate that risk-taking activities are better predicted by the expected benefits rather than by risk perception, aside from the health/safety domain. These results highlight the importance of studying the person and the environment and examining risk taking in a number of content domains. © 2014 Society for Risk Analysis.

  13. Acoustic scattering on spheroidal shapes near boundaries

    Science.gov (United States)

    Miloh, Touvia

    2016-11-01

    A new expression for the Lamé product of prolate spheroidal wave functions is presented in terms of a distribution of multipoles along the axis of the spheroid between its foci (generalizing a corresponding theorem for spheroidal harmonics). Such an "ultimate" singularity system can be effectively used for solving various linear boundary-value problems governed by the Helmholtz equation involving prolate spheroidal bodies near planar or other boundaries. The general methodology is formally demonstrated for the axisymmetric acoustic scattering problem of a rigid (hard) spheroid placed near a hard/soft wall or inside a cylindrical duct under an axial incidence of a plane acoustic wave.

  14. Experimental plan of Σp scatterings at J-PARC

    Directory of Open Access Journals (Sweden)

    Tamura H.

    2012-02-01

    Full Text Available In order to test theoretical frameworks of the baryon-baryon interactions and to confirm the ”Pauli effect between quarks” for the first time, we propose an experiment to measure low-energy hyperon proton scattering cross sections in the following channels with high statistics, 1. Σ− p elastic scattering, 2. Σ− p → Λn inelastic scattering, 3. Σ+ p elastic scattering. According to theoretical models based on quark-gluon picture for the short range part of the baryon-baryon interactions, the Σ+ p channel is expected to have an extremely repulsive core due to the Pauli effect between quarks, which leads a Σ+ p cross section twice as large as that predicted by conventional meson exchange models with a phenomenologically treated short range repulsive core. In addition, measurement of the Σ− p channel where the quark Pauli effect is not effective is also necessary to test the present theoretical models based on meson exchange picture with the flavor SU(3 symmetry. Thus this experiment will provide essential data to test the frameworks of the theoretical models of the baryon-baryon interactions and to investigate the nature of the repulsive core which has not been understood yet. In order to overcome the experimental difficulties in measuring low-energy hyperon proton scattering, we will use a new experimental technique in which a liquid H2 target is used as hyperon production and hyperon scattering targets with a detector system surrounding the LH2 target for detection of a scattered proton and a decay product from a hyperon. The hyperon scattering event is kinematically identified. Because imaging detectors used in past experiments are not employed, high intensity π beam can be used, allowing us to take high statistics data of 100 times more than the previous experiments. We have proposed an experiment of Σp scattering at the K1.8 beam line by utilizing the K1.8 beam line spectrometer and the SKS spectrometer. A high intensity

  15. Contributions to atomic microdynamics study in some liquid metals by means of soft neutrons scattering

    International Nuclear Information System (INIS)

    Rotarescu, G.

    1981-01-01

    Measurements of inelastic scattering of soft neutrons on Bi and liquid Pb, applying all the necessary corrections in view of obtaining the dYnamic structure factor S(Q,ω) were performed. The F(Q,t) function of intermediate scattering was obtained by means of the Fourier transformation of S(Q,ω). Special attention was devoted to one multiple scattering correction, especially at small scattering angles, taking into account its influence on the results. A comparison of the experimental results with three recent theoretical models has shown a good agreement in the range of intermediate and high Q values. Measurements of neutron inelastic scattering on liquid sodium at a temperature of 233 Cdeg within a momentum transfer range of 1 A -1 -1 were performed. The scattering law S(α,β) that was compared to a series of theoretical models has been determined from the experimental data. The validity of the theoretical models for different ranges of energy and momenta was thoroughly checked. S(α,β) was calculated for each type of scattering since sodium proves a mixed, coherent and incoherent scattering agent. A study on the influence of the even interaction potential upon the S(Q,ω) dynamic structure factor, the fourth order momentum ω 4 (Q) and uoon the spectral function C(Q,ω) of longitudinal current correlations was performed. For this purpose, four potentials with oscillations at great distances and a Lennard-Jones type potential were used. (author)

  16. Difference in x-ray scattering between metallic and non-metallic liquids due to conduction electrons

    International Nuclear Information System (INIS)

    Chihara, Junzo

    1987-01-01

    X-ray scattered intensity from a liquid metal as an electron-ion mixture is described using the structure factors, which are exactly expressed in terms of the static and dynamic direct correlation functions. This intensity for a metal is shown to differ from the usual scattered intensity from a non-metal in two points: the atomic form factor and the incoherent (Compton) scattering factor. It is shown that the valence electron form factor, which constitutes the atomic form factor in a liquid metal, leads to a determination of the electron-electron and electron-ion structure factors by combining the ionic structure factor. It is also shown that a part of the electron structure factor, which appears as the incoherent x-ray scattering, is usually approximated as the electron structure factor of the jellium model in the case of a simple metal. As a by-product, the x-ray scattered intensity from a crystalline metal and the inelastic scattering from a liquid metal are given by taking account of the presence of conduction electrons. In this way, we clarify some confusion which appeared in the proposal by Egelstaff et al for extracting the electron-electron correlation function in a metal from x-ray and neutron scattering experiments. A procedure to extract the electron-electron and electron-ion structure factors in a liquid metal is proposed on the basis of formula for scattered intensity derived here. (author)

  17. A novel sampling method for multiple multiscale targets from scattering amplitudes at a fixed frequency

    Science.gov (United States)

    Liu, Xiaodong

    2017-08-01

    A sampling method by using scattering amplitude is proposed for shape and location reconstruction in inverse acoustic scattering problems. Only matrix multiplication is involved in the computation, thus the novel sampling method is very easy and simple to implement. With the help of the factorization of the far field operator, we establish an inf-criterion for characterization of underlying scatterers. This result is then used to give a lower bound of the proposed indicator functional for sampling points inside the scatterers. While for the sampling points outside the scatterers, we show that the indicator functional decays like the bessel functions as the sampling point goes away from the boundary of the scatterers. We also show that the proposed indicator functional continuously depends on the scattering amplitude, this further implies that the novel sampling method is extremely stable with respect to errors in the data. Different to the classical sampling method such as the linear sampling method or the factorization method, from the numerical point of view, the novel indicator takes its maximum near the boundary of the underlying target and decays like the bessel functions as the sampling points go away from the boundary. The numerical simulations also show that the proposed sampling method can deal with multiple multiscale case, even the different components are close to each other.

  18. Multivariate statistical monitoring as applied to clean-in-place (CIP) and steam-in-place (SIP) operations in biopharmaceutical manufacturing.

    Science.gov (United States)

    Roy, Kevin; Undey, Cenk; Mistretta, Thomas; Naugle, Gregory; Sodhi, Manbir

    2014-01-01

    Multivariate statistical process monitoring (MSPM) is becoming increasingly utilized to further enhance process monitoring in the biopharmaceutical industry. MSPM can play a critical role when there are many measurements and these measurements are highly correlated, as is typical for many biopharmaceutical operations. Specifically, for processes such as cleaning-in-place (CIP) and steaming-in-place (SIP, also known as sterilization-in-place), control systems typically oversee the execution of the cycles, and verification of the outcome is based on offline assays. These offline assays add to delays and corrective actions may require additional setup times. Moreover, this conventional approach does not take interactive effects of process variables into account and cycle optimization opportunities as well as salient trends in the process may be missed. Therefore, more proactive and holistic online continued verification approaches are desirable. This article demonstrates the application of real-time MSPM to processes such as CIP and SIP with industrial examples. The proposed approach has significant potential for facilitating enhanced continuous verification, improved process understanding, abnormal situation detection, and predictive monitoring, as applied to CIP and SIP operations. © 2014 American Institute of Chemical Engineers.

  19. Neutron-proton scattering

    International Nuclear Information System (INIS)

    Doll, P.

    1990-02-01

    Neutron-proton scattering as fundamental interaction process below and above hundred MeV is discussed. Quark model inspired interactions and phenomenological potential models are described. The seminar also indicates the experimental improvements for achieving new precise scattering data. Concluding remarks indicate the relevance of nucleon-nucleon scattering results to finite nuclei. (orig.) [de

  20. Scattering theory

    International Nuclear Information System (INIS)

    Sitenko, A.

    1991-01-01

    This book emerged out of graduate lectures given by the author at the University of Kiev and is intended as a graduate text. The fundamentals of non-relativistic quantum scattering theory are covered, including some topics, such as the phase-function formalism, separable potentials, and inverse scattering, which are not always coverded in textbooks on scattering theory. Criticisms of the text are minor, but the reviewer feels an inadequate index is provided and the citing of references in the Russian language is a hindrance in a graduate text

  1. Place, Non-Place, Multi-Place and the (Non)Possibilities of Identity: Philosophical, Social, and Communicational Aspects

    OpenAIRE

    Basia Nikiforova

    2016-01-01

    Michel Foucault in the text “Of Other Spaces: Utopias and Heterotopias” wrote that “the present epoch will perhaps be above all the epoch of space”. Space, place, and territories are social productions. Territory is a polysemic concept. Place is “events” created by territories, fluid areas of control produced by territorial negotiation (horizontal dynamics) and negotiations between places (vertical dynamics). Space produces places and is produced by places. Moreover, space, place and territor...

  2. Post-utilitarian forestry: What's place got to do with it?

    Science.gov (United States)

    Daniel R. Williams

    2002-01-01

    Place ideas take a more holistic and embedded view of socio-ecological reality and have begun to influence many aspects of resource management, from ecosystem management to community-based collaboration. The flux we might call post-utilitarian forestry can be understood as a renegotiation of a long-standing dialectic tension in Western thought between universalist and...

  3. Interaction of a high-order Bessel beam with a submerged spherical ultrasound contrast agent shell - Scattering theory.

    Science.gov (United States)

    Mitri, F G

    2010-03-01

    Acoustic scattering properties of ultrasound contrast agents are useful in extending existing or developing new techniques for biomedical imaging applications. A useful first step in this direction is to investigate the acoustic scattering of a new class of acoustic beams, known as helicoidal high-order Bessel beams, to improve the understanding of their scattering characteristics by an ultrasound contrast agent, which at present is very limited. The transverse acoustic scattering of a commercially available albuminoidal ultrasound contrast agent shell filled with air or a denser gas such as perfluoropropane and placed in a helicoidal Bessel beam of any order is examined numerically. The shell is assumed to possess an outer radius a=3.5 microns and a thickness of approximately 105 nm. Moduli of the total and resonance transverse acoustic scattering form functions are numerically evaluated in the bandwidth 0scattering of a helicoidal Bessel beam of order m1 so that the dynamics of contrast agents would be significantly altered. The main finding of the present theory is the suppression or enhancement for a particular resonance that may be used to advantage in imaging with ultrasound contrast agents for clinical applications. 2009 Elsevier B.V. All rights reserved.

  4. Diffractive vector meson production in deep inelastic scattering

    International Nuclear Information System (INIS)

    Kamps, M. de.

    1997-01-01

    This thesis seeks to bring comfort to those who are appalled by the usual high level of violence in high energy physics. Although also here we engage in the customary vandalistic smashing together of two particles, the reaction we will study has a happy end in store for both of them. The subject of this thesis will be the reaction: e + p→e + pV where V is one of the vector mesons ρ, ω, φ, J/ψ. We will investigate the situation where the final state positron enters the ZEUS main detector, which indicates that a violent reaction has taken place between the initial state particles, but nevertheless the proton does not break up. The violence with which the positron is scattered characterises the reaction as a Deep Inelastic Scattering (DIS), the fact that the proton does not break up characterises the reaction as diffractive which explains the title of the thesis. Both DIS and diffractive physics will be defined and discussed in the context of this thesis. (orig./WL)

  5. A review of the light scattering properties of cirrus

    International Nuclear Information System (INIS)

    Baran, Anthony J.

    2009-01-01

    In this review paper the light scattering properties of naturally occurring ice crystals that are found in cirrus are discussed. Cirrus, also referred to as ice crystal clouds, due to their cold temperatures, consist of a variety of non-spherical ice particles which may take on a variety of geometrical forms. These geometrical forms can range from symmetric pristine hexagonal ice columns and plates, single bullets and bullet-rosettes to non-symmetric aggregates of these shapes. These aggregates may also consist of highly complex three-dimensional structures, which may themselves consist of symmetric components. Not only does cirrus consist of a wide variety of shapes but also sizes too, and these sizes can range between <10 μm to over 1 cm. With such a variety of shapes and sizes predicting the light scattering properties from such an ensemble of ice crystals is the current challenge. This challenge is important to overcome since with cirrus being so high in the Earth's atmosphere it has an important influence on the Earth-atmosphere radiation balance and consequently adds to the uncertainty of predicting climate change. This is why it is important to represent as accurately as possible the single-scattering properties of cirrus ice crystals within general circulation models so that uncertainties in climate change predictions can be reduced. In this review paper the current measurements and observations of ice crystal size and shape are discussed and how these observations relate to current ice crystal models is reviewed. The light scattering properties of the current ice crystal models are also discussed and it is shown how space-based instruments may be used to test these models. The need for particular microphysical and space-based measurements is stressed in order to further constrain ice crystal light scattering models.

  6. Model-independent analysis of polarization effects in elastic electron-deuteron scattering in presence of two-photon exchange

    International Nuclear Information System (INIS)

    Gakh, G.I.; Tomasi-Gustafsson, E.

    2006-01-01

    The general spin structure of the matrix element, taking into account the 2-photon exchange contribution, for the elastic electron (positron) - deuteron scattering has been derived using general symmetry properties of the hadron electromagnetic interaction, such as P-, C- and T-invariances as well as lepton helicity conservation in QED at high energy. Taking into account also crossing symmetry, the amplitudes of e ± d scattering can be parametrized in terms of fifteen real functions. The expressions for the differential cross section and for all polarization observables are given in terms of these functions. We consider the case of an arbitrary polarized deuteron target and polarized electron beam (both longitudinal and transverse). The transverse polarization of the electron beam induces a single-spin asymmetry which is non-zero in presence of 2-photon exchange. It is shown that elastic deuteron electromagnetic form factors can still be extracted in presence of 2 photon exchange, from the measurements of the differential cross sections and of one polarization observable (for example, the tensor asymmetry) for electron and positron deuteron elastic scattering, in the same kinematical conditions. (authors)

  7. Concentric layered Hermite scatterers

    Science.gov (United States)

    Astheimer, Jeffrey P.; Parker, Kevin J.

    2018-05-01

    The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.

  8. An Exact Line Integral Representation of the Physical Optics Far Field from Plane PEC Scatterers Illuminnated by Hertzian Dipoles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Meincke, Peter; Jørgensen, Erik

    2003-01-01

    We derive a line integral representation of the physical optics scattered far field that yields the exact same result as the conventional surface radiation integral. This representation applies to a perfectly electrically conducting plane scatterer illuminated by electric or magnetic Hertzian...... dipoles. The source and observation points can take on almost arbitrary positions. To illustrate the exactness and efficiency of the new line integral, numerical comparisons with the conventional surface radiation integral are carried out....

  9. Upcoming training sessions (up to end October) - Places available

    CERN Multimedia

    2016-01-01

    Please find below a list of training sessions scheduled to take place up to the end of October with places available.   Safety and Language courses are not included here, you will find an up-to-date list in the Training Catalogue. If you need a course which is not featured  in the catalogue, please contact one of the following: your supervisor, your Departmental Training Officer or the relevant learning specialist. Leadership Training           Training Course Title Next Session Language Duration Available places Needed to maintain the session Driving for Impact and Influence 13-Sep-2016 to 14-Sep-2016 French 2 days 4 0 Essentials of People Management for CERN Supervisors (Adapted from CDP for CERN Supervisors) 22-Sep-2016 to 23-Sep-2016, 18-Nov-2016, 17-Jan-2017 to 18-Jan-2017 English 5 days 5 0 Eléments essentiels de la gestion du personnel pour les superviseurs (adapt&a...

  10. Electron Scattering in Solid Matter A Theoretical and Computational Treatise

    CERN Document Server

    Zabloudil, Jan; Szunyogh, Laszlo

    2005-01-01

    Addressing graduate students and researchers, this book gives a very detailed theoretical and computational description of multiple scattering in solid matter. Particular emphasis is placed on solids with reduced dimensions, on full potential approaches and on relativistic treatments. For the first time approaches such as the Screened Korringa-Kohn-Rostoker method that have emerged during the last 5 – 10 years are reviewed, considering all formal steps such as single-site scattering, structure constants and screening transformations, and also the numerical point of view. Furthermore, a very general approach is presented for solving the Poisson equation, needed within density functional theory in order to achieve self-consistency. Going beyond ordered matter and translationally invariant systems, special chapters are devoted to the Coherent Potential Approximation and to the Embedded Cluster Method, used, for example, for describing nanostructured matter in real space. In a final chapter, physical properties...

  11. SCATTER

    International Nuclear Information System (INIS)

    Broome, J.

    1965-11-01

    The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)

  12. What does it take to make them stay? : how place satisfaction relates to willingness to stay of the creative class

    OpenAIRE

    Annell, Jonas; Terman, Felix

    2017-01-01

    Swedish students in smaller university host cities leave in favor of more attractive places after having completed their studies. Failing to retain newly graduated students is a problem for university host cities as educated people are associated with the group referred to as the creative class. Members of the creative class are drivers of regional economic growth, and have historically proven to be important for creating and developing the well-being of cities. Different place attributes hav...

  13. DISCUS, Neutron Single to Double Scattering Ratio in Inelastic Scattering Experiment by Monte-Carlo

    International Nuclear Information System (INIS)

    Johnson, M.W.

    1993-01-01

    1 - Description of problem or function: DISCUS calculates the ratio of once-scattered to twice-scattered neutrons detected in an inelastic neutron scattering experiment. DISCUS also calculates the flux of once-scattered neutrons that would have been observed if there were no absorption in the sample and if, once scattered, the neutron would emerge without further re-scattering or absorption. Three types of sample geometry are used: an infinite flat plate, a finite flat plate or a finite length cylinder. (The infinite flat plate is included for comparison with other multiple scattering programs.) The program may be used for any sample for which the scattering law is of the form S(/Q/, omega). 2 - Method of solution: Monte Carlo with importance sampling is used. Neutrons are 'forced' both into useful angular trajectories, and useful energy bins. Biasing of the collision point according to the point of entry of the neutron into the sample is also utilised. The first and second order scattered neutron fluxes are calculated in independent histories. For twice-scattered neutron histories a square distribution in Q-omega space is used to sample the neutron coming from the first scattering event, whilst biasing is used for the second scattering event. (A square distribution is used so as to obtain reasonable inelastic-inelastic statistics.) 3 - Restrictions on the complexity of the problem: Unlimited number of detectors. Max. size of (Q, omega) matrix is 39*149. Max. number of points in momentum space for the scattering cross section is 199

  14. REMINDER: Alcohol and the work place

    CERN Multimedia

    2004-01-01

    The CERN Medical Service has observed an increase in the number of personnel suffering from alcohol-related problems in recent years, in spite of the implementation of stricter regulations concerning the consumption of alcohol on the site. The causes of alcohol-related problems are often complex and many-faceted. A family history of alcohol abuse can be a cofactor in excessive drinking. The effects on a person's work are not negligible and should not be ignored. "Alcohol and the work place" is the third part of a campaign designed to raise awareness of the risks of alcohol consumption, which has already dealt with "alcohol and health" and "alcohol and road safety". Our campaign this year will be rounded off by three information sessions in which a representative of the ISPA (Swiss Institute for the Prevention of Alcoholism) will participate. The last of these sessions will take place in: the Main Building Auditorium on Wednesday, 8 December 2004 from 14:00 to 15:30. Sessions are open to everyone. For m...

  15. Some Notes on Neutron Up-Scattering and the Doppler-Broadening of High-Z Scattering Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Donald Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    When neutrons are scattered by target nuclei at elevated temperatures, it is entirely possible that the neutron will actually gain energy (i.e., up-scatter) from the interaction. This phenomenon is in addition to the more usual case of the neutron losing energy (i.e., down-scatter). Furthermore, the motion of the target nuclei can also cause extended neutron down-scattering, i.e., the neutrons can and do scatter to energies lower than predicted by the simple asymptotic models. In recent years, more attention has been given to temperature-dependent scattering cross sections for materials in neutron multiplying systems. This has led to the inclusion of neutron up-scatter in deterministic codes like Partisn and to free gas scattering models for material temperature effects in Monte Carlo codes like MCNP and cross section processing codes like NJOY. The free gas scattering models have the effect of Doppler Broadening the scattering cross section output spectra in energy and angle. The current state of Doppler-Broadening numerical techniques used at Los Alamos for scattering resonances will be reviewed, and suggestions will be made for further developments. The focus will be on the free gas scattering models currently in use and the development of new models to include high-Z resonance scattering effects. These models change the neutron up-scattering behavior.

  16. Analytical approximations to seawater optical phase functions of scattering

    Science.gov (United States)

    Haltrin, Vladimir I.

    2004-11-01

    This paper proposes a number of analytical approximations to the classic and recently measured seawater light scattering phase functions. The three types of analytical phase functions are derived: individual representations for 15 Petzold, 41 Mankovsky, and 91 Gulf of Mexico phase functions; collective fits to Petzold phase functions; and analytical representations that take into account dependencies between inherent optical properties of seawater. The proposed phase functions may be used for problems of radiative transfer, remote sensing, visibility and image propagation in natural waters of various turbidity.

  17. Thomson Scattering

    NARCIS (Netherlands)

    Donne, A. J. H.

    1994-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is

  18. From meson- and photon-nucleon scattering to vector mesons in nuclear matter

    International Nuclear Information System (INIS)

    Wolf, Gy.; Lutz, M.F.M.; Friman, B.

    2003-01-01

    A relativistic and unitary approach to pion- and photon-nucleon scattering taking into account the πN, ρN, ωN, ηN, πΔ, KΛ and KΣ channels is presented. The scheme dynamically generates the s- and d-wave baryon resonances N(1535), N(1650), N(1520) and N(1700) and as well as Δ(1620) and Δ(1700) in terms of quasi-local two-body interaction terms. A fair description of the experimental data relevant to the properties of slow vector mesons in nuclear matter is obtained. The resulting s-wave ρ- and ω-meson-nucleon scattering amplitudes which define the leading density modification of the ρ- and ω-meson spectral functions in nuclear matter are presented. (author)

  19. Polarized Neutron Scattering

    OpenAIRE

    Roessli, B.; Böni, P.

    2000-01-01

    The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.

  20. Ultrasound scatter in heterogeneous 3D microstructures: Parameters affecting multiple scattering

    Science.gov (United States)

    Engle, B. J.; Roberts, R. A.; Grandin, R. J.

    2018-04-01

    This paper reports on a computational study of ultrasound propagation in heterogeneous metal microstructures. Random spatial fluctuations in elastic properties over a range of length scales relative to ultrasound wavelength can give rise to scatter-induced attenuation, backscatter noise, and phase front aberration. It is of interest to quantify the dependence of these phenomena on the microstructure parameters, for the purpose of quantifying deleterious consequences on flaw detectability, and for the purpose of material characterization. Valuable tools for estimation of microstructure parameters (e.g. grain size) through analysis of ultrasound backscatter have been developed based on approximate weak-scattering models. While useful, it is understood that these tools display inherent inaccuracy when multiple scattering phenomena significantly contribute to the measurement. It is the goal of this work to supplement weak scattering model predictions with corrections derived through application of an exact computational scattering model to explicitly prescribed microstructures. The scattering problem is formulated as a volume integral equation (VIE) displaying a convolutional Green-function-derived kernel. The VIE is solved iteratively employing FFT-based con-volution. Realizations of random microstructures are specified on the micron scale using statistical property descriptions (e.g. grain size and orientation distributions), which are then spatially filtered to provide rigorously equivalent scattering media on a length scale relevant to ultrasound propagation. Scattering responses from ensembles of media representations are averaged to obtain mean and variance of quantities such as attenuation and backscatter noise levels, as a function of microstructure descriptors. The computational approach will be summarized, and examples of application will be presented.

  1. On Small-Angle Neutron Scattering from Microemulsion Droplets the Role of Shape Fluctuations

    CERN Document Server

    Lisy, V

    2001-01-01

    The form factor and intensity of static neutron scattering from microemulsion droplets are calculated. The droplet is modeled by a double-layered sphere consisting of a fluid core and a thin surfactant layer, immersed in another fluid. All the three components are incompressible and characterized by different scattering length densities. As distinct from previous descriptions of small-angle neutron scattering (SANS), we consistently take into account thermal fluctuations of the droplet shape, to the second order of the fluctuations of the droplet radius. The properties of the layer are described within Helfrich's concept of the elasticity of curved interfaces. It is shown that in many cases the account for the fluctuations is essential for the interpretation of SANS. Information about two elastic constants \\kappa and \\bar\\kappa (so far extracted from the experiments in the combination 2\\kappa+\\bar\\kappa) can be now simultaneously obtained from SANS for system in conditions of two-phase coexistence. As an illu...

  2. Neutron energy measurement for practical applications

    Indian Academy of Sciences (India)

    M V Roshan

    2018-02-07

    . Elastic scattering of monoenergetic α-particles from neutron collision enables neutron energy measurement by calculating the amount of deviation from the position where collision takes place. The neutron numbers with ...

  3. Fluorescent scattering by molecules embedded in small particles. Progress report, May 1, 1977--October 31, 1978

    International Nuclear Information System (INIS)

    Chew, H.; McNulty, P.J.

    1978-01-01

    A model for the fluorescence and Raman scattering by molecules that comprise or are embedded in small particles was developed and numerical calculations performed. The emphasis during this first year of the contract was on writing and testing the computer programs necessary for numerical calculations and on demonstrating the extent of the potential effects that the geometrical and optical properties of the particle would have on the Raman and fluorescent emissions. For the purpose of demonstrating effects emphasis was focused upon the case of isotropically polarizable molecules that fluoresce or Raman scatter through electric dipole transitions. Some preliminary results are described. One result of these investigations that is of particular significance for remote sensing of pollutants is that it would be a serious mistake to use inelastic scattering techniques such as Raman and fluorescent scattering for quantitative assay of specific molecules in aerosols containing particulates without taking into account the size, structure and refractive index of the particles. A list of publications is included

  4. A study of interference effects in Na(3S,3P)-Ne, Ar scattering experiments at high angular resolution

    International Nuclear Information System (INIS)

    Berg, F.T.M. van den.

    1984-01-01

    In this thesis the author presents measurements of differential cross sections for the scattering of Na-atoms in the ground-state and first excited-state by the rare gas atoms Ne and Ar. The scattering experiments were performed in a crossed-beam apparatus built and tested by van Deventer et al. The unique high angular-resolution (0.1 0 ) of this beam-scattering apparatus permits us (i) to remove the discrepancies that still exist between the various X 2 Σ- and A 2 PI-potential curves for Na-Ar and Na-Ne reported up to now, (ii) to obtain detailed information on the B 2 Σ-potentials for these systems and (iii) to demonstrate the necessity of taking into account the spin-uncoupling effects, in the interpretation of the experimental Na-Ne scattering patterns. (Auth.)

  5. Monte Carlo calculation of scattered radiation from applicators in low energy clinical electron beams

    International Nuclear Information System (INIS)

    Jabbari, N.; Hashemi-Malayeri, B.; Farajollahi, A. R.; Kazemnejad, A.

    2007-01-01

    In radiotherapy with electron beams, scattered radiation from an electron applicator influences the dose distribution in the patient. The contribution of this radiation to the patient dose is significant, even in modern accelerators. In most of radiotherapy treatment planning systems, this component is not explicitly included. In addition, the scattered radiation produced by applicators varies based on the applicator design as well as the field size and distance from the applicators. The aim of this study was to calculate the amount of scattered dose contribution from applicators. We also tried to provide an extensive set of calculated data that could be used as input or benchmark data for advanced treatment planning systems that use Monte Carlo algorithms for dose distribution calculations. Electron beams produced by a NEPTUN 10PC medical linac were modeled using the BEAMnrc system. Central axis depth dose curves of the electron beams were measured and calculated, with and without the applicators in place, for different field sizes and energies. The scattered radiation from the applicators was determined by subtracting the central axis depth dose curves obtained without the applicators from that with the applicator. The results of this study indicated that the scattered radiation from the electron applicators of the NEPTUN 10PC is significant and cannot be neglected in advanced treatment planning systems. Furthermore, our results showed that the scattered radiation depends on the field size and decreases almost linearly with depth. (author)

  6. Oh, the Places They Went: SBOs Share Their Career Paths

    Science.gov (United States)

    George, Patricia

    2013-01-01

    "Oh the Places You'll Go!" That Dr. Seuss book is a standard gift for graduates as they are sent out into the world-whether it's off to college or into the world of work. "You can steer yourself any direction you choose." What direction did school business officials take to get where they are today? The most recent…

  7. The Rhythm of Non-Places: Marooning the Embodied Self in Depthless Space

    Directory of Open Access Journals (Sweden)

    Les Roberts

    2015-10-01

    Full Text Available Taking as its starting point the spatiotemporal rhythms of landscapes of hyper-mobility and transit, this paper explores how the process of “marooning” the self in a radically placeless (and depthless space—in this instance a motorway traffic island on the M53 in the northwest of England—can inform critical understandings and practices of “deep mapping”. Conceived of as an autoethnographic experiment—a performative expression of “islandness” as an embodied spatial praxis—the research on which this paper draws revisits ideas set out in JG Ballard’s 1974 novel Concrete Island, although, unlike Ballard’s island Crusoe (and sans person Friday, the author’s residency was restricted to one day and night. The fieldwork, which combines methods of “digital capture” (audio soundscapes, video, stills photography, and GPS tracking, takes the form of a rhythmanalytical mapping of territory that can unequivocally be defined as “negative space”. Offering an oblique engagement with debates on “non-places” and spaces of mobility, the paper examines the capacity of non-places/negative spaces to play host to the conditions whereby affects of place and dwelling can be harnessed and performatively transacted. The embodied rhythmicity of non-places is thus interrogated from the vantage point of a constitutive negation of the negation of place. In this vein, the paper offers a reflexive examination of the spatial anthropology of negative space.

  8. Reflection and extinction of light by self-assembled monolayers of a quinque-thiophene derivative: A coherent scattering approach

    Energy Technology Data Exchange (ETDEWEB)

    Gholamrezaie, Fatemeh; Meskers, Stefan C. J., E-mail: s.c.j.meskers@tue.nl [Molecular Materials and Nanosystems and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Leeuw, Dago M. de [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)

    2016-06-07

    Scattering matrix theory is used to describe resonant optical properties of molecular monolayers. Three types of coupling are included: exciton-exciton, exciton-photon, and exciton-phonon coupling. We use the K-matrix formalism, developed originally to describe neutron scattering spectra in nuclear physics to compute the scattering of polaritons by phonons. This perturbation approach takes into account the three couplings and allows one to go beyond molecular exciton theory without the need of introducing additional boundary conditions for the polariton. We demonstrate that reflection, absorption, and extinction of light by 2D self-assembled monolayers of molecules containing quinque-thiophene chromophoric groups can be calculated. The extracted coherence length of the Frenkel exciton is discussed.

  9. Measurement of nu/sub e/ and anti nu/sub e/ elastic scattering as a test of the standard model

    International Nuclear Information System (INIS)

    Abe, K.; Taylor, F.E.; White, D.H.

    1982-01-01

    Various tests of standard SU(2) x U(1) model of weak interactions which can be performed by measurements of electron and muon neutrino-electron elastic scattering are reviewed. Electron neutrino-electron elastic scattering has both a neutral current part as well as a charged current part, and therefore offers a unique place to measure the interference of these two amplitudes. A measurement of the y-dependence of neutrino-electron elastic scattering can separately measure g/sub V/ and g/sub A/ as well as test for the presence of S, P, or T terms. Several measurable quantities involving cross sections and the interference term are derived from the standard model. Various design considerations for an experiment to determine the NC-CC interference term and the y-dependence of muon neutrino-electron elastic scattering are discussed

  10. Small-angle p--p elastic scattering at energies between 285 and 572 MeV

    International Nuclear Information System (INIS)

    Aebischer, D.; Favier, B.; Greeniaus, L.G.; Hess, R.; Junod, A.; Lechanoine, C.; Nikles, J.C.; Rapin, D.; Richard-Serre, C.; Werren, D.W.

    1976-01-01

    Differential cross sections for elastic p--p scattering have been measured at 285, 348, 398, 414, 455, 497, 530, and 572 MeV kinetic energy. The experiment was performed at the CERN synchrocyclotron, using multiwire proportional chambers placed directly in a proton beam. Scattering was observed for theta between approx. 15 and 10 0 in the laboratory system. The ratio α/sub p/ of the real and imaginary parts of the non-spin-flip nuclear forward amplitude was derived from the interference between the Coulomb and nuclear amplitudes. The values obtained are model dependent, but in this energy range α/sub p/ is positive and decreases with energy. Qualitatively good agreement with dispersion-relation predictions is observed

  11. Estimation of biological parameters of marine organisms using linear and nonlinear acoustic scattering model-based inversion methods.

    Science.gov (United States)

    Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H

    2016-05-01

    The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.

  12. Inverse electronic scattering by Green's functions and singular values decomposition

    International Nuclear Information System (INIS)

    Mayer, A.; Vigneron, J.-P.

    2000-01-01

    An inverse scattering technique is developed to enable a sample reconstruction from the diffraction figures obtained by electronic projection microscopy. In its Green's functions formulation, this technique takes account of all orders of diffraction by performing an iterative reconstruction of the wave function on the observation screen. This scattered wave function is then backpropagated to the sample to determine the potential-energy distribution, which is assumed real valued. The method relies on the use of singular values decomposition techniques, thus providing the best least-squares solutions and enabling a reduction of noise. The technique is applied to the analysis of a two-dimensional nanometric sample that is observed in Fresnel conditions with an electronic energy of 25 eV. The algorithm turns out to provide results with a mean relative error of the order of 5% and to be very stable against random noise

  13. Nucleon-nucleus scattering: a microscopic nonrelativistic approach

    International Nuclear Information System (INIS)

    Amos, K.; Dortmans, H.V.; Raynal, J.

    1998-01-01

    The authors are reviewing the nucleon based microscopic theory of nucleon-nucleus (NA) scattering and its applications taking in consideration the developments that have occurred within the last decade. The review comprises 12 Chapters. The first is a brief outline of some formal aspects of the nuclear optical potential and the scattering theory by which it is related to NN scattering amplitudes, t matrices and g matrices. Then follows a presentation of the momentum space NA optical potential formed by the folding of NN t- and g matrices with nuclear densities. Applications are discussed with the examples taken from the works of Elster et al. and of Arellano et al. A folding model defining the optical potential in coordinate space is then considered. That model presupposes an effective NN interaction to be comprised of density and energy dependent central, tensor, and two-body spin-orbit terms. Such effective interactions are basic for the computer codes DWBA91 and DWBA98 that are the current technology to calculate and use microscopic non-local coordinate space optical potentials. Thus in Chapter 4, we present the helicity formalism, the multipole expansions of the effective interactions, and the particle-hole matrix elements that underlay calculations made with those programs. A key feature of both the momentum and coordinate space formulations of the NA optical potentials are the NN t- and g matrices. Details of those are given in Chapter 5 and 6 respectively. Therein the on- and off-shell properties of the t- and g matrices from realistic bosom exchange potentials, as well as from potentials determined by inversion of phase shift data, are discussed. To form the coordinate space NA optical potentials requites the effective interaction in coordinate space. Thus a parametrisation scheme is needed to specify such front t- and g matrices. A scheme that has proven useful is then discussed. In fact, the effective interactions that result, when folded with nuclear

  14. Seismic Evidence for Possible Slab Melting from Strong Scattering Waves

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2011-01-01

    Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.

  15. Measurements of x-ray scattering from accelerator vacuum chamber surfaces, and comparison with an analytical model

    Directory of Open Access Journals (Sweden)

    G. F. Dugan

    2015-04-01

    Full Text Available This paper compares measurements and calculations of scattering of photons from technical vacuum chamber surfaces typical of accelerators. Synchrotron radiation generated by a charged particle beam in the accelerator is either absorbed, specularly reflected, or scattered by the vacuum chamber surface. This phenomenon has important implications on the operation of the accelerator. Measurements of photon scattering were made at the BESSY-II synchrotron radiation facility using samples of aluminum vacuum chamber from Cornell electron storage ring (CESR. A description of the analytic model used in the calculation is given, which takes into account the reflectivity of the material, the surface features of the sample, the wavelengths and the incident angles of the photons. The surface properties used in these calculations were obtained from measurements made from an atomic force microscope.

  16. Theoretical study of the electron-cluster elastic scattering

    International Nuclear Information System (INIS)

    Descourt, P.; Guet, C.; Farine, M.

    1997-01-01

    The properties of the clusters consisting of some tens to several hundreds of alkali atoms are generally quite well described in the jellium approximation. This approximation treats the cluster as a charged Fermi liquid of finite size. The optical response predicted by this approximation and taking into account the electron-electron correlations of the Hartree-Fock mean field agrees rather well with the experiment. The objective of this work was to obtain a quantal many-body formalism, within jellium approximation, applicable to elastic scattering of electrons from an alkali-metal-cluster. Influence of correlations on the phase shifts was also taken into account

  17. 9 CFR 300.6 - Access to establishments and other places of business.

    Science.gov (United States)

    2010-01-01

    ... establishments and other places of business. (a) General. Upon presentation of credentials— (1) Persons subject... such an establishment and its premises. (2) At all ordinary business hours, upon presentation of... this chapter and, upon payment of the fair market value therefor, take reasonable samples of the...

  18. Embodied Experiences of Place: A Study of History Learning with Mobile Technologies

    Science.gov (United States)

    Price, S.; Jewitt, C.; Sakr, M.

    2016-01-01

    This paper reports an empirical study that takes a multimodal analytical approach to examine how mobile technologies shape students' exploration and experience of place during a history learning activity in situ. In history education, mobile technologies provide opportunities for authentic experiential learning activities that have the potential…

  19. A model-based approach of scatter dose contributions and efficiency of apron shielding for radiation protection in CT.

    Science.gov (United States)

    Weber, N; Monnin, P; Elandoy, C; Ding, S

    2015-12-01

    Given the contribution of scattered radiations to patient dose in CT, apron shielding is often used for radiation protection. In this study the efficiency of apron was assessed with a model-based approach of the contributions of the four scatter sources in CT, i.e. external scattered radiations from the tube and table, internal scatter from the patient and backscatter from the shielding. For this purpose, CTDI phantoms filled with thermoluminescent dosimeters were scanned without apron, and then with an apron at 0, 2.5 and 5 cm from the primary field. Scatter from the tube was measured separately in air. The scatter contributions were separated and mathematically modelled. The protective efficiency of the apron was low, only 1.5% in scatter dose reduction on average. The apron at 0 cm from the beam lowered the dose by 7.5% at the phantom bottom but increased the dose by 2% at the top (backscatter) and did not affect the centre. When the apron was placed at 2.5 or 5 cm, the results were intermediate to the one obtained with the shielding at 0 cm and without shielding. The apron effectiveness is finally limited to the small fraction of external scattered radiation. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Light Scattering at Various Angles

    Science.gov (United States)

    Latimer, Paul; Pyle, B. E.

    1972-01-01

    The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610

  1. The Concept of Place and Sense of Place In Architectural Studies

    OpenAIRE

    Mina Najafi; Mustafa Kamal Bin Mohd Shariff

    2011-01-01

    Place is a where dimension formed by people-s relationship with physical settings, individual and group activities, and meanings. 'Place Attachment', 'Place Identity'and 'Sense of Place' are some concepts that could describe the quality of people-s relationships with a place. The concept of Sense of place is used in studying human-place bonding, attachment and place meaning. Sense of Place usually is defined as an overarching impression encompassing the general ways in wh...

  2. Inelastic Light Scattering Processes

    Science.gov (United States)

    Fouche, Daniel G.; Chang, Richard K.

    1973-01-01

    Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.

  3. Scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Schweizer, J.

    2007-01-01

    In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)

  4. Introductory theory of neutron scattering

    International Nuclear Information System (INIS)

    Gunn, J.M.F.

    1986-12-01

    The paper comprises a set of six lecture notes which were delivered to the summer school on 'Neutron Scattering at a pulsed source', Rutherford Laboratory, United Kingdom, 1986. The lectures concern the physical principles of neutron scattering. The topics of the lectures include: diffraction, incoherent inelastic scattering, connection with the Schroedinger equation, magnetic scattering, coherent inelastic scattering, and surfaces and neutron optics. (UK)

  5. Scattering from correlations in colloidal systems

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1984-01-01

    Colloidal suspensions typically exhibit spatial correlations over distances of order 10-10 4 A, corresponding either to the size of individual particles (e.g., polymer chains, surfactant micelles) or to the range of interaction between particles (e.g., charged polymer lattices at low ionic strength). Apart from having fundamental intrinsic interest, such systems are also extremely useful as model systems with which to study, for example, non-Newtonian hydrodynamics, since temporal correlations are generally much longer lived (10 -8 -10 -3 sec) than those found in simple atomic or small molecular systems (10 -13 -10 -10 sec). Colloids have long been the subject of macroscopic phenomenological research (on rheological properties, for example), but it is only recently that microscopic light, x-ray and neutron scattering techniques have been applied to their study, in large part because of theoretical difficulties in understanding the scattering from dense liquid-like systems of interacting particles. For spherical colloids, such theoretical problems have now been largely overcome, and for anisotropic colloids experimental techniques are being developed which circumvent the intractable theoretical areas. This paper will first review some static light and small-angle neutron scattering (SANS) results on colloidal suspensions, both at equilibrium and in steady-state non-equilibrium situations, and will then discuss some dynamic measurements on polymer solutions and melts made using the neutron spin-echo (NSE) technique. Emphasis is placed on experiments which have a possible counterpart in synchrotron radiation studies. In particular, NSE extends the results of photon correlation spectroscopy (PCS) to larger momentum transfers and shorter time-scales than are available with visible light, and the extension of PCS to short wavelength on a synchrotron source would be of similar fundamental interest

  6. Multiple-scattering formalism for correlated systems: A KKR-DMFT approach

    International Nuclear Information System (INIS)

    Minar, J.; Perlov, A.; Ebert, H.; Chioncel, L.; Katsnelson, M. I.; Lichtenstein, A.I.

    2005-01-01

    We present a charge and self-energy self-consistent computational scheme for correlated systems based on the Korringa-Kohn-Rostoker (KKR) multiple scattering theory with the many-body effects described by the means of dynamical mean field theory (DMFT). The corresponding local multiorbital and energy dependent self-energy is included into the set of radial differential equations for the single-site wave functions. The KKR Green's function is written in terms of the multiple scattering path operator, the later one being evaluated using the single-site solution for the t-matrix that in turn is determined by the wave functions. An appealing feature of this approach is that it allows to consider local quantum and disorder fluctuations on the same footing. Within the coherent potential approximation (CPA) the correlated atoms are placed into a combined effective medium determined by the DMFT self-consistency condition. Results of corresponding calculations for pure Fe, Ni, and Fe x Ni 1-x alloys are presented

  7. Unidirectional emission from circular dielectric microresonators with a point scatterer

    International Nuclear Information System (INIS)

    Dettmann, C. P.; Morozov, G. V.; Sieber, M.; Waalkens, H.

    2009-01-01

    Circular microresonators are micron-sized dielectric disks embedded in material of lower refractive index. They possess modes of extremely high Q-factors (low-lasing thresholds), which makes them ideal candidates for the realization of miniature laser sources. They have, however, the disadvantage of isotropic light emission caused by the rotational symmetry of the system. In order to obtain high directivity of the emission while retaining high Q-factors, we consider a microdisk with a pointlike scatterer placed off-center inside of the disk. We calculate the resulting resonant modes and show that some of them possess both of the desired characteristics. The emission is predominantly in the direction opposite to the scatterer. We show that classical ray optics is a useful guide to optimizing the design parameters of this system. We further find that exceptional points in the resonance spectrum influence how complex resonance wave numbers change if system parameters are varied.

  8. Electron scattering from tetrahydrofuran

    International Nuclear Information System (INIS)

    Fuss, M C; Sanz, A G; García, G; Muñoz, A; Oller, J C; Blanco, F; Do, T P T; Brunger, M J; Almeida, D; Limão-Vieira, P

    2012-01-01

    Electron scattering from Tetrahydrofuran (C 4 H 8 O) was investigated over a wide range of energies. Following a mixed experimental and theoretical approach, total scattering, elastic scattering and ionization cross sections as well as electron energy loss distributions were obtained.

  9. Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory

    International Nuclear Information System (INIS)

    Ma, L.X.; Tan, J.Y.; Zhao, J.M.; Wang, F.Q.; Wang, C.A.

    2017-01-01

    The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus–Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus–Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied. - Highlights: • The Muller matrix of randomly distributed, densely packed spheres are investigated. • The effects of multiple scattering and dependent scattering are analyzed. • The accuracy of radiative transfer theory for densely packed spheres is discussed. • Dependent scattering correction takes effect at medium size parameter or smaller. • Performance of dependent scattering correction

  10. The ion velocity distribution of tokamak plasmas: Rutherford scattering at TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Tammen, H.F.

    1995-01-10

    One of the most promising ways to gererate electricity in the next century on a large scale is nuclear fusion. In this process two light nuclei fuse and create a new nucleus with a smaller mass than the total mass of the original nuclei, the mass deficit is released in the form of kinetic energy. Research into this field has already been carried out for some decades now, and will have to continue for several more decades before a commercially viable fusion reactor can be build. In order to obtain fusion, fuels of extremely high temperatures are needed to overcome the repulsive force of the nuclei involved. Under these circumstances the fuel is fully ionized: it consists of ions and electrons and is in the plasma state. The problem of confining such a hot substance is solved by using strong magnetic fields. One specific magnetic configuration, in common use, is called the tokamak. The plasma in this machine has a toroidal, i.e. doughnut shaped, configuration. For understanding the physical processes which take place in the plasma, a good temporally and spatially resolved knowledge of both the ion and electron velocity distribution is required. The situation concerning the electrons is favourable, but this is not the case for the ions. To improve the existing knowledge of the ion velocity distribution in tokamak plasmas, a Rutherford scattering diagnostic (RUSC), designed and built by the FOM-Institute for Plasmaphysics `Rijnhuizen`, was installed at the TEXTOR tokamak in Juelich (D). The principle of the diagnostic is as follows. A beam of monoenergetic particles (30 keV, He) is injected vertically into the plasma. A small part of these particles collides elastically with the moving plasma ions. By determining the energy of a scattered beam particle under a certain angle (7 ), the initial velocity of the plasma ion in one direction can be computed. (orig./WL).

  11. The ion velocity distribution of tokamak plasmas: Rutherford scattering at TEXTOR

    International Nuclear Information System (INIS)

    Tammen, H.F.

    1995-01-01

    One of the most promising ways to gererate electricity in the next century on a large scale is nuclear fusion. In this process two light nuclei fuse and create a new nucleus with a smaller mass than the total mass of the original nuclei, the mass deficit is released in the form of kinetic energy. Research into this field has already been carried out for some decades now, and will have to continue for several more decades before a commercially viable fusion reactor can be build. In order to obtain fusion, fuels of extremely high temperatures are needed to overcome the repulsive force of the nuclei involved. Under these circumstances the fuel is fully ionized: it consists of ions and electrons and is in the plasma state. The problem of confining such a hot substance is solved by using strong magnetic fields. One specific magnetic configuration, in common use, is called the tokamak. The plasma in this machine has a toroidal, i.e. doughnut shaped, configuration. For understanding the physical processes which take place in the plasma, a good temporally and spatially resolved knowledge of both the ion and electron velocity distribution is required. The situation concerning the electrons is favourable, but this is not the case for the ions. To improve the existing knowledge of the ion velocity distribution in tokamak plasmas, a Rutherford scattering diagnostic (RUSC), designed and built by the FOM-Institute for Plasmaphysics 'Rijnhuizen', was installed at the TEXTOR tokamak in Juelich (D). The principle of the diagnostic is as follows. A beam of monoenergetic particles (30 keV, He) is injected vertically into the plasma. A small part of these particles collides elastically with the moving plasma ions. By determining the energy of a scattered beam particle under a certain angle (7 ), the initial velocity of the plasma ion in one direction can be computed. (orig./WL)

  12. Single- and double-scattering production of four muons in ultraperipheral PbPb collisions at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Andreas van Hameren

    2018-01-01

    Full Text Available We discuss production of two μ+μ− pairs in ultraperipheral ultrarelativistic heavy ion collisions at the LHC. We take into account electromagnetic (two-photon double-scattering production and for a first time direct γγ production of four muons in one scattering. We study the unexplored process γγ→μ+μ−μ+μ−. We present predictions for total and differential cross sections. Measurable nuclear cross sections are obtained and corresponding differential distributions and counting rates are presented.

  13. Place attachment, place identity and aesthetic appraisal of urban landscape

    Directory of Open Access Journals (Sweden)

    Jaśkiewicz Michał

    2015-12-01

    Full Text Available As the aesthetic of the Polish cities became a topic of wider discussions, it is important to detect the potential role of human-place relations. Two studies (N = 185 & N = 196 were conducted to explore the relationship between place attachment, place identity and appraisal of urban landscape. Satisfaction with urban aesthetic was predicted by two dimensions of place attachment (place inherited and place discovered, local identity (on the trend level and national-conservative identity. Place discovered and European identity were also predictors of visual pollution sensitivity. Place discovered is considered as more active type of attachment that permits both a positive bias concerning the aesthetics of one’s city, and a stronger criticism of the elements that can potentially violate the place’s landscape.

  14. Measurement of Rank and Other Properties of Direct and Scattered Signals

    Directory of Open Access Journals (Sweden)

    Svante Björklund

    2016-01-01

    Full Text Available We have designed an experiment for low-cost indoor measurements of rank and other properties of direct and scattered signals with radar interference suppression in mind. The signal rank is important also in many other applications, for example, DOA (Direction of Arrival estimation, estimation of the number of and location of transmitters in electronic warfare, and increasing the capacity in wireless communications. In real radar applications, such measurements can be very expensive, for example, involving airborne radars with array antennas. We have performed the measurements in an anechoic chamber with several transmitters, a receiving array antenna, and a moving reflector. Our experiment takes several aspects into account: transmitted signals with different correlation, decorrelation of the signals during the acquisition interval, covariance matrix estimation, noise eigenvalue spread, calibration, near-field compensation, scattering in a rough surface, and good control of the influencing factors. With our measurements we have observed rank, DOA spectrum, and eigenpatterns of direct and scattered signals. The agreement of our measured properties with theoretic and simulated results in the literature shows that our experiment is realistic and sound. The detailed description of our experiment could serve as help for conducting other well-controlled experiments.

  15. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  16. Inelastic light scattering and the excited states of many-electron quantum dots

    International Nuclear Information System (INIS)

    Delgado, Alain; Gonzalez, Augusto

    2003-01-01

    A consistent calculation of resonant inelastic (Raman) scattering amplitudes for relatively large quantum dots, which takes account of valence band mixing, the discrete character of the spectrum in intermediate and final states, and interference effects, is presented. Raman peaks in charge and spin channels are compared with multipole strengths and with the density of energy levels in final states. A qualitative comparison with the available experimental results is given

  17. Inelastic light scattering and the excited states of many-electron quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Alain [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear, Calle 30 No 502, Miramar, Havana (Cuba); Gonzalez, Augusto [Instituto de Cibernetica, Matematica y Fisica, Calle E 309, Vedado, Havana (Cuba)

    2003-06-25

    A consistent calculation of resonant inelastic (Raman) scattering amplitudes for relatively large quantum dots, which takes account of valence band mixing, the discrete character of the spectrum in intermediate and final states, and interference effects, is presented. Raman peaks in charge and spin channels are compared with multipole strengths and with the density of energy levels in final states. A qualitative comparison with the available experimental results is given.

  18. Place, Non-Place, Multi-Place and the (NonPossibilities of Identity: Philosophical, Social, and Communicational Aspects

    Directory of Open Access Journals (Sweden)

    Basia Nikiforova

    2016-09-01

    Full Text Available Michel Foucault in the text “Of Other Spaces: Utopias and Heterotopias” wrote that “the present epoch will perhaps be above all the epoch of space”. Space, place, and territories are social productions. Territory is a polysemic concept. Place is “events” created by territories, fluid areas of control produced by territorial negotiation (horizontal dynamics and negotiations between places (vertical dynamics. Space produces places and is produced by places. Moreover, space, place and territories can be seen as the waves of territorialization and deterritorialization in an endless process. It is a form of seizure in the world, an a priori for Immanuel Kant, an ontological need for Martin Heidegger. Territory is a space, governed by a set of rules, named “code”. Territorialization is then synonymous of a certain codification, or the symbolical organization of space. Places are created by territorializational dynamics. They are the sum of “events”. The place and its territory is not “natural”, but it is a cultural artifact, a social product linked to desire, power and identity. The changes of the functions of places (what Foucault called heterotopy are an important subject of contemporary studies. There are also many new temporary uses of these spaces and different emerging functions, including new forms of control, access, surveillance, new forms of openness and closeness (passwords, access profiles, etc.. Informational territory creates new heterotopias, new functions for places and a redefinition of social and communicational practices. It is not the end of a concrete place and its territory, but rather, a new meaning, sense, and a function for these spaces. The contemporary meaning of place and space has a visible tendency in creating ambivalence of sacrum and profanum, which means the secularization of the sacred and the sacralization of the secular. One of the sides of this tendency is sacralizing market and marketing

  19. ONLINE SCAMS: TAKING THE FUN OUT OF THE INTERNET

    OpenAIRE

    Pradeep Kumar Puram; Mukesh Kaparthi; Aditya Krishna Haas Rayaprolu

    2011-01-01

    The fun of using the Internet has become sour due to the various scams taking place day in and day out, all around the world. Internet users are being trapped around every corner and their credit card information is being siphoned, all due to the presence of these online scams. This paper looks in depth into a few of these scams, and explores a solution to counter this menace.

  20. Place Branding

    DEFF Research Database (Denmark)

    Medway, Dominic; Swanson, Kathryn; Neirotti, Lisa Delpy

    2015-01-01

    Purpose: – The purpose of this paper is to report on a special session entitled “Place branding: Are we wasting our time?”, held at the American Marketing Association’s Summer Marketing Educators’ conference in 2014. Design/methodology/approach: – The report details the outcome of an Oxford......: – The outcome of the debate points towards a need for place brands to develop as more inclusive and organic entities, in which case it may be best for place practitioners to avoid creating and imposing a place brand and instead help shape it from the views of stakeholder constituencies. This shifts the notion...... of place branding towards an activity centred on “curation”. Originality/value: – The use of a competitive debating format as a means for exploring academic ideas and concepts in the place management field....

  1. Naturalness and Place in River Rehabilitation

    Directory of Open Access Journals (Sweden)

    Kirstie Fryirs

    2009-06-01

    Full Text Available An authentic approach to river rehabilitation emphasizes concerns for the natural values of a given place. As landscape considerations fashion the physical template upon which biotic associations take place, various geomorphic issues must be addressed in framing rehabilitation activities that strive to improve river health. An open-ended approach to river classification promotes applications that appreciate the values of a given river, rather than pigeonholing reality. As the geomorphic structure of some rivers is naturally simple, promoting heterogeneity as a basis for management may not always be appropriate. Efforts to protect unique attributes of river systems must be balanced with procedures that look after common features. Concerns for ecosystem functionality must relate to the behavioral regime of a given river, remembering that some rivers are inherently sensitive to disturbance. Responses to human disturbance must be viewed in relation to natural variability, recognizing how spatial relationships in a catchment, and responses to past disturbances, fashion the operation of contemporary fluxes. These fluxes, in turn, influence what is achievable in the rehabilitation of a given reach. Given the inherently adjusting and evolutionary nature of river systems, notional endpoints do not provide an appropriate basis upon which to promote concepts of naturalness and place in the rehabilitation process. These themes are drawn together to promote rehabilitation practices that relate to the natural values of each river system, in preference to applications of "cookbook" measures that build upon textbook geomorphology.

  2. LIGHT SCATTERING BY FRACTAL DUST AGGREGATES. I. ANGULAR DEPENDENCE OF SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    Tazaki, Ryo [Department of Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Tanaka, Hidekazu [Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Okuzumi, Satoshi; Nomura, Hideko [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Kataoka, Akimasa, E-mail: rtazaki@kusastro.kyoto-u.ac.jp [Institute for Theoretical Astrophysics, Heidelberg University, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)

    2016-06-01

    In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T -matrix method, and the results were then compared with those obtained using the Rayleigh–Gans–Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porous dust aggregates—ballistic cluster–cluster agglomerates (BCCAs) and ballistic particle–cluster agglomerates. First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scattering angles, and their small-scale structure determines the intensity at large scattering angles. Second, it was determined that the EMT underestimates the backward scattering intensity by multiple orders of magnitude, especially in BCCAs, because the EMT averages the structure within the size of the aggregates. It was concluded that the RGD theory is a very useful method for calculating the optical properties of BCCAs.

  3. FIRST SCATTERED-LIGHT IMAGE OF THE DEBRIS DISK AROUND HD 131835 WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Li-Wei; Arriaga, Pauline; Fitzgerald, Michael P.; Esposito, Thomas M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Duchêne, Gaspard; Kalas, Paul G.; De Rosa, Robert J.; Graham, James R. [Astronomy Department, University of California, Berkeley CA 94720-3411 (United States); Maire, Jérôme; Chilcote, Jeffrey K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Marois, Christian [National Research Council of Canada Herzberg, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto ON M5S 3H4 (Canada); Bruzzone, Sebastian [Department of Physics and Astronomy, Centre for Planetary and Space Exploration, University of Western Ontario, London, ON N6A 3K7 (Canada); Rajan, Abhijith [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Pueyo, Laurent; Wolff, Schuyler G.; Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Konopacky, Quinn [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Ammons, S. Mark [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94040 (United States); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); and others

    2015-12-10

    We present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a ∼15 Myr old A2IV star at a distance of ∼120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission,  in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from ∼75 to ∼210 AU in the disk plane with roughly flat surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3σ level.

  4. Construction of theoretical F-spread ionogams from scattering in the HF band from field-aligned irregularities

    International Nuclear Information System (INIS)

    Powers, W.J.

    1985-01-01

    The scattering and propagation of electromagnetic fields in the ionosphere for the HF band is considered. Particular attention is given to scattering at the geomagnetic equator from irregularities of ionization density that are aligned along the earth's magnetic field and that have lengths that are much greater than a Fresnel scale. Perpendicular to the earth's magnetic field the irregularities are assumed to be isotropic with scale lengths (wavelengths /(2π)) extending from an inner scale equal to the ionic gyroradius to an outer scale on the order of the scale height of the ionosphere. Primary emphasis is placed on the weak scattering of pulses from field-aligned irregularities embedded in the night time F-layer, with application to explaining F-spread ionograms. The average ionization density of the night time F-layer is assumed to be well modeled by a parabolic layer. Assuming that the effects of the earth's magnetic field and collisions can be neglected, an approximate dyadic Green's function is derived and utilized in the determination of the incident and singly scattered fields

  5. Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei

    International Nuclear Information System (INIS)

    Antonov, A.; Ivanov, M.; Gaidarov, M.; Caballero, J.A.; Barbaro, M.; Moya de Guerra, E.

    2009-01-01

    In this paper the following items have been presented: 1) Nucleon momentum distribution from the superscaling analyses of the QE scattering of electrons; 2) CDFM scaling functions in the QE- and _-regions; 3) Charge-changing neutrino scattering from nuclei in the QE- and –region and 4) Neutral current neutrino scattering from nuclei in the QE-region. At the end the following conclusions have been made: 1) 1 It is pointed out that f (ψ') for ψ' < -1 depends on the particular form of the power-law asymptotics of n(k) at large k and thus, is informative for the in-medium NN forces around the core. 2) The total f(ψ), the longitudinal f_L(ψ) and the transverse f_T(ψ) scaling functions are calculated within a new, more general approach within the Coherent Density Fluctuation Model (CDFM_I_I) by taking as starting point the hadronic tensor and the L- and T- response functions in the RFG model. 3) The approach leads to a slight violation of the zero-kind scaling [f_L(ψ)≠f_T(ψ)] in contrast with the situation in the RFG and CDFM_I models. It is found that the ratio f_L(ψ)/f_T(ψ) in the CDFM_I_I has similarities with that from the RPWIA approach (with Lorentz gauge) for positive ψ. 4) At q≳0:7 GeV/c the CDFM_I_I scaling function exhibits scaling of first kind and has a saturation of its asymptotic behavior. 5) The CDFM scaling functions are applied to calculate cross sections of inclusive electron scattering in the quasielastic and Δ-regions for nuclei with 12≤A≤208 at different energies and angles. The results are in agreement with available experimental data, especially in the QE region. 6) The CDFM scaling functions are applied to calculate charge-changing neutrino (antineutrino) scattering and also QE scattering via the weak neutral current on "1"2C at 1÷2 GeV incident energy.

  6. Spectral analysis of scattered light from flowers' petals

    Science.gov (United States)

    Ozawa, Atsumi; Uehara, Tomomi; Sekiguchi, Fumihiko; Imai, Hajime

    2009-07-01

    A new method was developed for studying absorption characteristics of opaque samples based on the light scattering spectroscopy. Measurements were made in white, red and violet petals of Petunia hybrida, and gave the absorption spectra in a non-destructive manner without damaging the cell structures of the petal. The red petal has absorption peak at 550 nm and the violet has three absorption peaks: at 450, 670, and 550 nm. The results were discussed in correlation with the microscopic cell structures of the petal observed with optical microscope and transmission electron microscopy (TEM). Only the cells placed in the surface have the pigments giving the color of the petal.

  7. Diffuse scattering of neutrons

    International Nuclear Information System (INIS)

    Novion, C.H. de.

    1981-02-01

    The use of neutron scattering to study atomic disorder in metals and alloys is described. The diffuse elastic scattering of neutrons by a perfect crystal lattice leads to a diffraction spectrum with only Bragg spreads. the existence of disorder in the crystal results in intensity and position modifications to these spreads, and above all, to the appearance of a low intensity scatter between Bragg peaks. The elastic scattering of neutrons is treated in this text, i.e. by measuring the number of scattered neutrons having the same energy as the incident neutrons. Such measurements yield information on the static disorder in the crystal and time average fluctuations in composition and atomic displacements [fr

  8. Gravitational Bhabha scattering

    International Nuclear Information System (INIS)

    Santos, A F; Khanna, Faqir C

    2017-01-01

    Gravitoelectromagnetism (GEM) as a theory for gravity has been developed similar to the electromagnetic field theory. A weak field approximation of Einstein theory of relativity is similar to GEM. This theory has been quantized. Traditional Bhabha scattering, electron–positron scattering, is based on quantized electrodynamics theory. Usually the amplitude is written in terms of one photon exchange process. With the development of quantized GEM theory, the scattering amplitude will have an additional component based on an exchange of one graviton at the lowest order of perturbation theory. An analysis will provide the relative importance of the two amplitudes for Bhabha scattering. This will allow an analysis of the relative importance of the two amplitudes as the energy of the exchanged particles increases. (paper)

  9. Study of Six Energy-Window Settings for Scatter Correction in Quantitative 111In Imaging: Comparative analysis Using SIMIND

    International Nuclear Information System (INIS)

    Gomez Facenda, A.; Castillo Lopez, J. P.; Torres Aroche, L. A.; Coca Perez, M. A.

    2013-01-01

    Activity quantification in nuclear medicine imaging is highly desirable, particularly for dosimetry and biodistribution studies of radiopharmaceuticals. Quantitative 111 In imaging is increasingly important with the current interest in therapy using 90 Y-radiolabeled compounds. Photons scattered in the patient are one of the major problems in quantification, which leads to degradation of image quality. The aim of this work was to assess the configuration of energy windows and the best weight factor for the scatter correction in 111 In images. All images were obtained using the Monte Carlo simulation code, Simind, configured to emulate the gamma camera Nucline SPIRIT DH-V. Simulations were validated by a positive agreement between experimental and simulated line-spread functions (LSF) of 99 mTc. It was examined the sensitivity, the scatter-to-total ratio, the contrast and the spatial resolution for scatter-compensated images obtained from six different multi-windows scatter corrections. Taking into consideration the results, the best energy-window setting was two 20% windows centered at 171 and 245keV, together with a 10% scatter window located between the photo peaks at 209keV. (Author)

  10. Stereotypes and the Achievement Gap: Stereotype Threat Prior to Test Taking

    Science.gov (United States)

    Appel, Markus; Kronberger, Nicole

    2012-01-01

    Stereotype threat is known as a situational predicament that prevents members of negatively stereotyped groups to perform up to their full ability. This review shows that the detrimental influence of stereotype threat goes beyond test taking: It impairs stereotyped students to build abilities in the first place. Guided by current theory on…

  11. Electron inelastic scattering by compound nuclei and giant multipole resonances

    International Nuclear Information System (INIS)

    Dzhavadov, A.V.; Mukhtarov, A.I.; Mirabutalybov, M.M.

    1980-01-01

    Multipole giant resonances in heavy nuclei have been investigated with the application of the Danos-Greiner dynamic collective theory to the Tassi model. The monopole giant resonance has been studied in 158 Gd, 166 Er, 184 W, 232 Th and 238 V nuclei at the incident electron energy E=200 MeV. Dependences of the form factor square of electron scattering by a 166 Er nucleus on the scattering angle obtained in the distorted-wave high-energy approximation (DWHEA) are presented. Giant dipole and quadrupole resonances in 60 Ni and 90 Zr nuclei have been studied. A comparison has been made of theoretical results obtained in the DWHEA for the dependence of the form factor square on the effective momentum transfer with the experimental data. The analysis of the obtained results led to the following conclusions. To draw a conclusion about the validity of one or another nuclear model and methods for calculating form factors, it is necessary to investigate, both theoretically and experimentally, electron scattering at great angles (THETA>=70 deg). To obtain a good agreement it is necessary to take account of the actual proton and neutron distributions in the ground state and their dynamic properties in an excited state [ru

  12. Political animal and scattered animal? The identity of the aristotelian man

    Directory of Open Access Journals (Sweden)

    Laura FEBRES-CORDERO PITTIER

    2017-12-01

    Full Text Available Among the Aristotelian fragments that qualify man as a political animal, the lines 487b33-488a13of Historia animalium –in which Aristotle points out some differences in the ways of life and the actions of certain animals–, have recently acquired great relevance. However, just as it happens with the most acknowledged references to the zoon politikon, the fragment brings great difficulties concerning the political way that life appears in comparison and contrast with other three ways of life: the gregarious, solitary and scattered ways of life. Accordingly, this article will try to understand the place of man in regards to the four aforementioned ways of life, considering that Aristotle seems to state that man “dualizes” between the political and the scattered ways of life, with the objective of understanding one of the main foundations of Aristotle’s political theory

  13. Microscopic dynamics of the hydrogen bonded systems studied by quasi-elastic slow neutron scattering

    International Nuclear Information System (INIS)

    Padureanu, I.; Aranghel, D.; Radulescu, A.; Ion, M.; Lechner, R. E.; Desmedt, A.; Pieper, J.

    2002-01-01

    The detailed understanding of the dynamical properties in highly viscous liquids such as glycerol, as well the supercooled and glassy state has attracted a great deal of attention. Glycerol is a hydrogen bonded forming system considered as intermediate between fragile and strong glasses with a glass transition temperature T g ∼ 185 K, melting temperature T m 290 K and a sound velocity V S ∼ 3330 m/s. Incoherent neutron scattering experiments from glasses generally show a broad feature with a maximum around 2 to 10 meV. This large contribution of such unusual low frequency excitations obeying the Bose-Einstein statistics to the density of states is referred to as 'boson peak' (BP) with a maximum near a frequency of 1 THz. A very much-debated question is the dramatic changes in the properties as well as the nature of the boson peak and the acoustic modes occurring in the neighborhood of this frequency. So far the experiments were not able to give a definite answer concerning the excitations giving rise to the boson peak. The inelastic X-ray scattering across the liquid glass transition in glycerol revealed propagating collective excitations in the whole liquid-glass transition temperature range. This conclusion challenges the present understanding of glasses and supercooled liquids particularly with their thermal properties. New experiments at lower temperatures than those investigated so far where the phonon scattering processes are less hard have been proposed. The relationship between the low frequency features, the microscopic structure, the nature of the forces and the atomic motions taking place at low frequencies is still an open question. According to the mode coupling theory (MCT) the glass transition is interpreted as a two-step process where the glass structure is softened by fast local motions (β - process) until some temperature T c >T g , where the structure breaks down leading to diffusion (α-process). It is an open question, whether MCT can

  14. Enhanced Raman scattering assisted by ultrahigh order modes of the double metal cladding waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tian; Huang, Liming; Jin, Yonglong; Fang, Jinghuai, E-mail: cyin.phys@gmail.com, E-mail: fjhuai@ntu.edu.cn [Physics Department, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu 226007 (China); Yin, Cheng, E-mail: cyin.phys@gmail.com, E-mail: fjhuai@ntu.edu.cn [Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022 (China); Huang, Meizhen [Department of Instrument Science and Engineering, Shanghai Jiaotong University, No. 800, DongChuan Road, Shanghai 200240 (China)

    2014-10-20

    Distinguished from the usual strategy to enhance the Raman scattering such as creating hot spots in the surface-enhanced Raman scattering, this paper takes a quite different approach based on the double metal cladding waveguide. The target analyte is located in the guiding layer of sub-millimeter scale, where several ultrahigh order modes with high intensity are simultaneously excited via a focused laser beam. The experimental setup is simple, and both simulation and experimental results confirm the enhancement mechanism of these oscillating modes. Other appealing features include the large detection area and the ability to excite guided modes via both polarizations. This scheme can be applied to large molecules detection and readily integrated with other Raman enhancement techniques.

  15. Personal development and communication courses – Places available

    CERN Multimedia

    2013-01-01

    There are places available in some personal development and communication courses taking place between February and June 2014.   For more information on the course, click on the course title to access the training catalogue. You can then sign-up online. For advice, you can contact: Erwin Mosselmans, tel. 74125, erwin.mosselmans@cern.ch Nathalie Dumeaux, tel. 78144, nathalie.dumeaux@cern.ch Kerstin Fuhrmeister, tel.70896, Kerstin.fuhrmeister@cern.ch Personal Development & Communication Training Session dates Duration Language Availability Communicating Effectively 18 – 19 March & 15 – 16 April 2 English 2 Gestion de temps Module 1 – 10 February 2014 (am) Module 2 – 21 March 2014  (am) Module 3 – 5 May 2014 (am) 1.5 French 12 Managing time Module 1 – 10 February 2014 (pm) Module 2 – 21 March 2014  (pm) Module 3 – 5 May 2014 (pm) 1.5...

  16. Personal development and communication courses – Places available

    CERN Multimedia

    2013-01-01

    There are places available in some personal development and communication courses taking place between February and June 2014.   For more information on the course, click on the course title to access the training catalogue. You can then sign-up online. For advice, you can contact: Erwin Mosselmans, tel. 74125, erwin.mosselmans@cern.ch Nathalie Dumeaux, tel. 78144, nathalie.dumeaux@cern.ch Kerstin Fuhrmeister, tel.70896, Kerstin.fuhrmeister@cern.ch Personal Development & Communication Training Session dates Duration Language Availability Communicating Effectively 18 – 19 March & 15 – 16 April 2 English 2 Gestion de temps Module 1 – 10 February 2014 (am) Module 2 – 21 March 2014  (am) Module 3 – 5 May 2014 (am) 1.5 French 12 Managing time Module 1 – 10 February 2014 (pm) Module 2 – 21 March 2014  (pm) Module 3 – 5 May 2014 (pm) 1.5 ...

  17. Quark-Hadron Duality in Electron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wally Melnitchouk; Rolf Ent; Cynthia Keppel

    2004-08-01

    The duality between partonic and hadronic descriptions of physical phenomena is one of the most remarkable features of strong interaction physics. A classic example of this is in electron-nucleon scattering, in which low-energy cross sections, when averaged over appropriate energy intervals, are found to exhibit the scaling behavior expected from perturbative QCD. We present a comprehensive review of data on structure functions in the resonance region, from which the global and local aspects of duality are quantified, including its flavor, spin and nuclear medium dependence. To interpret the experimental findings, we discuss various theoretical approaches which have been developed to understand the microscopic origins of quark-hadron duality in QCD. Examples from other reactions are used to place duality in a broader context, and future experimental and theoretical challenges are identified.

  18. Children's Places

    DEFF Research Database (Denmark)

    Using a cross-cultural approach the book investigates children's places in different societies. "Children's Places" examines the ways in which children and adults, from their different vantage-points in society, negotiate proper places of children in both social and spatial terms. It looks at some...

  19. Ultrafast spectral interferometry of resonant secondary emission from quantum wells: From Rayleigh scattering to coherent emission from biexcitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Pfeiffer, L. N.

    1999-01-01

    Recent investigations of secondary emission from quantum well excitons following ultrafast resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve...... the coherent field associated with Rayleigh component using ultrafast spectral interferometry or Tadpole, thus, obtaining substantial and new information of the nature of resonant secondary emission. Our observation demonstrates that Rayleigh scattering from static disorder is inherently a non-ergodic process...... invalidating the use of current theories using ensemble averages to describe our observations. Furthermore, we report here a new and hitherto unknown coherent scattering mechanism involving the two-photon coherence associated with the biexciton transition. The process leaves an exciton behind taking up...

  20. Some results on inverse scattering

    International Nuclear Information System (INIS)

    Ramm, A.G.

    2008-01-01

    A review of some of the author's results in the area of inverse scattering is given. The following topics are discussed: (1) Property C and applications, (2) Stable inversion of fixed-energy 3D scattering data and its error estimate, (3) Inverse scattering with 'incomplete' data, (4) Inverse scattering for inhomogeneous Schroedinger equation, (5) Krein's inverse scattering method, (6) Invertibility of the steps in Gel'fand-Levitan, Marchenko, and Krein inversion methods, (7) The Newton-Sabatier and Cox-Thompson procedures are not inversion methods, (8) Resonances: existence, location, perturbation theory, (9) Born inversion as an ill-posed problem, (10) Inverse obstacle scattering with fixed-frequency data, (11) Inverse scattering with data at a fixed energy and a fixed incident direction, (12) Creating materials with a desired refraction coefficient and wave-focusing properties. (author)

  1. Photoelectron angular distribution from free SiO2 nanoparticles as a probe of elastic electron scattering.

    Science.gov (United States)

    Antonsson, E; Langer, B; Halfpap, I; Gottwald, J; Rühl, E

    2017-06-28

    In order to gain quantitative information on the surface composition of nanoparticles from X-ray photoelectron spectroscopy, a detailed understanding of photoelectron transport phenomena in these samples is needed. Theoretical results on the elastic and inelastic scattering have been reported, but a rigorous experimental verification is lacking. We report in this work on the photoelectron angular distribution from free SiO 2 nanoparticles (d = 122 ± 9 nm) after ionization by soft X-rays above the Si 2p and O 1s absorption edges, which gives insight into the relative importance of elastic and inelastic scattering channels in the sample particles. The photoelectron angular anisotropy is found to be lower for photoemission from SiO 2 nanoparticles than that expected from the theoretical values for the isolated Si and O atoms in the photoelectron kinetic energy range 20-380 eV. The reduced angular anisotropy is explained by elastic scattering of the outgoing photoelectrons from neighboring atoms, smearing out the atomic distribution. Photoelectron angular distributions yield detailed information on photoelectron elastic scattering processes allowing for a quantification of the number of elastic scattering events the photoelectrons have undergone prior to leaving the sample. The interpretation of the experimental photoelectron angular distributions is complemented by Monte Carlo simulations, which take inelastic and elastic photoelectron scattering into account using theoretical values for the scattering cross sections. The results of the simulations reproduce the experimental photoelectron angular distributions and provide further support for the assignment that elastic and inelastic electron scattering processes need to be considered.

  2. Place-Identity in a School Setting: Effects of the Place Image

    Science.gov (United States)

    Marcouyeux, Aurore; Fleury-Bahi, Ghozlane

    2011-01-01

    Studies on place identity show positive relationships between the evaluation of a place and mechanisms involved in place identification. However, individuals also identify with places of low social prestige (places that bear a negative social image). Few authors investigate the nature of place identity processes in this case. The goal of this…

  3. Sensitivity of ATLAS to alternative mechanisms of electroweak symmetry breaking in vector boson scattering qq→qqlνlν

    International Nuclear Information System (INIS)

    Schumacher, Jan W.

    2010-10-01

    An analysis of the expected sensitivity of the ATLAS experiment at the Large Hadron Collider at CERN to alternative mechanisms of electroweak symmetry breaking in the dileptonic vector boson scattering channel is presented. With the generalized K-Matrix model of vector boson scattering recently implemented in the event generator Whizard, several additional resonances are investigated. Whizard is validated for ATLAS use and an interface for the Les Houches event format is adapted for the ATLAS software Athena. Systematic model and statistical Monte Carlo uncertainties are reduced with a signal definition using events reweighted in the couplings g of the new resonances. Angular correlations conserved by Whizard are used in the event selection. A multivariate analyzer is trained to take into account correlations between the selection variables and thereby to improve the sensitivity compared to cut analyses. The statistical analysis is implemented with a profile likelihood method taking into account systematic uncertainties and statistical uncertainties from Monte Carlo. Ensemble tests are performed to assure the applicability of the method. Expected discovery significances and coupling limits for new additional resonances in vector boson scattering are determined. (orig.)

  4. Quasiresonant scattering

    International Nuclear Information System (INIS)

    Hategan, Cornel; Comisel, Horia; Ionescu, Remus A.

    2004-01-01

    The quasiresonant scattering consists from a single channel resonance coupled by direct interaction transitions to some competing reaction channels. A description of quasiresonant Scattering, in terms of generalized reduced K-, R- and S- Matrix, is developed in this work. The quasiresonance's decay width is, due to channels coupling, smaller than the width of the ancestral single channel resonance (resonance's direct compression). (author)

  5. Aurally-adequate time-frequency analysis for scattered sound in auditoria

    Science.gov (United States)

    Norris, Molly K.; Xiang, Ning; Kleiner, Mendel

    2005-04-01

    The goal of this work was to apply an aurally-adequate time-frequency analysis technique to the analysis of sound scattering effects in auditoria. Time-frequency representations were developed as a motivated effort that takes into account binaural hearing, with a specific implementation of interaural cross-correlation process. A model of the human auditory system was implemented in the MATLAB platform based on two previous models [A. Härmä and K. Palomäki, HUTear, Espoo, Finland; and M. A. Akeroyd, A. Binaural Cross-correlogram Toolbox for MATLAB (2001), University of Sussex, Brighton]. These stages include proper frequency selectivity, the conversion of the mechanical motion of the basilar membrane to neural impulses, and binaural hearing effects. The model was then used in the analysis of room impulse responses with varying scattering characteristics. This paper discusses the analysis results using simulated and measured room impulse responses. [Work supported by the Frank H. and Eva B. Buck Foundation.

  6. Elastic and quasielastic scattering of light nuclei in the theory of multiple scattering

    International Nuclear Information System (INIS)

    Ismatov, E.I.; Kuterbekov, K.A.; Dzhuraev, Sh.Kh.; Ehsaniyazov, Sh.P.; Zholdasova, S.M.

    2005-01-01

    In the work the calculation method for diffraction scattering amplitudes of light nuclei by heavy nuclei is developed. For A 1 A 2 -scattering effects of pair-, three-fold, and four-fold screenings are estimated. It is shown, that in amplitude calculations for A 1 A 2 elastic scattering it is enough come to nothing more than accounting of total screenings in the first order. Analysis of nucleus-nucleus scattering sensitive characteristics to choice of single-particle nuclear densities parametrization is carried out

  7. Continuum multiple-scattering approach to electron-molecule scattering and molecular photoionization

    International Nuclear Information System (INIS)

    Dehmer, J.L.; Dill, D.

    1979-01-01

    The multiple-scattering approach to the electronic continuum of molecules is described. The continuum multiple-scattering model (CMSM) was developed as a survey tool and, as such was required to satisfy two requirements. First, it had to have a very broad scope, which means (i) molecules of arbitrary geometry and complexity containing any atom in the periodic system, (ii) continuum electron energies from 0-1000 eV, and (iii) capability to treat a large range of processes involving both photoionization and electron scattering. Second, the structure of the theory was required to lend itself to transparent, physical interpretation of major spectral features such as shape resonances. A comprehensive theoretical framework for the continuum multiple scattering method is presented, as well as its applications to electron-molecule scattering and molecular photoionization. Highlights of recent applications in these two areas are reviewed. The major impact of the resulting studies over the last few years has been to establish the importance of shape resonances in electron collisions and photoionization of practically all (non-hydride) molecules

  8. Absorption and scattering effects by silver nanoparticles near the interface of organic/inorganic semiconductor tandem films

    International Nuclear Information System (INIS)

    Nemes, Coleen T.; Vijapurapu, Divya K.; Petoukhoff, Christopher E.; Cheung, Gary Z.; O’Carroll, Deirdre M.

    2013-01-01

    We experimentally and theoretically characterize back-scattering and extinction of Ag nanoparticle (AgNP) arrays on both Si wafer substrates and optically-thick Ag substrates with and without organic poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) bulk-heterojunction thin film coatings. A strong red-shift in back-scattered light wavelength occurs from AgNP arrays on Si as a function of increasing mean nanoparticle diameter (ranging from 30 to 90 nm). Back-scattering from the AgNP array is notably quenched in the wavelength range of strong P3HT absorption when the organic layer is applied. However, back-scattering is enhanced to a degree relative to the uncoated AgNP array on Si at wavelengths greater than the absorption band edge of P3HT. For comparison, the optical properties of AgNPs on an optically-thick Ag substrate are reported with and without P3HT:PCBM thin film coatings. On the reflective Ag substrates, a significant enhancement (by a factor of 7.5) and red-shift of back-scattered light occurred upon coating of the AgNPs with the P3HT:PCBM layer. Additionally, red-edge extinction was enhanced in the P3HT:PCBM layer with the presence of the AgNPs compared to the planar case. Theoretical electromagnetic simulations were carried out to help validate and explain the scattering and extinction changes observed in experiment. Both increasing nanoparticle size and an increasing degree of contact with the Si substrate (i.e., effective index of the nanoparticle environment) are shown to play a role in increasing back- and forward-scattering intensity and wavelength, and in increasing absorption enhancements in both the organic and Si layers. AgNPs placed at the P3HT:PCBM/Si interface give rise to absorption increases in P3HT of up to 18 %, and only enhance Si absorption at wavelengths longer than the absorption band edge of P3HT (by almost 90 % in the 660–1,200 nm wavelength range). These results provide insight into how metal

  9. Ocular forward light scattering and corneal backward light scattering in patients with dry eye.

    Science.gov (United States)

    Koh, Shizuka; Maeda, Naoyuki; Ikeda, Chikako; Asonuma, Sanae; Mitamura, Hayato; Oie, Yoshinori; Soma, Takeshi; Tsujikawa, Motokazu; Kawasaki, Satoshi; Nishida, Kohji

    2014-09-18

    To evaluate ocular forward light scattering and corneal backward light scattering in patients with dry eye. Thirty-five eyes in 35 patients with dry eye and 20 eyes of 20 healthy control subjects were enrolled. The 35 dry eyes were classified into two groups according to whether superficial punctate keratopathy in the central 6-mm corneal zone (cSPK) was present or not. Ocular forward light scattering was quantified with a straylight meter. Corneal backward light scattering from the anterior, middle, and posterior corneal parts was assessed with a corneal densitometry program using the Scheimpflug imaging system. Both dry eye groups had significantly higher intraocular forward light scattering than the control group (both Pdry eye group with cSPK had significantly higher values in anterior and total corneal backward light scattering than the other two groups. Moderate positive correlations were observed between the cSPK score and corneal backward light scattering from the anterior cornea (R=0.60, Pdry eyes than in normal eyes. Increased corneal backward light scattering in dry eye at least partially results from cSPK overlying the optical zone. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  10. Measurement of effective atomic number of composite materials using scattering of γ-rays

    International Nuclear Information System (INIS)

    Singh, M.P.; Sandhu, B.S.; Singh, Bhajan

    2007-01-01

    In the present experiment, to determine the effective atomic number of composite materials, the scattering of 145 keV γ-rays is studied using a high-resolution HPGe semiconductor detector placed at 70 deg. to the incident beam. The experiment is performed on various elements of different atomic number, 6≤Z≤64, for 145 keV incident photons. The intensity ratio of Rayleigh to Compton scattered peaks, corrected for photo-peak efficiency of the γ-detector and absorption of photons in the target and air, is plotted as a function of atomic number and constituted a fit curve. From this fit curve, the respective effective atomic numbers of the composite materials are determined. The agreement of measured values of effective atomic number with the theory is found to be quite satisfactory

  11. My Place Is Not Your Place

    DEFF Research Database (Denmark)

    Zenker, Sebastian; Beckmann, Suzanne C.

    2013-01-01

    Purpose – Cities increasingly compete with each other for attracting tourists, investors, companies, or residents. Marketers therefore focus on establishing the city as a brand, disregarding that the perception and knowledge of a city differ dramatically between the target audiences. Hence, place...... branding should emphasize much more the perceptions of the different target groups and develop strategies for advanced place brand management. The aim of this paper is to assess the important discrepancies between the city brand perceptions of different target groups with the help of network analysis......-ended-question survey with 334 participants. Findings – Structural differences for the city brand perceptions of two different target groups and the differences between perceptions of an external and internal target group are highlighted. The results and the managerial implications for place marketers are discussed...

  12. Quantum theory of scattering

    CERN Document Server

    Wu Ta You

    1962-01-01

    This volume addresses the broad formal aspects and applications of the quantum theory of scattering in atomic and nuclear collisions. An encyclopedic source of pioneering work, it serves as a text for students and a reference for professionals in the fields of chemistry, physics, and astrophysics. The self-contained treatment begins with the general theory of scattering of a particle by a central field. Subsequent chapters explore particle scattering by a non-central field, collisions between composite particles, the time-dependent theory of scattering, and nuclear reactions. An examinati

  13. Intracluster superelastic scattering via sequential photodissociation in small HI clusters

    International Nuclear Information System (INIS)

    Chastaing, D.; Underwood, J.; Wittig, C.

    2003-01-01

    angular momentum quantum number, l, by scaling the spin-rotation matrix elements by [l(l+1)] 1/2 and using the Landau-Zener model to treat the electronically nonadiabatic dynamics. It is shown that large l values (l max =52) play a dominant role in the quenching of I* by H. For example, the partial superelastic scattering cross section is six orders of magnitude larger for l=52 than for l=1, underscoring the dramatic role of angular momentum in this system. It is noted that HI photodissociation (which is dominated by low l) proceeds almost entirely along the diabats with little transfer of flux between them, whereas H+I* intracluster 'collisions' take place with sufficiently large l to facilitate the electronically nonadiabatic process

  14. A simplified mathematical model for scattered transmission of X-rays in raw brown coal

    International Nuclear Information System (INIS)

    Braune, M.

    1983-01-01

    A simplified mathematical model is presented which renders it possible to calculate the ash content of lignite from scattered transmission of X radiation taking into account two grain classes, the bulk density, and the fill height. The fine grain is assigned to sand and the coarse one to lignite. The model provides a correlation between the fine grain content and the counting rate

  15. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  16. Effect of scatter correction on quantification of myocardial SPECT and application to dual-energy acquisition using triple-energy window method

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Matsudaira, Masamichi; Yamada, Masato; Taki, Junichi; Tonami, Norihisa; Hisada, Kinichi

    1995-01-01

    Triple-energy window (TEW) method is a simple and practical approach for correcting Compton scatter in single-photon emission tracer studies. The fraction of scatter correction, with a point source or 30 ml-syringe placed under the camera, was measured by the TEW method. The scatter fraction was 55% for 201 Tl, 29% for 99m Tc and 57% for 123 I. Composite energy spectra were generated and separated by the TEW method. Combination of 99m Tc and 201 Tl was well separated, and 201 Tl and 123 I were separated within an error of 10%; whereas asymmetric photopeak energy window was necessary for separating 123 I and 99m Tc. By applying this method to myocardial SPECT study, the effect of scatter elimination was investigated in each myocardial wall by polar map and profile curve analysis. The effect of scatter was higher in the septum and the inferior wall. The count ratio relative to the anterior wall including scatter was 9% higher in 123 I, 7-8% higher in 99m Tc and 6% higher in 201 Tl. Apparent count loss after scatter correction was 30% for 123 I, 13% for 99m Tc and 38% for 201 Tl. Image contrast, as defined myocardium-to-left ventricular cavity count ratio, improved by scatter correction. Since the influence of Compton scatter was significant in cardiac planar and SPECT studies; the degree of scatter fraction should be kept in mind both in quantification and visual interpretation. (author)

  17. Measurement of charge symmetry breaking in np elastic scattering at 350 MeV

    International Nuclear Information System (INIS)

    Abegg, R.; Berdoz, A.R.; Birchall, J.

    1994-10-01

    TRIUMF experiment 369, a measurement of charge symmetry breaking in np elastic scattering at 350 MeV, has completed data taking. Scattering asymmetries were measured with a polarized (unpolarized) neutron beam incident on an unpolarized (polarized) frozen spin target. Coincident scattered neutrons and recoil protons were detected by a mirror symmetric detection system in the center-of-mass angle range from 50 deg - 90 deg. A preliminary result for the difference of the zero-crossing angles, where analyzing powers cross zero, is Δθ cm = 0.445 deg ± 0.054 deg (stat.) ± 0.051 deg (syst.) based on fits over the angle range 53.4 deg ≤ θ cm ≤ 86.9 deg. The difference of the analyzing powers ΔA ≡ A n - A p , where the subscripts denote polarized nucleons, was deduced with dA/dθ cm = (-1.35 ± 0.05) x 10 -2 deg -1 to be [60 ± 7(stat.) ± 7(syst.) ± 2(syst.)] x 10 -4 . (author). 11 refs., 6 figs

  18. On small-angle neutron scattering from microemulsion droplets: the role of shape fluctuations

    International Nuclear Information System (INIS)

    Lisy, V.; Brutovsky, B.

    2001-01-01

    The form factor and intensity of static neutron scattering from microemulsion droplets are calculated. The droplet is modeled by a double-layered sphere consisting of a fluid core and a thin surfactant layer, immersed in another fluid. All the three components are incompressible and characterized by different scattering length densities. As distinct from previous descriptions of small-angle neutron scattering (SANS), we consistently take into account thermal fluctuations of the droplet shape, to the second order of the fluctuations of the droplet radius. The properties of the layer are described within Helfrich's concept of the elasticity of curved interfaces. It is shown that in many cases the account for the fluctuations is essential for the interpretation of SANS. Information about two elastic constants k and k bar (so far extracted from the experiments in the combination 2k + k bar) can be now simultaneously obtained from SANS for the system in conditions of two-phase coexistence. As an illustration, the theory is applied for the quantitative description of SANS experiments from the literature

  19. Restructuring locality: practice, identity and place-making on the German-Polish border

    DEFF Research Database (Denmark)

    Sandberg, Marie

    2016-01-01

    Taking cities as analytical entry points for investigating practice, identity and place-making, this article explores the differential restructurings of locality in the twin cities of Görlitz and Zgorzelec on the German-Polish border. Drawing on ethnographic fieldwork, it shows how the local cities......′ leaderships are attempting to wrestle the cities out of their downmarket positioning in the global economy. Deploying a performative research strategy of methodological relationalism, the article examines intersections between these cities′ strategies of situating local youth within urban regeneration...... and cross-border projects and local youth′s preferences for engaging in other kinds of place-making. By ‘seeing’ the cities in border regions through practices of place-making within the multiscalar processes of urban regeneration, new insights about ‘place’ are generated in which city branding...

  20. Scattering of vector mesons off nucleons

    International Nuclear Information System (INIS)

    Lutz, M.F.M.; Friman, B.; Wolf, G.

    2001-12-01

    We construct a relativistic and unitary approach to 'high' energy pion- and photon-nucleon reactions taking the πN, πΔ, ρN, ωN, ηN, K Λ, KΣ final states into account. Our scheme dynamically generates the s- and d-wave nucleon resonances N(1535), N(1650) and N(1520) and isobar resonances Δ(1620) and δ(1700) in terms of quasi-local interaction vertices. The description of photon-induced processes is based on a generalized vector-meson dominance assumption which directly relates the electromagnetic quasi-local 4-point interaction vertices to the corresponding vertices involving the ρ and ω fields. We obtain a satisfactory description of the elastic and inelastic pion- and photon-nucleon scattering data in the channels considered. The resulting s-wave ρ- and ω-nucleon scattering amplitudes are presented. Using these amplitudes we compute the leading density modification of the ρ and ω mass distributions in nuclear matter. We find a repulsive mass shift for the ω meson at small nuclear density but predict considerable strength in resonance-hole like ω-meson modes. Compared to previous calculations our result for the ρ-meson spectral function shows a significantly smaller in-medium effect. This reflects a not too large coupling strength of the N(1520) resonance to the ρN channel. (orig.)