WorldWideScience

Sample records for scattering spectroscopy lss

  1. Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy

    Science.gov (United States)

    Lau, Condon; Šćepanović, Obrad; Mirkovic, Jelena; McGee, Sasha; Yu, Chung-Chieh; Fulghum, Stephen; Wallace, Michael; Tunnell, James; Bechtel, Kate; Feld, Michael

    2009-01-01

    Model-based light scattering spectroscopy (LSS) seemed a promising technique for in-vivo diagnosis of dysplasia in multiple organs. In the studies, the residual spectrum, the difference between the observed and modeled diffuse reflectance spectra, was attributed to single elastic light scattering from epithelial nuclei, and diagnostic information due to nuclear changes was extracted from it. We show that this picture is incorrect. The actual single scattering signal arising from epithelial nuclei is much smaller than the previously computed residual spectrum, and does not have the wavelength dependence characteristic of Mie scattering. Rather, the residual spectrum largely arises from assuming a uniform hemoglobin distribution. In fact, hemoglobin is packaged in blood vessels, which alters the reflectance. When we include vessel packaging, which accounts for an inhomogeneous hemoglobin distribution, in the diffuse reflectance model, the reflectance is modeled more accurately, greatly reducing the amplitude of the residual spectrum. These findings are verified via numerical estimates based on light propagation and Mie theory, tissue phantom experiments, and analysis of published data measured from Barrett’s esophagus. In future studies, vessel packaging should be included in the model of diffuse reflectance and use of model-based LSS should be discontinued. PMID:19405760

  2. Spectroscopy of scattered light for the characterization of micro and nanoscale objects in biology and medicine.

    Science.gov (United States)

    Turzhitsky, Vladimir; Qiu, Le; Itzkan, Irving; Novikov, Andrei A; Kotelev, Mikhail S; Getmanskiy, Michael; Vinokurov, Vladimir A; Muradov, Alexander V; Perelman, Lev T

    2014-01-01

    The biomedical uses for the spectroscopy of scattered light by micro and nanoscale objects can broadly be classified into two areas. The first, often called light scattering spectroscopy (LSS), deals with light scattered by dielectric particles, such as cellular and sub-cellular organelles, and is employed to measure their size or other physical characteristics. Examples include the use of LSS to measure the size distributions of nuclei or mitochondria. The native contrast that is achieved with LSS can serve as a non-invasive diagnostic and scientific tool. The other area for the use of the spectroscopy of scattered light in biology and medicine involves using conducting metal nanoparticles to obtain either contrast or electric field enhancement through the effect of the surface plasmon resonance (SPR). Gold and silver metal nanoparticles are non-toxic, they do not photobleach, are relatively inexpensive, are wavelength-tunable, and can be labeled with antibodies. This makes them very promising candidates for spectrally encoded molecular imaging. Metal nanoparticles can also serve as electric field enhancers of Raman signals. Surface enhanced Raman spectroscopy (SERS) is a powerful method for detecting and identifying molecules down to single molecule concentrations. In this review, we will concentrate on the common physical principles, which allow one to understand these apparently different areas using similar physical and mathematical approaches. We will also describe the major advancements in each of these areas, as well as some of the exciting recent developments.

  3. Noninvasive identification of subcellular organization and nuclear morphology features associated with leukemic cells using light-scattering spectroscopy

    Science.gov (United States)

    Hsiao, Austin; Hunter, Martin; Greiner, Cherry; Gupta, Sharad; Georgakoudi, Irene

    2011-03-01

    Leukemia is the most common and deadly cancer among children and one of the most prevalent cancers among adults. Improvements in its diagnosis and monitoring of leukemic patients could have a significant impact in their long-term treatment. We demonstrate that light-scattering spectroscopy (LSS)-based approaches could serve as a tool to achieve this goal. Specifically, we characterize the light scattering properties of leukemic (NALM-6) cells and compare them to those of normal lymphocytes and granulocytes in the 440-710 nm range, over +/-4 deg about the exact backscattering direction. We find that the LSS spectra are well described by an inverse power-law wavelength dependence, with a power exponent insensitive to the scattering angle but significantly higher for leukemic cells than for normal leukocytes. This is consistent with differences in the subcellular morphology of these cells, detected in differential interference contrast images. Furthermore, the residual light-scattering signal, extracted after subtracting the inverse power-law fit from the data, can be analyzed assuming a Gaussian distribution of spherical scatterers using Mie theory. This analysis yields scatterer sizes that are consistent with the diameters of cell nuclei and allows the detection of the larger nuclei of NALM-6 cells compared to those of lymphocytes and granulocytes.

  4. A preliminary report on OCR problems in LSS document conversion

    International Nuclear Information System (INIS)

    Nartker, T.A.; Kanal, J.; Rice, S.V.

    1992-01-01

    In this paper, the authors present the results of a study to identify the predominant problems which contemporary OCR devices have in converting LSS document images into computer readable text. The results indicate that the majority of residual OCR errors are caused by either broken or touching characters. The relationship between the cost of constructing the LSS system and the number of OCR errors made during LSS data capture is analyzed. if 100% of the conversion problems caused by broken characters alone could be eliminated, the potential LSS cost savings is approximately $31,000,000

  5. Excavation of LSS1

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Excavation of the long straight-section LSS1 by an Alpine boring machine. View of the connection chamber, in the background, the roofs of the enlarged sections (8.5 m and 6 m). On the right, the access tunnel to PP1.

  6. Spectroscopy, scattering, and KK molecules

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J. [Univ. of Mississippi, University, MS (United States)

    1994-04-01

    The author presents a pedagogical description of a new theoretical technique, based on the multichannel Schroedinger equation, for simultaneously applying the quark model to both meson spectroscopy and meson-meson scattering. This is an extension of an earlier analysis which led to the prediction that the f{sub o}(975) and a{sub o}(980) scalar mesons are K{bar K} molecular states.

  7. Polarized Raman spectroscopy of bone tissue: watch the scattering

    Science.gov (United States)

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-02-01

    Polarized Raman spectroscopy is widely used in the study of molecular composition and orientation in synthetic and natural polymer systems. Here, we describe the use of Raman spectroscopy to extract quantitative orientation information from bone tissue. Bone tissue poses special challenges to the use of polarized Raman spectroscopy for measurement of orientation distribution functions because the tissue is turbid and birefringent. Multiple scattering in turbid media depolarizes light and is potentially a source of error. Using a Raman microprobe, we show that repeating the measurements with a series of objectives of differing numerical apertures can be used to assess the contributions of sample turbidity and depth of field to the calculated orientation distribution functions. With this test, an optic can be chosen to minimize the systematic errors introduced by multiple scattering events. With adequate knowledge of the optical properties of these bone tissues, we can determine if elastic light scattering affects the polarized Raman measurements.

  8. Needlet estimation of cross-correlation between CMB lensing maps and LSS

    Energy Technology Data Exchange (ETDEWEB)

    Bianchini, Federico [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Renzi, Alessandro; Marinucci, Domenico, E-mail: fbianchini@sissa.it, E-mail: renzi@mat.uniroma2.it, E-mail: marinucc@mat.uniroma2.it [Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2016-11-01

    In this paper we develop a novel needlet-based estimator to investigate the cross-correlation between cosmic microwave background (CMB) lensing maps and large-scale structure (LSS) data. We compare this estimator with its harmonic counterpart and, in particular, we analyze the bias effects of different forms of masking. In order to address this bias, we also implement a MASTER-like technique in the needlet case. The resulting estimator turns out to have an extremely good signal-to-noise performance. Our analysis aims at expanding and optimizing the operating domains in CMB-LSS cross-correlation studies, similarly to CMB needlet data analysis. It is motivated especially by next generation experiments (such as Euclid) which will allow us to derive much tighter constraints on cosmological and astrophysical parameters through cross-correlation measurements between CMB and LSS.

  9. Efficient exploration of cosmology dependence in the EFT of LSS

    Energy Technology Data Exchange (ETDEWEB)

    Cataneo, Matteo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Foreman, Simon; Senatore, Leonardo, E-mail: matteoc@dark-cosmology.dk, E-mail: sfore@stanford.edu, E-mail: senatore@stanford.edu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94306 (United States)

    2017-04-01

    The most effective use of data from current and upcoming large scale structure (LSS) and CMB observations requires the ability to predict the clustering of LSS with very high precision. The Effective Field Theory of Large Scale Structure (EFTofLSS) provides an instrument for performing analytical computations of LSS observables with the required precision in the mildly nonlinear regime. In this paper, we develop efficient implementations of these computations that allow for an exploration of their dependence on cosmological parameters. They are based on two ideas. First, once an observable has been computed with high precision for a reference cosmology, for a new cosmology the same can be easily obtained with comparable precision just by adding the difference in that observable, evaluated with much less precision. Second, most cosmologies of interest are sufficiently close to the Planck best-fit cosmology that observables can be obtained from a Taylor expansion around the reference cosmology. These ideas are implemented for the matter power spectrum at two loops and are released as public codes. When applied to cosmologies that are within 3σ of the Planck best-fit model, the first method evaluates the power spectrum in a few minutes on a laptop, with results that have 1% or better precision, while with the Taylor expansion the same quantity is instantly generated with similar precision. The ideas and codes we present may easily be extended for other applications or higher-precision results.

  10. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  11. Surface Fluctuation Scattering using Grating Heterodyne Spectroscopy

    DEFF Research Database (Denmark)

    Edwards, R. V.; Sirohi, R. S.; Mann, J. A.

    1982-01-01

    Heterodyne photon spectroscopy is used for the study of the viscoelastic properties of the liquid interface by studying light scattered from thermally generated surface fluctuations. A theory of a heterodyne apparatus based on a grating is presented, and the heterodyne condition is given in terms...

  12. gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework

    Directory of Open Access Journals (Sweden)

    Benjamin Hofner

    2016-10-01

    Full Text Available Generalized additive models for location, scale and shape are a flexible class of regression models that allow to model multiple parameters of a distribution function, such as the mean and the standard deviation, simultaneously. With the R package gamboostLSS, we provide a boosting method to fit these models. Variable selection and model choice are naturally available within this regularized regression framework. To introduce and illustrate the R package gamboostLSS and its infrastructure, we use a data set on stunted growth in India. In addition to the specification and application of the model itself, we present a variety of convenience functions, including methods for tuning parameter selection, prediction and visualization of results. The package gamboostLSS is available from the Comprehensive R Archive Network (CRAN at https://CRAN.R-project.org/package=gamboostLSS.

  13. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    Directory of Open Access Journals (Sweden)

    Itay Remer

    2016-09-01

    Full Text Available We demonstrate a high-speed stimulated Brillouin scattering (SBS spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (∼25 dB in water samples and ∼15 dB in tissue phantoms. These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  14. Novel Concept for LSS Based on Advanced Microalgal Biotechnologies

    Science.gov (United States)

    Brown, I.; Jones, J. A.; Bayless, D.; Karakis, S.; Karpov, L.; McKay, D. S.

    2006-01-01

    One of the key issues for successful human space exploration is biomedical life support in hostile space and planetary environments that otherwise cannot sustain life. Bioregenerative life support systems (LSS) are one of the options for atmospheric regeneration. To date, no bioregenerative LSS has shown capability for 100% air regeneration. Nor have these LSS been robust enough to simultaneously provide a regenerable complete food source. In contrast to microalgae, traditional plant approaches, e.g. wheat and lettuce, are lacking essential amino acids, vitamins, and micronutrients. Moreover, the rate of photosynthesis by microalgae significantly exceeds that of high plants. Nevertheless, the employment of microalgae in LSS technology was restricted, until recently, due to high water demands. Also the per person requirement of a 40L volume of microalgae in a photobioreactor, to provide daily O2 production, made an algae-based approach less attractive. By employing a vertically stacked membrane bioreactor, coupled with a solar tracker and photon-delivery system, a lightweight air revitalization system for space based applications, with minimal water requirements, can be developed. Our preliminary estimations suggest that a membrane bioreactor, 8m3 in volume, comprised of 80m2 (twenty 2m x 2m membranes, each spaced 10 cm apart), and a total of 70L of water could produce 2.7 kg of dried microalgal biomass that would supply the energy and essential amino acid requirements, as well as producing sufficient O2 for the daily needs of a 15 member crew. Research on the biochemical content of edible blue-green alga Spirulina (Arthrospira) platensis shows a wide spectrum of stable Spirulina mutants with an enhanced content of amino acids, -carotene, and phycobilliprotein c-phycocyanin. Feeding animals suffering from radiation-induced lesions, c-phycocyanin, extracted from strain 27G, led to a correction in the decrement of dehydrogenase activity and energy-rich phosphate

  15. Light Scattering Spectroscopies of Semiconductor Nanocrystals (Quantum Dots)

    International Nuclear Information System (INIS)

    Yu, Peter Y; Gardner, Grat; Nozaki, Shinji; Berbezier, Isabelle

    2006-01-01

    We review the study of nanocrystals or quantum dots using inelastic light scattering spectroscopies. In particular recent calculations of the phonon density of states and low frequency Raman spectra in Ge nanocrystals are presented for comparison with experimental results

  16. Multiple Scattering Theory for Spectroscopies : a Guide to Multiple Scattering Computer Codes : Dedicated to C. R. Natoli on the Occasion of his 75th Birthday

    CERN Document Server

    Hatada, Keisuke; Ebert, Hubert

    2018-01-01

    This edited book, based on material presented at the EU Spec Training School on Multiple Scattering Codes and the following MSNano Conference, is divided into two distinct parts. The first part, subtitled “basic knowledge”, provides the basics of the multiple scattering description in spectroscopies, enabling readers to understand the physics behind the various multiple scattering codes available for modelling spectroscopies. The second part, “extended knowledge”, presents “state- of-the-art” short chapters on specific subjects associated with improving of the actual description of spectroscopies within the multiple scattering formalism, such as inelastic processes, or precise examples of modelling.

  17. Modifications to the SPS LSS6 Septa for LHC and the SPS Septa Diluters

    CERN Document Server

    Borburgh, Y; Goddard, B; Kadi, Y

    2006-01-01

    The Large Hadron Collider required the modification of the existing extraction channel in the long straight section (LSS) 6 of the CERN Super Proton Synchrotron (SPS), including the suppression of the electrostatic wire septa. The newly set up fast extraction will be used to transfer protons at 450 GeV/c as well as ions via the 2.9 km long transfer line TI 2 to Ring 1 of the LHC. The girder of the existing SPS DC septa was modified to accommodate a new septum protection element. Changes were also applied to the septum diluter in the fast extraction channel in LSS4, leading to the other LHC ring and the CNGS facility. The requirements and the layout of the new LSS6 extraction channel will be described including a discussion of the design and performance of the installed septum diluters.

  18. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Liang Mei

    2014-02-01

    Full Text Available Gas in scattering media absorption spectroscopy (GASMAS has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor, the pathlength of which can then be obtained and used for the target gas (e.g., oxygen to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique.

  19. NEG coating of the non-standard LSS vacuum chambers

    CERN Document Server

    Costa-Pinto, P

    2005-01-01

    The vacuum chambers of nearly all the warm magnets of the LHC (MBXW, MQW, MSI, MSD, etc…) will be coated with a Ti-Zr-V thin film by magnetron sputtering. The NEG coating is necessary to provide uniform pumping speed along the chambers and to suppress electron cloud instabilities and dynamic outgassing. The about 300 chambers will be coated using the existing facility, developed for the production of the standard LSS chambers, after minor modifications mainly due to the different cross sections. In order to cope with the present installation schedule, the production planning will allow processing of different families of chambers in parallel by using two or three coating systems simultaneously. After a brief introduction to the Ti-Zr-V characteristics and performances, the coating facility and strategy will be illustrated as well as the possible conflicts due to uncertainties in the planning of the experimental beam pipes and the standard LSS chambers.

  20. InN{0001} polarity by ion scattering spectroscopy

    International Nuclear Information System (INIS)

    Walker, M.; Veal, T.D.; McConville, C.F.; Lu, Hai; Schaff, W.J.

    2005-01-01

    The polarity of a wurtzite InN thin film grown on a c-plane sapphire substrate with GaN and AlN buffer layers has been investigated by co-axial impact collision ion scattering spectroscopy (CAICISS). Time of flight (TOF) spectra of He + ions scattered from the surface of the InN film were taken as a function of the incident angles of the primary 3 keV He + ions. From the TOF spectra, the polar angle-dependence of the In scattered intensity was obtained. Comparison of the experimental polar-angle dependence of the In CAICISS signal intensity with simulated results for the various volume ratios of (0001)- and (000 anti 1)-polarity domains indicated that the InN film is approximately 75% In-polarity and 25% N-polarity. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Electronic stopping power of polymers for heavy ions in the ion energy domain of LSS theory

    International Nuclear Information System (INIS)

    Neetu; Pratibha; Sharma, V.; Diwan, P.K.; Kumar, Shyam

    2009-01-01

    LSS based computed electronic stopping power values have been compared with the corresponding measured values in polymers for heavy ions with Z = 5-29, in the reduced ion velocity region, v red ≤ 1. Except for limited v red ∼ 0.6-0.85, the formulation generally shows significantly large deviations with the measured values. The ζ factor, which was approximated to be ∼Z 1 1/6 , involved in LSS theory has been suitably modified in the light of the available experimental stopping power data. The calculated stopping power values after incorporating modified ζ in LSS formula have been found to be in close agreement with measured values in various polymers in the reduced ion velocity range 0.35 ≤ v red ≤ 1.0.

  2. gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework

    OpenAIRE

    Hofner, Benjamin; Mayr, Andreas; Schmid, Matthias

    2014-01-01

    Generalized additive models for location, scale and shape are a flexible class of regression models that allow to model multiple parameters of a distribution function, such as the mean and the standard deviation, simultaneously. With the R package gamboostLSS, we provide a boosting method to fit these models. Variable selection and model choice are naturally available within this regularized regression framework. To introduce and illustrate the R package gamboostLSS and its infrastructure, we...

  3. Electronic stopping power of polymers for heavy ions in the ion energy domain of LSS theory

    Energy Technology Data Exchange (ETDEWEB)

    Neetu [Department of Physics, Kurukshetra University, Kurukshetra 136 119, Haryana (India)], E-mail: neetuphy@gmail.com; Pratibha [Department of Physics, Kurukshetra University, Kurukshetra 136 119, Haryana (India); Sharma, V. [Department of Physics, Lovely Professional University, Phagwara 144 402 (India); Diwan, P.K. [Department of Physics, U.I.E.T., Kurukshetra University, Kurukshetra 136119, Haryana (India); Kumar, Shyam [Department of Physics, Kurukshetra University, Kurukshetra 136 119, Haryana (India)

    2009-04-15

    LSS based computed electronic stopping power values have been compared with the corresponding measured values in polymers for heavy ions with Z = 5-29, in the reduced ion velocity region, v{sub red} {<=} 1. Except for limited v{sub red} {approx} 0.6-0.85, the formulation generally shows significantly large deviations with the measured values. The {zeta} factor, which was approximated to be {approx}Z{sub 1}{sup 1/6}, involved in LSS theory has been suitably modified in the light of the available experimental stopping power data. The calculated stopping power values after incorporating modified {zeta} in LSS formula have been found to be in close agreement with measured values in various polymers in the reduced ion velocity range 0.35 {<=} v{sub red} {<=} 1.0.

  4. La binaria LSS 3074 y su entorno: ?`una nueva asociación OB?

    Science.gov (United States)

    Niemela, V.; Morrell, N.; Corti, M.

    En este trabajo presentamos un nuevo análisis orbital de LSS~3074, junto con tipos espectrales y velocidades radiales de estrellas que podrían constituir con ella una nueva asociación OB. La estrella O4f LSS3074 fue descubierta como binaria espectroscópica de corto período y líneas dobles por Morrell & Niemela (1990, ASP Conf. Ser. 7, 57). Posteriormente, Haefner et~al.(1994, IBVS 3969) encontraron variaciones fotométricas, estimando una inclinación orbital entre 50o y 55o. Teniendo en cuenta la importancia de obtener valores empíricos para las masas de estrellas O tempranas, y considerando la gran dispersión existente entre los valores observados y su discrepancia con los predichos por los modelos teóricos, hemos obtenido nuevas observaciones espectroscópicas de este sistema, con el propósito de mejorar los elementos orbitales derivados en la solución preliminar. Además, como las estrellas O tempranas suelen formar parte de cúmulos y asociaciones OB, hemos llevado a cabo una investigación espectroscópica de varias estrellas tempranas que podrían estar físicamente relacionadas con LSS~3074.

  5. Ultraviolet refractometry using field-based light scattering spectroscopy

    Science.gov (United States)

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Oh, Seungeun; Yaqoob, Zahid; Park, YongKeun; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is ≤0.003. The precision of refractive index measurements is ≤0.002 and that of specific refractive index increment determination is ≤0.01 mL/g. PMID:20372622

  6. Optimizing laser crater enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Lednev, V. N.; Sdvizhenskii, P. A.; Grishin, M. Ya.; Fedorov, A. N.; Khokhlova, O. V.; Oshurko, V. B.; Pershin, S. M.

    2018-05-01

    The laser crater enhanced Raman scattering (LCERS) spectroscopy technique has been systematically studied for chosen sampling strategy and influence of powder material properties on spectra intensity enhancement. The same nanosecond pulsed solid state Nd:YAG laser (532 nm, 10 ns, 0.1-1.5 mJ/pulse) was used for laser crater production and Raman scattering experiments for L-aspartic acid powder. Increased sampling area inside crater cavity is the key factor for Raman signal improvement for the LCERS technique, thus Raman signal enhancement was studied as a function of numerous experimental parameters including lens-to-sample distance, wavelength (532 and 1064 nm) and laser pulse energy utilized for crater production. Combining laser pulses of 1064 and 532 nm wavelengths for crater ablation was shown to be an effective way for additional LCERS signal improvement. Powder material properties (particle size distribution, powder compactness) were demonstrated to affect LCERS measurements with better results achieved for smaller particles and lower compactness.

  7. On the determination of neutrino masses and dark energy evolution from the cross-correlation of CMB and LSS

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Takahashi, Tomo

    2008-01-01

    We discuss the possibilities of the simultaneous determination of the neutrino masses and the evolution of dark energy from future cosmological observations such as cosmic microwave background (CMB), large scale structure (LSS) and the cross-correlation between them. Recently it has been discussed that there is a degeneracy between the neutrino masses and the equation of state for dark energy. It is also known that there are some degeneracies among the parameters describing the dark energy evolution. We discuss the implications of these for the cross-correlation of CMB with LSS in some detail. Then we consider to what extent we can determine the neutrino masses and the dark energy evolution using the expected data from CMB, LSS and their cross-correlation

  8. In vivo diagnosis of skin cancer using polarized and multiple scattered light spectroscopy

    Science.gov (United States)

    Bartlett, Matthew Allen

    This thesis research presents the development of a non-invasive diagnostic technique for distinguishing between skin cancer, moles, and normal skin using polarized and multiple scattered light spectroscopy. Polarized light incident on the skin is single scattered by the epidermal layer and multiple scattered by the dermal layer. The epidermal light maintains its initial polarization while the light from the dermal layer becomes randomized and multiple scattered. Mie theory was used to model the epidermal light as the scattering from the intercellular organelles. The dermal signal was modeled as the diffusion of light through a localized semi-homogeneous volume. These models were confirmed using skin phantom experiments, studied with in vitro cell cultures, and applied to human skin for in vivo testing. A CCD-based spectroscopy system was developed to perform all these experiments. The probe and the theory were tested on skin phantoms of latex spheres on top of a solid phantom. We next extended our phantom study to include in vitro cells on top of the solid phantom. Optical fluorescent microscope images revealed at least four distinct scatterers including mitochondria, nucleoli, nuclei, and cell membranes. Single scattering measurements on the mammalian cells consistently produced PSD's in the size range of the mitochondria. The clinical portion of the study consisted of in vivo measurements on cancer, mole, and normal skin spots. The clinical study combined the single scattering model from the phantom and in vitro cell studies with the diffusion model for multiple scattered light. When parameters from both layers were combined, we found that a sensitivity of 100% and 77% can be obtained for detecting cancers and moles, respectively, given the number of lesions examined.

  9. Energy and angle resolved ion scattering spectroscopy: new possibilities for surface analysis

    International Nuclear Information System (INIS)

    Hellings, G.J.A.

    1986-01-01

    In this thesis the design and development of a novel, very sensitive and high-resolving spectrometer for surface analysis is described. This spectrometer is designed for Energy and Angle Resolved Ion Scattering Spectroscopy (EARISS). There are only a few techniques that are sensitive enough to study the outermost atomic layer of surfaces. One of these techniques, Low-Energy Ion Scattering (LEIS), is discussed in chapter 2. Since LEIS is destructive, it is important to make a very efficient use of the scattered ions. This makes it attractive to simultaneously carry out energy and angle dependent measurements (EARISS). (Auth.)

  10. Fluorescence lifetime spectroscopy in multiple-scattering environments: an application to biotechnology

    Science.gov (United States)

    Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio

    1999-07-01

    Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.

  11. Biosphere of the earth as a life-support system (LSS) for mankind

    Science.gov (United States)

    Pechurkin, Nickolay

    As a component of biosphere the mankind became the most powerful and active link recently. Exponential growth of human population number and of some technological indicators of its development becomes menacing for steady (stationary or close-to-stationary) functioning of biosphere as single whole. Anyway, we should be able to estimate quantitatively limits of pos-sible anthropogenic impact on functional parameters of biosphere. Considering biosphere as a natural LSS, we can receive the helpful information for working out and creation of artificial LSS of various types. Big biotic cycle induced with flows of a solar energy, is a basis of func-tioning of biosphere and its basic cells -ecosystems. In comparison with the majority natural ecosystems, the biosphere has very high factor of closure of substance circulation, especially limiting biogenic elements: nitrogen and phosphorus. Voluntarily or not, the mankind interferes in big biotic cycle and modifies it. For example, extracting mineral fertilizers for cultivation of agricultural crops, we return in circulation lost before substances, type nitric, potassic, phos-phoric salts. Burning fossils of organic carbon (oil, gas, coal), we raise concentration of carbon dioxide in atmosphere. The melting of a permafrost connected with activity of mankind, is capable to lead to excretion of other greenhouse gases, in particular, methane. It's possible to summarize briefly the main functional properties of the biosphere: Integrity, Closure, Substance cycling, Steady state, Energy dependence. These properties of the biosphere, as a LSS, ensure potentially everlasting life under the conditions of a limited quantity of substrate suitable for the life on the planet. But the selfish mankind is able to destroy harmonic adjustment of this unique natural mechanism

  12. Fast-Solving Quasi-Optimal LS-S3VM Based on an Extended Candidate Set.

    Science.gov (United States)

    Ma, Yuefeng; Liang, Xun; Kwok, James T; Li, Jianping; Zhou, Xiaoping; Zhang, Haiyan

    2018-04-01

    The semisupervised least squares support vector machine (LS-S 3 VM) is an important enhancement of least squares support vector machines in semisupervised learning. Given that most data collected from the real world are without labels, semisupervised approaches are more applicable than standard supervised approaches. Although a few training methods for LS-S 3 VM exist, the problem of deriving the optimal decision hyperplane efficiently and effectually has not been solved. In this paper, a fully weighted model of LS-S 3 VM is proposed, and a simple integer programming (IP) model is introduced through an equivalent transformation to solve the model. Based on the distances between the unlabeled data and the decision hyperplane, a new indicator is designed to represent the possibility that the label of an unlabeled datum should be reversed in each iteration during training. Using the indicator, we construct an extended candidate set consisting of the indices of unlabeled data with high possibilities, which integrates more information from unlabeled data. Our algorithm is degenerated into a special scenario of the previous algorithm when the extended candidate set is reduced into a set with only one element. Two strategies are utilized to determine the descent directions based on the extended candidate set. Furthermore, we developed a novel method for locating a good starting point based on the properties of the equivalent IP model. Combined with the extended candidate set and the carefully computed starting point, a fast algorithm to solve LS-S 3 VM quasi-optimally is proposed. The choice of quasi-optimal solutions results in low computational cost and avoidance of overfitting. Experiments show that our algorithm equipped with the two designed strategies is more effective than other algorithms in at least one of the following three aspects: 1) computational complexity; 2) generalization ability; and 3) flexibility. However, our algorithm and other algorithms have

  13. Ion scattering spectroscopy studies of zirconium dioxide thin films prepared in situ

    International Nuclear Information System (INIS)

    Martin, P.J.; Netterfield, R.P.

    1987-01-01

    Low energy Ion Scattering Spectroscopy has been used to investigate, in situ, thin films of zirconium dioxide deposited by evaporation and ion-assisted deposition. It is shown that when a film is deposited to an average thickness of 0.3 nm +- 0.03, as measured by in situ ellipsometry, complete coverage of the substrate occurs. 'Ion-assisted films have detectably higher Zr surface concentrations and reduced low-energy sputter peaks. Inelastic tailing effects in the Zr scattering peak for 2 keV 4 He + are found to come from particles scattered from approximately the first 7 nm of the oxide surface. The influence of primary ion energy on the Zr/O ratio is also examined. (author)

  14. LSS-GAC - A LAMOST Spectroscopic Survey of the Galactic Anti-center

    Science.gov (United States)

    Liu, X.-W.; Yuan, H.-B.; Huo, Z.-Y.; Deng, L.-C.; Hou, J.-L.; Zhao, Y.-H.; Zhao, G.; Shi, J.-R.; Luo, A.-L.; Xiang, M.-S.; Zhang, H.-H.; Huang, Y.; Zhang, H.-W.

    2014-01-01

    As a major component of the LAMOST Galactic surveys, the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC) will survey a significant volume of the Galactic thin/thick disks and halo in a contiguous sky area of ~3,400 sq.deg., centered on the Galactic anti-center (|b| ~ 3 M stars of all colors, uniformly and randomly selected from (r, g - r) and (r, r - i) Hess diagrams obtained from a CCD imaging photometric survey of ~5,400 sq.deg. with the Xuyi 1.04/1.20 m Schmidt Telescope, ranging from r = 14.0 to a limiting magnitude of r = 17.8 (18.5 for limited fields). The survey will deliver spectral classification, radial velocity (V r) and stellar parameters (effective temperature (T eff), surface gravity (log g) and metallicity [Fe/H]) for millions of Galactic stars. Together with Gaia which will provide accurate distances and tangential velocities for a billion stars, the LSS-GAC will yield a unique data set to study the stellar populations, chemical composition, kinematics and structure of the disks and their interface with the halo, identify streams of debris of tidally disrupted dwarf galaxies and clusters, probe the gravitational potential and dark matter distribution, map the 3D distribution of interstellar dust extinction, search for rare objects (e.g. extremely metal-poor or hyper-velocity stars), and ultimately advance our understanding of the assemblage of the Milky Way and other galaxies and the origin of regularity and diversity of their properties. The survey was initiated in the fall of 2012 and expected to complete in the spring of 2017. Hitherto, about 0.4 M spectra of S/N(λ7450) >= 10 per pixel have been accumulated. In addition, bright nights have been used to target stars brighter than 14 mag and have so far generated over 0.4 M spectra, yielding an excellent sample of local stars to probe the solar neighborhood. LSP3, a set of pipelines tailored to the need of LSS-GAC, for spectral flux-calibration, and radial velocity and stellar

  15. In-situ, real-time, studies of film growth processes using ion scattering and direct recoil spectroscopy techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Smentkowski, V. S.

    1999-04-22

    Time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1-2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is 3 variant of DRS capable of isotopic resolution for all surface species--including H and He. The advantages and limitations of each of these techniques will be discussed. The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dwd functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.

  16. MODELLING SLOW EXTRACTION INDUCED RADIOACTIVITY IN SPS LSS2

    CERN Document Server

    Araujo Martinez, Aurora Cecilia; CERN. Geneva. TE Department

    2017-01-01

    The Accelerator and Beam Transfer (ABT) group is investigating the impact of recent proposals to extract higher proton intensities to Fixed Target experiments at the SPS. The 400 GeV high-energy proton beam is typically extracted over a few seconds using a resonant slow-extraction technique that induces small but unavoidable beam losses on the extraction equipment in SPS LSS2. In this report, the induced radioactivity for 2016-2017 is used to predict future activation levels and cool-down times, using a past intervention as a reference to predict dose to the personnel carrying-out maintenance of the accelerator.

  17. Gas in scattering media absorption spectroscopy - GASMAS

    Science.gov (United States)

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  18. DETERMINATION OF THE THERMODYNAMICS OF β-LACTOGLOBULIN AGGREGATION USING ULTRA VIOLET LIGHT SCATTERING SPECTROSCOPY

    OpenAIRE

    Belton, Daniel; Austerberry, James

    2018-01-01

    The problem of protein aggregation is widely studied across a number of disciplines, where understanding the behaviour of the protein monomer, and its behaviour with co-solutes is imperative in order to devise solutions to the problem. Here we present a method for measuring the kinetics of protein aggregation based on ultra violet light scattering spectroscopy (UVLSS) across a range of NaCl conditions. Through measurement of wavelength dependant scattering and using the model protein β-lactog...

  19. Optical analysis of trapped Gas—Gas in Scattering Media Absorption Spectroscopy

    Science.gov (United States)

    Svanberg, S.

    2010-01-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The technique investigates sharp gas spectral signatures, typically 10000 times sharper than those of the host material, in which the gas is trapped in pores or cavities. The presence of pores causes strong multiple scattering. GASMAS combines narrow-band diode-laser spectroscopy, developed for atmospheric gas monitoring, with diffuse media optical propagation, well-known from biomedical optics. Several applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, and this is also true for haemoglobin, making propagation possible in many natural materials. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities (frontal, maxillary and mastoideal) have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media (diffusion) can be studied by first subjecting the material to, e.g., pure nitrogen, and then observing the rate at which normal, oxygen-containing air, reinvades the material. The conductance of the passages connecting a sinus with the nasal cavity can be objectively assessed by observing the oxygen gas dynamics when flushing the nose with nitrogen. Drying of materials, when liquid water is replaced by air and water vapour, is another example of dynamic processes which can be studied. The technique has also been extended to remote-sensing applications (LIDAR-GASMAS or Multiple-Scattering LIDAR).

  20. Secondary relaxation in two engineering thermoplastics by neutron scattering and dielectric spectroscopy

    CERN Document Server

    Arrese, S; Alegria, A; Colmenero, J; Frick, B

    2002-01-01

    We present a preliminary investigation of the dynamics of glassy polycarbonate (PC) and polysulfone (PSF) by means of quasielastic neutron scattering and dielectric spectroscopy. Whereas the consideration of pure phenylene ring pi-flips is enough to explain the momentum-transfer (Q) dependence of the inelastic intensity measured for PSF, in the case of PC the Q dependence of both the coherent and the incoherent scattering functions reveal the existence in this polymer of some more complex motion of the phenylene ring. On the other hand, the similarity of the energy landscapes deduced from the different techniques points to a closely related molecular origin for all the relaxation/motions observed. (orig.)

  1. Secondary relaxation in two engineering thermoplastics by neutron scattering and dielectric spectroscopy

    International Nuclear Information System (INIS)

    Arrese-Igor, S.; Arbe, A.; Alegria, A.; Colmenero, J.; Frick, B.

    2002-01-01

    We present a preliminary investigation of the dynamics of glassy polycarbonate (PC) and polysulfone (PSF) by means of quasielastic neutron scattering and dielectric spectroscopy. Whereas the consideration of pure phenylene ring π-flips is enough to explain the momentum-transfer (Q) dependence of the inelastic intensity measured for PSF, in the case of PC the Q dependence of both the coherent and the incoherent scattering functions reveal the existence in this polymer of some more complex motion of the phenylene ring. On the other hand, the similarity of the energy landscapes deduced from the different techniques points to a closely related molecular origin for all the relaxation/motions observed. (orig.)

  2. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael

    2016-01-01

    and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3]2+, with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe. We monitored the ultrafast structural...... rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering atterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited...

  3. Evaluation of RO modules for the SSP ETC/LSS.

    Science.gov (United States)

    Jasionowski, W. J.; Bambenek, R. A.

    1973-01-01

    During the past eight years the NASA Manned Spacecraft Center has supported the development of an Integrated Water and Waste Management System for use in the Space Station Prototype (SSP) Environmental Thermal Control/Life-Support System (ETC/LSS). This system includes the reverse osmosis (RO) process for recycling wash water and the compression distillation process for recovering useable water from urine, urinal flush water, humidity condensate, commode flush water and the wash water concentrated by RO. This paper summarizes the experimental work performed during the past four years to select the best commercially available RO module for this system and to also define which surfactants and germicides are most compatible with the selected module.

  4. Monitoring the recrystallisation of amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering.

    Science.gov (United States)

    Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko

    2016-07-11

    In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection.

    Science.gov (United States)

    Hiramatsu, Kotaro; Luo, Yizhi; Ideguchi, Takuro; Goda, Keisuke

    2017-11-01

    High-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan. In this Letter, we show our experimental demonstration of enhanced sensitivity in rapid-scan FT-CARS spectroscopy by heterodyne detection. Specifically, we implemented heterodyne detection by superposing the CARS electric field with an external local oscillator (LO) for their interference. The CARS signal was amplified by simply increasing the power of the LO without the need for increasing the incident power onto the sample. Consequently, we achieved enhancement in signal intensity and the signal-to-noise ratio by factors of 39 and 5, respectively, compared to FT-CARS spectroscopy with homodyne detection. The sensitivity-improved rapid-scan FT-CARS spectroscopy is expected to enable the sensitive real-time observation of chemical dynamics in a broad range of settings, such as combustion engines and live biological cells.

  6. Quasiparticle scattering spectroscopy (QPS) of Kondo lattice heavy fermions

    Science.gov (United States)

    Greene, L. H.; Narasiwodeyar, S. M.; Banerjee, P.; Park, W. K.; Bauer, E. D.; Tobash, P. H.; Baumbach, R. E.; Ronning, F.; Sarrao, J. L.; Thompson, J. D.

    2013-03-01

    Point-contact spectroscopy (PCS) is a powerful technique to study electronic properties via measurements of non-linear current-voltage characteristic across a ballistic junction. It has been frequently adopted to investigate novel and/or unconventional superconductors by detecting the energy-dependent Andreev scattering. PCS of non-superconducting materials has been much rarely reported. From our recent studies on heavy fermions, we have frequently observed strongly bias-dependent and asymmetric conductance behaviors. Based on a Fano resonance model in a Kondo lattice, we attribute them to energy-dependent quasiparticle scattering off hybridized renormalized electronic states, dubbing it QPS. We will present our QPS results on several heavy-fermion systems and discuss QPS as a novel technique to probe the bulk spectroscopic properties of the electronic structure. For instance, it reveals that the hybridization gap in URu2Si2 opens well above the hidden order transition. The work at UIUC is supported by the U.S. DOE under Award No. DE-FG02-07ER46453 and the NSF DMR 12-06766, and the work at LANL is carried out under the auspices of the U.S. DOE, Office of Science.

  7. Using resonance light scattering and UV/vis absorption spectroscopy to study the interaction between gliclazide and bovine serum albumin.

    Science.gov (United States)

    Zhang, Qiu-Ju; Liu, Bao-Sheng; Li, Gai-Xia; Han, Rong

    2016-08-01

    At different temperatures (298, 310 and 318 K), the interaction between gliclazide and bovine serum albumin (BSA) was investigated using fluorescence quenching spectroscopy, resonance light scattering spectroscopy and UV/vis absorption spectroscopy. The first method studied changes in the fluorescence of BSA on addition of gliclazide, and the latter two methods studied the spectral change in gliclazide while BSA was being added. The results indicated that the quenching mechanism between BSA and gliclazide was static. The binding constant (Ka ), number of binding sites (n), thermodynamic parameters, binding forces and Hill's coefficient were calculated at three temperatures. Values for the binding constant obtained using resonance light scattering and UV/vis absorption spectroscopy were much greater than those obtained from fluorescence quenching spectroscopy, indicating that methods monitoring gliclazide were more accurate and reasonable. In addition, the results suggest that other residues are involved in the reaction and the mode 'point to surface' existed in the interaction between BSA and gliclazide. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Arsenic speciation by X-ray spectroscopy using resonant Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, H.J.; Leani, J.J. [Universidad Nacional de Cordoba, Cba (Argentina); Perez, C.A. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: The toxicity of arsenic species is widely known. A realistic evaluation of the risk posed by As depends on accurate determination of As speciation, because its toxicity and mobility varies with oxidation state and chemical environment. The most toxic species are inorganic As (III) and As (V) called respectively arsenite or trivalent arsenic, and arsenate or pentavalent arsenic. Recently, x-ray Resonant Raman Scattering spectroscopy has been successfully employed to determine the oxidation state of metals. In this work we use RRS spectroscopy to perform arsenic speciation. The measurements were carried out in XRF station of the D09B-XRF beamline at the Brazilian synchrotron facility (LNLS, Campinas). Mineral samples of As in different oxidation states (As(III) and AS(V)), and two biological forms of arsenic (monomethylarsonic acid (MMA(V) and dimethylarsinic acid DMA(V)) were analysed. The samples were diluted, deposited on silicon wafers and allowed to dry. The amount of liquid deposited on the reflector before evaporation was 20 microliters for all the specimens. These samples were irradiated with monochromatic photons of 11816 eV, i.e., below the K-edge of arsenic in order to inspect the Raman emissions. The measuring lifetime was 3600 sec for each sample. Spectra were analysed with specific programs for spectrum analysis using non-conventional functions for data fitting, i.e., modified Voight functions (for Compton peaks), Gaussian functions for fluorescent and for low intensity peaks (such as escape peaks and other contributions), and polynomial functions for the background. Raman peaks were fitted using specific functions. In this work we have shown that resonant Raman scattering spectroscopy can be used to analyse arsenic species. The method is very simple and reliable. The most important feature of this method relies in the possibility of using the same spectrometer of XRF analysis or TXRF analysis. In this way, practically in the same experiment

  9. Temperature Measurements in Reacting Flows Using Time-Resolved Femtosecond Coherent Anti-Stokes Raman Scattering (fs-CARS) Spectroscopy (Postprint)

    National Research Council Canada - National Science Library

    Roy, Sukesh; Kinnius, Paul J; Lucht, Robert P; Gord, James R

    2007-01-01

    Time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of the nitrogen molecule is used for the measurement of temperature in atmospheric-pressure, near-adiabatic, hydrogen-air diffusion flames...

  10. Cancer and non-cancer mortality risks in atomic bomb survivors, 1950-1997: lSS report 13

    International Nuclear Information System (INIS)

    Shimizu, Y.; Preston, D.L.; Pierce, D.A.; Suyama, A.; Kodama, K.; Mabuchi, K.

    2003-01-01

    The present report continues the series of general reports on mortality in the Life Span Study (LSS) cohort followed by the Radiation Effects Research Foundation (RERF). The present report deals with solid cancer and non-cancer disease mortality during the period from 1950 through 1997, updating with seven additional years of follow-up LSS Report 12. The LSS cohort includes 86,572 people with individual dose estimates. There have been 9,335 deaths from solid cancer and 31,881 deaths from non-cancer disease during the 47 years follow-up. 19% of the solid cancer and 15% of the non-cancer disease deaths occurred during the newly added follow-up period. While excess rates for radiation-associated solid cancers are seen to increase throughout the study period regardless of age at exposure, relative risks are highest for those exposed as children but appear to decline with increasing age. For those exposed at age 30 the solid cancer risk is elevated by 47% at age 70. There are interesting variations by site of age and age at exposure pattern, though the patterns of the risk do not differ statistically from those for solid cancer as a group. However, the interpretation of age at exposure effects on the ERR or the EAR is complicated by changes in background rates with birth cohort or time trend. The evidence for radiation effects on non-cancer mortality remains strong with risks increased by about 14% per Sv during the last thirty years of follow-up. Statistically significant increases are seen for heart disease, stroke, digestive diseases, and respiratory diseases. Although the non-cancer data are consistent with some non-linearity in the dose response, the evidence against linearity is weaker than past. However, there is no direct statistical evidence of radiation effects for doses less than 0.5 Sv

  11. The XMM-SERVS survey: new XMM-Newton point-source catalog for the XMM-LSS field

    Science.gov (United States)

    Chen, C.-T. J.; Brandt, W. N.; Luo, B.; Ranalli, P.; Yang, G.; Alexander, D. M.; Bauer, F. E.; Kelson, D. D.; Lacy, M.; Nyland, K.; Tozzi, P.; Vito, F.; Cirasuolo, M.; Gilli, R.; Jarvis, M. J.; Lehmer, B. D.; Paolillo, M.; Schneider, D. P.; Shemmer, O.; Smail, I.; Sun, M.; Tanaka, M.; Vaccari, M.; Vignali, C.; Xue, Y. Q.; Banerji, M.; Chow, K. E.; Häußler, B.; Norris, R. P.; Silverman, J. D.; Trump, J. R.

    2018-04-01

    We present an X-ray point-source catalog from the XMM-Large Scale Structure survey region (XMM-LSS), one of the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) fields. We target the XMM-LSS region with 1.3 Ms of new XMM-Newton AO-15 observations, transforming the archival X-ray coverage in this region into a 5.3 deg2 contiguous field with uniform X-ray coverage totaling 2.7 Ms of flare-filtered exposure, with a 46 ks median PN exposure time. We provide an X-ray catalog of 5242 sources detected in the soft (0.5-2 keV), hard (2-10 keV), and/or full (0.5-10 keV) bands with a 1% expected spurious fraction determined from simulations. A total of 2381 new X-ray sources are detected compared to previous source catalogs in the same area. Our survey has flux limits of 1.7 × 10-15, 1.3 × 10-14, and 6.5 × 10-15 erg cm-2 s-1 over 90% of its area in the soft, hard, and full bands, respectively, which is comparable to those of the XMM-COSMOS survey. We identify multiwavelength counterpart candidates for 99.9% of the X-ray sources, of which 93% are considered as reliable based on their matching likelihood ratios. The reliabilities of these high-likelihood-ratio counterparts are further confirmed to be ≈97% reliable based on deep Chandra coverage over ≈5% of the XMM-LSS region. Results of multiwavelength identifications are also included in the source catalog, along with basic optical-to-infrared photometry and spectroscopic redshifts from publicly available surveys. We compute photometric redshifts for X-ray sources in 4.5 deg2 of our field where forced-aperture multi-band photometry is available; >70% of the X-ray sources in this subfield have either spectroscopic or high-quality photometric redshifts.

  12. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  13. Detection of Surface-Linked Polychlorinated Biphenyls using Surface-Enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Rindzevicius, Tomas; Barten, Jan; Vorobiev, Mikhail

    2017-01-01

    We present an improved procedure for analytical detection of toxic polychlorinated biphenyls (PCB) using surface-enhanced Raman scattering (SERS) spectroscopy. A gold-capped silicon nanopillar substrate was utilized to concentrate PCB molecules within an area of high electromagnetic fields through...... formation of microsized nanopillar clusters, and consequently, so-called “hot spots” can be formed. In order to improve PCB detection limit, 3,3',4,4'-tetrachlorobiphenyl (PCB77) compounds were chemically modified with a – SCH3 (PCB77-SCH3) group. Experimental and numerical analysis of vibrational modes...

  14. Search for elemental and mineral biomarkers using inelastic neutron scattering spectroscopy (INSS)

    Science.gov (United States)

    Wielopolski, Lucian; Hoover, Richard B.; Mitra, Sudeep

    2004-02-01

    Life on Earth is characterized by a select group of low Z elements: C, H, N, O, P, K, S, Na, Cl. The presence of these elements and their ratios can provide indications of possible biogenicity and thus they may constitute valuable biomarkers that may help determine the best locations to seek more definitive evidence of life. We discuss the possible applications and significance of the inelastic neutron scattering induced gamma spectroscopy (INSGS) for future Astrobiology Missions to Mars or other solar System bodies. The general requirements and capabilities of the proposed approach are presented.

  15. Diffusing-wave spectroscopy in a standard dynamic light scattering setup

    Science.gov (United States)

    Fahimi, Zahra; Aangenendt, Frank J.; Voudouris, Panayiotis; Mattsson, Johan; Wyss, Hans M.

    2017-12-01

    Diffusing-wave spectroscopy (DWS) extends dynamic light scattering measurements to samples with strong multiple scattering. DWS treats the transport of photons through turbid samples as a diffusion process, thereby making it possible to extract the dynamics of scatterers from measured correlation functions. The analysis of DWS data requires knowledge of the path length distribution of photons traveling through the sample. While for flat sample cells this path length distribution can be readily calculated and expressed in analytical form; no such expression is available for cylindrical sample cells. DWS measurements have therefore typically relied on dedicated setups that use flat sample cells. Here we show how DWS measurements, in particular DWS-based microrheology measurements, can be performed in standard dynamic light scattering setups that use cylindrical sample cells. To do so we perform simple random-walk simulations that yield numerical predictions of the path length distribution as a function of both the transport mean free path and the detection angle. This information is used in experiments to extract the mean-square displacement of tracer particles in the material, as well as the corresponding frequency-dependent viscoelastic response. An important advantage of our approach is that by performing measurements at different detection angles, the average path length through the sample can be varied. For measurements performed on a single sample cell, this gives access to a wider range of length and time scales than obtained in a conventional DWS setup. Such angle-dependent measurements also offer an important consistency check, as for all detection angles the DWS analysis should yield the same tracer dynamics, even though the respective path length distributions are very different. We validate our approach by performing measurements both on aqueous suspensions of tracer particles and on solidlike gelatin samples, for which we find our DWS-based microrheology

  16. Improving the resolution of beta scattering spectroscopy

    International Nuclear Information System (INIS)

    Celiktas, C.; Selvi, S.; Yegin, G.

    2004-01-01

    We have examined the performance of a modified beta-ray spectrometer using a pulse shape analyzer/timing single channel analyzer and related electronics, thereby preserving the low energy electron tail in measurement of the scattered electron spectra from an n-type Si wafer target. Comparison of measurements with the scattering spectra calculated by the Monte Carlo program EGS4 indicates good agreement across a significant part of the spectrum, an exception being for the energy region 30-100 keV. Re-evaluation of existing scattering cross-sections would be useful, as would possible geometrical effects of the scattering arrangement used herein. Present efforts seek to contribute to the evaluation of electron scattering cross-sections and improvement in theoretical models

  17. Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert law absorbance of highly scattering materials.

    Science.gov (United States)

    Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique

    2015-01-01

    Visible and Near Infrared (Vis-NIR) Spectroscopy is a powerful non destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in-line in industries, in-vivo with biomedical applications or in-field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentrations. Instead of spectral pre-processing, which is commonly used by Vis-NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, based on Polarized Light Spectroscopy to improve the absorbance signal measurement on highly scattering samples. This method selects part of the signal which is less impacted by scattering. The resulted signal is combined in the Absorption/Remission function defined in Dahm's Representative Layer Theory to compute an absorbance signal fulfilling Beer-Lambert's law, i.e. being linearly related to concentration of the chemicals composing the sample. The underpinning theories have been experimentally evaluated on scattering samples in liquid form and in powdered form. The method produced more accurate spectra and the Pearson's coefficient assessing the linearity between the absorbance spectra and the concentration of the added dye improved from 0.94 to 0.99 for liquid samples and 0.84-0.97 for powdered samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Quantification of Material Fluorescence and Light Scattering Cross Sections Using Ratiometric Bandwidth-Varied Polarized Resonance Synchronous Spectroscopy.

    Science.gov (United States)

    Xu, Joanna Xiuzhu; Hu, Juan; Zhang, Dongmao

    2018-05-25

    Presented herein is the ratiometric bandwidth-varied polarized resonance synchronous spectroscopy (BVPRS2) method for quantification of material optical activity spectra. These include the sample light absorption and scattering cross-section spectrum, the scattering depolarization spectrum, and the fluorescence emission cross-section and depolarization spectrum in the wavelength region where the sample both absorbs and emits. This ratiometric BVPRS2 spectroscopic method is a self-contained technique capable of quantitatively decoupling material fluorescence and light scattering signal contribution to its ratiometric BVPRS2 spectra through the linear curve-fitting of the ratiometric BVPRS2 signal as a function of the wavelength bandwidth used in the PRS2 measurements. Example applications of this new spectroscopic method are demonstrated with materials that can be approximated as pure scatterers, simultaneous photon absorbers/emitters, simultaneous photon absorbers/scatterers, and finally simultaneous photon absorbers/scatterers/emitters. Because the only instruments needed for this ratiometric BVPRS2 technique are the conventional UV-vis spectrophotometer and spectrofluorometer, this work should open doors for routine decomposition of material UV-vis extinction spectrum into its absorption and scattering component spectra. The methodology and insights provided in this work should be of broad significance to all chemical research that involves photon/matter interactions.

  19. Observational signatures of past mass-exchange episodes in massive binaries: the case of LSS 3074

    Science.gov (United States)

    Raucq, F.; Gosset, E.; Rauw, G.; Manfroid, J.; Mahy, L.; Mennekens, N.; Vanbeveren, D.

    2017-05-01

    Context. The role of mass and momentum exchanges in close massive binaries is very important in the subsequent evolution of the components. Such exchanges produce several observational signatures such as asynchronous rotation and altered chemical compositions, that remain after the stars detach again. Aims: We investigated these effects for the close O-star binary LSS 3074 (O4 f + O6-7:(f):), which is a good candidate for a past Roche lobe overflow (RLOF) episode because of its very short orbital period, P = 2.185 days, and the luminosity classes of both components. Methods: We determined a new orbital solution for the system. We studied the photometric light curves to determine the inclination of the orbit and Roche lobe filling factors of both stars. Using phase-resolved spectroscopy, we performed the disentangling of the optical spectra of the two stars. We then analysed the reconstructed primary and secondary spectra with the CMFGEN model atmosphere code to determine stellar parameters, such as the effective temperatures and surface gravities, and to constrain the chemical composition of the components. Results: We confirm the apparent low stellar masses and radii reported in previous studies. We also find a strong overabundance in nitrogen and a strong carbon and oxygen depletion in both primary and secondary atmospheres, together with a strong enrichment in helium of the primary star. Conclusions: We propose several possible evolutionary pathways through a RLOF process to explain the current parameters of the system. We confirm that the system is apparently in overcontact configuration and has lost a significant portion of its mass to its surroundings. We suggest that some of the discrepancies between the spectroscopic and photometric properties of LSS 3074 could stem from the impact of a strong radiation pressure of the primary. Based on observations collected at the European Southern Observatory (La Silla, Chile) and the Cerro Tololo Inter

  20. Light scattering studies at UNICAMP

    International Nuclear Information System (INIS)

    Luzzi, R.; Cerdeira, H.A.; Salzberg, J.; Vasconcellos, A.R.; Frota Pessoa, S.; Reis, F.G. dos; Ferrari, C.A.; Algarte, C.A.S.; Tenan, M.A.

    1975-01-01

    Current theoretical studies on light scattering spectroscopy at UNICAMP is presented briefly, such as: inelastic scattering of radiation from a solid state plasma; resonant Ramman scattering; high excitation effects; saturated semiconductors and glasses

  1. IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Matthew [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, 91191 Gif-sur-Yvette (France); Senatore, Leonardo, E-mail: matthew.lewandowski@ipht.fr, E-mail: senatore@stanford.edu [Stanford Institute for Theoretical Physics, Stanford University, Stanford, 94306 CA (United States)

    2017-08-01

    Because large-scale structure surveys may very well be the next leading sources of cosmological information, it is important to have a precise understanding of the cosmological observables; for this reason, the Effective Field Theory of Large-Scale Structure (EFTofLSS) was developed. So far, most results in the EFTofLSS have used the so-called Einstein-de Sitter approximation, an approximation of the time dependence which is known to be accurate to better than one percent. However, in order to reach even higher accuracy, the full time dependence must be used. The computation with exact time dependence is sensitive to both infrared (IR) and ultraviolet (UV) effects in the loop integrands, and while these effects must cancel because of diffeomorphism invariance, they make numerical computation much less efficient. We provide a formulation of the one-loop, equal-time exact-time-dependence power spectrum of density perturbations which is manifestly free of these spurious IR and UV divergences at the level of the integrand. We extend our results to the total matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are satisfied in this system. We then use our one-loop result to do an improved precision comparison of the two-loop dark-matter power spectrum with the Dark Sky N -body simulation.

  2. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    Science.gov (United States)

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  3. Rigorous numerical modeling of scattering-type scanning near-field optical microscopy and spectroscopy

    Science.gov (United States)

    Chen, Xinzhong; Lo, Chiu Fan Bowen; Zheng, William; Hu, Hai; Dai, Qing; Liu, Mengkun

    2017-11-01

    Over the last decade, scattering-type scanning near-field optical microscopy and spectroscopy have been widely used in nano-photonics and material research due to their fine spatial resolution and broad spectral range. A number of simplified analytical models have been proposed to quantitatively understand the tip-scattered near-field signal. However, a rigorous interpretation of the experimental results is still lacking at this stage. Numerical modelings, on the other hand, are mostly done by simulating the local electric field slightly above the sample surface, which only qualitatively represents the near-field signal rendered by the tip-sample interaction. In this work, we performed a more comprehensive numerical simulation which is based on realistic experimental parameters and signal extraction procedures. By directly comparing to the experiments as well as other simulation efforts, our methods offer a more accurate quantitative description of the near-field signal, paving the way for future studies of complex systems at the nanoscale.

  4. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  5. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-01

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety.

  6. Intermultiplet transitions using neutron spectroscopy

    International Nuclear Information System (INIS)

    Osborn, R.; Lovesey, S.W.; Taylor, A.D.; Balcar, E.

    1989-12-01

    Neutron inelastic scattering is used here to attempt to obtain optical spectra for lanthanide metals and compounds. Intermultiplet spectroscopy provides information about transitions from different electronic configurations and hybridisation of the 4f shell. This report discusses the relatively limited contribution that neutron scattering has played in intermultiplet spectroscopy, and covers spin-orbit transitions and coulomb transitions Racah algebra is developed in calculating the scattering cross sections. (author)

  7. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy.

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-25

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The licensing support system (LSS): Who should operate it and will it work?

    International Nuclear Information System (INIS)

    Macnabb, M.L.; Pflum, C.

    1991-01-01

    The development of the mammoth Licensing Support System (LSS), a management information system intended to handle documentation relevant to the licensing application of the DOE for the High Level Nuclear Waste Repository is not conforming to statute, regulation or intent. At the present stage of its development, it is a quagmire of legal, regulatory and technical difficulties which has the DOE and the NRC arguing over its implementation and budget. This paper examines some of the failures of the system and concludes that many of the DOE functions should now be transferred to a disinterested and independent third party under the auspices of the NRC in order to meet the intent of its creators

  9. [Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy].

    Science.gov (United States)

    Chen, Wei-kang; Fang, Hui

    2016-03-01

    The basic principle of polarization-differentiation elastic light scattering spectroscopy based techniques is that under the linear polarized light incidence, the singlely scattered light from the superficial biological tissue and diffusively scattered light from the deep tissue can be separated according to the difference of polarization characteristics. The novel point of the paper is to apply this method to the detection of particle suspension and, to realize the simultaneous measurement of its particle size and number density in its natural status. We design and build a coaxial cage optical system, and measure the backscatter signal at a specified angle from a polystyrene microsphere suspension. By controlling the polarization direction of incident light with a linear polarizer and adjusting the polarization direction of collected light with another linear polarizer, we obtain the parallel polarized elastic light scattering spectrum and cross polarized elastic light scattering spectrum. The difference between the two is the differential polarized elastic light scattering spectrum which include only the single scattering information of the particles. We thus compare this spectrum to the Mie scattering calculation and extract the particle size. We then also analyze the cross polarized elastic light scattering spectrum by applying the particle size already extracted. The analysis is based on the approximate expressions taking account of light diffusing, from which we are able to obtain the number density of the particle suspension. We compare our experimental outcomes with the manufacturer-provided values and further analyze the influence of the particle diameter standard deviation on the number density extraction, by which we finally verify the experimental method. The potential applications of the method include the on-line particle quality monitoring for particle manufacture as well as the fat and protein density detection of milk products.

  10. Neutron scattering on equilibrium and nonequilibrium phonons, excitons and polaritons

    International Nuclear Information System (INIS)

    Broude, V.L.; Sheka, E.F.

    1978-01-01

    A number of problems of solid-state physics representing interest for neutron spectroscopy of future is considered. The development of the neutron inelastic scattering spectroscopy (neutron spectroscopy of equilibrium phonons) is discussed with application to nuclear dynamics of crystals in the thermodynamic equilibrium. The results of high-flux neutron source experiments on molecular crystals are presented. The advantages of neutron inelastic scattering over optical spectroscopy are discussed. The spectroscopy of quasi-equilibrium and non-equilibrium quasi-particles is discussed. In particular, the neutron scattering on polaritons, excitons in thermal equilibrium and production of light-excitons are considered. The problem of the possibility of such experiments is elucidated

  11. High-temperature cuprate superconductors studied by x-ray Compton scattering and positron annihilation spectroscopies

    International Nuclear Information System (INIS)

    Barbiellini, Bernardo

    2013-01-01

    The bulk Fermi surface in an overdoped (x = 0.3) single crystal of La 2−x Sr x CuO 4 has been observed by using x-ray Compton scattering. This momentum density technique also provides a powerful tool for directly seeing what the dopant Sr atoms are doing to the electronic structure of La 2 CuO 4 . Because of wave function effects, positron annihilation spectroscopy does not yield a strong signature of the Fermi surface in extended momentum space, but it can be used to explore the role of oxygen defects in the reservoir layers for promoting high temperature superconductivity.

  12. High-temperature cuprate superconductors studied by x-ray Compton scattering and positron annihilation spectroscopies

    Science.gov (United States)

    Barbiellini, Bernardo

    2013-06-01

    The bulk Fermi surface in an overdoped (x = 0.3) single crystal of La2-xSrxCuO4 has been observed by using x-ray Compton scattering. This momentum density technique also provides a powerful tool for directly seeing what the dopant Sr atoms are doing to the electronic structure of La2CuO4. Because of wave function effects, positron annihilation spectroscopy does not yield a strong signature of the Fermi surface in extended momentum space, but it can be used to explore the role of oxygen defects in the reservoir layers for promoting high temperature superconductivity.

  13. Contributions to the theory of electron spectroscopy. Applications of the relativistic multiple-scattering theory

    International Nuclear Information System (INIS)

    Henk, J.

    2004-01-01

    Electron spectroscopy provides access to fundamental properties of solids, such as the geometric, electronic, and the magnetic structure. The latter are necessary for the understanding of a variety of basic but nevertheless important effects. The present work outlines recently developed theoretical approaches to electron spectroscopies. Most of the collected results rely on first-principles calculations, as formulated in multiple-scattering theory, and are contrasted with experimental findings. One topic involves spin- and angle-resolved photoelectron spectroscopy which is addressed for magnetic surfaces and ultrathin films. Exemplary results comprise magnetic dichroism in both valence-band and core-level photoemission as well as the temperature dependence of magnetic properties of ultrathin films. Another topic is spin-dependent ballistic transport through planar tunnel junctions, focusing here on the zero-bias anomaly. In most of the cases, spin-orbit coupling (SOC) is an essential ingredient and, hence, favors a relativistic description. Prominent effects of SOC are illustrated by means of the electronic structure of rare gases adsorbed on a substrate and by the splitting of surface states on Au(111). Concerning magnetism, the magnetic anisotropy of Ni films on Cu(001) is discussed, focusing in particular on the spin reorientation transition induced by lattice distortions in ultrathin films. (orig.)

  14. Study of simple super-critical fluids (CO2, C2D6) through neutron scattering, Raman spectroscopy and molecular dynamic simulations

    International Nuclear Information System (INIS)

    Longelin, St.

    2004-04-01

    Super-critical fluids are largely used in industrial sectors. However the knowledge of the physical phenomena in which they are involved stays insufficient because of their particular properties. A new model of adjusting molecular structures is proposed, this model has been validated through neutron scattering experiments with high momentum transfer on C 2 D 6 . The experimental representation of the critical universal function for C 2 D 6 and CO 2 has been obtained through the neutron echo spin and by relying on structure measurements made through neutron elastic scattering at small angles. Raman spectroscopy and molecular dynamics simulation have been used to feature structure and dynamics. Scattering as well as microscopic molecular density fluctuations have been analysed

  15. Laser Thomson Scattering, Raman Scattering and laser-absorption diagnostics of high pressure microdischarges

    International Nuclear Information System (INIS)

    Donnelly, Vincent M; Belostotskiy, Sergey G; Economou, Demetre J; Sadeghi, Nader

    2010-01-01

    Laser scattering experiments were performed in high pressure (100s of Torr) parallel-plate, slot-type DC microdischarges operating in argon or nitrogen. Laser Thomson Scattering (LTS) and Rotational Raman Scattering were employed in a novel, backscattering, confocal configuration. LTS allows direct and simultaneous measurement of both electron density (n e ) and electron temperature (T e ). For 50 mA current and over the pressure range of 300 - 700 Torr, LTS yielded T e = 0.9 ± 0.3 eV and n e = (6 ± 3)·10 13 cm -3 , in reasonable agreement with the predictions of a mathematical model. Rotational Raman spectroscopy (RRS) was employed for absolute calibration of the LTS signal. RRS was also applied to measure the 3D gas temperature (T g ) in nitrogen DC microdischarges. In addition, diode laser absorption spectroscopy was employed to measure the density of argon metastables (1s5 in Paschen notations) in argon microdischarges. The gas temperature, extracted from the width of the absorption profile, was compared with T g values obtained by optical emission spectroscopy.

  16. Random pulsing of neutron source for inelastic neutron scattering gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Hertzog, R.C.

    1981-01-01

    Method and apparatus are described for use in the detection of inelastic neutron scattering gamma ray spectroscopy. Data acquisition efficiency is enhanced by operating a neutron generator such that a resulting output burst of fast neutrons is maintained for as long as practicably possible until a gamma ray is detected. Upon the detection of a gamma ray the generator burst output is terminated. Pulsing of the generator may be accomplished either by controlling the burst period relative to the burst interval to achieve a constant duty cycle for the operation of the generator or by maintaining the burst period constant and controlling the burst interval such that the resulting mean burst interval corresponds to a burst time interval which reduces contributions to the detected radiation of radiation occasioned by other than the fast neutrons

  17. Utilizing Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy to investigate healthy and cancerous colon samples

    International Nuclear Information System (INIS)

    Barzegar, A.; Rezaei, H.; Malekfar, R.

    2012-01-01

    In this study, spontaneous Raman scattering and surface-enhanced Raman scattering, Surface-Enhanced Raman Spectroscopy spectra have been investigated. The samples which were kept in the formalin solution selected from the human's healthy and cancerous colon tissues. The Surface-Enhanced Raman Spectroscopy spectra were collected by adding colloidal solution contained silver nanoparticles to the top of the samples. The recorded spectra were compared for the spontaneous Raman spectra of healthy and cancerous colon samples. The spontaneous and surface enhanced Raman scattering data were also collected and compared for both healthy and damaged samples.

  18. Carbon nanotubes doped with trivalent elements by using back - scattering Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    S. A. Babanejad

    2008-12-01

    Full Text Available  In this paper by using DC arc discharge method and acetylene gas, as the carbon source, and nitrogen, as the carrier gas, canrbon nanotubes, CNTs, doped with trivalent element boron, B, have been produced. The deposited CNTs on the cathod electrod, which have structural doped properties to boron element, have been collected and after purification have been investigated by back-scattering Raman spectroscopy. The results reveal that the high frequency G mode component in CNTs doped with electron acceptor element, B, shift to higher wavenumbers. The low frequency G mode component which can appear at approximately 1540–1570 cm-1 wavenumber region, called BWF mode, is a sign of metallic CNT. In the synthesized doped CNTs due to the presence of boron dopant, D mode has sharp peaks and has relatively high intensity in the Raman spectra .

  19. Design of a facility for the in situ measurement of catalytic reaction by neutron scattering spectroscopy

    Science.gov (United States)

    Tan, Shuai; Cheng, Yongqiang; Daemen, Luke L.; Lutterman, Daniel A.

    2018-01-01

    Catalysis is a critical enabling science for future energy needs. The next frontier of catalysis is to evolve from catalyst discovery to catalyst design, and for this next step to be realized, we must develop new techniques to better understand reaction mechanisms. To do this, we must connect catalytic reaction rates and selectivities to the kinetics, energetics, and dynamics of individual elementary steps and relate these to the structure and dynamics of the catalytic sites involved. Neutron scattering spectroscopies offer unique capabilities that are difficult or impossible to match by other techniques. The current study presents the development of a compact and portable instrumental design that enables the in situ investigation of catalytic samples by neutron scattering techniques. The developed apparatus was tested at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory and includes a gas handling panel that allows for computer hookups to control the panel externally and online measurement equipment such as coupled GC-FID/TCD (Gas Chromatography-Flame Ionization Detector/Thermal Conductivity Detector) and MS (Mass Spectrometry) to characterize offgassing while the sample is in the neutron scattering spectrometer. This system is flexible, modular, compact, and portable enabling its use for many types of gas-solid and liquid-solid reactions at the various beamlines housed at the SNS.

  20. Single-Fiber Reflectance Spectroscopy of Isotropic-Scattering Medium: An Analytic Perspective to the Ratio-of-Remission in Steady-State Measurements

    Directory of Open Access Journals (Sweden)

    Daqing Piao

    2014-12-01

    Full Text Available Recent focused Monte Carlo and experimental studies on steady-state single-fiber reflectance spectroscopy (SfRS from a biologically relevant scattering medium have revealed that, as the dimensionless reduced scattering of the medium increases, the SfRS intensity increases monotonically until reaching a plateau. The SfRS signal is semi-empirically decomposed to the product of three contributing factors, including a ratio-of-remission (RoR term that refers to the ratio of photons remitting from the medium and crossing the fiber-medium interface over the total number of photons launched into the medium. The RoR is expressed with respect to the dimensionless reduced scattering parameter , where  is the reduced scattering coefficient of the medium and  is the diameter of the probing fiber. We develop in this work, under the assumption of an isotropic-scattering medium, a method of analytical treatment that will indicate the pattern of RoR as a function of the dimensionless reduced scattering of the medium. The RoR is derived in four cases, corresponding to in-medium (applied to interstitial probing of biological tissue or surface-based (applied to contact-probing of biological tissue SfRS measurements using straight-polished or angle-polished fiber. The analytically arrived surface-probing RoR corresponding to single-fiber probing using a 15° angle-polished fiber over the range of  agrees with previously reported similarly configured experimental measurement from a scattering medium that has a Henyey–Greenstein scattering phase function with an anisotropy factor of 0.8. In cases of a medium scattering light anisotropically, we propose how the treatment may be furthered to account for the scattering anisotropy using the result of a study of light scattering close to the point-of-entry by Vitkin et al. (Nat. Commun. 2011, doi:10.1038/ncomms1599.

  1. p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Wang, Q; Liu, X; Kibria, M G; Zhao, S; Nguyen, H P T; Li, K H; Mi, Z; Gonzalez, T; Andrews, M P

    2014-09-07

    Micro-Raman scattering and X-ray photoelectron spectroscopy were employed to investigate Mg-doped GaN nanowires. With the increase of Mg doping level, pronounced Mg-induced local vibrational modes were observed. The evolution of longitudinal optical phonon-plasmon coupled mode, together with detailed X-ray photoelectron spectroscopy studies, show that the near-surface region of nanowires can be transformed from weakly n-type to p-type with the increase of Mg doping.

  2. Morphology, surface roughness, electron inelastic and quasi-elastic scattering in elastic peak electron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Lesiak, B.; Kosinski, A.; Nowakowski, R.; Koever, L.; Toth, J.; Varga, D.; Cserny, I.; Sulyok, A.; Gergely, G.

    2006-01-01

    Complete text of publication follows. Elastic peak electron spectroscopy (EPES) deals with the interaction of electrons with atoms of a solid surface, studying the distribution of electrons backscattered elastically. The nearest vicinity of the elastic peak, (low kinetic energy region) reflects both, electron inelastic and quasi-elastic processes. The incident electrons produce surface excitations, inducing surface plasmons with the corresponding loss peaks separated by 1 - 20 eV energy from the elastic peak. Quasi-elastic losses result from the recoil of scattering atoms of different atomic number, Z. The respective energy shift and Doppler broadening of the elastic peak depend on Z, the primary electron energy, E, and the measurement geometry. Quantitative surface analytical application of EPES, such as determination of parameters describing electron transport, requires a comparison of experimental data with corresponding data derived from Monte Carlo (MC) simulation. Several problems occur in EPES studies of polymers. The intensity of elastic peak, considered in quantitative surface analysis, is influenced by both, the inelastic and quasi-elastic scattering processes (especially for hydrogen scattering atoms and primary electron energy above 1000 eV). An additional factor affecting the elastic peak intensity is the surface morphology and roughness. The present work compares the effect of these factors on the elastic peak intensity for selected polymers (polyethylene, polyaniline and polythiophenes). X-ray photoelectron spectroscopy (XPS) and helium pycnometry are applied for deriving the surface atomic composition and the bulk density, while scanning electron microscopy (SEM) and atomic force microscopy (AFM) for determining surface morphology and roughness. According to presented results, the influence of surface morphology and roughness is larger than those of surface excitations or recoil of hydrogen atoms. The component due to recoil of hydrogen atoms can be

  3. Confirming a predicted selection rule in inelastic neutron scattering spectroscopy: the quantum translator-rotator H2 entrapped inside C60.

    Science.gov (United States)

    Xu, Minzhong; Jiménez-Ruiz, Mónica; Johnson, Mark R; Rols, Stéphane; Ye, Shufeng; Carravetta, Marina; Denning, Mark S; Lei, Xuegong; Bačić, Zlatko; Horsewill, Anthony J

    2014-09-19

    We report an inelastic neutron scattering (INS) study of a H2 molecule encapsulated inside the fullerene C60 which confirms the recently predicted selection rule, the first to be established for the INS spectroscopy of aperiodic, discrete molecular compounds. Several transitions from the ground state of para-H2 to certain excited translation-rotation states, forbidden according to the selection rule, are systematically absent from the INS spectra, thus validating the selection rule with a high degree of confidence. Its confirmation sets a precedent, as it runs counter to the widely held view that the INS spectroscopy of molecular compounds is not subject to any selection rules.

  4. LSS, a problem solving skill for graduates and SMEs: Case Study of investigation in a UK Business School curriculum

    OpenAIRE

    Shokri, Alireza; Nabhani, Farhad

    2015-01-01

    Purpose - This research aims to investigate the feasibility of a systematic Lean Six Sigma (LSS) education through the curriculum of business schools to respond to the existing gap between the graduate’s expectation of employability and skill requirements by the Small and Medium Sized Enterprises (SMEs).\\ud \\ud Design/approach/methodology - One UK business school has been used as a case study to conduct an extensive module and programme review followed by a semi-structured interview with the ...

  5. Analysis and characterization. Nuclear resonant scattering with the synchrotron radiation

    International Nuclear Information System (INIS)

    Ruffer, R.; Teillet, J.

    2003-01-01

    The nuclear resonant scattering using the synchrotron radiation combines the uncommon properties of the Moessbauer spectroscopy and those of the synchrotron radiation. Since its first observation in 1984, this technique and its applications have been developed rapidly. The nuclear resonant scattering is now a standard technique for all the synchrotron radiation sources of the third generation. As the Moessbauer spectroscopy, it is a method of analysis at the atomic scale and a non destructive method. It presents the advantage not to require the use of radioactive sources of incident photons which can be difficult to make, of a lifetime which can be short and of an obviously limited intensity. The current applications are the hyperfine spectroscopy and the structural dynamics. In hyperfine spectroscopy, the nuclear resonant scattering can measure the same size than the Moessbauer spectroscopy. Nevertheless, it is superior in the ranges which exploit the specific properties of the synchrotron radiation, such as the very small samples, the monocrystals, the measures under high pressures, the geometry of small angle incidence for surfaces and multilayers. The structural dynamics, in a time scale of the nanosecond to the microsecond can be measured in the temporal scale. Moreover, the nuclear inelastic scattering gives for the first time a tool which allows to have directly the density of states of phonons and then allow to deduce the dynamical and thermodynamical properties of the lattice. The nuclear resonant scattering technique presented here, which corresponds to the Moessbauer spectroscopy technique (SM), is called 'nuclear forward scattering' (NFS). Current applications in physics and chemistry are develop. The NFS is compared to the usual SM technique in order to reveal its advantages and disadvantages. (O.M.)

  6. Multiple scattering approach to X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Benfatto, M.; Wu Ziyu

    2003-01-01

    In this paper authors present the state of the art of the theoretical background needed for analyzing X-ray absorption spectra in the whole energy range. The multiple-scattering (MS) theory is presented in detail with some applications on real systems. Authors also describe recent progress in performing geometrical fitting of the XANES (X-ray absorption near-edge structure) energy region and beyond using a full multiple-scattering approach

  7. Proceedings of the workshop on neutron scattering instrumentation for SNQ

    International Nuclear Information System (INIS)

    Scherm, R.; Stiller, H.

    1984-10-01

    These proceedings contain the articles presented at the named workshop. These concern instrumentation for neutron diffraction with special regards to small angle scattering, diffuse scattering, inelastic scattering, high resolution spectroscopy, and special techniques. (HSI)

  8. Advances in neutron scattering spectroscopy

    International Nuclear Information System (INIS)

    White, J.W.

    1977-01-01

    Some aspects of the application of neutron scattering to problems in polymer science, surface chemistry, and adsorption phenomena, as well as molecular biology, are reviewed. In all these areas, very significant work has been carried out using the medium flux reactors at Harwell, Juelich and Risoe, even without the use of advanced multidetector techniques or of a neutron cold source. A general tendency can also be distinguished in that, for each of these new fields, a distinct preference for colder neutrons rather than thermal neutron beams can be seen. (author)

  9. Broadband Dielectric Spectroscopy and Quasi-Elastic Neutron Scattering on Single-Ion Polymer Conductors

    Science.gov (United States)

    Soles, Christopher; Peng, Hua-Gen; Page, Kirt; Snyder, Chad; Pandy, Ashoutosh; Jeong, Youmi; Runt, James; NIST Collaboration; Pennsylvania Collaboration

    2011-03-01

    The application of solid polymer electrolytes in rechargeable batteries has not been fully realized after decades of research due to its low conductivity. Dramatic increases of the ion conductivity are needed and this progress requires the understanding of conduction mechanism. We address this topic in two fronts, namely, the effect of plasticizer additives and geometric confinement on the charge transfer mechanism. To this end, we combine broadband dielectric spectroscopy (BDS) to characterize the ion mobility and quasi-elastic neutron scattering (QENS) to quantify segmental motion on a single-ion model polymer electrolyte. Deuterated small molecules were used as plasticizers so that the segmental motion of the polymer electrolyte could be monitored by QENS to understand the mechanism behind the increased conductivity. Anodic aluminum oxide (AAO) membranes with well defined channel sizes are used as the matrix to study the transport of ions solvated in a 1D polymer electrolyte.

  10. Probing giant magnetoresistance with THz spectroscopy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Tkach, Alexander; Casper, Frederick

    2014-01-01

    We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA.......We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA....

  11. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris M.; Graff, Jeff; Lebedev, Gennadi; Andresen, Nord; Schmid, Andreas; Fedorov, Alexei; El Gabaly, Farid; Wan, Weishi; Lanzara, Alessandra; Hussain, Zahid

    2010-04-13

    We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90 degrees bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments.

  12. Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Xu, Meng-Lei; Gao, Yu; Li, Yali; Li, Xueliang; Zhang, Huanjie; Han, Xiao Xia; Zhao, Bing; Su, Liang

    2018-05-01

    Glyphosate is one of the most commonly-used and non-selective herbicides in agriculture, which may directly pollute the environment and threaten human health. A simple and effective approach to assessment of its damage to the natural environment is thus quite necessary. However, traditional chromatography-based detection methods usually suffer from complex pretreatment procedures. Herein, we propose a simple and sensitive method for the determination of glyphosate by combining ninhydrin reaction and surface-enhanced Raman scattering (SERS) spectroscopy. The product (purple color dye, PD) of the ninhydrin reaction is found to SERS-active and directly correlate with the glyphosate concentration. The limit of detection of the proposed method for glyphosate is as low as 1.43 × 10- 8 mol·L- 1 with a relatively wider linear concentration range (1.0 × 10- 7-1.0 × 10- 4 mol·L- 1), which demonstrates its great potential in rapid, highly sensitive concentration determination of glyphosate in practical applications for safety assessment of food and environment.

  13. REACHING ULTRA HIGH PEAK CHARACTERISTICS IN RELATIVISTIC THOMSON BACKSCATTERING

    International Nuclear Information System (INIS)

    POGORELSKY, I.V.; BEN ZVI, I.; HIROSE, T.; KASHIWAGI, S.; YAKIMENKO, V.; KUSCHE, K.; SIDDONS, P.; ET AL

    2001-01-01

    The concept of x-ray laser synchrotron sources (LSS) based on Thomson scattering between laser photons and relativistic electrons leads to future femtosecond light-source facilities fit to multidisciplinary research in ultra-fast structural dynamics. Enticed by these prospects, the Brookhaven Accelerator Test Facility (ATF) embarked into development of the LSS based on a combination of a photocathode RF linac and a picosecond CO 2 laser. We observed the record 1.7 x 10 8 x-ray photons/pulse yield generated via relativistic Thomson scattering between the 14 GW CO 2 laser and 60 MeV electron beam

  14. A Theory of Exoplanet Transits with Light Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Tyler D., E-mail: tydrobin@ucsc.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2017-02-20

    Exoplanet transit spectroscopy enables the characterization of distant worlds, and will yield key results for NASA's James Webb Space Telescope . However, transit spectra models are often simplified, omitting potentially important processes like refraction and multiple scattering. While the former process has seen recent development, the effects of light multiple scattering on exoplanet transit spectra have received little attention. Here, we develop a detailed theory of exoplanet transit spectroscopy that extends to the full refracting and multiple scattering case. We explore the importance of scattering for planet-wide cloud layers, where the relevant parameters are the slant scattering optical depth, the scattering asymmetry parameter, and the angular size of the host star. The latter determines the size of the “target” for a photon that is back-mapped from an observer. We provide results that straightforwardly indicate the potential importance of multiple scattering for transit spectra. When the orbital distance is smaller than 10–20 times the stellar radius, multiple scattering effects for aerosols with asymmetry parameters larger than 0.8–0.9 can become significant. We provide examples of the impacts of cloud/haze multiple scattering on transit spectra of a hot Jupiter-like exoplanet. For cases with a forward and conservatively scattering cloud/haze, differences due to multiple scattering effects can exceed 200 ppm, but shrink to zero at wavelength ranges corresponding to strong gas absorption or when the slant optical depth of the cloud exceeds several tens. We conclude with a discussion of types of aerosols for which multiple scattering in transit spectra may be important.

  15. Study of interaction between molybdenum oxide and molybdate surface by methods of infrared spectroscopy and combinational scattering

    International Nuclear Information System (INIS)

    Yurchenko, Eh.N.; Kustova, G.N.

    1979-01-01

    MoO 3 interaction with CdMoO 4 , CaMoO 4 , PbMoO 4 , Ae 2 (MoO 4 ) 3 , Cr 2 (MoO 4 ) is investigated by the methods of infrared spectroscopy and light combination scattering. It is shown, that MoO 3 excess differently interacts with molybdates depending on their structural peculiarities. MoO 3 excess interacts with Fe 2 (MoO 4 ) 3 and Cr 2 (MoO 4 ) 3 , intruding in crystalline lattices with the formation of solid solutions. Intrusion of MoO 3 excess into the structure is not found in the interaction with other molybdates

  16. Electron Scattering From Atoms, Molecules, Nuclei, and Bulk Matter

    CERN Document Server

    Whelan, Colm T

    2005-01-01

    Topics that are covered include electron scattering in the scanning TEM; basic theory of inelastic electron imaging; study of confined atoms by electron excitation; helium bubbles created in extreme pressure with application to nuclear safety; lithium ion implantation; electron and positron scattering from clusters; electron scattering from physi- and chemi-absorbed molecules on surfaces; coincidence studies; electron scattering from biological molecules; electron spectroscopy as a tool for environmental science; electron scattering in the presence of intense fields; electron scattering from astrophysical molecules; electon interatctions an detection of x-ray radiation.

  17. Inelastic light scattering spectroscopy of semiconductor nitride nanocolumns

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, J.M.; Lazic, S.; Sanchez-Paramo, J. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Agullo-Rueda, F. [Materials Science Institute of Madrid, CSIC, 28049 Madrid (Spain); Cerutti, L.; Ristic, J.; Fernandez-Garrido, S.; Sanchez-Garcia, M.A.; Grandal, J.; Calleja, E. [ISOM and Departamento de Ingenieria Electronica, ETSIT, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Trampert, A.; Jahn, U. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2007-08-15

    A review of inelastic light scattering measurements on group III-nitride nanocolumns grown by molecular beam epitaxy is presented. The nanocolumns are hexagonal, high quality single crystals with diameters in the range of 20 to 100 nm, with no traces of extended defects. GaN nanocolumns grown on bare Si substrates with both (111) and (100) orientation display narrow phonon peaks, indicating the absence of strain inhomogeneities. This opens the possibility of efficient integration of the nanocolumns as optoelectronic devices with the complementary metal oxide semiconductor technology. Measurements of the E{sub 2} phonon frequency on AlGaN nanocolumns indicate a linear dependence of the Al concentration on the Al relative flux, up to 60%. The E{sub 2} peak width increases with Al content due to phonon damping by alloy scattering. Inelastic light scattering measurements in InN nanocolumns display a coupled LO phonon-plasmon mode together with uncoupled phonons. The coupled mode is not observed in a reference compact sample. The origin of the coupled mode is attributed to spontaneous accumulation of electrons at the lateral surfaces of the nanocolumns. The presence of free electrons in the nanocolumns is confirmed by infrared reflectance measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Inelastic light scattering spectroscopy of semiconductor nitride nanocolumns

    International Nuclear Information System (INIS)

    Calleja, J.M.; Lazic, S.; Sanchez-Paramo, J.; Agullo-Rueda, F.; Cerutti, L.; Ristic, J.; Fernandez-Garrido, S.; Sanchez-Garcia, M.A.; Grandal, J.; Calleja, E.; Trampert, A.; Jahn, U.

    2007-01-01

    A review of inelastic light scattering measurements on group III-nitride nanocolumns grown by molecular beam epitaxy is presented. The nanocolumns are hexagonal, high quality single crystals with diameters in the range of 20 to 100 nm, with no traces of extended defects. GaN nanocolumns grown on bare Si substrates with both (111) and (100) orientation display narrow phonon peaks, indicating the absence of strain inhomogeneities. This opens the possibility of efficient integration of the nanocolumns as optoelectronic devices with the complementary metal oxide semiconductor technology. Measurements of the E 2 phonon frequency on AlGaN nanocolumns indicate a linear dependence of the Al concentration on the Al relative flux, up to 60%. The E 2 peak width increases with Al content due to phonon damping by alloy scattering. Inelastic light scattering measurements in InN nanocolumns display a coupled LO phonon-plasmon mode together with uncoupled phonons. The coupled mode is not observed in a reference compact sample. The origin of the coupled mode is attributed to spontaneous accumulation of electrons at the lateral surfaces of the nanocolumns. The presence of free electrons in the nanocolumns is confirmed by infrared reflectance measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results

    Science.gov (United States)

    Bigio, Irving J.; Brown, Stephen G.; Briggs, Gavin M.; Kelley, Christine; Lakhani, Sunil; Pickard, David; Ripley, Paul M.; Rose, Ian; Saunders, Christobel

    2000-04-01

    We report on the first stages of a clinical study designed to test elastic-scattering spectroscopy, medicated by fiberoptic probes, for three specific clinical applications in breast-tissue diagnosis: (1) a transdermal-needle (interstitial) measurement for instant diagnosis with minimal invasiveness similar to fine-needle aspiration but with sensitivity to a larger tissue volume, (2) a hand-held diagnostic probe for use in assessing tumor/resection margins during open surgery, and (3) use of the same probe for real-time assessment of the `sentinel' node during surgery to determine the presence or absence of tumor (metastatic). Preliminary results from in vivo measurements on 31 women are encouraging. Optical spectra were measured on 72 histology sites in breast tissue, and 54 histology sites in sentinel nodes. Two different artificial intelligence methods of spectral classification were studied. Artificial neural networks yielded sensitivities of 69% and 58%, and specificities of 85% and 93%, for breast tissue and sentinel nodes, respectively. Hierarchical cluster analysis yielded sensitivities of 67% and 91%, and specificities of 79% and 77%, for breast tissue and sentinel nodes, respectively. These values are expected to improve as the data sets continue to grow and more sophisticated data preprocessing is employed. The study will enroll up to 400 patients over the next two years.

  20. Hybridization in Kondo lattice heavy fermions via quasiparticle scattering spectroscopy (QPS)

    Science.gov (United States)

    Narasiwodeyar, Sanjay; Dwyer, Matt; Greene, Laura; Park, Wan Kyu; Bauer, Eric; Tobash, Paul; Baumbach, Ryan; Ronning, Filip; Sarrao, John; Thompson, Joe; Canfield, Paul

    2014-03-01

    Band renormalization in a Kondo lattice via hybridization of the conduction band with localized states has been a hot topic over the last several years. In part, this has to do with recently reignited interest in the hidden order problem in URu2Si2. Despite recent developments regarding the electronic structure in this compound, it remains to be resolved whether the hidden order phase transition is related to the opening of a hybridization gap. Our quasiparticle scattering spectroscopy (QPS) has shown they are not related directly. This can be understood naturally since in principle band renormalization does not involve symmetry breaking. To deepen our understanding, we extend to other Kondo lattice compounds. For instance, when applied to YbAl3, a vegetable heavy-fermion system, QPS reveals conductance signatures for hybridization in a Kondo lattice such as asymmetric Fano background along with characteristic energy scales. Presenting new results on these materials, we will discuss a broader picture. The work at UIUC is supported by the NSF DMR 12-06766, the work at LANL is carried out under the auspices of the U.S. DOE, Office of Science, and the work done at Ames Lab. was supported under Contract No. DE-AC02-07CH11358.

  1. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    Science.gov (United States)

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  2. MUSE: Measuring the proton radius with muon-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Jan Christopher [Massachusetts Institute of Technology, Cambridge (United States)

    2014-07-01

    The proton radius has been measured so far using electron-proton scattering, electronic Hydrogen spectroscopy and muonic Hydrogen spectroscopy, the latter producing a much more accurate, but seven sigma different, result, leading to the now famous proton radius puzzle. The MUSE collaboration aims to complete the set of measurements by using muon scattering to determine the proton radius and to shed light on possible explanations of the discrepancy. The talk gives an overview of the experiment motivation and design and a status report on the progress.

  3. Absorption spectroscopy and multi-angle scattering measurements in the visible spectral range for the geographic classification of Italian exravirgin olive oils

    Science.gov (United States)

    Mignani, Anna G.; Ciaccheri, Leonardo; Cimato, Antonio; Sani, Graziano; Smith, Peter R.

    2004-03-01

    Absorption spectroscopy and multi-angle scattering measurements in the visible spectral range are innovately used to analyze samples of extra virgin olive oils coming from selected areas of Tuscany, a famous Italian region for the production of extra virgin olive oil. The measured spectra are processed by means of the Principal Component Analysis method, so as to create a 3D map capable of clustering the Tuscan oils within the wider area of Italian extra virgin olive oils.

  4. Scattered light characterization of FORTIS

    Science.gov (United States)

    McCandliss, Stephan R.; Carter, Anna; Redwine, Keith; Teste, Stephane; Pelton, Russell; Hagopian, John; Kutyrev, Alexander; Li, Mary J.; Moseley, S. Harvey

    2017-08-01

    We describe our efforts to build a Wide-Field Lyman alpha Geocoronal simulator (WFLaGs) for characterizing the end-to-end sensitivity of FORTIS (Far-UV Off Rowland-circle Telescope for Imaging and Spectroscopy) to scattered Lyman α emission from outside of the nominal (1/2 degree)2 field-of-view. WFLaGs is a 50 mm diameter F/1 aluminum parabolic collimator fed by a hollow cathode discharge lamp with a 80 mm clear MgF2 window housed in a vacuum skin. It creates emission over a 10 degree FOV. WFLaGS will allow us to validate and refine a recently developed scattered light model and verify our scatter light mitigation strategies, which will incorporate low scatter baffle materials, and possibly 3-d printed light traps, covering exposed scatter centers. We present measurements of scattering intensity of Lyman alpha as a function of angle with respect to the specular reflectance direction for several candidate baffle materials. Initial testing of WFLaGs will be described.

  5. Diffraction and absorption of inelastically scattered electrons for K-shell ionization

    International Nuclear Information System (INIS)

    Josefsson, T.W.; Allen, L.J.

    1995-01-01

    An expression for the nonlocal inelastic scattering cross section for fast electrons in a crystalline environment, which explicitly includes diffraction as well as absorption for the inelastically scattered electrons, is used to carry out realistic calculations of K-shell electron energy loss spectroscopy (EELS) and energy dispersive x-ray (EDX) analysis cross sections. The calculations demonstrate quantitatively why, in EDX spectroscopy, integration over the dynamical states of the inelastically scattered electron averages in such a way that an effective plane wave representation of the scattered electrons is a good approximation. This is only the case for large enough acceptance angles of the detector in an EELS experiment. For EELS with smaller detector apertures, explicit integration over the dynamical final states is necessary and inclusion of absorption for the scattered electrons is important, particularly for thicker crystals. 50 refs., 7 figs

  6. Angular distribution of scattered electron and medium energy electron spectroscopy for metals

    International Nuclear Information System (INIS)

    Oguri, Takeo; Ishioka, Hisamichi; Fukuda, Hisashi; Irako, Mitsuhiro

    1986-01-01

    The angular distribution (AD) of scattered electrons produced by medium energy incident electrons (E P = 50 ∼ 300 eV) from polycrystalline Ti, Fe, Ni, Cu and Au were obtained by the angle-resolved medium energy electron spectrometer. The AD of the energy loss peaks are similar figures to AD of the elastically reflected electron peaks. Therefore, the exchanged electrons produced by the knock-on collision between the incident electrons and those of metals without momentum transfer are observed as the energy loss spectra (ELS). This interpretation differs from the inconsequent interpretation by the dielectric theory or the interband transition. The information depth and penetration length are obtained from AD of the Auger electron peaks. The contribution of the surface to spectra is 3 % at the maximum for E P = 50 eV. The true secondary peaks representing the secondary electron emission spectroscopy (SES) are caused by the emissions of the energetic electrons (kT e ≥ 4 eV), and SES is the inversion of ELS. The established fundamental view is that the medium energy electron spectra represent the total bulk density of states. (author)

  7. Moessbauer spectroscopy and nuclear inelastic scattering studies on polynuclear oxo-bridged iron catalyst-first results

    International Nuclear Information System (INIS)

    Rajagopalan, S.; Asthalter, T.; Rabe, V.; Buerck, U. van; Wagner, F. E.; Laschat, S.

    2008-01-01

    Polynuclear iron catalysts are interesting materials because of their novel properties. In the future they may help to replace high cost and hazardous heavy metal catalysts by efficient, non toxic and economic iron compounds. In this work, we present some preliminary results on a novel polynuclear oxo-bridged iron catalyst. The chemical environment of the metal species (Fe) was studied under Gif-type conditions (Fe catalyst/Zn/O 2 in pyridine/acetic acid) with cyclohexene as substrate. Such Gif-type catalysts are able to catalyse the selective oxidation of alkanes and alkenes. The characterization was done by Moessbauer spectroscopy and nuclear inelastic scattering. In order to identify the intermediate species during the reaction (selective oxidation using molecular O 2 ), a freeze-quench technique was used. This also helps to understand the kinetics of the chemical reaction.

  8. Electron enhanced Raman scattering and its applications in solution chemistry

    International Nuclear Information System (INIS)

    Yui, Hiroharu

    2007-01-01

    The present review describes a new enhancement technique for Raman scattering in aqueous solutions. Raman scattering spectroscopy has an inherent ability to distinguish between molecules with great similarity and provides useful information on local physical and chemical environments at their functional groups' level. Since the Raman scattering signals from water molecules are quite weak, Raman spectroscopy has great advantage for detection or discrimination of a trace amount of analytes in aqueous environments. However, Raman scattering cross-sections are inherently small and it generally requires high power excitation and long acquisition times to obtain high-quality Raman spectra. These conditions create disadvantages for the analyses for living cells and real-time monitoring for environmental analyses. Here, I describe a new Raman enhancement technique, namely electron enhanced Raman scattering (EERS)', where artificially generated electrons additionally affect the polarizability of target molecular systems and enhance their inherent Raman cross-section. Principles of the EERS and its applications to aqueous solution are presented. (author)

  9. Scattering Properties of Ground-State 23Na Vapor Using Generalized Scattering Theory

    Science.gov (United States)

    Al-Harazneh, A. A.; Sandouqa, A. S.; Joudeh, B. R.; Ghassib, H. B.

    2018-04-01

    The scattering properties of ground-state 23Na vapor are investigated within the framework of the Galitskii-Migdal-Feynman formalism. Viewed as a generalized scattering theory, this formalism is used to calculate the medium phase shifts. The scattering properties of the system—the total, viscosity, spin-exchange, and average cross sections—are then computed using these phase shifts according to standard recipes. The total cross section is found to exhibit the Ramsauer-Townsend effect as well as resonance peaks. These peaks are caused by the large difference between the potentials for electronic spin-singlet and spin-triplet states. They represent quasi-bound states in the system. The results obtained for the complex spin-exchange cross sections are particularly highlighted because of their importance in the spectroscopy of the Na2 dimer. So are the results for the scattering lengths pertaining to both singlet and triplet states. Wherever possible, comparison is made with other published results.

  10. [Inelastic electron scattering from surfaces

    International Nuclear Information System (INIS)

    1993-01-01

    This program uses ab-initio and multiple scattering to study surface dynamical processes; high-resolution electron-energy loss spectroscopy is used in particular. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50--300 eV). The analyses have been extended to surfaces of ordered alloys. Phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross section calculations. Work on low-energy electron and positron holography is mentioned

  11. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2015-07-07

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS.

  12. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    International Nuclear Information System (INIS)

    Shi, L.; Skinner, J. L.

    2015-01-01

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS

  13. High resolution spectroscopy of six new extreme helium stars

    Science.gov (United States)

    Heber, U.; Jones, G.; Drilling, J. S.

    1986-01-01

    High resolution spectra of six newly discovered extreme helium stars are presented. LSS 5121 is shown to be a spectroscopical twin of the hot extreme helium star HD 160641. A preliminary LTE analysis of LSS 3184 yielded an effective temperature of 22,000 K and a surface gravity of log g = 3.2. Four stars form a new subgroup, classified by sharp-lined He I spectra and pronounced O II spectra, and it is conjectured that these lie close to the Eddington limit. The whole group of extreme helium stars apparently is inhomogeneous with respect to luminosity to mass ratio and chemical composition.

  14. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  15. Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy

    Science.gov (United States)

    Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.

    2017-11-01

    We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.

  16. Intermediate energy proton scattering from 10B

    International Nuclear Information System (INIS)

    Lewis, P.R.; Shute, G.G.; Spicer, R.S.; Henderson, R.S.

    1990-01-01

    Differential cross sections have been measured for 200 MeV proton scattering from 10 B. Data for six low lying natural parity levels below 6 MeV excitation energy are presented. Distorted wave analysis using a density dependent nucleon-nucleon interaction has assessed model spectroscopies of these excited states. The significance of the contribution from quadrupole scattering to the elastic cross section is discussed. 49 refs., 5 tabs., 21 figs

  17. Molecular ions, Rydberg spectroscopy and dynamics

    International Nuclear Information System (INIS)

    Jungen, Ch.

    2015-01-01

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering

  18. Molecular ions, Rydberg spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jungen, Ch. [Laboratoire Aimé Cotton, Université de Paris-Sud, 91405 Orsay (France)

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  19. Practical way to avoid spurious geometrical contributions in Brillouin light scattering experiments at variable scattering angles.

    Science.gov (United States)

    Battistoni, Andrea; Bencivenga, Filippo; Fioretto, Daniele; Masciovecchio, Claudio

    2014-10-15

    In this Letter, we present a simple method to avoid the well-known spurious contributions in the Brillouin light scattering (BLS) spectrum arising from the finite aperture of collection optics. The method relies on the use of special spatial filters able to select the scattered light with arbitrary precision around a given value of the momentum transfer (Q). We demonstrate the effectiveness of such filters by analyzing the BLS spectra of a reference sample as a function of scattering angle. This practical and inexpensive method could be an extremely useful tool to fully exploit the potentiality of Brillouin acoustic spectroscopy, as it will easily allow for effective Q-variable experiments with unparalleled luminosity and resolution.

  20. The effect of superdisintegrants on the properties and dissolution profiles of liquisolid tablets containing rosuvastatin.

    Science.gov (United States)

    Vraníková, Barbora; Gajdziok, Jan; Doležel, Petr

    2017-03-01

    The preparation of liquisolid systems (LSS) represents a promising method for enhancing a dissolution rate and bioavailability of poorly soluble drugs. The release of the drug from LSS tablets is affected by many factors, including the disintegration time. The evaluation of differences among LSS containing varying amounts and types of commercially used superdisintegrants (Kollidon® CL-F, Vivasol® and Explotab®). LSS were prepared by spraying rosuvastatin solution onto Neusilin® US2 and further processing into tablets. Varying amounts of superdisintegrants were used and the differences among LSS were evaluated. The multiple scatter plot method was used to visualize the relationships within the obtained data. All disintegrants do not showed negative effect on the flow properties of powder blends. The type and concentration of superdisintegrant had an impact on the disintegration time and dissolution profiles of tablets. Tablets with Explotab® showed the longest disintegration time and the smallest amount of released drug. Fastest disintegration and dissolution rate were observed in tablets containing Kollidon® CL-F (≥2.5% w/w). Also tablets with Vivasol® (2.5-4.0% w/w) showed fast disintegration and complete drug release. Kollidon® CL-F and Vivasol® in concentration ≥2.5% are suitable superdisintegrants for LSS with enhanced release of drug.

  1. Laser light scattering in Brownian medium

    International Nuclear Information System (INIS)

    Suwono; Santoso, Budi; Baiquni, A.

    1983-01-01

    The principle of laser light scattering in Brownian medium and photon correlation spectroscopy are described in detail. Their application to the study of the behaviour of a polystyrene latex solution are discussed. The auto-correlation function of light scattered by the polystyrene latex solution in various angle, various temperature and in various sample times, have been measured. Information on the translation diffusion coefficient and size on the particle can be obtained from the auto-correlation function. Good agreement between the available data and experiment is shown. (author)

  2. Laser-electron Compton interaction in plasma channels

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Ben-Zvi, I.; Hirose, T.

    1998-10-01

    A concept of high intensity femtosecond laser synchrotron source (LSS) is based on Compton backscattering of focused electron and laser beams. The short Rayleigh length of the focused laser beam limits the length of interaction to a few picoseconds. However, the technology of the high repetition rate high-average power picosecond lasers required for high put through LSS applications is not developed yet. Another problem associated with the picosecond laser pulses is undesirable nonlinear effects occurring when the laser photons are concentrated in a short time interval. To avoid the nonlinear Compton scattering, the laser beam has to be split, and the required hard radiation flux is accumulated over a number of consecutive interactions that complicates the LSS design. In order to relieve the technological constraints and achieve a practically feasible high-power laser synchrotron source, the authors propose to confine the laser-electron interaction region in the extended plasma channel. This approach permits to use nanosecond laser pulses instead of the picosecond pulses. That helps to avoid the nonlinear Compton scattering regime and allows to utilize already existing technology of the high-repetition rate TEA CO 2 lasers operating at the atmospheric pressure. They demonstrate the advantages of the channeled LSS approach by the example of the prospective polarized positron source for Japan Linear Collider

  3. Surface plasmon polariton generation by light scattering off aligned organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Leakage radiation spectroscopy has been applied to study surface plasmon polariton (SPP) generation by light scattered off aligned organic nanofibers deposited on a thin silver film. The efficiency of SPP generation was studied by angularly resolved leakage radiation spectroscopy as a function of...

  4. Hydrocarbon isotope detection by elastic peak electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kostanovskiy, I.A., E-mail: kostanovskiyia@gmail.com [National Research University MPEI, Krasnokazarmennaya 14, 111250 Moscow (Russian Federation); Afanas’ev, V.P. [National Research University MPEI, Krasnokazarmennaya 14, 111250 Moscow (Russian Federation); Naujoks, D. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Mayer, M. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

    2015-07-15

    Highlights: • PCVD hydrocarbon coatings containing protium or deuterium are analyzed via NRA, ERD, XPS and EPES. • EPES analysis with modern electron energy analyzer SPECS Phoibos 225 shows a clear signal from the hydrogen isotopes. • Different primary energies and scattering angles help to quantify isotope content from EPES spectra. - Abstract: Experimental results on the hydrocarbon isotope analysis by elastic peak electron spectroscopy are presented. Amorphous hydrocarbon samples (a-C:H, a-C:D) are prepared by PCVD and analyzed by nuclear reaction analysis (NRA), elastic recoil detection analysis (ERD), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES). Electron energy spectra show a clear signal from the hydrogen isotopes deuterium and protium. Different incident energies and scattering geometries help to resolve plasmon and elastic energy losses.

  5. Hydrocarbon isotope detection by elastic peak electron spectroscopy

    International Nuclear Information System (INIS)

    Kostanovskiy, I.A.; Afanas’ev, V.P.; Naujoks, D.; Mayer, M.

    2015-01-01

    Highlights: • PCVD hydrocarbon coatings containing protium or deuterium are analyzed via NRA, ERD, XPS and EPES. • EPES analysis with modern electron energy analyzer SPECS Phoibos 225 shows a clear signal from the hydrogen isotopes. • Different primary energies and scattering angles help to quantify isotope content from EPES spectra. - Abstract: Experimental results on the hydrocarbon isotope analysis by elastic peak electron spectroscopy are presented. Amorphous hydrocarbon samples (a-C:H, a-C:D) are prepared by PCVD and analyzed by nuclear reaction analysis (NRA), elastic recoil detection analysis (ERD), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES). Electron energy spectra show a clear signal from the hydrogen isotopes deuterium and protium. Different incident energies and scattering geometries help to resolve plasmon and elastic energy losses

  6. Monitoring cell culture media degradation using surface enhanced Raman scattering (SERS) spectroscopy.

    Science.gov (United States)

    Calvet, Amandine; Ryder, Alan G

    2014-08-20

    The quality of the cell culture media used in biopharmaceutical manufacturing is a crucial factor affecting bioprocess performance and the quality of the final product. Due to their complex composition these media are inherently unstable, and significant compositional variations can occur particularly when in the prepared liquid state. For example photo-degradation of cell culture media can have adverse effects on cell viability and thus process performance. There is therefore, from quality control, quality assurance and process management view points, an urgent demand for the development of rapid and inexpensive tools for the stability monitoring of these complex mixtures. Spectroscopic methods, based on fluorescence or Raman measurements, have now become viable alternatives to more time-consuming and expensive (on a unit analysis cost) chromatographic and/or mass spectrometry based methods for routine analysis of media. Here we demonstrate the application of surface enhanced Raman scattering (SERS) spectroscopy for the simple, fast, analysis of cell culture media degradation. Once stringent reproducibility controls are implemented, chemometric data analysis methods can then be used to rapidly monitor the compositional changes in chemically defined media. SERS shows clearly that even when media are stored at low temperature (2-8°C) and in the dark, significant chemical changes occur, particularly with regard to cysteine/cystine concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Present needs and future trends in neutron crystallography and spectroscopy

    International Nuclear Information System (INIS)

    Williams, J.M.

    1978-11-01

    Topics covered include: structural investigation by neutron and x-ray diffraction; sources and characteristics of neutron radiation; time-of-flight techniques; overview of neutron crystallography and structural chemistry; hydrogen bonds; transition-metal hydride complexes; actinide and lanthanide complexes; carbon-hydrogen-metal interactions in organometallic chemistry and catalysis; metal clusters and catalysis; materials with unusual solid-state properties; biochemical molecules and biological systems; electron and spin density distributions in crystalline solids; incoherent neutron-scattering spectroscopy; and quasielastic neutron scattering and high resolution spectroscopy

  8. Neutron Scattering studies of magnetic molecular magnets

    International Nuclear Information System (INIS)

    Chaboussant, G.

    2009-01-01

    This work deals with inelastic neutron scattering studies of magnetic molecular magnets and focuses on their magnetic properties at low temperature and low energies. Several molecular magnets (Mn 12 , V 15 , Ni 12 , Mn 4 , etc.) are reviewed. Inelastic neutron scattering is shown to be a perfectly suited spectroscopy tool to -a) probe magnetic energy levels in such systems and -b) provide key information to understand the quantum tunnel effect of the magnetization in molecular spin clusters. (author)

  9. On the microstructure of organic solutions of mono-carboxylic acids: Combined study by infrared spectroscopy, small-angle neutron scattering and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Eremin, Roman A., E-mail: era@jinr.ru [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Kholmurodov, Kholmirzo T. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); International University “Dubna”, Dubna 141980 (Russian Federation); Petrenko, Viktor I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Taras Shevchenko National University of Kyiv, Kyiv 03022 (Ukraine); Rosta, László [Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest H-1525 (Hungary); Grigoryeva, Natalia A. [Faculty of Physics, Saint-Petersburg State University, 198504 Saint-Petersburg (Russian Federation); Avdeev, Mikhail V. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)

    2015-11-05

    Highlights: • The model of the scattering particle for a reliable SANS analysis is proposed. • The structural parameters of saturated mono-carboxylic acids in solutions are obtained. • The differences in nematic transitions correlate to solvation peculiarities. - Abstract: The data of infrared spectroscopy (IR), molecular dynamics (MD) simulations and small-angle neutron scattering (SANS) have been combined to conclude about the nanoscale structural organization of organic non-polar solutions of saturated mono-carboxylic acids with different alkyl chain lengths for diluted solutions of saturated myristic (C14) and stearic (C18) acids in benzene and decalin. In particular, the degree of dimerization was found from the IR spectra. The structural anisotropy of the acids and their dimers was used in the treatment of the data of MD simulations to describe the solute–solvent interface in a cylindrical approximation and show its rather strong influence on SANS. The corresponding scattering length density profiles were used to fit the experimental SANS data comprising the information about the acid molecule isomerization. The SANS data from concentrated solutions showed a partial self-assembling of the acids within the nematic transition is different for two solvents due to lyophobic peculiarities.

  10. Charged defects in chalcogenide vitreous semiconductors studied with combined Raman scattering and PALS methods

    International Nuclear Information System (INIS)

    Kavetskyy, T.; Vakiv, M.; Shpotyuk, O.

    2007-01-01

    A combination of Raman scattering and positron annihilation lifetime spectroscopy (PALS) techniques to study charged defects in chalcogenide vitreous semiconductors (ChVSs) was applied for the first time in this study. In the case of Ge 15.8 As 21 S 63.2 glass, it is found that the main radiation-induced switching of heteropolar Ge-S bonds into heteropolar As-S ones, previously detected by IR fast Fourier transform spectroscopy, can also be identified by Raman spectroscopy in the depolarized configuration. Results obtained by Raman scattering are in good agreement with PALS data for the investigated glass composition

  11. Charged defects in chalcogenide vitreous semiconductors studied with combined Raman scattering and PALS methods

    Energy Technology Data Exchange (ETDEWEB)

    Kavetskyy, T.; Vakiv, M. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); Shpotyuk, O. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine)], E-mail: shpotyuk@novas.lviv.ua

    2007-04-15

    A combination of Raman scattering and positron annihilation lifetime spectroscopy (PALS) techniques to study charged defects in chalcogenide vitreous semiconductors (ChVSs) was applied for the first time in this study. In the case of Ge{sub 15.8}As{sub 21}S{sub 63.2} glass, it is found that the main radiation-induced switching of heteropolar Ge-S bonds into heteropolar As-S ones, previously detected by IR fast Fourier transform spectroscopy, can also be identified by Raman spectroscopy in the depolarized configuration. Results obtained by Raman scattering are in good agreement with PALS data for the investigated glass composition.

  12. Background radiation in inelastic X-ray scattering and X-ray emission spectroscopy. A study for Johann-type spectrometers

    Science.gov (United States)

    Paredes Mellone, O. A.; Bianco, L. M.; Ceppi, S. A.; Goncalves Honnicke, M.; Stutz, G. E.

    2018-06-01

    A study of the background radiation in inelastic X-ray scattering (IXS) and X-ray emission spectroscopy (XES) based on an analytical model is presented. The calculation model considers spurious radiation originated from elastic and inelastic scattering processes along the beam paths of a Johann-type spectrometer. The dependence of the background radiation intensity on the medium of the beam paths (air and helium), analysed energy and radius of the Rowland circle was studied. The present study shows that both for IXS and XES experiments the background radiation is dominated by spurious radiation owing to scattering processes along the sample-analyser beam path. For IXS experiments the spectral distribution of the main component of the background radiation shows a weak linear dependence on the energy for the most cases. In the case of XES, a strong non-linear behaviour of the background radiation intensity was predicted for energy analysis very close to the backdiffraction condition, with a rapid increase in intensity as the analyser Bragg angle approaches π / 2. The contribution of the analyser-detector beam path is significantly weaker and resembles the spectral distribution of the measured spectra. Present results show that for usual experimental conditions no appreciable structures are introduced by the background radiation into the measured spectra, both in IXS and XES experiments. The usefulness of properly calculating the background profile is demonstrated in a background subtraction procedure for a real experimental situation. The calculation model was able to simulate with high accuracy the energy dependence of the background radiation intensity measured in a particular XES experiment with air beam paths.

  13. Electron Dynamics by Inelastic X-Ray Scattering

    CERN Document Server

    Schülke, Winfried

    2007-01-01

    The book offers the first comprehensive review of experimental methods, theory, and successful applications of synchrotron radiation based inelastic X-ray scattering (IXS) spectroscopy, which enables the investigation of electron dynamics in condensed matter (correlated motion and excitation).

  14. Scanning Angle Raman spectroscopy in polymer thin film characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vy H.T. [Iowa State Univ., Ames, IA (United States)

    2015-12-19

    The focus of this thesis is the application of Raman spectroscopy for the characterization of thin polymer films. Chapter 1 provides background information and motivation, including the fundamentals of Raman spectroscopy for chemical analysis, scanning angle Raman scattering and scanning angle Raman scattering for applications in thin polymer film characterization. Chapter 2 represents a published manuscript that focuses on the application of scanning angle Raman spectroscopy for the analysis of submicron thin films with a description of methodology for measuring the film thickness and location of an interface between two polymer layers. Chapter 3 provides an outlook and future directions for the work outlined in this thesis. Appendix A, contains a published manuscript that outlines the use of Raman spectroscopy to aid in the synthesis of heterogeneous catalytic systems. Appendix B and C contain published manuscripts that set a foundation for the work presented in Chapter 2.

  15. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    International Nuclear Information System (INIS)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Padmore, H. A.

    2016-01-01

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs via numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4"t"h or 5"t"h order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.

  16. High-resolution narrowband CARS spectroscopy in the spectral fingerprint region

    NARCIS (Netherlands)

    Chimento, P.F.; Jurna, M.; Bouwmans, H.S.P.; Garbacik, E.T.; Garbacik, E.T.; Hartsuiker, Liesbeth; Otto, Cornelis; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2010-01-01

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy is an important technique for spectroscopy and chemically selective microscopy, but wider implementation requires dedicated versatile tunable sources. We describe an optical parametric oscillator (OPO) based on a magnesium oxide-doped

  17. Intermolecular spectroscopy

    International Nuclear Information System (INIS)

    Gelbart, W.M.

    1980-01-01

    In this article some of the theoretical background is presented for the following papers on 'Intermolecular Spectroscopy and Dynamical Properties of Dense Systems'. In Section 1 we outline a simple semi-classical description of the interaction between optical radiation and matter. The motion of a many-body polarizability is introduced; limiting forms of this complicated quantity lead to the familiar cases of light scattering spectra. In Section 2 we consider the linear response approximation, and the equation of motion for the many-body density matrix is solved to first order in the matter-radiation interaction. The often quoted fluctuation-dissipation theorem and the time-dependent, equilibrium correlation functions are discussed. Section 3 treats the problem of the local field. In Section 4 we consider the special case of collision-induced light scattering by atomic fluids in the low-density limit. This allows us to focus on determining the interaction polarizability for simple gases. Finally, in Section 5 we distinguish between collision-induced and multiple light scattering, and discuss the double-light-scattering analyses which provide new information about critical and thermodynamically unstable fluids. (KBE)

  18. Dynamic light scattering and X-ray photoelectron spectroscopy characterization of PEGylated polymer nanocarriers: internal structure and surface properties.

    Science.gov (United States)

    Celasco, Edvige; Valente, Ilaria; Marchisio, Daniele L; Barresi, Antonello A

    2014-07-22

    In this work, nanospheres and nanocapsules are precipitated in confined impinging jet mixers through solvent displacement and characterized. Acetone and water are used as the solvent and antisolvent, respectively, together with polymethoxypolyethylene glycol cyanoacrylate-co-hexadecylcyanoacrylate and Miglyol as the copolymer and oil, respectively. Characterization is performed with dynamic light scattering, with electrophoretic measurements, and for the first time with X-ray photoelectron spectroscopy. Results show that the presence of polyethylene glycol chains seems to be more pronounced on the surface of nanospheres than on that of nanocapsules. The thickness of the copolymer layer in nanocapsules ranges from 1 to 10 nm, depending on the value of the oil:copolymer mass ratio. Fast dilution is confirmed to have a positive effect in suppressing aggregation but can induce further copolymer precipitation.

  19. Density and temperature measurement using CARS spectroscopy

    International Nuclear Information System (INIS)

    Hirth, A.; Vollrath, K.

    1979-01-01

    Coherent Anti Stokes Raman Scattering (CARS) a technique derived from nonlinear optics offers two major advantages compared with the spontaneous Raman method: improved scattering efficiency and spatial coherence of the scattered signal. The theory of the coherent mixing in resonant media serves as a quantitative background of the CARS technique. A review of several applications on plasma physics and gasdynamics is given, which permits to consider the CARS spectroscopy as a potential method for nonintrusive measurement of local concentration and temperature in gas flows and reactive media. (Auth.)

  20. Complementary low energy ion scattering and X-ray photoelectron spectroscopy characterization of polystyrene submitted to N{sub 2}/H{sub 2} glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, F., E-mail: bonatto02@yahoo.com.br [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil); Rovani, S. [Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560 (Brazil); Kaufmann, I.R.; Soares, G.V. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil); Baumvol, I.J.R. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil); Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560 (Brazil); Krug, C. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900 (Brazil)

    2012-02-15

    Low energy ion scattering (LEIS) and X-ray photoelectron spectroscopy (XPS) were used to access the elemental composition and chemical bonding characteristics of polystyrene (PS) surfaces sequentially treated by corona and glow discharge (plasma) processing in N{sub 2}/H{sub 2} ambient. The latter has shown activity as suppressor of pathogenic Staphylococcus epidermidis biofilms. LEIS indicated that oxygen from the corona discharge process is progressively replaced by nitrogen at the PS surface. XPS shows C=N and N-C=O chemical groups as significant inhibitors of bacterial adhesion, suggesting application in medical devices.

  1. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  2. Inelastic scattering of fast electrons by crystals

    International Nuclear Information System (INIS)

    Allen, L.J.; Josefsson, T.W.

    1995-01-01

    Generalized fundamental equations for electron diffraction in crystals, which include the effect of inelastic scattering described by a nonlocal interaction, are derived. An expression is obtained for the cross section for any specific type of inelastic scattering (e.g. inner-shell ionization, Rutherford backscattering). This result takes into account all other (background) inelastic scattering in the crystal leading to absorption from the dynamical Bragg-reflected beams, in practice mainly due to thermal diffuse scattering. There is a contribution to the cross section from all absorbed electrons, which form a diffuse background, as well as from the dynamical electrons. The approximations involved, assuming that the interactions leading to inelastic scattering can be described by a local potential are discussed, together with the corresponding expression for the cross section. It is demonstrated by means of an example for K-shell electron energy loss spectroscopy that nonlocal effects can be significant. 47 refs., 4 figs

  3. Blood analysis by Raman spectroscopy.

    Science.gov (United States)

    Enejder, Annika M K; Koo, Tae-Woong; Oh, Jeankun; Hunter, Martin; Sasic, Slobodan; Feld, Michael S; Horowitz, Gary L

    2002-11-15

    Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r(2) values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media.

  4. Investigation of the S1/ICT equilibrium in fucoxanthin by ultrafast pump-dump-probe and femtosecond stimulated Raman scattering spectroscopy.

    Science.gov (United States)

    Redeckas, Kipras; Voiciuk, Vladislava; Vengris, Mikas

    2016-05-01

    Time-resolved multi-pulse spectroscopic methods-pump-dump-probe (PDP) and femtosecond stimulated Raman spectroscopy-were used to investigate the excited state photodynamics of the carbonyl group containing carotenoid fucoxanthin (FX). PDP experiments show that S1 and ICT states in FX are strongly coupled and that the interstate equilibrium is rapidly (<5 ps) reestablished after one of the interacting states is deliberately depopulated. Femtosecond stimulated Raman scattering experiments indicate that S1 and ICT are vibrationally distinct species. Identification of the FSRS modes on the S1 and ICT potential energy surfaces allows us to predict a possible coupling channel for the state interaction.

  5. Introduction to NSE spectroscopy

    International Nuclear Information System (INIS)

    Pappas, C.

    2001-01-01

    Neutron Spin Echo (NSE) spectroscopy allows for reaching the highest energy resolution in inelastic neutron scattering while keeping the high intensity advantage of a beam which is only 10-20% monochromatic. Most spectroscopic methods determine separately the energies of the incident (ω 0 ) and scattered beams (ω) in order to deduce the energy transfer (Δω = ω-ω 0 ), which is the relevant parameter in inelastic neutron scattering. The accuracy in the determination of ω 0 and ω also determines the lowest limit for Δω, which can reach 10 -3 , but with the cost of a high incident beam monocromatisation. In NSE the precession of neutron spins in a magnetic field is used as a stop-watch, which is carried by each neutron individually and measures directly, with an accuracy of 10 -5 to 10 -3 , the difference in energy before and after the scattering process at the sample. (R.P.)

  6. Study of early laser-induced plasma dynamics: Transient electron density gradients via Thomson scattering and Stark Broadening, and the implications on laser-induced breakdown spectroscopy measurements

    International Nuclear Information System (INIS)

    Diwakar, P.K.; Hahn, D.W.

    2008-01-01

    To further develop laser-induced breakdown spectroscopy (LIBS) as an analytical technique, it is necessary to better understand the fundamental processes and mechanisms taking place during the plasma evolution. This paper addresses the very early plasma dynamics (first 100 ns) using direct plasma imaging, light scattering, and transmission measurements from a synchronized 532-nm probe laser pulse. During the first 50 ns following breakdown, significant Thomson scattering was observed while the probe laser interacted with the laser-induced plasma. The Thomson scattering was observed to peak 15-25 ns following plasma initiation and then decay rapidly, thereby revealing the highly transient nature of the free electron density and plasma equilibrium immediately following breakdown. Such an intense free electron density gradient is suggestive of a non-equilibrium, free electron wave generated by the initial breakdown and growth processes. Additional probe beam transmission measurements and electron density measurements via Stark broadening of the 500.1-nm nitrogen ion line corroborate the Thomson scattering observations. In concert, the data support the finding of a highly transient plasma that deviates from local thermodynamic equilibrium (LTE) conditions during the first tens of nanoseconds of plasma lifetime. The implications of this early plasma transient behavior are discussed in the context of plasma-analyte interactions and the role on LIBS measurements

  7. Analysis of inelastic neutron scattering results on model compounds ...

    Indian Academy of Sciences (India)

    Vibrational spectroscopy; nitrogenous bases; inelastic neutron scattering. PACS No. ... obtain good quality, high resolution results in this region. Here the .... knowledge of the character of each molecular transition as well as the calculated.

  8. Quantitative polarized Raman spectroscopy in highly turbid bone tissue.

    Science.gov (United States)

    Raghavan, Mekhala; Sahar, Nadder D; Wilson, Robert H; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H; Morris, Michael D

    2010-01-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (pbones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  9. Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering

    Science.gov (United States)

    Yang, Wanli; Devereaux, Thomas P.

    2018-06-01

    Recent advances in battery science and technology have triggered both the challenges and opportunities on studying the materials and interfaces in batteries. Here, we review the recent demonstrations of soft X-ray spectroscopy for studying the interfaces and electrode materials. The focus of this review is on the recently developed mapping of resonant inelastic X-ray scattering (mRIXS) as a powerful probe of battery chemistry with superior sensitivity. Six different channels of soft X-ray absorption spectroscopy (sXAS) are introduced for different experimental purposes. Although conventional sXAS channels remain effective tools for quantitative analysis of the transition-metal states and surface chemistry, we elaborate the limitations of sXAS in both cationic and anionic redox studies. Particularly, based on experimental findings in various electrodes, we show that sXAS is unreliable for studying oxygen redox. We then demonstrate the mRIXS as a reliable technique for fingerprinting oxygen redox and summarize several crucial observations. We conclude that mRIXS is the tool-of-choice to study both the practical issue on reversibility of oxygen redox and the fundamental nature of bulk oxygen states. We hope this review clarifies the popular misunderstanding on oxygen sXAS results of oxide electrodes, and establishes a reliable technique for detecting oxygen redox through mRIXS.

  10. Auger vs resonance neutralization in low energy He+ ion scattering

    International Nuclear Information System (INIS)

    Woodruff, D.P.

    1983-01-01

    He + ions incident on a metal surface can neutralize either by an Auger or resonant charge exchange. While the Auger process has always been thought to be dominant, recent theoretical interest in the simpler one-electron resonance process has led to suggestions that this alone can account for the neutralization seen in low energy He + ion scattering. In this paper this assertion is analysed by looking at the wider information available on charge exchange processes for He + ion scattering through comparison with Li + ion scattering, the importance of multiple scattering in both these scattering experiments and the results of ion neutralization spectroscopy. These lead to the conclusion that while resonance neutralization to produce metastable He* may well occur at a substantial rate in He + ion scattering, the dominant process leading to loss of ions from the final scattered signal is Auger neutralization as originally proposed. (author)

  11. Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy.

    Science.gov (United States)

    Kitamura, Ryunosuke; Inagaki, Tetsuya; Tsuchikawa, Satoru

    2016-02-22

    The true absorption coefficient (μa) and reduced scattering coefficient (μ´s) of the cell wall substance in Douglas fir were determined using time-of-flight near infrared spectroscopy. Samples were saturated with hexane, toluene or quinolone to minimize the multiple reflections of light on the boundary between pore-cell wall substance in wood. μ´s exhibited its minimum value when the wood was saturated with toluene because the refractive index of toluene is close to that of the wood cell wall substance. The optical parameters of the wood cell wall substance calculated were μa = 0.030 mm(-1) and μ´s= 18.4 mm(-1). Monte Carlo simulations using these values were in good agreement with the measured time-resolved transmittance profiles.

  12. Nanoporous active carbons at ambient conditions: a comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption

    Science.gov (United States)

    Shiryaev, A. A.; Voloshchuk, A. M.; Volkov, V. V.; Averin, A. A.; Artamonova, S. D.

    2017-05-01

    Furfural-derived sorbents and activated carbonaceous fibers were studied using Small- and Wide-angle X-ray scattering (SWAXS), X-ray diffraction and multiwavelength Raman spectroscopy after storage at ambient conditions. Correlations between structural features with degree of activation and with sorption parameters are observed for samples obtained from a common precursor and differing in duration of activation. However, the correlations are not necessarily applicable to the carbons obtained from different precursors. Using two independent approaches we show that treatment of SWAXS results should be performed with careful analysis of applicability of the Porod law to the sample under study. In general case of a pore with rough/corrugated surface deviations from the Porod law may became significant and reflect structure of the pore-carbon interface. Ignorance of these features may invalidate extraction of closed porosity values. In most cases the pore-matrix interface in the studied samples is not atomically sharp, but is characterized by 1D or 2D fluctuations of electronic density responsible for deviations from the Porod law. Intensity of the pores-related small-angle scattering correlates positively with SBET values obtained from N2 adsorption.

  13. Nanoporous active carbons at ambient conditions: a comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption

    International Nuclear Information System (INIS)

    Shiryaev, A A; Voloshchuk, A M; Averin, A A; Artamonova, S D.; Volkov, V V

    2017-01-01

    Furfural-derived sorbents and activated carbonaceous fibers were studied using Small- and Wide-angle X-ray scattering (SWAXS), X-ray diffraction and multiwavelength Raman spectroscopy after storage at ambient conditions. Correlations between structural features with degree of activation and with sorption parameters are observed for samples obtained from a common precursor and differing in duration of activation. However, the correlations are not necessarily applicable to the carbons obtained from different precursors. Using two independent approaches we show that treatment of SWAXS results should be performed with careful analysis of applicability of the Porod law to the sample under study. In general case of a pore with rough/corrugated surface deviations from the Porod law may became significant and reflect structure of the pore-carbon interface. Ignorance of these features may invalidate extraction of closed porosity values. In most cases the pore-matrix interface in the studied samples is not atomically sharp, but is characterized by 1D or 2D fluctuations of electronic density responsible for deviations from the Porod law. Intensity of the pores-related small-angle scattering correlates positively with S BET values obtained from N 2 adsorption. (paper)

  14. Development of High Spectral Resolution Technique for Registration Quasielastic Light Scattering Spectra Including Rayleigh and Brillouin Scattering as a Diagnostic Tool in Materials Characterization

    National Research Council Canada - National Science Library

    Bairamov, Bakhysh

    2004-01-01

    ...: As detailed in an on-line proposal the contractor will: 1) develop and build an optical device, fitted to a Fabry-Perot interferometer, to perform high-resolution quasieleastic light scattering spectroscopy; 2...

  15. High pressure sample container for thermal neutron spectroscopy and diffraction on strongly scattering fluids

    International Nuclear Information System (INIS)

    Verkerk, P.; Pruisken, A.M.M.

    1979-01-01

    A description is presented of the construction and performance of a container for thermal neutron scattering on a fluid sample with about 1.5 cm -1 macroscopic cross section (neglecting absorption). The maximum pressure is about 900 bar. The container is made of 5052 aluminium capillary with inner diameter 0.75 mm and wall thickness 0.25 mm; it covers a neutron beam with a cross section of 9 X 2.5 cm 2 . The container has been successfully used in neutron diffraction and time-of-flight experiments on argon-36 at 120 K and several pressures up to 850 bar. It is shown that during these measurements the temperature gradient over the sample as well as the error in the absolute temperature were both less than 0.05 K. Subtraction of the Bragg peaks due to container scattering in diffraction experiments may be dfficult, but seems feasible because of the small amount of aluminium in the neutron beam. Correction for container scattering and multiple scattering in time-of-flight experiments may be difficult only in the case of coherently scattering samples and small scattering angles. (Auth.)

  16. Dichroism in resonant inelastic soft X-ray scattering

    International Nuclear Information System (INIS)

    Braicovich, L.

    2004-01-01

    Full text: The dichroism (and in particular the magnetic dichroism) has emerged in the last decade as a key method in the study of electronic states in solids. This has been largely due to the exploitation of the modern sources of Synchrotron Radiation. This approach has been extensively used in X ray Absorption Spectroscopy i.e. in a first order process giving a straightforward access, trough sum rules, to the ground state properties of the sample. On the other hand the studies of dichroism in second order processes as the photon scattering experiments has been up to now relatively limited probably due to experimental difficulties. This is too bad because, at least in principle, the scattering experiments offer unique opportunities typical of second order processes, beyond the possibilities offered by absorption spectroscopy. This requires specific scattering experiments able to give information that cannot be obtained in the absorption mode. A typical example is the circular magnetic dichroism in resonant inelastic scattering in perpendicular geometry i.e. with the light incident perpendicular to the magnetisation. In this case the circular dichroism in absorption is zero by symmetry while the detection of the scattered photons at an angle breaks the left-right symmetry and allows a dichroism to be observed. The aim of the present talk is to review critically the dichroism in resonant X-ray scattering and to show the potential of this approach. In particular it will be shown how to recover, in magnetic samples, the ground state information up to the moments of order four. In this connection original results will be presented including the demonstration of a new experimental approach. The perspectives of the field will be also discussed

  17. Time-dependent Autler-Townes spectroscopy

    International Nuclear Information System (INIS)

    Qamar, Sajid; Zhu, S.-Y.; Zubairy, M Suhail

    2003-01-01

    Autler-Townes spontaneous emission spectroscopy is revisited for a time-dependent case. We report the results of spontaneous emission spectra for nonstationary scattered light signals using the definition of the time-dependent physical spectrum. This is a rare example of problems where time-dependent spectra can be calculated exactly

  18. Time-dependent Autler-Townes spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, Sajid [Institute for Quantum Studies, Department of Physics, Texas A and M University, College Station, TX 77843-4242 (United States); Zhu, S.-Y. [Institute for Quantum Studies, Department of Physics, Texas A and M University, College Station, TX 77843-4242 (United States); Zubairy, M Suhail [Institute for Quantum Studies, Department of Physics, Texas A and M University, College Station, TX 77843-4242 (United States)

    2003-04-01

    Autler-Townes spontaneous emission spectroscopy is revisited for a time-dependent case. We report the results of spontaneous emission spectra for nonstationary scattered light signals using the definition of the time-dependent physical spectrum. This is a rare example of problems where time-dependent spectra can be calculated exactly.

  19. Characterization of Materials by Raman Scattering

    Science.gov (United States)

    Kozielski, M.

    2007-03-01

    The paper reports on the use of phonon spectra obtained with the Raman spectroscopy for characterization of different materials. The Raman scattering spectra obtained for zinc selenide crystals, mixed crystals zinc selenide admixtured with magnesium or beryllium, oxide crystals including strontium lanthanum gallate, molecular crystals of triammonium hydrogen diseleniate and a homologous series of polyoxyethylene glycols are analysed.

  20. Characterization of thermal plasmas by laser light scattering

    International Nuclear Information System (INIS)

    Snyder, S.C.; Lassahn, G.D.; Reynolds, L.D.; Fincke, J.R.

    1993-01-01

    Characterization of an atmospheric pressure free-burning arc discharge and a plasma jet by lineshape analysis of scattered laser light is described. Unlike emission spectroscopy, this technique provides direct measurement of plasma gas temperature, electron temperature and electron density without the assumption of local thermodynamic equilibrium (LTE). Plasma gas velocity can also be determined from the Doppler shift of the scattered laser light. Radial gas temperature, electron temperature and electron density profiles are presented for an atmospheric pressure argon free-burning arc discharge. These results show a significant departure from LTE in the arc column, contradicting results obtained from emission spectroscopy. Radial gas temperature and gas velocity profiles in the exit plane of a subsonic atmospheric pressure argon plasma jet are also presented. In this case, the results show the plasma jet is close to LTE in the center, but not in the fringes. The velocity profile is parabolic

  1. Symmetry-forbidden intervalley scattering by atomic defects in monolayer transition-metal dichalcogenides

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Martiny, Johannes H. J.; Low, Tony

    2017-01-01

    protectionmechanism against intervalley scattering in monolayer TMDs. The predicteddefectdependent selection rules for intervalley scattering can be verified viaFourier transform scanning tunneling spectroscopy (FT-STS), and provide aunique identification of, e.g., atomic vacancy defects (M vs X). Our findingsare......Intervalley scattering by atomic defects in monolayer transition metaldichalcogenides (TDMs; MX2) presents a serious obstacle for applicationsexploiting their unique valley-contrasting properties. Here, we show that thesymmetry of the atomic defects can give rise to an unconventional...

  2. La nouvelle vague in polarized neutron scattering

    International Nuclear Information System (INIS)

    Mezei, F.

    1986-01-01

    Polarized neutron research, like many other subjects in neutron scattering developed in the footsteps of Cliff Shull. The classical polarized neutron technique he pioneered was generalized around 1970 to vectorial beam polarizations and this opened up the way to a ''nouvelle vague'' of neutron scattering experiments. In this paper I will first reexamine the old controversy on the question whether the nature of the neutron magnetic moment is that of a microscopic dipole or of an Amperian current loop. The problem is not only of historical interest, but also of relevance to modern applications. This will be followed by a review of the fundamentals on spin coherence effects in neutron beams and scattering, which are the basis of vectorial beam polarization work. As an example of practical importance, paramagnetic scattering will be discussed. The paper concludes with some examples of applications of the vector polarization techniques, such as study of ferromagnetic domains by neutron beam depolarization and Neutron Spin Echo high resolution inelastic spectroscopy. The sample results presented demonstrate the new opportunities this novel approach opened up in neutrons scattering research. (orig.)

  3. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  4. Differentiation of bacterial versus viral otitis media using a combined Raman scattering spectroscopy and low coherence interferometry probe (Conference Presentation)

    Science.gov (United States)

    Zhao, Youbo; Shelton, Ryan L.; Tu, Haohua; Nolan, Ryan M.; Monroy, Guillermo L.; Chaney, Eric J.; Boppart, Stephen A.

    2016-02-01

    Otitis media (OM) is a highly prevalent disease that can be caused by either a bacterial or viral infection. Because antibiotics are only effective against bacterial infections, blind use of antibiotics without definitive knowledge of the infectious agent, though commonly practiced, can lead to the problems of potential harmful side effects, wasteful misuse of medical resources, and the development of antimicrobial resistance. In this work, we investigate the feasibility of using a combined Raman scattering spectroscopy and low coherence interferometry (LCI) device to differentiate OM infections caused by viruses and bacteria and improve our diagnostic ability of OM. Raman spectroscopy, an established tool for molecular analysis of biological tissue, has been shown capable of identifying different bacterial species, although mostly based on fixed or dried sample cultures. LCI has been demonstrated recently as a promising tool for determining tympanic membrane (TM) thickness and the presence and thickness of middle-ear biofilm located behind the TM. We have developed a fiber-based ear insert that incorporates spatially-aligned Raman and LCI probes for point-of-care diagnosis of OM. As shown in human studies, the Raman probe provides molecular signatures of bacterial- and viral-infected OM and normal middle-ear cavities, and LCI helps to identify depth-resolved structural information as well as guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition time. Differentiation of OM infections is determined by correlating in vivo Raman data collected from human subjects with the Raman features of different bacterial and viral species obtained from cultured samples.

  5. A rotational diffusion coefficient of the 70s ribosome determined by depolarized laser light scattering

    NARCIS (Netherlands)

    Bruining, J.; Fijnaut, H.M.

    We have obtained a rotational diffusion coefficient of the 70S ribosome isolated from Escherichia-coli (MRE-600), from the depolarized light scattering spectrum measured by photon correlation spectroscopy. The intensity correlation function of depolarized scattered light contains contributions due

  6. Alignment and girder position of MSE septa in the new LSS4 extraction channel of the SPS

    CERN Document Server

    Balhan, B; Rizzo, A; Weterings, W; CERN. Geneva. SPS and LHC Division

    2002-01-01

    For the extraction of the beam from the Super Proton Synchrotron (SPS) to ring 2 of the Large Hadron Collider (LHC) and the CERN Neutrino to Gran Sasso (CNGS)facility, a new fast-extraction system is being constructed in the long straight section LSS4 of the SPS. Besides extraction bumpers, enlarged aperture quadrupoles and extraction kicker magnets (MKE), six conventional DC septum magnets (MSE) are used. These magnets are mounted on a single rigid support girder, pre-aligned so as to follow the trajectory of the extracted beam and optimise the available aperture. The girder has been motorised in order to optimise the local SPS aperture during setting up, so as to avoid the risk of circulating beam impact on the septum coils. In this note, we briefly present the trajectory and apertures of the beam, we describe the calculations and methods that have been used to determine the magnet position on the girder, and finally we report on the details of the girder movement and alignment.

  7. Scattering cross-sections of common calibration gases measured by IBBCEAS technique

    Directory of Open Access Journals (Sweden)

    S.I. Issac

    Full Text Available In this study, incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS was used to measure scattering cross-sections of a few common gases in the 650–670 nm spectral range relative to that of dry air. Precise measurements of scattering cross-sections of these calibration gases in the visible spectral range are important. The IBBCEAS system developed in the laboratory was calibrated with a low-loss optical window. The measurements made at 660 nm were compared with previously measured cross-section values and found to be in good agreement with the existing measurements. Keywords: IBBCEAS, Rayleigh scattering, Scattering cross section

  8. Rationale for single molecule detection by means of Raman spectroscopy

    International Nuclear Information System (INIS)

    Gaponenko, S.V.; Guzatov, D.V.

    2009-01-01

    A consistent quantum electrodynamical description is proposed of Raman scattering of light by a molecule in a medium with a modified photon density of states. Enhanced local density of states near a metal nanobody is shown to increase a scattering rate by several orders of magnitude, thus providing a rationale for experimental detection of single molecules by means of Raman spectroscopy. For an ellipsoidal particle 10 14 -fold enhancement of the Raman scattering cross-section is obtained. (authors)

  9. High resolution neutron spectroscopy - a tool for the investigation of dynamics of polymers and soft matter

    International Nuclear Information System (INIS)

    Monkenbusch, M.; Richter, D.

    2007-01-01

    Neutron scattering, with the ability to vary the contrast of molecular items by hydrogen/deuterium exchanges, is an invaluable tool for soft matter research. Besides the structural information on the mesoscopic scale that is obtained by diffraction methods like small angle neutron scattering, the slow dynamics of molecular motion on mesoscopic scale is accessible by high resolution neutron spectroscopy. The basic features of neutron backscattering spectroscopy, and in particular neutron spin-echo spectroscopy, are presented, in combination with illustrations of results from polymer melt dynamics to protein dynamics which are obtained by these techniques. (authors)

  10. Differential optical absorption spectroscopy (DOAS and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    Directory of Open Access Journals (Sweden)

    V. V. Rozanov

    2010-06-01

    Full Text Available The Differential Optical Absorption Spectroscopy (DOAS technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical basis and validity range of the DOAS method for those cases where the contribution of the multiple scattering processes is not negligible. Our study is intended to fill this gap by means of a theoretical investigation of the applicability of the DOAS technique for the retrieval of amounts of atmospheric species from observations of the scattered solar light with a non-negligible contribution of the multiple scattering.

    Starting from the expansion of the intensity logarithm in the functional Taylor series we formulate the general form of the DOAS equation. The thereby introduced variational derivative of the intensity logarithm with respect to the variation of the gaseous absorption coefficient, which is often referred to as the weighting function, is demonstrated to be closely related to the air mass factor. Employing some approximations we show that the general DOAS equation can be rewritten in the form of the weighting function (WFDOAS, the modified (MDOAS, and the standard DOAS equations. For each of these forms a specific equation for the air mass factor follows which, in general, is not suitable for other forms of the DOAS equation. Furthermore, the validity range of the standard DOAS equation is quantitatively investigated using a suggested criterion of a weak absorption.

    The results presented in this study are intended to provide a basis for a better understanding of the applicability range of different forms of the DOAS equation as

  11. Two-dimensional electronic femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Ogilvie J.P.

    2013-03-01

    Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.

  12. Adsorption characteristics of Au nanoparticles onto poly(4-vinylpyridine) surface revealed by QCM, AFM, UV/vis, and Raman scattering spectroscopy.

    Science.gov (United States)

    Kim, Kwan; Ryoo, Hyunwoo; Lee, Yoon Mi; Shin, Kuan Soo

    2010-02-15

    In this work, we report that the adsorption and aggregation processes of Au nanoparticles on a polymer surface can be monitored by means of surface-enhanced Raman scattering (SERS) spectroscopy. Specifically, we were able to analyze the adsorption process of citrate-stabilized Au nanoparticles onto a film of poly(4-vinylpyridine) (P4VP) by taking a series of SERS spectra, during the self-assembly of Au nanoparticles onto the polymer film. In order to better analyze the SERS spectra, we separately conducted quartz crystal microbalance (QCM), UV/vis spectroscopy, and atomic force microscope (AFM) measurements. The adsorption kinetics revealed by QCM under the in situ conditions was in fair agreement with that determined by the ex situ AFM measurement. The number of Au nanoparticles adsorbed on P4VP increased almost linearly with time: 265 Au nanoparticles per 1microm(2) were adsorbed on the P4VP film after 6h of immersion. The SERS signal measured in the ex situ condition showed a more rapid increase than that of QCM; however, its increasing pattern was quite similar to that of UV/vis absorbance at longer wavelengths, suggesting that Au nanoparticles actually became agglomerated on P4VP. Copyright 2009 Elsevier Inc. All rights reserved.

  13. Femtosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) As Next Generation Nonlinear LIDAR Spectroscopy and Microscopy

    International Nuclear Information System (INIS)

    Ooi, C. H. Raymond

    2009-01-01

    Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with an integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.

  14. Scattering of light at the growing solid-melt interface

    International Nuclear Information System (INIS)

    Gontijo, I.

    1987-12-01

    The scattering of light at the growing solid-melt interface of biphenyl and naphthalene was studied using the Photon Correlation Spectroscopy technique. The origin of this light scattering remained without a satisfactory explanation since its discovery at the ice-water interface in 1978. Recently, a model based on the segregation of gaseous impurities at the interface and subsequent precipitation of microbubbles was proposed to explain this phenomenon. We report here the first experimental results that confirm the microbbubles hypothesis. (author)

  15. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks.

    Science.gov (United States)

    Geiman, Irina; Leona, Marco; Lombardi, John R

    2009-07-01

    The applicability of Raman spectroscopy and surface-enhanced Raman scattering (SERS) to the analysis of synthetic dyes commonly found in ballpoint inks was investigated in a comparative study. Spectra of 10 dyes were obtained using a dispersive system (633 nm, 785 nm lasers) and a Fourier transform system (1064 nm laser) under different analytical conditions (e.g., powdered pigments, solutions, thin layer chromatography [TLC] spots). While high fluorescence background and poor spectral quality often characterized the normal Raman spectra of the dyes studied, SERS was found to be generally helpful. Additionally, dye standards and a single ballpoint ink were developed on a TLC plate following a typical ink analysis procedure. SERS spectra were successfully collected directly from the TLC plate, thus demonstrating a possible forensic application for the technique.

  16. Real-time UV-visible spectroscopy analysis of purple membrane-polyacrylamide film formation taking into account Fano line shapes and scattering.

    Science.gov (United States)

    Gomariz, María; Blaya, Salvador; Acebal, Pablo; Carretero, Luis

    2014-01-01

    We theoretically and experimentally analyze the formation of thick Purple Membrane (PM) polyacrylamide (PA) films by means of optical spectroscopy by considering the absorption of bacteriorhodopsin and scattering. We have applied semiclassical quantum mechanical techniques for the calculation of absorption spectra by taking into account the Fano effects on the ground state of bacteriorhodopsin. A model of the formation of PM-polyacrylamide films has been proposed based on the growth of polymeric chains around purple membrane. Experimentally, the temporal evolution of the polymerization process of acrylamide has been studied as function of the pH solution, obtaining a good correspondence to the proposed model. Thus, due to the formation of intermediate bacteriorhodopsin-doped nanogel, by controlling the polymerization process, an alternative methodology for the synthesis of bacteriorhodopsin-doped nanogels can be provided.

  17. Multiple scattering modeling pipeline for spectroscopy and photometry of airless Solar System objects

    Science.gov (United States)

    Penttilä, Antti; Väisänen, Timo; Markkanen, Johannes; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2017-10-01

    We combine numerical tools to analyze the reflectance spectra of granular materials. Our motivation comes from the lack of tools when it comes to intimate mixing of materials and modeling space-weathering effects with nano- or micron-sized inclusions. The current practice is to apply a semi-physical models such as the Hapke models (e.g., Icarus 195, 2008). These are expressed in a closed form so that they are fast to apply. The problem is that the validity of the model is not guaranteed, and the derived properties related to particle scattering can be unrealistic (JQSRT 113, 2012).Our pipeline consists of individual scattering simulation codes and a main program that chains them together. The chain for analyzing a macroscopic target with space-weathered mineral would go as: (1) Scattering properties of small inclusions inside a host matrix are derived using exact Maxwell equation solvers. From the scattering properties, we use the so-called incoherent fields and Mueller matrices as input for the next step; (2) Scattering by a regolith grain is solved using a geometrical optics method with surface reflections, internal absorption, and internal diffuse scattering; (3) The radiative transfer simulation is executed inputting the regolith grains from the previous step as the scatterers in a macroscopic planar volume element.For the most realistic asteroid reflectance model, the chain would produce the properties of a planar surface element. Then, a shadowing simulation over the surface elements would be considered, and finally the asteroid phase function would be solved by integrating the bidirectional reflectance distribution function of the planar element over the object's realistic shape model.The tools in the proposed chain already exist, and practical task for us is to tie these together into an easy-to-use public pipeline. We plan to open the pipeline as a web-based open service a dedicated server, using Django application server and Python environment for the

  18. The structural and magnetic properties of Fe/native-oxide systems resolved by x-ray scattering and spectroscopy methods

    International Nuclear Information System (INIS)

    Couet, Sebastien

    2008-12-01

    Since the discovery of the giant magnetoresistance (GMR) effect in metallic magnetic multilayers and its industrial application in magnetic read heads, the data storage density and reading speed of hard disks steadily increased. But now the point is reached where conventional conductive multilayer structures suffer from parasitic eddy currents which decrease the signal to noise ratio of the system. To tackle this problem, new classes of materials have to be studied. One approach is to introduce ultra thin oxide layers in a metallic iron structure to reduce the conductivity while keeping a high net magnetization. This can be achieved by alternating metal deposition and controlled oxidation to produce metal/metal-oxide multilayers. However, the magnetic structure that forms in such multilayer is still rather unexplored. The aim of this work was to achieve a better understanding of the magnetic structure that forms in such iron/native-oxide multilayers. For that purpose, X-ray and neutron scattering experiments were carried out to determine the magnetic structure and its evolution in ex-situ and in-situ experiments, respectively. It was found that a non-collinear magnetic coupling appears between the metal layers, which is mediated by the antiferromagnetically ordered oxide layer in between. The use of isotope sensitive scattering techniques (namely nuclear resonant scattering and neutron reflectometry) allowed to resolve the magnetic depth profile of the system, showing that the buried oxide carries a net magnetic moment. The chemical and magnetic structure of the buried oxide was studied by in-situ X-ray absorption spectroscopy and nuclear resonant scattering. After oxidation, the layer exhibits a mixture of different oxide phases and incorporates 10 to 15% of Fe with metallic character. Upon deposition of only one atomic layer of metallic Fe, the layer reduces to a single phase FeO-like oxide. This structural change does not lead to a magnetically ordered oxide

  19. The structural and magnetic properties of Fe/native-oxide systems resolved by x-ray scattering and spectroscopy methods

    Energy Technology Data Exchange (ETDEWEB)

    Couet, Sebastien

    2008-12-15

    Since the discovery of the giant magnetoresistance (GMR) effect in metallic magnetic multilayers and its industrial application in magnetic read heads, the data storage density and reading speed of hard disks steadily increased. But now the point is reached where conventional conductive multilayer structures suffer from parasitic eddy currents which decrease the signal to noise ratio of the system. To tackle this problem, new classes of materials have to be studied. One approach is to introduce ultra thin oxide layers in a metallic iron structure to reduce the conductivity while keeping a high net magnetization. This can be achieved by alternating metal deposition and controlled oxidation to produce metal/metal-oxide multilayers. However, the magnetic structure that forms in such multilayer is still rather unexplored. The aim of this work was to achieve a better understanding of the magnetic structure that forms in such iron/native-oxide multilayers. For that purpose, X-ray and neutron scattering experiments were carried out to determine the magnetic structure and its evolution in ex-situ and in-situ experiments, respectively. It was found that a non-collinear magnetic coupling appears between the metal layers, which is mediated by the antiferromagnetically ordered oxide layer in between. The use of isotope sensitive scattering techniques (namely nuclear resonant scattering and neutron reflectometry) allowed to resolve the magnetic depth profile of the system, showing that the buried oxide carries a net magnetic moment. The chemical and magnetic structure of the buried oxide was studied by in-situ X-ray absorption spectroscopy and nuclear resonant scattering. After oxidation, the layer exhibits a mixture of different oxide phases and incorporates 10 to 15% of Fe with metallic character. Upon deposition of only one atomic layer of metallic Fe, the layer reduces to a single phase FeO-like oxide. This structural change does not lead to a magnetically ordered oxide

  20. Two-Photon Vibrational Spectroscopy using local optical fields of gold and silver nanostructures

    Science.gov (United States)

    Kneipp, Katrin; Kneipp, Janina; Kneipp, Harald

    2007-03-01

    Spectroscopic effects can be strongly affected when they take place in the immediate vicinity of metal nanostructures due to coupling to surface plasmons. We introduce a new approach that suggests highly efficient two-photon labels as well as two-photon vibrational spectroscopy for non-destructive chemical probing. The underlying spectroscopic effect is the incoherent inelastic scattering of two photons on the vibrational quantum states performed in the enhanced local optical fields of gold nanoparticles, surface enhanced hyper Raman scattering (SEHRS). We infer effective two-photon cross sections for SEHRS on the order of 10^5 GM, similar or higher than the best known cross sections for two-photon fluorescence. SEHRS combines the advantages of two-photon spectroscopy with the structural information of vibrational spectroscopy, and the high sensitivity and nanometer-scale local confinement of plasmonics-based spectroscopy.

  1. Size-dependent magnetization dynamics in individual Ni80Fe20 disk using micro-focused Brillouin Light Scattering spectroscopy

    Directory of Open Access Journals (Sweden)

    G. Shimon

    2015-09-01

    Full Text Available A direct and systematic investigation of the magnetization dynamics in individual circular Ni80Fe20 disk of diameter (D in the range from 300 nm to 1 μm measured using micro-focused Brillouin Light Scattering (μ-BLS spectroscopy is presented. At high field, when the disks are in a single domain state, the resonance frequency of the uniform center mode is observed to reduce with reducing disk’s diameter. For D = 300 nm, additional edge and end-domains resonant modes are observed due to size effects. At low field, when the disks are in a vortex state, a systematic increase of resonant frequency of magnetostatic modes in a vortex state with the square root of the disks’ aspect ratio (thickness divided by radius is observed. Such dependence diminishes for disks with larger aspect ratio due to an increasing exchange energy contribution. Micromagnetic simulations are in excellent agreement with the experiments.

  2. Extinction, emission, and scattering spectroscopy of 5-50 nm citrate-coated gold nanoparticles: An argument for curvature effects on aggregation

    Science.gov (United States)

    Esfahani, Milad Rabbani; Pallem, Vasanta L.; Stretz, Holly A.; Wells, Martha J. M.

    2017-03-01

    The interaction of macromolecules with gold nanoparticles (GNPs) is of interest in the emerging field of biomedical and environmental detection devices. However, the physicochemical properties, including spectra, of GNPs in aqueous solution in the absence of metal-macromolecular interactions must first be considered before their activity in biological and environmental systems can be understood. The specific objective of this research was to experimentally illuminate the role of nanoparticle core size on the spectral (simultaneous consideration of extinction, emission, and scattering) versus aggregation behaviors of citrate-coated GNPs (CT-GNPs). It is difficult to find in the literature systematic simultaneous presentation of scattering, emission, and extinction spectra, including the UV range, and thus the present work will aid those who would use such particles for spectroscopic related separations or sensors. The spectroscopic behavior of CT-GNPs with different core sizes (5, 10, 30, and 50 nm) was studied in ultra-pure water at pH 6.0-6.5 employing UV-visible extinction, excitation-emission matrix (EEM), resonance Rayleigh scattering, and dynamic light scattering (DLS) spectroscopies. The CT-GNP-5 and CT-GNP-10 samples aggregated, absorbed light, and emitted light. In contrast, the CT-GNP-30 and CT-GNP-50 samples did not aggregate and did not emit light, but scattered light intensely. Multimodal peaks were observed in the intensity-based DLS spectra of CT-GNP-5 and CT-GNP-10 samples. Monomodal peaks in the volume-based DLS spectra overestimated particle diameters by 60% and 30% for the CT-GNP-5 and CT-GNP-10 samples, respectively, but underestimated diameters by 10% and 4% for the CT-GNP-30 and CT-GNP-50 samples. The volume-based DLS spectra indicated that dimer and trimer aggregates contributed most to the overall volume of particles in the 5- and 10-nm CT-GNPs, whereas the CT-GNP-30 and CT-GNP-50 samples did not aggregate. Here, we discuss the potential

  3. Photoelectron spectroscopy under ambient pressure and temperature conditions

    International Nuclear Information System (INIS)

    Frank Ogletree, D.; Bluhm, Hendrik; Hebenstreit, Eleonore D.; Salmeron, Miquel

    2009-01-01

    We describe the development and applications of novel instrumentation for photoemission spectroscopy of solid or liquid surfaces in the presence of gases under ambient conditions of pressure and temperature. The new instrument overcomes the strong scattering of electrons in gases by the use of an aperture close to the surface followed by a differentially-pumped electrostatic lens system. In addition to the scattering problem, experiments in the presence of condensed water or other liquids require the development of special sample holders to provide localized cooling. We discuss the first two generations of Ambient Pressure PhotoEmission Spectroscopy (APPES) instruments developed at synchrotron light sources (ALS in Berkeley and BESSY in Berlin), with special focus on the Berkeley instruments. Applications to environmental science and catalytic chemical research are illustrated in two examples.

  4. Photothermal spectroscopy of aerosols

    International Nuclear Information System (INIS)

    Campillo, A.J.; Lin, H.B.

    1981-04-01

    In situ aerosol absorption spectroscopy was performed using two novel photothermal detection schemes. The first, based on a photorefractive effect and coherent detection, called phase fluctuation optical heterodyne (PFLOH) spectroscopy, could, depending on the geometry employed, yield particle specific or particle and gas absorption data. Single particles of graphite as small as 1 μm were detected in the particle specific mode. In another geometrical configuration, the total absorption (both gas and particle) of submicron sized aerosols of ammonium sulfate particles in equilibrium with gaseous ammonia and water vapor were measured at varying CO 2 laser frequencies. The specific absorption coefficient for the sulfate ion was measured to be 0.5 m 2 /g at 1087 cm -1 . The absorption coefficient sensitivity of this scheme was less than or equal to 10 -8 cm -1 . The second scheme is a hybrid visible Mie scattering scheme incorporating photothermal modulation. Particle specific data on ammonium sulfate droplets were obtained. For chemically identical species, the relative absorption spectrum versus laser frequency can be obtained for polydisperse aerosol distributions directly from the data without the need for complex inverse scattering calculations

  5. Elastic scattering spectroscopy findings in formalin-fixed oral squamous cell carcinoma specimens

    Science.gov (United States)

    Swinson, B.; Elmaaytah, M.; Jerjes, W.; Hopper, C.

    2005-11-01

    Oral squamous cell carcinoma (OSCC) has been shown to spread locally and infiltrate adjacent bone or via the lymphatic system to the cervical lymph nodes. This usually necessitates a surgical neck dissection and either a local or segmental resection for bone clearance. While histopathology remains the gold standard for tissue diagnosis, several new diagnostic techniques are being developed that rely on physical and biochemical changes that mirror or precede malignant changes within tissue. The aim of this study was to compare findings of Elastic Scattering Spectroscopy (ESS) with histopathology on formalin-fixed specimens of both neck lymph node dissections and de-calcified archival bone from patients with OSCC. We wished to see if this technique could be used as an adjunct or alternative to histopathology in defining cervical nodal involvement and if it could be used to identify bone resection margins positive for tumour. 130 lymph nodes were examined from 13 patients. The nodes were formalin-fixed, bivalved and examined by ESS. The intensity of the spectrum at 4 points was considered for comparison; at 360nm, 450nm, 630nm and 690nm. 341 spectra were taken from the mandibular specimens of 21 patients, of which 231 spectra were taken from histologically positive sites and the rest were normal. The nodes and bone specimens were then routinely processed with haematoxylin and eosin-stained sections, examined histopathologically, and the results compared. Using Linear Discriminant Analysis (LDA) as a statistical method, a sensitivity of 98% and a specificity of 68% was obtained for the neck nodes and a sensitivity of 87% and a specificity of 80% for the bone margins.

  6. X-ray scattering signatures of β-thalassemia

    International Nuclear Information System (INIS)

    Desouky, Omar S.; Elshemey, Wael M.; Selim, Nabila S.

    2009-01-01

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm -1 , respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; β-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of β-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm -1 , in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  7. X-ray scattering signatures of β-thalassemia

    Science.gov (United States)

    Desouky, Omar S.; Elshemey, Wael M.; Selim, Nabila S.

    2009-08-01

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm -1, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; β-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of β-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm -1, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  8. X-ray scattering signatures of {beta}-thalassemia

    Energy Technology Data Exchange (ETDEWEB)

    Desouky, Omar S. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT) (Egypt); Elshemey, Wael M. [Biophysics Department, Faculty of Science, Cairo University (Egypt)], E-mail: waelelshemey@yahoo.com; Selim, Nabila S. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT) (Egypt)

    2009-08-11

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm{sup -1}, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; {beta}-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of {beta}-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm{sup -1}, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  9. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement

    Directory of Open Access Journals (Sweden)

    Chae-Ryon Kong

    2011-09-01

    Full Text Available Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC converts the wide angular range of scattered photons (numerical aperture (NA of 1.0 from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22. A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests.

  10. High resolution neutron spectroscopy - a tool for the investigation of dynamics of polymers and soft matter; La spectroscopie de neutrons a haute resolution-un outil pour l'etude de la dynamique des polymeres et de la matiere molle

    Energy Technology Data Exchange (ETDEWEB)

    Monkenbusch, M.; Richter, D. [Institut fur Festkorperforschung (IFF), Forschungszentrum Julich, Julich (Germany)

    2007-09-15

    Neutron scattering, with the ability to vary the contrast of molecular items by hydrogen/deuterium exchanges, is an invaluable tool for soft matter research. Besides the structural information on the mesoscopic scale that is obtained by diffraction methods like small angle neutron scattering, the slow dynamics of molecular motion on mesoscopic scale is accessible by high resolution neutron spectroscopy. The basic features of neutron backscattering spectroscopy, and in particular neutron spin-echo spectroscopy, are presented, in combination with illustrations of results from polymer melt dynamics to protein dynamics which are obtained by these techniques. (authors)

  11. Nuclear resonance scattering study of iridates, iridium and antimony based pyrochlores

    International Nuclear Information System (INIS)

    Alexeev, P.

    2017-04-01

    This thesis shows the first synchrotron-based Moessbauer spectroscopy studies on iridium containing compounds and first vibrational spectroscopy on Sb containing compounds carried out at the P01 beamline of PETRA III. In this context, two types of X-ray monochromators have been developed: a monochromator for 73 keV photons with medium energy resolution, and a high-resolution backscattering monochromator based on a sapphire crystal. The monochromator for 73 keV X-rays is the key instrument for hyperfine spectroscopy on Iridium compounds, while the sapphire backscattering monochromator is purposed to vibrational spectroscopy on any Moessbauer resonances with the transition energies in the 20-50 keV range. Additionally, the signal detection for nuclear resonance scattering experiments at the beamline was significantly improved during this work, inspired by the high energies and low lifetimes of the employed resonances. The first synchrotron-based hyperfine spectroscopy on Iridium-containing compounds was demonstrated by NRS on 73 keV resonance in "1"9"3Ir. The results can be interpreted by dynamical theory of nuclear resonance scattering. In this work, special emphasis is set onto the electronic and magnetic properties of Ir nuclei in IrO_2 and in Ruddlesden-Popper (RP) phases of strontium iridates Sr_n_+_1Ir_nO_3_n_+_1 (n=0,1). These systems are well-suited for studies with X-ray scattering techniques, since the scattered signal contains vast information about the widely tunable crystallographic and electronic structure of these systems; furthermore, studies with X-rays are less limited by absorption from iridium as it is the case for neutron scattering experiments. The hyperfine parameters in IrO_2, SrIrO_3 and Sr_2IrO_4 have been measured via Nuclear Forward Scattering for the first time. Using the dynamical theory of NRS, the temperature and magnetic field dependence of the electric field gradient and magnetic hyperfine field on Ir nucleus have been determined for

  12. Nuclear resonance scattering study of iridates, iridium and antimony based pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, P.

    2017-04-15

    This thesis shows the first synchrotron-based Moessbauer spectroscopy studies on iridium containing compounds and first vibrational spectroscopy on Sb containing compounds carried out at the P01 beamline of PETRA III. In this context, two types of X-ray monochromators have been developed: a monochromator for 73 keV photons with medium energy resolution, and a high-resolution backscattering monochromator based on a sapphire crystal. The monochromator for 73 keV X-rays is the key instrument for hyperfine spectroscopy on Iridium compounds, while the sapphire backscattering monochromator is purposed to vibrational spectroscopy on any Moessbauer resonances with the transition energies in the 20-50 keV range. Additionally, the signal detection for nuclear resonance scattering experiments at the beamline was significantly improved during this work, inspired by the high energies and low lifetimes of the employed resonances. The first synchrotron-based hyperfine spectroscopy on Iridium-containing compounds was demonstrated by NRS on 73 keV resonance in {sup 193}Ir. The results can be interpreted by dynamical theory of nuclear resonance scattering. In this work, special emphasis is set onto the electronic and magnetic properties of Ir nuclei in IrO{sub 2} and in Ruddlesden-Popper (RP) phases of strontium iridates Sr{sub n+1}Ir{sub n}O{sub 3n+1} (n=0,1). These systems are well-suited for studies with X-ray scattering techniques, since the scattered signal contains vast information about the widely tunable crystallographic and electronic structure of these systems; furthermore, studies with X-rays are less limited by absorption from iridium as it is the case for neutron scattering experiments. The hyperfine parameters in IrO{sub 2}, SrIrO{sub 3} and Sr{sub 2}IrO{sub 4} have been measured via Nuclear Forward Scattering for the first time. Using the dynamical theory of NRS, the temperature and magnetic field dependence of the electric field gradient and magnetic hyperfine field

  13. Effective attenuation lengths for quantitative determination of surface composition by Auger-electron spectroscopy and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Jablonski, A.; Powell, C.J.

    2017-01-01

    Highlights: • Effective attenuation lengths (EALs) for determination of surface composition by XPS. • Considerable difference from EALs used for overlayer thickness measurements. • New analytical algorithms for calculating the effective attenuation length. - Abstract: The effective attenuation length (EAL) is normally used in place of the inelastic mean free path (IMFP) to account for elastic-scattering effects when describing the attenuation of Auger electrons and photoelectrons from a planar substrate by an overlayer film. An EAL for quantitative determination of surface composition by Auger-electron spectroscopy (AES) or X-ray photoelectron spectroscopy (XPS) is similarly useful to account for elastic-scattering effects on the signal intensities. We calculated these EALs for four elemental solids (Si, Cu, Ag, and Au) and for energies between 160 eV and 1.4 keV. The XPS calculations were made for two instrumental configurations while the AES calculations were made from the XPS formalism after “switching off” the XPS anisotropy. The EALs for quantitative determination of surface composition by AES and XPS were weak functions of emission angle for emission angles between 0 and 50°. The ratios of the average values of these EALs to the corresponding IMFPs could be fitted to a second-order function of the single-scattering albedo, a convenient measure of the strength of elastic-scattering effects. EALs for quantitative determination of surface composition by AES and XPS for other materials can be simply found from this relationship.

  14. Slow Noncollinear Coulomb Scattering in the Vicinity of the Dirac Point in Graphene.

    Science.gov (United States)

    König-Otto, J C; Mittendorff, M; Winzer, T; Kadi, F; Malic, E; Knorr, A; Berger, C; de Heer, W A; Pashkin, A; Schneider, H; Helm, M; Winnerl, S

    2016-08-19

    The Coulomb scattering dynamics in graphene in energetic proximity to the Dirac point is investigated by polarization resolved pump-probe spectroscopy and microscopic theory. Collinear Coulomb scattering rapidly thermalizes the carrier distribution in k directions pointing radially away from the Dirac point. Our study reveals, however, that, in almost intrinsic graphene, full thermalization in all directions relying on noncollinear scattering is much slower. For low photon energies, carrier-optical-phonon processes are strongly suppressed and Coulomb mediated noncollinear scattering is remarkably slow, namely on a ps time scale. This effect is very promising for infrared and THz devices based on hot carrier effects.

  15. Charge-state distribution of MeV He ions scattered from the surface atoms

    International Nuclear Information System (INIS)

    Kimura, Kenji; Ohtsuka, Hisashi; Mannami, Michihiko

    1993-01-01

    The charge-state distribution of 500-keV He ions scattered from a SnTe (001) surface has been investigated using a new technique of high-resolution high-energy ion scattering spectroscopy. The observed charge-state distribution of ions scattered from the topmost atomic layer coincides with that of ions scattered from the subsurface region and does not depend on the incident charge state but depends on the exit angle. The observed exit-angle dependence is explained by a model which includes the charge-exchange process with the valence electrons in the tail of the electron distribution at the surface. (author)

  16. Spin-orbit scattering in superconducting nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alhassid, Y. [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut, 06520 (United States); Nesterov, K.N. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53706 (United States)

    2017-06-15

    We review interaction effects in chaotic metallic nanoparticles. Their single-particle Hamiltonian is described by the proper random-matrix ensemble while the dominant interaction terms are invariants under a change of the single-particle basis. In the absence of spin-orbit scattering, the nontrivial invariants consist of a pairing interaction, which leads to superconductivity in the bulk, and a ferromagnetic exchange interaction. Spin-orbit scattering breaks spin-rotation invariance and when it is sufficiently strong, the only dominant nontrivial interaction is the pairing interaction. We discuss how the magnetic response of discrete energy levels of the nanoparticle (which can be measured in single-electron tunneling spectroscopy experiments) is affected by such pairing correlations and how it can provide a signature of pairing correlations. We also consider the spin susceptibility of the nanoparticle and discuss how spin-orbit scattering changes the signatures of pairing correlations in this observable. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Copper doped TiO2 nanoparticles characterized by X-ray absorption spectroscopy, total scattering, and powder diffraction--a benchmark structure-property study.

    Science.gov (United States)

    Lock, Nina; Jensen, Ellen M L; Mi, Jianli; Mamakhel, Aref; Norén, Katarina; Qingbo, Meng; Iversen, Bo B

    2013-07-14

    Metal functionalized nanoparticles potentially have improved properties e.g. in catalytic applications, but their precise structures are often very challenging to determine. Here we report a structural benchmark study based on tetragonal anatase TiO2 nanoparticles containing 0-2 wt% copper. The particles were synthesized by continuous flow synthesis under supercritical water-isopropanol conditions. Size determination using synchrotron PXRD, TEM, and X-ray total scattering reveals 5-7 nm monodisperse particles. The precise dopant structure and thermal stability of the highly crystalline powders were characterized by X-ray absorption spectroscopy and multi-temperature synchrotron PXRD (300-1000 K). The combined evidence reveals that copper is present as a dopant on the particle surfaces, most likely in an amorphous oxide or hydroxide shell. UV-VIS spectroscopy shows that copper presence at concentrations higher than 0.3 wt% lowers the band gap energy. The particles are unaffected by heating to 600 K, while growth and partial transformation to rutile TiO2 occur at higher temperatures. Anisotropic unit cell behavior of anatase is observed as a consequence of the particle growth (a decreases and c increases).

  18. Detector Fundamentals for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-03

    This presentation is a part of the DHS LSS spectroscopy course and provides an overview of the following concepts: detector system components, intrinsic and absolute efficiency, resolution and linearity, and operational issues and limits.

  19. Laser spectroscopy of gas confined in nanoporous materials

    OpenAIRE

    Svensson, Tomas; Shen, Zhijian

    2010-01-01

    We show that high-resolution laser spectroscopy can probe surface interactions of gas confined in nanocavities of porous materials. We report on strong line broadening and unfamiliar line shapes due to tight confinement, as well as signal enhancement due to multiple photon scattering. This new domain of laser spectroscopy constitute a challenge for the theory of collisions and spectroscopic line shapes, and open for new ways of analyzing porous materials and processes taking place therein.

  20. The need for the vegetarian crew for long-term LSS

    Science.gov (United States)

    Gorgolewski, S.

    The long-term space missions pose very stringent demands on the high degree of closure levels. One obvious requirements is to assure the human crew a steady state self-supporting and self-regenerating LSS environment. The strictly vegetarian crew is the primary requirement to minimize the cost and weight of the spacecraft. This ensures the minimal matter circulation problems, because we can also use for food as many as possible fuly edible plants with nex to none, non digestable plant tissues. One important task is to select a range of plants which should satisfy the nutritional needs of the crew for a long-term, in the range of several years. Preliminary fitotron experiments with lettuce, demonstrated that one can achieve this goal, with a plant which is wholy edible even with the roots. This has been achieved with the use of several teens times stronger electrical field, than the 130 V/m fair weather global atmospheric electrical field. More experiments are in progress for the extension of the list of such vegetarian food. The selection of suitable plants which meet these highly demanding selection criteria, has to be done and can be done in ground based experiments. Plants ensure one important requirements of a closed loop CO2 and O2 circulation with the vegetarian crew in the loop. Extensive research programs are needed for this purpose using large ground based instalations like the Biosphere 2. The success of the use of electrical fields as replacement of gravitational field in the fitotron which proved the dominating role over gravity, of several kV/m electical field intensities. It also proves the feasibility of improving the crop productivity in ground based greenhouses, provided that we do restore inside the missing in "normal" designs our global electrical field. The fair weather electrical field (not to mention the enhanced field) is the missing vital environmental factor which has been systematically "overlooked" in practically all greenhouses. It is

  1. Observation of Electronic Raman Scattering in Metallic Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Farhat, H.; Berciaud, S.; Kalbáč, Martin; Saito, R.; Heinz, T. F.; Dresselhaus, M. S.; Kong, J.

    2011-01-01

    Roč. 107, č. 15 (2011), s. 157401 ISSN 0031-9007 R&D Projects: GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : spectroscopy * electronic Raman scattering * metallic carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 7.370, year: 2011

  2. Nanostructured surface enhanced Raman scattering substrates for explosives detection

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbaek; Olsen, Jesper Kenneth; Boisen, Anja

    2010-01-01

    Here we present a method for trace detection of explosives in the gas phase using novel surface enhanced Raman scattering (SERS) spectroscopy substrates. Novel substrates that produce an exceptionally large enhancement of the Raman effect were used to amplify the Raman signal of explosives...

  3. Design and installation of the MSE septum system in the new LSS4 extraction channel of the SPS

    CERN Document Server

    Balhan, B; Guinand, R; Luiz, F; Rizzo, A; Weterings, W; CERN. Geneva. AB Department

    2003-01-01

    For the extraction of the beam from the Super Proton Synchrotron (SPS) to ring 2 of the Large Hadron Collider (LHC) and the CERN Neutrino to Gran Sasso (CNGS) facility, a new fast-extraction system has been installed in the long straight section LSS4 of the SPS. Besides extraction bumpers, enlarged aperture quadrupoles and extraction kicker magnets (MKE), six conventional DC septum magnets (MSE) are used. These magnets are mounted on a single mobile retractable support girder, which is motorised in order to optimise the local SPS aperture during setting up. The MSE septa are connected by a so-called plug-in system to a rigid water-cooled bus bar, which itself is powered by water-cooled cables. In order to avoid destruction of the septum magnet coils by direct impact of the extracted beam, a dilution element (TPSG) has been placed immediately upstream of the first septum coil. The whole system is kept at the required vacuum pressure by ion pumps attached to separate modules (MP). In this note we present the de...

  4. Structure and spectroscopy of the oxygen-24 drip-line nucleus from elastic and inelastic proton scattering using MUST2 detectors at Riken

    International Nuclear Information System (INIS)

    Boissinot, S.

    2013-01-01

    The studies of structure and spectroscopy performed on radioactive nuclei during the last three decades have shown that the nuclear shell structure changes towards the drip-line and local magic numbers may appear. Doubly-magic nuclei are very rare but represent stringent tests for theories and their modelling of the nuclear interaction. In this context, we have investigated the structure and spectroscopy of the drip-line doubly-magic nucleus 24 O via proton elastic and inelastic scattering (p,p'). The experiment was performed at Riken in the BigRIPS line, using the 24 O beam produced at 263 MeV/n with RIBF with a high intensity (1780/s), and the state-of-the-art MUST2 charged particle detector. The analysis of the data gives the reconstruction of: the 24 O excitation energy spectrum up to 35 MeV with the scattered proton kinematics using the missing mass method, and the angular distribution of exclusive (p,p) elastic cross section between 4 and 30 degrees c.m. via a triple coincidence nucleus-proton-nucleus. Below the two-neutron separation threshold (S2n) the statistics is too low to obtain the two excited states measured by previous experiments done at lower incident energies. Above the S 2n structures are observed for the first time due to the large excitation energy range of the excitation spectra. The measurement of the excited states located at these energies would allow to test theoretical studies of low-energy dipole excitation in light neutron-rich nuclei. The statistics obtained for proton elastic scattering is sufficient to extract the exclusive (p,p) angular distributions of the 24 , 23 , 22 , 21 O isotopes. These results constitute a new benchmark to explore proton-nucleus interaction potential features around 260 MeV/n. The comparison of elastic data set to the reaction calculations done with the microscopic reaction approach based on the G-matrix density-dependent potential indicates that this potential is suitable. However, it remains to include

  5. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy.

    Science.gov (United States)

    Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V

    2014-12-01

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Spin-flip inelastic scattering in electron energy loss spectroscopy of a ferromagnetic metal

    International Nuclear Information System (INIS)

    Yin, S.; Tosatti, E.

    1981-08-01

    We calculate the spin polarization occuring during electron inelastic scattering from electron-hole pairs in a model ferromagnetic metal. The polarization is found to have contributions from unequal spin flip as well as non-flip energy loss rates. Our results indicate an asymmetry of the order of a few percent with parameters roughly modeling Fsub(e). The possibilities of comparison with experiments in the presence of simultaneous spin-polarizing elastic scattering are discussed. (author)

  7. Light scattering from superfluid fog

    International Nuclear Information System (INIS)

    Kim, Heetae; Lemieux, P.-A.Pierre-Anthony; Durian, Douglas; Williams, G.A.Gary A.

    2003-01-01

    The dynamics of the droplets of superfluid 4 He fog created by an ultrasonic transducer are investigated using a laser scattering technique. Diffusing-wave spectroscopy probes the motion of the droplets, which is found to be ballistic for times shorter than a characteristic viscous time τ v =10 -5 s. The average relative velocity between the droplets is small compared to the velocity that the droplets are ejected from the surface into the fog, but increases proportionally to it

  8. Plasma rotation and ion temperature measurements by collective Thomson scattering at ASDEX Upgrade

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Jacobsen, Asger Schou

    2015-01-01

    We present the first deuterium ion temperature and rotation measurements by collective Thomson scattering at ASDEX Upgrade. The results are in general agreement with boron-based charge exchange recombination spectroscopy measurements and consistent with neoclassical simulations for the plasma sce...... scenario studied here. This demonstration opens the prospect for direct non-perturbative measurements of the properties of the main ion species in the plasma core with applications in plasma transport and confinement studies.......We present the first deuterium ion temperature and rotation measurements by collective Thomson scattering at ASDEX Upgrade. The results are in general agreement with boron-based charge exchange recombination spectroscopy measurements and consistent with neoclassical simulations for the plasma...

  9. Human serum albumin interactions with C{sub 60} fullerene studied by spectroscopy, small-angle neutron scattering, and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Song [Vanderbilt University, Department of Chemical and Biomolecular Engineering (United States); Zhao, Xiongce [NIDDK, National Institutes of Health (United States); Mo, Yiming [Institute of Agriculture, University of Tennessee (United States); Cummings, Peter T., E-mail: cummingspt@ornl.gov [Vanderbilt University, Department of Chemical and Biomolecular Engineering (United States); Heller, William T., E-mail: hellerwt@ornl.gov [Oak Ridge National Laboratory, Center for Structural Molecular Biology (United States)

    2013-07-15

    Concern about the toxicity of engineered nanoparticles, such as the prototypical nanomaterial C{sub 60} fullerene, continues to grow. While, evidence continues to mount that C{sub 60} and its derivatives may pose health hazards, the specific molecular interactions of these particles with biological macromolecules require further investigation. In this article, we report combined experimental and theoretical studies on the interaction of one of the most prevalent proteins in the human body, human serum albumin (HSA), with C{sub 60} in an aqueous environment. The C{sub 60}-HSA interaction was probed by circular dichroism (CD) spectroscopy, small-angle neutron scattering (SANS), and atomistic molecular dynamics (MD) simulations to understand C{sub 60}-driven changes in the structure of HSA in solution. The CD spectroscopy demonstrates that the secondary structure of the protein decreases in {alpha}-helical content in response to the presence of C{sub 60} (0.68 nm in diameter). Similarly, C{sub 60} produces subtle changes in the solution conformation of HSA (an 8.0 nm Multiplication-Sign 3.8 nm protein), as evidenced by the SANS data and MD simulations, but the data do not indicate that C{sub 60} changes the oligomerization state of the protein, such as by inducing aggregation. The results demonstrate that the interaction is not highly disruptive to the protein in a manner that would prevent it from performing its physiological function.

  10. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate.

    Science.gov (United States)

    Israelsen, Nathan D; Wooley, Donald; Hanson, Cynthia; Vargis, Elizabeth

    2016-01-01

    Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to develop an optimized process for fabricating Raman-labeled nanoparticles for a SERS-based immunoassay on a polystyrene substrate. We have developed a method for fabricating SERS nanoparticle probes for use in a light scattering immunoassay on a polystyrene substrate. The light scattering profile of both spherical gold nanoparticle and gold nanorod SERS probes were characterized using Raman spectroscopy and optical absorbance spectroscopy. The effects of substrate interference and autofluorescence were reduced by selecting a Raman reporter with a strong light scattering response in a spectral region where interfering substrate emission peaks are minimized. Both spherical gold nanoparticles and gold nanorods SERS probes used in the immunoassay were detected at labeling concentrations in the low pM range. This analytical sensitivity falls within the typical dynamic range for direct labeling of cell-surface biomarkers using SERS probes. SERS nanoparticle probes were fabricated to produce a strong light scattering signal despite substrate interference. The optical extinction and inelastic light scattering of these probes was detected by optical absorbance spectroscopy and Raman spectroscopy, respectively. This immunoassay demonstrates the feasibility of analyzing strongly enhanced Raman signals on polystyrene, which is an

  11. Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation.

    Science.gov (United States)

    Gartmann, Thomas E; Hartweg, Sebastian; Ban, Loren; Chasovskikh, Egor; Yoder, Bruce L; Signorell, Ruth

    2018-06-06

    Low-energy electron scattering in water clusters (H2O)n with average cluster sizes of n < 700 is investigated by angle-resolved photoelectron spectroscopy using high harmonic radiation at photon energies of 14.0, 20.3, and 26.5 eV for ionization from the three outermost valence orbitals. The measurements probe the evolution of the photoelectron anisotropy parameter β as a function of cluster size. A remarkably steep decrease of β with increasing cluster size is observed, which for the largest clusters reaches liquid bulk values. Detailed electron scattering calculations reveal that neither gas nor condensed phase scattering can explain the cluster data. Qualitative agreement between experiment and simulations is obtained with scattering calculations that treat cluster scattering as an intermediate case between gas and condensed phase scattering.

  12. Spectroscopy and optical diagnostics for gases

    CERN Document Server

    Hanson, Ronald K; Goldenstein, Christopher S

    2016-01-01

    This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is ideal for students an...

  13. Synchrotron radiation based Mössbauer absorption spectroscopy of various nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Ryo, E-mail: masudar@rri.kyoto-u.ac.jp; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina [Kyoto University, Research Reactor Institute (Japan); Yoda, Yoshitaka [Japan Synchrotron Radiation Research Institute, Resarch and Utilization Division (Japan); Mitsui, Takaya [Japan Atomic Energy Agency, Condensed Matter Science Division, Sector of Nuclear Science Research (Japan); Seto, Makoto [Kyoto University, Research Reactor Institute (Japan)

    2016-12-15

    Synchrotron-radiation (SR) based Mössbauer absorption spectroscopy of various nuclides is reviewed. The details of the measuring system and analysis method are described. Especially, the following two advantages of the current system are described: the detection of internal conversion electrons and the close distance between the energy standard scatterer and the detector. Both of these advantages yield the enhancement of the counting rate and reduction of the measuring time. Furthermore, SR-based Mössbauer absorption spectroscopy of {sup 40}K, {sup 151}Eu, and {sup 174}Yb is introduced to show the wide applicability of this method. In addition to these three nuclides, SR-based Mössbauer absorption spectroscopy of {sup 61}Ni, {sup 73}Ge, {sup 119}Sn, {sup 125}Te, {sup 127}I, {sup 149}Sm, and {sup 189}Os has been performed. We continue to develop the method to increase available nuclides and to increase its ease of use. The complementary relation between the time-domain method using SR, such as nuclear forward scattering and the energy-domain methods such as SR-based Mössbauer absorption spectroscopy is also noted.

  14. Raman scattering of Cisplatin near silver nanoparticles

    Science.gov (United States)

    Mirsaleh-Kohan, Nasrin; Duplanty, Michael; Torres, Marjorie; Moazzezi, Mojtaba; Rostovtsev, Yuri V.

    2018-03-01

    The Raman scattering of Cisplatin (the first generation of anticancer drugs) has been studied. In the presence of silver nanoparticles, strong modifications of Raman spectra have been observed. The Raman frequencies have been shifted and the line profiles are broadened. We develop a theoretical model to explain the observed features of the Raman scattering. The model takes into account self-consistently the interaction of molecules with surface plasmonic waves excited in the silver nanoparticles, and it provides a qualitative agreement with the observed Raman spectra. We have demonstrated that the using silver nanoparticles can increase sensitivity of the technique, and potentially it has a broader range of applications to both spectroscopy and microscopy.

  15. Multiple scattering effects in depth resolution of elastic recoil detection

    International Nuclear Information System (INIS)

    Wielunski, L.S.; Harding, G.L.

    1998-01-01

    Elastic Recoil Detection (ERD) is used to profile hydrogen and other low mass elements in thin films at surface and interfaces in a similar way that Rutherford Backscattering Spectroscopy (RBS) is used to detect and profile heavy elements. It is often assumed that the depth resolutions of these two techniques are similar. However, in contrast to typical RBS, the depth resolution of ERD is limited substantially by multiple scattering. In experimental data analysis and/or spectra simulations of a typical RBS measurement multiple scattering effects are often ignored. Computer programs used in IBA, such as RUMP, HYPRA or RBX do not include multiple scattering effects at all. In this paper, using practical thin metal structures with films containing intentionally introduced hydrogen, we demonstrate experimental ERD depth resolution and sensitivity limitations. The effects of sample material and scattering angle are also discussed. (authors)

  16. Light scattering from superfluid fog

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heetae; Lemieux, P.-A.Pierre-Anthony; Durian, Douglas; Williams, G.A.Gary A

    2003-05-01

    The dynamics of the droplets of superfluid {sup 4}He fog created by an ultrasonic transducer are investigated using a laser scattering technique. Diffusing-wave spectroscopy probes the motion of the droplets, which is found to be ballistic for times shorter than a characteristic viscous time {tau}{sub v}=10{sup -5} s. The average relative velocity between the droplets is small compared to the velocity that the droplets are ejected from the surface into the fog, but increases proportionally to it.

  17. Bimodal spectroscopy in elastic scattering and spatially resolved auto-fluorescence: instrumentation, light-tissues interaction modeling and application to ex vivo and in vivo biological tissues characterization for cancers detection

    International Nuclear Information System (INIS)

    Pery, Emilie

    2007-01-01

    This research activity aims at developing and validating a multimodal spectroscopy method in elastic scattering and auto-fluorescence to characterize biological tissues in vitro and in vivo. It is articulated in four axes. At first, instrumentation is considered with the development, the engineering and the experimental characterization of a fibers bimodal, multi-points spectrometry system allowing the acquisition of spectra in vivo (variable distances, fast acquisition). Secondly, the optical properties of tissues are modelled with the development and the experimental validation on phantoms of a photons propagation simulation algorithm in turbid media and multi-fluorescent. Thirdly, an experimental study has been conducted ex vivo on fresh and cryo-preserved arterial rings. It confirms the complementarity of spectroscopic measurements in elastic scattering and auto-fluorescence, and validates the method of multi-modality spectroscopy and the simulation of photons propagation algorithm. Results have well proved a correlation between rheological and optical properties. Finally, one second experimental study in vivo related to a pre-clinical tumoral model of bladder has been carried out. It highlights a significant difference in diffuse reflectance and/or auto-fluorescence and/or intrinsic fluorescence between healthy, inflammatory and tumoral tissues, on the basis of specific wavelength. The results of not supervised classification show that the combination of various spectroscopic approaches increases the reliability of the diagnosis. (author) [fr

  18. Development of surface enhanced Raman scattering (SERS) spectroscopy monitoring of fuel markers to prevent fraud

    Science.gov (United States)

    Wilkinson, Timothy; Clarkson, John; White, Peter C.; Meakin, Nicholas; McDonald, Ken

    2013-05-01

    Governments often tax fuel products to generate revenues to support and stimulate their economies. They also subsidize the cost of essential fuel products. Fuel taxation and subsidization practices are both subject to fraud. Oil marketing companies also suffer from fuel fraud with loss of legitimate sales and additional quality and liability issues. The use of an advanced marking system to identify and control fraud has been shown to be effective in controlling illegal activity. DeCipher has developed surface enhanced Raman scattering (SERS) spectroscopy as its lead technology for measuring markers in fuel to identify and control malpractice. SERS has many advantages that make it highly suitable for this purpose. The SERS instruments are portable and can be used to monitor fuel at any point in the supply chain. SERS shows high specificity for the marker, with no false positives. Multiple markers can also be detected in a single SERS analysis allowing, for example, specific regional monitoring of fuel. The SERS analysis from fuel is also quick, clear and decisive, with a measurement time of less than 5 minutes. We will present results highlighting our development of the use of a highly stable silver colloid as a SERS substrate to measure the markers at ppb levels. Preliminary results from the use of a solid state SERS substrate to measure fuel markers will also be presented.

  19. Combined Dynamic Light Scattering and Raman Spectroscopy Approach for Characterizing the Aggregation of Therapeutic Proteins

    Directory of Open Access Journals (Sweden)

    E. Neil Lewis

    2014-12-01

    Full Text Available Determination of the physicochemical properties of protein therapeutics and their aggregates is critical for developing formulations that enhance product efficacy, stability, safety and manufacturability. Analytical challenges are compounded for materials: (1 that are formulated at high concentration, (2 that are formulated with a variety of excipients, and (3 that are available only in small volumes. In this article, a new instrument is described that measures protein secondary and tertiary structure, as well as molecular size, over a range of concentrations and formulation conditions of low volume samples. Specifically, characterization of colloidal and conformational stability is obtained through a combination of two well-established analytical techniques: dynamic light scattering (DLS and Raman spectroscopy, respectively. As the data for these two analytical modalities are collected on the same sample at the same time, the technique enables direct correlation between them, in addition to the more straightforward benefit of minimizing sample usage by providing multiple analytical measurements on the same aliquot non-destructively. The ability to differentiate between unfolding and aggregation that the combination of these techniques provides enables insights into underlying protein aggregation mechanisms. The article will report on mechanistic insights for aggregation that have been obtained from the application of this technique to the characterization of lysozyme, which was evaluated as a function of concentration and pH.

  20. Electron scattering in graphene with adsorbed NaCl nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Drabińska, Aneta, E-mail: Aneta.Drabinska@fuw.edu.pl; Kaźmierczak, Piotr; Bożek, Rafał; Karpierz, Ewelina; Wysmołek, Andrzej; Kamińska, Maria [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Wołoś, Agnieszka [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Pasternak, Iwona; Strupiński, Włodek [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Krajewska, Aleksandra [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2015-01-07

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The main inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.

  1. Electron scattering in graphene with adsorbed NaCl nanoparticles

    International Nuclear Information System (INIS)

    Drabińska, Aneta; Kaźmierczak, Piotr; Bożek, Rafał; Karpierz, Ewelina; Wysmołek, Andrzej; Kamińska, Maria; Wołoś, Agnieszka; Pasternak, Iwona; Strupiński, Włodek; Krajewska, Aleksandra

    2015-01-01

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The main inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer

  2. Four-photon parametric light scattering of ultrashort laser pulses in water in case of weak self-phase modulation

    International Nuclear Information System (INIS)

    Babenko, V A; Sychev, Andrei A

    2009-01-01

    The hyper-Raman scattering (HRS) of light in water is detected reliably by the active spectroscopy method of coherent light scattering, in particular, by the method of four-photon parametric light scattering in a medium in which HRS is a 'signal' wave in the parametric process involving simultaneously two high-power laser photons and IR photons of an 'idler' wave. Hyper-Raman scattering by libration vibrations of water molecules, which virtually cannot be detected by conventional methods of Raman scattering, was observed. (nonlinear optical phenomena)

  3. Enhanced Raman scattering on functionalized graphene substrates

    Czech Academy of Sciences Publication Activity Database

    Valeš, Václav; Kovaříček, Petr; Fridrichová, Michaela; Ji, X.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kalbáč, Martin

    2017-01-01

    Roč. 4, č. 2 (2017), č. článku 025087. ISSN 2053-1583 R&D Projects: GA ČR(CZ) GA15-01953S Grant - others:AVČR PPPLZ(CZ) L200401551 Institutional support: RVO:61388955 Keywords : spectroscopy * molecules * graphene * graphene enhanced Raman scattering * functionalized graphene Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 6.937, year: 2016

  4. Resonant Raman scattering in Nd2O3 and the electronic structure of Sr2RuO4 studied by synchrotron radiation excitation

    International Nuclear Information System (INIS)

    Ederer, D. L.

    1998-01-01

    This paper is intended to illustrate two points. The first being the extensive growth of resonant Raman soft x-ray scattering due to the emergence of third-generation x-ray sources. With these sources, the ubiquitous presence of Raman scattering near the 3d and 4d ionization thresholds has been used to elucidate the excitation process in a number of rare earth and transition metal compounds. Such scattering can produce dramatic changes in the emission spectrum, as we show in our example of inelastic scattering at the 3d threshold of Nd 2 O 3 . Photon-in photon-out soft x-ray spectroscopy is adding a new dimension to soft x-ray spectroscopy by providing many opportunities for exciting research, especially at third-generation synchrotrons light sources. Second, it is very effective to use theory and experiment to characterize the electronic properties of materials. In particular we confirmed in-plane oxygen-ruthenium bonding in Sr 2 RuO 4 , this first copperless perovskite superconductor, by analyses using calculations, soft x-ray emission spectroscopy (SXE) and photoelectron spectroscopy (PES). Measurements of this type illustrate the importance of combining SXE and PES measurements with theoretical calculations

  5. Orientational and structural properties of ferroelectric liquid crystal with broad temperature range of the SmC* phase by .sup.13./sup.C NMR, x-ray scattering and dielectric spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej M.; Domenici, V.; Hamplová, Věra; Kašpar, Miroslav; Veracini, C.A.; Glogarová, Milada

    2009-01-01

    Roč. 21, č. 3 (2009), 035102/1-035102/8 ISSN 0953-8984 R&D Projects: GA AV ČR(CZ) GA202/09/0047; GA ČR GA202/05/0431; GA MŠk OC 175; GA AV ČR IAA100100710 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric liquid crystal * high spontaneous polarization * 13 C nuclear magnetic resonance * x-ray scattering * dielectric spectroscopy * viscosity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009

  6. Two-photon exchange corrections in elastic lepton-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz (Germany)

    2015-07-01

    The measured value of the proton charge radius from the Lamb shift of energy levels in muonic hydrogen is in strong contradiction, by 7-8 standard deviations, with the value obtained from electronic hydrogen spectroscopy and the value extracted from unpolarized electron-proton scattering data. The dominant unaccounted higher order contribution in scattering experiments corresponds to the two photon exchange (TPE) diagram. The elastic contribution to the TPE correction was studied with the fixed momentum transfer dispersion relations and compared to the hadronic model with off-shell photon-nucleon vertices. A dispersion relation formalism with one subtraction was proposed. Theoretical predictions of the TPE elastic contribution to the unpolarized elastic electron-proton scattering and polarization transfer observables in the low momentum transfer region were made. The TPE formalism was generalized to the case of massive leptons and the elastic contribution was evaluated for the kinematics of upcoming muon-proton scattering experiment (MUSE).

  7. A machine learning approach to galaxy-LSS classification - I. Imprints on halo merger trees

    Science.gov (United States)

    Hui, Jianan; Aragon, Miguel; Cui, Xinping; Flegal, James M.

    2018-04-01

    The cosmic web plays a major role in the formation and evolution of galaxies and defines, to a large extent, their properties. However, the relation between galaxies and environment is still not well understood. Here, we present a machine learning approach to study imprints of environmental effects on the mass assembly of haloes. We present a galaxy-LSS machine learning classifier based on galaxy properties sensitive to the environment. We then use the classifier to assess the relevance of each property. Correlations between galaxy properties and their cosmic environment can be used to predict galaxy membership to void/wall or filament/cluster with an accuracy of 93 per cent. Our study unveils environmental information encoded in properties of haloes not normally considered directly dependent on the cosmic environment such as merger history and complexity. Understanding the physical mechanism by which the cosmic web is imprinted in a halo can lead to significant improvements in galaxy formation models. This is accomplished by extracting features from galaxy properties and merger trees, computing feature scores for each feature and then applying support vector machine (SVM) to different feature sets. To this end, we have discovered that the shape and depth of the merger tree, formation time, and density of the galaxy are strongly associated with the cosmic environment. We describe a significant improvement in the original classification algorithm by performing LU decomposition of the distance matrix computed by the feature vectors and then using the output of the decomposition as input vectors for SVM.

  8. EXAFS-spectroscopy on synchrotron radiation beam

    CERN Document Server

    Aksenov, V L; Kuzmin, A Y; Purans, Y

    2001-01-01

    In the review the basis theoretical principles of EXAFS spectroscopy are given, as one of principal directions of an absorption spectroscopy permitting with a high accuracy to gain parameters of the short-range order in multicomponent amorphous and quasi-crystal mediums. The methods of the analysis of EXAFS spectra with allowance of effects of multiply scattering are featured. The exposition of the experimental set-ups, which realize the method of EXAFS spectroscopy on beams of SR, requirement of the monochromatization of radiation beams are given. For investigation of phase transition and external effects the energy-dispersive EXAFS spectrometer is creating at the National center of SR Kurchatov Institute which can measure the EXAFS spectrum with a time resolution 3-5 ms. The experimental results on investigation (by the EXAFS spectroscopy method) of oxides of tungsten and molybdenum are given, which have unique property: the variable valence of an ion of metal is depending on external action. The most inter...

  9. Spectroscopy of thin nanodiamond layers and membranes

    Czech Academy of Sciences Publication Activity Database

    Kravets, Roman; Remeš, Zdeněk; Vorlíček, Vladimír; Bryknar, Z.; Nesládek, M.; Potměšil, Jiří; Poruba, Aleš; Vaněček, Milan

    2006-01-01

    Roč. 352, - (2006), s. 1344-1347 ISSN 0022-3093 R&D Projects: GA ČR GA202/05/2233 Institutional research plan: CEZ:AV0Z10100521 Keywords : Raman scattering * chemical vapor deposition * optical spectroscopy * defects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.362, year: 2006

  10. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  11. Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows

    Science.gov (United States)

    Lempert, Walter R.; Adamovich, Igor V.

    2014-10-01

    The paper provides an overview of the use of coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman scattering for diagnostics of low-temperature nonequilibrium plasmas and nonequilibrium high-enthalpy flows. A brief review of the theoretical background of CARS, four-wave mixing and Raman scattering, as well as a discussion of experimental techniques and data reduction, are included. The experimental results reviewed include measurements of vibrational level populations, rotational/translational temperature, electric fields in a quasi-steady-state and transient molecular plasmas and afterglow, in nonequilibrium expansion flows, and behind strong shock waves. Insight into the kinetics of vibrational energy transfer, energy thermalization mechanisms and dynamics of the pulse discharge development, provided by these experiments, is discussed. Availability of short pulse duration, high peak power lasers, as well as broadband dye lasers, makes possible the use of these diagnostics at relatively low pressures, potentially with a sub-nanosecond time resolution, as well as obtaining single laser shot, high signal-to-noise spectra at higher pressures. Possibilities for the development of single-shot 2D CARS imaging and spectroscopy, using picosecond and femtosecond lasers, as well as novel phase matching and detection techniques, are discussed.

  12. Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy.

    Science.gov (United States)

    Yang, Ke R; Matula, Adam J; Kwon, Gihan; Hong, Jiyun; Sheehan, Stafford W; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H; Tiede, David M; Chen, Lin X; Batista, Victor S

    2016-05-04

    The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.

  13. Nuclear spectroscopy with lithium ions

    International Nuclear Information System (INIS)

    Heiser, C.

    1977-02-01

    A survey of the state of nuclear spectroscopy with lithium ions is given. Proceeding from the physical and nuclear properties the specific topics arising by the acceleration of these ions are discussed. The results obtained from measurements of excitation functions of different lithium reactions, particularly of compound reactions, with several target nuclei are summarized. Besides compound reactions direct reactions are important, especially transfer reactions, elastic and inelastic scattering and exchange reactions. The results on high spin states obtained by in-beam gamma-spectroscopy are discussed in detail. Finally the possibilities are considered for accelerating lithium ions in the cyclotron U-120 and in the tandem generator EGP-10 of the ZfK. (author)

  14. Quasielastic neutron scattering in biology: Theory and applications.

    Science.gov (United States)

    Vural, Derya; Hu, Xiaohu; Lindner, Benjamin; Jain, Nitin; Miao, Yinglong; Cheng, Xiaolin; Liu, Zhuo; Hong, Liang; Smith, Jeremy C

    2017-01-01

    Neutrons scatter quasielastically from stochastic, diffusive processes, such as overdamped vibrations, localized diffusion and transitions between energy minima. In biological systems, such as proteins and membranes, these relaxation processes are of considerable physical interest. We review here recent methodological advances and applications of quasielastic neutron scattering (QENS) in biology, concentrating on the role of molecular dynamics simulation in generating data with which neutron profiles can be unambiguously interpreted. We examine the use of massively-parallel computers in calculating scattering functions, and the application of Markov state modeling. The decomposition of MD-derived neutron dynamic susceptibilities is described, and the use of this in combination with NMR spectroscopy. We discuss dynamics at very long times, including approximations to the infinite time mean-square displacement and nonequilibrium aspects of single-protein dynamics. Finally, we examine how neutron scattering and MD can be combined to provide information on lipid nanodomains. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Fringes in FTIR spectroscopy revisited: understanding and modelling fringes in infrared spectroscopy of thin films.

    Science.gov (United States)

    Konevskikh, Tatiana; Ponossov, Arkadi; Blümel, Reinhold; Lukacs, Rozalia; Kohler, Achim

    2015-06-21

    The appearance of fringes in the infrared spectroscopy of thin films seriously hinders the interpretation of chemical bands because fringes change the relative peak heights of chemical spectral bands. Thus, for the correct interpretation of chemical absorption bands, physical properties need to be separated from chemical characteristics. In the paper at hand we revisit the theory of the scattering of infrared radiation at thin absorbing films. Although, in general, scattering and absorption are connected by a complex refractive index, we show that for the scattering of infrared radiation at thin biological films, fringes and chemical absorbance can in good approximation be treated as additive. We further introduce a model-based pre-processing technique for separating fringes from chemical absorbance by extended multiplicative signal correction (EMSC). The technique is validated by simulated and experimental FTIR spectra. It is further shown that EMSC, as opposed to other suggested filtering methods for the removal of fringes, does not remove information related to chemical absorption.

  16. Interband quasiparticle scattering in superconducting LiFeAs reconciles photoemission and tunneling measurements.

    Science.gov (United States)

    Hess, Christian; Sykora, Steffen; Hänke, Torben; Schlegel, Ronny; Baumann, Danny; Zabolotnyy, Volodymyr B; Harnagea, Luminita; Wurmehl, Sabine; van den Brink, Jeroen; Büchner, Bernd

    2013-01-04

    Several angle-resolved photoemission spectroscopy (ARPES) studies reveal a poorly nested Fermi surface of LiFeAs, far away from a spin density wave instability, and clear-cut superconducting gap anisotropies. On the other hand a very different, more nested Fermi surface and dissimilar gap anisotropies have been obtained from quasiparticle interference (QPI) data, which were interpreted as arising from intraband scattering within holelike bands. Here we show that this ARPES-QPI paradox is completely resolved by interband scattering between the holelike bands. The resolution follows from an excellent agreement between experimental quasiparticle scattering data and T-matrix QPI calculations (based on experimental band structure data), which allows disentangling interband and intraband scattering processes.

  17. Measurement of size-dependent single scattering albedo of fresh biomass burning aerosols using the extinction-minus-scattering technique with a combination of cavity ring-down spectroscopy and nephelometry

    Directory of Open Access Journals (Sweden)

    S. Singh

    2016-11-01

    Full Text Available Biomass burning (BB aerosols have a significant effect on regional climate, and represent a significant uncertainty in our understanding of climate change. Using a combination of cavity ring-down spectroscopy and integrating nephelometry, the single scattering albedo (SSA and Ångstrom absorption exponent (AAE were measured for several North American biomass fuels. This was done for several particle diameters for the smoldering and flaming stage of white pine, red oak, and cedar combustion. Measurements were done over a wider wavelength range than any previous direct measurement of BB particles. While the offline sampling system used in this work shows promise, some changes in particle size distribution were observed, and a thorough evaluation of this method is required. The uncertainty of SSA was 6 %, with the truncation angle correction of the nephelometer being the largest contributor to error. While scattering and extinction did show wavelength dependence, SSA did not. SSA values ranged from 0.46 to 0.74, and were not uniformly greater for the smoldering stage than the flaming stage. SSA values changed with particle size, and not systematically so, suggesting the proportion of tar balls to fractal black carbon change with fuel type/state and particle size. SSA differences of 0.15–0.4 or greater can be attributed to fuel type or fuel state for fresh soot. AAE values were quite high (1.59–5.57, despite SSA being lower than is typically observed in wildfires. The SSA and AAE values in this work do not fit well with current schemes that relate these factors to the modified combustion efficiency of a burn. Combustion stage, particle size, fuel type, and fuel condition were found to have the most significant effects on the intrinsic optical properties of fresh soot, though additional factors influence aged soot.

  18. Multiple scattering effects in depth resolution of elastic recoil detection

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S.; Harding, G.L. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Telecommunications and Industrial Physics; Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, Budapest, (Hungary)

    1998-06-01

    Elastic Recoil Detection (ERD) is used to profile hydrogen and other low mass elements in thin films at surface and interfaces in a similar way that Rutherford Backscattering Spectroscopy (RBS) is used to detect and profile heavy elements. It is often assumed that the depth resolutions of these two techniques are similar. However, in contrast to typical RBS, the depth resolution of ERD is limited substantially by multiple scattering. In experimental data analysis and/or spectra simulations of a typical RBS measurement multiple scattering effects are often ignored. Computer programs used in IBA, such as RUMP, HYPRA or RBX do not include multiple scattering effects at all. In this paper, using practical thin metal structures with films containing intentionally introduced hydrogen, we demonstrate experimental ERD depth resolution and sensitivity limitations. The effects of sample material and scattering angle are also discussed. (authors). 19 refs., 4 figs.

  19. Laser absorption spectroscopy of oxygen confined in highly porous hollow sphere xerogel.

    Science.gov (United States)

    Yang, Lin; Somesfalean, Gabriel; He, Sailing

    2014-02-10

    An Al2O3 xerogel with a distinctive microstructure is studied for the application of laser absorption spectroscopy of oxygen. The xerogel has an exceptionally high porosity (up to 88%) and a large pore size (up to 3.6 µm). Using the method of gas-in-scattering media absorption spectroscopy (GASMAS), a long optical path length (about 3.5m) and high enhancement factor (over 300 times) are achieved as the result of extremely strong multiple-scattering when the light is transmitted through the air-filled, hollow-sphere alumina xerogel. We investigate how the micro-physical feature influences the optical property. As part of the optical sensing system, the material's gas exchange dynamics are also experimentally studied.

  20. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    Science.gov (United States)

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  1. Tropospheric nitrogen dioxide inversions based on spectral measurements of scattered sunlight

    NARCIS (Netherlands)

    Vlemmix, T.

    2011-01-01

    This thesis describes the development of inversion methods for tropospheric nitrogen dioxide (NO2), based on ground based observations of scattered sunlight with themulti-axis differential optical absorption spectroscopy (MAX-DOAS) technique. NO2 is an atmospheric trace gas which, when present near

  2. Thomson scattering on COMPASS – commissioning and first data

    Czech Academy of Sciences Publication Activity Database

    Aftanas, Milan; Böhm, Petr; Scannell, R.; Tripsky, M.; Weinzettl, Vladimír; Hron, Martin; Pánek, Radomír; Stöckel, Jan; Walsh, M.; Bílková, Petra

    2012-01-01

    Roč. 7, č. 1 (2012), C01074-C01074 ISSN 1748-0221. [INTERNATIONAL CONFERENCE ON LASER AIDED PLASMA DIAGNOSTICS/15./. Jeju, 13.10.2011-19.10.2011] R&D Projects: GA ČR GA202/09/1467 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thomson scattering * electron temperature * laser diagnostic * Plasma diagnostics - charged-particle spectroscopy * Plasma diagnostics - interferometry * spectroscopy and imaging * tokamak Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.869, year: 2011 http://iopscience.iop.org/1748-0221/7/01/C01074/pdf/1748-0221_7_01_C01074.pdf

  3. Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures.

    Science.gov (United States)

    Xu, Min; Wu, Tao T; Qu, Jianan Y

    2008-01-01

    A unified Mie and fractal model for light scattering by biological cells is presented. This model is shown to provide an excellent global agreement with the angular dependent elastic light scattering spectroscopy of cells over the whole visible range (400 to 700 nm) and at all scattering angles (1.1 to 165 deg) investigated. Mie scattering from the bare cell and the nucleus is found to dominate light scattering in the forward directions, whereas the random fluctuation of the background refractive index within the cell, behaving as a fractal random continuous medium, is found to dominate light scattering at other angles. Angularly dependent elastic light scattering spectroscopy aided by the unified Mie and fractal model is demonstrated to be an effective noninvasive approach to characterize biological cells and their internal structures. The acetowhitening effect induced by applying acetic acid on epithelial cells is investigated as an example. The changes in morphology and refractive index of epithelial cells, nuclei, and subcellular structures after the application of acetic acid are successfully probed and quantified using the proposed approach. The unified Mie and fractal model may serve as the foundation for optical detection of precancerous and cancerous changes in biological cells and tissues based on light scattering techniques.

  4. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy.

    Science.gov (United States)

    Das, Nandan K; Dai, Yichuan; Liu, Peng; Hu, Chuanzhen; Tong, Lieshu; Chen, Xiaoya; Smith, Zachary J

    2017-07-07

    Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field.

  5. Theory of inelastic scattering and absorption of X-rays

    CERN Document Server

    Veenendaal, Michel van

    2015-01-01

    This comprehensive, self-contained guide to X-ray spectroscopy will equip you with everything you need to begin extracting the maximum amount of information available from X-ray spectra. Key topics such as the interaction between X-rays and matter, the basic theory of spectroscopy, and selection and sum rules, are introduced from the ground up, providing a solid theoretical grounding. The book also introduces core underlying concepts such as atomic structure, solid-state effects, the fundamentals of tensor algebra and group theory, many-body interactions, scattering theory, and response functions, placing spectroscopy within a broader conceptual framework, and encouraging a deep understanding of this essential theoretical background. Suitable for graduate students, researchers, materials scientists and optical engineers, this is the definitive guide to the theory behind this powerful and widely used technique.

  6. Surface-Enhanced Raman Scattering in Molecular Junctions.

    Science.gov (United States)

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-08-18

    Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics.

  7. Formation of gold nanorods and gold nanorod films for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Trotsyuk, L.L.; Kulakovich, O.S.; Shabunya-Klyachkovskaya, E.V.; Gaponenko, S.V.; Vashchenko, S.V.

    2016-01-01

    The formation of gold nanorods as well as thin films prepared via electrostatic deposition of gold nanorods has been investigated. The obtained gold nanorods films have been used as substrates for the surface-enhanced Raman scattering analysis of sulfur-free organic molecules mitoxantrone and malachite green as well as inorganic malachite microcrystals for the first time. The additional modification of films with L-cysteine allows one to significantly extend the use of gold nanorods for the surface-enhanced Raman scattering analysis. (authors)

  8. In situ surface-enhanced Raman scattering spectroscopy exploring molecular changes of drug-treated cancer cell nucleus.

    Science.gov (United States)

    Liang, Lijia; Huang, Dianshuai; Wang, Hailong; Li, Haibo; Xu, Shuping; Chang, Yixin; Li, Hui; Yang, Ying-Wei; Liang, Chongyang; Xu, Weiqing

    2015-02-17

    Investigating the molecular changes of cancer cell nucleus with drugs treatment is crucial for the design of new anticancer drugs, the development of novel diagnostic strategies, and the advancement of cancer therapy efficiency. In order to better understand the action effects of drugs, accurate location and in situ acquisition of the molecular information of the cell nuclei are necessary. In this work, we report a microspectroscopic technique called dark-field and fluorescence coimaging assisted surface-enhanced Raman scattering (SERS) spectroscopy, combined with nuclear targeting nanoprobes, to in situ study Soma Gastric Cancer (SGC-7901) cell nuclei treated with two model drugs, e.g., DNA binder (Hoechst33342) and anticancer drug (doxorubicin, Dox) via spectral analysis at the molecular level. Nuclear targeting nanoprobes with an assembly structure of thiol-modified polyethylene glycol polymers (PEG) and nuclear localizing signal peptides (NLS) around gold nanorods (AuNRs) were prepared to achieve the amplified SERS signals of biomolecules in the cell nuclei. With the assistance of dark field/fluorescence imaging with simultaneous location, in situ SERS spectra in one cell nucleus were measured and analyzed to disclose the effects of Hoechst33342 and Dox on main biomolecules in the cell nuclei. The experimental results show that this method possesses great potential to investigate the targets of new anticancer drugs and the real-time monitoring of the dynamic changes of cells caused by exogenous molecules.

  9. In situ characterization of the decomposition behavior of Mg(BH4)2 by X-ray Raman scattering spectroscopy.

    Science.gov (United States)

    Sahle, Christoph J; Kujawski, Simon; Remhof, Arndt; Yan, Yigang; Stadie, Nicholas P; Al-Zein, Ali; Tolan, Metin; Huotari, Simo; Krisch, Michael; Sternemann, Christian

    2016-02-21

    We present an in situ study of the thermal decomposition of Mg(BH4)2 in a hydrogen atmosphere of up to 4 bar and up to 500 °C using X-ray Raman scattering spectroscopy at the boron K-edge and the magnesium L2,3-edges. The combination of the fingerprinting analysis of both edges yields detailed quantitative information on the reaction products during decomposition, an issue of crucial importance in determining whether Mg(BH4)2 can be used as a next-generation hydrogen storage material. This work reveals the formation of reaction intermediate(s) at 300 °C, accompanied by a significant hydrogen release without the occurrence of stable boron compounds such as amorphous boron or MgB12H12. At temperatures between 300 °C and 400 °C, further hydrogen release proceeds via the formation of higher boranes and crystalline MgH2. Above 400 °C, decomposition into the constituting elements takes place. Therefore, at moderate temperatures, Mg(BH4)2 is shown to be a promising high-density hydrogen storage material with great potential for reversible energy storage applications.

  10. Measurement of proton inelastic scattering cross sections on fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, M., E-mail: chiari@fi.infn.it [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Caciolli, A. [Department of Physics and Astronomy, University of Padua and INFN Padua, Padova (Italy); Calzolai, G. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Climent-Font, A. [CMAM, Universidad Autonoma de Madrid, Madrid (Spain); Lucarelli, F.; Nava, S. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy)

    2016-10-01

    Differential cross-sections for proton inelastic scattering on fluorine, {sup 19}F(p,p’){sup 19}F, from the first five excited levels of {sup 19}F at 110, 197, 1346, 1459 and 1554 keV were measured for beam energies from 3 to 7 MeV at a scattering angle of 150° using a LiF thin target (50 μg/cm{sup 2}) evaporated on a self-supporting C thin film (30 μg/cm{sup 2}). Absolute differential cross-sections were calculated with a method not dependent on the absolute values of collected beam charge and detector solid angle. The validity of the measured inelastic scattering cross sections was then tested by successfully reproducing EBS spectra collected from a thick Teflon (CF{sub 2}) target. As a practical application of these measured inelastic scattering cross sections in elastic backscattering spectroscopy (EBS), the feasibility of quantitative light element (C, N and O) analysis in aerosol particulate matter samples collected on Teflon by EBS measurements and spectra simulation is demonstrated.

  11. The Nanofabrication and Application of Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    2012-01-01

    Full Text Available Surface-enhanced Raman scattering (SERS was discovered in 1974 and impacted Raman spectroscopy and surface science. Although SERS has not been developed to be an applicable detection tool so far, nanotechnology has promoted its development in recent decades. The traditional SERS substrates, such as silver electrode, metal island film, and silver colloid, cannot be applied because of their enhancement factor or stability, but newly developed substrates, such as electrochemical deposition surface, Ag porous film, and surface-confined colloids, have better sensitivity and stability. Surface enhanced Raman scattering is applied in other fields such as detection of chemical pollutant, biomolecules, DNA, bacteria, and so forth. In this paper, the development of nanofabrication and application of surface-enhanced Ramans scattering substrate are discussed.

  12. The double-resonance enhancement of stimulated low-frequency Raman scattering in silver-capped nanodiamonds

    Science.gov (United States)

    Baranov, A. N.; Butsen, A. V.; Ionin, A. A.; Ivanova, A. K.; Kuchmizhak, A. A.; Kudryashov, S. I.; Kudryavtseva, A. D.; Levchenko, A. O.; Rudenko, A. A.; Saraeva, I. N.; Strokov, M. A.; Tcherniega, N. V.; Zayarny, D. A.

    2017-09-01

    Hybrid plasmonic-dielectric nano- and (sub)microparticles exhibit magnetic and electrical dipolar Mie-resonances, which makes them useful as efficient basic elements in surface-enhanced spectroscopy, non-linear light conversion and nanoscale light control. We report the stimulated low-frequency Raman scattering (SLFRS) of a nanosecond ruby laser radiation (central wavelength λ = 694.3 nm (full-width at half-maximum ≈ 0.015 cm-1), gaussian 1/e-intensity pulsewidth τ ≈ 20 ns, TEM00-mode pulse energy Emax ≈ 0.3 J) in nanodiamond (R ≈ 120 nm) hydrosols, induced via optomechanical coherent excitation of fundamental breathing eigen-modes, and the two-fold enhancement of SLFRS in Ag-decorated nanodiamonds, characterized by hybrid dipolar resonances of electrical (silver) and magnetic (diamond) nature. Hybrid metal-dielectric particles were prepared by means of nanosecond IR-laser ablation of solid silver target in diamond hydrosols with consecutive Ag-capping of diamonds, and were characterized by scanning electron microscopy, UV-vis, photoluminescence and energy-dispersive X-ray spectroscopy. Intensities of the SLFR-scattered components and their size-dependent spectral shifts were measured in the highly sensitive stimulated scattering regime, indicating the high (≈ 30%) SLFRS conversion efficiency and the resonant character of the scattering species.

  13. Highly-resolving Rutherford-scattering spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Klein, C.

    2003-10-01

    in the present thesis for the first time the Browne-Buechner spectrometer for the highly resolving ion-beam analysis in the ion beam center Rossendorf is completely presented. A main topic of this theis lied in the apparative construction and the taking-into-operation of the spectrometer and the scattering chamber including the facilities for the sample treatment and characterization. In the framework of this thesis for the chosen measurement arrangement the experimental conditions were elaborated, which allow the routine-like application of the spectrometer for analyses of thin-film systems. for C and Li ions as incident particles especially the straggling was more precisely determined in a large range of materials. By means of the spectrometer also the interaction of the ion with the solid respectively single atoms on its surface could be studied. For the first time the mean charge-state after the single collision on a gold atom was determined for differently heavy ions in a wide energy range

  14. Resonant X-ray Scattering of carbonyl sulfide at the sulfur K edge

    International Nuclear Information System (INIS)

    Journel, Loïc; Marchenko, Tatiana; Guillemin, Renaud; Kawerk, Elie; Simon, Marc; Kavčič, Matjaž; Žit-nik, Matjaž; Bučar, Klemen; Bohinc, Rok

    2015-01-01

    New results on free OCS molecules have been obtained using Resonant X-ray Inelastic Scattering spectroscopy. A deconvolution algorithm has been applied to improve the energy resolution spectra of which we can extract detailed information on nuclear dynamics in the system. (paper)

  15. Resonant X-ray Scattering of carbonyl sulfide at the sulfur K edge

    OpenAIRE

    Journel , Loïc; Marchenko , Tatiana; Guillemin , Renaud; Kawerk , Elie; Kavčič , Matjaž; Žit-nik , Matjaž; Bučar , Klemen; Bohinc , Rok; Simon , Marc

    2015-01-01

    International audience; New results on free OCS molecules have been obtained using Resonant X-ray Inelastic Scattering spectroscopy. A deconvolution algorithm has been applied to improve the energy resolution spectra of which we can extract detailed information on nuclear dynamics in the system.

  16. Development of a Raman spectrometer to study surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Biswas, Nandita; Chadha, Ridhima; Kapoor, Sudhir; Sarkar, Sisir K.; Mukherjee, Tulsi

    2011-02-01

    Raman spectroscopy is an important tool, which provides enormous information on the vibrational and structural details of materials. This understanding is not only interesting due to its fundamental importance, but also of considerable importance in optoelectronics and device applications of these materials in nanotechnology. In this report, we begin with a brief introduction on the Raman effect and various Raman scattering techniques, followed by a detailed discussion on the development of an instrument with home-built collection optics attachment. This Raman system consists of a pulsed laser excitation source, a sample compartment, collection optics to collect the scattered light, a notch filter to reject the intense laser light, a monochromator to disperse the scattered light and a detector to detect the Raman signal. After calibrating the Raman spectrometer with standard solvents, we present our results on Surface-Enhanced Raman Scattering (SERS) investigations on three different kinds of chemical systems. (author)

  17. Moessbauer spectroscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Bergmann, U.

    1994-01-01

    The short pulse nature of synchrotron radiation makes it possible to perform Moessbauer spectroscopy in the time domain, i.e. instead of measuring the transmitted intensity time integrated as a function of source/absorber velocity, the intensity of the scattered radiation is measured time differential. The resulting time spectrum is essentially source independent and complications in the data analysis which are related to the radioactive source are completely removed. Furthermore, the large brightness and well defined polarization of the synchrotron radiation can, e.g., speed up the data collection and facilitate studies of polarization phenomena. To illustrate these new spectroscopic possibilities, measurements of the temperature dependence and polarization dependence of forward scattering from alpha - sup 5 sup 7 Fe nuclei are presented and discussed 26 refs., 5 figs. (author)

  18. Studies of ultrathin magnetic films and particle-surface interactions with spin-sensitive electron spectroscopies

    International Nuclear Information System (INIS)

    Walters, G.K.; Dunning, F.B.

    1991-06-01

    Research during the current grant year has focused on: Investigation of probing depth in electron scattering from epitaxially grown paramagnetic films by means of Spin-Polarized Electron Energy Loss Spectroscopy; and studies of the dynamics of metastable He(2 3 S) deexcitation at surfaces utilizing Spin-Polarized Metastable Deexcitation Spectroscopy . This report discussed this research

  19. Raman spectroscopy in pharmaceutical product design

    DEFF Research Database (Denmark)

    Paudel, Amrit; Raijada, Dhara; Rantanen, Jukka

    2015-01-01

    Almost 100 years after the discovery of the Raman scattering phenomenon, related analytical techniques have emerged as important tools in biomedical sciences. Raman spectroscopy and microscopy are frontier, non-invasive analytical techniques amenable for diverse biomedical areas, ranging from...... molecular-based drug discovery, design of innovative drug delivery systems and quality control of finished products. This review presents concise accounts of various conventional and emerging Raman instrumentations including associated hyphenated tools of pharmaceutical interest. Moreover, relevant...... application cases of Raman spectroscopy in early and late phase pharmaceutical development, process analysis and micro-structural analysis of drug delivery systems are introduced. Finally, potential areas of future advancement and application of Raman spectroscopic techniques are discussed....

  20. Sol–gel derived scattering layers as substrates for thin-film photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Hegmann, Jan [Lehrstuhl für Chemische Technologie der Materialsynthese, Universität Würzburg, Röntgenring 11, 97070 Würzburg (Germany); Mandl, Magdalena [Fraunhofer-Institut für Silicatforschung, Neunerplatz 2, 97082 Würzburg (Germany); Löbmann, Peer, E-mail: peer.loebmann@isc.fraunhofer.de [Fraunhofer-Institut für Silicatforschung, Neunerplatz 2, 97082 Würzburg (Germany)

    2014-08-01

    Agglomerated silica particles were coated on glass by dip-coating; the resulting films exhibited optical scattering. With constant optical transmittances > 80% their haze could be modified by the withdrawal rate applied for the respective deposition procedure. Film thickness, surface topography and coverage of the substrate were characterized by Scanning Electron Microscopy and Atomic Force Microscopy. For the use in radiation management in thin-film silicon solar cells in a first step the scattering layers were coated with aluminum-doped zinc oxide by sputtering; the optical performance of the resulting bilayer was characterized by haze measurements and angle resolved scattering spectroscopy. Quantum efficiencies of complete solar cells could be determined after the deposition of a hydrogenated amorphous Si/hydrogenated microcrystalline Si tandem absorber and application of metallic back contacts. It turned out that the external quantum efficiency of the resulting cells is not directly related to the light scattering performance of the scattering layer used. - Highlights: • Characterization of sol–gel scattering layers • Combination of different coating-technologies to prepare stacks with optical functionality • Comprehensive material preparation and characterization for complex multilayer.

  1. On the metallicity gradients of the Galactic disk as revealed by LSS-GAC red clump stars

    Science.gov (United States)

    Huang, Yang; Liu, Xiao-Wei; Zhang, Hua-Wei; Yuan, Hai-Bo; Xiang, Mao-Sheng; Chen, Bing-Qiu; Ren, Juan-Juan; Sun, Ning-Chen; Wang, Chun; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei; Yang, Ming

    2015-08-01

    Using a sample of over 70 000 red clump (RC) stars with 5%-10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC), we study the radial and vertical gradients of the Galactic disk(s) mainly in the anti-center direction, covering a significant volume of the disk in the range of projected Galactocentric radius 7 ≤ RGC ≤ 14 kpc and height from the Galactic midplane 0 ≤ |Z| ≤ 3 kpc. Our analysis shows that both the radial and vertical metallicity gradients are negative across much of the volume of the disk that is probed, and they exhibit significant spatial variations. Near the solar circle (7 ≤ RGC ≤ 115 kpc), the radial gradient has a moderately steep, negative slope of -0.08 dex kpc-1 near the midplane (|Z| plane, suggesting that the outer disk may have experienced an evolutionary path different from that of the inner disk. The vertical gradients are found to flatten largely with increasing RGC. However, the vertical gradient of the lower disk (0 ≤ |Z| ≤ 1 kpc) is found to flatten with RGC quicker than that of the upper disk (1 < |Z| ≤ 3 kpc). Our results should provide strong constraints on the theory of disk formation and evolution, as well as the underlying physical processes that shape the disk (e.g. gas flows, radial migration, and internal and external perturbations).

  2. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Butorin, S.M.; Guo, J.; Magnuson, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  3. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-01-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state

  4. Laser spectroscopy applied to environmental, ecological, food safety, and biomedical research.

    Science.gov (United States)

    Svanberg, Sune; Zhao, Guangyu; Zhang, Hao; Huang, Jing; Lian, Ming; Li, Tianqi; Zhu, Shiming; Li, Yiyun; Duan, Zheng; Lin, Huiying; Svanberg, Katarina

    2016-03-21

    Laser spectroscopy provides many possibilities for multi-disciplinary applications in environmental monitoring, in the ecological field, for food safety investigations, and in biomedicine. The paper gives several examples of the power of multi-disciplinary applications of laser spectroscopy as pursued in our research group. The studies utilize mostly similar and widely applicable spectroscopic approaches. Air pollution and vegetation monitoring by lidar techniques, as well as agricultural pest insect monitoring and classification by elastic scattering and fluorescence spectroscopy are described. Biomedical aspects include food safety applications and medical diagnostics of sinusitis and otitis, with strong connection to the abatement of antibiotics resistance development.

  5. Enhanced Raman Scattering from NCM523 Cathodes Coated with Electrochemically Deposited Gold

    Energy Technology Data Exchange (ETDEWEB)

    Tornheim, Adam; Maroni, Victor A.; He, Meinan; Gosztola, David J.; Zhang, Zhengcheng

    2017-01-01

    Materials with the general composition LiMO2, where M is a mix of nickel, cobalt, and manganese, have been studied extensively as cathodes for lithium-based electrochemical cells. Some compositions, like LiNi0.5Co0.2Mn0.3O2 (NCM523), have already found application in commercial lithium-ion batteries. Pre-test and post-test analyses of these types of cathodes have benefited greatly from the use of Raman spectroscopy. Specifically, Raman spectroscopy can be used to investigate the phonons of the LiMO2 lattice. This is particularly useful for studies of the LiMO2 after it has been formed into the type of polymer-bonded laminate from which typical battery cathodes are cut. One of the problems that occurs in such studies is that the scattering from the LiMO2 phase gets progressively weaker as the nickel content increases. NCM523 poses one example of this behavior owing to the fact that half of the transition metal content is nickel. In this study we show that the intensity of the Raman scattering from the NCM523 phonons can be significantly increased by electroplating clusters of sub-micron gold particles on NCM523-containing laminate structures. The gold appears to plate somewhat selectively on the NCM523 particles in randomly sized clusters. These clusters stimulate the Raman scattering from the NCM523 to varying extents that can reach nearly 100 times the scattering intensity from uncoated pristine laminates.

  6. Neutron spectroscopy for confinement studies

    International Nuclear Information System (INIS)

    Zorn, R.

    2010-01-01

    Neutron spectroscopy is an important method for the study of microscopic dynamics because it captures the spatial as well as the temporal aspects of the atomic or molecular motion. In this article techniques will be presented which are of special importance for the study of confined systems. Many of these are based on the fact that neutron scattering is isotope-dependent. Possible sources of systematic errors in measurements of confined systems will be pointed out. (author)

  7. Atom location using recoil ion spectroscopy

    International Nuclear Information System (INIS)

    O'Connor, D.J.

    1985-01-01

    Low energy ion scattering (LEIS) using inert gas and alkali ions is widely used in studies of the surface atomic layer. The extreme surface sensitivity of this technique ensures that it yields both compositional and structural information on clean and adsorbate covered surfaces. Low Energy Negative recoil Spectroscopy (LENRS) has been applied to a study of oxygen on Ni(110) to gauge the sensitivity to coverage and site location

  8. Raman spectroscopy in graphene

    International Nuclear Information System (INIS)

    Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.

    2009-01-01

    Recent Raman scattering studies in different types of graphene samples are reviewed here. We first discuss the first-order and the double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features. The determination of the number of layers in few-layer graphene is discussed, giving special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal (AB) configuration. Different types of graphene samples produced both by exfoliation and using epitaxial methods are described and their Raman spectra are compared with those of 3D crystalline graphite and turbostratic graphite, in which the layers are stacked with rotational disorder. We show that Resonance Raman studies, where the energy of the excitation laser line can be tuned continuously, can be used to probe electrons and phonons near the Dirac point of graphene and, in particular allowing a determination to be made of the tight-binding parameters for bilayer graphene. The special process of electron-phonon interaction that renormalizes the phonon energy giving rise to the Kohn anomaly is discussed, and is illustrated by gated experiments where the position of the Fermi level can be changed experimentally. Finally, we discuss the ability of distinguishing armchair and zig-zag edges by Raman spectroscopy and studies in graphene nanoribbons in which the Raman signal is enhanced due to resonance with singularities in the density of electronic states.

  9. Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers

    DEFF Research Database (Denmark)

    Andresen, Esben Ravn; Paulsen, Henrik Nørgaard; Birkedal, Victoria

    2006-01-01

    We demonstrate spectral multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy and microscopy based on a single Ti:sapphire oscillator and a nonlinear photonic-crystal fiber (PCF). The Stokes pulse is generated by spectral conversion of the laser pulse in a PCF. The pump pulse is eit...

  10. Modelling high-resolution electron microscopy based on core-loss spectroscopy

    International Nuclear Information System (INIS)

    Allen, L.J.; Findlay, S.D.; Oxley, M.P.; Witte, C.; Zaluzec, N.J.

    2006-01-01

    There are a number of factors affecting the formation of images based on core-loss spectroscopy in high-resolution electron microscopy. We demonstrate unambiguously the need to use a full nonlocal description of the effective core-loss interaction for experimental results obtained from high angular resolution electron channelling electron spectroscopy. The implications of this model are investigated for atomic resolution scanning transmission electron microscopy. Simulations are used to demonstrate that core-loss spectroscopy images formed using fine probes proposed for future microscopes can result in images that do not correspond visually with the structure that has led to their formation. In this context, we also examine the effect of varying detector geometries. The importance of the contribution to core-loss spectroscopy images by dechannelled or diffusely scattered electrons is reiterated here

  11. Measurements of scattering processes in negative ion-atom collisions

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1992-01-01

    This Technical Progress Report describes the progress made on the research objectives during the past twelve months. This research project is designed to provide measurements of various scattering processes which occur in H - collisions with atomic (specifically, noble gas and atomic hydrogen) targets at intermediate energies. These processes include: elastic scattering,single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H - is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements in progress will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion-atom collisions. This series of experiments required the construction of a new facility and the initial ion beam was accelerated through the apparatus in April 1991

  12. Gas analysis within remote porous targets using LIDAR multi-scatter techniques

    Science.gov (United States)

    Guan, Z. G.; Lewander, M.; Grönlund, R.; Lundberg, H.; Svanberg, S.

    2008-11-01

    Light detection and ranging (LIDAR) experiments are normally pursued for range resolved atmospheric gas measurements or for analysis of solid target surfaces using fluorescence of laser-induced breakdown spectroscopy. In contrast, we now demonstrate the monitoring of free gas enclosed in pores of materials, subject to impinging laser radiation, employing the photons emerging back to the surface laterally of the injection point after penetrating the medium in heavy multiple scattering processes. The directly reflected light is blocked by a beam stop. The technique presented is a remote version of the newly introduced gas in scattering media absorption spectroscopy (GASMAS) technique, which so far was pursued with the injection optics and the detector in close contact with the sample. Feasibility measurements of LIDAR-GASMAS on oxygen in polystyrene foam were performed at a distance of 6 m. Multiple-scattering induced delays of the order of 50 ns, which corresponds to 15 m optical path length, were observed. First extensions to a range of 60 m are discussed. Remote observation of gas composition anomalies in snow using differential absorption LIDAR (DIAL) may find application in avalanche victim localization or for leak detection in snow-covered natural gas pipelines. Further, the techniques may be even more useful for short-range, non-intrusive GASMAS measurements, e.g., on packed food products.

  13. Water-induced morphology changes in an ultrathin silver film studied by ultraviolet-visible, surface-enhanced Raman scattering spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Li Xiaoling; Xu Weiqing; Jia Huiying; Wang Xu; Zhao Bing; Li Bofu; Ozaki, Yukihiro

    2005-01-01

    Water-induced changes in the morphology and optical properties of an ultrathin Ag film (3 nm thickness) have been studied by use of ultraviolet-visible (UV-Vis) spectroscopy, atomic force microscopy (AFM) and surface-enhanced Raman scattering (SERS) spectroscopy. A confocal micrograph shows that infinite regular Ag rings with almost uniform size (4 μm) emerge on the film surface after the ultrathin Ag film was immersed into water. The AFM measurement further confirms that the Ag rings consist of some metal holes with pillared edges. The UV-Vis spectrum shows that an absorption band at 486 nm of the Ag film after the immersion in water (I-Ag film) blue shifts by 66 nm with a significant decrease in absorbance, which is attributed to the macroscopic loss of some Ag atoms and the change in the morphology of the Ag film. The polarized UV-Vis spectra show that a band at 421 nm due to the normal component of the plasmon oscillation blue shifts after immersing the ultrathin Ag film into water. This band is found to be strongly angle-dependent for p-polarized light, indicating that the optical properties of the ultrathin Ag film are changed. The I-Ag film is SERS-active, and the SERS enhancement depends on different active sites on the film surface. Furthermore, it seems that the orientation of an adsorbate is related to the morphology of the I-Ag film

  14. HIFI - a dedicated HIgh-FIeld diffraction and spectroscopy instrument

    International Nuclear Information System (INIS)

    Steffens, P.; Enderle, M.; Boehm, M.; Roux, S.

    2011-01-01

    The outstanding scientific impact of single-crystal neutron diffraction and spectroscopy in steady state vertical magnetic fields up to 15 T (17 T without dilution fringe) is reflected in numerous high-profile publications. Magnetic fields 30 T - 35 T in vertical geometry allow to address enigmatic questions without equivalence at lower fields. The constraints implied by such magnetic fields demand a specially designed dedicated instrument. Since the vertical field geometry is crucial for single-crystal diffraction as well as spectroscopy, the solid angle of scattered neutrons is restricted, and a high-flux reactor is best suited to host a corresponding instrument. We propose a world-wide unique versatile instrument for diffraction and spectroscopy in vertical steady fields of 30 T. (authors)

  15. Coherence factors in a high-tc cuprate probed by quasi-particle scattering off vortices.

    Science.gov (United States)

    Hanaguri, T; Kohsaka, Y; Ono, M; Maltseva, M; Coleman, P; Yamada, I; Azuma, M; Takano, M; Ohishi, K; Takagi, H

    2009-02-13

    When electrons pair in a superconductor, quasi-particles develop an acute sensitivity to different types of scattering potential that is described by the appearance of coherence factors in the scattering amplitudes. Although the effects of coherence factors are well established in isotropic superconductors, they are much harder to detect in their anisotropic counterparts, such as high-superconducting-transition-temperature cuprates. We demonstrate an approach that highlights the momentum-dependent coherence factors in Ca2-xNaxCuO2Cl2. We used Fourier-transform scanning tunneling spectroscopy to reveal a magnetic-field dependence in quasi-particle scattering interference patterns that is sensitive to the sign of the anisotropic gap. This result is associated with the d-wave coherence factors and quasi-particle scattering off vortices. Our technique thus provides insights into the nature of electron pairing as well as quasi-particle scattering processes in unconventional superconductors.

  16. Neutron scattering in chemistry (scattering from layer lattices and their intercalation compounds - an illustration)

    International Nuclear Information System (INIS)

    White, J.W.

    1983-01-01

    Three cases of molecules on a free surface or inside layer lattice intercalation compounds are discussed to illustrate the use of neutron scattering techniques. The first is the second stage alkali metal-graphite intercalation compounds such as C 24 Cs which adsorb hydrogen, methane and other gases. The second case is methane physisorbed on the basal plane of graphite where the methane-methane interactions are relatively strong. Rotational tunnelling spectroscopy is sensitive to the parameters of the potential. The third case is that of water physisorbed on clay materials such as vermiculite or montmorillonite where the layer thickness can be changed from one to fifty layers. (UK)

  17. Theoretical Modeling of Various Spectroscopies for Cuprates and Topological Insulators

    Science.gov (United States)

    Basak, Susmita

    Spectroscopies resolved highly in momentum, energy and/or spatial dimensions are playing an important role in unraveling key properties of wide classes of novel materials. However, spectroscopies do not usually provide a direct map of the underlying electronic spectrum, but act as a complex 'filter' to produce a 'mapping' of the underlying energy levels, Fermi surfaces (FSs) and excitation spectra. The connection between the electronic spectrum and the measured spectra is described as a generalized 'matrix element effect'. The nature of the matrix element involved differs greatly between different spectroscopies. For example, in angle-resolved photoemission (ARPES) an incoming photon knocks out an electron from the sample and the energy and momentum of the photoemitted electron is measured. This is quite different from what happens in K-edge resonant inelastic X-ray scattering (RIXS), where an X-ray photon is scattered after inducing electronic transitions near the Fermi energy through an indirect second order process, or in Compton scattering where the incident X-ray photon is scattered inelastically from an electron transferring energy and momentum to the scattering electron. For any given spectroscopy, the matrix element is, in general, a complex function of the phase space of the experiment, e.g. energy/polarization of the incoming photon and the energy/momentum/spin of the photoemitted electron in the case of ARPES. The matrix element can enhance or suppress signals from specific states, or merge signals of groups of states, making a good understanding of the matrix element effects important for not only a robust interpretation of the spectra, but also for ascertaining optimal regions of the experimental phase space for zooming in on states of the greatest interest. In this thesis I discuss a comprehensive scheme for modeling various highly resolved spectroscopies of the cuprates and topological insulators (TIs) where effects of matrix element, crystal

  18. Extended wavelength anisotropy resolved multidimensional emission spectroscopy (ARMES) measurements: better filters, validation standards, and Rayleigh scatter removal methods

    Science.gov (United States)

    Casamayou-Boucau, Yannick; Ryder, Alan G.

    2017-09-01

    Anisotropy resolved multidimensional emission spectroscopy (ARMES) provides valuable insights into multi-fluorophore proteins (Groza et al 2015 Anal. Chim. Acta 886 133-42). Fluorescence anisotropy adds to the multidimensional fluorescence dataset information about the physical size of the fluorophores and/or the rigidity of the surrounding micro-environment. The first ARMES studies used standard thin film polarizers (TFP) that had negligible transmission between 250 and 290 nm, preventing accurate measurement of intrinsic protein fluorescence from tyrosine and tryptophan. Replacing TFP with pairs of broadband wire grid polarizers enabled standard fluorescence spectrometers to accurately measure anisotropies between 250 and 300 nm, which was validated with solutions of perylene in the UV and Erythrosin B and Phloxine B in the visible. In all cases, anisotropies were accurate to better than ±1% when compared to literature measurements made with Glan Thompson or TFP polarizers. Better dual wire grid polarizer UV transmittance and the use of excitation-emission matrix measurements for ARMES required complete Rayleigh scatter elimination. This was achieved by chemometric modelling rather than classical interpolation, which enabled the acquisition of pure anisotropy patterns over wider spectral ranges. In combination, these three improvements permit the accurate implementation of ARMES for studying intrinsic protein fluorescence.

  19. Reciprocity in quantum, electromagnetic and other wave scattering

    International Nuclear Information System (INIS)

    Deák, L.; Fülöp, T.

    2012-01-01

    The reciprocity principle is that, when an emitted wave gets scattered on an object, the scattering transition amplitude does not change if we interchange the source and the detector—in other words, if incoming waves are interchanged with appropriate outgoing ones. Reciprocity is sometimes confused with time reversal invariance, or with invariance under the rotation that interchanges the location of the source and the location of the detector. Actually, reciprocity covers the former as a special case, and is fundamentally different from–but can be usefully combined with–the latter. Reciprocity can be proved as a theorem in many situations and is found violated in other cases. The paper presents a general treatment of reciprocity, discusses important examples, shows applications in the field of photon (Mössbauer) scattering, and establishes a fruitful connection with a recently developing area of mathematics. - Highlights: ► A frame independent generalized reciprocity theorem of scattering theory is given. ► Reciprocity for two spin/polarization degrees of freedom is detailed. ► Relationship of reciprocity to time reversal and to 180 degree rotation is discussed. ► Reciprocal and nonreciprocal settings in Mossbauer spectroscopy are studied. ► The symmetry of diffuse omega-scans is explained with the aid of reciprocity.

  20. Vibrational spectroscopy of superconducting MgB2 by neutron inelastic scattering

    International Nuclear Information System (INIS)

    Muranaka, Takahiro

    2001-01-01

    Neutron inelastic scattering measurements have been performed on superconducting MgB 2 above and below T c . The temperature dependence of the generalized phonon density-of-states showed clear anomalous behaviour near 24 meV in the acoustic phonon region, which may be interpreted as evidence of a substantial contribution to the total electron-phonon coupling strength deriving from these phonons. Weaker evidence for a corresponding response in the high-energy B bond stretching phonons was also encountered. (author)

  1. On the study of the transfer ionization reactions at super small scattering angles

    International Nuclear Information System (INIS)

    Popov, Yu.V.; Chuluunbaatar, O.; Vinitskij, S.I.; Ancarani, L.U.; Dal Cappello, C.; Vinitskij, P.S.

    2002-01-01

    The hypothesis that the reaction p + He → H + He ++ + e at super small scattering angles of hydrogen can be used for purposes of the angular spectroscopy of electron-electron correlations in the target is considered. It is shown that this hypothesis is untenable

  2. On the Study of the Transfer Ionization Reactions at Super Small Scattering Angles

    CERN Document Server

    Popov, Yu V; Vinitsky, S I; Ancarani, L U; Dal Cappello, C; Vinitsky, P S

    2002-01-01

    The hypothesis that the reaction p + He\\to H + He^{++} + e at super small scattering angles of hydrogen can be used for purposes of the angular spectroscopy of electron-electron correlations in the target is considered. It is shown that this hypothesis is insolvent.

  3. Practical guide to surface science and spectroscopy

    CERN Document Server

    Chung, Yip-Wah

    2001-01-01

    Practical Guide to Surface Science and Spectroscopy provides a practical introduction to surface science as well as describes the basic analytical techniques that researchers use to understand what occurs at the surfaces of materials and at their interfaces. These techniques include auger electron spectroscopy, photoelectron spectroscopy, inelastic scattering of electrons and ions, low energy electron diffraction, scanning probe microscopy, and interfacial segregation. Understanding the behavior of materials at their surfaces is essential for materials scientists and engineers as they design and fabricate microelectronics and semiconductor devices. The book gives over 100 examples, discussion questions and problems with varying levels of difficulty. Included with this book is a CD-ROM, which not only contains the same information, but also provides many elements of animation and interaction that are not easily emulated on paper. In diverse subject matters ranging from the operation of ion pumps, computer-...

  4. Multiple-scattering theory. New developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Arthur

    2007-12-04

    Multiple-scattering theory (MST) is a very efficient technique for calculating the electronic properties of an assembly of atoms. It provides explicitly the Green function, which can be used in many applications such as magnetism, transport and spectroscopy. This work gives an overview on recent developments of multiple-scattering theory. One of the important innovations is the multiple scattering implementation of the self-interaction correction approach, which enables realistic electronic structure calculations of systems with localized electrons. Combined with the coherent potential approximation (CPA), this method can be applied for studying the electronic structure of alloys and as well as pseudo-alloys representing charge and spin disorder. This formalism is extended to finite temperatures which allows to investigate phase transitions and thermal fluctuations in correlated materials. Another novel development is the implementation of the self-consistent non-local CPA approach, which takes into account charge correlations around the CPA average and chemical short range order. This formalism is generalized to the relativistic treatment of magnetically ordered systems. Furthermore, several improvements are implemented to optimize the computational performance and to increase the accuracy of the KKR Green function method. The versatility of the approach is illustrated in numerous applications. (orig.)

  5. Multiple-scattering theory. New developments and applications

    International Nuclear Information System (INIS)

    Ernst, Arthur

    2007-01-01

    Multiple-scattering theory (MST) is a very efficient technique for calculating the electronic properties of an assembly of atoms. It provides explicitly the Green function, which can be used in many applications such as magnetism, transport and spectroscopy. This work gives an overview on recent developments of multiple-scattering theory. One of the important innovations is the multiple scattering implementation of the self-interaction correction approach, which enables realistic electronic structure calculations of systems with localized electrons. Combined with the coherent potential approximation (CPA), this method can be applied for studying the electronic structure of alloys and as well as pseudo-alloys representing charge and spin disorder. This formalism is extended to finite temperatures which allows to investigate phase transitions and thermal fluctuations in correlated materials. Another novel development is the implementation of the self-consistent non-local CPA approach, which takes into account charge correlations around the CPA average and chemical short range order. This formalism is generalized to the relativistic treatment of magnetically ordered systems. Furthermore, several improvements are implemented to optimize the computational performance and to increase the accuracy of the KKR Green function method. The versatility of the approach is illustrated in numerous applications. (orig.)

  6. CARS and Raman spectroscopy of function-related conformational changes of chymotrypsin

    NARCIS (Netherlands)

    Brandt, N.N.; Chikishev, A.Yu.; Chikishev, A.Y.; Greve, Jan; Koroteev, N.I.; Otto, Cornelis; Sakodinskaya, I.K.; Sakodynskaya, I.K.

    2000-01-01

    We report on the comparative analysis of the conformation-sensitive bands of free enzyme (chymotrypsin), liganded enzyme (chymotrypsin anthranilate) and enzyme complex with 18-crown-6. The studies were carried out by Raman scattering spectroscopy and polarization-sensitive coherent anti-Stokes Raman

  7. Surface-enhanced Raman scattering reveals adsorption of mitoxantrone on plasma membrane of living cells

    International Nuclear Information System (INIS)

    Breuzard, G.; Angiboust, J.-F.; Jeannesson, P.; Manfait, M.; Millot, J.-M.

    2004-01-01

    Surface-enhanced Raman scattering (SERS) spectroscopy was applied to analyze mitoxantrone (MTX) adsorption on the plasma membrane microenvironment of sensitive (HCT-116 S) or BCRP/MXR-type resistant (HCT-116 R) cells. The addition of silver colloid to MTX-treated cells revealed an enhanced Raman scattering of MTX. Addition of extracellular DNA induced a total extinction of MTX Raman intensity for both cell lines, which revealed an adsorption of MTX on plasma membrane. A threefold higher MTX Raman intensity was observed for HCT-116 R, suggesting a tight MTX adsorption in the plasma membrane microenvironment. Fluorescence confocal microscopy confirmed a relative MTX emission around plasma membrane for HCT-116 R. After 30 min at 4 deg. C, a threefold decrease of the MTX Raman scattering was observed for HCT-116 R, contrary to HCT-116 S. Permeation with benzyl alcohol revealed a threefold decrease of membrane MTX adsorption on HCT-116 R, exclusively. This additional MTX adsorption should correspond to the drug bound to an unstable site on the HCT-116 R membrane. This study showed that SERS spectroscopy could be a direct method to reveal drug adsorption to the membrane environment of living cells

  8. Positron annihilation spectroscopy using high-energy photons

    International Nuclear Information System (INIS)

    Butterling, Maik; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Anwand, Wolfgang; Brauer, Gerhard; Cowan, Thomas E.; Hartmann, Andreas; Kosev, Krasimir; Schwengner, Ronald; Wagner, Andreas

    2010-01-01

    The superconducting electron accelerator ELBE (Electron Linac with high Brilliance and low Emittance) at the Research Centre Dresden-Rossendorf (Germany) serves as a high-intensity bremsstrahlung photon-source delivering a pulsed beam (26 MHz) with very short bunches (<5 ps). The photons are being converted into positrons by means of pair production inside the target material thus forming an intense positron source. The accelerator machine pulse is used as time reference allowing positron lifetime spectroscopy. We performed positron annihilation spectroscopy by pair production in different sample materials and used coincidence techniques to reduce the background due to scattered photons significantly in order resulting in spectra of extraordinary high quality. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Blanda, Giuseppe [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Piazza, Salvatore; Sunseri, Carmelo [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Inguanta, Rosalinda, E-mail: rosalinda.inguanta@unipa.it [Laboratorio di Chimica Fisica Applicata, Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO{sub 4}·H{sub 2}O; HA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO{sub 3}){sub 2}·4H{sub 2}O and NH{sub 4}H{sub 2}PO{sub 4} by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50 °C for all deposition times, while at 25 °C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. - Highlights: • Brushite/hydroxyapatite coatings were obtained by a galvanic deposition method. • Galvanic deposition is simple and cheap and does not require external power supply. • Temperature is a key parameter to control composition and morphology of coatings. • Ca/P ratio changes with deposition time, from about 1 up to an optimum value of 1.7. • Compact and adherent layer covering substrate surface were obtained on 316LSS.

  10. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel

    International Nuclear Information System (INIS)

    Blanda, Giuseppe; Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia; Piazza, Salvatore; Sunseri, Carmelo; Inguanta, Rosalinda

    2016-01-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO_4·H_2O; HA, Ca_1_0(PO_4)_6(OH)_2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO_3)_2·4H_2O and NH_4H_2PO_4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50 °C for all deposition times, while at 25 °C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. - Highlights: • Brushite/hydroxyapatite coatings were obtained by a galvanic deposition method. • Galvanic deposition is simple and cheap and does not require external power supply. • Temperature is a key parameter to control composition and morphology of coatings. • Ca/P ratio changes with deposition time, from about 1 up to an optimum value of 1.7. • Compact and adherent layer covering substrate surface were obtained on 316LSS.

  11. Rapid detection of benzoyl peroxide in wheat flour by using Raman scattering spectroscopy

    Science.gov (United States)

    Zhao, Juan; Peng, Yankun; Chao, Kuanglin; Qin, Jianwei; Dhakal, Sagar; Xu, Tianfeng

    2015-05-01

    Benzoyl peroxide is a common flour additive that improves the whiteness of flour and the storage properties of flour products. However, benzoyl peroxide adversely affects the nutritional content of flour, and excess consumption causes nausea, dizziness, other poisoning, and serious liver damage. This study was focus on detection of the benzoyl peroxide added in wheat flour. A Raman scattering spectroscopy system was used to acquire spectral signal from sample data and identify benzoyl peroxide based on Raman spectral peak position. The optical devices consisted of Raman spectrometer and CCD camera, 785 nm laser module, optical fiber, prober, and a translation stage to develop a real-time, nondestructive detection system. Pure flour, pure benzoyl peroxide and different concentrations of benzoyl peroxide mixed with flour were prepared as three sets samples to measure the Raman spectrum. These samples were placed in the same type of petri dish to maintain a fixed distance between the Raman CCD and petri dish during spectral collection. The mixed samples were worked by pretreatment of homogenization and collected multiple sets of data of each mixture. The exposure time of this experiment was set at 0.5s. The Savitzky Golay (S-G) algorithm and polynomial curve-fitting method was applied to remove the fluorescence background from the Raman spectrum. The Raman spectral peaks at 619 cm-1, 848 cm-1, 890 cm-1, 1001 cm-1, 1234 cm-1, 1603cm-1, 1777cm-1 were identified as the Raman fingerprint of benzoyl peroxide. Based on the relationship between the Raman intensity of the most prominent peak at around 1001 cm-1 and log values of benzoyl peroxide concentrations, the chemical concentration prediction model was developed. This research demonstrated that Raman detection system could effectively and rapidly identify benzoyl peroxide adulteration in wheat flour. The experimental result is promising and the system with further modification can be applicable for more products in near

  12. A surface enhanced Raman scattering spectroscopic study of UO{sub 2}{sup 2+} at trace concentration

    Energy Technology Data Exchange (ETDEWEB)

    Franzen, Carola [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Carstensen, Lale [Technische Univ. Dresden (Germany); Firkala, T. [Helmholtz Institute Freiberg for Resource Technology, Freiberg (Germany); Steudtner, Robin [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2017-06-01

    Techniques for rapid screening of uranium in environmental samples are needed. This study entails the development of Surface-Enhanced Raman scattering (SERS) spectroscopy for analyzing uranium(VI) in aqueous media with improved sensitivity.

  13. Status of the development of electron volt inelastic neutron spectroscopy

    International Nuclear Information System (INIS)

    Newport, R.J.; Taylor, A.D.; Williams, W.G.

    1984-05-01

    High energy inelastic neutron scattering spectroscopy is reviewed in the light of material presented at the 'High Energy Excitations in Condensed Matter' (HEECM) Workshop, held at Los Alamos National Laboratory 13-15 February 1984. Particular attention is paid to the development of instrumentation based on nuclear resonance analysers. (author)

  14. Hydrogen potential in β-V2H studied by deep inelastic neutron scattering

    International Nuclear Information System (INIS)

    Hempelmann, R.; Price, D.L.; Reiter, G.; Richter, D.

    1989-02-01

    Two complementary techniques of deep inelastic neutron scattering were used to study hydrogen in β-V 2 H: (i) by means of neutron vibrational spectroscopy we measured hydrogen vibrations up to the fourteenth order; from these data we derived the effective single-particle potential, the shape of which is a parabola with a flattened bottom, and the hydrogen wave functions. (ii) By means of neutron Compton scattering we determined the kinetic of energy of the hydrogen; the value agrees with that calculated from the vibrational ground-state wave function. 6 refs., 5 figs

  15. Small-angle x-ray scattering in amorphous silicon: A computational study

    Science.gov (United States)

    Paudel, Durga; Atta-Fynn, Raymond; Drabold, David A.; Elliott, Stephen R.; Biswas, Parthapratim

    2018-05-01

    We present a computational study of small-angle x-ray scattering (SAXS) in amorphous silicon (a -Si) with particular emphasis on the morphology and microstructure of voids. The relationship between the scattering intensity in SAXS and the three-dimensional structure of nanoscale inhomogeneities or voids is addressed by generating large high-quality a -Si networks with 0.1%-0.3% volume concentration of voids, as observed in experiments using SAXS and positron annihilation spectroscopy. A systematic study of the variation of the scattering intensity in the small-angle scattering region with the size, shape, number density, and the spatial distribution of the voids in the networks is presented. Our results suggest that the scattering intensity in the small-angle region is particularly sensitive to the size and the total volume fraction of the voids, but the effect of the geometry or shape of the voids is less pronounced in the intensity profiles. A comparison of the average size of the voids obtained from the simulated values of the intensity, using the Guinier approximation and Kratky plots, with that of the same from the spatial distribution of the atoms in the vicinity of void surfaces is presented.

  16. Raman spectroscopy of optical properties in CdS thin films

    Directory of Open Access Journals (Sweden)

    Trajić J.

    2015-01-01

    Full Text Available Properties of CdS thin films were investigated applying atomic force microscopy (AFM and Raman spectroscopy. CdS thin films were prepared by using thermal evaporation technique under base pressure 2 x 10-5 torr. The quality of these films was investigated by AFM spectroscopy. We apply Raman scattering to investigate optical properties of CdS thin films, and reveal existence of surface optical phonon (SOP mode at 297 cm-1. Effective permittivity of mixture were modeled by Maxwell - Garnet approximation. [Projekat Ministarstva nauke Republike Srbije, br. 45003

  17. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  18. Scientific opportunities in nuclear resonance spectroscopy from source-driven revolution

    Energy Technology Data Exchange (ETDEWEB)

    Shenoy, G. K., E-mail: gks@aps.anl.gov [Argonne National Laboratory (United States); Roehlsberger, R. [Deutsches Elektronen Synchrotron, DESY (Germany)

    2008-02-15

    From the beginning of its discovery the Moessbauer effect has continued to be one of the most powerful tools with broad applications in diverse areas of science and technology. With the advent of synchrotron radiation sources such as the Advanced Photon Source (APS), the European Synchrotron Radiation Facility (ESRF) and the Super Photon Ring-8 (SPring-8), the tool has enlarged its scope and delivered new capabilities. The popular techniques most generally used in the field of materials physics, chemical physics, geoscience, and biology are hyperfine spectroscopy via elastic nuclear forward scattering (NFS), vibrational spectroscopy via nuclear inelastic scattering (NRIXS), and, to a lesser extent, diffusional dynamics from quasielastic nuclear forward scattering (QNFS). As we look ahead, new storage rings with enhanced brilliance such as PETRA-III under construction at DESY, Hamburg, and PEP-III in its early design stage at SLAC, Stanford, will provide new and unique science opportunities. In the next two decades, x-ray free-electron lasers (XFELs), based both on self-amplified spontaneous emission (SASE-XFELs) and a seed (SXFELs), with unique time structure, coherence and a five to six orders higher average brilliance will truly revolutionize nuclear resonance applications in a major way. This overview is intended to briefly address the unique radiation characteristics of new sources on the horizon and to provide a glimpse of scientific prospects and dreams in the nuclear resonance field from the new radiation sources. We anticipate an expanded nuclear resonance research activity with applications such as spin and phonon mapping of a single nanostructure and their assemblies, interfaces, and surfaces; spin dynamics; nonequilibrium dynamics; photochemical reactions; excited-state spectroscopy; and nonlinear phenomena.

  19. X-ray and neutron scattering studies of complex confined fluids

    International Nuclear Information System (INIS)

    Sinha, S. K.

    1999-01-01

    We review recent X-ray and neutron scattering studies of the structure and dynamics of confined complex fluids. This includes the study of polymer conformations and binary fluid phase transitions in porous media using Small Angle Neutron scattering, and the use of synchrotrons radiation to study ordering and fluctuation phenomena at solid/liquid and liquid/air interfaces. Ordering of liquids near a solid surface or in confinement will be discussed, and the study, via specular and off-specular X-ray reflectivity, of capillary wave fluctuations on liquid polymer films. Finally, we shall discuss the use of high-brilliance beams from X-ray synchrotrons to study via photon correlation spectroscopy the slow dynamics of soft condensed matter systems

  20. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5 eV to 300 eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region which is defined here. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electron spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained [fr

  1. The experimental apparatus for synchrotron radiation Moessbauer spectroscopy of BL11 in SPring-8

    International Nuclear Information System (INIS)

    Mitsui, T.; Kitao, S.; Zhang, X.W.; Marushita, M.; Seto, M.

    2001-01-01

    Synchrotron radiation Moessbauer spectroscopy (time spectrum of nuclear forward scattering and nuclear resonant inelastic scattering) enables us to study both the electronic state and lattice dynamics of a target material. Furthermore, the excellent properties of synchrotron radiation (polarization, pulse, small beam size) promise us the unique studies for material science. In order to progress in these studies, some experimental apparatuses were installed in BL11XU of SPring-8

  2. Suppression of Quasiparticle Scattering Signals in Bilayer Graphene Due to Layer Polarization and Destructive Interference.

    Science.gov (United States)

    Jolie, Wouter; Lux, Jonathan; Pörtner, Mathias; Dombrowski, Daniela; Herbig, Charlotte; Knispel, Timo; Simon, Sabina; Michely, Thomas; Rosch, Achim; Busse, Carsten

    2018-03-09

    We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n-band material.

  3. Suppression of Quasiparticle Scattering Signals in Bilayer Graphene Due to Layer Polarization and Destructive Interference

    Science.gov (United States)

    Jolie, Wouter; Lux, Jonathan; Pörtner, Mathias; Dombrowski, Daniela; Herbig, Charlotte; Knispel, Timo; Simon, Sabina; Michely, Thomas; Rosch, Achim; Busse, Carsten

    2018-03-01

    We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n -band material.

  4. Raman Spectroscopy with simple optic components

    International Nuclear Information System (INIS)

    Mendoza, Mario; Cunya, Eduardo; Olivera, Paula

    2014-01-01

    Raman Spectroscopy is .a high resolution photonics technique that provides chemical and structural information of almost any material, organic or inorganic compound. In this report we describe the implementation of a system based on the principle of Raman scattering, developed to analyze solid samples. The spectrometer integrates an optical bench coupled to an optical fiber and a green laser source of 532 nm. The spectrometer was tested obtaining the Naphthalene and the Yellow 74 Pigment Raman patterns. (authors).

  5. Spectroscopy of muonic atoms and the proton radius puzzle

    Science.gov (United States)

    Antognini, Aldo

    2017-09-01

    We have measured several 2 S -2 P transitions in muonic hydrogen (μp), muonic deuterium (μd) and muonic helium ions (μ3He, μ4He). From muonic hydrogen we extracted a proton charge radius 20 times more precise than obtained from electron-proton scattering and hydrogen high-precision laser spectroscopy but at a variance of 7 σ from these values. This discrepancy is nowadays referred to as the proton radius puzzle. New insight has been recently provided by the first determination of the deuteron charge radius from laser spectroscopy of μd. The status of the proton charge radius puzzle including the new insights obtained by μd spectroscopy will be discussed. Work supported by the Swiss National Science Foundation SNF-200021-165854 and the ERC CoG. #725039.

  6. Metal-dielectric-CNT nanowires for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Bond, Tiziana C.; Altun, Ali; Park, Hyung Gyu

    2017-10-03

    A sensor with a substrate includes nanowires extending vertically from the substrate, a hafnia coating on the nanowires that provides hafnia coated nanowires, and a noble metal coating on the hafnia coated nanowires. The top of the hafnia and noble metal coated nanowires bent onto one another to create a canopy forest structure. There are numerous randomly arranged holes that let through scattered light. The many points of contact, hot spots, amplify signals. The methods include the steps of providing a Raman spectroscopy substrate, introducing nano crystals to the Raman spectroscopy substrate, growing a forest of nanowires from the nano crystals on the Raman spectroscopy substrate, coating the nanowires with hafnia providing hafnia coated nanowires, and coating the hafnia coated nanowires with a noble metal or other metal.

  7. Ultrafast stimulated Raman spectroscopy in the near-infrared region

    International Nuclear Information System (INIS)

    Takaya, Tomohisa

    2016-01-01

    A number of electronic transitions in the near-infrared wavelength region are associated with migration or delocalization of electrons in large molecules or molecular systems. Time-resolved near-infrared Raman spectroscopy will be a powerful tool for investigating the structural dynamic of samples with delocalized electrons. However, the sensitivity of near-infrared spontaneous Raman spectrometers is significantly low due to an extremely small probability of Raman scattering and a low sensitivity of near-infrared detectors. Nonlinear Raman spectroscopy is one of the techniques that can overcome the sensitivity problems and enable us to obtain time-resolved Raman spectra in resonance with near-IR transitions. In this article, the author introduces recent progress of ultrafast time-resolved near-infrared stimulated Raman spectroscopy. Optical setup, spectral and temporal resolution, and applications of the spectrometer are described. (author)

  8. A compact, high resolution Michelson interferometer for atmospheric spectroscopy in the near ultraviolet

    Science.gov (United States)

    Sander, Stanley P.; Cageao, Richard P.; Friedl, Randall R.

    1993-01-01

    A new, compact Fourier Transform Michelson interferometer (FTUV) with an apodized resolving power greater than 300,000 at 300 nm, high throughput and wide spectral coverage has been developed. The objectives include atmospheric spectroscopy (direct solar absorption and solar scattering) and laboratory spectroscopy of transient species. In this paper, we will briefly describe the prototype FTUV instrument and the results of preliminary laboratory investigations of OH and ClO spectra in emission and absorption.

  9. Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes

    Science.gov (United States)

    Zito, Gianluigi; Rusciano, Giulia; Vecchione, Antonio; Pesce, Giuseppe; di Girolamo, Rocco; Malafronte, Anna; Sasso, Antonio

    2016-08-01

    In this work, atomic force microscopy probes are functionalized by virtue of self-assembling monolayers of block copolymer (BCP) micelles loaded either with clusters of silver nanoparticles or bimetallic heterostructures consisting of mixed species of silver and gold nanoparticles. The resulting self-organized patterns allow coating the tips with a sort of nanometal skin made of geometrically confined nanoislands. This approach favors the reproducible engineering and tuning of the plasmonic properties of the resulting structured tip by varying the nanometal loading of the micelles. The newly conceived tips are applied for experiments of tip-enhanced Raman scattering (TERS) spectroscopy and scattering-type scanning near-field optical microscopy (s-SNOM). TERS and s-SNOM probe characterizations on several standard Raman analytes and patterned nanostructures demonstrate excellent enhancement factor with the possibility of fast scanning and spatial resolution <12 nm. In fact, each metal nanoisland consists of a multiscale heterostructure that favors large scattering and near-field amplification. Then, we verify the tips to allow challenging nongap-TER spectroscopy on thick biosamples. Our approach introduces a synergistic chemical functionalization of the tips for versatile inclusion and delivery of plasmonic nanoparticles at the tip apex, which may promote the tuning of the plasmonic properties, a large enhancement, and the possibility of adding new degrees of freedom for tip functionalization.

  10. Thermal-neutron multiple scattering: critical double scattering

    International Nuclear Information System (INIS)

    Holm, W.A.

    1976-01-01

    A quantum mechanical formulation for multiple scattering of thermal-neutrons from macroscopic targets is presented and applied to single and double scattering. Critical nuclear scattering from liquids and critical magnetic scattering from ferromagnets are treated in detail in the quasielastic approximation for target systems slightly above their critical points. Numerical estimates are made of the double scattering contribution to the critical magnetic cross section using relevant parameters from actual experiments performed on various ferromagnets. The effect is to alter the usual Lorentzian line shape dependence on neutron wave vector transfer. Comparison with corresponding deviations in line shape resulting from the use of Fisher's modified form of the Ornstein-Zernike spin correlations within the framework of single scattering theory leads to values for the critical exponent eta of the modified correlations which reproduce the effect of double scattering. In addition, it is shown that by restricting the range of applicability of the multiple scattering theory from the outset to critical scattering, Glauber's high energy approximation can be used to provide a much simpler and more powerful description of multiple scattering effects. When sufficiently close to the critical point, it provides a closed form expression for the differential cross section which includes all orders of scattering and has the same form as the single scattering cross section with a modified exponent for the wave vector transfer

  11. Warm dense matter and Thomson scattering at FLASH

    International Nuclear Information System (INIS)

    Faeustlin, Roland Rainer

    2010-05-01

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  12. Warm dense matter and Thomson scattering at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Faeustlin, Roland Rainer

    2010-05-15

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  13. Soft X-ray resonant scattering from magnetic heterostructures

    International Nuclear Information System (INIS)

    Grabis, J.

    2005-01-01

    Heterogenous magnetic multilayers are of great interest both because of their relevance for technological applications and since they provide model systems to understand magnetic behavior and interactions. Soft x-ray resonant magnetic scattering (XRMS) allows to determine element-specific and depth-resolving information of the local magnetic order of such systems. Within the framework of the present thesis the diffractometer ALICE for soft XRMS has been constructed. XRMS measurements of two different physical systems are presented in this thesis: The antiferromagnetic and ferromagnetic order in interlayer exchange-coupled Fe/Cr(001) superlattices are studied as a function of the applied field by measuring the reflected intensity at different positions in reciprocal space. Thin films and multilayers of the Heusler compound Co 2 MnGe are studied by means of soft x-ray absorption spectroscopy, magnetic circular dichroism and resonant magnetic scattering

  14. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    Science.gov (United States)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  15. New Insight into the Local Structure of Hydrous Ferric Arsenate Using Full-Potential Multiple Scattering Analysis, Density Functional Theory Calculations, and Vibrational Spectroscopy.

    Science.gov (United States)

    Wang, Shaofeng; Ma, Xu; Zhang, Guoqing; Jia, Yongfeng; Hatada, Keisuke

    2016-11-15

    Hydrous ferric arsenate (HFA) is an important arsenic-bearing precipitate in the mining-impacted environment and hydrometallurgical tailings. However, there is no agreement on its local atomic structure. The local structure of HFA was reprobed by employing a full-potential multiple scattering (FPMS) analysis, density functional theory (DFT) calculations, and vibrational spectroscopy. The FPMS simulations indicated that the coordination number of the As-Fe, Fe-As, or both in HFA was approximately two. The DFT calculations constructed a structure of HFA with the formula of Fe(HAsO 4 ) x (H 2 AsO 4 ) 1-x (OH) y ·zH 2 O. The presence of protonated arsenate in HFA was also evidenced by vibrational spectroscopy. The As and Fe K-edge X-ray absorption near-edge structure spectra of HFA were accurately reproduced by FPMS simulations using the chain structure, which was also a reasonable model for extended X-Ray absorption fine structure fitting. The FPMS refinements indicated that the interatomic Fe-Fe distance was approximately 5.2 Å, consistent with that obtained by Mikutta et al. (Environ. Sci. Technol. 2013, 47 (7), 3122-3131) using wavelet analysis. All of the results suggested that HFA was more likely to occur as a chain with AsO 4 tetrahedra and FeO 6 octahedra connecting alternately in an isolated bidentate-type fashion. This finding is of significance for understanding the fate of arsenic and the formation of ferric arsenate minerals in an acidic environment.

  16. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    Science.gov (United States)

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  17. Oxygen adsorption on Cu(111) using low energy ion scattering spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.M.; Yao, J.; Shen, Y.G.; King, B.V.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    The surface structure and oxygen adsorption of Cu(l 11) have been studied by 2 keV Li{sup +}, He{sup +} and Ar{sup +} ion scattering . Incident and azimuthal dependences were measured for the clean and O-covered surfaces, and the surface geometry was analysed on the basis of the shadowing features. Experimental results under different oxygen exposures at room temperature showed that the Cu(l 11) surface undergoes a roughening transition and results in a reconstruction where Cu atoms are vertically displaced by about 0.23 Angstroms. 4 refs., 4 figs.

  18. Oxygen adsorption on Cu(111) using low energy ion scattering spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F M; Yao, J; Shen, Y G; King, B V; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    The surface structure and oxygen adsorption of Cu(l 11) have been studied by 2 keV Li{sup +}, He{sup +} and Ar{sup +} ion scattering . Incident and azimuthal dependences were measured for the clean and O-covered surfaces, and the surface geometry was analysed on the basis of the shadowing features. Experimental results under different oxygen exposures at room temperature showed that the Cu(l 11) surface undergoes a roughening transition and results in a reconstruction where Cu atoms are vertically displaced by about 0.23 Angstroms. 4 refs., 4 figs.

  19. Oxygen adsorption on Cu(111) using low energy ion scattering spectroscopy

    International Nuclear Information System (INIS)

    Zhang, F.M.; Yao, J.; Shen, Y.G.; King, B.V.; O'Connor, D.J.

    1993-01-01

    The surface structure and oxygen adsorption of Cu(l 11) have been studied by 2 keV Li + , He + and Ar + ion scattering . Incident and azimuthal dependences were measured for the clean and O-covered surfaces, and the surface geometry was analysed on the basis of the shadowing features. Experimental results under different oxygen exposures at room temperature showed that the Cu(l 11) surface undergoes a roughening transition and results in a reconstruction where Cu atoms are vertically displaced by about 0.23 Angstroms. 4 refs., 4 figs

  20. Detection of gastrointestinal cancer by elastic scattering and absorption spectroscopies with the Los Alamos Optical Biopsy System

    Energy Technology Data Exchange (ETDEWEB)

    Mourant, J.R.; Boyer, J.; Johnson, T.M.; Lacey, J.; Bigio, I.J. [Los Alamos National Lab., NM (United States); Bohorfoush, A. [Wisconsin Medical School, Milwaukee, WI (United States). Dept. of Gastroenterology; Mellow, M. [Univ. of Oklahoma Medical School, Oklahoma City, OK (United States). Dept. of Gastroenterology

    1995-03-01

    The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. In proceedings of earlier SPIE conferences we reported on clinical measurements in the bladder, and we report here on recent results of clinical tests in the gastrointestinal tract. With the OBS, tissue pathologies are detected/diagnosed using spectral measurements of the elastic optical transport properties (scattering and absorption) of the tissue over a wide range of wavelengths. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, exhibit significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes m an optical signature that is derived from the wavelength-dependence of elastic scattering. Additionally, the optical geometry of the OBS beneficially enhances its sensitivity for measuring absorption bands. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope or catheter, or to direct surface examination, as well as interstitial needle insertion. Data acquistion/display time is <1 second.

  1. Computationally effective solution of the inverse problem in time-of-flight spectroscopy

    DEFF Research Database (Denmark)

    Kamran, Faisal; Abildgaard, Otto Højager Attermann; Subash, Arman Ahamed

    2015-01-01

    Photon time-of-flight (PTOF) spectroscopy enables the estimation of absorption and reduced scattering coefficients of turbid media by measuring the propagation time of short light pulses through turbid medium. The present investigation provides a comparison of the assessed absorption and reduced...

  2. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1993-02-01

    The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program

  3. Assessment of New Components to be integrated in the LHC Room Temperature Vacuum System

    CERN Document Server

    Bregliozzi, G; Chiggiato, P

    2014-01-01

    Integration of new equipment in the long straight sections (LSS) of the LHC must be compatible with the TiZrV non-evaporable getter thin film that coats most of the 6-km-long room-temperature beam pipes. This paper focus on two innovative accelerator devices to be installed in the LSS during the long shutdown 1 (LS1): the beam gas vertex (BGV) and a beam bending experiment using a crystal collimator (LUA9). The BGV necessitates a dedicated pressure bump, generated by local gas injection, in order to create the required rate of inelastic beam-gas interactions. The LAU9 experiments aims at improving beam cleaning efficiency with the use of a crystal collimator. New materials like fibre optics, piezoelectric components, and glues are proposed in the original design of the two devices. The integration feasibility of these set-ups in the LSS is presented. In particular outgassing tests of special components, X-rays photoelectron spectroscopy analysis of NEG coating behaviour in presence of glues during bake-out, a...

  4. Enhancement of Chiroptical Signals by Circular Differential Mie Scattering of Nanoparticles.

    Science.gov (United States)

    Yoo, SeokJae; Park, Q-Han

    2015-09-25

    We enhance the weak optical signals of small chiral molecules via circular differential Mie scattering (CDMS) of nanoparticles immersed in them. CDMS is the preferential Mie scattering of left- and right-handed circularly polarized light by nanoparticles whose sizes are about the same as the wavelength of light. Solving the Mie scattering theory for chiral media, we find that the CDMS signal of the particle is linearly proportional to the chirality parameter κ of the molecules. This linear amplitude enhancement by CDMS of the particle holds, even for large particles, which have a retardation effect. We also demonstrate that the CDMS of a nanoparticle is sensitive to changes of molecular concentration, and that the nanoparticle can be utilized as a chiroptical biosensor detecting the concentration of analyte. We expect that the enhancement of molecular chiroptical signals by CDMS will pave the way for novel chiroptical spectroscopy using nanostructures.

  5. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy.

    Science.gov (United States)

    Richter, Johannes M; Branchi, Federico; Valduga de Almeida Camargo, Franco; Zhao, Baodan; Friend, Richard H; Cerullo, Giulio; Deschler, Felix

    2017-08-29

    In band-like semiconductors, charge carriers form a thermal energy distribution rapidly after optical excitation. In hybrid perovskites, the cooling of such thermal carrier distributions occurs on timescales of about 300 fs via carrier-phonon scattering. However, the initial build-up of the thermal distribution proved difficult to resolve with pump-probe techniques due to the requirement of high resolution, both in time and pump energy. Here, we use two-dimensional electronic spectroscopy with sub-10 fs resolution to directly observe the carrier interactions that lead to a thermal carrier distribution. We find that thermalization occurs dominantly via carrier-carrier scattering under the investigated fluences and report the dependence of carrier scattering rates on excess energy and carrier density. We extract characteristic carrier thermalization times from below 10 to 85 fs. These values allow for mobilities of 500 cm 2  V -1  s -1 at carrier densities lower than 2 × 10 19  cm -3 and limit the time for carrier extraction in hot carrier solar cells.Carrier-carrier scattering rates determine the fundamental limits of carrier transport and electronic coherence. Using two-dimensional electronic spectroscopy with sub-10 fs resolution, Richter and Branchi et al. extract carrier thermalization times of 10 to 85 fs in hybrid perovskites.

  6. Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel.

    Science.gov (United States)

    Blanda, Giuseppe; Brucato, Valerio; Pavia, Francesco Carfì; Greco, Silvia; Piazza, Salvatore; Sunseri, Carmelo; Inguanta, Rosalinda

    2016-07-01

    In this work, brushite and brushite/hydroxyapatite (BS, CaHPO4·H2O; HA, Ca10(PO4)6(OH)2) coatings were deposited on 316L stainless steel (316LSS) from a solution containing Ca(NO3)2·4H2O and NH4H2PO4 by a displacement reaction based on a galvanic contact, where zinc acts as sacrificial anode. Driving force for the cementation reaction arises from the difference in the electrochemical standard potentials of two different metallic materials (316LSS and Zn) immersed in an electrolyte, so forming a galvanic contact leading to the deposition of BS/HA on nobler metal. We found that temperature and deposition time affect coating features (morphology, structure, and composition). Deposits were characterized by means of several techniques. The morphology was investigated by scanning electron microscopy, the elemental composition was obtained by X-ray energy dispersive spectroscopy, whilst the structure was identified by Raman spectroscopy and X-ray diffraction. BS was deposited at all investigated temperatures covering the 316LSS surface. At low and moderate temperature, BS coatings were compact, uniform and with good crystalline degree. On BS layers, HA crystals were obtained at 50°C for all deposition times, while at 25°C, its presence was revealed only after long deposition time. Electrochemical studies show remarkable improvement in corrosion resistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Probing multi-scale self-similarity of tissue structures using light scattering spectroscopy: prospects in pre-cancer detection

    Science.gov (United States)

    Chatterjee, Subhasri; Das, Nandan K.; Kumar, Satish; Mohapatra, Sonali; Pradhan, Asima; Panigrahi, Prasanta K.; Ghosh, Nirmalya

    2013-02-01

    Multi-resolution analysis on the spatial refractive index inhomogeneities in the connective tissue regions of human cervix reveals clear signature of multifractality. We have thus developed an inverse analysis strategy for extraction and quantification of the multifractality of spatial refractive index fluctuations from the recorded light scattering signal. The method is based on Fourier domain pre-processing of light scattering data using Born approximation, and its subsequent analysis through Multifractal Detrended Fluctuation Analysis model. The method has been validated on several mono- and multi-fractal scattering objects whose self-similar properties are user controlled and known a-priori. Following successful validation, this approach has initially been explored for differentiating between different grades of precancerous human cervical tissues.

  8. Statistical process control for alpha spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, W; Majoras, R E [Oxford Instruments, Inc. P.O. Box 2560, Oak Ridge TN 37830 (United States); Joo, I O; Seymour, R S [Accu-Labs Research, Inc. 4663 Table Mountain Drive, Golden CO 80403 (United States)

    1995-10-01

    Statistical process control(SPC) allows for the identification of problems in alpha spectroscopy processes before they occur, unlike standard laboratory Q C which only identifies problems after a process fails. SPC tools that are directly applicable to alpha spectroscopy include individual X-charts and X-bar charts, process capability plots, and scatter plots. Most scientists are familiar with the concepts the and methods employed by SPC. These tools allow analysis of process bias, precision, accuracy and reproducibility as well as process capability. Parameters affecting instrument performance are monitored and analyzed using SPC methods. These instrument parameters can also be compared to sampling, preparation, measurement, and analysis Q C parameters permitting the evaluation of cause effect relationships. Three examples of SPC, as applied to alpha spectroscopy , are presented. The first example investigates background contamination using averaging to show trends quickly. A second example demonstrates how SPC can identify sample processing problems, analyzing both how and why this problem occurred. A third example illustrates how SPC can predict when an alpha spectroscopy process is going to fail. This allows for an orderly and timely shutdown of the process to perform preventative maintenance, avoiding the need to repeat costly sample analyses. 7 figs., 2 tabs.

  9. Statistical process control for alpha spectroscopy

    International Nuclear Information System (INIS)

    Richardson, W.; Majoras, R.E.; Joo, I.O.; Seymour, R.S.

    1995-01-01

    Statistical process control(SPC) allows for the identification of problems in alpha spectroscopy processes before they occur, unlike standard laboratory Q C which only identifies problems after a process fails. SPC tools that are directly applicable to alpha spectroscopy include individual X-charts and X-bar charts, process capability plots, and scatter plots. Most scientists are familiar with the concepts the and methods employed by SPC. These tools allow analysis of process bias, precision, accuracy and reproducibility as well as process capability. Parameters affecting instrument performance are monitored and analyzed using SPC methods. These instrument parameters can also be compared to sampling, preparation, measurement, and analysis Q C parameters permitting the evaluation of cause effect relationships. Three examples of SPC, as applied to alpha spectroscopy , are presented. The first example investigates background contamination using averaging to show trends quickly. A second example demonstrates how SPC can identify sample processing problems, analyzing both how and why this problem occurred. A third example illustrates how SPC can predict when an alpha spectroscopy process is going to fail. This allows for an orderly and timely shutdown of the process to perform preventative maintenance, avoiding the need to repeat costly sample analyses. 7 figs., 2 tabs

  10. The structure of neutron-rich nuclei explored via in-beam gamma-ray spectroscopy of fast beams

    International Nuclear Information System (INIS)

    Glasmacher, T.; Campbell, C.M.; Church, J.A.; Dinca, D.C.; Hansen, P.G.; Olliver, H.; Perry, B.C.; Sherrill, B.M.; Terry, J.R.; Bazin, D.; Enders, J.; Gade, A.; Hu, Z.; Mueller, W.F.

    2003-01-01

    In-beam gamma-ray spectroscopy with fast exotic beams provides an efficient tool to study bound states in exotic neutron-rich nuclei. Specialized experimental techniques have been developed and explore different aspects of nuclear structure. Inelastic scattering experiments with γ-ray detection can measure the response of exotic nuclei to electromagnetic (Coulomb excitation with a heavy target) or hadronic probes (proton scattering with hydrogen target). In-beam fragmentation populates higher-lying bound states to establish levels. Single- and two-nucleon knockout reactions allow for detailed wavefunction spectroscopy of individual levels and for the measurement of spectroscopic factors. Experimental programs employing these techniques are now underway at all projectile-fragmentation facilities around the world. Here we report on several successful in-beam gamma-ray spectroscopy experiments that have been performed at the Coupled Cyclotron Facility at Michigan State University with an emphasis on elucidating the evolution of nuclear structure around neutron numbers N=16, N=20, and N=28 in the π(sd) shell. (orig.)

  11. Resonant magnetic scattering of polarized soft x rays

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, M. [Centre Universitaire Paris-Sud, Orsay (France); Hague, C.F. [Universite Pierre et Marie Curie, Paris (France); Gullikson, E.M.; Underwood, J. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  12. Electron scattering rate in epitaxial YBa2Cu3O7 superconducting films

    Science.gov (United States)

    Flik, M. I.; Zhang, Z. M.; Goodson, K. E.; Siegal, M. P.; Phillips, Julia M.

    1992-09-01

    This work determines the electron scattering rate in the a-b plane of epitaxial YBa2Cu3O7 films using two techniques. Infrared spectroscopy yields the scattering rate at temperatures of 10, 78, and 300 K by fitting reflectance data using thin-film optics and a model for the free-carrier conductivity. The scattering rate is also obtained using kinetic theory and an extrapolation of normal-state electrical resistivity data to superconducting temperatures based on the Bloch theory for the phonon-limited electrical resistivity of metals. The scattering rates determined using both techniques are in agreement and show that the electron mean free path in the a-b plane of YBa2Cu3O7 superconducting films is three to four times the coherence length. Hence YBa2Cu3O7 is pure but not in the extreme pure limit. An average defect interaction range of 4 nm is obtained using the defect density resulting from flux-pinning considerations.

  13. Laser spectroscopy of muonic hydrogen and the puzzling proton

    International Nuclear Information System (INIS)

    Pohl, Randolf

    2016-01-01

    Laser spectroscopy of muonic hydrogen atoms, μp, has revealed a proton root-mean-square (rms) charge radius r_E that is an order of magnitude more accurate than the CODATA world average from elastic electron–proton scattering and precision spectroscopy of regular (electronic) hydrogen. Interestingly, though, the value of r_E from μp is 4%, or 7 combined standard deviations smaller than the CODATA value of r_E. This discrepancy has been coined “proton radius puzzle”. We summarize the experiment and give a brief overview of the theory in muonic hydrogen. Finally we discuss some possible scenarios for the resolution of the “proton radius puzzle”. (author)

  14. Growth and Raman spectroscopy studies of gold-free catalyzed semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zardo, Ilaria

    2010-12-15

    The present Ph.D. thesis proposes two aims: the search for catalysts alternative to gold for the growth of silicon nanowires and the investigation of the structural properties of the gold-free catalyzed Si, Ge, and GaAs nanowires. The successful growth of gold free catalyzed silicon nanowires was obtained using Ga and In as catalyst. Hydrogen plasma conditions were needed during the growth process. We proposed a growth mechanism where the role of the hydrogen plasma is taken into account. The influence of the growth conditions on nanowire growth morphology and structural properties was investigated in detail. The TEM studies showed the occurrence of different kind of twin defects depending on the nanowire growth direction. The intersection of twins in different spatial directions in <111>-oriented nanowires or the periodicity of highly dense twins in <112>-oriented nanowires leads to the formation of hexagonal domains embedded in the diamond silicon structure. A simple crystallographic model which illustrates the formation of the hexagonal phase was proposed. The presence of the hexagonal domains embedded in the diamond silicon structure was investigated also by means of Raman spectroscopy. The measured frequencies of the E2g and A1g modes were found to be in agreement with frequencies expected from phonon dispersion folding. An estimation of the percentage of hexagonal structure with respect to the cubic structure was given. The relative percentage of the two structures was found to change with growth temperature. Spatially resolved Raman scattering experiments were also realized on single Si nanowires. The lattice dynamics of gold-free catalyzed Ge and GaAs nanowires was studied by means of Raman spectroscopy. We performed spatially resolved Raman spectroscopy experiments on single crystalline- amorphous core-shell Ge nanowires. The correlation with TEM studies on nanowires grown under the same conditions and with AFM measurements realized of the same nanowires

  15. Hadron spectroscopy

    International Nuclear Information System (INIS)

    Igi, K.

    1979-01-01

    This paper is related to mini-rapporteur talk on baryonium spectroscopy. First of all, the models of baryonium, namely the diquark model, the string picture, the linear baryonium and the bag model, are described. All of these models so far discussed are highly suggestive. In this paper, discussions are confined to the spectroscopy of the string and the bag models. Because of the color degree of freedom, the bag model has mock diquonium and mock mesonium besides true baryonium. It might be possible that the string model takes into account only a part of them. The constraints among baryonium, baryon and boson trajectories using duality and unitarity were proposed as a guide for classifying various spectra. Inequalities were derived as the modest and reliable constraints on baryonium intercepts from baryon and boson intercepts by imposing unitarity and Regge behaviors on scattering amplitudes. As a consequence of residue factorization and duality, the baryonium slopes were derived. The spin of S (1936) was also obtained. The baryonium containing s or c quarks can also be studied. Topics such as the EXD patterns of baryons, linear baryons, linear Regge trajectories for all Q-anti Q families, and the Al and two Q mesons, are presented in this paper. Comments on di-baryon are described. (Kato, T.)

  16. Feasibility of minimally-invasive fiber-based evaluation of chondrodystrophoid canine intervertebral discs by light absorption and scattering spectroscopy

    Science.gov (United States)

    Jiang, Yuanyuan; McKeirnan, Kelci; Piao, Daqing; Bartels, Kenneth E.

    2011-03-01

    Extrusion or protrusion of an intervertebral disc is a common, frequently debilitating, painful, and sometimes fatal neurologic disease in the chondrodystrophic dog (dachshund, Pekingese, etc.). A similar condition of intervertebral disc degeneration with extrusion/protrusion is also a relatively common neurologic condition in human patients. Degeneration of the relatively avascular chondrodystrophoid intervertebral disc is associated with loss of water content, increased collagen, and deposits of calcified mineral in the nucleus pulposus. Current diagnostic methods have many limitations for providing accurate information regarding disc composition in situ prior to surgical intervention. Disc composition (i.e., mineralization), can influence the type of treatment regime and potentially prognosis and recurrence rates. The objective of this study is to investigate the feasibility of using a fiber-needle spectroscopy sensor to analyze the changes of tissue compositions involved in the chondrodystrophoid condition of the canine intervertebral disc. The nucleous pulposus, in which the metaplastic process / degeneration develops, is approximately 2mm thick and 5mm in diameter in the dachshund-sized dog. It lies in the center of the disc, surrounded by the annulus fibrosis and is enclosed by cartilaginous vertebral endplates cranially and caudally. This "shallow-and-small-slab" geometry limits the configuration of a fiber probe to sense the disc tissue volume without interference from the vertebrae. A single-fiber sensor is inserted into a 20 gauge myelographic spinal needle for insertion into the disc in situ and connected via a bifurcated fiber to the light source and a spectrometer. A tungsten light source and a 940nm light-emitting-diode are combined for spectral illumination covering VIS/NIR with expected improved sensitivity to water. Analysis of the reflectance spectra is expected to provide information of scattering and absorption compositions of tissue in

  17. Planar Spontaneous Raman-Scattering Spectroscopy for Reacting Jet-Flow Diagnostics Using Lyot-Ehman Tunable Filter

    Science.gov (United States)

    Sharaborin, D. K.; Markovich, D. M.; Dulin, V. M.

    2018-01-01

    The spatial-density distribution in burning a premixed methane-air swirling turbulent jet has been studied by measuring the intensity of the Stokes branch of spontaneous Raman scattering for vibrational-rotational transitions in nitrogen. An optical system comprising a Nd:YAG laser and the liquid-crystalline Lyot-Ehman tunable filter has been created and tested by measuring the temperature and density fields in a cone-shaped laminar flame. It has been established that the difference of data obtained using the Stokes component of Raman scattering in nitrogen and its ratio to the anti-Stokes component does not exceed 5% in a temperature range from 300 to 1800 K.

  18. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Braicovich, L., E-mail: lucio.braicovich@polimi.it; Minola, M.; Dellea, G.; Ghiringhelli, G. [CNR-SPIN and Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano I-20133 (Italy); Le Tacon, M. [Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B. [European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble F-38043 (France); Supruangnet, R. [Synchrotron Light Research Institute, Nakhon Ratchasima (Thailand)

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  19. Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics

    Science.gov (United States)

    Edrei, Eitan; Scarcelli, Giuliano

    2018-04-01

    Brillouin spectroscopy is a powerful optical technique for non-contact viscoelastic characterizations which has recently found applications in three-dimensional mapping of biological samples. Brillouin spectroscopy performances are rapidly degraded by optical aberrations and have therefore been limited to homogenous transparent samples. In this work, we developed an adaptive optics (AO) configuration designed for Brillouin scattering spectroscopy to engineer the incident wavefront and correct for aberrations. Our configuration does not require direct wavefront sensing and the injection of a "guide-star"; hence, it can be implemented without the need for sample pre-treatment. We used our AO-Brillouin spectrometer in aberrated phantoms and biological samples and obtained improved precision and resolution of Brillouin spectral analysis; we demonstrated 2.5-fold enhancement in Brillouin signal strength and 1.4-fold improvement in axial resolution because of the correction of optical aberrations.

  20. Characterization of solar cell materials by Proton Back Scattering Spectroscopy

    International Nuclear Information System (INIS)

    Joynal Abedin, M.; Fazlul Hoque, A.K.M.; Firoz Hasan, S.M.

    2001-01-01

    The need for accurate chemical characterization of samples specially related to electronic and solar cell materials has assumed increasing importance in recent years. The importance of the study of the surfaces of materials of different origin also increased in recent years to a great extent. This need has created a worldwide spurt to develop rapid, accurate and sensitive tools for the characterization of materials. In recent years the proton backscattering spectrometry (PBS) method has been recognized as one of the useful analytical tool in several applications of material analysis and technology. The lack of information of the relevant scattering cross sections as a function of proton energy and the problems arising in conventional data analysis have so far rendered proton backscattering analysis of multielemental samples difficult at low energies. On the other hand advances in the computer evaluation of experimental data have, however, made it possible to utilize low-MeV protons as a sensitive probe for light elements in the μm range. The benefits of the method in comparison to alpha particle backscattering include the relatively higher non-Rutherford scattering cross sections of the light elements and to the lower proton stopping in the target material. These lead to higher sensitivity in detecting and profiling light elements in heavy targets and to significantly larger accessible depths and smaller straggling than with alpha particles. Research works on the development of methodologies of Proton Backscattering Spectrometry (PBS) for the analysis of thin films and surfaces has been in progress in the 3 MeV Van de Graaff Accelerator facilities of Atomic Energy Centre, Dhaka for some years. The PBS system comprises a target chamber with appropriate sample holders and a Surface Barrier Detector (SBD) with the associated electronics for data acquisition and reduction. For the evaluation of the PBS data RBS Universal Master Package, RUMP has been installed in the

  1. Quantitative monitoring of yeast fermentation using Raman spectroscopy

    DEFF Research Database (Denmark)

    Iversen, Jens A.; Berg, Rolf W.; Ahring, Birgitte K.

    2014-01-01

    of a Saccharomyces cerevisiae fermentation process using a Raman spectroscopy instrument equipped with a robust sapphire ball probe.A method was developed to correct the Raman signal for the attenuation caused by light scattering cell particulate, hence enabling quantification of reaction components and possibly...... measurement of yeast cell concentrations. Extinction of Raman intensities to more than 50 % during fermentation was normalized with approximated extinction expressions using Raman signal of water around 1,627 cm−1 as internal standard to correct for the effect of scattering. Complicated standard multi...... was followed by linear regression. In situ quantification measurements of the fermentation resulted in root mean square errors of prediction (RMSEP) of 2.357, 1.611, and 0.633 g/L for glucose, ethanol, and yeast concentrations, respectively....

  2. Preliminary investigation of an atmospheric microplasma using Raman and Thomson laser scattering

    Science.gov (United States)

    Sommers, Bradley; Adams, Steven

    2014-10-01

    A triple grating spectrometer system has been coupled with an ultraviolet laser at 266 nm for the purpose of investigating Rayleigh, Raman, and Thomson scattering within atmospheric plasma sources. Such laser interactions present a non-invasive diagnostic to investigate small scale atmospheric plasma sources, which have recently garnered interest for applications in remote optical sensing, materials processing, and environmental decontamination. In this work, the laser scatter and temperature relationship were calibrated with a heated nitrogen cell held at atmospheric pressure while subsequent scattering measurements were made in atmospheric discharges composed of nitrogen and air. An adjustable electrode configuration and dc circuit were assembled to produce a microdischarge operating in normal glow mode, thus providing a non-thermal plasma in which the translational, rotational, vibrational and electron temperatures are not in equilibrium. Preliminary results include measurements of these temperatures, which were calculated by fitting simulated scattering spectra to the experimental data obtained using the triple grating spectrometer. Measured temperatures were also compared with those obtained using standard optical emission spectroscopy methods. Special thanks to the NRC Research Associateship Program.

  3. Quantum theory of dynamic multiple light scattering in fluctuating disordered media

    International Nuclear Information System (INIS)

    Skipetrov, S. E.

    2007-01-01

    We formulate a quantum theory of dynamic multiple light scattering in fluctuating disordered media and calculate the fluctuation and the autocorrelation function of the photon number operator for light transmitted through a disordered slab. The effect of disorder on the information capacity of a quantum communication channel operating in a disordered environment is estimated, and the use of squeezed light in diffusing-wave spectroscopy is discussed

  4. Electron momentum spectroscopy of the core state of solid carbon

    International Nuclear Information System (INIS)

    Caprari, R.S.; Clark, S.A.C.; McCarthy, I.E.; Storer, P.J.; Vos, M.; Weigold, E.

    1994-08-01

    Electron momentum spectroscopy (binary encounter (e,2e)) experimental results are presented for the core state of an amorphous carbon allotrope. The (e,2e) cross section has two identifiable regions. One is a narrow energy width 'core band peak' that does not disperse with momentum. At higher binding energies there is an energy diffuse 'multiple scattering continuum', which is a consequence of (e,2e) collisions with core electrons that are accompanied by inelastic scattering of one or more of the incoming or outgoing electrons. Comparisons of experimental momentum distributions with the Hartree-Fock atomic carbon ls orbital are presented for both regions. 16 refs., 4 figs

  5. Investigation of Deuterium Implantation into Beryllium Sample by Electron Energy Loss Spectroscopy

    Science.gov (United States)

    Afanas'ev, V. P.; Gryazev, A. S.; Kaplya, P. S.; Köppen, M.; Ridzel, O. Yu; Subbotin, N. Yu; Hansen, P.

    2017-11-01

    Quantitative analysis of hydrogen isotopes in first wall as well as in construction materials of future fusion devices plays a crucial role to understand the evolution of those materials under operation conditions. A quantitative understanding of hydrogen in materials is also an important issue for storing energy as well as for fuel cells. A combination of Electron Energy Loss Spectroscopy (EELS) and Elastic Peak Electron Spectroscopy (EPES) is presented in this study to tackle these problems of modern material research for energy production and storage. Accurate inelastic scattering background subtraction is a key part of the presented quantitative measurement of the Be/D ratio. The differential inelastic scattering cross-section is determined by the fitting procedure. The fitting procedure is based on the iterative solution of the direct problem and minimization of the residual between computed and measured spectra. This study also takes into account the difference in electron energy loss laws for surface and bulk. The inelastic scattering cross-sections for different doses of deuterium ions in beryllium substrate (5.5·1021 m-2 and 2.01·1022 m-2) were defined in a two-layered model. The analysis is carried out for the EELS spectra. Relative concentration of D atoms is defined.

  6. Direct measurement of the Rayleigh scattering cross section in various gases

    International Nuclear Information System (INIS)

    Sneep, Maarten; Ubachs, Wim

    2005-01-01

    Using the laser-based technique of cavity ring-down spectroscopy extinction measurements have been performed in various gases straightforwardly resulting in cross sections for Rayleigh scattering. For Ar and N 2 measurements are performed in the range 470-490nm, while for CO 2 cross sections are determined in the wider range 470-570nm. In addition to these gases also for N 2 O, CH 4 , CO, and SF 6 the scattering cross section is determined at 532nm, a wavelength of importance for lidar applications and combustion laser diagnostics. In O 2 the cross section at 532nm is found to depend on pressure due to collision-induced light absorption. The obtained cross sections validate the cross sections for Rayleigh scattering as derived from refractive indices and depolarization ratios through Rayleigh's theory at the few %-level, although somewhat larger discrepancies are found for CO, N 2 O and CH 4

  7. Gamma-Ray Interactions for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research. Understanding the basic physics of how gamma rays interact with matter can clarify how certain features in a spectrum were produced.

  8. Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media

    Science.gov (United States)

    Cerussi, Albert Edward

    1999-09-01

    In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of

  9. Visualizing One-Dimensional Electronic States and their Scattering in Semi-conducting Nanowires

    Science.gov (United States)

    Beidenkopf, Haim; Reiner, Jonathan; Norris, Andrew; Nayak, Abhay Kumar; Avraham, Nurit; Shtrikman, Hadas

    One-dimensional electronic systems constitute a fascinating playground for the emergence of exotic electronic effects and phases, within and beyond the Tomonaga-Luttinger liquid paradigm. More recently topological superconductivity and Majorana modes were added to that long list of phenomena. We report scanning tunneling microscopy and spectroscopy measurements conducted on pristine, epitaxialy grown InAs nanowires. We resolve the 1D electronic band structure manifested both via Van-Hove singularities in the local density-of-states, as well as by the quasi-particle interference patterns, induced by scattering from surface impurities. By studying the scattering of the one-dimensional electronic states off various scatterers, including crystallographic defects and the nanowire end, we identify new one-dimensional relaxation regimes and yet unexplored effects of interactions. Some of these may bear implications on the topological superconducting state and Majorana modes therein. The authors acknowledge support from the Israeli Science Foundation (ISF).

  10. Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory

    NARCIS (Netherlands)

    Meijer, A.S.; Wijn, de A.S.; Peters, M.F.E.; Dam, N.J.; Water, van de W.

    2010-01-01

    We investigate coherent Rayleigh–Brillouin spectroscopy as an efficient process to measure the bulk viscosity of gases at gigahertz frequencies. Scattered spectral distributions are measured using a Fizeau spectrometer. We discuss the statistical error due to the fluctuating mode structure of the

  11. Diagnosis of non-exudative (DRY) age related macular degeneration by non-invasive photon-correlation spectroscopy.

    Science.gov (United States)

    Fankhauser, Franz Ii; Ott, Maria; Munteanu, Mihnea

    2016-01-01

    Photon-correlation spectroscopy (PCS) (quasi-elastic light scattering spectroscopy, dynamic light scattering spectroscopy) allows the non-invasively reveal of local dynamics and local heterogeneities of macromolecular systems. The capability of this technique to diagnose the retinal pathologies by in-vivo investigations of spatial anomalies of retinas displaying non-exudative senile macular degeneration was evaluated. Further, the potential use of the technique for the diagnosis of the macular degeneration was analyzed and displayed by the Receiver Operating Curve (ROC). The maculae and the peripheral retina of 73 normal eyes and of 26 eyes afflicted by an early stage of non-exudative senile macular degeneration were characterized by time-correlation functions and analyzed in terms of characteristic decay times and apparent size distributions. The characteristics of the obtained time-correlation functions of the eyes afflicted with nonexudative macular degeneration and of normal eyes differed significantly, which could be referred to a significant change of the nano- and microstructure of the investigated pathologic maculas. Photon-correlation spectroscopy is able to assess the macromolecular and microstructural aberrations in the macula afflicted by non-exudative, senile macular degeneration. It has been demonstrated that macromolecules of this disease show a characteristic abnormal behavior in the macula.

  12. Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue.

    Science.gov (United States)

    Dehghani, H; Delpy, D T

    2000-09-01

    Previous modeling of near-infrared (NIR) light distribution in models of the adult head incorporating a clear nonscattering cerebrospinal fluid (CSF) layer have shown the latter to have a profound effect on the resulting photon measurement density function (PMDF). In particular, the presence of the CSF limits the PMDF largely to the outer cortical gray matter with little signal contribution from the deeper white matter. In practice, the CSF is not a simple unobstructed clear layer but contains light-scattering membranes and is crossed by various blood vessels. Using a radiosity-diffusion finite-element model, we investigated the effect on the PMDF of introducing intrusions within the clear layer. The results show that the presence of such obstructions does not significantly increase the light penetration into the brain tissue, except immediately adjacent to the obstruction and that its presence also increases the light sampling of the adjacent skull tissues, which would lead to additional contamination of the NIR spectroscopy signal by the surface tissue layers.

  13. Spin flip inelastic scattering in electron energy loss spectroscopy of a ferromagnetic metal

    International Nuclear Information System (INIS)

    Bocchetta, C.J.; Tosatti, E.; Yin, S.

    1986-11-01

    A model ferromagnetic metal is used to calculate the spin-polarization which occurs during inelastic electron-metal scattering with the production of an electron-hole pair. The polarization is found to have contributions from unequal spin-flip as well as non-flip energy loss rates. Our results indicate an asymmetry of the order of a few percent with parameters roughly modelling iron. (author)

  14. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle

    NARCIS (Netherlands)

    Amelink, A.; Hoy, C.L.; Gamm, U.A.; Sterenborg, H.J.C.M.; Robinson, D.J.

    2014-01-01

    We have recently demonstrated a means for quantifying the absorption and scattering properties of biological tissue through multidiameter single-fiber reflectance (MDSFR) spectroscopy. These measurements can be used to correct single-fiber fluorescence (SFF) spectra for the influence of optical

  15. Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition?

    Science.gov (United States)

    Voudouris, P; Gomopoulos, N; Le Grand, A; Hadjichristidis, N; Floudas, G; Ediger, M D; Fytas, G

    2010-02-21

    The primary alpha-relaxation time (tau(alpha)) for molecular and polymeric glass formers probed by dielectric spectroscopy and two light scattering techniques (depolarized light scattering and photon correlation spectroscopy) relates to the decay of the torsional autocorrelation function computed by molecular dynamics simulation. It is well known that Brillouin light scattering spectroscopy (BLS) operating in gigahertz frequencies probes a fast (10-100 ps) relaxation of the longitudinal modulus M*. The characteristic relaxation time, irrespective of the fitting procedure, is faster than the alpha-relaxation which obeys the non-Arrhenius Vogel-Fulcher-Tammann equation. Albeit, this has been noticed, it remains a puzzling finding in glass forming systems. The available knowledge is based only on temperature dependent BLS experiments performed, however, at a single wave vector (frequency). Using a new BLS spectrometer, we studied the phonon dispersion at gigahertz frequencies in molecular [o-terphenyl (OTP)] and polymeric [polyisoprene (PI) and polypropylene (PP)] glass formers. We found that the hypersonic dispersion does relate to the glass transition dynamics but the disparity between the BLS-relaxation times and tau(alpha) is system dependent. In PI and PP, the former is more than one order of magnitude faster than tau(alpha), whereas the two relaxation times become comparable in the case of OTP. The difference between the two relaxation times appears to relate to the "breadth" of the relaxation time distribution function. In OTP the alpha-relaxation process assumes a virtually single exponential decay at high temperatures well above the glass transition temperature, in clear contrast with the case of the amorphous bulk polymers.

  16. Medium energy ion scattering (MEIS)

    International Nuclear Information System (INIS)

    Dittmann, K.; Markwitz, A.

    2009-01-01

    This report gives an overview about the technique and experimental study of medium energy ion scattering (MEIS) as a quantitative technique to determine and analyse the composition and geometrical structure of crystalline surfaces and near surface-layers by measuring the energy and yield of the backscattered ions. The use of a lower energy range of 50 to 500 keV accelerated ions impinging onto the target surface and the application of a high-resolution electrostatic energy analyser (ESA) makes medium energy ion scattering spectroscopy into a high depth resolution and surface-sensitive version of RBS with less resulting damage effects. This report details the first steps of research in that field of measurement technology using medium energetic backscattered ions detected by means of a semiconductor radiation detector instead of an ESA. The study of medium energy ion scattering (MEIS) has been performed using the 40 keV industrial ion implanter established at GNS Sciences remodelled with supplementary high voltage insulation for the ion source in order to apply voltages up to 45 kV, extra apertures installed in the beamline and sample chamber in order to set the beam diameter accurately, and a semiconductor radiation detector. For measurement purposes a beam of positive charged helium ions accelerated to an energy of about 80 keV has been used impinging onto target surfaces of lead implanted into silicon (PbSi), scandium implanted into aluminium (ScAl), aluminium foil (Al) and glassy carbon (C). First results show that it is possible to use the upgraded industrial implanter for medium energy ion scattering. The beam of 4 He 2+ with an energy up to 88 keV has been focussed to 1 mm in diameter. The 5 nA ion beam hit the samples under 2 x 10 -8 mbar. The results using the surface barrier detector show scattering events from the samples. Cooling of the detector to liquid nitrogen temperatures reduced the electronic noise in the backscattering spectrum close to zero. A

  17. Phase separation temperatures of a liquid mixture: Dynamic light scattering technique

    International Nuclear Information System (INIS)

    Dangudom, K.; Wongtawatnugool, C.; Lacharojana, S.

    2010-01-01

    Light scattering intensity measurements and photon correlation spectroscopy (PCS) techniques were employed in an investigation of liquid-liquid phase separation behaviour of a mixture of cyclohexane and methanol at seven different compositions. It was found that, except for one composition (29% methanol), the temperature at which the scattering intensity was a maximum did not coincide with the one where the diffusion coefficient was a minimum, as would be for the case of a vapour-liquid system. The difference may be explained in terms of the local density fluctuation and the random walk problem responsible for the peak intensity and the minimum in the diffusion coefficient, respectively. The definition of phase separation temperature, as determined from diffusion process, was also proposed in this work.

  18. Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide

    Science.gov (United States)

    Balinskiy, Michael; Kargar, Fariborz; Chiang, Howard; Balandin, Alexander A.; Khitun, Alexander G.

    2018-05-01

    This article reports results of experimental investigation of the spin wave interference over large distances in the Y3Fe2(FeO4)3 waveguide using Brillouin-Mandelstam spectroscopy. Two coherent spin waves are excited by the micro-antennas fabricated at the edges of the waveguide. The amplitudes of the input spin waves are adjusted to provide approximately the same intensity in the central region of the waveguide. The relative phase between the excited spin waves is controlled by the phase shifter. The change of the local intensity distribution in the standing spin wave is monitored using Brillouin-Mandelstam light scattering spectroscopy. Experimental data demonstrate the oscillation of the scattered light intensity depending on the relative phase of the interfering spin waves. The oscillations of the intensity, tunable via the relative phase shift, are observed as far as 7.5 mm away from the spin-wave generating antennas at room temperature. The obtained results are important for developing techniques for remote control of spin currents, with potential applications in spin-based memory and logic devices.

  19. Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of Nanostructural Features in Irradiated Fe-Cu-Mn Alloys

    International Nuclear Information System (INIS)

    Wirth, B D; Asoka-Kumar, P; Howell, R H; Odette, G R; Sterne, P A

    2001-01-01

    Radiation embrittlement of nuclear reactor pressure vessel steels results from a high number density of nanometer sized Cu-Mn-Ni rich precipitates (CRPs) and sub-nanometer matrix features, thought to be vacancy-solute cluster complexes (VSC). However, questions exist regarding both the composition of the precipitates and the defect character and composition of the matrix features. We present results of positron annihilation spectroscopy (PAS) and small angle neutron scattering (SANS) characterization of irradiated and thermally aged Fe-Cu and Fe-Cu-Mn alloys. These complementary techniques provide insight into the composition and character of both types of nanoscale features. The SANS measurements indicate populations of CRPs and VSCs in both alloys. The CRPs are coarser in the Fe-Cu alloy and the number densities of CRP and VSC increase with the addition of Mn. The PAS involved measuring both the positron lifetimes and the Doppler broadened annihilation spectra in the high momentum region to provide elemental sensitivity at the annihilation site. The spectra in Fe-Cu-Mn specimens thermally aged to peak hardness at 450 C and irradiated at 288 C are nearly identical to elemental Cu. Positron lifetime and spectrum measurements in Fe-Cu specimens irradiated at 288 C clearly show the existence of long lifetime (∼500 ps) open volume defects, which also contain Cu. Thus the SANS and PAS provide a self-consistent picture of nanostructures composed of CRPs and VSCs and tend to discount high Fe concentrations in the CRPs

  20. On the isobaric spin and the scattering matrix

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2002-01-01

    The isobaric spin and the scattering matrix are fundamental nuclear physics concepts invented by Werner Heisenberg. The cardinal impact of the Heisenberg concepts on historical developpement of nuclear physics and other quantum and classical physics branches is discussed in this communication. Heisenberg in physics is synonymous to monumental scientific creations, namely: -'Creation of quantum mechanics' (Nobel Prize, 1932), -'Heisenberg relations', or 'Heisenberg inequalities' or 'Uncertainty principle' or 'Indeterminacy principle', - Basis for Copenhagen interpretation of Quantum Mechanics, -'world formula', - Project for a unitary theory representing all existing particles. Heisenberg does signify also important/cardinal contributions to many fields of physics as follows: - hydrodynamical theory of turbulence, (Dissertation, Sommerfeld); - theory of ferromagnetism; - study of cosmic rays; - nuclear physics. Heisenberg has invented two nuclear physics concepts, isobaric spin and scattering matrix which became cornerstones of the two main fields of the nuclear theory, namely, the nuclear structure (nuclear spectroscopy) and the nuclear reactions. This communication intends to illustrate the impact of the Heisenberg concepts on developpement of nuclear physics. (author)

  1. Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis.

    Science.gov (United States)

    Steelman, Zachary; Meng, Zhaokai; Traverso, Andrew J; Yakovlev, Vladislav V

    2015-05-01

    Bacterial meningitis is a disease of pronounced clinical significance, especially in the developing world. Immediate treatment with antibiotics is essential, and no single test can provide a conclusive diagnosis. It is well established that elevated total protein in cerebrospinal fluid (CSF) is associated with bacterial meningitis. Brillouin spectroscopy is a widely used optical technique for noninvasive determination of the elastic moduli of materials. We found that elevated protein levels in CSF alter the fluid elasticity sufficiently to be measurable by Brillouin spectroscopy, with model healthy and diseased fluids distinguishable to marked significance (P = 0.014), which increases with sample concentration by dialysis. Typical raw output of a 2-stage VIPA Brillouin spectrometer: inelastically scattered Brillouin peaks (arrows) and elastically scattered incident radiation (center cross). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Laser Raman spectroscopy in heat and flow technology

    International Nuclear Information System (INIS)

    Leipertz, A.

    1981-01-01

    The laser Raman spectroscopy based on the inelastic scattering of incident laser photons on the molecules of the fluid to be investigated, has advantages which partly reach beyond the usual scattered light methods: The signales are molecule-specific, the vibration line of various gases can be spectrally well recognized, the field of application is wide, the energy state of the molecules is hardly influenced. By measuring the line intensity, one obtains the concentration of the observed gas components via the molecule number, the temperature and total pressure; from the uptake of the partial density of the single components one can obtain the density of the gas mixture; vibration temperature and rotation temperature can be measured independently. Measuring methods and construction of a Raman probe are given. (WB) [de

  3. Cavity-Enhanced Raman Spectroscopy for Food Chain Management

    Directory of Open Access Journals (Sweden)

    Vincenz Sandfort

    2018-02-01

    Full Text Available Comprehensive food chain management requires the monitoring of many parameters including temperature, humidity, and multiple gases. The latter is highly challenging because no low-cost technology for the simultaneous chemical analysis of multiple gaseous components currently exists. This contribution proposes the use of cavity enhanced Raman spectroscopy to enable online monitoring of all relevant components using a single laser source. A laboratory scale setup is presented and characterized in detail. Power enhancement of the pump light is achieved in an optical resonator with a Finesse exceeding 2500. A simulation for the light scattering behavior shows the influence of polarization on the spatial distribution of the Raman scattered light. The setup is also used to measure three relevant showcase gases to demonstrate the feasibility of the approach, including carbon dioxide, oxygen and ethene.

  4. LASER CORRELATION SPECTROSCOPY (LCS AND ITS CLINICAL PERSPECTIVES IN OPHTHALMOLOGY

    Directory of Open Access Journals (Sweden)

    Karganov Mikhail

    2015-12-01

    Full Text Available The method of laser correlation spectroscopy (LCS is based on the analysis of the spectrum of quasielastic light scatter during coherent monochromatic laser irradiation of micro-particles in biological fluids (blood serum, urine, oropharyngeal washout fluid, tear fluid etc.. Spectrum provides information on dynamic processes in the analyzed system: translation motion of scattering particles and their orientation and conformation dynamics. Special procedures of cluster analysis make it possible to find out to which linkage group a particular spectrum belongs. LCS allows evaluation of sub-fractional composition of biological fluids in a wide range of molecular sizes (from 1 to 10,000 nm, which determines principal novelty of this approach in ophthalmology.

  5. Autofluorescence and diffuse reflectance patterns in cervical spectroscopy

    Science.gov (United States)

    Marin, Nena Maribel

    Fluorescence and diffuse reflectance spectroscopy are two new optical technologies, which have shown promise to aid in the real time, non-invasive identification of cancers and precancers. Spectral patterns carry a fingerprint of scattering, absorption and fluorescence properties in tissue. Scattering, absorption and fluorescence in tissue are directly affected by biological features that are diagnostically significant, such as nuclear size, micro-vessel density, volume fraction of collagen fibers, tissue oxygenation and cell metabolism. Thus, analysis of spectral patterns can unlock a wealth of information directly related with the onset and progression of disease. Data from a Phase II clinical trial to assess the technical efficacy of fluorescence and diffuse reflectance spectroscopy acquired from 850 women at three clinical locations with two research grade optical devices is calibrated and analyzed. Tools to process and standardize spectra so that data from multiple spectrometers can be combined and analyzed are presented. Methodologies for calibration and quality assurance of optical systems are established to simplify design issues and ensure validity of data for future clinical trials. Empirically based algorithms, using multivariate statistical approaches are applied to spectra and evaluated as a clinical diagnostic tool. Physically based algorithms, using mathematical models of light propagation in tissue are presented. The presented mathematical model combines a diffusion theory in P3 approximation reflectance model and a 2-layer fluorescence model using exponential attenuation and diffusion theory. The resulting adjoint fluorescence and reflectance model extracts twelve optical properties characterizing fluorescence efficiency of cervical epithelium and stroma fluorophores, stromal hemoglobin and collagen absorption, oxygen saturation, and stromal scattering strength and shape. Validations with Monte Carlo simulations show that adjoint model extracted

  6. Ultrafast electron-optical phonon scattering and quasiparticle lifetime in CVD-grown graphene.

    Science.gov (United States)

    Shang, Jingzhi; Yu, Ting; Lin, Jianyi; Gurzadyan, Gagik G

    2011-04-26

    Ultrafast quasiparticle dynamics in graphene grown by chemical vapor deposition (CVD) has been studied by UV pump/white-light probe spectroscopy. Transient differential transmission spectra of monolayer graphene are observed in the visible probe range (400-650 nm). Kinetics of the quasiparticle (i.e., low-energy single-particle excitation with renormalized energy due to electron-electron Coulomb, electron-optical phonon (e-op), and optical phonon-acoustic phonon (op-ap) interactions) was monitored with 50 fs resolution. Extending the probe range to near-infrared, we find the evolution of quasiparticle relaxation channels from monoexponential e-op scattering to double exponential decay due to e-op and op-ap scattering. Moreover, quasiparticle lifetimes of mono- and randomly stacked graphene films are obtained for the probe photon energies continuously from 1.9 to 2.3 eV. Dependence of quasiparticle decay rate on the probe energy is linear for 10-layer stacked graphene films. This is due to the dominant e-op intervalley scattering and the linear density of states in the probed electronic band. A dimensionless coupling constant W is derived, which characterizes the scattering strength of quasiparticles by lattice points in graphene.

  7. Small angle neutron scattering on an absolute intensity scale and the internal surface of diatom frustules from three species of differing morphologies

    Czech Academy of Sciences Publication Activity Database

    Garvey, C. J.; Strobl, M.; Percot, A.; Šaroun, Jan; Haug, J.; Vyverman, W.; Chepurnov, V. A.; Ferris, J. M.

    2013-01-01

    Roč. 42, č. 5 (2013), s. 395-404 ISSN 0175-7571 Institutional support: RVO:61389005 Keywords : biosilica * diffusion limited aggregation * small angle neutron scattering * Raman spectroscopy * infrared spectroscopy * Porod law * BET isotherm * biomineralisation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.474, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs00249-013-0889-x.pdf

  8. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gazder, Azdiar A., E-mail: azdiar@uow.edu.au [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Al-Harbi, Fayez; Spanke, Hendrik Th. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Mitchell, David R.G. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Pereloma, Elena V. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia)

    2014-12-15

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. - Highlights: • Multi-condition segmentation of austenite, martensite, polygonal ferrite and ferrite in bainite. • Ferrites in granular bainite and bainitic ferrite segmented by variation in relative carbon counts. • Carbon partitioning during growth explains variation in carbon content of ferrites in bainites. • Developed EBSD image processing tools can be applied to the microstructures of a variety of alloys. • EBSD-based segmentation procedure verified by correlative TEM results.

  9. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5eV to 300eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electrons spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained. The improvement of theoretical studies on surface excitations due to slow electrons will provide in the next future the possibility of analysing in a more quantitative way the results given by ELS [fr

  10. Raman spectroscopy in nanomedicine: current status and future perspective.

    Science.gov (United States)

    Keating, Mark E; Byrne, Hugh J

    2013-08-01

    Raman spectroscopy is a branch of vibration spectroscopy that is capable of probing the chemical composition of materials. Recent advances in Raman microscopy have significantly added to the range of applications, which now extend from medical diagnostics to exploring the interfaces between biological organisms and nanomaterials. In this review, Raman is introduced in a general context, highlighting some of the areas in which the technique has been successful in the past, as well as some of the potential benefits it offers over other analytical modalities. The subset of Raman techniques that specifically probe the nanoscale, namely surface- and tip-enhanced Raman spectroscopy, will be described and specific applications relevant to nanomedical applications will be reviewed. Progress in the use of traditional label-free Raman for investigation of nanoscale interactions will be described, and recent developments in coherent anti-Stokes Raman scattering will be explored, particularly its applications to biomedical and nanomedical fields.

  11. Electron dynamics in the core-excited CS 2 molecule revealed through resonant inelastic x-ray scattering spectroscopy

    OpenAIRE

    Marchenko , T; Carniato , S; Journel , L; Guillemin , R; Kawerk , E; Žitnik , M; Kavčič , M; Bučar , K; Bohinc , R; Petric , M; da Cruz , V Vaz; Gel'mukhanov , F; Simon , Marielle

    2015-01-01

    International audience; We present an experimental and theoretical study of resonant inelastic x-ray scattering (RIXS) in the CS2 molecule near the S 1s edge. We show that localization of the S 1s core-hole occurs in CS2 during the RIXS process due to the orientational dephasing of interference between the waves scattering on the two sulfur atoms. Strong evolution of the RIXS profile with the excitation energy far below the first absorption resonance reflects the onset of electron dynamics tr...

  12. Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics

    OpenAIRE

    Peng, Lixin; Chen, De; Setlow, Peter; Li, Yong-qing

    2009-01-01

    Raman scattering spectroscopy and elastic light scattering intensity (ESLI) were used to simultaneously measure levels of Ca-dipicolinic acid (CaDPA) and changes in spore morphology and refractive index during germination of individual B. subtilis spores with and without the two redundant enzymes (CLEs), CwlJ and SleB, that degrade spores’ peptidoglycan cortex. Conclusions from these measurements include: 1) CaDPA release from individual wild-type germinating spores was biphasic; in a first h...

  13. COMPASS COmmon Muon and Proton Apparatus for Structure and Spectroscopy

    CERN Multimedia

    Ciliberti, P; Wang, L; Ostrick, M; Platchkov, S; Lichtenstadt, J; Marianski, B M; Vertogradov, L; Yukaev, A; Meshcheriakov, G; Gushterski, R I; Orlov, I; Faessler, M; Doshita, N; Menon, G; Ziembicki, M K; Beck, R; Dhara, L; Sarkar, S; Hsieh, C; Windmolders, R; Ramos, S E; Stolarski, M; Gerassimov, S; Kabuss, E; Zhuravlev, N; Malyshev, V; Nagaytsev, A; Zemlyanichkina, E; Paul, S; Grabmueller, S; Steffen, D; Michigami, T; Castelli, G; Matsuda, T; Kurjata, R P; Horikawa, N; Srnka, A; Dasgupta, S; Sawada, T; Barth, J; Denisov, O; Chiosso, M; Gnesi, I; Schiavon, P; Levorato, S; Baum, G; Reicherz, G A; Graf von harrach, D; Kurek, K; Tkachev, L; Ivanshin, I; Lavrentyev, V; Lishin, V; Liska, T; Konorov, I; Friedrich, J M; Austregesilo, A; Iwata, T; Riedl, C K; Tessarotto, F; Joosten, R; Chang, W; Cotte, D G; Pretz, J J; Klein, F R; Hahne, D; Schmitt, L; Bradamante, F; Marques quintans, C; Franco, C; Burtin, E; Ferrero, A; Kuchinskiy, N; Guskov, A; Rogacheva, N; Konstantinov, V; Mikhaylov, Y; Matsuda, H; Grosse-perdekamp, M; Schmieden, H; Balestra, F; Bertini, R; Parsamyan, B; Bordalo, P; Faria pereira lopes da silva, L M F; Meyer, W P; Fischer, H; Herrmann, F; Buchele, M; Wilfert, M C; D'hose, N; Augustyniak, W J; Alexeev, G; Kiselev, Y; Kouznetsov, O; Samartsev, A; Anfimov, N; Akhunzyanov, R; Khaustov, G; Khokhlov, I; Nikolaenko, V; Slunecka, M; Virius, M; Uhl, S; Horikawa, K; Peng, J; Da rocha azevedo, C D; Suzuki, H; Sinha, L; Mallot, G; Martin, A; Badelek, B M; Da silva nunes, A S; Nowak, W; Neyret, D; Sandacz, A; Efremov, A; Peshekhonov, D; Pontecorvo, G; Savin, I; Vlasov, N; Ryabchikov, D; Finger, M; Haas, F; Gautheron, F B; Montuenga sfeir, P J; Birsa, R; Dalla torre, S; Crespo, M L; Vauth, A S; Amoroso, A; Tessaro, S; Kotzinian, A; Sirtl, S M; Kunne, F; Bedfer, Y; Seder, E E; Donskov, S; Poliakov, V; Finger, M; Grube, B; Marzec, J; Bisplinghoff, J; Das, S; Piragino, G; Tosello, F; Bressan, A; Makke, N; Ishimoto, S; Menezes pires, C; Pochodzalla, J G; Sznajder, P; Anosov, V; Gavrishchuk, O; Olshevskiy, A; Chirikov-zorin, I; Kravchuk, N; Antonov, A; Samoylenko, V; Kolosov, V; Mann, A B; Huber, S; Cicuttin, A; Zaremba, K; Hinterberger, F; Jahn, R J; Sulc, M; Teng, Y

    2002-01-01

    %NA58 %title\\\\ \\\\COMPASS is a new fixed target experiment at the SPS to study hadron spectroscopy with hadron beams (up to 300~GeV/c) and hadron structure with polarized muon beams (100-200~GeV/c).\\\\ \\\\The main physics objective of the muon beam program is the measurement of $\\Delta$G, the gluon polarization in a longitudinally polarized nucleon. More generally, it is planned to measure the flavour separated spin structure functions of the nucleons in polarized muon - polarized nucleon deep inelastic scattering, both with longitudinal and transverse target polarization modes. For these measurements a new 1.3~m long polarized target and a superconducting solenoid with 200~mrad acceptance will be used.\\\\ \\\\The hadronic program comprises a search for glueballs in the high mass region (above 2~GeV/c$^{2}$) in exclusive diffractive pp scattering, a study of leptonic and semileptonic decays of charmed hadrons with high statistics and precision, and Primakoff scattering with various probes. A detailed investigation ...

  14. Application of ultra-small-angle X-ray scattering / X-ray photon correlation spectroscopy to relate equilibrium or non-equilibrium dynamics to microstructure

    Science.gov (United States)

    Allen, Andrew; Zhang, Fan; Levine, Lyle; Ilavsky, Jan

    2013-03-01

    Ultra-small-angle X-ray scattering (USAXS) can probe microstructures over the nanometer-to-micrometer scale range. Through use of a small instrument entrance slit, X-ray photon correlation spectroscopy (XPCS) exploits the partial coherence of an X-ray synchrotron undulator beam to provide unprecedented sensitivity to the dynamics of microstructural change. In USAXS/XPCS studies, the dynamics of local structures in a scale range of 100 nm to 1000 nm can be related to an overall hierarchical microstructure extending from 1 nm to more than 1000 nm. Using a point-detection scintillator mode, the equilibrium dynamics at ambient temperature of small particles (which move more slowly than nanoparticles) in aqueous suspension have been quantified directly for the first time. Using a USAXS-XPCS scanning mode for non-equilibrium dynamics incipient processes within dental composites have been elucidated, prior to effects becoming detectable using any other technique. Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy (U.S. DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

  15. CONTIN XPCS: Software for Inverse Transform Analysis of X-Ray Photon Correlation Spectroscopy Dynamics.

    Science.gov (United States)

    Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements.

  16. Surface-Enhanced Raman Scattering Physics and Applications

    CERN Document Server

    Kneipp, Katrin; Kneipp, Harald

    2006-01-01

    Almost 30 years after the first reports on surface-enhanced Raman signals, the phenomenon of surface-enhanced Raman scattering (SERS) is now well established. Yet, explaining the enhancement of a spectroscopic signal by fouteen orders of magnitude continues to attract the attention of physicists and chemists alike. And, at the same time and rapidly growing, SERS is becoming a very useful spectroscopic tool with exciting applications in many fields. SERS gained particular interest after single-molecule Raman spectroscopy had been demonstrated. This bookl summarizes and discusses present theoretical approaches that explain the phenomenon of SERS and reports on new and exciting experiments and applications of the fascinating spectroscopic effect.

  17. Investigation of magneto-optical properties of ferrofluids by laser light scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Nepomnyashchaya, E.K., E-mail: elina.nep@gmail.com [Department of Quantum Electronics, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251 (Russian Federation); Prokofiev, A.V.; Velichko, E.N. [Department of Quantum Electronics, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251 (Russian Federation); Pleshakov, I.V.; Kuzmin, Yu I. [Department of Quantum Electronics, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251 (Russian Federation); Laboratory of Quantum Electronics, Ioffe Institute, Saint-Petersburg 194021 (Russian Federation)

    2017-06-01

    Investigation of magnetooptical characteristics of ferrofluids is an important task aimed at the development of novel optoelectronic systems. This article reports on the results obtained in the experimental studies of the factors that affect the intensity and spatial distribution of the laser radiation scattered by magnetic particles and their agglomerates in a magnetic field. Laser correlation spectroscopy and direct measurements of laser radiation scattering for studies of the interactions and magnetooptical properties of magnetic particles in solutions were employed. The objects were samples of nanodispersed magnetite (Fe{sub 3}O{sub 4}) suspended in kerosene and in water. Our studies revealed some new behavior of magnetic particles in external magnetic and light fields, which make ferrofluids promising candidates for optical devices.

  18. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    Science.gov (United States)

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  19. Corrections in clinical Magnetic Resonance Spectroscopy and SPECT

    DEFF Research Database (Denmark)

    de Nijs, Robin

    infants. In Iodine-123 SPECT the problem of downscatter was addressed. This thesis is based on two papers. Paper I deals with the problem of motion in Single Voxel Spectroscopy. Two novel methods for the identification of outliers in the set of repeated measurements were implemented and compared...... a detrimental effect of the extra-uterine environment on brain development. Paper II describes a method to correct for downscatter in low count Iodine-123 SPECT with a broad energy window above the normal imaging window. Both spatial dependency and weight factors were measured. As expected, the implicitly...... be performed by the subtraction of an energy window, a method was developed to perform scatter and downscatter correction simultaneously. A phantom study has been performed, where the in paper II described downscatter correction was extended with scatter correction. This new combined correction was compared...

  20. Electron dynamics in the core-excited CS2 molecule revealed through resonant inelastic x-ray scattering spectroscopy

    International Nuclear Information System (INIS)

    Marchenko, T; Carniato, S; Journel, L; Guillemin, R; Kawerk, E; Simon, M; Žitnik, M; Kavčič, M; Bučar, K; Bohinc, R; Petric, M; Da Cruz, V Vaz; Gel'mukhanov, F

    2015-01-01

    We present an experimental and theoretical study of resonant inelastic x-ray scattering (RIXS) in the CS 2 molecule near the S 1s edge. We show that localization of the S 1s core-hole occurs in CS 2 during the RIXS process due to the orientational dephasing of interference between the waves scattering on the two sulfur atoms. Strong evolution of the RIXS profile with the excitation energy far below the first absorption resonance reflects the onset of electron dynamics triggered by a coherent excitation of multiple electronic states. (paper)

  1. A New Spin on Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The electronic spin degree of freedom is of general fundamental importance to all matter. Understanding its complex roles and behavior in the solid state, particularly in highly correlated and magnetic materials, has grown increasingly desirable as technology demands advanced devices and materials based on ever stricter comprehension and control of the electron spin. However, direct and efficient spin dependent probes of electronic structure are currently lacking. Angle Resolved Photoemission Spectroscopy (ARPES) has become one of the most successful experimental tools for elucidating solid state electronic structures, bolstered by-continual breakthroughs in efficient instrumentation. In contrast, spin-resolved photoemission spectroscopy has lagged behind due to a lack of similar instrumental advances. The power of photoemission spectroscopy and the pertinence of electronic spin in the current research climate combine to make breakthroughs in Spin and Angle Resolved Photoemission Spectroscopy (SARPES) a high priority . This thesis details the development of a unique instrument for efficient SARPES and represents a radical departure from conventional methods. A custom designed spin polarimeter based on low energy exchange scattering is developed, with projected efficiency gains of two orders of magnitude over current state-of-the-art polarimeters. For energy analysis, the popular hemispherical analyzer is eschewed for a custom Time-of-Flight (TOF) analyzer offering an additional order of magnitude gain in efficiency. The combined instrument signifies the breakthrough needed to perform the high resolution SARPES experiments necessary for untangling the complex spin-dependent electronic structures central to today's condensed matter physics.

  2. Interaction of gallic acid with trypsin analyzed by spectroscopy

    Directory of Open Access Journals (Sweden)

    Hao Song

    2015-06-01

    Full Text Available The interactions between trypsin and gallic acid (GA were investigated by means of fluorescence spectroscopy, UV-vis absorption spectroscopy, resonance light scattering (RLS spectroscopy, synchronous fluorescence spectroscopy, and enzymatic inhibition assay. It was found that GA can cause the fluorescence quenching of trypsin during the process of formation of GA-trypsin complex, resulting in inhibition of trypsin activity (IC50 = 3.9 × 10−6 mol/L. The fluorescence spectroscopic data showed that the quenching efficiency can reach about 80%. The binding constants were 1.9371 × 104 L/mol, 1.8192 × 104 L/mol, and 1.7465 × 104 L/mol at three temperatures, respectively. The thermodynamic parameters revealed that hydrogen bonds, van der Waals, hydrophobic, and electrostatic interactions were involved in the binding process of GA to trypsin. Molecular modeling studies illustrated a specific display of binding information and explained most of the experiment phenomena. The microenvironments of tryptophan and tyrosine residue in trypsin were changed by the GA. Results indicated that GA was a strong quencher and inhibitor of trypsin.

  3. Spectroscopy of light nuclei with realistic NN interaction JISP

    International Nuclear Information System (INIS)

    Shirokov, A. M.; Vary, J. P.; Mazur, A. I.; Weber, T. A.

    2008-01-01

    Recent results of our systematic ab initio studies of the spectroscopy of s- and p-shell nuclei in fully microscopic large-scale (up to a few hundred million basis functions) no-core shell-model calculations are presented. A new high-quality realistic nonlocal NN interaction JISP is used. This interaction is obtained in the J-matrix inverse-scattering approach (JISP stands for the J-matrix inverse-scattering potential) and is of the form of a small-rank matrix in the oscillator basis in each of the NN partial waves, providing a very fast convergence in shell-model studies. The current purely two-body JISP model of the nucleon-nucleon interaction JISP16 provides not only an excellent description of two-nucleon data (deuteron properties and np scattering) with χ 2 /datum = 1.05 but also a better description of a wide range of observables (binding energies, spectra, rms radii, quadrupole moments, electromagnetic-transition probabilities, etc.) in all s-and p-shell nuclei than the best modern interaction models combining realistic nucleon-nucleon and three-nucleon interactions.

  4. Computational time-resolved and resonant x-ray scattering of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-11-09

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source, literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of x-ray science. In particular, our Collaborative Research Team (CRT) focused on developing viable computational schemes for modeling x-ray scattering and photoemission spectra of strongly correlated materials in the time-domain. The vast arsenal of formal/numerical techniques and approaches encompassed by the members of our CRT were brought to bear through appropriate generalizations and extensions to model the pumped state and the dynamics of this non-equilibrium state, and how it can be probed via x-ray absorption (XAS), emission (XES), resonant and non-resonant x-ray scattering, and photoemission processes. We explored the conceptual connections between the time-domain problems and other second-order spectroscopies, such as resonant inelastic x-ray scattering (RIXS) because RIXS may be effectively thought of as a pump-probe experiment in which the incoming photon acts as the pump, and the fluorescent decay is the probe. Alternatively, when the core-valence interactions are strong, one can view K-edge RIXS for example, as the dynamic response of the material to the transient presence of a strong core-hole potential. Unlike an actual pump-probe experiment, here there is no mechanism for adjusting the time-delay between the pump and the probe. However, the core hole

  5. Natural gas pipeline leak detector based on NIR diode laser absorption spectroscopy.

    Science.gov (United States)

    Gao, Xiaoming; Fan, Hong; Huang, Teng; Wang, Xia; Bao, Jian; Li, Xiaoyun; Huang, Wei; Zhang, Weijun

    2006-09-01

    The paper reports on the development of an integrated natural gas pipeline leak detector based on diode laser absorption spectroscopy. The detector transmits a 1.653 microm DFB diode laser with 10 mW and detects a fraction of the backscatter reflected from the topographic targets. To eliminate the effect of topographic scatter targets, a ratio detection technique was used. Wavelength modulation and harmonic detection were used to improve the detection sensitivity. The experimental detection limit is 50 ppmm, remote detection for a distance up to 20 m away topographic scatter target is demonstrated. Using a known simulative leak pipe, minimum detectable pipe leak flux is less than 10 ml/min.

  6. Advances in gamma ray resonant scattering and absorption long-lived isomeric nuclear states

    CERN Document Server

    Davydov, Andrey V

    2015-01-01

    This book presents the basics and advanced topics of research of gamma ray physics. It describes measuring of  Fermi surfaces with gamma resonance spectroscopy and the theory of angular distributions of resonantly scattered gamma rays. The dependence of excited-nuclei average lifetime on the shape of the exciting-radiation spectrum and electron binding energies in the spectra of scattered gamma rays is described. Resonant excitation by gamma rays of nuclear isomeric states with long lifetime leads to the emission and absorption lines. In the book, a new gamma spectroscopic method, gravitational gamma spectrometry, is developed. It has a resolution hundred million times higher than the usual Mössbauer spectrometer. Another important topic of this book is resonant scattering of annihilation quanta by nuclei with excited states in connection with positron annihilation. The application of the methods described is to explain the phenomenon of Coulomb fragmentation of gamma-source molecules and resonant scatt...

  7. Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator

    International Nuclear Information System (INIS)

    Butterling, Maik; Anwand, Wolfgang; Cowan, Thomas E.; Hartmann, Andreas; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Wagner, Andreas

    2011-01-01

    A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator's radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.

  8. Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Butterling, Maik, E-mail: maik.butterling@googlemail.com [Martin-Luther University, Dept. of Physics, 06099 Halle (Germany); Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Anwand, Wolfgang; Cowan, Thomas E.; Hartmann, Andreas [Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Jungmann, Marco; Krause-Rehberg, Reinhard [Martin-Luther University, Dept. of Physics, 06099 Halle (Germany); Krille, Arnold; Wagner, Andreas [Institute of Radiation Physics, Helmholtz-Zentrum, Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany)

    2011-11-15

    A new and unique setup for Positron Annihilation Spectroscopy has been established and optimized at the superconducting linear electron accelerator ELBE at Helmholtz-Zentrum Dresden-Rossendorf (Germany). The intense, pulsed (26 MHz) photon source (bremsstrahlung with energies up to 16 MeV) is used to generate positrons by means of pair production throughout the entire sample volume. Due to the very short gamma bunches (< 5 ps temporal length), the facility for Gamma-induced Positron Spectroscopy (GiPS) is suitable for positron lifetime spectroscopy using the accelerator's radiofrequency as time reference. Positron lifetime and Doppler broadening Spectroscopy are employed by a coincident measurement (Age-Momentum Correlation) of the time-of-arrival and energy of the annihilation photons which in turn significantly reduces the background of scattered photons resulting in spectra with high signal to background ratios. Simulations of the setup using the GEANT4 framework have been performed to yield optimum positron generation rates for various sample materials and improved background conditions.

  9. Frontiers of surface-enhanced Raman scattering single nanoparticles and single cells

    CERN Document Server

    Ozaki, Yukihiro; Aroca, Ricardo

    2014-01-01

    A comprehensive presentation of Surface-Enhanced Raman Scattering (SERS) theory, substrate fabrication, applications of SERS to biosystems, chemical analysis, sensing and fundamental innovation through experimentation. Written by internationally recognized editors and contributors. Relevant to all those within the scientific community dealing with Raman Spectroscopy, i.e. physicists, chemists, biologists, material scientists, physicians and biomedical scientists. SERS applications are widely expanding and the technology is now used in the field of nanotechnologies, applications to biosystems, nonosensors, nanoimaging and nanoscience.

  10. Growth of CdTe on (100) GaAs and analysis using ion scattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mitrovic, B.; King, B.V. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    A brief review of Coaxial Impact collision Ion Scattering Spectroscopy (CAICISS) has been presented as well as its advantages in studies of semiconductor surfaces and interfaces. The results that we have gained using fast computer code - SABRE are graphically presented as an incident angular spectrum. The plausible interpretation for the large anomalous peak at 60 deg is given. 14 refs., 1 fig.

  11. Growth of CdTe on (100) GaAs and analysis using ion scattering spectrometry

    International Nuclear Information System (INIS)

    Mitrovic, B.; King, B.V.

    1993-01-01

    A brief review of Coaxial Impact collision Ion Scattering Spectroscopy (CAICISS) has been presented as well as its advantages in studies of semiconductor surfaces and interfaces. The results that we have gained using fast computer code - SABRE are graphically presented as an incident angular spectrum. The plausible interpretation for the large anomalous peak at 60 deg is given. 14 refs., 1 fig

  12. Growth of CdTe on (100) GaAs and analysis using ion scattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mitrovic, B; King, B V [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    A brief review of Coaxial Impact collision Ion Scattering Spectroscopy (CAICISS) has been presented as well as its advantages in studies of semiconductor surfaces and interfaces. The results that we have gained using fast computer code - SABRE are graphically presented as an incident angular spectrum. The plausible interpretation for the large anomalous peak at 60 deg is given. 14 refs., 1 fig.

  13. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1990-10-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  14. Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1990-01-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  15. Cooperative scattering of scalar waves by optimized configurations of point scatterers

    Science.gov (United States)

    Schäfer, Frank; Eckert, Felix; Wellens, Thomas

    2017-12-01

    We investigate multiple scattering of scalar waves by an ensemble of N resonant point scatterers in three dimensions. For up to N = 21 scatterers, we numerically optimize the positions of the individual scatterers, to maximize the total scattering cross section for an incoming plane wave, on the one hand, and to minimize the decay rate associated to a long-lived scattering resonance, on the other. In both cases, the optimum is achieved by configurations where all scatterers are placed on a line parallel to the direction of the incoming plane wave. The associated maximal scattering cross section increases quadratically with the number of scatterers for large N, whereas the minimal decay rate—which is realized by configurations that are not the same as those that maximize the scattering cross section—decreases exponentially as a function of N. Finally, we also analyze the stability of our optimized configurations with respect to small random displacements of the scatterers. These results demonstrate that optimized configurations of scatterers bear a considerable potential for applications such as quantum memories or mirrors consisting of only a few atoms.

  16. RAYLEIGH SCATTERING IN THE ATMOSPHERE OF THE WARM EXO-NEPTUNE GJ 3470B

    International Nuclear Information System (INIS)

    Dragomir, Diana; Benneke, Björn; Pearson, Kyle A.; Crossfield, Ian J. M.; Barman, Travis; Eastman, Jason; Biddle, Lauren I.

    2015-01-01

    GJ 3470b is a warm Neptune-size planet transiting an M dwarf star. Like the handful of other small exoplanets for which transmission spectroscopy has been obtained, GJ 3470b exhibits a flat spectrum in the near- and mid-infrared. Recently, a tentative detection of Rayleigh scattering in its atmosphere has been reported. This signal manifests itself as an observed increase of the planetary radius as a function of decreasing wavelength in the visible. We set out to verify this detection and observed several transits of this planet with the LCOGT network and the Kuiper telescope in four different bands (Sloan g, Sloan i, Harris B, and Harris V). Our analysis reveals a strong Rayleigh scattering slope, thus confirming previous results. This makes GJ 3470b the smallest known exoplanet with a detection of Rayleigh scattering. We find that the most plausible scenario is a hydrogen/helium-dominated atmosphere covered by clouds which obscure absorption features in the infrared and hazes which give rise to scattering in the visible. Our results demonstrate the feasibility of exoplanet atmospheric characterization from the ground, even with meter-class telescopes

  17. RAYLEIGH SCATTERING IN THE ATMOSPHERE OF THE WARM EXO-NEPTUNE GJ 3470B

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir, Diana [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive Suite 102, Goleta, CA 93117 (United States); Benneke, Björn [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Pearson, Kyle A. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86001 (United States); Crossfield, Ian J. M.; Barman, Travis [Department of Planetary Sciences, Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Eastman, Jason [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Biddle, Lauren I., E-mail: diana@oddjob.uchicago.edu [Gemini Observatory, Northern Operations Center, 670 N. Aohoku Place, Hilo, HI 96720 (United States)

    2015-12-01

    GJ 3470b is a warm Neptune-size planet transiting an M dwarf star. Like the handful of other small exoplanets for which transmission spectroscopy has been obtained, GJ 3470b exhibits a flat spectrum in the near- and mid-infrared. Recently, a tentative detection of Rayleigh scattering in its atmosphere has been reported. This signal manifests itself as an observed increase of the planetary radius as a function of decreasing wavelength in the visible. We set out to verify this detection and observed several transits of this planet with the LCOGT network and the Kuiper telescope in four different bands (Sloan g, Sloan i, Harris B, and Harris V). Our analysis reveals a strong Rayleigh scattering slope, thus confirming previous results. This makes GJ 3470b the smallest known exoplanet with a detection of Rayleigh scattering. We find that the most plausible scenario is a hydrogen/helium-dominated atmosphere covered by clouds which obscure absorption features in the infrared and hazes which give rise to scattering in the visible. Our results demonstrate the feasibility of exoplanet atmospheric characterization from the ground, even with meter-class telescopes.

  18. Polarization Raman spectroscopy of GaN nanorod bundles

    International Nuclear Information System (INIS)

    Tite, T.; Lee, C. J.; Chang, Y.-M.

    2010-01-01

    We performed polarization Raman spectroscopy on single wurtzite GaN nanorod bundles grown by plasma-assisted molecular beam epitaxy. The obtained Raman spectra were compared with those of GaN epilayer. The spectral difference between the GaN nanorod bundles and epilayer reveals the relaxation of Raman selection rules in these GaN nanorod bundles. The deviation of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules is attributed to both the orientation of the crystal axis with respect to the polarization vectors of incident and scattered light and the structural defects in the merging boundary of GaN nanorods. The presence of high defect density induced by local strain at the merging boundary was further confirmed by transmission electron microscopy. The averaged defect interspacing was estimated to be around 3 nm based on the spatial correlation model.

  19. Raman Spectroscopy and Microscopy of Individual Cells andCellular Components

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J; Fore, S; Wachsmann-Hogiu, S; Huser, T

    2008-05-15

    Raman spectroscopy provides the unique opportunity to non-destructively analyze chemical concentrations on the submicron length scale in individual cells without the need for optical labels. This enables the rapid assessment of cellular biochemistry inside living cells, and it allows for their continuous analysis to determine cellular response to external events. Here, we review recent developments in the analysis of single cells, subcellular compartments, and chemical imaging based on Raman spectroscopic techniques. Spontaneous Raman spectroscopy provides for the full spectral assessment of cellular biochemistry, while coherent Raman techniques, such as coherent anti-Stokes Raman scattering is primarily used as an imaging tool comparable to confocal fluorescence microscopy. These techniques are complemented by surface-enhanced Raman spectroscopy, which provides higher sensitivity and local specificity, and also extends the techniques to chemical indicators, i.e. pH sensing. We review the strengths and weaknesses of each technique, demonstrate some of their applications and discuss their potential for future research in cell biology and biomedicine.

  20. Geometry of GLP on silver surface by surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Bao, PeiDi; Bao, Lang; Huang, TianQuan; Liu, XinMing; Wu, GuoFeng

    2000-05-01

    Leptospirosis is one of the most harmful zoonosis, it is a serious public health issue in some area of Sichuan province. Surface-Enhance Raman Scattering (SERS) Spectroscopy is an effective approach for the study of biomolecular adsorption on metal surface and provides information about the adsorbed species. Two samples of Leptospiral Glycolipoprotein (GLP-1) and GLP-2 which have different toxic effects have been obtained and investigated.

  1. Imaging, scattering, and spectroscopic systems for biomedical optics: Tools for bench top and clinical applications

    Science.gov (United States)

    Cottrell, William J.

    Optical advances have had a profound impact on biology and medicine. The capabilities range from sensing biological analytes to whole animal and subcellular imaging and clinical therapies. The work presented in this thesis describes three independent and multifunctional optical systems, which explore clinical therapy at the tissue level, biological structure at the cell/organelle level, and the function of underlying fundamental cellular processes. First, we present a portable clinical instrument for delivering delta-aminolevulinic acid photodynamic therapy (ALA-PDT) while performing noninvasive spectroscopic monitoring in vivo. Using an off-surface probe, the instrument delivered the treatment beam to a user-defined field on the skin and performed reflectance and fluorescence spectroscopies at two regions within this field. The instrument was used to monitor photosensitizer fluorescence photobleaching, fluorescent photoproduct kinetics, and blood oxygen saturation during a clinical ALA-PDT trial on superficial basal cell carcinoma (sBCC). Protoporphyrin IX and photoproduct fluorescence excited by the 632.8 nm PDT treatment laser was collected between 665 and 775 nm. During a series of brief treatment interruptions at programmable time points, white-light reflectance spectra between 475 and 775 nm were acquired. Fluorescence spectra were corrected for the effects of absorption and scattering, informed by the reflectance measurements, and then decomposed into known fluorophore contributions in real time using a robust singular-value decomposition fitting routine. Reflectance spectra additionally provided information on hemoglobin oxygen saturation. We next describe the incorporation of this instrument into clinical trials at Roswell Park Cancer Institute (Buffalo, NY). In this trial we examined the effects of light irradiance on photodynamic efficiency and pain. The rate of singlet-oxygen production depends on the product of irradiance and photosensitizer and oxygen

  2. Dispersion-based stimulated Raman scattering spectroscopy, holography, and optical coherence tomography.

    Science.gov (United States)

    Robles, Francisco E; Fischer, Martin C; Warren, Warren S

    2016-01-11

    Stimulated Raman scattering (SRS) enables fast, high resolution imaging of chemical constituents important to biological structures and functional processes, both in a label-free manner and using exogenous biomarkers. While this technology has shown remarkable potential, it is currently limited to point scanning and can only probe a few Raman bands at a time (most often, only one). In this work we take a fundamentally different approach to detecting the small nonlinear signals based on dispersion effects that accompany the loss/gain processes in SRS. In this proof of concept, we demonstrate that the dispersive measurements are more robust to noise compared to amplitude-based measurements, which then permit spectral or spatial multiplexing (potentially both, simultaneously). Finally, we illustrate how this method may enable different strategies for biochemical imaging using phase microscopy and optical coherence tomography.

  3. Deconvolution of neutron scattering data: a new computational approach

    International Nuclear Information System (INIS)

    Weese, J.; Hendricks, J.; Zorn, R.; Honerkamp, J.; Richter, D.

    1996-01-01

    In this paper we address the problem of reconstructing the scattering function S Q (E) from neutron spectroscopy data which represent a convolution of the former function with an instrument dependent resolution function. It is well known that this kind of deconvolution is an ill-posed problem. Therefore, we apply the Tikhonov regularization technique to get an estimate of S Q (E) from the data. Special features of the neutron spectroscopy data require modifications of the basic procedure, the most important one being a transformation to a non-linear problem. The method is tested by deconvolution of actual data from the IN6 time-of-flight spectrometer (resolution: 90 μeV) and simulated data. As a result the deconvolution is shown to be feasible down to an energy transfer of ∼100 μeV for this instrument without recognizable error and down to ∼20 μeV with 10% relative error. (orig.)

  4. Electron impact spectroscopy of methane, silane, and germane

    International Nuclear Information System (INIS)

    Dillon, M.A.; Wang, R.G.; Spence, D.

    1985-01-01

    Electronic spectra of the group IV/sub a/ hydrides, i.e., methane (CH 4 ), silane (SiH 4 ), and germane (GeH 4 ) have been investigated by means of electron energy loss spectroscopy in an energy range that includes all single-electron excitation from the valence shell. Electron impact spectra of the three gases recorded using electrons of 200-eV incidence are presented. The conditions employed were chosen to favor the excitation of states by direct scattering and to exclude those transitions requiring an exchange mechanism

  5. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy.

    Science.gov (United States)

    Salter, Robert; Chu, Johnny; Hippler, Michael

    2012-10-21

    A variant of cavity-enhanced Raman spectroscopy (CERS) is introduced, in which diode laser radiation at 635 nm is coupled into an external linear optical cavity composed of two highly reflective mirrors. Using optical feedback stabilisation, build-up of circulating laser power by 3 orders of magnitude occurs. Strong Raman signals are collected in forward scattering geometry. Gas phase CERS spectra of H(2), air, CH(4) and benzene are recorded to demonstrate the potential for analytical applications and fundamental molecular studies. Noise equivalent limits of detection in the ppm by volume range (1 bar sample) can be achieved with excellent linearity with a 10 mW excitation laser, with sensitivity increasing with laser power and integration time. The apparatus can be operated with battery powered components and can thus be very compact and portable. Possible applications include safety monitoring of hydrogen gas levels, isotope tracer studies (e.g., (14)N/(15)N ratios), observing isotopomers of hydrogen (e.g., radioactive tritium), and simultaneous multi-component gas analysis. CERS has the potential to become a standard method for sensitive gas phase Raman spectroscopy.

  6. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  7. Resonant Raman scattering of ZnS, ZnO, and ZnS/ZnO core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, A.G. [Institute of Semiconductor Physics, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Yeryukov, N.A.; Sveshnikova, L.L.; Duda, T.A. [Institute of Semiconductor Physics, Novosibirsk (Russian Federation); Himcinschi, C. [TU Bergakademie Freiberg, Institut fuer Theoretische Physik, Freiberg (Germany); Zenkevich, E.I. [Belarussian National Technical University, Minsk (Belarus); Zahn, D.R.T. [Chemnitz University of Technology, Semiconductor Physics, Chemnitz (Germany)

    2012-05-15

    Resonant Raman scattering by optical phonon modes as well as their overtones was investigated in ZnS and ZnO quantum dots grown by the Langmuir-Blodgett technique. The in situ formation of ZnS/ZnO core/shell quantum dots was monitored by Raman spectroscopy during laser illumination. (orig.)

  8. Evaluation of light scattering properties and chromophore concentrations in skin tissue based on diffuse reflectance signals at isosbestic wavelengths of hemoglobin

    Science.gov (United States)

    Yokokawa, Takumi; Nishidate, Izumi

    2016-04-01

    We investigate a method to evaluate light-scattering properties and chromophore concentrations in human skin tissue through diffuse reflectance spectroscopy using the reflectance signals acquired at isosbestic wavelengths of hemoglobin (420, 450, 500, and 585 nm). In the proposed method, Monte Carlo simulation-based empirical formulas are used to specify the scattering parameters of skin tissue, such as the scattering amplitude a and the scattering power b, as well as the concentration of melanin C m and the total blood concentration C tb. The use of isosbestic wavelengths of hemoglobin enables the values of C m, C tb, a, and b to be estimated independently of the oxygenation of hemoglobin. The spectrum of the reduced scattering coefficient is reconstructed from the scattering parameters. Experiments using in vivo human skin tissues were performed to confirm the feasibility of the proposed method for evaluating the changes in scattering properties and chromophore concentrations in skin tissue. The experimental results revealed that light scattering is significantly reduced by the application of a glycerol solution, which indicates an optical clearing effect due to osmotic dehydration and the matching of the refractive indices of scatterers in the epidermis.

  9. Time domain diffuse optical spectroscopy: In vivo quantification of collagen in breast tissue

    Science.gov (United States)

    Taroni, Paola; Pifferi, Antonio; Quarto, Giovanna; Farina, Andrea; Ieva, Francesca; Paganoni, Anna Maria; Abbate, Francesca; Cassano, Enrico; Cubeddu, Rinaldo

    2015-05-01

    Time-resolved diffuse optical spectroscopy provides non-invasively the optical characterization of highly diffusive media, such as biological tissues. Light pulses are injected into the tissue and the effects of light propagation on re-emitted pulses are interpreted with the diffusion theory to assess simultaneously tissue absorption and reduced scattering coefficients. Performing spectral measurements, information on tissue composition and structure is derived applying the Beer law to the measured absorption and an empiric approximation to Mie theory to the reduced scattering. The absorption properties of collagen powder were preliminarily measured in the range of 600-1100 nm using a laboratory set-up for broadband time-resolved diffuse optical spectroscopy. Optical projection images were subsequently acquired in compressed breast geometry on 218 subjects, either healthy or bearing breast lesions, using a portable instrument for optical mammography that operates at 7 wavelengths selected in the range 635-1060 nm. For all subjects, tissue composition was estimated in terms of oxy- and deoxy-hemoglobin, water, lipids, and collagen. Information on tissue microscopic structure was also derived. Good correlation was obtained between mammographic breast density (a strong risk factor for breast cancer) and an optical index based on collagen content and scattering power (that accounts mostly for tissue collagen). Logistic regression applied to all optically derived parameters showed that subjects at high risk for developing breast cancer for their high breast density can effectively be identified based on collagen content and scattering parameters. Tissue composition assessed in breast lesions with a perturbative approach indicated that collagen and hemoglobin content are significantly higher in malignant lesions than in benign ones.

  10. Soft X-ray spectroscopy of transition metal compounds: a theoretical perspective

    International Nuclear Information System (INIS)

    Bokarev, S.I.; Hilal, R.; Aziz, S.G.; Kühn, O.

    2017-01-01

    To date, X-ray spectroscopy has become a routine tool that can reveal highly local and element-specific information on the electronic structure of atoms in complex environments. Here, we report on the development of an efficient and versatile theoretical methodology for the treatment of soft X-ray spectra of transition metal compounds based on the multi-configurational self-consistent field electronic structure theory. A special focus is put on the L-edge photon-in/photon-out and photon-in/electron-out processes, i.e. X-ray absorption, resonant inelastic scattering, partial fluorescence yield, and photoelectron spectroscopy, all treated on the same theoretical footing. The investigated systems range from small prototypical coordination compounds and catalysts to aggregates of biomolecules.

  11. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    International Nuclear Information System (INIS)

    Chin, A.H.; Schoenlein, R.W.; Glover, T.E.

    1997-01-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale

  12. Comparison of electrothermal atomization diode laser Zeeman- and wavelength-modulated atomic absorption and coherent forward scattering spectrometry

    International Nuclear Information System (INIS)

    Blecker, Carlo R.; Hermann, Gerd M.

    2009-01-01

    Atomic absorption and coherent forward scattering spectrometry by using a near-infrared diode laser with and without Zeeman and wavelength modulation were carried out with graphite furnace electrothermal atomization. Analytical curves and limits of detection were compared. The magnetic field was modulated with 50 Hz, and the wavelength of the diode laser with 10 kHz. Coherent forward scattering was measured with crossed and slightly uncrossed polarizers. The results show that the detection limits of atomic absorption spectrometry are roughly the same as those of coherent forward scattering spectrometry with crossed polarizers. According to the theory with bright flicker noise limited laser sources the detection limits and linear ranges obtained with coherent forward scattering spectrometry with slightly uncrossed polarizers are significantly better than those obtained with crossed polarizers and with atomic absorption spectrometry. This is due to the fact that employing approaches of polarization spectroscopy reduce laser intensity fluctuations to their signal carried fractions

  13. Polarized Raman spectroscopy of chemically vapour deposited diamond films

    International Nuclear Information System (INIS)

    Prawer, S.; Nugent, K.W.; Weiser, P.S.

    1994-01-01

    Polarized micro-Raman spectra of chemically vapour deposited diamond films are presented. It is shown that important parameters often extracted from the Raman spectra such as the ratio of the diamond to non-diamond component of the films and the estimation of the level of residual stress depend on the orientation of the diamond crystallites with respect to the polarization of the incident laser beam. The dependence originates from the fact that the Raman scattering from the non-diamond components in the films is almost completely depolarized whilst the scattering from the diamond components is strongly polarized. The results demonstrate the importance of taking polarization into account when attempting to use Raman spectroscopy in even a semi-quantitative fashion for the assessment of the purity, perfection and stress in CVD diamond films. 8 refs., 1 tab. 2 figs

  14. Study of TiO2(1 1 0)-p(1x1), p(1x2) and p(1x3) surface structures by impact collision ion scattering spectroscopy (ICISS)

    International Nuclear Information System (INIS)

    Asari, E.; Souda, R.

    2000-01-01

    The surface structure of TiO 2 (1 1 0)-p(1x1), p(1x2) and p(1x3) were studied using impact collision ion scattering spectroscopy (ICISS). We found that (i) the height of bridging oxygen for the p(1x1) is comparative to that of bulk structure, (ii) the p(1x2) surface has the added Ti 2 O 3 unit rows proposed by Onishi et al. and also the oxygen atoms rows between Ti 2 O 3 unit rows and (iii) the p(1x3) surface is constructed with the same added Ti 2 O 3 unit rows as that in the p(1x2) surface, but the bridging oxygen rows exist between the Ti 2 O 3 unit rows

  15. Near infrared spectroscopy of human muscles

    Science.gov (United States)

    Gasbarrone, R.; Currà, A.; Cardillo, A.; Bonifazi, G.; Serranti, S.

    2018-02-01

    Optical spectroscopy is a powerful tool in research and industrial applications. Its properties of being rapid, non-invasive and not destructive make it a promising technique for qualitative as well as quantitative analysis in medicine. Recent advances in materials and fabrication techniques provided portable, performant, sensing spectrometers readily operated by user-friendly cabled or wireless systems. We used such a system to test whether infrared spectroscopy techniques, currently utilized in many areas as primary/secondary raw materials sector, cultural heritage, agricultural/food industry, environmental remote and proximal sensing, pharmaceutical industry, etc., could be applied in living humans to categorize muscles. We acquired muscles infrared spectra in the Vis-SWIR regions (350-2500 nm), utilizing an ASD FieldSpec 4 Standard-Res Spectroradiometer with a spectral sampling capability of 1.4 nm at 350-1000 nm and 1.1 nm at 1001-2500 nm. After a preliminary spectra pre-processing (i.e. signal scattering reduction), Principal Component Analysis (PCA) was applied to identify similar spectral features presence and to realize their further grouping. Partial Least-Squares Discriminant Analysis (PLS-DA) was utilized to implement discrimination/prediction models. We studied 22 healthy subjects (age 25-89 years, 11 females), by acquiring Vis-SWIR spectra from the upper limb muscles (i.e. biceps, a forearm flexor, and triceps, a forearm extensor). Spectroscopy was performed in fixed limb postures (elbow angle approximately 90‡). We found that optical spectroscopy can be applied to study human tissues in vivo. Vis-SWIR spectra acquired from the arm detect muscles, distinguish flexors from extensors.

  16. Spectral analysis of scattered light from flowers' petals

    Science.gov (United States)

    Ozawa, Atsumi; Uehara, Tomomi; Sekiguchi, Fumihiko; Imai, Hajime

    2009-07-01

    A new method was developed for studying absorption characteristics of opaque samples based on the light scattering spectroscopy. Measurements were made in white, red and violet petals of Petunia hybrida, and gave the absorption spectra in a non-destructive manner without damaging the cell structures of the petal. The red petal has absorption peak at 550 nm and the violet has three absorption peaks: at 450, 670, and 550 nm. The results were discussed in correlation with the microscopic cell structures of the petal observed with optical microscope and transmission electron microscopy (TEM). Only the cells placed in the surface have the pigments giving the color of the petal.

  17. Direct observation of electronic and nuclear ground state splitting in external magnetic field by inelastic neutron scattering on oxidized ferrocene and ferrocene containing polymers

    Science.gov (United States)

    Appel, Markus; Frick, Bernhard; Elbert, Johannes; Gallei, Markus; Stühn, Bernd

    2015-01-01

    The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene). They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.

  18. A pseudo-Voigt component model for high-resolution recovery of constituent spectra in Raman spectroscopy

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Schmidt, Mikkel Nørgaard; Rindzevicius, Tomas

    2017-01-01

    Raman spectroscopy is a well-known analytical technique for identifying and analyzing chemical species. Since Raman scattering is a weak effect, surface-enhanced Raman spectroscopy (SERS) is often employed to amplify the signal. SERS signal surface mapping is a common method for detecting trace...... to directly and reliably identify the Raman modes, with overall performance similar to the state of the art non-negative matrix factorization approach. However, the model provides better interpretation and is a step towards enabling the use of SERS in detection of trace amounts of molecules in real-life...

  19. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  20. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    International Nuclear Information System (INIS)

    Rest, A.; Welch, D.L.; Suntzeff, N.B.; Oaster, L.; Lanning, H.; Olsen, K.; Smith, R.C.; Becker, A.C.; Bergmann, M.; Challis, P.; Clocchiatti, A.; Cook, K.H.; Damke, G.; Garg, A.; Huber, M.E.; Matheson, T.; Minniti, D.; Prieto, J.L.; Wood-Vasey, W.M.

    2008-01-01

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane

  1. The interpretation of the intensity of components of laser scattering by interaction with matter

    Science.gov (United States)

    Fidanovski, Z.; Srećković, M.; Ostojić, S.; Ilić, J.; Merkle, M.

    2012-05-01

    The measurement of scattered light properties offers many optical, acoustic, dielectric, thermodynamic data about the scattering medium. Brillouin spectroscopy with various modifications and different laser types has been a measurement technique in acoustics for a long time, but it is still important as an autonomous technique. It enables more detailed and exhaustive knowledge of the acoustic and optical properties of matter. A series of Rayleigh-Brillouin spectra are recorded for a set of organic solvents and phytol. The equipment used in spectra recordings enables the measurement of four components of scattered laser intensity Ihh, Ihv, Ivv and Ivh. The ratios of the linewidth, as well as shifts, are determined for Rayleigh-Brillouin spectra. According to them, the hypersound velocity and absorption coefficients can be calculated. There is much software for data processing obtained in laser interaction with matter, with different programming tools. An analysis of spectra is performed, i.e. an examination of which distribution (Gaussian or Lorentzian) better explains the experimentally obtained diagrams.

  2. Reversibility of Graphene-Enhanced Raman Scattering with Fluorinated Graphene

    Czech Academy of Sciences Publication Activity Database

    Valeš, Václav; Melníková Komínková, Zuzana; Verhagen, Timotheus; Vejpravová, Jana; Kalbáč, Martin

    2017-01-01

    Roč. 254, č. 11 (2017), č. článku 1700177. ISSN 0370-1972 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk(CZ) LM2015073 Grant - others:GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : fluorination * graphene * graphene-enhanced Raman * Raman spectroscopy * scattering Subject RIV: CF - Physical ; Theoretical Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Physical chemistry; Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 1.674, year: 2016

  3. Gamma-ray tracking - A new detector concept for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Gast, W.

    2001-01-01

    In the framework of an European collaboration the nest generation of large efficiency, high resolution spectrometers for nuclear spectroscopy is under development. The new spectrometers are large volume, segmented Ge-detectors featuring 3D position sensitivity in order to allow Gamma-Ray Tracking. That is, knowing the interaction positions and the energies released at each interaction, the track each gamma-ray follows during its scattering process inside the detector volume can be reconstructed on basis of the Compton-scattering formula. The resulting high add-back efficiency an effective granularity significantly improves peak-to-total ratio, efficiency, and Doppler-broadening of the spectrometer. In this contribution the states of the project concerning detector design and development of digital signal processing techniques to achieve an optimal 3D position sensitivity is presented. (authors)

  4. Far-infrared elastic scattering proposal for the Avogadro Project's silicon spheres

    Science.gov (United States)

    Humayun, Muhammad Hamza; Khan, Imran; Azeem, Farhan; Chaudhry, Muhammad Rehan; Gökay, Ulaş Sabahattin; Murib, Mohammed Sharif; Serpengüzel, Ali

    2018-05-01

    Avogadro constant determines the number of particles in one mole of a substance, thus relating the molar mass of the substance to the mass of this substance. Avogadro constant is related to Système Internationale base units by defining the very concept of chemical quantity. Revisions of the base units created a need to redefine the Avogadro constant, where a collaborative work called the Avogadro Project is established to employ optical interferometry to measure the diameter of high quality 100 mm silicon spheres. We propose far-infrared spectroscopy for determining the Avogadro constant by using elastic scattering from the 100 mm Avogadro Project silicon spheres. Similar spectroscopic methods are already in use in the near-infrared, relating whispering gallery modes of the 1 mm silicon spheres to the diameter of the spheres. We present numerical simulations in the far-infrared and the near-infrared, as well as spatially scaled down elastic scattering measurements in the near-infrared. These numerical and experimental results show that, the diameter measurements of 100 mm single crystal silicon spheres with elastic scattering in the far-infrared can be considered as an alternative to optical interferometry.

  5. The effect of gamma radiation on seeds and plants of different genotypes of Pisum arvense (L.s.s.) in the M1 generation

    International Nuclear Information System (INIS)

    Jaranowski, J.K.

    1976-01-01

    This paper presents results concerning radiosensitivity of seeds of field pea (Pisum arvense L.s.s.) and the analysis of the M 1 generation plants. For the present studies seeds of seven established (homozygous) lines, derived from crosses between forms and varieties of different agriculturo-geographical regions of Europe, were chosen. These lines differed by a number of morphological and physiological characters. The seeds were exposed to gamma radiation at the doses of: 1 kR/5 hrs, 6 kR/25 hrs, 12 kR/100 hrs, 25 kR/100 hrs and 50 kR/100 hrs. While analysing after the irradiation such phenomena as germinating and emergence capacity, survival of plants after emergence, morphological changes of plants, fertility and chromosome aberrations, it has been found that the radiosensitivity of various lines is convincingly different. Attempts to find certain correlations between the presence of definite genes in the lines, the size and structure of chromosomes, the structure of seeds (size, shape, coloration) gave negative results. Results obtained by the author and those of the literature indicate that radiosensitivity of pea seeds and characters of the M 1 generation plants are very complicated phenomena and it is difficult to establish definite regularities. (author)

  6. Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales

    International Nuclear Information System (INIS)

    Knoops, Harm C. M.; Loo, Bas W. H. van de; Smit, Sjoerd; Ponomarev, Mikhail V.; Weber, Jan-Willem; Sharma, Kashish; Kessels, Wilhelmus M. M.; Creatore, Mariadriana

    2015-01-01

    In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter “scattering frequency” instead of the parameter “mobility”. The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific

  7. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A

    2013-01-01

    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  8. Luminescence spectroscopy with synchrotron radiation: History, highlights, future

    International Nuclear Information System (INIS)

    Zimmerer, Georg

    2006-01-01

    Luminescence spectroscopy and the investigation of dynamical processes with synchrotron radiation (SR) started about 35 years ago in nearly all SR laboratories existing at that time. In the present paper, the pioneering experiments are particularly emphasized. The exciting development is illustrated presenting highlights for the whole period from the beginning to the present day. The highlights are taken from fields like exciton self-trapping, inelastic electron-electron scattering, optically stimulated desorption, cross luminescence, or probing of cluster properties with luminescence spectroscopic methods. More technological aspects play a role in present day's experiments, like quantum cutting in rare-earth-doped insulators. Promising two-photon excitation and light amplification experiments with SR will be included, as well as the first results obtained in a luminescence experiment with selective Vaccum ultraviolet-free electron laser excitation. Finally, a few ideas concerning the future development of luminescence spectroscopy with SR will be sketched

  9. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  10. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  11. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2013-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  12. Infrared dispersion analysis and Raman scattering spectra of taurine single crystals

    Science.gov (United States)

    Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Dias, Anderson

    2018-01-01

    A comprehensive set of optical vibrational modes of monoclinic taurine crystals was determined by Raman scattering, and infrared reflectivity and transmission spectroscopies. By using appropriate scattering/reflection geometries, the vibrational modes were resolved by polarization and the most relevant modes of the crystal could be assigned. In particular, we were able to review the symmetry of the gerade modes and to resolve ambiguities in the literature. Owing to the non-orthogonal character of Bu modes in monoclinic crystals (lying on the optic axial plane), we carried out a generalized Lorentz dispersion analysis consisting of simultaneous adjust of infrared-reflectivity spectra at various light polarization angles. The Au modes (parallel to the C2-axis) were treated within the classical Lorentz model. The behavior of off-diagonal and diagonal terms of the complex dielectric tensors and the presence of anomalous dispersion were discussed as consequences of the low symmetry of the crystal.

  13. Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties.

    Science.gov (United States)

    Vishwanath, Karthik; Chang, Kevin; Klein, Daniel; Deng, Yu Feng; Chang, Vivide; Phelps, Janelle E; Ramanujam, Nimmi

    2011-02-01

    Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.

  14. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  15. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  16. Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe

    International Nuclear Information System (INIS)

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

    2012-01-01

    Discovery of Moessbauer effect in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couples to nuclear degrees of freedom leading to hyperfine interactions. thus, Moessbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Moessbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physics, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Moessbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or 'in-beam'Moessbauer experiments with implanted radioactive ions. More recently, two Moessbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time. In this chapter, the authors look into some of the unique aspects of nuclear resonance excited with synchrotron radiation as a probe of condensed matter, including magnetism, valence, vibrations, and lattice dynamics, and review the development of nuclear resonance inelastic x-ray scattering (NRIXS) and synchrotron Moessbauer spectroscopy

  17. Aluminum and carbon substitution in MgB2. Electron doping and scattering effects

    International Nuclear Information System (INIS)

    Samuely, P.; Szabo, P.; Pribulova, Z.; Angst, M.; Bud'ko, S.L.; Canfield, P.C.; Klein, T.; Lyard, L.; Marcus, J.; Marcenat, C.; Kang, B.W.; Kim, H.-J.; Lee, H.-S.; Lee, H.-K.; Lee, S.I.

    2007-01-01

    The point-contact spectroscopy is used to address the evolution of two superconducting energy gaps in the Al- and C-doped magnesium diboride polycrystals and single crystals with T c 's from 39 to 22 K prepared by different techniques. The obtained evolution of two gaps does not show any anomalous behavior but can be consistently described by the combination of the (prevailing) band filling effect and a (minor) increased interband scattering as proposed by Kortus et al. [Kortus et al., Phys. Rev. Lett. 94 (2005) 027002]. The approaching of two gaps is stronger in the Al-doped systems but interband scattering is still not large enough to merge two gaps. The full merging can expected only for higher dopings with T c 's below 10-15 K. In-magnetic-field measurements are used to analyze the intraband scatterings introduced by these two substitutions. It is shown that the carbon doping introduces significant disorder mainly by decreasing the diffusion coefficient in the π band while the Al substitution leaves the samples in the clean limit

  18. Cell Imaging by Spontaneous and Amplified Raman Spectroscopies

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    2017-01-01

    Full Text Available Raman spectroscopy (RS is a powerful, noninvasive optical technique able to detect vibrational modes of chemical bonds. The high chemical specificity due to its fingerprinting character and the minimal requests for sample preparation have rendered it nowadays very popular in the analysis of biosystems for diagnostic purposes. In this paper, we first discuss the main advantages of spontaneous RS by describing the study of a single protozoan (Acanthamoeba, which plays an important role in a severe ophthalmological disease (Acanthamoeba keratitis. Later on, we point out that the weak signals that originated from Raman scattering do not allow probing optically thin samples, such as cellular membrane. Experimental approaches able to overcome this drawback are based on the use of metallic nanostructures, which lead to a huge amplification of the Raman yields thanks to the excitation of localized surface plasmon resonances. Surface-enhanced Raman scattering (SERS and tip-enhanced Raman scattering (TERS are examples of such innovative techniques, in which metallic nanostructures are assembled on a flat surface or on the tip of a scanning probe microscope, respectively. Herein, we provide a couple of examples (red blood cells and bacterial spores aimed at studying cell membranes with these techniques.

  19. Measurements of scattering processes in negative ion: Atom collisions. Technical progress report, 1 September 1991--31 December 1994

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1994-01-01

    This report describes the progress made on the research objectives during the past three years of the grant. This research project is designed to study various scattering processes which occur in H - collisions with atomic (specifically, noble gas and atomic hydrogen) targets in the intermediate energy region. These processes include: elastic scattering, single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H - is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements will provide total cross sections (TCS) initially, and once the angular positioning apparatus is installed, will provide angular differential cross sections (ADCS)

  20. Certain theories of multiple scattering in random media of discrete scatterers

    International Nuclear Information System (INIS)

    Olsen, R.L.; Kharadly, M.M.Z.; Corr, D.G.

    1976-01-01

    New information is presented on the accuracy of the heuristic approximations in two important theories of multiple scattering in random media of discrete scatterers: Twersky's ''free-space'' and ''two-space scatterer'' formalisms. Two complementary approaches, based primarily on a one-dimensional model and the one-dimensional forms of the theories, are used. For scatterer distributions of low average density, the ''heuristic'' asymptotic forms for the coherent field and the incoherent intensity are compared with asymptotic forms derived from a systematic analysis of the multiple scattering processes. For distributions of higher density, both in the average number of scatterers per wavelength and in the degree of packing of finite-size scatterers, the analysis is carried out ''experimentally'' by means of a Monte Carlo computer simulation. Approximate series expressions based on the systematic approach are numerically evaluated along with the heuristic expressions. The comparison (for both forward- and back-scattered field moments) is made for the worst-case conditions of strong multiple scattering for which the theories have not previously been evaluated. Several significant conclusions are drawn which have certain practical implications: in application of the theories to describe some of the scattering phenomena which occur in the troposphere, and in the further evaluation of the theories using experiments on physical models

  1. Facile method for liquid-exfoliated graphene size prediction by UV-visible spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Zulhelmi, E-mail: helmie83@hotmail.com [Faculty of Manufacturing Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang (Malaysia); Yusoh, Kamal, E-mail: kamal@ump.edu.my [Faculty of Chemical Engineering and Natural Resources, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang (Malaysia)

    2016-07-19

    In this work, an application of UV spectroscopy for facile prediction of liquid –exfoliated graphene size is discussed. Dynamic light scattering method was used to estimate the graphene flake size ( whilst UV spectroscopy measurement was carried out for extinction coefficient value (ε) determination. It was found that the value of (ε) decreased gradually as the graphene size was further reduced after intense sonication time (7h). This observation showed the influence of sonication time on electronic structure of graphene. A mathematical equation was derived from log-log graph for correlation between () and (ε) value. Both values can be expressed in a single equation as ( = (3.4 × 10{sup −2}) ε{sup 1.2}).

  2. Controlling the optical path length in turbid media using differential path-length spectroscopy: fiber diameter dependence

    NARCIS (Netherlands)

    Kaspers, O. P.; Sterenborg, H. J. C. M.; Amelink, A.

    2008-01-01

    We have characterized the path length for the differential path-length spectroscopy (DPS) fiber optic geometry for a wide range of optical properties and for fiber diameters ranging from 200 mu m to 1000 mu m. Phantom measurements show that the path length is nearly constant for scattering

  3. Surface-enhanced Raman spectroscopy bioanalytical, biomolecular and medical applications

    CERN Document Server

    Procházka, Marek

    2016-01-01

    This book gives an overview of recent developments in RS and SERS for sensing and biosensing considering also limitations, possibilities and prospects of this technique. Raman scattering (RS) is a widely used vibrational technique providing highly specific molecular spectral patterns. A severe limitation for the application of this spectroscopic technique lies in the low cross section of RS. Surface-enhanced Raman scattering (SERS) spectroscopy overcomes this problem by 6-11 orders of magnitude enhancement compared with the standard RS for molecules in the close vicinity of certain rough metal surfaces. Thus, SERS combines molecular fingerprint specificity with potential single-molecule sensitivity. Due to the recent development of new SERS-active substrates, labeling and derivatization chemistry as well as new instrumentations, SERS became a very promising tool for many varied applications, including bioanalytical studies and sensing. Both intrinsic and extrinsic SERS biosensing schemes have been employed to...

  4. Characteristics and determinants of clinical symptoms in radiographic lumbar spinal stenosis in a tertiary health care centre in sub-Saharan Africa.

    Science.gov (United States)

    Doualla-Bija, Marie; Takang, Mbeng Ashu; Mankaa, Emmanuella; Moutchia, Jude; Ongolo-Zogo, Pierre; Luma-Namme, Henry

    2017-11-28

    Lumbar spinal stenosis (LSS) refers to narrowing of the lumbar central spinal canal, lateral recess, and/or neuro-foramina. Radiographic LSS plays an important role in clinical LSS but is not solely accountable for the presence of symptoms. We sought to characterise clinical LSS and to determine factors associated with presence of symptoms of LSS in patients with radiographic LSS in a sub Saharan Africa setting. After prior ethical clearance, a case control study was done in a tertiary hospital in Douala-Cameroon, including 105 patients with radiographic LSS: 57 with symptoms of LSS (cases) and 58 with no symptoms (controls). Spinal stenosis was assessed using computed tomography (CT) scans. Data were analysed using SPSS version 23. The mean age of our study participants was 53.4 ± 13.1 years. The mean age of onset of symptoms of LSS was 50.3 ± 11.6 years and the most common symptoms were Low back pain (100.0%), radicular symptoms (98.2%) and neurogenic claudication (98.2%). Obesity (p history of low back pain (p = 0.004), vertebra lesion at L2 (p = 0.034), L3 (p = 0.002), L4 (p = 0.025) and multiple (p = 0.008) levels, degenerative disc protrusion (p = 0.044), disc lesion at L3-L4 (p = 0.001), L4-L5 (p = 0.011) and multiple (p = 0.046) levels were significantly associated with presence of symptoms of LSS in persons with radiographic LSS. Characteristics of clinical LSS have been described in this sub-Saharan Africa population. Obesity, a high waist circumference and a positive family history of low back pain are significantly associated with presence of symptoms of LSS in persons with radiographic LSS.

  5. Size determinations of plutonium colloids using autocorrelation photon spectroscopy

    International Nuclear Information System (INIS)

    Triay, I.R.; Rundberg, R.S.; Mitchell, A.J.; Ott, M.A.; Hobart, D.E.; Palmer, P.D.; Newton, T.W.; Thompson, J.L.

    1989-01-01

    Autocorrelation Photon Spectroscopy (APS) is a light-scattering technique utilized to determine the size distribution of colloidal suspensions. The capabilities of the APS methodology have been assessed by analyzing colloids of known sizes. Plutonium(IV) colloid samples were prepared by a variety of methods including: dilution; peptization; and alpha-induced auto-oxidation of Pu(III). The size of theses Pu colloids was analyzed using APS. The sizes determined for the Pu colloids studied varied from 1 to 370 nanometers. 7 refs., 5 figs., 3 tabs

  6. Optical characterization of semiconductors infrared, Raman, and photoluminescence spectroscopy

    CERN Document Server

    Perkowitz, Sidney

    1993-01-01

    This is the first book to explain, illustrate, and compare the most widely used methods in optics: photoluminescence, infrared spectroscopy, and Raman scattering. Written with non-experts in mind, the book develops the background needed to understand the why and how of each technique, but does not require special knowledge of semiconductors or optics. Each method is illustrated with numerous case studies. Practical information drawn from the authors experience is given to help establish optical facilities, including commercial sources for equipment, and experimental details. For industrial sci

  7. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    Science.gov (United States)

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion.

  8. An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements

    Science.gov (United States)

    Ross, H. Richard

    1993-01-01

    A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.

  9. Photoelectron angular distribution from free SiO2 nanoparticles as a probe of elastic electron scattering.

    Science.gov (United States)

    Antonsson, E; Langer, B; Halfpap, I; Gottwald, J; Rühl, E

    2017-06-28

    In order to gain quantitative information on the surface composition of nanoparticles from X-ray photoelectron spectroscopy, a detailed understanding of photoelectron transport phenomena in these samples is needed. Theoretical results on the elastic and inelastic scattering have been reported, but a rigorous experimental verification is lacking. We report in this work on the photoelectron angular distribution from free SiO 2 nanoparticles (d = 122 ± 9 nm) after ionization by soft X-rays above the Si 2p and O 1s absorption edges, which gives insight into the relative importance of elastic and inelastic scattering channels in the sample particles. The photoelectron angular anisotropy is found to be lower for photoemission from SiO 2 nanoparticles than that expected from the theoretical values for the isolated Si and O atoms in the photoelectron kinetic energy range 20-380 eV. The reduced angular anisotropy is explained by elastic scattering of the outgoing photoelectrons from neighboring atoms, smearing out the atomic distribution. Photoelectron angular distributions yield detailed information on photoelectron elastic scattering processes allowing for a quantification of the number of elastic scattering events the photoelectrons have undergone prior to leaving the sample. The interpretation of the experimental photoelectron angular distributions is complemented by Monte Carlo simulations, which take inelastic and elastic photoelectron scattering into account using theoretical values for the scattering cross sections. The results of the simulations reproduce the experimental photoelectron angular distributions and provide further support for the assignment that elastic and inelastic electron scattering processes need to be considered.

  10. Li I AND K I SCATTER IN COOL PLEIADES DWARFS

    International Nuclear Information System (INIS)

    King, Jeremy R.; Schuler, Simon C.; Hobbs, L. M.; Pinsonneault, Marc H.

    2010-01-01

    We utilize high-resolution (R ∼ 60,000), high signal-to-noise ratio (∼100) spectroscopy of 17 cool Pleiades dwarfs to examine the confounding star-to-star scatter in the λ6707 Li I line strengths in this young cluster. Our Pleiades, selected for their small projected rotational velocity and modest chromospheric emission, evince substantial scatter in the line strengths of λ6707 Li I feature that is absent in the λ7699 K I resonance line. The Li I scatter is not correlated with that in the high-excitation λ7774 O I feature, and the magnitude of the former is greater than the latter despite the larger temperature sensitivity of the O I feature. These results suggest that systematic errors in line strength measurements due to blending, color (or color-based T eff ) errors, or line formation effects related to an overlying chromosphere are not the principal source of Li I scatter in our stars. There do exist analytic spot models that can produce, via line formation effects, the observed Li scatter without introducing scatter in the K I line strengths or the color-magnitude diagram. However, these models predict factor of ≥3 differences in abundances derived from the subordinate λ6104 and resonance λ6707 Li I features; we find no difference in the abundances determined from these two features. These analytic spot models also predict CN line strengths significantly larger than we observe in our spectra. The simplest explanation of the Li, K, CN, and photometric data is that there must be a real abundance component to the Pleiades Li dispersion. We suggest that this real abundance component is the manifestation of relic differences in erstwhile pre-main-sequence Li burning caused by effects of surface activity on stellar structure. We discuss observational predictions of these effects, which may be related to other anomalous stellar phenomena.

  11. [Experimental research of turbidity influence on water quality monitoring of COD in UV-visible spectroscopy].

    Science.gov (United States)

    Tang, Bin; Wei, Biao; Wu, De-Cao; Mi, De-Ling; Zhao, Jing-Xiao; Feng, Peng; Jiang, Shang-Hai; Mao, Ben-Jiang

    2014-11-01

    Eliminating turbidity is a direct effect spectroscopy detection of COD key technical problems. This stems from the UV-visible spectroscopy detected key quality parameters depend on an accurate and effective analysis of water quality parameters analytical model, and turbidity is an important parameter that affects the modeling. In this paper, we selected formazine turbidity solution and standard solution of potassium hydrogen phthalate to study the turbidity affect of UV--visible absorption spectroscopy detection of COD, at the characteristics wavelength of 245, 300, 360 and 560 nm wavelength point several characteristics with the turbidity change in absorbance method of least squares curve fitting, thus analyzes the variation of absorbance with turbidity. The results show, In the ultraviolet range of 240 to 380 nm, as the turbidity caused by particle produces compounds to the organics, it is relatively complicated to test the turbidity affections on the water Ultraviolet spectra; in the visible region of 380 to 780 nm, the turbidity of the spectrum weakens with wavelength increases. Based on this, this paper we study the multiplicative scatter correction method affected by the turbidity of the water sample spectra calibration test, this method can correct water samples spectral affected by turbidity. After treatment, by comparing the spectra before, the results showed that the turbidity caused by wavelength baseline shift points have been effectively corrected, and features in the ultraviolet region has not diminished. Then we make multiplicative scatter correction for the three selected UV liquid-visible absorption spectroscopy, experimental results shows that on the premise of saving the characteristic of the Ultraviolet-Visible absorption spectrum of water samples, which not only improve the quality of COD spectroscopy detection SNR, but also for providing an efficient data conditioning regimen for establishing an accurate of the chemical measurement methods.

  12. Scattering from correlations in colloidal systems

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1984-01-01

    Colloidal suspensions typically exhibit spatial correlations over distances of order 10-10 4 A, corresponding either to the size of individual particles (e.g., polymer chains, surfactant micelles) or to the range of interaction between particles (e.g., charged polymer lattices at low ionic strength). Apart from having fundamental intrinsic interest, such systems are also extremely useful as model systems with which to study, for example, non-Newtonian hydrodynamics, since temporal correlations are generally much longer lived (10 -8 -10 -3 sec) than those found in simple atomic or small molecular systems (10 -13 -10 -10 sec). Colloids have long been the subject of macroscopic phenomenological research (on rheological properties, for example), but it is only recently that microscopic light, x-ray and neutron scattering techniques have been applied to their study, in large part because of theoretical difficulties in understanding the scattering from dense liquid-like systems of interacting particles. For spherical colloids, such theoretical problems have now been largely overcome, and for anisotropic colloids experimental techniques are being developed which circumvent the intractable theoretical areas. This paper will first review some static light and small-angle neutron scattering (SANS) results on colloidal suspensions, both at equilibrium and in steady-state non-equilibrium situations, and will then discuss some dynamic measurements on polymer solutions and melts made using the neutron spin-echo (NSE) technique. Emphasis is placed on experiments which have a possible counterpart in synchrotron radiation studies. In particular, NSE extends the results of photon correlation spectroscopy (PCS) to larger momentum transfers and shorter time-scales than are available with visible light, and the extension of PCS to short wavelength on a synchrotron source would be of similar fundamental interest

  13. Single-crystal Brillouin spectroscopy with CO{sub 2} laser heating and variable q

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jin S.; Bass, Jay D. [Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zhu, Gaohua [Materials Research Department, Toyota Research Institute of North America, Ann Arbor, Michigan 48105 (United States)

    2015-06-15

    We describe a Brillouin spectroscopy system integrated with CO{sub 2} laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ∼13 GPa, 1300 ± 200 K. The pressure as measured by ruby fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (∼141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm)

  14. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  15. Mapping residual stress fields from Vickers hardness indents using Raman microprobe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    Micro-Raman spectroscopy is used to map the residual stress fields in the vicinity of Vickers hardness indents. Both 514.5 and 488.0 nm, light is used to excite the effect and the resulting shifted and broadened Raman peaks are analyzed using computer deconvolution. Half-wave plates are used to vary the orientation of the incident later light`s polarization state with respect to crystal orientation. The Raman scattered light is then analyzed for polarization dependences which are indicative of the various components of the Raman scattering tensor. Such studies can yield valuable information about the orientation of stress components in a well known stress field. The results can then be applied to the determination of stress components in machined semiconductor materials.

  16. Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.J. [Academia Sinica, Beijing, BJ (China). Inst. of Physics; Northwestern Polytechnical Univ., Xian, SN (China). Dept. of Materials Science and Engineering; Chen, X.L.; Tu, Q.Y.; Yang, Z.; Xu, Y.P.; Hu, B.Q. [Academia Sinica, Beijing, BJ (China). Inst. of Physics; Li, H.J. [Northwestern Polytechnical Univ., Xian, SN (China). Dept. of Materials Science and Engineering

    2001-05-01

    Low-dimensional GaN materials, including nanorings, nanoribbons and smooth nanowires have been synthesized by reacting gallium and ammonia using Ag particles as a catalyst on the substrate of MgO single crystals. They were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). EDX, XRD indicated that the low-dimensional nanomaterials were wurtzite GaN. New features are found in Raman scatterings for these low-dimensional GaN materials, which are different from the previous observations of GaN materials. (orig.)

  17. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Imberti, S. [Universita degli Studi di Roma Tre, Dipartimento di Fisica ' E.Amaldi' , Rome (Italy) and CNR-INFM, Rome (Italy)]. E-mail: silvia.imberti@roma2.infn.it; Andreani, C. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Garbuio, V. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Gorini, G. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy); Pietropaolo, A. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Senesi, R. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Tardocchi, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy)

    2005-11-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1 deg. <2{theta}<5 deg. This equipment allows High-energy Inelastic Neutron Scattering (HINS) measurements to be performed in the (q,{omega}) kinematical region at low wavevector (q<10A{sup -1}) and high energy (unlimited) transfer -bar {omega}>500meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20A{sup -1}1eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed.

  18. Toward a new polyethylene scattering law determined using inelastic neutron scattering

    International Nuclear Information System (INIS)

    Lavelle, C.M.; Liu, C.-Y.; Stone, M.B.

    2013-01-01

    Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S(Q,E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for ambient temperatures (∼300K), and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 294 K which are used to improve the scattering law for HDPE. We review some of the past HDPE scattering laws, describe the experimental methods, and compare computations using these models to the measured S(Q,E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the one phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work. -- Highlights: ► Polyethylene at 5 K and 300 K is measured using inelastic neutron scattering (INS). ► Measurements conducted at the Wide Angular-Range Chopper Spectrometer at SNS. ► Several models for Polyethylene are compared to measurements. ► Improvements to existing models for the polyethylene scattering law are suggested. ► INS is shown to be highly valuable tool for scattering law development

  19. HHT diagnosis by Mid-infrared spectroscopy and artificial neural network analysis.

    Science.gov (United States)

    Lux, Andreas; Müller, Ralf; Tulk, Mark; Olivieri, Carla; Zarrabeita, Roberto; Salonikios, Theresia; Wirnitzer, Bernhard

    2013-06-27

    The vascular disorder Hereditary Hemorrhagic Telangiectasia (HHT) is in general an inherited disease caused by mutations in the TGF-β/BMP receptors endoglin or ALK1 or in rare cases by mutations of the TGF-β signal transducer protein Smad4 leading to the combined syndrome of juvenile polyposis and HHT. HHT is characterized by several clinical symptoms like spontaneous and recurrent epistaxis, multiple telangiectases at sites like lips, oral cavity, fingers, nose, and visceral lesions like gastrointestinal telangiectasia, pulmonary, hepatic, cerebral or spinal arteriovenous malformations. The disease shows an inter- and intra-family variability in penetrance as well as symptoms from mild to life threatening. Penetrance is also depending on age. Diagnosis of the disease is based on the presence of some of the listed symptoms or by genetic testing. HHT diagnosis is laborious, time consuming, costly and sometimes uncertain. Not all typical symptoms may be present, especially at a younger age, and genetic testing does not always identify the disease causing mutation. Infrared (IR) spectroscopy was investigated as a potential alternative to the current diagnostic methods. IR-spectra were obtained by Fourier-transform Mid-IR spectroscopy from blood plasma from HHT patients and a healthy control group. Spectral data were mathematically processed and subsequently classified and analysed by artificial neural network (ANN) analyses and by visual analysis of scatter plots of the dominant principal components. The analyses showed that for HHT a disease specific IR-spectrum exists that is significantly different from the control group. Furthermore, at the current stage with the here used methods, HHT can be diagnosed by Mid-IR-spectroscopy in combination with ANN analysis with a sensitivity and specificity of at least 95%. Visual analysis of PCA scatter plots revealed an inter class variation of the HHT group. IR-spectroscopy in combination with ANN analysis can be considered

  20. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    International Nuclear Information System (INIS)

    Haverkort, Maurits W.

    2016-01-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty , a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org. (paper)

  1. Research studies of aging changes of hyaline cartilage surface by using Raman-scattering spectroscopy

    Science.gov (United States)

    Timchenko, E. V.; Timchenko, P. E.; Dolgushkin, D. A.; Volova, L. T.; Lazarev, V. A.; Tyumchenkova, A. S.; Markova, M. D.

    2017-08-01

    The paper presents the results of a comparative analysis by the method of Raman spectroscopy of the joint hyaline cartilage of adults and children. Differences in the spectral characteristics of the surface of articular cartilage are shown. New optical coefficients have been introduced, which make it possible to evaluate the age-related changes in cartilaginous tissue.

  2. Scattering and multiple scattering in disordered materials

    International Nuclear Information System (INIS)

    Weaver, R.L.; Butler, W.H.

    1992-01-01

    The papers in this section were presented at a joint session of symposium V on Applications of Multiple Scattering Theory and of Symposium P on Disordered Systems. They show that the ideas of scattering theory can help us to understand a very broad class of phenomena

  3. Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: Dk-CARS. I. Axial interfaces.

    Science.gov (United States)

    Gachet, David; Rigneault, Hervé

    2011-12-01

    We develop a full vectorial theoretical investigation of the chemical interface detection in conventional coherent anti-Stokes Raman scattering (CARS) microscopy. In Part I, we focus on the detection of axial interfaces (i.e., parallel to the optical axis) following a recent experimental demonstration of the concept [Phys. Rev. Lett. 104, 213905 (2010)]. By revisiting the Young's double slit experiment, we show that background-free microscopy and spectroscopy is achievable through the angular analysis of the CARS far-field radiation pattern. This differential CARS in k space (Dk-CARS) technique is interesting for fast detection of interfaces between molecularly different media. It may be adapted to other coherent and resonant scattering processes.

  4. Spectroscopy on localized and cooled ions

    International Nuclear Information System (INIS)

    Toschek, P.E.

    1981-01-01

    This article examines the use of localization and storage of a small number of atomic particles in an electric or magnetic field configuration as a means of distinguishing it from other methods of sample preparation. Current experiments on the storage of isolated cold ions have opened a new experimental approach for studies in atomic physics. In contrast to one dimensional atomic beams, trapped particles are quasi-non-dimensional ensembles. They lend themselves to interaction with light (their spectroscopy) and various other research techniques such as: cooperative effects in the interaction with radiation by comparison of two particle clouds with a single particle; single-particle scattering on background gas particles; single-particle chemical reactions

  5. Leakage radiation spectroscopy of organic nanofibers on metal films: evidence for exciton-surface plasmon polariton interaction

    DEFF Research Database (Denmark)

    Jozefowski, Leszek; Fiutowski, Jacek; Bordo, Vladimir

    2012-01-01

    of detection. The leakage radiation was observed on the opposite side of the Ag film at the phase matching angle. The spectrally resolved intensity of the scattered radiation has been measured as a function of scattering angle at normally incident light. The spectrum contains a distinct peak at an wavelength......Leakage radiation spectroscopy of organic nanofibers composed of self-assembled organic molecules (para-Hexaphenylene, p-6P) deposited on a thin (40-60 nm) Ag film has been performed in the spectral range 420-675 nm which overlaps with the nanofiber photoluminescence band. Using a soft transfer...

  6. The evolution of stellar metallicity gradients of the Milky Way disk from LSS-GAC main sequence turn-off stars: a two-phase disk formation history?

    International Nuclear Information System (INIS)

    Xiang, Mao-Sheng; Liu, Xiao-Wei; Huang, Yang; Wang, Chun; Ren, Juan-Juan; Chen, Bing-Qiu; Sun, Ning-Chen; Zhang, Hua-Wei; Yuan, Hai-Bo; Rebassa-Mansergas, Alberto; Huo, Zhi-Ying

    2015-01-01

    Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC) to determine the radial and vertical gradients of stellar metallicity, Δ[Fe/H]/ΔR and Δ[Fe/H]/Δ|Z| of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages (≳ 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages (≳ 11 Gyr) are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R. After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum (steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are

  7. Surface defects characterization in a quantum wire by coherent phonons scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rabia, M. S. [Laboratoire de Mécanique des Structures et Energétique, Faculté du Génie de la Construction, Université. Mammeri de Tizi-Ouzou, BP 17 RP Hasnaoua II, Tizi-Ouzou 15000, Algérie m2msr@yahoo.fr (Algeria)

    2015-03-30

    The influence of surface defects on the scattering properties of elastic waves in a quasi-planar crystallographic waveguide is studied in the harmonic approximation using the matching method formalism. The structural model is based on three infinite atomic chains forming a perfect lattice surmounted by an atomic surface defect. Following the Landauer approach, we solve directly the Newton dynamical equation with scattering boundary conditions and taking into account the next nearest neighbour’s interaction. A detailed study of the defect-induced fluctuations in the transmission spectra is presented for different adatom masses. As in the electronic case, the presence of localized defect-induced states leads to Fano-like resonances. In the language of mechanical vibrations, these are called continuum resonances. Numerical results reveal the intimate relation between transmission spectra and localized defect states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems. The results could be useful for the design of phononic devices.

  8. Surface defects characterization in a quantum wire by coherent phonons scattering

    International Nuclear Information System (INIS)

    Rabia, M. S.

    2015-01-01

    The influence of surface defects on the scattering properties of elastic waves in a quasi-planar crystallographic waveguide is studied in the harmonic approximation using the matching method formalism. The structural model is based on three infinite atomic chains forming a perfect lattice surmounted by an atomic surface defect. Following the Landauer approach, we solve directly the Newton dynamical equation with scattering boundary conditions and taking into account the next nearest neighbour’s interaction. A detailed study of the defect-induced fluctuations in the transmission spectra is presented for different adatom masses. As in the electronic case, the presence of localized defect-induced states leads to Fano-like resonances. In the language of mechanical vibrations, these are called continuum resonances. Numerical results reveal the intimate relation between transmission spectra and localized defect states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems. The results could be useful for the design of phononic devices

  9. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    Science.gov (United States)

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  10. Diffractive scattering on nuclei in multiple scattering theory with inelastic screening

    International Nuclear Information System (INIS)

    Zoller, V.R.

    1988-01-01

    The cross sections for the diffractive scattering of hadrons on nuclei are calculated in the two-channel approximation of multiple scattering theory. In contrast to the standard Glauber approach, it is not assumed that the nucleon scattering profile is a Gaussian or that the Regge radius of the hadron is small compared to the nuclear radius. The AGK Reggeon diagrammatic technique is used to calculate the topological cross sections and the cross sections for coherent and incoherent diffractive dissociation and quasielastic scattering. The features of hadron-nucleus scattering at superhigh energies are discussed

  11. Inelastic scattering in condensed matter with high intensity Mossbauer radiation: Progress report, March 1, 1985-October 31, 1987

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1987-10-01

    A facility for high intensity Moessbauer scattering has been commissioned at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue University using special isotopes produced at MURR. A number of scattering studies have been successfully carried out, including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 which indicates phason rather than phonon behavior. High precision, fundamental Moessbauer effect studies have also been carried out using scattering to filter unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape. This method allows complete correction for source resonance self-absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. This analysis is important to both the funadmental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct elastic fractions and lineshape parameters. These advances, coupled to our improvements in MIcrofoil Conversion Electron (MICE) spectroscopy, lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  12. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Laurent, G.; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A.

    2003-01-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O 6+ + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O 4+ (1s 2 nln ' l ' ) populated after double electron-capture events

  13. Compton-scatter tissue densitometry: calculation of single and multiple scatter photon fluences

    International Nuclear Information System (INIS)

    Battista, J.J.; Bronskill, M.J.

    1978-01-01

    The accurate measurement of in vivo electron densities by the Compton-scatter method is limited by attenuations and multiple scattering in the patient. Using analytic and Monte Carlo calculation methods, the Clarke tissue density scanner has been modelled for incident monoenergetic photon energies from 300 to 2000 keV and for mean scattering angles of 30 to 130 degrees. For a single detector focussed to a central position in a uniform water phantom (25 x 25 x 25 cm 3 ) it has been demonstrated that: (1) Multiple scatter contamination is an inherent limitation of the Compton-scatter method of densitometry which can be minimised, but not eliminated, by improving the energy resolution of the scattered radiation detector. (2) The choice of the incident photon energy is a compromise between the permissible radiation dose to the patient and the tolerable level of multiple scatter contamination. For a mean scattering angle of 40 degrees, the intrinsic multiple-single scatter ratio decreases from 64 to 35%, and the radiation dose (per measurement) increases from 1.0 to 4.1 rad, as the incident photon energy increases from 300 to 2000 keV. These doses apply to a sampled volume of approximately 0.3 cm 3 and an electron density precision of 0.5%. (3) The forward scatter densitometer configuration is optimum, minimising both the dose and the multiple scatter contamination. For an incident photon energy of 1250 keV, the intrinsic multiple-single scatter ratio reduces from 122 to 27%, and the dose reduces from 14.3 to 1.2 rad, as the mean scattering angle decreases from 130 to 30 degrees. These calculations have been confirmed by experimental measurements. (author)

  14. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    Science.gov (United States)

    Imberti, S.; Andreani, C.; Garbuio, V.; Gorini, G.; Pietropaolo, A.; Senesi, R.; Tardocchi, M.

    2005-11-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1∘500 meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20 Å-11 eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed.

  15. Secondary-electron cascade in attosecond photoelectron spectroscopy from metals

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2009-01-01

    an analytical model based on an approximate solution to Boltzmann's transport equation to account for the amount and energy distribution of these secondary electrons. Our theory is in good agreement with the electron spectrum found in a recent attosecond streaking experiment. To suppress the background and gain......Attosecond spectroscopy is currently restricted to photon energies around 100 eV. We show that under these conditions, electron-electron scatterings, as the photoelectrons leave the metal, give rise to a tail of secondary electrons with lower energies and hence a significant background. We develop...

  16. Propagation and scattering of high-intensity X-ray pulses in dense atomic gases and plasmas

    International Nuclear Information System (INIS)

    Weninger, Clemens

    2015-10-01

    Nonlinear spectroscopy in the X-ray domain is a promising technique to explore the dynamics of elementary excitations in matter. X-rays provide an element specificity that allows them to target individual chemical elements, making them a great tool to study complex molecules. The recent advancement of X-ray free electron lasers (XFELs) allows to investigate non-linear processes in the X-ray domain for the first time. XFELs provide short femtosecond X-ray pulses with peak powers that exceed previous generation synchrotron X-ray sources by more than nine orders of magnitude. This thesis focuses on the theoretical description of stimulated emission processes in the X-ray regime in atomic gases. These processes form the basis for more complex schemes in molecules and provide a proof of principle for nonlinear X-ray spectroscopy. The thesis also includes results from two experimental campaigns at the Linac Coherent Light Source and presents the first experimental demonstration of stimulated X-ray Raman scattering. Focusing an X-ray free electron laser beam into an elongated neon gas target generates an intense stimulated X-ray emission beam in forward direction. If the incoming X-rays have a photon energy above the neon K edge, they can efficiently photo-ionize 1s electrons and generate short-lived core excited states. The core-excited states decay mostly via Auger decay but have a small probability to emit a spontaneous X-ray photon. The spontaneous emission emitted in forward direction can stimulate X-ray emission along the medium and generate a highly directional and intense X-ray laser pulse. If the photon energy of the incoming X-rays however is below the ionization edge in the region of the pre-edge resonance the incoming X-rays can be inelastically scattered. This spontaneous X-ray Raman scattering process has a very low probability, but the spontaneously scattered photons in the beginning of the medium can stimulate Raman scattering along the medium. The

  17. Total and elastic electron scattering cross sections from Xe at intermediate and high energies

    International Nuclear Information System (INIS)

    Garcia, G; Pablos, J L de; Blanco, F; Williart, A

    2002-01-01

    Experimental total electron scattering cross sections from Xe in the energy range 300-5000 eV have been obtained with experimental errors of about 3%. The method was based on the measurement of the attenuation of a linear electron beam through a Xe gas cell in combination with an electron spectroscopy technique to analyse the energy of the transmitted electrons. Differential and integral elastic cross sections have been calculated using a scattering potential method which includes relativistic effects. The consistency of our theoretical and experimental results is also discussed in the paper. Finally, analytical formulae depending on two parameters, namely the number of target electrons and the atomic polarizability, are given to reproduce the experimental data for Ne, Ar, Kr and Xe in the energy range 500-10 000 eV

  18. Surface enhanced Raman scattering in organic thin films covered with silver, indium and magnesium

    International Nuclear Information System (INIS)

    Salvan, Georgeta; Zahn, Dietrich R.T.; Paez, Beynor

    2004-01-01

    In situ resonant Raman spectroscopy was applied for the investigation of the interface formation between silver, indium and magnesium with polycrystalline organic semiconductor layers of 3,4,9,10-perylene tetra-carboxylic dianhydride (PTCDA). The spectral region of internal as well as external vibrational modes was recorded in order to achieve information related to the chemistry and the structure of the interface as well as to morphology of the metal layer. The experiments benefit from a strong enhancement of the internal mode scattering intensities which is induced by the rough morphology of deposited metals leading to surface enhanced Raman scattering (SERS). The external modes, on the other hand, are attenuated at different rates indicating that the diffusion of the metal atoms into the crystalline layers is highest for indium and lowest for magnesium

  19. Scattered colorimetry and multivariate data processing as an objective tool for liquid mapping (Invited Paper)

    Science.gov (United States)

    Mignani, A. G.; Ciaccheri, L.; Smith, P. R.; Cimato, A.; Attilio, C.; Huertas, R.; Melgosa Latorre, Manuel; Bertho, A. C.; O'Rourke, B.; McMillan, N. D.

    2005-05-01

    Scattered colorimetry, i.e., multi-angle and multi-wavelength absorption spectroscopy performed in the visible spectral range, was used to map three kinds of liquids: extra virgin olive oils, frying oils, and detergents in water. By multivariate processing of the spectral data, the liquids could be classified according to their intrinisic characteristics: geographic area of extra virgin olive oils, degradation of frying oils, and surfactant types and mixtures in water.

  20. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  1. Sensitivity Increases for the TITAN Decay Spectroscopy Program

    Directory of Open Access Journals (Sweden)

    Leach K.G.

    2015-01-01

    Full Text Available The TITAN facility at TRIUMF has recently initiated a program of performing decay spectroscopy measurements in an electron-beam ion-trap (EBIT. The unique environment of the EBIT provides backingfree storage of the radioactive ions, while guiding charged decay particles from the trap centre via the strong magnetic field. This measurement technique is able to provide a significant increase in detection sensitivity for photons which result from radioactive decay. A brief overview of this device is presented, along with methods of improving the signal-to-background ratio for photon detection by reducing Compton scattered events, and eliminating vibrational noise.

  2. Surface-enhanced resonance Raman scattering spectroscopy of single R6G molecules

    Institute of Scientific and Technical Information of China (English)

    Zhou Zeng-Hui; Liu Li; Wang Gui-Ying; Xu Zhi-Zhan

    2006-01-01

    Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.

  3. Analysis of 2-ethylhexyl-p-methoxycinnamate in sunscreen products by HPLC and Raman spectroscopy.

    Science.gov (United States)

    Cheng, J; Li, Y S; L Roberts, R; Walker, G

    1997-10-01

    The analyses of 2-ethylhexyl-p-methoxycinnamate (EHMC) using HPLC and Raman spectroscopy have been undertaken and compared. EHMC, which is one of the most widely used sunscreen agents in suncare products in the US, exhibits a strong Raman signal. This signal clearly appears in both ethanol solutions of EHMC as well as in commercial sunscreen lotions containing this sun screen agent. A method for the direct detection and analysis of EHMC has been developed using Raman spectroscopy. This was accomplished by correlating the Raman intensities with the HPLC assays for a series of prototype suncare formulations. Based upon this information, it would be possible to employ Raman spectroscopy as an in-process control method in the commercial production of suncare products containing EHMC. The possibility of applying surface-enhanced Raman scattering for trace analysis was discussed.

  4. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires

    International Nuclear Information System (INIS)

    Schaefer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Gruetzmacher, D; Calarco, R; Sutter, E; Sutter, P

    2010-01-01

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E 2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  5. Enhanced Light Scattering of the Forbidden longitudinal Optical Phonon Mode Studied by Micro-Raman Spectroscopy on Single InN nanowires

    International Nuclear Information System (INIS)

    Sutter, E.; Schafer-Nolte, E.O.; Stoica, T.; Gotschke, T.; Limbach, F.A.; Sutter, P.; Grutzmacher, D.; Calarco, R.

    2010-01-01

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  6. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires.

    Science.gov (United States)

    Schäfer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Sutter, E; Sutter, P; Grützmacher, D; Calarco, R

    2010-08-06

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E(2) phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  7. IN-VIVO DIAGNOSIS OF CHEMICALLY INDUCED MELANOMA IN AN ANIMAL MODEL USING UV-VISIBLE AND NIR ELASTIC SCATTERING SPECTROSCOPY: PRELIMINARY TESTING.

    Energy Technology Data Exchange (ETDEWEB)

    C. A' AMAR; R. LEY; ET AL

    2001-01-01

    Elastic light scattering spectroscopy (ESS) has the potential to provide spectra that contain both morphological and chromophore information from tissue. We report on a preliminary study of this technique, with the hope of developing a method for diagnosis of highly-pigmented skin lesions, commonly associated with skin cancer. Four opossums were treated with dimethylbenz(a)anthracene to induce both malignant melanoma and benign pigmented lesions. Skin lesions were examined in vivo using both UV-visible and near infrared (NIR) ESS, with wavelength ranges of 330-900 nm and 900-1700 nm, respectively. Both portable systems used identical fiber-optic probe geometry throughout all of the measurements. The core diameters for illuminating and collecting fibers were 400 and 200 {micro}m, respectively, with center-to-center separation of 350 {micro}m. The probe was placed in optical contact with the tissue under investigation. Biopsies from lesions were analyzed by two standard histopathological procedures. Taking into account only the biopsied lesions, UV-visible ESS showed distinct spectral correlation for 11/13 lesions. The NIR-ESS correlated well with 12/13 lesions correctly. The results of these experiments showed that UV-visible and NIR-ESS have the potential to classify benign and malignant skin lesions, with encouraging agreement to that provided by standard histopathological examination. These initial results show potential for ESS based diagnosis of pigmented skin lesions, but further trials are required in order to substantiate the technique.

  8. Implementing Lean Six Sigma in organizations

    NARCIS (Netherlands)

    Lameijer, B.A.

    2017-01-01

    This thesis focuses on operational excellence following the Lean Six Sigma (LSS) method. As the popularity of implementing LSS grows, questions about implementing LSS in organizations arise, and this is where we aim to contribute. We study key questions about implementing LSS in organizations at two

  9. Using Rutherford Backscattering Spectroscopy to Characterize Targets for MTW

    Science.gov (United States)

    Brown, Gunnar; Stockler, Barak; Ward, Ryan; Freeman, Charlie; Padalino, Stephen; Stillman, Collin; Ivancic, Steven; Reagan, S. P.; Sangster, T. C.

    2017-10-01

    A study is underway to determine the composition and thickness of targets used at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) using Rutherford backscattering spectroscopy (RBS). In RBS, an ion beam is incident on a sample and the scattered ions are detected with a surface barrier detector. The resulting energy spectra of the scattered ions can be analyzed to determine important parameters of the target including elemental composition and thickness. Proton, helium and deuterium beams from the 1.7 MV Pelletron accelerator at SUNY Geneseo have been used to characterize several different targets for MTW, including CH and aluminum foils of varying thickness. RBS spectra were also obtained for a cylindrical iron buried-layer target with aluminum dopant which was mounted on a silicon carbide stalk. The computer program SIMNRA is used to analyze the spectra. This work was funded in part by a Grant from the DOE through the Laboratory for Laser Energetics.

  10. Design Through Integration of On-Board Calibration Device with Imaging Spectroscopy Instruments

    Science.gov (United States)

    Stange, Michael

    2012-01-01

    The main purpose of the Airborne Visible and Infrared Imaging Spectroscopy (AVIRIS) project is to "identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures." The project designs, builds, and tests various imaging spectroscopy instruments that use On-Board Calibration devices (OBC) to check the accuracy of the data collected by the spectrometers. The imaging instrument records the spectral signatures of light collected during flight. To verify the data is correct, the OBC shines light which is collected by the imaging spectrometer and compared against previous calibration data to track spectral response changes in the instrument. The spectral data has the calibration applied to it based on the readings from the OBC data in order to ensure accuracy.

  11. Vibrational Spectroscopy as a Promising Toolbox for Analyzing Functionalized Ceramic Membranes.

    Science.gov (United States)

    Kiefer, Johannes; Bartels, Julia; Kroll, Stephen; Rezwan, Kurosch

    2018-01-01

    Ceramic materials find use in many fields including the life sciences and environmental engineering. For example, ceramic membranes have shown to be promising filters for water treatment and virus retention. The analysis of such materials, however, remains challenging. In the present study, the potential of three vibrational spectroscopic methods for characterizing functionalized ceramic membranes for water treatment is evaluated. For this purpose, Raman scattering, infrared (IR) absorption, and solvent infrared spectroscopy (SIRS) were employed. The data were analyzed with respect to spectral changes as well as using principal component analysis (PCA). The Raman spectra allow an unambiguous discrimination of the sample types. The IR spectra do not change systematically with functionalization state of the material. Solvent infrared spectroscopy allows a systematic distinction and enables studying the molecular interactions between the membrane surface and the solvent.

  12. A quarter century of stimulated Raman scattering

    International Nuclear Information System (INIS)

    Bloembergen, N.

    1987-01-01

    To round out a quarter century of SRS the timing of this writing (1986) requires a look ahead of only one year into the future. The proceedings of the 10th International Conference on Raman Spectroscopy present a picture of current activity. Further progress will be made in time-resolved spectroscopy with subpicosecond resolution, in the study of hyper-Raman and other higher order effects with CARS, in extension of resonant Raman excitation in the UV region of spectrum, and in the development of Raman laser sources. During past few years extensive theoretical investigations have been made for four-wave light mixing in the case of one or more very strong light beams. The perturbation approach for those fields ceases to be valid. If only one light field is strong, the usual approach is to make a transformation to a rotating coordinate system so that the strong Hamiltonian for this light field becomes time-independent. Very recently these techniques have been extended to the case of two or more strong fields. CARS-type experiments with strong beams are likely to receive more attention. Extrapolation of the current activities instills confidence in the vitality of stimulated Raman scattering for the foreseeable future

  13. Measurement of position dependence of spectral distribution in primary X-ray beam of CT system using compton spectroscopy

    International Nuclear Information System (INIS)

    Matsumoto, Masao; Maeda, Koji; Maeda, Koji

    2005-01-01

    Our purpose is to acquire the diagnostic x-ray spectra of the CT system easily under clinical conditions by Compton scatter spectroscopy using a high resolution Schottky CdTe detector recently developed and to estimate the quality and quantity of these spectra compared the relative exposure measured using an ionization chamber with curves measured by the reconstructed spectra. Although the spectral broadening and the fluctuation were slightly shown, the errors of the relative exposure were under 10%. Though the experimental arrangement of this method is so easy and reconstructed algorithm is simple, these results suggested that this method is little influenced by the variation of dose rates or property of the incident x rays. We therefore propose that the Compton scatter spectroscopy with the newly developed Schottky CdTe detector is suitable for measuring the diagnostic x-ray spectra of the CT system under the clinical conditions and useful for quality assurance and quality control of the clinical x-ray CT system. (author)

  14. Neutron Scattering Software

    Science.gov (United States)

    Home Page | Facilities | Reference | Software | Conferences | Announcements | Mailing Lists Neutron Scattering Banner Neutron Scattering Software A new portal for neutron scattering has just been established sets KUPLOT: data plotting and fitting software ILL/TAS: Matlab probrams for analyzing triple axis data

  15. Effect of Lathyrus sativus and vitamin C on the status of aromatic L-amino acid decarboxylase and dipeptidyl-aminopeptidase-IV in the central and peripheral tissues and serum of guinea pigs

    International Nuclear Information System (INIS)

    Rahman, M.K.; Sarker, M.A.H.

    1992-05-01

    Studies on the effect of Lathyrus Sativus seeds (LLS) on aromatic L-amino acid decarboxylase (AADC) and on dipeptidyl-aminopeptidase-IV (DAP-IV) were carried out in the central and peripheral tissues and serum of LSS-treated and LSS plus vitamin C-treated guinea pigs. The feeding of LSS for 35 days decreased the AADC activity significantly in the brain and peripheral tissues, but the activity was recovered to normal level in the most tissues when vitamin C was added with the LSS. DAP-IV activity decreased in the peripheral tissues when treated with LSS, but the vitamin C administration with LSS did not recover the enzyme activity. The DAP-IV activity did not decrease significantly in any of the brain tissues of the LSS-treated group. (author). 18 refs, 2 tabs

  16. Multi-color autofluorescence and scattering spectroscopy provides rapid assessment of kidney function following ischemic injury

    Science.gov (United States)

    Raman, Rajesh N.; Pivetti, Chris D.; Ramsamooj, Rajendra; Troppmann, Christoph; Demos, Stavros G.

    2018-02-01

    A major source of kidneys for transplant comes from deceased donors whose tissues have suffered an unknown amount of warm ischemia prior to retrieval, with no quantitative means to assess function before transplant. Toward addressing this need, non-contact monitoring of optical signatures in rat kidneys was performed in vivo during ischemia and reperfusion. Kidney autofluorescence images were captured under ultraviolet illumination (355 nm, 325 nm, and 266 nm) in order to provide information on related metabolic and non-metabolic response. In addition, light scattering images under 355 nm, 325 nm, and 266 nm, 500 nm illumination were monitored to report on changes in kidney optical properties giving rise to the observed autofluorescence signals during these processes. During reperfusion, various signal ratios were generated from the recorded signals and then parametrized. Time-dependent parameters derived from the ratio of autofluorescence under 355 nm excitation to that under 266 nm excitation, as well as from 500 nm scattered signal, were found capable of discriminating dysfunctional kidneys from those that were functional (p Kidney dysfunction was confirmed by subsequent survival study and histology following autopsy up to a week later. Physiologic changes potentially giving rise to the observed signals, including those in cellular metabolism, vascular response, tissue microstructure, and microenvironment chemistry, are discussed.

  17. Preliminary evaluation of optical glucose sensing in red cell concentrations using near-infrared diffuse-reflectance spectroscopy

    Science.gov (United States)

    Suzuki, Yusuke; Maruo, Katsuhiko; Zhang, Alice W.; Shimogaki, Kazushige; Ogawa, Hideto; Hirayama, Fumiya

    2012-01-01

    Bacterial contamination of blood products is one of the most frequent infectious complications of transfusion. Since glucose levels in blood supplies decrease as bacteria proliferate, it should be possible to detect the presence of bacterial contamination by measuring the glucose concentrations in the blood components. Hence this study is aimed to serve as a preliminary study for the nondestructive measurement of glucose level in transfusion blood. The glucose concentrations in red blood cell (RBC) samples were predicted using near-infrared diffuse-reflectance spectroscopy in the 1350 to 1850 nm wavelength region. Furthermore, the effects of donor, hematocrit level, and temperature variations among the RBC samples were observed. Results showed that the prediction performance of a dataset which contained samples that differed in all three parameters had a standard error of 29.3 mg/dL. Multiplicative scatter correction (MSC) preprocessing method was also found to be effective in minimizing the variations in scattering patterns created by various sample properties. The results suggest that the diffuse-reflectance spectroscopy may provide another avenue for the detection of bacterial contamination in red cell concentrations (RCC) products.

  18. Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Guehlke, Marina

    2016-01-01

    We report fast and simple green synthesis of plasmonic silver nanoparticles in the epidermal cells of onions after incubation with AgNO3 solution. The biological environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial...... for one-and two-photon-excited spectroscopy such as surface enhanced Raman scattering (SERS) and surface enhanced hyper-Raman scattering (SEHRS). Our studies demonstrate a templated green preparation of enhancing plasmonic nanoparticles and suggest a new route to deliver silver nanoparticles as basic...... building blocks of plasmonic nanosensors to plants by the uptake of solutions of metal salts....

  19. Surface-Enhanced Raman Spectroscopy of Carbon Nanomembranes from Aromatic Self-Assembled Monolayers.

    Science.gov (United States)

    Zhang, Xianghui; Mainka, Marcel; Paneff, Florian; Hachmeister, Henning; Beyer, André; Gölzhäuser, Armin; Huser, Thomas

    2018-02-27

    Surface-enhanced Raman scattering spectroscopy (SERS) was employed to investigate the formation of self-assembled monolayers (SAMs) of biphenylthiol, 4'-nitro-1,1'-biphenyl-4-thiol, and p-terphenylthiol on Au surfaces and their structural transformations into carbon nanomembranes (CNMs) induced by electron irradiation. The high sensitivity of SERS allows us to identify two types of Raman scattering in electron-irradiated SAMs: (1) Raman-active sites exhibit similar bands as those of pristine SAMs in the fingerprint spectral region, but with indications of an amorphization process and (2) Raman-inactive sites show almost no Raman-scattering signals, except a very weak and broad D band, indicating a lack of structural order but for the presence of graphitic domains. Statistical analysis showed that the ratio of the number of Raman-active sites to the total number of measurement sites decreases exponentially with increasing the electron irradiation dose. The maximum degree of cross-linking ranged from 97 to 99% for the three SAMs. Proof-of-concept experiments were conducted to demonstrate potential applications of Raman-inactive CNMs as a supporting membrane for Raman analysis.

  20. Performance studies towards a TOF-PET sensor using Compton scattering at plastic scintillators

    Science.gov (United States)

    Kuramoto, M.; Nakamori, T.; Gunji, S.; Kamada, K.; Shoji, Y.; Yoshikawa, A.; Aoki, T.

    2018-01-01

    We have developed a sensor head for a time-of-flight (TOF) PET scanner using plastic scintillators that have a very fast timing property. Given the very small cross section of photoelectric absorption in plastic scintillators at 511 keV, we use Compton scattering in order to compensate for detection efficiency. The detector will consist of two layers of scatterers and absorbers which are made of plastic and inorganic scintillators such as GAGG:Ce, respectively. Signals are read by monolithic Multi Pixel Photon Counters, and with energy deposits and interaction time stamps are being acquired. The scintillators are built to be capable of resolving interaction position in three dimensions, so that our system has also a function of depth-of-interaction (DOI) PET scanners. TOF resolution of ~ 200 ps (FWHM) is achieved in both cases of using the leading-edge discriminator and time-walk correction and using a configuration sensitive to DOI. Both the position resolution and spectroscopy are demonstrated using the prototype data acquisition system, with Compton scattering events subsequently being obtained. We also demonstrated that the background rejection technique using the Compton cone constraint could be valid with our system.