WorldWideScience

Sample records for scattering power depth

  1. Depth distribution of multiple order X-ray scatter

    Yao Weiguang; Leszczynski, Konrad

    2008-01-01

    Scatter can significantly affect quality of projectional X-ray radiographs and tomographic reconstructions. With this in mind, we examined some of the physical properties of multiple orders of scatter of X-ray photons traversing through a layer of scattering media such as water. Using Monte Carlo techniques, we investigated depth distributions of interactions between incident X-ray photons and water before the resulting scattered photons reach the detector plane. Effects of factors such as radiation field size, air gap, thickness of the layer of scattering medium and X-ray energy, on the scatter were included in the scope of this study. The following scatter characteristics were observed: (1) for a layer of scattering material corresponding to the typical subject thickness in medical imaging, frequency distribution of locations of the last scattering interaction increases approximately exponentially with depth, and the higher the order of scatter or the energy of the incident photon, the narrower is the distribution; (2) for the second order scatter, the distribution of locations of the first interaction is more uniform than that of the last interaction and is dependent on the energy of the primary photons. Theoretical proofs for some of these properties are given. These properties are important to better understanding of effects of scatter on the radiographic and tomographic imaging process and to developing effective methods for scatter correction

  2. Multiple scattering effects in depth resolution of elastic recoil detection

    Wielunski, L.S.; Harding, G.L.

    1998-01-01

    Elastic Recoil Detection (ERD) is used to profile hydrogen and other low mass elements in thin films at surface and interfaces in a similar way that Rutherford Backscattering Spectroscopy (RBS) is used to detect and profile heavy elements. It is often assumed that the depth resolutions of these two techniques are similar. However, in contrast to typical RBS, the depth resolution of ERD is limited substantially by multiple scattering. In experimental data analysis and/or spectra simulations of a typical RBS measurement multiple scattering effects are often ignored. Computer programs used in IBA, such as RUMP, HYPRA or RBX do not include multiple scattering effects at all. In this paper, using practical thin metal structures with films containing intentionally introduced hydrogen, we demonstrate experimental ERD depth resolution and sensitivity limitations. The effects of sample material and scattering angle are also discussed. (authors)

  3. Multiple scattering effects in depth resolution of elastic recoil detection

    Wielunski, L.S.; Harding, G.L. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Telecommunications and Industrial Physics; Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, Budapest, (Hungary)

    1998-06-01

    Elastic Recoil Detection (ERD) is used to profile hydrogen and other low mass elements in thin films at surface and interfaces in a similar way that Rutherford Backscattering Spectroscopy (RBS) is used to detect and profile heavy elements. It is often assumed that the depth resolutions of these two techniques are similar. However, in contrast to typical RBS, the depth resolution of ERD is limited substantially by multiple scattering. In experimental data analysis and/or spectra simulations of a typical RBS measurement multiple scattering effects are often ignored. Computer programs used in IBA, such as RUMP, HYPRA or RBX do not include multiple scattering effects at all. In this paper, using practical thin metal structures with films containing intentionally introduced hydrogen, we demonstrate experimental ERD depth resolution and sensitivity limitations. The effects of sample material and scattering angle are also discussed. (authors). 19 refs., 4 figs.

  4. Shaping the light for the investigation of depth-extended scattering media

    Osten, W.; Frenner, K.; Pedrini, G.; Singh, A. K.; Schindler, J.; Takeda, M.

    2018-02-01

    Scattering media are an ongoing challenge for all kind of imaging technologies including coherent and incoherent principles. Inspired by new approaches of computational imaging and supported by the availability of powerful computers, spatial light modulators, light sources and detectors, a variety of new methods ranging from holography to time-of-flight imaging, phase conjugation, phase recovery using iterative algorithms and correlation techniques have been introduced and applied to different types of objects. However, considering the obvious progress in this field, several problems are still matter of investigation and their solution could open new doors for the inspection and application of scattering media as well. In particular, these open questions include the possibility of extending the 2d-approach to the inspection of depth-extended objects, the direct use of a scattering media as a simple tool for imaging of complex objects and the improvement of coherent inspection techniques for the dimensional characterization of incoherently radiating spots embedded in scattering media. In this paper we show our recent findings in coping with these challenges. First we describe how to explore depth-extended objects by means of a scattering media. Afterwards, we extend this approach by implementing a new type of microscope making use of a simple scatter plate as a kind of flat and unconventional imaging lens. Finally, we introduce our shearing interferometer in combination with structured illumination for retrieving the axial position of fluorescent light emitting spots embedded in scattering media.

  5. Sensitivity of Depth-Integrated Satellite Lidar to Subaqueous Scattering

    Michael F. Jasinski

    2011-07-01

    Full Text Available A method is presented for estimating subaqueous integrated backscatter using near-nadir viewing satellite lidar. The algorithm takes into account specular reflection of laser light, laser scattering by wind-generated foam as well as sun glint and solar scattering from foam. The formulation is insensitive to the estimate of wind speed but sensitive to the estimate of transmittance used in the atmospheric correction. As a case study, CALIOP data over Tampa Bay were compared to MODIS 645 nm remote sensing reflectance, which previously has been shown to be nearly linearly related to turbidity. The results indicate good correlation on nearly all CALIOP cloud-free dates during the period 2006 through 2007, particularly those with relatively high atmospheric transmittance. The correlation decreases when data are composited over all dates but is still statistically significant, a possible indication of variability in the biogeochemical composition in the water. Overall, the favorable results show promise for the application of satellite lidar integrated backscatter in providing information about subsurface backscatter properties, which can be extracted using appropriate models.

  6. A Monte Carlo study of the acceptance to scattered events in a depth encoding PET camera

    Moisan, C.; Tupper, P.; Rogers, J.G.; DeJong, J.K.

    1995-10-01

    We present a Monte Carlo study of acceptance to scattered events in a Depth Encoding Large Aperture Camera (DELAC), a hypothetical PET scanner with the capacity to encode the depth-of-interaction (DOI) of incident γ-rays. The simulation is initially validated against the measured energy resolution and scatter fraction of the ECAT-953B scanner. It is then used to assess the response to scattered events in a PET camera made of position encoding blocks of the EXACT HR PLUS type, modified to have DOI resolution through a variation in the photopeak pulse height. The detection efficiency for 511 keV γ-rays, as well as for those that scattered in the object or left only part of their energy in the block, is studied for several combinations of DOI sensitivities and block thicknesses. The scatter fraction predicted by the simulation for DELACs of various ring radii is compared to that of the ECAT-953B as a function of the energy threshold. The results indicate that the poorer discrimination of object scatters with depth sensitive blocks does not lead to a dramatic increase of the scatter fraction. (author). 10 refs., 1 tab., 5 figs

  7. Assessment of defence in depth for nuclear power plants

    2005-01-01

    Defence in depth is a comprehensive approach to safety that has been developed by nuclear power experts to ensure with high confidence that the public and the environment are protected from any hazards posed by the use of nuclear power for the generation of electricity. The concepts of defence in depth and safety culture have served the nuclear power industry well as a basic philosophy for the safe design and operation of nuclear power plants. Properly applied, defence in depth ensures that no single human error or equipment failure at one level of defence, nor even a combination of failures at more than one level of defence, propagates to jeopardize defence in depth at the subsequent level or leads to harm to the public or the environment. The importance of the concept of defence in depth is underlined in IAEA Safety Standards, in particular in the requirements set forth in the Safety Standards: Safety of Nuclear Power Plants: Design (NS-R-1) and Safety Assessment and Verification for Nuclear Power Plants (NS-G-1.2). A specific report, Defence in Depth in Nuclear Safety (INSAG-10), describes the objectives, strategy, implementation and future development in the area of defence in depth in nuclear and radiation safety. In the report Basic Safety Principles for Nuclear Power Plants (INSAG-12), defence in depth is recognized as one of the fundamental safety principles that underlie the safety of nuclear power plants. In consonance with those high level publications, this Safety Report provides more specific technical information on the implementation of this concept in the siting, design, construction and operation of nuclear power plants. It describes a method for comprehensive and balanced review of the provisions required for implementing defence in depth in existing plants. This publication is intended to provide guidance primarily for the self-assessment by plant operators of the comprehensiveness and quality of defence in depth provisions. It can be used

  8. Quantitative considerations in medium energy ion scattering depth profiling analysis of nanolayers

    Zalm, P.C.; Bailey, P. [International Institute for Accelerator Applications, University of Huddersfield, Queensgate, Huddersfield HD1 3DH (United Kingdom); Reading, M.A. [Physics and Materials Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Rossall, A.K. [International Institute for Accelerator Applications, University of Huddersfield, Queensgate, Huddersfield HD1 3DH (United Kingdom); Berg, J.A. van den, E-mail: j.vandenberg@hud.ac.uk [International Institute for Accelerator Applications, University of Huddersfield, Queensgate, Huddersfield HD1 3DH (United Kingdom)

    2016-11-15

    The high depth resolution capability of medium energy ion scattering (MEIS) is becoming increasingly relevant to the characterisation of nanolayers in e.g. microelectronics. In this paper we examine the attainable quantitative accuracy of MEIS depth profiling. Transparent but reliable analytical calculations are used to illustrate what can ultimately be achieved for dilute impurities in a silicon matrix and the significant element-dependence of the depth scale, for instance, is illustrated this way. Furthermore, the signal intensity-to-concentration conversion and its dependence on the depth of scattering is addressed. Notably, deviations from the Rutherford scattering cross section due to screening effects resulting in a non-coulombic interaction potential and the reduction of the yield owing to neutralization of the exiting, backscattered H{sup +} and He{sup +} projectiles are evaluated. The former mainly affects the scattering off heavy target atoms while the latter is most severe for scattering off light target atoms and can be less accurately predicted. However, a pragmatic approach employing an extensive data set of measured ion fractions for both H{sup +} and He{sup +} ions scattered off a range of surfaces, allows its parameterization. This has enabled the combination of both effects, which provides essential information regarding the yield dependence both on the projectile energy and the mass of the scattering atom. Although, absolute quantification, especially when using He{sup +}, may not always be achievable, relative quantification in which the sum of all species in a layer adds up to 100%, is generally possible. This conclusion is supported by the provision of some examples of MEIS derived depth profiles of nanolayers. Finally, the relative benefits of either using H{sup +} or He{sup +} ions are briefly considered.

  9. Measurement with total scatter calibrate factor at different depths in the calculation of prescription dose

    Li Lijun; Zhu Haijun; Zhang Xinzhong; Li Feizhou; Song Hongyu

    2004-01-01

    Objective: To evaluate the method of measurement of total scatter calibrate factor (Sc, p). Methods: To measure the Sc, p at different depths on central axis of 6MV, 15MV photon beams through different ways. Results: It was found that the measured data of Sc, p changed with the different depths to a range of 1% - 7%. Using the direct method, the Sc, p measured depth should be the same as the depth in dose normalization point of the prescription dose. If the Sc, p (fsz, d) was measured at the other depths, it could be obtained indirectly by the calculation formula. Conclusions: The Sc, p in the prescription dose can be obtained either by the direct measure method or the indirect calculation formula. But emphasis should be laid on the proper measure depth. (authors)

  10. Experimental observation of Z-dependence of saturation depth of 0.662 MeV multiply scattered gamma rays

    Singh, Gurvinderjit; Singh, Manpreet; Singh, Bhajan; Sandhu, B.S.

    2006-01-01

    The gamma photons continue to soften in energy as the number of scatterings increases in the sample having finite dimensions both in depth and lateral dimensions. The number of multiply scattered photons increases with an increase in target thickness and saturates at a particular value of the target thickness known as saturation depth. The present experiment is undertaken to study the effect of atomic number of the target on saturation depth of 0.662 MeV incident gamma photons multiply scattered from targets of various thicknesses. The scattered photons are detected by an HPGe gamma detector placed at 90 o to the incident beam direction. We observe that with an increase in target thickness, the number of multiply scattered photons also increases and saturates at a particular value of the target thickness. The saturation depth decreases with increasing atomic number. The double Compton scattered peak is also observed in the experimental spectra

  11. The justification for the use of table of equivalent squares with respect to reference depth total scatter factor, and phantom scatter factor, for cobalt-60 teletherapy

    Afari, F.

    2011-01-01

    The use of equivalent squares is of great value and importance when determining output and depth dose data for rectangular fields. The variation with field shape of collimator scatter factors (S c ), phantom scatter factors (S c,p ) were studied using measurements on GWGP 80 cobalt - 60 teletherapy machine at the National Centre of Radiotherapy and Nuclear Medicine in the Korle-Bu Teaching Hospital. Measurements of the collimator scatter factors (S c ), phantom scatter factors (S p ) and total scatter factors (S c, p) were made at the depth of 5 cm, 10 cm, 15 cm and 20 cm in full scatter water phantom for square field side and rectangular fields of varying dimensions. The measurements were done using the source - axis distance (Sad) technique. The values of total scatter factor (S c,p ), phantom scatter factor and collimator scatter factor (S c ) obtained were used to estimate equivalent squares for the rectangular fields at the various depths. The equivalent squares were computed using the method of interpolation which is based on the scatter analysis of these scatter factors and these estimated equivalent squares were then compared with equivalent squares were then compared with equivalent square fields from BJR (supplement 21) tables of equivalent squares. The research revealed that there were average deviation of 1.5% for smaller rectangular field sizes and 8.8% for elongated rectangular field sizes between the estimated square field sizes and the equivalent square field from BJR (supplement 21) Table of equivalent square fields. The 8.8% for the elongated rectangular fields is not accepted, though such fields are rarely used in our Hospitals. It was found that the values of the equivalent square at the various depth were very consistent and do not vary with reference depth. These findings confirm that the clinical use of the BJR (supplement 21) Table of equivalent squares for total scatter factors and phantom scatter related quantities of rectangular fields is

  12. Depth determination of buried caesium-137 and cobalt-60 sources using scatter peak data

    Adams, J. C.; Joyce, M. J.; Mellor, M.

    2009-01-01

    An investigation into an alternative approach to 3D (3-dimensional) source mapping is proposed, by combining the insights of two existing techniques. The first of these is a 3D 'imaging' tool, N-Visage TM that has been developed by REACT Engineering Ltd. This technique is efficient and robust, but is not a true 3D technique as it relies on user-supplied 2D (2-dimensional) manifolds to constrain source locations. The second technique uses the γ-photopeak and an X-ray peak to determine radionuclide source depth using a relative attenuation method. We look at the possibility of combining both techniques to constrain both the location and depth of a radiological source buried under shielding. It is believed a combined method using spectra recorded above the shielding object will be of use in the nuclear decommissioning and land contamination industries. N-Visage TM has previously been used to map source distributions of mixed radionuclides with complex geometries through shielding media. The software works by producing a computer model which recreates the experimental setup. A survey is imported, comprising a set of γ-spectra recorded with an instrument of known efficiency and isotropy taken at a variety of locations around the area of interest. A survey plan recording the location and orientation of the instrument for each reading is also reconstructed. N-Visage TM is then able to determine the locations of the source(s) without prior knowledge of exactly where they are located, by building and inverting a simple physical model relating potential source locations to the recorded spectra. This research sets out to investigate the possibility of combining the geometric insights of N-Visage TM with a method of extracting depth information from scatter data, rather than the X-ray peak. By combining the γ-photopeak and scatter areas of a spectrum, the thickness of the shielding media between source and detector can potentially be inferred. Using scattered photons rather

  13. Correlation expansion: a powerful alternative multiple scattering calculation method

    Zhao Haifeng; Wu Ziyu; Sebilleau, Didier

    2008-01-01

    We introduce a powerful alternative expansion method to perform multiple scattering calculations. In contrast to standard MS series expansion, where the scattering contributions are grouped in terms of scattering order and may diverge in the low energy region, this expansion, called correlation expansion, partitions the scattering process into contributions from different small atom groups and converges at all energies. It converges faster than MS series expansion when the latter is convergent. Furthermore, it takes less memory than the full MS method so it can be used in the near edge region without any divergence problem, even for large clusters. The correlation expansion framework we derive here is very general and can serve to calculate all the elements of the scattering path operator matrix. Photoelectron diffraction calculations in a cluster containing 23 atoms are presented to test the method and compare it to full MS and standard MS series expansion

  14. Multiple and double scattering contributions to depth resolution and low energy background in hydrogen elastic recoil detection

    Wielunski, L S [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1997-12-31

    The sensitivity of hydrogen elastic recoil detection ( ERD ) is usually limited by the low energy background in the ERD spectrum. A number of 4.5 MeV He{sup ++} hydrogen ERD spectra from different hydrogen implanted samples are compared. The samples are chosen with different atomic numbers from low Z (carbon) to high Z (tungsten carbide) to observe the effects of multiple scattering and double scattering within the sample material. The experimental depth resolution and levels of the low energy background in ERD spectra are compared with theoretical predictions from multiple and double scattering. 10 refs., 2 tabs., 5 figs.

  15. Multiple and double scattering contributions to depth resolution and low energy background in hydrogen elastic recoil detection

    Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    The sensitivity of hydrogen elastic recoil detection ( ERD ) is usually limited by the low energy background in the ERD spectrum. A number of 4.5 MeV He{sup ++} hydrogen ERD spectra from different hydrogen implanted samples are compared. The samples are chosen with different atomic numbers from low Z (carbon) to high Z (tungsten carbide) to observe the effects of multiple scattering and double scattering within the sample material. The experimental depth resolution and levels of the low energy background in ERD spectra are compared with theoretical predictions from multiple and double scattering. 10 refs., 2 tabs., 5 figs.

  16. Defence in depth for electric power supplies in Indian nuclear power plants

    Gupta, S.K.; Srivasista, K.; Solanki, R.B.

    2009-01-01

    The purpose of electric power supply system in a nuclear power plant is to supply and distribute reliable electric power to safety related systems and systems important to safety in various forms, arrangements and combinations of redundancy and diversity in order to perform safety functions required during operational states and design basis events (DBE) such as shutting down the reactor, maintaining the reactor in safe shutdown state, containment isolation and reactor core cooling preventing significant release of radioactive material to the environment. Hence the design basis of electric power supply systems includes identification of DBE that require power supplies, adequacy of redundancy and diversity, environmental conditions to which electric equipment are qualified, identification of loads requiring interrupted and uninterrupted power supplies, time sequence in which emergency loads are to be supplied in case of interruption, provisions for maintaining and testing, consideration for minimum duration capability of emergency power supplies during station blackout etc. Based on operation experience, results of probability safety assessment and certain weaknesses noticed in defence in depth of electric power supply systems, several continuous design improvements have been made in Indian nuclear power plants during operating phase and life extension. Instituting various tests during initial commissioning, subsequent operation and life extension has ensured high standards of performance of electric power supplies. Some of these aspects are highlighted in this paper

  17. Detector normalization and scatter correction for the jPET-D4: A 4-layer depth-of-interaction PET scanner

    Kitamura, Keishi [Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan)]. E-mail: kitam@shimadzu.co.jp; Ishikawa, Akihiro [Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Mizuta, Tetsuro [Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Yamaya, Taiga [National Institute of Radiological Sciences, 9-1 Anagawa-4, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Yoshida, Eiji [National Institute of Radiological Sciences, 9-1 Anagawa-4, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Murayama, Hideo [National Institute of Radiological Sciences, 9-1 Anagawa-4, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2007-02-01

    The jPET-D4 is a brain positron emission tomography (PET) scanner composed of 4-layer depth-of-interaction (DOI) detectors with a large number of GSO crystals, which achieves both high spatial resolution and high scanner sensitivity. Since the sensitivity of each crystal element is highly dependent on DOI layer depth and incidental {gamma} ray energy, it is difficult to estimate normalization factors and scatter components with high statistical accuracy. In this work, we implemented a hybrid scatter correction method combined with component-based normalization, which estimates scatter components with a dual energy acquisition using a convolution subtraction-method for an estimation of trues from an upper energy window. In order to reduce statistical noise in sinograms, the implemented scheme uses the DOI compression (DOIC) method, that combines deep pairs of DOI layers into the nearest shallow pairs of DOI layers with natural detector samplings. Since the compressed data preserve the block detector configuration, as if the data are acquired using 'virtual' detectors with high {gamma}-ray stopping power, these correction methods can be applied directly to DOIC sinograms. The proposed method provides high-quality corrected images with low statistical noise, even for a multi-layer DOI-PET.

  18. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging lidar

    Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry; Ho, Cheng

    2002-09-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data on various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  19. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR

    Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry L.; Ho, Cheng

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  20. Vector analyzing power in elastic electron-proton scattering

    Diaconescu, L.; Ramsey-Musolf, M.J.

    2004-01-01

    We compute the vector analyzing power (VAP) for the elastic scattering of transversely polarized electrons from protons at low energies using an effective theory of electrons, protons, and photons. We study all contributions through second order in E/M, where E and M are the electron energy and nucleon mass, respectively. The leading-order VAP arises from the imaginary part of the interference of one- and two-photon exchange amplitudes. Subleading contributions are generated by the nucleon magnetic moment and charge radius as well as recoil corrections to the leading-order amplitude. Working to O(E/M) 2 , we obtain a prediction for A n that is free of unknown parameters and that agrees with the recent measurement of the VAP in backward angle ep scattering

  1. Reggeon effects in a geometrical model of elastic scattering. [Crossover curves, dip depth, scattering amplitude, 10 to 10,000 GeV

    Dias de Deus, J [Instituto de Fisica e Matematica, Lisboa (Portugal); Kroll, P [Wuppertal Univ. (Gesamthochschule) (Germany, F.R.)

    1976-08-21

    The inclusion of secondary contributions Reggeons and real parts by changing the radial scale but exactly preserving geometrical scaling (GS) alloys an exclusion of GS to lower energies. The crossover curves in proton proton, Kp, and *pp are in this way correctly described. A GS formula relating two measurable quantities, the depth of the dip in proton proton scattering and the ratio of the real to immaginary part of the amplitude at t=0, is shown to be valid in the 10-1000 GeV region.

  2. np elastic scattering analyzing power characteristics at intermediate energies

    Abegg, R.; Davis, C.A.; Delheij, P.P.J.; Green, P.W.; Greeniaus, L.G.; Healey, D.C.; Miller, C.A.; Rodning, N.L.; Wait, G.D.; Ahmad, M.; Cairns, E.B.; Coombes, G.H.; Lapointe, C.; McDonald, W.J.; Moss, G.A.; Roy, G.; Soukup, J.; Tkachuk, R.R.; Ye, Y.; Watson, J.W.

    1989-06-01

    Recent measurements of charge symmetry breaking in the np system at 477 MeV, and of A oonn for np elastic scattering at 220, 325 and 425 MeV also yield accurate analyzing power data. These data allow the energy dependence of the analyzing power zero-crossing angle and the slope of the analyzing power at the zero-crossing to be determined. The incident neutron energies span a region where the zero-crossing angle is strongly energy dependent (Ε n n > 350 MeV). The results are compared to current phase shift analysis predictions, recently published LAMPF data, and the predictions of the Bonn and Paris potentials. (Author) 13 refs., 2 tabs., 2 figs

  3. The matter power spectrum from the Ly alpha forest : an optical depth estimate

    Zaroubi, S; Nusser, A; Haehnelt, M; Kim, TS; Viel, M.

    2006-01-01

    We measure the matter power spectrum from 31 Ly alpha spectra spanning the redshift range of 1.6-3.6. The optical depth, tau, for Ly alpha absorption of the intergalactic medium is obtained from the flux using the inversion method of Nusser & Haehnelt. The optical depth is converted to density by

  4. Robust depth selectivity in mesoscopic scattering regimes using angle-resolved measurements.

    González-Rodríguez, P; Kim, A D; Moscoso, M

    2013-03-01

    We study optical imaging of tissues in the mesoscopic scattering regime in which light multiply scatters in tissues but is not fully diffusive. We use the radiative transport equation to model light propagation and an ℓ1-optimization method to solve the inverse source problem. We show that recovering the location and strength of several point-like sources that are close to each other is not possible when using angle-averaged measurements. The image reliability is limited by a spatial scale that is on the order of the transport mean-free path, even under the most ideal conditions. However, by using just a few angle-resolved measurements, the proposed method is able to overcome this limitation.

  5. Analysing power for quasi-elastic pp scattering in carbon and for elastic pp scattering on free protons

    Bystricky, J.; Deregel, J.; Lehar, F.

    1984-01-01

    The ratio of the analysing powers for quasi-elastic pp scattering in carbon and for elastic scattering on free protons was measured from T = 0.52 to 2.8 GeV by scattering of the SATURNE II polarized proton beam on carbon and CH 2 . It was found to have a maximum at about 0.8 GeV. The energy dependence for quasi-elastic scattering on carbon had not been measured before above 1 GeV. The observed effect was not expected from simple models

  6. Application of a multiple scattering model to estimate optical depth, lidar ratio and ice crystal effective radius of cirrus clouds observed with lidar.

    Gouveia Diego

    2018-01-01

    Full Text Available Lidar measurements of cirrus clouds are highly influenced by multiple scattering (MS. We therefore developed an iterative approach to correct elastic backscatter lidar signals for multiple scattering to obtain best estimates of single-scattering cloud optical depth and lidar ratio as well as of the ice crystal effective radius. The approach is based on the exploration of the effect of MS on the molecular backscatter signal returned from above cloud top.

  7. Application of a multiple scattering model to estimate optical depth, lidar ratio and ice crystal effective radius of cirrus clouds observed with lidar.

    Gouveia, Diego; Baars, Holger; Seifert, Patric; Wandinger, Ulla; Barbosa, Henrique; Barja, Boris; Artaxo, Paulo; Lopes, Fabio; Landulfo, Eduardo; Ansmann, Albert

    2018-04-01

    Lidar measurements of cirrus clouds are highly influenced by multiple scattering (MS). We therefore developed an iterative approach to correct elastic backscatter lidar signals for multiple scattering to obtain best estimates of single-scattering cloud optical depth and lidar ratio as well as of the ice crystal effective radius. The approach is based on the exploration of the effect of MS on the molecular backscatter signal returned from above cloud top.

  8. Compton scattering and electron-atom scattering in an elliptically polarized laser field of relativistic radiation power

    Panek, P.; Kaminski, J.Z.; Ehlotzky, F.

    2003-01-01

    Presently available laser sources can yield powers for which the ponderomotive energy of an electron U p can be equal to or even larger than the rest energy mc 2 of an electron. Therefore it has become of interest to consider fundamental radiation-induced or assisted processes in such powerful laser fields. In the present work we consider laser-induced Compton scattering and laser-assisted electron atom scattering in such fields, assuming that the laser beam has arbitrary elliptic polarization. We investigate in detail the angular and polarisation dependence of the differential cross-sections of the two laser-induced or laser-assisted nonlinear processes as a function of the order N of absorbed or emitted laser photons ω. The present work is a generalization of our previous analysis of Compton scattering and electron-atom scattering in a linearly polarized laser field. (authors)

  9. Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes

    Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.

    2009-01-01

    In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...

  10. Defense-in-depth for common cause failure of nuclear power plant safety system software

    Tian Lu

    2012-01-01

    This paper briefly describes the development of digital I and C system in nuclear power plant, and analyses the viewpoints of NRC and other nuclear safety authorities on Software Common Cause Failure (SWCCF). In view of the SWCCF issue introduced by the digitized platform adopted in nuclear power plant safety system, this paper illustrated a diversified defence strategy for computer software and hardware. A diversified defence-in-depth solution is provided for digital safety system of nuclear power plant. Meanwhile, analysis on problems may be faced during application of nuclear safety license are analyzed, and direction of future nuclear safety I and C system development are put forward. (author)

  11. The concept of mass angular scattering power and its relation to the diffusion constant

    Sandison, George A.; Papiez, Lech S. [School of Health Sciences, Purdue University, West Lafayette, IN (United States)

    1998-09-01

    An understanding of the scattering of high energy charged particle beams by tissue is required in radiotherapy since the particle trajectories determine the pattern of radiation dose deposition in patients. Numerical calculations of radiation dose often utilize energy dependent values of the angular scattering power. However, the physics literature is replete with confused interpretations of the concept of angular scattering power and its relation to the single scattering cross section for the medium or the diffusion constant in the diffusional limit. The purpose of this article is to clarify these notions.

  12. The mass angular scattering power method for determining the kinetic energies of clinical electron beams

    Blais, N.; Podgorsak, E.B.

    1992-01-01

    A method for determining the kinetic energy of clinical electron beams is described, based on the measurement in air of the spatial spread of a pencil electron beam which is produced from the broad clinical electron beam. As predicted by the Fermi-Eyges theory, the dose distribution measured in air on a plane, perpendicular to the incident direction of the initial pencil electron beam, is Gaussian. The square of its spatial spread is related to the mass angular scattering power which in turn is related to the kinetic energy of the electron beam. The measured spatial spread may thus be used to determine the mass angular scattering power, which is then used to determine the kinetic energy of the electron beam from the known relationship between mass angular scattering power and kinetic energy. Energies obtained with the mass angular scattering power method agree with those obtained with the electron range method. (author)

  13. Controlling Stimulated Brillouin/Raman Scattering in High Power Fiber Lasers

    2017-08-09

    AFRL-RD-PS- AFRL-RD-PS- TR-2017-0043 TR-2017-0043 CONTROLLING STIMULATED BRILLOUIN/RAMAN SCATTERING IN HIGH POWER FIBER LASERS Cody Mart Ben...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This research addressed suppression of stimulated Brillouin/Raman scattering in high power fiber lasers

  14. SCATTER

    Broome, J.

    1965-11-01

    The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)

  15. THEORETICAL MODELLING STUDY ON THE RELATIONSHIP BETWEEN MULTI-FREQUENCY MICROWAVE VEGETATION INDEX AND VEGETATION PROPERTIES (OPTICAL DEPTH AND SINGLE SCATTERING ALBEDO

    S. Talebi

    2018-04-01

    Full Text Available This paper presents a theoretical study of derivation Microwave Vegetation Indices (MVIs in different pairs of frequencies using two methods. In the first method calculating MVI in different frequencies based on Matrix Doubling Model (to take in to account multi scattering effects has been done and analyzed in various soil properties. The second method was based on MVI theoretical basis and its independency to underlying soil surface signals. Comparing the results from two methods with vegetation properties (single scattering albedo and optical depth indicated partial correlation between MVI from first method and optical depth, and full correlation between MVI from second method and vegetation properties. The second method to derive MVI can be used widely in global microwave vegetation monitoring.

  16. Collective Thomson scattering of a high power electron cyclotron resonance heating beam in LHD

    Kubo, S.; Nishiura, M.; Tanaka, K.

    2010-01-01

    Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power ECRH system in LHD. The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH ...

  17. Plasma turbulence imaging using high-power laser Thomson scattering

    Zweben, S. J.; Caird, J.; Davis, W.; Johnson, D. W.; Le Blanc, B. P.

    2001-01-01

    The two-dimensional (2D) structure of plasma density turbulence in a magnetically confined plasma can potentially be measured using a Thomson scattering system made from components of the Nova laser of Lawrence Livermore National Laboratory. For a plasma such as the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory, the laser would form an ≈10-cm-wide plane sheet beam passing vertically through the chamber across the magnetic field. The scattered light would be imaged by a charge coupled device camera viewing along the direction of the magnetic field. The laser energy required to make 2D images of density turbulence is in the range 1-3 kJ, which can potentially be obtained from a set of frequency-doubled Nd:glass amplifiers with diameters in the range of 208-315 mm. A laser pulse width of ⩽100 ns would be short enough to capture the highest frequency components of the expected density fluctuations.

  18. Power spectrum analysis of the x-ray scatter signal in mammography and breast tomosynthesis projections.

    Sechopoulos, Ioannis; Bliznakova, Kristina; Fei, Baowei

    2013-10-01

    To analyze the frequency domain characteristics of the signal in mammography images and breast tomosynthesis projections with patient tissue texture due to detected scattered x-rays. Acquisitions of x-ray projection images of 19 different patient breasts were simulated using previously acquired volumetric patient images. Acquisition of these images was performed with a dedicated breast CT prototype system, and the images were classified into voxels representing skin, adipose, and glandular tissue with a previously validated automated algorithm. The classified three dimensional images then underwent simulated mechanical compression representing that which is performed during acquisition of mammography and breast tomosynthesis images. The acquisition of projection images of each patient breast was simulated using Monte Carlo methods with each simulation resulting in two images: one of the primary (non-scattered) signal and one of the scatter signal. To analyze the scatter signal for both mammography and breast tomosynthesis, two projections images of each patient breast were simulated, one with the x-ray source positioned at 0° (mammography and central tomosynthesis projection) and at 30° (wide tomosynthesis projection). The noise power spectra (NPS) for both the scatter signal alone and the total signal (primary + scatter) for all images were obtained and the combined results of all patients analyzed. The total NPS was fit to the expected power-law relationship NPS(f) = k/f β and the results were compared with those previously published on the power spectrum characteristics of mammographic texture. The scatter signal alone was analyzed qualitatively and a power-law fit was also performed. The mammography and tomosynthesis projections of three patient breasts were too small to analyze, so a total of 16 patient breasts were analyzed. The values of β for the total signal of the 0° projections agreed well with previously published results. As expected, the scatter

  19. Extremal edges: a powerful cue to depth perception and figure-ground organization.

    Palmer, Stephen E; Ghose, Tandra

    2008-01-01

    Extremal edges (EEs) are projections of viewpoint-specific horizons of self-occlusion on smooth convex surfaces. An ecological analysis of viewpoint constraints suggests that an EE surface is likely to be closer to the observer than the non-EE surface on the other side of the edge. In two experiments, one using shading gradients and the other using texture gradients, we demonstrated that EEs operate as strong cues to relative depth perception and figure-ground organization. Image regions with an EE along the shared border were overwhelmingly perceived as closer than either flat or equally convex surfaces without an EE along that border. A further demonstration suggests that EEs are more powerful than classical figure-ground cues, including even the joint effects of small size, convexity, and surroundedness.

  20. A defense in depth approach for nuclear power plant accident management

    Chih-Yao Hsieh; Hwai-Pwu Chou [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, TW (China)

    2015-07-01

    An initiating event may lead to a severe accident if the plant safety functions have been challenged or operators do not follow the appropriate accident management procedures. Beyond design basis accidents are those corresponding to events of very low occurrence probability but such an accident may lead to significant consequences. The defense in depth approach is important to assure nuclear safety even in a severe accident. Plant Damage States (PDS) can be defined by the combination of the possible values for each of the PDS parameters which are showed on the nuclear power plant simulator. PDS is used to identify what the initiating event is, and can also give the information of safety system's status whether they are bypassed, inoperable or not. Initiating event and safety system's status are used in the construction of Containment Event Tree (CET) to determine containment failure modes by using probabilistic risk assessment (PRA) technique. Different initiating events will correspond to different CETs. With these CETs, the core melt frequency of an initiating event can be found. The use of Plant Damage States (PDS) is a symptom-oriented approach. On the other hand, the use of Containment Event Tree (CET) is an event-oriented approach. In this study, the Taiwan's fourth nuclear power plants, the Lungmen nuclear power station (LNPS), which is an advanced boiling water reactor (ABWR) with fully digitized instrumentation and control (I and C) system is chosen as the target plant. The LNPS full scope engineering simulator is used to generate the testing data for method development. The following common initiating events are considered in this study: loss of coolant accidents (LOCA), total loss of feedwater (TLOFW), loss of offsite power (LOOP), station blackout (SBO). Studies have indicated that the combination of the symptom-oriented approach and the event-oriented approach can be helpful to find mitigation strategies and is useful for the accident

  1. Pump Side-scattering in Ultra-powerful Backward Raman Amplifiers

    Solodov, A.A.; Malkin, V.M.; Fisch, N.J.

    2004-01-01

    Extremely large laser power might be obtained by compressing laser pulses through backward Raman amplification (BRA) in plasmas. Premature Raman backscattering of a laser pump by plasma noise might be suppressed by an appropriate detuning of the Raman resonance, even as the desired amplification of the seed persists with a high efficiency. In this paper, we analyze side-scattering of laser pumps by plasma noise in backward Raman amplifiers. Though its growth rate is smaller than that of backscattering, the side-scattering can nevertheless be dangerous, because of a longer path of side-scattered pulses in plasmas and because of an angular dependence of the Raman resonance detuning. We show that side-scattering of laser pumps by plasma noise in BRA might be suppressed to a tolerable level at all angles by an appropriate combination of two detuning mechanisms associated with plasma density gradient and pump chirp

  2. Solar powered irrigation management using neutron scattering technique

    Hegazi, A.M.A

    2010-01-01

    This study was conducted to modify a locally assembled solar-powered irrigation system. A direct-coupled photovoltaic pumping system has been assembled and installed in the Egyptian desert in Inshas at the Nuclear Research Center (31 degree 21 ' E, 30 degree 17 ' N). 800 Watt DC motor with brushes was modified to match unsteady PV generator current output. The DC motor was supplied with PV generator current, which was divided between 9 and 4 modules. Pump-set output was tested at different insolation levels and a relationship was carried out from observed data. Hourly solar insolation averages for ten years period were obtained from a program named (Meteo-Norm) software in order to predict and calculate the average daily pumping system water delivery in cubic meters. Preliminary experiment was conducted to acquire a relationship between PVP system outputs and solar-radiation intensity values; which differ from time to time during the day and through different seasons. Solar radiation, power consumption (as Voltage and Current), motor RPM and pump flow varied, while head was kept constant at 4 meter.The system showed trustworthy response to the PV generator output power demonstrated in DC motor RPM and consequently water deliver Based on the obtained results of this study, conclusions are:1.Parameters affecting the performance of solar generator under desert conditions were ambient temperature and contaminants. Focusing on the controllable parameter; dust contaminants; experiments were made to find out the best cleaning period which has limited decrease of the PV output. Results showed that output power was 22% lower for the panel with no cleaning for 20 days. Recommendation is made to do cleaning schedule every three days. 2.Maximizing photovoltaic system efficiency is achieved in order to minimize the initial costs, in other words; more power generated from the PV system unit. These can be obtained by tracking the sun rays through the daytime. Solar tracker was

  3. Iodine-129 depth profiles in soil within 30 km from Fukushima Daiichi Nuclear Power Plant

    Honda, M.; Matsuzaki, H.; Tsuchiya, Y.S.; Nakano, C.; Yamagata, T.; Nagai, H.; Matsushi, Y.; Maejima, Y.

    2013-01-01

    Iodine-129 depth profiles of 13 soil cores were analyzed by AMS to evaluate the distribution and the mobility in soil. The cores were sampled from various fields around the Fukushima Daiichi Nuclear Power Plant (FDNPP). Four cores out of the 13 were collected from almost the same position in Kawauchi village crop field 20 km apart from FDNPP at different times between April 2011 and June 2012 to observe the temporal variation of depth profile of "1"2"9I in soil. On the all of 13 soil cores, clear enhancement of the accident origin "1"2"9I was observed. From the crop field soil cores in Kawauchi village, "1"2"9I inventory was estimated as 43.4±2.7 mBq m"-"2 (3.10x10"1"3 atoms m"-"2). There is positive relationship between relaxation length and the elapsed time since the FDNPP accident. The increase rate of the relaxation length is about 1 cm yr"-"1 which should reflect the downward transfer rate of the Fukushima-derived "1"2"9I. Other 9 cores were collected from various fields including crop fields and man-made soils within 30 km from FDNPP on June 2012. Cumulative "1"2"9I inventory fraction [%] from the surface was calculated. The inventory fraction within top 5 cm varied widely, 65-100% with median 82%. Similarly the inventory fraction within top 10 cm varied 82 to 100% with the median 95%. (author)

  4. Effect of impurity scattering on the low temperature magnetic penetration depth of a nonlocal and nonlinear d-wave superconductor

    Yavary, H.

    2006-01-01

    The magnetic penetration depth of a quasi-two dimensional d-wave superconductor in the presence of nonlineary, nonlocality, and impurity effects is investigated by using Green's function method. It is shown that a d-wave superconductor would inevitably avoid the violation of the Nernst theorem by creating a T 2 term in its penetration depth through a competition of nonlinear, nonlocal, and impurity effects and this system may be stable at low temperatures. I also show that in the impure sample at low temperatures, T < T * ∝ γ the impurity effect determines the temperature dependence of the penetration depth, i.e., nonlocal and nonlinear effects are completely masked by impurities

  5. K-correlation power spectral density and surface scatter model

    Dittman, Michael G.

    2006-08-01

    The K-Correlation or ABC model for surface power spectral density (PSD) and BRDF has been around for years. Eugene Church and John Stover, in particular, have published descriptions of its use in describing smooth surfaces. The model has, however, remained underused in the optical analysis community partially due to the lack of a clear summary tailored toward that application. This paper provides the K-Correlation PSD normalized to σ(λ) and BRDF normalized to TIS(σ,λ) in a format intended to be used by stray light analysts. It is hoped that this paper will promote use of the model by analysts and its incorporation as a standard tool into stray light modeling software.

  6. Analyzing power in pp scattering at low energies: the Paris potential predictions

    Cote, J.; Pires, P.; Tourreil, R. de; Lacombe, M.; Loiseau, B.; Vinh Mau, R.

    1979-12-01

    Predictions of the Paris potential for the analyzing power in pp scattering at low energies are compared with recent high precision measurements at 6.14MeV and earlier measurements at 10 and 16MeV. Phase shift values are also presented and discussed in view of previous analyses

  7. High speed low power optical detection of sub-wavelength scatterer

    Roy, S.; Bouwens, M.A.J.; Wei, L.; Pereira, S.F.; Urbach, H.P.; Walle, P. van der

    2015-01-01

    Optical detection of scatterers on a flat substrate, generally done using dark field microscopy technique, is challenging since it requires high power illumination to obtain sufficient SNR (Signal to Noise Ratio) to be able to detect sub-wavelength particles. We developed a bright field technique,

  8. Energy dependence of the analyzing power Ayo in the anti p p elastic scattering

    Bertini, R.

    1991-01-01

    The analysing power data A yo of the anti p p elastic scattering at six beam momenta from P lab = 439 MeV/c up to 988 MeV/c are plotted as a function of In(-t). The regularities shown by the data are discussed

  9. Improvements in Defense in Depth in French Nuclear Power Plants Following Fukushima Accidents

    Barbaud, J. [EDF SEPTEN, Villeurbanne Cedex (France); Pouget-Abadie, X., E-mail: jean.barbaud@edf.fr [EDF DIN Headquarters, Saint-Denis (France)

    2014-10-15

    The accidents which occurred in the nuclear power plants in Fukushima-Daiichi resulted in a complementary safety assessment (CSA or stress-tests) of all French NPPs to confirm their compliance with their design bases and to evaluate their behaviour beyond it. They have shown that nuclear facilities have a satisfactory level of safety, but it had been decided to significantly improve their robustness to extreme situations, beyond the safety margins they have already. Planned improvements include several parts, where the main ones are the implementation of a hardened safety core (HSC) of key components for the management of extreme situations resulting from a hazard beyond the design and deployment of a nuclear rapid response force (FARN). The hardened safety core aims to avoid massive releases and lasting effects in the environment. It relies on existing or new components designed or verified to hazards with significant margins compared to the design levels of NPP beyond. It also includes provisions allowing crisis management, including crisis centre and communication means. The FARN complements the HSC and the crisis organization to bring from off-site sufficient human and material resources to increase the autonomy of the site. All these improvement contribute to a better defence in depth. (author)

  10. Relativistic electron-atom scattering in an extremely powerful laser field: Relevance of spin effects

    Panek, P.; Kaminski, J.Z.; Ehlotzky, F.

    2002-01-01

    We reconsider the relativistic scattering of electrons by an atom, being approximated by a static potential, in an extremely powerful electromagnetic plane wave of frequency ω and linear polarization ε. Since to a first order of approximation spin effects can be neglected, we first describe the scattered electron by the Gordon solution of the Klein-Gordon equation. Then we investigate the same scattering process by including the spin effects, using for the electron the Volkov solution of the Dirac equation. For sufficiently energetic electrons, the first-order Born approximation can be employed to represent the corresponding scattering matrix element. We compare the results of the differential cross sections of induced and inverse bremsstrahlung, evaluated from both approximations, for various parameter values and angular configurations and we find that in most cases the spin effects are marginal, even at very high laser power. On the other hand, we recover the various asymmetries in the angular distributions of the scattered electrons and their respective energies due to the laser-induced drift motion of the electrons in the direction of propagation of the radiation field, thus confirming the findings of our previous work [Phys. Rev. A 59, 2105 (1999); Laser Physics 10, 163 (2000)

  11. Extreme values of the analyzing power in dα elastic scattering

    Jenny, B.; Grueebler, W.; Koenig, V.; Schmelzbach, P.A.

    1985-01-01

    An investigation of states of maximum possible polarization in dα elastic scattering has been carried out between 3 and 43 MeV deuteron energy. Two different types of such maxima were found. In the first type, analyzing power components reach their theoretical maximum values. A second type does not generally yield observables with maximum possible values, but has parameters that lie well within the range allowed. It is particular combination of values that constitutes a state of maximum possible polarization. The search for the two types of maxima was made with the aid of a phase-shift analysis. Several maxima of both kinds were found in the elastic scattering under investigation. The energies and scattering angles for these points have been determined. In most cases a state of maximum polarization indicates a resonant state in the compound system. (orig.)

  12. A high-power spatial filter for Thomson scattering stray light reduction

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  13. Tensor analyzing powers in deuteron--proton elastic scattering and the breakup reaction at 45.4 MeV

    Conzett, H.E.

    1978-08-01

    Recently the tensor analyzing powers in vector d + p elastic scattering and in the breakup reaction at E/sub d/ = 45.4 MeV were measured. The elastic results now establish a rather complete set of polarization data in nucleon--deuteron scattering at E/sub N/ = 22.7 MeV, which consists of the proton analyzing power, the deuteron vector and tensor analyzing powers, and vector polarization transfer measurements, as well. 8 references

  14. Implementation of Defence in Depth at Nuclear Power Plants. Lessons Learnt from the Fukushima Daiichi Accident

    Lachaume, Jean-Luc; Miller, Douglass; Rzentkowski, Greg; Lahtinen, Nina; Valtonen, Keijo; Foucher, Laurent; Harikumar, Shri S.; Yamada, Tomoho; Sharafutdinov, Rashet; Kuznetsov, Mark; Carlsson, Lennart; Hanberg, Jan; Theiss, Klaus; Holahan, Gary; Williams, Donna; Nuenighoff, Kay; Wattelle, Emmanuel; Lazo, Edward; White, Andrew; Reig, Javier; Salgado, Nancy; Weightman, Mike

    2016-01-01

    Defence in depth (DiD) is a concept that has been used for many years alongside tools to optimise nuclear safety in reactor design, assessment and regulation. The 2011 Fukushima Daiichi nuclear power plant accident raised many questions and gave unique insight into nuclear safety issues, including DiD. In June 2013, the NEA held a Joint Workshop on Challenges and Enhancements to DiD in Light of the Fukushima Daiichi Accident (NEA, 2014), organised by the NEA Committee on the Safety of Nuclear Installations (CSNI) and the NEA Committee on Nuclear Regulatory Activities (CNRA). It was noted at the time that further work would be beneficial to enhance nuclear safety worldwide, especially with regard to the implementation of DiD. Accordingly, a senior-level task group (STG) was set up to produce a regulatory guidance booklet that would assist member countries in the use of DiD, taking into account lessons learnt from the 2011 accident. This regulatory guidance booklet builds on the work of this NEA workshop, of the International Atomic Energy Agency (IAEA), the Western European Nuclear Regulators Association (WENRA) and of other members of the STG. It uses as its basis the International Nuclear Safety Advisory Group's Defence in Depth in Nuclear Safety study (INSAG-10) (IAEA, 1996). The booklet provides insights into the implementation of DiD by regulators and emergency management authorities after the Fukushima Daiichi accident, aiming to enhance global harmonisation by providing guidance on: - the background to the DiD concept; - the need for independent effectiveness among the safety provisions for the various DiD levels, to the extent practicable; - the need for greater attention to reinforce prevention and mitigation at the various levels; - the vital importance of ensuring that common cause and common mode failures, especially external events acting in combination, do not lead to breaches of safety provisions at several DiD levels, taking note of the

  15. Measurement of the analysing power of elastic proton-proton scattering at 582 MeV

    Berdoz, A.; Favier, B.; Foroughi, F.; Weddigen, C.

    1984-01-01

    The authors have measured the analysing power of elastic proton-proton scattering at 582 MeV for 14 angles from 20 to 80 0 CM. The angular range was limited to >20 0 by the energy loss of the recoil protons. The experiment was performed at the PM1 beam line at SIN. A beam intensity of about 10 8 particles s -1 was used. (Auth.)

  16. Scattering at low energies by potentials containing power-law corrections to the Coulomb interaction

    Kuitsinskii, A.A.

    1986-01-01

    The low-energy asymptotic behavior is found for the phase shifts and scattering amplitudes in the case of central potentials which decrease at infinity as n/r+ar /sup -a/,a 1. In problems of atomic and nuclear physics one is generally interested in collisions of clusters consisting of several charged particles. The effective interaction potential of such clusters contains long-range power law corrections to the Coulomb interaction that is presented

  17. Countermovement depth - a variable which clarifies the relationship between the maximum power output and height of a vertical jump.

    Gajewski, Jan; Michalski, Radosław; Buśko, Krzysztof; Mazur-Różycka, Joanna; Staniak, Zbigniew

    2018-01-01

    The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.

  18. Analyzing power for proton elastic scattering from the neutron-rich 6He nucleus

    Uesaka, T.; Sakaguchi, S.; Kawabata, T.; Sasamoto, Y.; Iseri, Y.; Amos, K.; Aoi, N.; Hiyama, E.; Sekiguchi, K.; Yamaguchi, M.; Hashimoto, Y.; Satou, Y.; Shinohara, M.; Ichikawa, M.; Itoh, M.; Matsuo, R.; Wakui, T.; Ichikawa, Y.; Iwasaki, H.; Kuboki, H.

    2010-01-01

    Vector analyzing power for the proton- 6 He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target, which works at a low magnetic field of 0.09 T. The results are found to be incompatible with a t-matrix folding model prediction. Comparisons of the data with g-matrix folding analyses clearly show that the vector analyzing power is sensitive to the nuclear structure model used in the reaction analysis. The α-core distribution in 6 He is suggested to be a possible key for understanding the nuclear structure sensitivity.

  19. Oxygen depth profiling in Kr+-implanted polycrystalline alpha titanium by means of 16O(α,α)16O resonance scattering

    Nsengiyumva, S.; Riviere, J.P.; Raji, A.T.; Comrie, C.M.; Britton, D.T.; Haerting, M.

    2011-01-01

    The 16 O(α,α) 16 O resonance scattering was applied to study the effects of ion implantation on the oxygen distribution in the near surface region of polycrystalline titanium implanted with 180 keV krypton ions at fluences, ranging between 1 x 10 14 and 5 x 10 15 Kr + /cm 2 . Two sample sets were chosen: as-received polycrystalline titanium discs rolled and annealed in half-hard condition which had a thick oxygen layer and similar samples in which this surface layer was removed by polishing. An increase of the mean oxygen concentration observed in both unpolished and polished samples at low fluence suggests a knock-on implantation of surface oxygen atoms. At high fluence, an overall decrease in the mean oxygen concentration and mean oxygen depth suggests an out-diffusion of near-surface oxygen atoms.

  20. Oxygen depth profiling in Kr{sup +}-implanted polycrystalline alpha titanium by means of {sup 16}O({alpha},{alpha}){sup 16}O resonance scattering

    Nsengiyumva, S., E-mail: schadnse@hotmail.com [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa); Department of Physics and Electronics, Rhodes University, Grahamstown 6140 (South Africa); Department of Physics, Kigali Institute of Education, P.O. Box 5039 Kigali (Rwanda); Riviere, J.P. [Laboratoire de Physique des Materiaux UMR6630-CNRS, 86960 (France); Raji, A.T.; Comrie, C.M.; Britton, D.T.; Haerting, M. [Department of Physics, University of Cape Town, Rondebosch 7701 (South Africa)

    2011-07-15

    The {sup 16}O({alpha},{alpha}){sup 16}O resonance scattering was applied to study the effects of ion implantation on the oxygen distribution in the near surface region of polycrystalline titanium implanted with 180 keV krypton ions at fluences, ranging between 1 x 10{sup 14} and 5 x 10{sup 15} Kr{sup +}/cm{sup 2}. Two sample sets were chosen: as-received polycrystalline titanium discs rolled and annealed in half-hard condition which had a thick oxygen layer and similar samples in which this surface layer was removed by polishing. An increase of the mean oxygen concentration observed in both unpolished and polished samples at low fluence suggests a knock-on implantation of surface oxygen atoms. At high fluence, an overall decrease in the mean oxygen concentration and mean oxygen depth suggests an out-diffusion of near-surface oxygen atoms.

  1. Comprehensive Reactive Power Support of DFIG Adapted to Different Depth of Voltage Sags

    Yangwu Shen

    2017-06-01

    Full Text Available The low voltage ride-through (LVRT capability of the doubly-fed induction generator (DFIG significantly impacts upon the integration of wind power into the power grid. This paper develops a novel comprehensive control strategy to enhance the LVRT and reactive power support capacities of the DFIG by installing the energy storage system (ESS. The ESS is connected to the DC-link capacitor of the DFIG and used to regulate the DC-link voltage during normal or fault operations. The unbalanced power between the captured wind power and the power injected to the grid during the transient process is absorbed or compensated by the ESS. The rotor-side converter (RSC is used to control the maximum power production and the grid-side converter (GSC is used to control the reactive power before participating in the voltage support. When the supply voltage continues to drop, the rotor speed is increased by controlling the RSC to realize the LVRT capability and help the GSC further enhance the reactive power support capability. The capacity of the GSC is dedicated to injecting the reactive power to the grid. An auxiliary transient pitch angle controller is proposed to protect the generator’s over speed. Both RSC and GSC act as reactive power sources to further enhance the voltage support capability with serious voltage sags. Simulations based on a single-machine infinite-bus power system verify the effectiveness of the developed comprehensive control strategy.

  2. Regulatory point of view on defense in depth approach to fire protection in nuclear power plant

    Rinta-Filppula, Samu; Lehto, Matti; Vaelikangas, Pekka [Radiation and Nuclear Safety Authority STUK, Helsinki (Finland)

    2015-12-15

    The defense-in-depth (DiD) principle is a relatively new approach to fire protection design, even though DiD has been used in nuclear power plant (NPP) safety evaluation and design for decades (IAEA 75-INSAG-3, Rev. 1/INSAG-12). It is the main design criterion in fire protection in the latest edition of Finnish Radiation and Nuclear Safety Authority (STUK) issued guide YVL B.8 for the fire protection in nuclear facilities. The DiD approach to fire protection consists of four levels of defense: preventing the ignition of fires, detecting and extinguishing of ignited fires, preventing fire growth and spreading, confining the fire so that safety functions can be performed irrespective of the effects of the fire. The design of fire protection should take all these levels into account so that fire protection is well balanced and not dependent on a single fire protection factor or level of DiD. Despite being central to the design of fire protection, corresponding evaluations of DiD are done according to more or less unambiguous methods. The main goal of this study is to start the development of such, as much as possible, unambiguous systematic and logical method. First issue then is to build a picture of how fire safety features are executed on different levels of DiD and what is the corresponding safety importance to NPP. The Loviisa NPP was studied as an example case due to a long history of fire safety improvements since commissioning in 1977. The improvements are sorted qualitatively by their means of fire safety impact and level of DiD approach to fire protection and general plant DiD. The correspondence between the two DiD principles is an interesting issue which is discussed in this paper. Finally, Fire PRA is used to determine the safety importance of the improvements. The method proposed for the evaluation of DiD approach to fire protection is a combined ignition root cause analysis - event tree of fire scenario - consequential failure modes and effects analysis

  3. Magnetic field power density spectra during 'scatter-free' solar particle events

    Tan, L. C.; Mason, G. M.

    1993-01-01

    We have examined interplanetary magnetic field power spectral density during four previously identified 3He-rich flare periods when the about 1 MeV nucleon-1 particles exhibited nearly scatter-free transport from the sun to 1 AU. Since the scattering mean free path A was large, it might be expected that interplanetary turbulence was low, yet the spectral density value was low only for one of the four periods. For the other three, however, the spectral index q of the power density spectrum was near 2.0, a value at which quasi-linear theories predict an increase in the scattering mean free path. Comparing the lambda values from the energetic particles with that computed from a recent quasi-linear theory which includes helicity and the propagation direction of waves, we find lambda(QLT)/lambda(SEP) = 0.08 +/- 0.03 for the four events. Thus, the theory fits the q-dependence of lambda; however, as found for previous quasi-linear theories, the absolute value is low.

  4. In situ neutron depth profiling: A powerful method to probe lithium transport in micro-batteries

    Oudenhoven, J.F.M.; Labohm, F.; Mulder, M.; Niessen, R.A.H.; Mulder, F.M.; Notten, P.H.L.

    2011-01-01

    In situ neutron depth profiling (NDP) offers the possibility to observe lithium transport inside micro-batteries during battery operation. It is demonstrated that NDP results are consistent with the results of electrochemical measurements, and that the use of an enriched6LiCoO2 cathode offers more

  5. Seismic measures and defence in depth of nuclear power plant. Lessons learned from the great east Japan earthquake

    Ochiai, Kanehiro

    2011-01-01

    The Great East Japan Earthquake occurred in March 11, 2011 brought about severe accident at nuclear power plant, which gave significant lessons to nuclear experts concerned with safety measures. Concepts of defence in depth was basic philosophy to assure safety of nuclear power plant even against uncertainties exceeding design basis. This concept consisted of prevention, monitoring, and action to mitigate consequences of failures such as a series of physical barriers between the reactor core and the environment, which were called multiple safety systems, each with backup and designed to accommodate human error. As for natural disaster, depth of recognition of characteristic of natural phenomena and its effect and engineering judgment was of prime importance. Different waveforms of ground motion at Fukushima and Onagawa at the Great East Japan Earthquake showed that design ground motion should have large uncertainties. To cope with uncertainties of ground motion, robust seismic measures based on experience were such as design of static seismic intensity and rigid structure of natural period less than 0.1 sec. As for tsunami, defence in depth measures were prepared for the cooling of reactor core, spent fuel and related electric generation equipment with taking into account 1) time lag between tsunami generation and arrival, 2) tsunami affected area could be limited by coastal levee or anti-inundation measure, 3) system redundancy could be assured by different locations of equipments and 4) repair works could be done by shipment of replacement equipment from outside due to limitation of affected regional area. Success examples of Onagawa, Tokai unit 2, Fukushima Daiichi unit 6 and Fukushima Daini Nuclear Power Plants could suggest definite tsunami defence in depth measures. Containment vent system as final heat sink and emergency condenser as reactor core cooling at outage should be properly utilized for Fukushima Daiichi unit 1 Nuclear Power Plant. (T. Tanaka)

  6. A defence in depth approach to safety assessment of existing nuclear power plant

    Butcher, P.; Holloway, N.J.

    1998-01-01

    The safety assessment of plant built to earlier standards requires an approach to prioritisation of upgrades that is based on sound engineering and safety principles. The principles of defence in depth are universally accepted and can form the basis of a prioritisation scheme for safety issues, and hence for the upgrading required to address them. The described scheme includes criteria for acceptability and issue prioritisation that are based on the number of lines of defence and the consequences of their failure. They are thus equivalent in concept to risk criteria, but are based on deterministic principles. This scheme has been applied successfully to the RBMK plant at Ignalina in Lithuania, for which a Western-style Safety Analysis Report has recently been produced and reviewed by joint Western and Eastern teams. An extended Safety Improvement Programme (SIP2) has been developed and agreed, based on prioritisations from the defence in depth assessment. (author)

  7. Threshold and maximum power evolution of stimulated Brillouin scattering and Rayleigh backscattering in a single mode fiber segment

    Sanchez-Lara, R; Alvarez-Chavez, J A; Mendez-Martinez, F; De la Cruz-May, L; Perez-Sanchez, G G

    2015-01-01

    The behavior of stimulated Brillouin scattering (SBS) and Rayleigh backscattering phenomena, which limit the forward transmission power in modern, ultra-long haul optical communication systems such as dense wavelength division multiplexing systems is analyzed via simulation and experimental investigation of threshold and maximum power. Evolution of SBS, Rayleigh scattering and forward powers are experimentally investigated with a 25 km segment of single mode fiber. Also, a simple algorithm to predict the generation of SBS is proposed where two criteria of power thresholds was used for comparison with experimental data. (paper)

  8. Power-law temperature dependence of the inelastic-scattering rate in disordered superconductors

    Devereaux, T.P.; Belitz, D.

    1991-01-01

    We present a theory of the quasiparticle inelastic lifetime τ in in disordered superconducting films. We find that both the Coulomb and the electron-phonon contribution to τ in -1 are enhanced by disorder, and that for reasonably strong electron-phonon coupling the latter is dominant. In contrast to clean superconductors, the scattering rate is larger than the recombination rate at all temperatures. This leads to a power-law temperature dependence of τ in -1 , in agreement with experimental observations. The theory quantitatively accounts for the magnitude, disorder dependence, and temperature dependence of τ in measured in recent experiments

  9. Scaling behaviour of tensor analyzing power (Ayy) in the inelastic scattering of relativistic deuterons

    Korovin, P.P.; Malinina, L.V.; Strokovskij, E.A.

    1998-01-01

    We suggest a new dimensionless relativistic invariant variable R Δm X / ν which may be interpreted as the ratio of the excitation energy to the full transferred energy; therefore this variable measures a 'degree of inelasticity' of the scattering. Existing data on the tensor analyzing power of the p(d polarized, d ' )X and 12 C(d polarized, d ' )X inelastic scattering at momenta from 4.2 to 9 GeV/c are analyzed in terms of this variable. We observe that A yy taken as a function of R does not depend upon the incident energy, the scattering angle (up to the angles of θ cm ∼ 30 deg), and there is no noticeable difference between the proton and nuclear targets as well. It is remarkable that A yy is maximal (of ∼ 0.5) when R ∼ 0.5 - 0.6 and is small in absolute value when R is close to its limiting values of 0 and 1

  10. Experimental assessment of blade tip immersion depth from free surface on average power and thrust coefficients of marine current turbine

    Lust, Ethan; Flack, Karen; Luznik, Luksa

    2014-11-01

    Results from an experimental study on the effects of marine current turbine immersion depth from the free surface are presented. Measurements are performed with a 1/25 scale (diameter D = 0.8m) two bladed horizontal axis turbine towed in the large towing tank at the U.S. Naval Academy. Thrust and torque are measured using a dynamometer, mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using a shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Two optical wave height sensors are used to measure the free surface elevation. The turbine is towed at 1.68 m/s, resulting in a 70% chord based Rec = 4 × 105. An Acoustic Doppler Velocimeter (ADV) is installed one turbine diameter upstream of the turbine rotation plane to characterize the inflow turbulence. Measurements are obtained at four relative blade tip immersion depths of z/D = 0.5, 0.4, 0.3, and 0.2 at a TSR value of 7 to identify the depth where free surface effects impact overall turbine performance. The overall average power and thrust coefficient are presented and compared to previously conducted baseline tests. The influence of wake expansion blockage on the turbine performance due to presence of the free surface at these immersion depths will also be discussed.

  11. An in-depth assessment of hybrid solar–geothermal power generation

    Zhou, Cheng; Doroodchi, Elham; Moghtaderi, Behdad

    2013-01-01

    Highlights: • We model hybrid solar thermal and geothermal energy conversion system in the Australian context. • Solar thermal and geothermal energy can be effectively hybridised. • Thermodynamic advantages and economic benefits are realised. • Hybrid system overcomes adverse effects of diurnal temperature change on power generation. • Cost of electricity of an Enhanced Geothermal System can drop by more than 20% if hybridised with solar energy. - Abstract: A major problem faced by many standalone geothermal power plants, particularly in hot and arid climates such as Australia, is the adverse effects of diurnal temperature change on the operation of air-cooled condensers which typically leads to fluctuation in the power output and degradation of thermal efficiency. This study is concerned with the assessment of hybrid solar–geothermal power plants as a means of boosting the power output and where possible moderating the impact of diurnal temperature change. The ultimate goal is to explore the potential benefits from the synergies between the solar and geothermal energy sources. For this purpose the performances of the hybrid systems in terms of power output and the cost of electricity were compared with that of stand-alone solar and geothermal plants. Moreover, the influence of various controlling parameters including the ambient temperature, solar irradiance, geographical location, resource quality, and the operating mode of the power cycle on the performance of the hybrid system were investigated under steady-state conditions. Unsteady-state case studies were also performed to examine the dynamic behaviour of hybrid systems. These case studies were carried out for three different Australian geographic locations using raw hourly meteorological data of a typical year. The process simulation package Aspen-HYSYS was used to simulate plant configurations of interest. Thermodynamic analyses carried out for a reservoir temperature of 120 °C and a fixed

  12. An in-depth assessment of hybrid solar–geothermal power generation

    Zhou, Cheng [Priority Research Centre for Energy, Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308 (Australia); Doroodchi, Elham [Priority Research Centre for Advanced Particle Processing and Transport, Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308 (Australia); Moghtaderi, Behdad [Priority Research Centre for Energy, Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2013-10-15

    Highlights: • We model hybrid solar thermal and geothermal energy conversion system in the Australian context. • Solar thermal and geothermal energy can be effectively hybridised. • Thermodynamic advantages and economic benefits are realised. • Hybrid system overcomes adverse effects of diurnal temperature change on power generation. • Cost of electricity of an Enhanced Geothermal System can drop by more than 20% if hybridised with solar energy. - Abstract: A major problem faced by many standalone geothermal power plants, particularly in hot and arid climates such as Australia, is the adverse effects of diurnal temperature change on the operation of air-cooled condensers which typically leads to fluctuation in the power output and degradation of thermal efficiency. This study is concerned with the assessment of hybrid solar–geothermal power plants as a means of boosting the power output and where possible moderating the impact of diurnal temperature change. The ultimate goal is to explore the potential benefits from the synergies between the solar and geothermal energy sources. For this purpose the performances of the hybrid systems in terms of power output and the cost of electricity were compared with that of stand-alone solar and geothermal plants. Moreover, the influence of various controlling parameters including the ambient temperature, solar irradiance, geographical location, resource quality, and the operating mode of the power cycle on the performance of the hybrid system were investigated under steady-state conditions. Unsteady-state case studies were also performed to examine the dynamic behaviour of hybrid systems. These case studies were carried out for three different Australian geographic locations using raw hourly meteorological data of a typical year. The process simulation package Aspen-HYSYS was used to simulate plant configurations of interest. Thermodynamic analyses carried out for a reservoir temperature of 120 °C and a fixed

  13. The spin correlation parameter and analyzing power in n-p elastic scattering at intermediate energies

    Abegg, R.; Davis, C.A.; Delheij, P.P.J.; Greeniaus, L.G.; Healey, D.C.; Miller, C.A.; Wait, G.D.; Ahmad, M.; Green, P.W.; Lapointe, C.; McDonald, W.J.; Moss, G.A.; Rodning, N.L.; Roy, G.; Ye, Y.

    1989-06-01

    In order to improve existing I=0 phase shift solutions, the spin correlation parameter, A NN , and the analyzing powers, A 0N and A N0 , have been measured in n-p elastic scattering over an angular range of 50 degrees -150 degrees (c.m.) at three neutron energies, 220, 325 and 425 MeV to an absolute accuracy of ±0.03. The data have a profound effect on various phase parameters, particularly the 1 P 1 , 3 D 2 and ε 1 phase parameters which in some cases change by almost a degree. With exception of the highest energy, the data support the predictions of the latest version of the Bonn potential. Also the analyzing power data (A 0N and A N0 ) measured at 477 MeV in a different experiment over a limited angular range (60 degrees - 80 degrees (c.m.)) are reported here. (Author) 30 refs., 10 figs., 5 tabs

  14. Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings

    Heck, Maximilian; Bock, Victor; Krämer, Ria G.; Richter, Daniel; Goebel, Thorsten A.; Matzdorf, Christian; Liem, Andreas; Schreiber, Thomas; Tünnermann, Andreas; Nolte, Stefan

    2018-02-01

    The average output power of fiber lasers have been scaled deep into the kW regime within the recent years. However a further scaling is limited due to nonlinear effects like stimulated Raman scattering (SRS). Using the special characteristics of femtosecond laser pulse written transmission fiber gratings, it is possible to realize a notch filter that mitigates efficiently this negative effect by coupling the Raman wavelength from the core into the cladding of the fiber. To the best of our knowledge, we realized for the first time highly efficient gratings in large mode area (LMA) fibers with cladding diameters up to 400 μm. The resonances show strong attenuation at design wavelength and simultaneously low out of band losses. A high power fiber amplifier with an implemented passive fiber grating is shown and its performance is carefully investigated.

  15. Analysing power for neutron-proton scattering at 14.1 MeV

    Brock, J.E.; Chisholm, A.; Duder, J.C.; Garrett, R.; Poletti, J.L.

    1981-01-01

    The analysing power Asub(y)(theta) for neutron-proton scattering has been measured at 14.1 MeV for c.m. angles between 50 0 and 157 0 . A polarized neutron beam was produced by the reaction 3 H(d,n) 4 He at 110 keV, using polarized deuterons from an atomic beam polarized ion source. Liquid and plastic scintillators were used for proton targets and the scattered particles were detected in an array of platic scintillators. Use of the associated alpha technique, multi-parameter recording of events and off-line computer treatment led to very low backgrounds. The results differ significantly from the predictions of the phase-shift analyses of Yale IV, Livermore X and Arndt et al. We find, however, excellent agreement with the predictions of the Paris potential of Lacombe et al. Existing n-p analysing power results up to 30 MeV are surveyed and found to be consistent. An attempt was made to look for an isospin splitting of the triplet P-wave phase shifts. (orig.)

  16. Bilateral differences in peak force, power, and maximum plie depth during multiple grande jetes

    Wyon, M.; Harris, J.; Brown, D.D.; Clark, F.

    2013-01-01

    A lateral bias has been previously reported in dance training. The aim of this study was to investigate whether there are any bilateral differences in peak forces, power, and maximum knee flexion during a sequence of three grand jetes and how they relate to leg dominance. A randomised observational

  17. In-depth analysis and discussions of water absorption-typed high power laser calorimeter

    Wei, Ji Feng

    2017-02-01

    In high-power and high-energy laser measurement, the absorber materials can be easily destroyed under long-term direct laser irradiation. In order to improve the calorimeter's measuring capacity, a measuring system directly using water flow as the absorber medium was built. The system's basic principles and the designing parameters of major parts were elaborated. The system's measuring capacity, the laser working modes, and the effects of major parameters were analyzed deeply. Moreover, the factors that may affect the accuracy of measurement were analyzed and discussed. The specific control measures and methods were elaborated. The self-calibration and normal calibration experiments show that this calorimeter has very high accuracy. In electrical calibration, the average correction coefficient is only 1.015, with standard deviation of only 0.5%. In calibration experiments, the standard deviation relative to a middle-power standard calorimeter is only 1.9%.

  18. The Prospect of Neutron Scattering in The 21st Century : A Powerful Tool For Materials Research

    E-Kartini

    2007-01-01

    Over the last 60 years research reactors (RRs) have played an important role in technological and socio-economical development of mankind, such as radioisotope production for medicine, industry, research and education. Neutron scattering has been widely used for research and development in materials science. The prospect of neutron scattering as a powerful tool for materials research is increasing in the 21 st century. This can be seen from the investment of several new neutron sources all over the world such as the Spallation Neutron Source (SNS) in USA, the Japan Proton Accelerator Complex (JPARC) in Japan, the new OPAL Reactor in Australia, and some upgrading to the existing sources at ISIS, Rutherford Appleton Laboratory, UK; Institute of Laue Langevin (ILL) in Grenoble, France and Berlin Reactor, Germany. Developing countries with moderate flux research reactor have also been involved in this technique, such as India, Malaysia and Indonesia The Siwabessy Multipurpose Reactor in Serpong, Indonesia that also produces thermal neutron has contributed to the research and development in the Asia Pacific Region. However,the international joint research among those countries plays an important role on optimizing the results. (author)

  19. The Prospect of Neutron Scattering In the 21st Century: A Powerful Tool for Materials Research

    E. Kartini

    2007-07-01

    Full Text Available Over the last 60 years research reactors (RRs have played an important role in technological and socio-economical development of mankind, such as radioisotope production for medicine, industry, research and education. Neutron scattering has been widely used for research and development in materials science. The prospect of neutron scattering as a powerful tool for materials research is increasing in the 21st century. This can be seen from the investment of several new neutron sources all over the world such as the Spallation Neutron Source (SNS in USA, the Japan Proton Accelerator Complex (JPARC in Japan, the new OPAL Reactor in Australia, and some upgrading to the existing sources at ISIS, Rutherford Appleton Laboratory, UK; Institute of Laue Langevin (ILL in Grenoble, France and Berlin Reactor, Germany. Developing countries with moderate flux research reactor have also been involved in this technique, such as India, Malaysia and Indonesia. The Siwabessy Multipurpose Reactor in Serpong, Indonesia that also produces thermal neutron has contributed to the research and development in the Asia Pacific Region. However, the international joint research among those countries plays an important role on optimizing the results.

  20. Inter-crystal scatter identification for a depth-sensitive detector using support vector machine for small animal positron emission tomography

    Yoshida, Eiji; Kitamura, Keishi; Kimura, Yuichi; Nishikido, Fumihiko; Shibuya, Kengo; Yamaya, Taiga; Murayama, Hideo

    2007-01-01

    In a conventional positron emission tomography (PET) detector, detected events are projected onto a 2D position histogram by an Anger calculation for crystal identification. However, the measured histogram is affected by inter-crystal scatterings (ICS) which occur in the entire detector. Peaks which are projected for each crystal in the histogram are blurred, and this causes ICS mispositioning. A depth-of-interaction (DOI) detector has been developed for the small animal PET scanner jPET-RD. This DOI detector uses 32x32 crystals with four layers and a 256-channel multi-anode flat panel photomultiplier tube (FP-PMT) which was developed by Hamamatsu Photonics K.K. Each crystal element is 1.45x1.45x4.5 mm 3 . The FP-PMT has a large detective area (49x49 mm 2 ) and a small anode pitch (3.04 mm). Therefore, the FP-PMT can extensively trace the behavior of incident γ rays in the crystals including ICS event. We, therefore, propose a novel method for ICS estimation using a statistical pattern recognition algorithm based on a support vector machine (SVM). In this study, we applied the SVM for discriminating photoelectric events from ICS events generated from multiple-anode outputs. The SVM was trained by uniform irradiation events generated from a detector simulator using a Monte Carlo calculation. The success rate for ICS event identification is about 78% for non-training data. The SVM can achieve a true subtraction of ICS events from measured events, and it is also useful for random correction in PET

  1. Inter-crystal scatter identification for a depth-sensitive detector using support vector machine for small animal positron emission tomography

    Yoshida, Eiji [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)]. E-mail: rush@nirs.go.jp; Kitamura, Keishi [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Kimura, Yuichi [Tokyo Metropolitan Institute of Gerontology, Nakamachi 1-1 Itabashi-ku, Tokyo 173-0022 (Japan); Nishikido, Fumihiko [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Shibuya, Kengo [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Yamaya, Taiga [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Murayama, Hideo [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2007-02-01

    In a conventional positron emission tomography (PET) detector, detected events are projected onto a 2D position histogram by an Anger calculation for crystal identification. However, the measured histogram is affected by inter-crystal scatterings (ICS) which occur in the entire detector. Peaks which are projected for each crystal in the histogram are blurred, and this causes ICS mispositioning. A depth-of-interaction (DOI) detector has been developed for the small animal PET scanner jPET-RD. This DOI detector uses 32x32 crystals with four layers and a 256-channel multi-anode flat panel photomultiplier tube (FP-PMT) which was developed by Hamamatsu Photonics K.K. Each crystal element is 1.45x1.45x4.5 mm{sup 3}. The FP-PMT has a large detective area (49x49 mm{sup 2}) and a small anode pitch (3.04 mm). Therefore, the FP-PMT can extensively trace the behavior of incident {gamma} rays in the crystals including ICS event. We, therefore, propose a novel method for ICS estimation using a statistical pattern recognition algorithm based on a support vector machine (SVM). In this study, we applied the SVM for discriminating photoelectric events from ICS events generated from multiple-anode outputs. The SVM was trained by uniform irradiation events generated from a detector simulator using a Monte Carlo calculation. The success rate for ICS event identification is about 78% for non-training data. The SVM can achieve a true subtraction of ICS events from measured events, and it is also useful for random correction in PET.

  2. Depth Dose Measurement using a Scintillating Fiber Optic Dosimeter for Proton Therapy Beam of the Passive-Scattering Mode Having Range Modulator Wheel

    Hwang, Ui-Jung; Shin, Dongho; Lee, Se Byeong; Lim, Young Kyung; Jeong, Jong Hwi; Kim, Hak Soo; Kim, Ki Hwan

    2018-05-01

    To apply a scintillating fiber dosimetry system to measure the range of a proton therapy beam, a new method was proposed to correct for the quenching effect on measuring an spread out Bragg peak (SOBP) proton beam whose range is modulated by a range modulator wheel. The scintillating fiber dosimetry system was composed of a plastic scintillating fiber (BCF-12), optical fiber (SH 2001), photo multiplier tube (H7546), and data acquisition system (PXI6221 and SCC68). The proton beam was generated by a cyclotron (Proteus-235) in the National Cancer Center in Korea. It operated in the double-scattering mode and the spread out of the Bragg peak was achieved by a spinning range modulation wheel. Bragg peak beams and SOBP beams of various ranges were measured, corrected, and compared to the ion chamber data. For the Bragg peak beam, quenching equation was used to correct the quenching effect. On the proposed process of correcting SOBP beams, the measured data using a scintillating fiber were separated by the Bragg peaks that the SOBP beam contained, and then recomposed again to reconstruct an SOBP after correcting for each Bragg peak. The measured depth-dose curve for the single Bragg peak beam was well corrected by using a simple quenching equation. Correction for SOBP beam was conducted with a newly proposed method. The corrected SOBP signal was in accordance with the results measured with an ion chamber. We propose a new method to correct for the SOBP beam from the quenching effect in a scintillating fiber dosimetry system. This method can be applied to other scintillator dosimetry for radiation beams in which the quenching effect is shown in the scintillator.

  3. Proton-proton elastic scattering excitation functions at intermediate energies: Cross sections and analyzing powers

    Hinterberger, F; Altmeier, M; Bauer, F; Bisplinghoff, J; Büsser, K; Busch, M; Colberg, T; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jonas, E; Krause, H; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuk, T; Meinerzhagen, A; Naehle, O; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Trelle, H J; Weise, E; Wellinghausen, A; Woller, K; Ziegler, R

    2000-01-01

    The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH sub 2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power A sub N and the polarization correlation parameters A sub N sub N , A sub S sub S and A sub S sub L are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent d sigma/d OMEGA and A sub N data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.

  4. Interfacial electron and phonon scattering processes in high-powered nanoscale applications.

    Hopkins, Patrick E.

    2011-10-01

    The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.

  5. Analyzing powers in π+p elastic scattering at intermediate energies

    Mokhtari, A.; Briscoe, W.J.; Eichon, A.D.

    1985-01-01

    The analyzing power, A/sub N/, has been measured for π + p elastic scattering at p/sub π/ = 471, 547, 625, and 687 MeV/c on a transversely polarized target. The results are compared with three recent partial-wave analyses for the isospin (3/2) channel. The agreement with our data for all three analyses is good at 471 MeV/c and reasonable at 547 and 625 MeV/c. At 687 MeV/c two of the analyses show a sharp maximum near costheta = -0.4 which is not seen in the data. There is no indication in our data of the existence of new, narrow Δ resonances

  6. Analyzing power for π-p elastic scattering in the energy region of the Roper resonance

    Mokhtari, A.; Briscoe, W.J.; Eichon, A.D.; Fitzgerald, D.H.; Kim, G.J.; Nefkens, B.M.K.; Wightman, J.A.; Sadler, M.E.

    1986-01-01

    High-precision measurements of the analyzing power A/sub N/ in π - p elastic scattering at p/sub π/ = 471--687 MeV/c are presented and compared with the results of recent πN partial-wave analyses (PWA's) by the Karlsruhe-Helsinki, CMU-LBL, and VPI groups. While agreeing with the main features of the measured angular dependence of A/sub N/, the three PWA's yield larger values than the measurements at forward angles at p/sub π/ = 471, 547, and 625 MeV/c. At 687 MeV/c the PWA's do not agree with the data at far backward angles. We estimate the effect of our data on the phase shifts in this energy region, which includes the Roper resonance

  7. Magnetic penetration depth of YBa2Cu3O(7-delta) thin films determined by the power transmission method

    Heinen, Vernon O.; Miranda, Felix A.; Bhasin, Kul B.

    1992-01-01

    A power transmission measurement technique was used to determine the magnetic penetration depth (lambda) of YBa2Cu3O(7-delta) superconducting thin films on LaAlO3 within the 26.5 to 40.0 GHz frequency range, and at temperatures from 20 to 300 K. Values of lambda ranging from 1100 to 2500 A were obtained at low temperatures. The anisotropy of lambda was determined from measurements of c-axis and a-axis oriented films. An estimate of the intrinsic value of lambda of 90 +/- 30 nm was obtained from the dependence of lambda on film thickness. The advantage of this technique is that it allows lambda to be determined nondestructively.

  8. QCD and power corrections to sum rules in deep-inelastic lepton-nucleon scattering

    Ravindran, V.; Neerven, W.L. van

    2001-01-01

    In this paper we study QCD and power corrections to sum rules which show up in deep-inelastic lepton-hadron scattering. Furthermore we will make a distinction between fundamental sum rules which can be derived from quantum field theory and those which are of a phenomenological origin. Using current algebra techniques the fundamental sum rules can be expressed into expectation values of (partially) conserved (axial-)vector currents sandwiched between hadronic states. These expectation values yield the quantum numbers of the corresponding hadron which are determined by the underlying flavour group SU(n) F . In this case one can show that there exist an intimate relation between the appearance of power and QCD corrections. The above features do not hold for phenomenological sum rules, hereafter called non-fundamental. They have no foundation in quantum field theory and they mostly depend on certain assumptions made for the structure functions like super-convergence relations or the parton model. Therefore only the fundamental sum rules provide us with a stringent test of QCD

  9. Thomson Scattering

    Donne, A. J. H.

    1994-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is

  10. Tensor analyzing power in backward pd elastic scattering and its connection to pp → πd at intermediate energies

    Nakamura, A.; Satta, L.

    1985-03-01

    The tensor analyzing power for pd backward elastic scattering is calculated in the energy range 150 <= Tsub(p) <= 800 MeV. Two main contributions are considered: the one nucleon exchange and the so called triangle graph, including pp → πd as a subprocess. The pd backward elastic cross section and tensor analyzing power are fairly well reproduced by the model. (author)

  11. Self-consistent approach to the solution of the light transfer problem for irradiances in marine waters with arbitrary turbidity, depth, and surface illumination. I. Case of absorption and elastic scattering.

    Haltrin, V I

    1998-06-20

    A self-consistent variant of the two-flow approximation that takes into account strong anisotropy of light scattering in seawater of finite depth and arbitrary turbidity is presented. To achieve an appropriate accuracy, this approach uses experimental dependencies between downward and total mean cosines. It calculates irradiances, diffuse attenuation coefficients, and diffuse reflectances in waters with arbitrary values of scattering, backscattering, and attenuation coefficients. It also takes into account arbitrary conditions of illumination and reflection from the bottom with the Lambertian albedo. This theory can be used for the calculation of apparent optical properties in both open and coastal oceanic waters, lakes, and rivers. It can also be applied to other types of absorbing and scattering medium such as paints, photographic emulsions, and biological tissues.

  12. Beta-ray depth dose in tissue equivalent material due to gaseous radioactive effluents from nuclear power plants

    Schadt, W.W.

    1978-01-01

    The magnitude of the absorbed dose to skin from beta particles emitted by the radionuclides in gaseous effluents from boiling water nuclear power reactors is investigated in this dissertation. Using the radionuclide release patterns of F. Brutschy and the beta dosimetry methods of M. Berger, an equation is derived which gives the dose rate in rads per day when the total radionuclide concentration is one microcurie per gram of air. The coefficients in the equation are presented for a wide range of reactor gas hold-up times (48 minutes to 6 days) and plume environmental transit time (0.5 to 60 minutes). The beta dose rates at the skin surface are found to range from 3.9 to 26.7 rads per day. An upper limit of the relative standard deviation in the dose rate is estimated to be 30 percent. The techniques used to develop the equation are applied to data from the Millstone Nuclear Power Station obtained during the summer of 1972. The beta dose at a site 1.7 miles from the reactor is determined to have been 675 millirads per year at the skin surface and 476 millirads per year at a depth of 200 micrometers. At a site 5.1 miles from the reactor these dose rates were 138 and 100 millirads per year respectively

  13. Frictional power dissipation on plate boundary faults: Implications for coseismic slip propagation at near-surface depths

    Ikari, M.; Kopf, A.; Saffer, D. M.; Marone, C.; Carpenter, B. M.

    2013-12-01

    The general lack of earthquake slip at shallow (behavior associated with laboratory observations that disaggregated fault gouges commonly strengthen with increasing sliding velocity (i.e. velocity-strengthening friction), which precludes strain energy release via stress drops. However, the 2011 Tohoku earthquake demonstrated that coseismic rupture and slip can sometimes propagate to the surface in subduction zones. Surface rupture is also known to occur on other plate boundary faults, such as the Alpine Fault in New Zealand. It is uncertain how the extent of coseismic slip propagation from depth is controlled by the frictional properties of the near-surface portion of major faults. In these situations, it is common for slip to localize within gouge having a significant component of clay minerals, which laboratory experiments have shown are generally weak and velocity strengthening. However, low overall fault strength should facilitate coseismic slip, while velocity-strengthening behavior would resist it. In order to investigate how frictional properties may control the extent of coseismic slip propagation at shallow depths, we compare frictional strength and velocity-dependence measurements using samples from three subduction zones known for hosting large magnitude earthquakes. We focus on samples recovered during scientific drilling projects from the Nankai Trough, Japan, the Japan Trench in the region of the Tohoku earthquake, and the Middle America Trench, offshore Costa Rica; however we also include comparisons with other major fault zones sampled by drilling. In order to incorporate the combined effects of overall frictional strength and friction velocity-dependence, we estimate shear strength as a function of slip velocity (at constant effective normal stress), and integrate this function to obtain the areal power density, or frictional power dissipation capability of the fault zone. We also explore the role of absolute shear stress level before arrival of a

  14. The Relationship between Anterior Chamber Depth, Axial Length and Intraocular Lens Power among Candidates for Cataract Surgery.

    Sedaghat, Mohammad Reza; Azimi, Ali; Arasteh, Peyman; Tehranian, Naghmeh; Bamdad, Shahram

    2016-10-01

    Basic anatomical parameters in ophthalmology are variable in different countries according to ethnic groups, genetics and some environmental factors. The aim of this study was to determine the relationship between axial length (AL), anterior chamber depth (ACD) and intraocular lens power (IOL) in a referral center from eastern Iran among patients who had cataract surgery, in comparison to studies from other regions of the world. In a cross-sectional retrospective study from 2011 to 2013, the records of 698 cataract patients referring to Khatam Al Anbia general hospital in Mashhad, Iran were evaluated. We divided patients, based on their AL and ACD, into three separate groups and compared their results. The SPSS software was used for data analysis. The Chi-Square test and the Independent-samples t-test were used to compare qualitative and quantitative data between two groups, respectively. The Kendall and the Pearson product-moment correlation tests were used to assess the relationship between AL and ACD. The linear Regression model was used to obtain a mathematical model to estimate ACD, using AL, age and sex. Among individuals who had normal AL (between 22-24.5mm), there was a positive correlation between AL and ACD (p24.5mm), no significant correlation was detected. We also found that older people have shorter AL (p=0.001 and r=-0.287). Men have an average longer AL (23.7±2.4mm vs. 22.9±2.1mm; pworld and although some anatomical variations may exist regarding ophthalmic anatomy, factors like race and geographical area have little effect on the relationship between ACD, AL and IOL power calculation, furthermore our results support the use of third and fourth generation formulas for IOL power calculation.

  15. Analytical study of nonlinear phase shift through stimulated Brillouin scattering in single mode fiber with the pump power recycling technique

    Al-Asadi, H A; Mahdi, M A; Bakar, A A A; Adikan, F R Mahamd

    2011-01-01

    We present a theoretical study of nonlinear phase shift through stimulated Brillouin scattering in single mode optical fiber. Analytical expressions describing the nonlinear phase shift for the pump and Stokes waves in the pump power recycling technique have been derived. The dependence of the nonlinear phase shift on the optical fiber length, the reflectivity of the optical mirror and the frequency detuning coefficient have been analyzed for different input pump power values. We found that with the recycling pump technique, the nonlinear phase shift due to stimulated Brillouin scattering reduced to less than 0.1 rad for 5 km optical fiber length and 0.65 reflectivity of the optical mirror, respectively, at an input pump power equal to 30 mW

  16. Self-tuning wireless power transmission scheme based on on-line scattering parameters measurement and two-side power matching.

    Luo, Yanting; Yang, Yongmin; Chen, Zhongsheng

    2014-04-10

    Sub-resonances often happen in wireless power transmission (WPT) systems using coupled magnetic resonances (CMR) due to environmental changes, coil movements or component degradations, which is a serious challenge for high efficiency power transmission. Thus self-tuning is very significant to keep WPT systems following strongly magnetic resonant conditions in practice. Traditional coupled-mode ways is difficult to solve this problem. In this paper a two-port power wave model is presented, where power matching and the overall systemic power transmission efficiency are firstly defined by scattering (S) parameters. Then we propose a novel self-tuning scheme based on on-line S parameters measurements and two-side power matching. Experimental results testify the feasibility of the proposed method. These findings suggest that the proposed method is much potential to develop strongly self-adaptive WPT systems with CMR.

  17. SU-E-T-499: Comparison of Measured Tissue Phantom Ratios (TPR) Against Calculated From Percent Depth Doses (PDD) with and Without Peak Scatter Factor (PSF) in 6MV Open Beam

    Narayanasamy, G; Cruz, W; Gutierrez, Alonso; Mavroidis, Panayiotis; Papanikolaou, N; Stathakis, S; Breton, C

    2014-01-01

    Purpose: To examine the accuracy of measured tissue phantom ratios (TPR) values with TPR calculated from percentage depth dose (PDD) with and without peak scatter fraction (PSF) correction. Methods: For 6MV open beam, TPR and PDD values were measured using PTW Semiflex (31010) ionization field and reference chambers (0.125cc volume) in a PTW MP3-M water tank. PDD curves were measured at SSD of 100cm for 7 square fields from 3cm to 30cm. The TPR values were measured up to 22cm depth for the same fields by continuous water draining method with ionization chamber static at 100cm from source. A comparison study was performed between the (a) measured TPR, (b) TPR calculated from PDD without PSF, (c) TPR calculated from PDD with PSF and (d) clinical TPR from RadCalc (ver 6.2, Sun Nuclear Corp). Results: There is a field size, depth dependence on TPR values. For 10cmx10cm, the differences in surface dose (DDs), dose at 10cm depth (DD10) <0.5%; differences in dmax (Ddmax) <2mm for the 4 methods. The corresponding values for 30cmx30cm are DDs, DD10 <0.2% and Ddmax<3mm. Even though for 3cmx3cm field, DDs and DD10 <1% and Ddmax<1mm, the calculated TPR values with and without PSF correction differed by 2% at >20cm depth. In all field sizes at depths>28cm, (d) clinical TPR values are larger than that from (b) and (c) by >3%. Conclusion: Measured TPR in method (a) differ from calculated TPR in methods (b) and (c) to within 1% for depths < 28cm in all 7 fields in open 6MV beam. The dmax values are within 3mm of each other. The largest deviation of >3% was observed in clinical TPR values in method (d) for all fields at depths < 28cm

  18. Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering

    Freltoft, T.; Kjems, Jørgen; Sinha, S. K.

    1986-01-01

    Small-angle neutron scattering from normal, compressed, and water-suspended powders of aggregates of fine silica particles has been studied. The samples possessed average densities ranging from 0.008 to 0.45 g/cm3. Assuming power-law correlations between particles and a finite correlation length ξ......, the authors derive the scattering function S(q) from specific models for particle-particle correlation in these systems. S(q) was found to provide a satisfactory fit to the data for all samples studied. The fractal dimension df corresponding to the power-law correlation was 2.61±0.1 for all dry samples, and 2...

  19. Measurement of the analyzing power for pion-proton elastic scattering between 471 and 687 MeV/c

    Mokhtari-Amirmajdi, A.

    1984-01-01

    The analyzing power, A/sub N/, has been measured for π/sup +/-/p → π/sup +/-/p at 471, 547, 625, and 687 MeV/c in an angular range corresponding to -0.9 less than or equal to cos(theta)/sub cm/ less than or equal to 0.8. A polarized proton target with polarization axis normal to the scattering plane was used. The scattered pion and recoil proton were detected in coincidence, using a magnetic spectrometer and a wire chamber/scintillator array, except in cases where one of the particles was kinematically inaccessible. Statistical uncertainties in the data are as low as 0.02; systematic uncertainties are estimated to be less than 5%. The π - p data are characterized by large values of analyzing power, and rapid variations in the angular distribution with incident momentum. The measurements are compared with the results of existing partical wave analysis

  20. Complete Set of Deuteron Analyzing Powers for dp Elastic Scattering at 250 MeV/nucleon and Three Nucleon Forces

    Shimizu Y.

    2010-04-01

    Full Text Available Measurements of a complete set of deuteron analyzing powers (iT11, T20, T21, T22 for elastic deuteron–proton scattering at 250 MeV/nucleon have been performed with polarized deuteron beams at RIKEN RI Beam Factory. The obtained data are compared with the Faddeev calculations based on the modern nucleon–nucleon forces together with the Tucson-Melbourne’99, and UrbanaIX three nucleon forces.

  1. An Envelope Correlation Formula for (N,N MIMO Antenna Arrays Using Input Scattering Parameters, and Including Power Losses

    Y. A. S. Dama

    2011-01-01

    Full Text Available The scattering parameter formulation for the envelope correlation in an (N,N MIMO antenna array has been modified to take the intrinsic antenna power losses into account. This method of calculation provides a major simplification over the use of antenna radiation field patterns. Its accuracy is illustrated in three examples, which also show that the locations of the correlation minima are sensitive to the intrinsic losses.

  2. Comments on "On the Power Absorbed and Scattered by an Antenna"

    Schejbal, V.; Fišer, Ondřej; Ondráček, O.

    2011-01-01

    Roč. 53, č. 2 (2011), s. 172-174 ISSN 1045-9243 Institutional research plan: CEZ:AV0Z30420517 Keywords : Antennas * antenna theory * receiving antennas * electromagnetic scattering * antenna scattering Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.968, year: 2011 http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F74%2F5949312%2F05949355.pdf%3Ftp%3D%26arnumber%3D5949355%26punumber%3D74&authDecision=-203

  3. Accurate stopping power determination of 15N ions for hydrogen depth profiling by a combination of ion beams and synchrotron radiation

    Zier, M.; Reinholz, U.; Riesemeier, H.; Radtke, M.; Munnik, F.

    2012-02-01

    Hydrogen analysis is of particular importance in thin film technology and it is often necessary to obtain a depth profile. The method with the best depth resolution is NRA using the 6385 keV resonance of the 1H( 15N,αγ) 12C nuclear reaction. The correct quantification of the depth and concentration scales in the measured hydrogen profiles relies on accurate stopping power values. We present a method to deduce these values from a combination of two techniques: NRA and X-ray reflectometry (XRR). This method is applied to the determination of the stopping power of ˜6.4 MeV 15N ions in H-containing amorphous Si-layers (a-Si:H). Density-independent stopping powers at different H concentrations are determined by combining the results from NRA and XRR with an overall uncertainty of 3.3%, showing good agreement with SRIM values. This work shows exemplary the methodology for future evaluation of stopping powers for quality assurance in NRA.

  4. Determination of Penetration Depth of 800 keV Electron Beam into Coal Fired Power Plant Flue Gas at in a Electron Beam Machine Flue Gas Treatment System

    Rany Saptaaji

    2008-01-01

    Penetration depth calculation of 800 keV electron beam into flue gas from coal fired power plan is presented in this paper. Electron Beam for Flue Gas Treatment (EB-FGT) is a dry treatment process using electron beam to simultaneously reduce SO 2 and NO x . Flue gas irradiation produces active radicals and then reaction with SO 2 and NO x produces nitrate acid and sulphate acid. Process vessel is needed in this process as reaction container of flue gas with electron beam. The calculation of electron beam penetration depth into flue gas is used to determine the process vessel dimension. The result of calculation of optimum penetration depth of 800 keV electron beam into flue gas is 188.67 cm. (author)

  5. Ultrasonic scalpel causes greater depth of soft tissue necrosis compared to monopolar electrocautery at standard power level settings in a pig model

    2012-01-01

    Background Ultrasonic scalpel (UC) and monopolar electrocautery (ME) are common tools for soft tissue dissection. However, morphological data on the related tissue alteration are discordant. We developed an automatic device for standardized sample excision and compared quality and depth of morphological changes caused by UC and ME in a pig model. Methods 100 tissue samples (5 × 3 cm) of the abdominal wall were excised in 16 pigs. Excisions were randomly performed manually or by using the self-constructed automatic device at standard power levels (60 W cutting in ME, level 5 in UC) for abdominal surgery. Quality of tissue alteration and depth of coagulation necrosis were examined histopathologically. Device (UC vs. ME) and mode (manually vs. automatic) effects were studied by two-way analysis of variance at a significance level of 5%. Results At the investigated power level settings UC and ME induced qualitatively similar coagulation necroses. Mean depth of necrosis was 450.4 ± 457.8 μm for manual UC and 553.5 ± 326.9 μm for automatic UC versus 149.0 ± 74.3 μm for manual ME and 257.6 ± 119.4 μm for automatic ME. Coagulation necrosis was significantly deeper (p < 0.01) when UC was used compared to ME. The mode of excision (manual versus automatic) did not influence the depth of necrosis (p = 0.85). There was no significant interaction between dissection tool and mode of excision (p = 0.93). Conclusions Thermal injury caused by UC and ME results in qualitatively similar coagulation necrosis. The depth of necrosis is significantly greater in UC compared to ME at investigated standard power levels. PMID:22361346

  6. The relation between chondromalacia patella and meniscal tear and the sulcus angle/ trochlear depth ratio as a powerful predictor.

    Resorlu, Hatice; Zateri, Coskun; Nusran, Gurdal; Goksel, Ferdi; Aylanc, Nilufer

    2017-01-01

    To investigate the relation between chondromalacia patella and the sulcus angle/trochlear depth ratio as a marker of trochlear morphology. In addition, we also planned to show the relationship between meniscus damage, subcutaneous adipose tissue thickness as a marker of obesity, patellar tilt angle and chondromalacia patella. Patients with trauma, rheumatologic disease, a history of knee surgery and patellar variations such as patella alba and patella baja were excluded. Magnetic resonance images of the knees of 200 patients were evaluated. Trochlear morphology from standardized levels, patellar tilt angle, lateral/medial facet ratio, subcutaneous adipose tissue thickness from 3 locations and meniscus injury were assessed by two specialist radiologists. Retropatellar cartilage was normal in 108 patients (54%) at radiological evaluation, while chondromalacia patella was determined in 92 (46%) cases. Trochlear sulcus angle and prepatellar subcutaneous adipose tissue thickness were significantly high in patients with chondromalacia patella, while trochlear depth and lateral patellar tilt angle were low. The trochlear sulcus angle/trochlear depth ratio was also high in chondromalacia patella and was identified as an independent risk factor at regression analysis. Additionally, medial meniscal tear was observed in 35 patients (38%) in the chondromalacia patella group and in 27 patients (25%) in the normal group, the difference being statistically significant (P = 0.033). An increased trochlear sulcus angle/trochlear depth ratio is a significant predictor of chondromalacia patella. Medial meniscus injury is more prevalent in patients with chondromalacia patella in association with impairment in knee biomechanics and the degenerative process.

  7. Spatial observations by the CUTLASS coherent scatter radar of ionospheric modification by high power radio waves

    G. E. Bond

    1997-11-01

    Full Text Available Results are presented from an experimental campaign in April 1996, in which the new CUTLASS (Co-operative UK twin-located Auroral Sounding System coherent scatter radar was employed to observe artificial field aligned irregularities (FAI generated by the EISCAT (European Incoherent SCATter heating facility at Tromsø, Norway. The distribution of backscatter intensity from within the heated region has been investigated both in azimuth and range with the Finland component of CUTLASS, and the first observations of artificial irregularities by the Iceland radar are also presented. The heated region has been measured to extend over a horizontal distance of 170±50km, which by comparison with a model of the heater beam pattern corresponds to a threshold electric field for FAI of between 0.1 and 0.01V/m. Differences between field-aligned and vertical propagation heating are also presented.

  8. Q-Space Scattering Power Laws and the Interior Fields of Particles

    2016-02-12

    valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Kansas State University 2 Fairchild Hall 1601 Vattier Street Manhattan , KS...papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing. List the papers, including...scattered field were made during the project period. Three papers were published [1-3], two are accepted for publication [4,5], and two are being

  9. Analyzing power measurements for n-p scattering between 13.5 and 16.9 MeV

    Tornow, W.; Lisowski, P.W.; Byrd, R.C.; Walter, R.L.

    1980-01-01

    The analyzing power A%sub(Y)(theta) for neutron-proton scattering has been measured for theta = 90 0 (c.m.) from 13.5 to 16.9 MeV and from theta = 50 0 to 145 0 (c.m.) at 16.9 MeV. Extensive Monte Carlo calculations have been made to correct for multiple scattering effects. Overall uncertainties are about +- 0.002. All the A%sub(Y)(theta) data, but primarily those at 16.9 MeV, disagree with predictions based on the phase-shift sets which have been derived previously by way of global analyses of nucleon-nucleon scattering data. Data for the product delta(theta)A%sub(Y)(theta) have been fitted with an expansion of the form (sin theta)(a 0 + a 1 cos theta + a 2 cos 2 theta). For the first time the need for a non-zero a 2 has been illustrated for energies below 20 MeV. This parameter is shown to be related to the nucleon-nucleon F-state spin-orbit phase parameter. In addition, the P, D, and F spin-orbit phase parameter values derived from the present data differ significantly from the ones based on the Yale-IV and Livermore-X global analyses. The derived D and F spin-orbit phase parameters also differ from those obtained in the recent analysis of nucleon-nucleon scattering data by Arndt et al. (orig.)

  10. Ultrasonic scalpel causes greater depth of soft tissue necrosis compared to monopolar electrocautery at standard power level settings in a pig model.

    Homayounfar, Kia; Meis, Johanna; Jung, Klaus; Klosterhalfen, Bernd; Sprenger, Thilo; Conradi, Lena-Christin; Langer, Claus; Becker, Heinz

    2012-02-23

    Ultrasonic scalpel (UC) and monopolar electrocautery (ME) are common tools for soft tissue dissection. However, morphological data on the related tissue alteration are discordant. We developed an automatic device for standardized sample excision and compared quality and depth of morphological changes caused by UC and ME in a pig model. 100 tissue samples (5 × 3 cm) of the abdominal wall were excised in 16 pigs. Excisions were randomly performed manually or by using the self-constructed automatic device at standard power levels (60 W cutting in ME, level 5 in UC) for abdominal surgery. Quality of tissue alteration and depth of coagulation necrosis were examined histopathologically. Device (UC vs. ME) and mode (manually vs. automatic) effects were studied by two-way analysis of variance at a significance level of 5%. At the investigated power level settings UC and ME induced qualitatively similar coagulation necroses. Mean depth of necrosis was 450.4 ± 457.8 μm for manual UC and 553.5 ± 326.9 μm for automatic UC versus 149.0 ± 74.3 μm for manual ME and 257.6 ± 119.4 μm for automatic ME. Coagulation necrosis was significantly deeper (p power levels.

  11. Analyzing powers of inelastic dp-scattering in the energy region of delta and roper resonances excitation

    Malinina, L.V.; Alkhazov, G.D.; Augustyniak, W.

    2001-01-01

    A study of inelastic scattering of polarized 3.73 GeV/c deuterons on protons in the energy region of the Roper N* (1440) and the Δ(1232) resonances excitation has been performed in an exclusive experiment at LNS (Laboratoire National SATURNE, Saclay, France) using the SPES4-π setup. Tensor and vector analyzing powers of pion production for the reactions d+p→d+n+π + , d+p→d+p+π 0 , d+p→d+N+ππ have been measured as functions of the squared deuteron 4-momentum transfer t, of the effective mass of the subsystems (Nπ), (Nππ) and of the pion emission angle. A strong dependence of these analyzing powers upon the pion emission angle is observed. It is found that A yy values for the considered reaction channels are systematically larger than the known inclusive p(d,d')X world data at the nearest beam energy

  12. Analyzing Powers of Inelastic dp-Scattering in the Energy Region of Delta and Roper Resonances Excitation

    Malinina, L V; Augustyniak, W; Boivin, M; Boyard, J L; Dahl, R; Drews, M; Ellegaard, C; Fahri, L; Gaarde, C; Hennino, T; Jourdain, J C; Kagarlis, M A; Kravtsov, A V; Künne, R A; Larsen, J C; Morsch, P; Mylnikov, V A; Orichtchin, E M; Perdrisat, C F; Piskunov, N M; Prokofiev, A N; Punjabi, V; Radvanyi, P; Ramstein, B; Razmyslovich, B V; Roy-Stephan, M; Sitnik, I M; Skousen, M; Strokovsky, E A; Tkach, I I; Tomasi-Gustafsson, E; Volkov, S S; Zhdanov, A A; Zupranski, P

    2001-01-01

    A study of inelastic scattering of polarized 3.73 GeV/c deuterons on protons in the energy region of the Roper N*(1440) and the {DELTA}(1232) resonances excitation has been performed in an exclusive experiment at LNS (Laboratoire National SATURNE, Saclay, France) using the SPES-{pi} setup.Tensor and vector analyzing powers of pion production for the reactions d + p {\\to} d + n + pi^{+}, d + p {\\to} d + p + pi^{0}, d + p {\\to} d + N + pi pi have been measured as functions of the squared deuteron 4-momentum transfer t, of the effective mass of the subsystems (N pi), (N pi pi) and of the pion emission angle. A strong dependence of these analyzing powers upon the pion emission angle is observed. It is found that A_{yy} values for the considered reaction channels are systematically larger than the known inclusive {p (d, d {\\prime}) X} world data at the nearest beam energy.

  13. NEA’S Plans for Strengthening International Implementation of the Application of Defence in Depth Philosophies in Nuclear Power Countries

    Blundell, N., E-mail: Neil.BLUNDELL@oecd.org [Nuclear Safety Division, OECD NEA, Paris (France)

    2014-10-15

    Full text: Following the Fukushima Daiichi Accident the OECD NEA established and delivered three tasks related to Defence in Depth for its member states. These consisted of: • A review of member state and NEA activities directly related to the accident by the Fukushima Senior Task Group set up by the OECD NEA Committee for Nuclear Regulatory Activities (CNRA). • An international expert review of the NEA’s wide ranging joint nuclear safety research portfolio. • A joint workshop on ‘Challenges and Enhancements to Defence in Depth (DiD) in light of the Fukushima Daiichi Accident’ on 5th June 2013 by both the OECD NEA Committee for Nuclear Regulatory Activities (CNRA) and Committee for the Safety of Nuclear Installations (CSNI). These tasks encompassed firstly, how the NEA member states understand the concept of DiD and its value within Nuclear Safety. Secondly, how DiD is implemented at present, focussing on how it is implemented to deal with external events, and finally what future areas the NEA members considered NEA as a whole should be carrying forward to enhance the understanding and implementation of Defence-in-Depth. Such areas included: • Exploring what the DiD safety goal concept ”practically eliminate large and early offsite releases” means and how is it implemented. • Independence and margins in the implementation of DiD. • Human interventions considering catastrophic external events effects on emergency response and recovery. • Detailed identification of additional safety research after Fukushima. This presentation provides a summary of those tasks and NEA’s international programme of activities to bring its members together in those areas they highlighted to deliver enhancement in the understanding and implementation of defence in depth. (author)

  14. Phenomenological scattering-rate model for the simulation of the current density and emission power in mid-infrared quantum cascade lasers

    Kurlov, S. S. [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev-03028 (Ukraine); Flores, Y. V.; Elagin, M.; Semtsiv, M. P.; Masselink, W. T. [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Schrottke, L.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin (Germany); Tarasov, G. G. [Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev-03028 (Ukraine)

    2016-04-07

    A phenomenological scattering-rate model introduced for terahertz quantum cascade lasers (QCLs) [Schrottke et al., Semicond. Sci. Technol. 25, 045025 (2010)] is extended to mid-infrared (MIR) QCLs by including the energy dependence of the intersubband scattering rates for energies higher than the longitudinal optical phonon energy. This energy dependence is obtained from a phenomenological fit of the intersubband scattering rates based on published lifetimes of a number of MIR QCLs. In our approach, the total intersubband scattering rate is written as the product of the exchange integral for the squared moduli of the envelope functions and a phenomenological factor that depends only on the transition energy. Using the model to calculate scattering rates and imposing periodical boundary conditions on the current density, we find a good agreement with low-temperature data for current-voltage, power-current, and energy-photon flux characteristics for a QCL emitting at 5.2 μm.

  15. Probing the SEB Sensitive Depth of a Power MOSFET Using a Two-Photon Absorption Laser Method

    Lauenstein, Jean-Marie; Liu, Sandra; Titus, Jeffrey L.; McMorrow, Dale; Casey, Megan C.; Buchner, Stephen P.; Warner, Jeffrey; Phan, Anthony M.; Topper, Alyson D.; Kim, Hak S.; hide

    2011-01-01

    This paper presents two-photon absorption test results on an engineering single-event burnout- (SEB-) sensitive power MOSFET to verify that the energy deposition/charge ionization in the highly-doped substrate does not contribute to SEB. It is shown that for a vertical power MOSFET, the SEB sensitive volume is the lightly doped epitaxial layer; the most sensitive region is under the polysllicon gate.

  16. Effects of nuclear elastic scattering and modifications of ion-electron equilibration power on advanced-fuel burns

    Galambos, J.D.

    1983-01-01

    The effects of Nuclear Elastic Scattering (NES) of fusion products and modifications of the ion-electron equilibration power on D-T and D-based advanced-fuel fusion plasmas are presented here. The processes causing the modifications to the equilibration power included here are: (1) depletion of low-energy electrons by Coulomb collisions with the ions; and (2) magnetic field effects on the energy transfer between the ions and the electrons. Both NES and the equilibration modifications affect the flow of power to the plasma ions, which is an important factor in the analysis of advanced-fuels. A Hot Ion Mode (HIM) analysis was used to investigate the changes in the minimum ignition requirements for Cat-D and D- 3 He plasmas, due to the changes in the allowable T/sub i/T/sub e/ for ignition from NES and equilibration modifications. Both of these effects have the strongest influence on the ignition requirements for high temperature (>50 keV), low beta (<15%) plasmas, where the cyclotron radiation power loss from the electrons (which is particularly sensitive to changes in the electron temperature) is large

  17. Dynamic light scattering for the characterization and counting of extracellular vesicles: a powerful noninvasive tool

    Palmieri, Valentina; Lucchetti, Donatella; Gatto, Ilaria; Maiorana, Alessandro; Marcantoni, Margherita; Maulucci, Giuseppe; Papi, Massimiliano; Pola, Roberto; De Spirito, Marco; Sgambato, Alessandro

    2014-09-01

    Extracellular vesicles (EVs) are cell-to-cell shuttles that have recently drawn interest both as drug delivery platforms and disease biomarkers. Despite the increasingly recognized relevance of these vesicles, their detection, and characterization still have several technical drawbacks. In this paper, we accurately assess the size distribution and concentration of EVs by using a high-throughput non-perturbative technique such as Dynamic Light Scattering (DLS). The vesicle radii distribution, as further confirmed by Atomic Force Microscopy experiments, ranges from 10 to 80 nm and appears very asymmetric towards larger radii with a main peak at roughly 30 nm. By combining DLS and Bradford assay, we also demonstrate the feasibility of recovering the concentration and its distribution of proteins contained inside vesicles. The sensitivity of our approach allows to detect protein concentrations as low as 0.01 mg/ml.

  18. Depth of origin and angular spectrum of sputtered atoms

    Vicanek, M.; Jimenez Rodriguez, J.J.; Sigmund, P.

    1989-01-01

    A theoretical analysis is presented of the depth of origin of atoms sputtered from a random target. The physical model aims at high energy sputtering under linear cascade conditions and assumes a dilute source of recoil atoms. The initial distribution of the recoils is assumed isotropic, and their energy distribution is E -2 like without an upper or lower cutoff. The scattering medium is either infinite or bounded by a plane surface. Atoms scatter according to the m=0 power cross section. Electronic stopping is ignored. The sputtered flux, differential in depth of origin, ejection energy and ejection angle has been evaluated by Monte Carlo simulation and by five distinct methods of solution of the linear Boltzmann equation reaching from continuous slowing down neglecting angular scattering to the P 3 approximation and a Gram-Charlier expansion going over spatial moments. The continuous slowing down approximation used in previous work leads to results that are identical to those found from a scheme that only ignores angular scattering but allows for energy loss straggling. Moreover, these predictions match more closely with the Monte Carlo results than any of the approximate analytical schemes that take account of angular scattering. The results confirm the common assertion that the depth of origin of sputtered atoms is determined mainly by the stopping of low energy recoil atoms. The effect of angular scattering turns out to be astonishingly small. The distributions in depth of origin, energy, and angle do not depend significantly on whether the scattering medium is a halfspace or an infinite medium with a reference plane. The angular spectrum comes out only very slightly over cosine from the model as it stands, in agreement with previous experience, but comments are made on essential features that are not incorporated in the physical model but might influence the angular spectrum. (orig./WL)

  19. Aeroacoustic power generated by a compact axisymmetric cavity: Prediction of self-sustained osciallation and influence of depth

    Nakiboglu, G.; Manders, H.B.M.; Hirschberg, Abraham

    2012-01-01

    Aeroacoustic power generation due to a self-sustained oscillation by an axisymmetric compact cavity exposed to a low-Mach-number grazing flow is studied both experimentally and numerically. The feedback effect is produced by the velocity fluctuations resulting from a coupling with acoustic standing

  20. In-depth analysis of eight criteria for integrated leakage rate tests for nuclear power plant containment buildings

    Wagner, W.T.; Langan, J.P.; Norris, W.F.; Lurie, D.

    1989-01-01

    A U.S. Nuclear Regulatory Commission (NRC) Small Business Innovation research (SBIR) Contract investigated ten integrated leakage rate test (ILRT) analysis models which have been proposed for evaluation of ILRT data. This contract involved in-depth analysis of two ILRTs with data collected at accelerated rates and 80 conventional ILRTs with data collected at a frequency between 10-15 minutes. All ten methods were applied to all data. The study considered the appropriateness of each method to analyze containment data (air mass versus time), the influence of data collection frequency on ILRT duration, and the influence of collection frequency on each method. The study is described in the paper. Results are presented

  1. Four-Component Scattering Power Decomposition Algorithm with Rotation of Covariance Matrix Using ALOS-PALSAR Polarimetric Data

    Yasuhiro Nakamura

    2012-07-01

    Full Text Available The present study introduces the four-component scattering power decomposition (4-CSPD algorithm with rotation of covariance matrix, and presents an experimental proof of the equivalence between the 4-CSPD algorithms based on rotation of covariance matrix and coherency matrix. From a theoretical point of view, the 4-CSPD algorithms with rotation of the two matrices are identical. Although it seems obvious, no experimental evidence has yet been presented. In this paper, using polarimetric synthetic aperture radar (POLSAR data acquired by Phased Array L-band SAR (PALSAR on board of Advanced Land Observing Satellite (ALOS, an experimental proof is presented to show that both algorithms indeed produce identical results.

  2. Proposal on the measurements of d-p elastic scattering analyzing powers at 0.3-2.0 GeV at internal target station of the Nuclotron

    Uesaka, T.; Ladygin, V.P.; Azhgirej, L.S.

    2005-01-01

    A new high-energy beam polarimeter is proposed for the Nuclotron using Internal Target Station. This polarimeter based on the measurement of the asymmetry for the d-p elastic scattering will allow one to measure both vector and tensor components of the deuteron beam polarization simultaneously. For that purpose the measurement of analyzing powers for the d-p elastic scattering at energies T d = 0.88-2 GeV is proposed. The precise measurements of the deuteron analyzing powers over energy range T d 300-2000 MeV can give an irreplaceable clue on the study of spin-dependence of three-nucleon forces

  3. Analyzing power measurements for neutron-nucleus scattering and the spin-orbit potential

    Walter, R.L.

    1985-01-01

    Analyzing power A/sub y/(theta) and cross section measurements have been obtained from 10 to 17 MeV for 20 isotopes ranging from 6 Li to 208 Pb. These combined data sets provide a unique data base for nuclear model development. The experimental method for the A/sub y/(theta) measurements and comparisons to coupled-channels and spherical optical model calculations are given

  4. Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind

    Woo, R.; Armstrong, J.W.

    1979-01-01

    Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2--215 R/sub S/, and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances > or approx. =20 R/sub S/ the equivalent spacecraft-measured one-dimensional density spectrym V/sub n/e is well modeled by a single power law (f/sup -alpha/) in the frequency range 10 -4 -5 x 10 -2 Hz. The mean spectral index α is 1.65, very close to the Kolmogorov value of 5/3. Under the assumption of constant solar wind speed, V/sub n/e varies as R/sup -3.45/, where R is heliocentric distance. Within 20 R/sub S/, V/sub n/e can still be modeled by a single power law over the frequency range 10 -3 -10 1 Hz, but the spectral index becomes smaller, αapprox.1.1. The flattening of the density spectrum with 20 R/sub S/ is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind

  5. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle

    Shengwei Huang

    2018-01-01

    Full Text Available To maximize the system-level heat integration, three retrofit concepts of waste heat recovery via organic Rankine cycle (ORC, in-depth boiler-turbine integration, and coupling of both are proposed, analyzed and comprehensively compared in terms of thermodynamic and economic performances. For thermodynamic analysis, exergy analysis is employed with grand composite curves illustrated to identify how the systems are fundamentally and quantitatively improved, and to highlight key processes for system improvement. For economic analysis, annual revenue and investment payback period are calculated based on the estimation of capital investment of each component to identify the economic feasibility and competitiveness of each retrofit concept proposed. The results show that the in-depth boiler-turbine integration achieves a better temperature match of heat flows involved for different fluids and multi-stage air preheating, thus a significant improvement of power output (23.99 MW, which is much larger than that of the system with only ORC (6.49 MW. This is mainly due to the limitation of the ultra-low temperature (from 135 to 75 °C heat available from the flue gas for ORC. The thermodynamic improvement is mostly contributed by the reduction of exergy destruction within the boiler subsystem, which is eventually converted to mechanical power; while the exergy destruction within the turbine system is almost not changed for the three concepts. The selection of ORC working fluids is performed to maximize the power output. Due to the low-grade heat source, the cycle with R11 offers the largest additional net power generation but is not significantly better than the other preselected working fluids. Economically, the in-depth boiler-turbine integration is the most economic completive solution with a payback period of only 0.78 year. The ORC concept is less attractive for a sole application due to a long payback time (2.26 years. However, by coupling both

  6. Evolution of coal ash solidification properties with disposal site depth and age, 'Gacko' Thermal power plant case

    Knežević Dinko

    2017-01-01

    Full Text Available Ash with high calcium content is produced by coal combusting in 'Gacko' thermal power plant (Bosnia and Herzegovina. Result of controlled mixture of water and ash is spontaneous ash solidification on disposal site. Speed and solidification efficiency depends on content of calcium-oxide in ash and water: ash mass ratio, which was determined by previous research. Mass ratio that was chosen as the most suitable ratio for industrial usage (roughly was 1:1. Samples of ash of different age were taken after 6.5 years of exploitation and their chemical, physical, mineralogical and geotechnical characteristics were analyzed. Disposed ash was stratified and very heterogeneous. It was shown that great impact on solidification process in practice have climate conditions, proper handling slurry processing, work continuity and disposal site preparation. Great impact of water is noticed which is, because of its water permeability filtrated into lower layers and significantly alters it characteristic.

  7. A 20 Mfps high frame-depth CMOS burst-mode imager with low power in-pixel NMOS-only passive amplifier

    Wu, L.; San Segundo Bello, D.; Coppejans, P.; Craninckx, J.; Wambacq, P.; Borremans, J.

    2017-02-01

    This paper presents a 20 Mfps 32 × 84 pixels CMOS burst-mode imager featuring high frame depth with a passive in-pixel amplifier. Compared to the CCD alternatives, CMOS burst-mode imagers are attractive for their low power consumption and integration of circuitry such as ADCs. Due to storage capacitor size and its noise limitations, CMOS burst-mode imagers usually suffer from a lower frame depth than CCD implementations. In order to capture fast transitions over a longer time span, an in-pixel CDS technique has been adopted to reduce the required memory cells for each frame by half. Moreover, integrated with in-pixel CDS, an in-pixel NMOS-only passive amplifier alleviates the kTC noise requirements of the memory bank allowing the usage of smaller capacitors. Specifically, a dense 108-cell MOS memory bank (10fF/cell) has been implemented inside a 30μm pitch pixel, with an area of 25 × 30μm2 occupied by the memory bank. There is an improvement of about 4x in terms of frame depth per pixel area by applying in-pixel CDS and amplification. With the amplifier's gain of 3.3, an FD input-referred RMS noise of 1mV is achieved at 20 Mfps operation. While the amplification is done without burning DC current, including the pixel source follower biasing, the full pixel consumes 10μA at 3.3V supply voltage at full speed. The chip has been fabricated in imec's 130nm CMOS CIS technology.

  8. Analyzing power Ay(θ) of n-3He elastic scattering between 1.60 and 5.54 MeV.

    Esterline, J; Tornow, W; Deltuva, A; Fonseca, A C

    2013-04-12

    Comprehensive and high-accuracy n-3He elastic scattering analyzing power Ay(θ) angular distributions were obtained at five incident neutron energies between 1.60 and 5.54 MeV. The data are compared to rigorous four-nucleon calculations using high-precision nucleon-nucleon potential models; three-nucleon force effects are found to be very small. The agreement between data and calculations is fair at the lower energies and becomes less satisfactory with increasing neutron energy. Comparison to p-3He scattering over the same energy range exhibits unexpectedly large isospin effects.

  9. Estimation of Scatterer Diameter by Normalized Power Spectrum of High-Frequency Ultrasonic RF Echo for Assessment of Red Blood Cell Aggregation

    Fukushima, Taku; Hasegawa, Hideyuki; Kanai, Hiroshi

    2011-07-01

    Red blood cell (RBC) aggregation, as one of the determinants of blood viscosity, plays an important role in blood rheology, including the condition of blood. RBC aggregation is induced by the adhesion of RBCs when the electrostatic repulsion between RBCs weakens owing to increases in protein and saturated fatty acid levels in blood, excessive RBC aggregation leads to various circulatory diseases. This study was conducted to establish a noninvasive quantitative method for assessment of RBC aggregation. The power spectrum of ultrasonic RF echoes from nonaggregating RBCs, which shows the frequency property of scattering, exhibits Rayleigh behavior. On the other hand, ultrasonic RF echoes from aggregating RBCs contain the components of reflection, which have no frequency dependence. By dividing the measured power spectrum of echoes from RBCs in the lumen by that of echoes from a posterior wall of the vein in the dorsum manus, the attenuation property of the propagating medium and the frequency responses of transmitting and receiving transducers are removed from the former spectrum. RBC aggregation was assessed by the diameter of a scatterer, which was estimated by minimizing the square difference between the measured normalized power spectrum and the theoretical power spectrum. In this study, spherical scatterers with diameters of 5, 11, 15, and 30 µm were measured in basic experiments. The estimated scatterer diameters were close to the actual diameters. Furthermore, the transient change of the scatterer diameters were measured in an in vivo experiment with respect to a 24-year-old healthy male during the avascularization using a cuff. The estimated diameters (12-22 µm) of RBCs during avascularization were larger than the diameters (4-8 µm) at rest and after recirculation. These results show the possibility of the use of the proposed method for noninvasive assessment of RBC aggregation.

  10. Depth profiles of radioactive cesium and iodine released from the Fukushima Daiichi nuclear power plant in different agricultural fields and forests

    Ohno, Takeshi; Muramatsu, Yasuyuki; Oda, Kazumasa; Inagawa, Naoya; Ogawa, Hiromu; Yamazaki, Atsuko; Toyama, Chiaki; Miura, Yoshinori; Sato, Mutsuto

    2012-01-01

    In order to understand the behavior of radionuclides released from the Fukushima Daiichi nuclear power plant, the depth distributions of radiocesium and radioiodine were investigated in a wheat field, a rice paddy, an orchard, and a cedar forest in Koriyama, Fukushima Prefecture. Our results demonstrate that, following the nuclear power plant disaster, more than 90% of the radionuclides were distributed in the upper 6 cm of the soil column in the wheat field and within 4 cm of the surface in the rice paddy, orchard, and cedar forest. According to the measurement of radionuclides in the three adjacent agricultural fields, the variation of deposition densities in the wheat field was smaller than that of the orchard and rice paddy, suggesting that the low permeability of the orchard and paddy soils may cause horizontal migration of radionuclides during the initial deposition. This result indicates that the deposition densities in the wheat field should be appropriate for estimating the amount of fallout in the area. The deposition densities of 134 Cs, 137 Cs, and 131 I in this area were estimated to be 512 ± 76 (SD, n = 5), 522 ± 80 (SD, n = 5), and 608 ± 79 (SD, n = 5) kBq/m 2 (decay corrected to April 1, 2011), respectively. A comparison of the deposition density between the wheat field and the cedar forest suggests that more than half of the radionuclides are distributed in the tree canopies of the evergreen forestland. (author)

  11. Incoherent Thomson scattering

    Donne, A. J. H.

    1996-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is

  12. Possible Detection of an Emission Cyclotron Resonance Scattering Feature from the Accretion-Powered Pulsar 4U 1626-67

    Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.

    2012-01-01

    We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

  13. Comparison of axial length, anterior chamber depth and intraocular lens power between IOLMaster and ultrasound in normal, long and short eyes.

    Dong, Jing; Zhang, Yaqin; Zhang, Haining; Jia, Zhijie; Zhang, Suhua; Wang, Xiaogang

    2018-01-01

    To compare the axial length (AL), anterior chamber depth (ACD) and intraocular lens power (IOLP) of IOLMaster and Ultrasound in normal, long and short eyes. Seventy-four normal eyes (≥ 22 mm and ≤ 25 mm), 74 long eyes (> 25 mm) and 78 short eyes (devices in the order of IOLMaster followed by Ultrasound. The IOLP were calculated using a free online LADAS IOL formula calculator. The difference in AL and IOLP between IOLMaster and Ultrasound was statistically significant when all three groups were combined. The difference in ACD between IOLMaster and Ultrasound was statistically significant in the normal group (Peye group (Peye group (P = 0.465). For the IOLP difference between IOLMaster and Ultrasound in the normal group, the percentage of IOLP differences eye group, they were 90.5%, 5.4%, 4.1% and 0%, respectively. For the short eye group, they were 61.5%, 23.1%, 10.3%, and 5.1%, respectively. IOLMaster and Ultrasound have statistically significant differences in AL measurements and IOLP (using LADAS formula) for normal, long eye and short eye. The two instruments agree regarding ACD measurements for the long eye group, but differ for the normal and short eye groups. Moreover, the high percentage of IOLP differences greater than |0.5|D in the short eye group is noteworthy.

  14. Introduction to neutron scattering

    Fischer, W E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.

  15. Concentric layered Hermite scatterers

    Astheimer, Jeffrey P.; Parker, Kevin J.

    2018-05-01

    The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.

  16. Spectrometric kidney depth measurement method

    George, P.; Soussaline, F.; Raynaud, C.

    1976-01-01

    The method proposed uses the single posterior surface measurement of the kidney radioactivity distribution. The ratio C/P of the number of scattered photons to the number of primary photons, which is a function of the tissue depth penetrated, is calculated for a given region. The parameters on which the C/P value depends are determined from studies on phantoms. On the basis of these results the kidney depth was measured on a series of 13 patients and a correlation was established between the value thus calculated and that obtained by the profile method. The reproducibility of the method is satisfactory [fr

  17. Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation.

    Park, Sangwoo; Cha, Seongwoo; Oh, Jungsuk; Lee, Hwihyeong; Ahn, Heekyung; Churn, Kil Sung; Kong, Hong Jin

    2016-04-18

    The self-phase locking of a stimulated Brillouin scattering-phase conjugate mirror (SBS-PCM) allows a simple and scalable coherent beam combination of existing lasers. We propose a simple optical system composed of a rotating wedge and a concave mirror to overcome the power limit of the SBS-PCM. Its phase locking ability and the usefulness on the beam-combination laser are demonstrated experimentally. A four-beam combination is demonstrated using this SBS-PCM scheme. The relative phases between the beams were measured to be less than λ/24.7.

  18. Measurement of the tensor Ayy and vector Ay analyzing powers of the deuteron inelastic scattering on beryllium at 5.0 GeV/c and 178 mrad

    Azhgirej, L.S.; Afanas'ev, S.V.; Isupov, A.Yu.

    2004-01-01

    Tensor A yy and vector A y analyzing powers in the inelastic scattering of deuterons with a momentum of 5.0 GeV/c on beryllium at an angle of 178 mrad in the vicinity of the excitation of baryonic resonances with masses up to ∼ 1.8 GeV/c 2 have been measured. The A yy data are in good agreement with the previous data obtained at 4.5 and 5.5 GeV/c. The results of the experiment are compared with the predictions of the plane-wave impulse approximation and ω-meson exchange model

  19. Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm(-1) surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (CW diode lasers.

    Aggarwal, Roshan L; Farrar, Lewis W; Greeneltch, Nathan G; Van Duyne, Richard P; Polla, Dennis L

    2013-02-01

    The surface-enhanced coherent anti-Stokes Raman scattering (SECARS) from a self-assembled monolayer (SAM) of benzenethiol on a silver-coated surface-enhanced Raman scattering (SERS) substrate has been measured for the 1574 cm(-1) SERS mode. A value of 9.6 ± 1.7×10(-14) W was determined for the resonant component of the SECARS signal using 17.8 mW of 784.9 nm pump laser power and 7.1 mW of 895.5 nm Stokes laser power; the pump and Stokes lasers were polarized parallel to each other but perpendicular to the grooves of the diffraction grating in the spectrometer. The measured value of resonant component of the SECARS signal is in agreement with the calculated value of 9.3×10(-14) W using the measured value of 8.7 ± 0.5 cm(-1) for the SERS linewidth Γ (full width at half-maximum) and the value of 5.7 ± 1.4×10(-7) for the product of the Raman cross section σSERS and the surface concentration Ns of the benzenethiol SAM. The xxxx component of the resonant part of the third-order nonlinear optical susceptibility |3 χxxxx((3)R)| for the 1574 cm(-1) SERS mode has been determined to be 4.3 ± 1.1×10(-5) cm·g(-1)·s(2). The SERS enhancement factor for the 1574 cm(-1) mode was determined to be 3.6 ± 0.9×10(7) using the value of 1.8×10(15) molecules/cm(2) for Ns.

  20. Diffuse scattering in Ih ice

    Wehinger, Björn; Krisch, Michael; Bosak, Alexeï; Chernyshov, Dmitry; Bulat, Sergey; Ezhov, Victor

    2014-01-01

    Single crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution. (paper)

  1. Tensorial analyzing power T20 at 1800C.M. in d vector p elastic scattering between 0.3 and 2.3 GeV

    Gaillard, G.

    1984-01-01

    The results of the measurement of the analysing power T 20 at 180 0 CM in d vector p elastic scattering for 16 energies between 300 and 2300 MeV are presented. The values which have been obtained are badly reproduced by the calculations based on neutron transfer (ONT) and Δ excitation in the intermediate state (TME) mechanisms, principal beyond 1 GeV. The excitation of possible tribaryon resonances, which are introduced in an elementary way, is added to these two mechanisms. The results of these calculations show that one could thus obtain a satisfying agreement with the experimental values. A measurement of angular distribution of the analysing powers Asub(y) and Asub(yy) between 70 and 180 0 CM at 1200 MeV is also presented [fr

  2. In-depth magnetic characterization of a [2 × 2] Mn(III) square grid using SQUID magnetometry, inelastic neutron scattering, and high-field electron paramagnetic resonance spectroscopy

    Konstantatos, Andreas; Bewley, Robert; Barra, Anne Laure

    2016-01-01

    . Combined inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR) experiments provided the necessary information in order to successfully model the magnetic properties of Mn4. The resulting model takes into account both the magnitude and the relative orientations of the single...

  3. Analyzing powers and proton spin transfer coefficients in the elastic scattering of 800 MeV polarized protons from an L-type polarized deuteron target at small momentum transfers

    Adams, D.L.

    1986-10-01

    Analyzing powers and spin transfer coefficients which describe the elastic scattering of polarized protons from a polarized deuteron target have been measured. The energy of the proton beam was 800 MeV and data were taken at laboratory scattering angles of 7, 11, 14, and 16.5 degrees. One analyzing power was also measured at 180 degrees. Three linearly independent orientations of the beam polarization were used and the target was polarized parallel and antiparallel to the direction of the beam momentum. The data were taken with the high resolution spectrometer at the Los Alamos Meson Physics Facility (experiment 685). The results are compared with multiple scattering predictions based on Dirac representations of the nucleon-nucleon scattering matrices. 27 refs., 28 figs., 4 tabs

  4. F-region electron density and Te / Ti measurements using incoherent scatter power data collected at ALTAIR

    M. Milla

    2006-07-01

    Full Text Available The ALTAIR UHF radar was used in an incoherent scatter experiment to observe the low-latitude ionosphere during the Equis 2 rocket campaign. The measurements provided the first high-resolution electron density maps of the low-latitude D- and E-region in the Pacific sector and also extended into the F-region and topside ionosphere. Although the sampling frequency was well below the Nyquist frequency of F-region returns, we were able to estimate Te / Ti ratio and infer unbiased electron density estimates using a regularized inversion technique described here. The technique exploits magnetic aspect angle dependence of ISR cross-section for Te>Ti.

  5. Soft X-ray generation via inverse compton scattering between high quality electron beam and high power laser

    Masakazu Washio; Kazuyuki Sakaue; Yoshimasa Hama; Yoshio Kamiya; Tomoko Gowa; Akihiko Masuda; Aki Murata; Ryo Moriyama; Shigeru Kashiwagi; Junji Urakawa

    2007-01-01

    High quality beam generation project based on High-Tech Research Center Project, which has been approved by Ministry of Education, Culture, Sports, Science and Technology in 1999, has been conducted by advance research institute for science and engineering, Waseda University. In the project, laser photo-cathode RF-gun has been selected for the high quality electron beam source. RF cavities with low dark current, which were made by diamond turning technique, have been successfully manufactured. The low emittance electron beam was realized by choosing the modified laser injection technique. The obtained normalized emmitance was about 3 m.mrad at 100 pC of electron charge. The soft x-ray beam generation with the energy of 370 eV, which is in the energy region of so-called water window, by inverse Compton scattering has been performed by the collision between IR laser and the low emmitance electron beams. (Author)

  6. The dependence of skin lesions on the depth-dose distribution from β-irradiation of people in the Chernobyl nuclear power plant accident

    Barabanova, A.

    1990-01-01

    A detailed study was made of conditions of exposure of 56 Chernobyl victims who suffered skin radiation lesions. The most typical conditions were experimentally reconstructed to investigate specific characteristics of dose distribution to the skin according to depth for different exposure conditions. Absorbed doses at depths of 7 mg cm -2 and 150 mg cm -2 were calculated on the basis of measurements with multilayer skin dosemeters. Patients were classified into four groups. Dosimetric characteristics for each group were compared with clinical pictures to establish critical factors in the occurrence of lesions. It was demonstrated that depth-dose distribution of β-radiation to the skin is of great influence not only for early effects of radiation but also for later effects. Radiation lesions in the skin led to death if the area of the lesions exceeded about 50% total body surface, and if doses to the skin were about 200-300 Gy at 7 mg cm -2 and more than about 30 Gy at 150 mg cm -2 . (author)

  7. Comparisons of vector analyzing-power data and calculations for neutron-deuteron elastic scattering from 10 to 14 MeV

    Howell, C.R.; Tornow, W.; Murphy, K.; Pfuetzner, H.G.; Roberts, M.L.; Li, A.; Felsher, P.D.; Walter, R.L.; Slaus, I.; Treado, P.A.; Koike, Y.

    1987-01-01

    High-accuracy analyzing-power A y (θ) data for n-d elastic scattering at 12 MeV have been measured using the polarized-neutron facilities at the Triangle Universities Nuclear Laboratory (TUNL). The present data have been combined with previous n-d measurements at 10, 12, and 14.1 MeV to form the highest-accuracy A y (θ) data set for n-d elastic scattering below 20 MeV. These data are compared to recent Faddeev-based neutron-deuteron (n-d) calculations which use the Paris and Bonn equivalent separable potentials PEST and BEST, as well as Doleschall's representation of the P- and D-wave nucleon-nucleon interactions. None of these models adequately describe the data in the angular region around the maximum of A y (θ). Possible reasons for the discrepancies are discussed. The sensitivity of the present Faddeev-based calculations to various angular momentum components of the nucleon-nucleon interaction are examined. (Auth.)

  8. Λ and Σ well depth

    Satoh, Eiji

    1982-01-01

    The Λ well depth was calculated by taking into account the effect of the ΛΣ conversion. Takahashi et al. obtained the separate type of potentials which described the hyperon-nucleon interaction up to p waves. Two types of the potentials among several types they obtained were used to calculate the Λ well depth. The G matrix was easily calculated, and the Λ well depth was obtained by integrating the G matrix in momentum space up to the Fermi surface. The effect of the ΛΣ conversion was given by an equation. The total Λ well depth was estimated to be 9.13 MeV and 49.36 MeV for each type of potential, respectively. It was concluded that the argument by Bodmer et al. was not correct. The Σ well depth was also calculated using the potential obtained by Takahashi et al. for I = 1/2 and the one obtained by Σ + p → Σ + p scattering data for I = 3/2. The obtained value 35.30 MeV may be overestimated, and the experimental value is expected to be in the range from 20 MeV to 30 MeV. (Ito, K.)

  9. Analyzing power measurement of pp elastic scattering in the Coulomb-nuclear interference region with the 200-GeV/c polarized-proton beam at Fermilab

    Akchurin, N.; Langland, J.; Onel, Y.; Bonner, B.E.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Roberts, J.B.; Skeens, J.; White, J.L.; Bravar, A.; Giacomich, R.; Penzo, A.; Schiavon, P.; Zanetti, A.; Bystricky, J.; Lehar, F.; de Lesquen, A.; van Rossum, L.; Cossairt, J.D.; Read, A.L.; Derevschikov, A.A.; Matulenko, Y.A.; Meschanin, A.P.; Nurushev, S.B.; Patalakha, D.I.; Rykov, V.L.; Solovyanov, V.L.; Vasiliev, A.N.; Grosnick, D.P.; Hill, D.A.; Laghai, M.; Lopiano, D.; Ohashi, Y.; Shima, T.; Spinka, H.; Stanek, R.W.; Underwood, D.G.; Yokosawa, A.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Iwatani, K.; Kuroda, K.; Michalowicz, A.; Luehring, F.C.; Miller, D.H.; Maki, T.; Pauletta, G.; Rappazzo, G.F.; Salvato, G.; Takashima, R.

    1993-01-01

    The analyzing power A N of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5x10 -3 to 5.0x10 -2 (GeV/c) 2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed

  10. Scattering of intermediate energy protons

    Chaumeaux, Alain.

    1980-06-01

    The scattering of 1 GeV protons appears to be a powerful means of investigating nuclear matter. We worked with SPESI and the formalism of Kerman-Mc Manus and Thaler. The amplitude of nucleon-nucleon scattering was studied as were the aspects of 1 GeV proton scattering (multiple scattering, absorption, spin-orbit coupling, N-N amplitude, KMT-Glauber comparison, second order effects). The results of proton scattering on 16 O, the isotopes of calcium, 58 Ni, 90 Zr and 208 Pb are given [fr

  11. Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores.

    Chen, Zhixing; Wei, Lu; Zhu, Xinxin; Min, Wei

    2012-08-13

    It is highly desirable to be able to optically probe biological activities deep inside live organisms. By employing a spatially confined excitation via a nonlinear transition, multiphoton fluorescence microscopy has become indispensable for imaging scattering samples. However, as the incident laser power drops exponentially with imaging depth due to scattering loss, the out-of-focus fluorescence eventually overwhelms the in-focal signal. The resulting loss of imaging contrast defines a fundamental imaging-depth limit, which cannot be overcome by increasing excitation intensity. Herein we propose to significantly extend this depth limit by multiphoton activation and imaging (MPAI) of photo-activatable fluorophores. The imaging contrast is drastically improved due to the created disparity of bright-dark quantum states in space. We demonstrate this new principle by both analytical theory and experiments on tissue phantoms labeled with synthetic caged fluorescein dye or genetically encodable photoactivatable GFP.

  12. Mixed-Flow Waterjet (MxWJ) Model 5662-1: Initial Study of Yaw Effects on Waterjet Powering and Transom Depth Effects on Waterjet Priming

    Cusanelli, Dominic S

    2007-01-01

    ...: (1) The effects of model yaw angles on waterjet powering. Model-scale rotor force measurements of thrust and torque at angles of yaw up to 3 degrees showed little variation compared to the equivalent forces measured at zero yaw angle...

  13. In-depth evaluations of operating experiences in nuclear power plants. Annual report 2015/2016 (June 2015 - May 2016); Vertiefte Untersuchungen von Betriebserfahrungen aus Kernreaktoren. Jahresbericht 2015/2016 (Juni 2015 - Mai 2016)

    Mildenberger, Oliver

    2017-05-15

    A central task of GRS is the continuous evaluation of events in nuclear power plants in Germany and abroad on behalf of BMUB. GRS evaluates all reportable events from German plants as well as safety-relevant events in foreign nuclear power plants. It aims for the extraction of scientific insights and information to extend the knowledge base of GRS. Learning from operating experience is an important element for preserving and improving the safety level of nuclear power plants. Insights obtained from these in-depth evaluations form the scientific bas is for expert statements, information notices or generic reports on behalf of BMUB. This report presents major results of generic in-depth investigations on safety-relevant aspects detected during the screening of operating experience from all available sources in the reporting period. Moreover, the results of additional further works to determine and advance the state of the art in science and technology related to the evaluation of operating experience are summarized: Pilot study on evaluation of U.S. NRC Licensee Event Reports (LER); Update of knowledge base on transients; Extension of CCF checklist with CCF phenomena in valves and big machine components (pumps, emergency diesels, ventilations, heat exchangers and chillers); Generic analysis of events with errors during periodic inspections; Experiences with errors during construction and operation of nuclear concrete buildings; Assessment of results from precursor analyses.

  14. Scattering by two spheres: Theory and experiment

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1998-01-01

    of suspended sediments. The scattering properties of single regular-shaped particles have been studied in depth by several authors in the past. However, single particle scattering cannot explain all features of scattering by suspended sediment. When the concentration of particles exceeds a certain limit...... on three issues: (1) to develop a simplified theory for scattering by two elastical spheres; (2) to measure the scattering by two spheres in a water tank, and (3) to compare the theoretical/numerical results with the measured data. A number of factors influencing multiple scattering, including...

  15. The analyzing power Asub(y)(theta) for the elastic scattering of 12 MeV neutrons from deuterons

    Tornow, W.; Lisowski, P.W.; Byrd, R.C.; Walter, R.L.

    1978-01-01

    The analyzing power Asub(y)(theta) was obtained at 10 0 intervals between 30 0 (lab) to 120 0 (lab) for 2 H(n, n) 2 H at 12.0 MeV. The polarized neutron beam employed in the measurement was obtained by using neutrons emitted at 0 0 from the polarization transfer reaction 2 H(d(pol), n(pol)) 3 He. The accuracy in the Asub(y)(theta) values that was achieved ranged from +- 0.006 to +- 0.013. Comparison of the data to Asub(y)(theta) results obtained at 12 MeV for the charge symmetric reaction 2 H(p, p) 2 H shows that the two Asub(y)(theta) distributions are equal to within the above accuracy. (Auth.)

  16. Surface enhanced Raman scattering as an in-reactor monitor of phenomena of interest to the Nuclear Power Industry

    Devine, T.M.

    1994-01-01

    Surface enhanced Raman spectroscopy (SERS) is proposed as a technique for monitoring in situ the passive films and corrosion products that form on the surfaces of alloys of interest in nuclear power plants. The technique is a highly sensitive procedure for detecting even very small quantities of species present on surfaces, in particular the surface of metallic alloys. The data could, for example, identify the constituents in passive films that are less than a monolayer in average thickness. Processes such as 60 Co pick-up could be monitored in real time. In fact, if it is known that incorporation of 60 Co occurs when a particular oxide film forms on the surface of the alloy, then measurement of the SER spectra could indicate when such films are beginning to form and thereby provide an early indication that conditions inside the reactor are now suitable for 60 Co pick-up in the passive films

  17. Thermal-neutron multiple scattering: critical double scattering

    Holm, W.A.

    1976-01-01

    A quantum mechanical formulation for multiple scattering of thermal-neutrons from macroscopic targets is presented and applied to single and double scattering. Critical nuclear scattering from liquids and critical magnetic scattering from ferromagnets are treated in detail in the quasielastic approximation for target systems slightly above their critical points. Numerical estimates are made of the double scattering contribution to the critical magnetic cross section using relevant parameters from actual experiments performed on various ferromagnets. The effect is to alter the usual Lorentzian line shape dependence on neutron wave vector transfer. Comparison with corresponding deviations in line shape resulting from the use of Fisher's modified form of the Ornstein-Zernike spin correlations within the framework of single scattering theory leads to values for the critical exponent eta of the modified correlations which reproduce the effect of double scattering. In addition, it is shown that by restricting the range of applicability of the multiple scattering theory from the outset to critical scattering, Glauber's high energy approximation can be used to provide a much simpler and more powerful description of multiple scattering effects. When sufficiently close to the critical point, it provides a closed form expression for the differential cross section which includes all orders of scattering and has the same form as the single scattering cross section with a modified exponent for the wave vector transfer

  18. Quasiresonant scattering

    Hategan, Cornel; Comisel, Horia; Ionescu, Remus A.

    2004-01-01

    The quasiresonant scattering consists from a single channel resonance coupled by direct interaction transitions to some competing reaction channels. A description of quasiresonant Scattering, in terms of generalized reduced K-, R- and S- Matrix, is developed in this work. The quasiresonance's decay width is, due to channels coupling, smaller than the width of the ancestral single channel resonance (resonance's direct compression). (author)

  19. Beyond defense-in-depth: cost and funding of state and local government radiological emergency response plans and preparedness in support of commercial nuclear power stations

    Salomon, S.N.

    1979-10-01

    Inadequate, sporadic, uncertain and frustrating are words local, state and Federal officials use to describe the current hodgepodge funding approach to State and local government radiological emergency response plans and preparedeness in support of commercial nuclear power stations. The creation of a Radiological Emergency Response Plans and Preparedness Fund for State and Local Government is offered as a preferred solution. Monies for the Fund could be derived from a one time Fee of $1 million levied on the operator of each nuclear power station. Every five years, adjustments could be made in the Fee to assure full recovery of costs because of inflation, revised criteria and other cost related factors. Any surplus would be refunded to the utilities. Any state that has obtained NRC concurrence or is in the process could be reimbursed for previous expenditures up to two years prior to NRC concurrence. Concurrence in all state and local government plans is the objective of the funding program. The Fund should be administered by the Nuclear Regulatory Commission. The report also discusses actions by Federal and state agencies and points to long range considerations, such as a training institute, including transportation and non-commercial and other fixed nuclear facilities, where preparedness could be enhanced by a coherent funding mechanism. All recommendations are based on an inquiry by the Office of state Programs, NRC, into the historical and future costs and funding of radiological emergency response plans and preparedness at the state and local government levels and are derived from discussions with many local, State and Federal officials

  20. Energy and depth resolution in elastic recoil coincidence spectrometry

    Szilagyi, E., E-mail: szilagyi@rmki.kfki.h [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2010-06-15

    Elastic recoil coincidence spectrometry was implemented into the analytical ion beam simulation program DEPTH. In the calculations, effective detector geometry and multiple scattering effects are considered. Mott's cross section for the identical, spin zero particles is included. Spectra based on the individual detector signal and summing the energy of the recoiled and scattered particles originating from the same scattering events can also be calculated. To calculate this latter case, the dependency of the energy spread contributions had to be reconsidered.

  1. Energy and depth resolution in elastic recoil coincidence spectrometry

    Szilagyi, E.

    2010-01-01

    Elastic recoil coincidence spectrometry was implemented into the analytical ion beam simulation program DEPTH. In the calculations, effective detector geometry and multiple scattering effects are considered. Mott's cross section for the identical, spin zero particles is included. Spectra based on the individual detector signal and summing the energy of the recoiled and scattered particles originating from the same scattering events can also be calculated. To calculate this latter case, the dependency of the energy spread contributions had to be reconsidered.

  2. Statistical characterization of Earth’s heterogeneities from seismic scattering

    Zheng, Y.; Wu, R.

    2009-12-01

    The distortion of a teleseismic wavefront carries information about the heterogeneities through which the wave propagates and it is manifestited as logarithmic amplitude (logA) and phase fluctuations of the direct P wave recorded by a seismic network. By cross correlating the fluctuations (e.g., logA-logA or phase-phase), we obtain coherence functions, which depend on spatial lags between stations and incident angles between the incident waves. We have mathematically related the depth-dependent heterogeneity spectrum to the observable coherence functions using seismic scattering theory. We will show that our method has sharp depth resolution. Using the HiNet seismic network data in Japan, we have inverted power spectra for two depth ranges, ~0-120km and below ~120km depth. The coherence functions formed by different groups of stations or by different groups of earthquakes at different back azimuths are similar. This demonstrates that the method is statistically stable and the inhomogeneities are statistically stationary. In both depth intervals, the trend of the spectral amplitude decays from large scale to small scale in a power-law fashion with exceptions at ~50km for the logA data. Due to the spatial spacing of the seismometers, only information from length scale 15km to 200km is inverted. However our scattering method provides new information on small to intermediate scales that are comparable to scales of the recycled materials and thus is complimentary to the global seismic tomography which reveals mainly large-scale heterogeneities on the order of ~1000km. The small-scale heterogeneities revealed here are not likely of pure thermal origin. Therefore, the length scale and strength of heterogeneities as a function of depth may provide important constraints in mechanical mixing of various components in the mantle convection.

  3. Compton scattering at high intensities

    Heinzl, Thomas, E-mail: thomas.heinzl@plymouth.ac.u [University of Plymouth, School of Mathematics and Statistics, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-12-01

    High-intensity Compton scattering takes place when an electron beam is brought into collision with a high power laser. We briefly review the main intensity signatures using the formalism of strong-field quantum electrodynamics.

  4. An approach based on defense-in-depth and diversity (3D) for the reliability assessment of digital instrument and control systems of nuclear power plants

    Silva, Paulo Adriano da; Saldanha, Pedro L.C., E-mail: pasilva@cnen.gov.b, E-mail: Saldanha@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coord. Geral de Reatores Nucleares; Melo, Paulo F. Frutuoso e, E-mail: frutuoso@nuclear.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao em Engenharia. Programa de Engenharia Nuclear; Araujo, Ademir L. de [Associacao Brasileira de Ensino Universitario (UNIABEU), Angra dos Reis, RJ (Brazil)

    2011-07-01

    The adoption of instrumentation and control (I and C) digital technology has been slower in nuclear power plants. The reason has been unfruitful efforts to obtain evidence in order to prove that I and C systems can be used in nuclear safety systems, for example, the Reactor Protection System (RPS), ensuring the proper operation of all its functions. This technology offers a potential improvement for safety and reliability. However, there still no consensus about the model to be adopted for digital systems software to be used in reliability studies. This paper presents the 3D methodology approach to assess digital I and C reliability. It is based on the study of operational events occurring in NPPs. It is easy to identify, in general, the level of I and C system reliability, showing its key vulnerabilities, enabling to trace regulatory actions to minimize or avoid them. This approach makes it possible to identify the main types of digital I and C system failure, with the potential for common cause failures as well as evaluating the dominant failure modes. The MAFIC-D software was developed to assist the implementation of the relationships between the reliability criteria, the analysis of relationships and data collection. The results obtained through this tool proved to be satisfactory and complete the process of regulatory decision-making from licensing I and C digital of NPPs and call still be used to monitor the performance of I and C digital post-licensing during the lifetime of the system, providing the basis for the elaboration of checklists of regulatory inspections. (author)

  5. An approach based on defense-in-depth and diversity (3D) for the reliability assessment of digital instrument and control systems of nuclear power plants

    Silva, Paulo Adriano da; Saldanha, Pedro L.C.

    2011-01-01

    The adoption of instrumentation and control (I and C) digital technology has been slower in nuclear power plants. The reason has been unfruitful efforts to obtain evidence in order to prove that I and C systems can be used in nuclear safety systems, for example, the Reactor Protection System (RPS), ensuring the proper operation of all its functions. This technology offers a potential improvement for safety and reliability. However, there still no consensus about the model to be adopted for digital systems software to be used in reliability studies. This paper presents the 3D methodology approach to assess digital I and C reliability. It is based on the study of operational events occurring in NPPs. It is easy to identify, in general, the level of I and C system reliability, showing its key vulnerabilities, enabling to trace regulatory actions to minimize or avoid them. This approach makes it possible to identify the main types of digital I and C system failure, with the potential for common cause failures as well as evaluating the dominant failure modes. The MAFIC-D software was developed to assist the implementation of the relationships between the reliability criteria, the analysis of relationships and data collection. The results obtained through this tool proved to be satisfactory and complete the process of regulatory decision-making from licensing I and C digital of NPPs and call still be used to monitor the performance of I and C digital post-licensing during the lifetime of the system, providing the basis for the elaboration of checklists of regulatory inspections. (author)

  6. Scattering theory

    Sitenko, A.

    1991-01-01

    This book emerged out of graduate lectures given by the author at the University of Kiev and is intended as a graduate text. The fundamentals of non-relativistic quantum scattering theory are covered, including some topics, such as the phase-function formalism, separable potentials, and inverse scattering, which are not always coverded in textbooks on scattering theory. Criticisms of the text are minor, but the reviewer feels an inadequate index is provided and the citing of references in the Russian language is a hindrance in a graduate text

  7. CSDA range, stopping power and mean penetration depth energy relationships in some hydrocarbons and biologic materials for 10 eV to 100 MeV with the modified Rohrlich-Carlson model

    Guemues, Hasan [Ondokuz Mayis University, Department of Physics, Faculty of Sciences and Arts, Samsun (Turkey); Bentabet, Abdelouahab [Bordj Bou Arreridj University, LCVRN, SNVSTU Faculty, El Anasser (Algeria)

    2017-05-15

    In this study, for some hydrocarbons and biological compounds, stopping power formula are presented, being valid for low and intermediate electron energies. In addition, calculation of the continuous slowing down approximation range (CSDA range) from the stopping power is also made. Calculation of the CSDA range for some hydrocarbons: C{sub 2}H{sub 6} (ethane), C{sub 4}H{sub 10} (butane), C{sub 6}H{sub 14} (hexane) C{sub 8}H{sub 18} (octane), C{sub 5}H{sub 5}N{sub 5} (adenine) and C{sub 5}H{sub 5}N{sub 5}O (guanine) have been introduced for incident electrons in the energy range 30 eV to 1 MeV. The range of electrons has been calculated within the continuous slowing down approximation (CSDA) using modified Rohrlich and Carlson formula of stopping power. Besides, we have calculated the mean penetration depths using a spherical geometric model developed by Bentabet (Vacuum 86:1855-1859, 35). The results have been compared with the other theoretical results, Monte Carlo code such as PENELOPE predictions and semi-empirical results. The calculated results of CSDA ranges for electrons in the energy range from 20 eV to 100 MeV are found to be in good agreement to within 10% with available date. (orig.)

  8. Critical scattering

    Stirling, W.G.; Perry, S.C.

    1996-01-01

    We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO 3 is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs

  9. Weighted halfspace depth

    Kotík, Lukáš; Hlubinka, D.; Vencálek, O.

    Vol. 46, č. 1 (2010), s. 125-148 ISSN 0023-5954 Institutional research plan: CEZ:AV0Z10750506 Keywords : data depth * nonparametric multivariate analysis * strong consistency of depth * mixture of distributions Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/SI/kotik-weighted halfspace depth.pdf

  10. Quantum Optical Multiple Scattering

    Ott, Johan Raunkjær

    . In the first part we use a scattering-matrix formalism combined with results from random-matrix theory to investigate the interference of quantum optical states on a multiple scattering medium. We investigate a single realization of a scattering medium thereby showing that it is possible to create entangled...... states by interference of squeezed beams. Mixing photon states on the single realization also shows that quantum interference naturally arises by interfering quantum states. We further investigate the ensemble averaged transmission properties of the quantized light and see that the induced quantum...... interference survives even after disorder averaging. The quantum interference manifests itself through increased photon correlations. Furthermore, the theoretical description of a measurement procedure is presented. In this work we relate the noise power spectrum of the total transmitted or reflected light...

  11. Λ scattering equations

    Gomez, Humberto

    2016-06-01

    The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm.

  12. Alpha particle collective Thomson scattering in TFTR

    Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J.; Bindslev, H.

    1993-01-01

    A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques

  13. Hydrologic controls on equilibrium soil depths

    Nicótina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.

    2011-04-01

    This paper deals with modeling the mutual feedbacks between runoff production and geomorphological processes and attributes that lead to patterns of equilibrium soil depth. Our primary goal is an attempt to describe spatial patterns of soil depth resulting from long-term interactions between hydrologic forcings and soil production, erosion, and sediment transport processes under the framework of landscape dynamic equilibrium. Another goal is to set the premises for exploiting the role of soil depths in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography. Geomorphological processes are described by means of well-studied geomorphic transport laws. The modeling approach is applied to the semiarid Dry Creek Experimental Watershed, located near Boise, Idaho. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment. Our results show the ability of the model to describe properly the mean soil depth and the broad features of the distribution of measured data. However, local comparisons show significant scatter whose origins are discussed.

  14. Compton scattering

    Botto, D.J.; Pratt, R.H.

    1979-05-01

    The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A -2 based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required

  15. Compton scattering

    Botto, D.J.; Pratt, R.H.

    1979-05-01

    The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A/sup -2/ based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required.

  16. Complexity and Dynamical Depth

    Terrence Deacon

    2014-07-01

    Full Text Available We argue that a critical difference distinguishing machines from organisms and computers from brains is not complexity in a structural sense, but a difference in dynamical organization that is not well accounted for by current complexity measures. We propose a measure of the complexity of a system that is largely orthogonal to computational, information theoretic, or thermodynamic conceptions of structural complexity. What we call a system’s dynamical depth is a separate dimension of system complexity that measures the degree to which it exhibits discrete levels of nonlinear dynamical organization in which successive levels are distinguished by local entropy reduction and constraint generation. A system with greater dynamical depth than another consists of a greater number of such nested dynamical levels. Thus, a mechanical or linear thermodynamic system has less dynamical depth than an inorganic self-organized system, which has less dynamical depth than a living system. Including an assessment of dynamical depth can provide a more precise and systematic account of the fundamental difference between inorganic systems (low dynamical depth and living systems (high dynamical depth, irrespective of the number of their parts and the causal relations between them.

  17. Subring Depth, Frobenius Extensions, and Towers

    Lars Kadison

    2012-01-01

    Full Text Available The minimum depth d(B,A of a subring B⊆A introduced in the work of Boltje, Danz and Külshammer (2011 is studied and compared with the tower depth of a Frobenius extension. We show that d(B,A < ∞ if A is a finite-dimensional algebra and Be has finite representation type. Some conditions in terms of depth and QF property are given that ensure that the modular function of a Hopf algebra restricts to the modular function of a Hopf subalgebra. If A⊇B is a QF extension, minimum left and right even subring depths are shown to coincide. If A⊇B is a Frobenius extension with surjective Frobenius, homomorphism, its subring depth is shown to coincide with its tower depth. Formulas for the ring, module, Frobenius and Temperley-Lieb structures are noted for the tower over a Frobenius extension in its realization as tensor powers. A depth 3 QF extension is embedded in a depth 2 QF extension; in turn certain depth n extensions embed in depth 3 extensions if they are Frobenius extensions or other special ring extensions with ring structures on their relative Hochschild bar resolution groups.

  18. Power

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable....... It is thus a central point that power is not necessarily something that breaks down and represses. On the contrary, an explicit focus on the dynamics of power in relation to creativity can be productive for the organisation. Our main focus is to elaborate the implications of this for practice and theory...

  19. Multiple-scattering corrections to the Beer-Lambert law

    Zardecki, A.

    1983-01-01

    The effect of multiple scattering on the validity of the Beer-Lambert law is discussed for a wide range of particle-size parameters and optical depths. To predict the amount of received radiant power, appropriate correction terms are introduced. For particles larger than or comparable to the wavelength of radiation, the small-angle approximation is adequate; whereas for small densely packed particles, the diffusion theory is advantageously employed. These two approaches are used in the context of the problem of laser-beam propagation in a dense aerosol medium. In addition, preliminary results obtained by using a two-dimensional finite-element discrete-ordinates transport code are described. Multiple-scattering effects for laser propagation in fog, cloud, rain, and aerosol cloud are modeled

  20. Motivation with Depth.

    DiSpezio, Michael A.

    2000-01-01

    Presents an illusional arena by offering experience in optical illusions in which students must apply critical analysis to their innate information gathering systems. Introduces different types of depth illusions for students to experience. (ASK)

  1. Incoherent Thomson scattering as a diagnostic tool

    Barth, C. J.

    1998-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wavelength is much smaller than the plasma Debye length, the total scattered power is

  2. Depth sectioning using electron energy loss spectroscopy

    D'Alfonso, A J; Findlay, S D; Allen, L J; Cosgriff, E C; Kirkland, A I; Nellist, P D; Oxley, M P

    2008-01-01

    The continued development of electron probe aberration correctors for scanning transmission electron microscopy has enabled finer electron probes, allowing atomic resolution column-by-column electron energy loss spectroscopy. Finer electron probes have also led to a decrease in the probe depth of focus, facilitating optical slicing or depth sectioning of samples. The inclusion of post specimen aberration corrected image forming lenses allows for scanning confocal electron microscopy with further improved depth resolution and selectivity. We show that in both scanning transmission electron microscopy and scanning confocal electron microscopy geometries, by performing a three dimensional raster scan through a specimen and detecting electrons scattered with a characteristic energy loss, it will be possible to determine the location of isolated impurities embedded within the bulk.

  3. Depth resolved investigations of boron implanted silicon

    Sztucki, M.; Metzger, T. H.; Milita, S.; Berberich, F.; Schell, N.; Rouvière, J. L.; Patel, J.

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6×10 15 ions/cm -2 at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {1 1 1} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  4. Rattlesnake Mountain Observator (46.4{degrees}N, 119.6{degrees}W) multispectral optical depth measurements, 1979--1994

    Daniels, R.C. [ed.

    1995-09-22

    Surface measurements of solar irradiance of the atmosphere were made by a multipurpose computer-controlled scanning photometer at the Rattlesnake Mountain Observatory. The observatory is located at 46.4{degrees}N, 119.6{degrees}W at an elevation of 1088 m above mean sea level. The photometer measures the attenuation of direct solar radiation for different wavelengths using 12 filters. Five of these filters (ie., at 428 nm, 486 nm, 535 nm, 785 nm, and 1010 nm, with respective half-power widths of 2, 2, 3, 18, and 28 nm) are suitable for monitoring variations in the total optical depth of the atmosphere. Total optical depths for the five wavelength bands were derived from solar irradiance measurements taken at the observatory from August 5, 1979, to September 2, 1994; these total optical depth data are distributed with this numeric data package (NDP). To determine the contribution of atmospheric aerosols to the total optical depths, the effects of Rayleigh scattering and ozone absorption were subtracted (other molecular scattering was minimal for the five filters) to obtain total column aerosol optical depths. The total aerosol optical depths were further decomposed into tropospheric and stratospheric components by calculating a robustly smoothed mean background optical depth (tropospheric component) for each wavelength using data obtained during periods of low stratospheric aerosol loading. By subtracting the smoothed background tropospheric aerosol optical depths from the total aerosol optical depths, residual aerosol optical depths were obtained. These residuals are good estimates of the stratospheric aerosol optical depth at each wavelength and may be used to monitor the long-term effects of volcanic eruptions on the atmosphere. These data are available as an NDP from the Carbon Dioxide Information Analysis Center (CDIAC), and the NDP consists of this document and a set of computerized data files.

  5. Q-space analysis of scattering by particles: A review

    Sorensen, Christopher M.

    2013-01-01

    This review describes and demonstrates the Q-space analysis of light scattering by particles. This analysis involves plotting the scattered intensity versus the scattering wave vector q=(4π/λ)sin(θ/2) on a double log plot. The analysis uncovers power law descriptions of the scattering with length scale dependent crossovers between the power laws. It also systematically describes the magnitude of the scattering and the interference ripple structure that often underlies the power laws. It applies to scattering from dielectric spheres of arbitrary size and refractive index (Mie scattering), fractal aggregates and irregularly shaped particles such as dusts. The benefits of Q-space analysis are that it provides a simple and comprehensive description of scattering in terms of power laws with quantifiable exponents; it can be used to differentiate scattering by particles of different shapes, and it yields a physical understanding of scattering based on diffraction. -- Highlights: ► Angular scattering functions for spheres show power laws versus the wave vector q. ► The power laws uncover patterns involving length scales and functionalities. ► Similar power laws appear in scattering from aggregates and irregular particles. ► Power laws provide a comprehensive and quantitative description of scattering

  6. Measurements of analyzing power for 2H(n,n)2H scattering at 14.1 MeV and comparisons to 2H(p,p)2H

    Tornow, W.; Byrd, R.C.; Howell, C.R.; Pedroni, R.S.; Walter, R.L.

    1983-01-01

    Data for the analyzing power A/sub y/(theta) for elastic scattering of neutrons from deuterons have been measured at 14.1 MeV for the range from 30 0 to 153 0 (c.m.) to accuracies between +- 0.003 and +- 0.006. The results are compared to previous n-d data at 14 MeV and are in significant disagreement with the most recent measurement. The present data are in excellent agreement with a Faddeev calculation by Doleschall. The data are also very similar to p-d scattering data at 14.1 MeV, although systematic deviations are observed at forward angles and near the maximum of A/sub y/(theta) at 130 0 . Recent calculations indicate that Coulomb effects can explain most of these differences, although some features will require further investigation

  7. Material-independent modes for electromagnetic scattering

    Forestiere, Carlo; Miano, Giovanni

    2016-11-01

    In this Rapid Communication, we introduce a representation of the electromagnetic field for the analysis and synthesis of the full-wave scattering by a homogeneous dielectric object of arbitrary shape in terms of a set of eigenmodes independent of its permittivity. The expansion coefficients are rational functions of the permittivity. This approach naturally highlights the role of plasmonic and photonic modes in any scattering process and suggests a straightforward methodology to design the permittivity of the object to pursue a prescribed tailoring of the scattered field. We discuss in depth the application of the proposed approach to the analysis and design of the scattering properties of a dielectric sphere.

  8. Prestack depth migration

    Postma, R.W.

    1991-01-01

    Two lines form the southern North Sea, with known velocity inhomogeneities in the overburden, have been pre-stack depth migrated. The pre-stack depth migrations are compared with conventional processing, one with severe distortions and one with subtle distortions on the conventionally processed sections. The line with subtle distortions is also compared with post-stack depth migration. The results on both lines were very successful. Both have already influenced drilling decisions, and have caused a modification of structural interpretation in the respective areas. Wells have been drilled on each of the lines, and well tops confirm the results. In fact, conventional processing led to incorrect locations for the wells, both of which were dry holes. The depth migrated sections indicate the incorrect placement, and on one line reveals a much better drilling location. This paper reports that even though processing costs are high for pre-stack depth migration, appropriate use can save millions of dollars in dry-hole expense

  9. Elastic scattering

    Leader, Elliot

    1991-01-01

    With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees

  10. Neutron scattering

    1991-02-01

    The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research

  11. Scattering theory

    Friedrich, Harald

    2016-01-01

    This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...

  12. Radon depth migration

    Hildebrand, S.T.; Carroll, R.J.

    1993-01-01

    A depth migration method is presented that used Radon-transformed common-source seismograms as input. It is shown that the Radon depth migration method can be extended to spatially varying velocity depth models by using asymptotic ray theory (ART) to construct wavefield continuation operators. These operators downward continue an incident receiver-array plane wave and an assumed point-source wavefield into the subsurface. The migration velocity model is constrain to have longer characteristic wavelengths than the dominant source wavelength such that the ART approximations for the continuation operators are valid. This method is used successfully to migrate two synthetic data examples: (1) a point diffractor, and (2) a dipping layer and syncline interface model. It is shown that the Radon migration method has a computational advantage over the standard Kirchhoff migration method in that fewer rays are computed in a main memory implementation

  13. Measuring depth in boreholes

    Hodson, G.M.

    1979-01-01

    This invention relates to a method of determining the depth of rock strata and other features of a borehole. It may be employed with particular advantage when access to the top of the borehole is difficult, for example in underwater operations. A radioactive marker, such as a source of gamma rays, is positioned near the top of the riser of a sub-sea wellhead structure. A radiation detector is lowered between the marker and a radioactive stratum and the length of line supplied is measured on the floating platform. This enables the depth of the stratum to be measured irrespective of tidal variations of the height of the platform. (U.K.)

  14. MAGNETIC NEUTRON SCATTERING

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  15. Why bother about depth?

    Stæhr, Peter A.; Obrador, Biel; Christensen, Jesper Philip

    We present results from a newly developed method to determine depth specific rates of GPP, NEP and R using frequent automated profiles of DO and temperature. Metabolic rate calculations were made for three lakes of different trophic status using a diel DO methodology that integrates rates across...

  16. Defining depth of anesthesia.

    Shafer, S L; Stanski, D R

    2008-01-01

    In this chapter, drawn largely from the synthesis of material that we first presented in the sixth edition of Miller's Anesthesia, Chap 31 (Stanski and Shafer 2005; used by permission of the publisher), we have defined anesthetic depth as the probability of non-response to stimulation, calibrated against the strength of the stimulus, the difficulty of suppressing the response, and the drug-induced probability of non-responsiveness at defined effect site concentrations. This definition requires measurement of multiple different stimuli and responses at well-defined drug concentrations. There is no one stimulus and response measurement that will capture depth of anesthesia in a clinically or scientifically meaningful manner. The "clinical art" of anesthesia requires calibration of these observations of stimuli and responses (verbal responses, movement, tachycardia) against the dose and concentration of anesthetic drugs used to reduce the probability of response, constantly adjusting the administered dose to achieve the desired anesthetic depth. In our definition of "depth of anesthesia" we define the need for two components to create the anesthetic state: hypnosis created with drugs such as propofol or the inhalational anesthetics and analgesia created with the opioids or nitrous oxide. We demonstrate the scientific evidence that profound degrees of hypnosis in the absence of analgesia will not prevent the hemodynamic responses to profoundly noxious stimuli. Also, profound degrees of analgesia do not guarantee unconsciousness. However, the combination of hypnosis and analgesia suppresses hemodynamic response to noxious stimuli and guarantees unconsciousness.

  17. Analyzing-power measurements for 2H(n/sub pol/,n)2H scattering at 10 MeV compared to few-nucleon calculations and data for 2H(p/sub pol/,p)2H scattering

    Tornow, W.; Howell, C.R.; Byrd, R.C.; Pedroni, R.S.; Walter, R.L.

    1982-01-01

    The analyzing power A/sub y/(theta) for scattering of neutrons from deuterons at 10 MeV for 30 0 to 145 0 (c.m.) was measured to an accuracy better than +- 0.005. The results are compared to published p-d data at 10 MeV, and convincing differences are noted for the first time. These differences provide a sensitive test both of calculations for the three-nucleon system and, more importantly, of the fundamental nucleon-nucleon interaction

  18. Depth image enhancement using perceptual texture priors

    Bang, Duhyeon; Shim, Hyunjung

    2015-03-01

    A depth camera is widely used in various applications because it provides a depth image of the scene in real time. However, due to the limited power consumption, the depth camera presents severe noises, incapable of providing the high quality 3D data. Although the smoothness prior is often employed to subside the depth noise, it discards the geometric details so to degrade the distance resolution and hinder achieving the realism in 3D contents. In this paper, we propose a perceptual-based depth image enhancement technique that automatically recovers the depth details of various textures, using a statistical framework inspired by human mechanism of perceiving surface details by texture priors. We construct the database composed of the high quality normals. Based on the recent studies in human visual perception (HVP), we select the pattern density as a primary feature to classify textures. Upon the classification results, we match and substitute the noisy input normals with high quality normals in the database. As a result, our method provides the high quality depth image preserving the surface details. We expect that our work is effective to enhance the details of depth image from 3D sensors and to provide a high-fidelity virtual reality experience.

  19. Diffractive scattering

    De Wolf, E.A.

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken-x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wusthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed.

  20. Diffractive Scattering

    Wolf, E.A. de

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken - x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wuesthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed. (author)

  1. Scattering mechanisms in shallow undoped Si/SiGe quantum wells

    D. Laroche

    2015-10-01

    Full Text Available We report the magneto-transport study and scattering mechanism analysis of a series of increasingly shallow Si/SiGe quantum wells with depth ranging from ∼ 100 nm to ∼ 10 nm away from the heterostructure surface. The peak mobility increases with depth, suggesting that charge centers near the oxide/semiconductor interface are the dominant scattering source. The power-law exponent of the electron mobility versus density curve, μ ∝ nα, is extracted as a function of the depth of the Si quantum well. At intermediate densities, the power-law dependence is characterized by α ∼ 2.3. At the highest achievable densities in the quantum wells buried at intermediate depth, an exponent α ∼ 5 is observed. We propose and show by simulations that this increase in the mobility dependence on the density can be explained by a non-equilibrium model where trapped electrons smooth out the potential landscape seen by the two-dimensional electron gas.

  2. FIR-laser scattering for JT-60

    Itagaki, Tokiyoshi; Matoba, Tohru; Funahashi, Akimasa; Suzuki, Yasuo

    1977-09-01

    An ion Thomson scattering method with far infrared (FIR) laser has been studied for measuring the ion temperature in large tokamak JT-60 to be completed in 1981. Ion Thomson scattering has the advantage of measuring spatial variation of the ion temperature. The ion Thomson scattering in medium tokamak (PLT) and future large tokamak (JET) requires a FIR laser of several megawatts. Research and development of FIR high power pulse lasers with power up to 0.6 MW have proceeded in ion Thomson scattering for future high-temperature tokamaks. The FIR laser power will reach to the desired several megawatts in a few years, so JAERI plans to measure the ion temperature in JT-60 by ion Thomson scattering. A noise source of the ion Thomson scattering with 496 μm-CH 3 F laser is synchrotron radiation of which the power is similar to NEP of the Schottky-barrier diode. However, the synchrotron radiation power is one order smaller than that when a FIR laser is 385 μm-D 2 O laser. The FIR laser power corresponding to a signal to noise ratio of 1 is about 4 MW for CH 3 F laser, and 0.4 MW for D 2 O laser if NEP of the heterodyne mixer is one order less. A FIR laser scattering system for JT-60 should be realized with improvement of FIR laser power, NEP of heterodyne mixer and reduction of synchrotron radiation. (auth.)

  3. Chaotic scattering and quantum dynamics

    Doron, Eyal.

    1992-11-01

    The main concern of this thesis is the application of the semiclassical approximation to quantum chaotic scattering systems. We deal with two separate, although interconnected, subjects. The first subject dealt with is the semiclassical characterization of the fluctuations of the S matrix. A particular important parameter is the magnetic field B, and we show how the correlation length and line shape of S matrix elements under a change of B may be derived. An effect which is present in many physical wave systems is absorption of energy flux. We show how absorption affects both the reflectivity and the scattering phase and time delay of a scattering system. In the second part of the thesis, we show how the formalism and results obtained from chaotic scattering can be applied to the investigation of closed chaotic systems, and in particular to chaotic billiards. The semiclassical expansion for billiards is presented. In the last part of the thesis we deal with the statistics of S matrices of chaotic scattering systems. The main message of this work is that scattering matrix, and its classical counterpart the Poincare Scattering Map can be used to yield a powerful formulation of the quantum mechanical dynamics of bounded systems. (author)

  4. Effective inelastic scattering cross-sections for background analysis in HAXPES of deeply buried layers

    Risterucci, P., E-mail: paul.risterucci@gmail.com [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Université de Lyon, Institut des Nanotechnologies de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark); Renault, O., E-mail: olivier.renault@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Zborowski, C. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005, Paris (France); Université de Lyon, Institut des Nanotechnologies de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark); Bertrand, D.; Torres, A. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Rueff, J.-P. [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, BP 48 91192, Gif-sur-Yvette Cedex (France); Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005, Paris (France); Ceolin, D. [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, BP 48 91192, Gif-sur-Yvette Cedex (France); Grenet, G. [Université de Lyon, Institut des Nanotechnologies de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2017-04-30

    Highlights: • An effective approach for quantitative background analysis in HAXPES spectra of buried layer underneath complex overlayer structures is proposed. • The approach relies on using a weighted sum of inelastic scattering cross section of the pure layers. • The method is validated by the study of an advanced power transistor stack after successive annealing steps. • The depth distribution of crucial elements (Ti, Ga) is determined reliably at depths up to nearly 50 nm. - Abstract: Inelastic background analysis of HAXPES spectra was recently introduced as a powerful method to get access to the elemental distribution in deeply buried layers or interfaces, at depth up to 60 nm below the surface. However the accuracy of the analysis highly relies on suitable scattering cross-sections able to describe effectively the transport of photoelectrons through overlayer structures consisting of individual layers with potentially very different scattering properties. Here, we show that within Tougaard’s practical framework as implemented in the Quases-Analyze software, the photoelectron transport through thick (25–40 nm) multi-layer structures with widely different cross-sections can be reliably described with an effective cross-section in the form of a weighted sum of the individual cross-section of each layer. The high-resolution core-level analysis partly provides a guide for determining the nature of the individual cross-sections to be used. We illustrate this novel approach with the practical case of a top Al/Ti bilayer structure in an AlGaN/GaN power transistor device stack before and after sucessive annealing treatments. The analysis provides reliable insights on the Ti and Ga depth distributions up to nearly 50 nm below the surface.

  5. A comparison of mixing depths observed by ground-based wind profilers and an airborne lidar

    White, A.B.; Senff, C. [Univ. of Colorado/NOAA Environmental Technology Lab., Cooperative Inst. for Research in Environmental Sciences, Boulder, CO (United States); Banta, R.M. [NOAA Environmental Technology Lab., Boulder, CO (United States)

    1997-10-01

    The mixing depth is one of the most important parameters in air pollution studies because it determines the vertical extent of the `box` in which pollutants are mixed and dispersed. During the 1995 Southern Oxidants Study (SOS95), scientists from the National Oceanic and Atmospheric Administration Environmental Technology Laboratory (NOAA/ETL) deployed four 915-MHz boundary-layer radar/wind profilers (hereafter radars) in and around the Nashville, Tennessee metropolitan area. Scientists from NOAA/ETL also operated an ultraviolet differential absorption lidar (DIAL) onboard a CASA-212 aircraft. Profiles from radar and DIAL can be used to derive estimates of the mixing depth. The methods used for both instruments are similar in that they depend on information derived from the backscattered power. However, different scattering mechanisms for the radar and DIAL mean that different tracers of mixing depth are measured. In this paper we compare the mixing depth estimates obtained from the radar and DIAL and discuss the similarities and differences that occur. (au)

  6. Neutron scattering. Lectures

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  7. Coupling between minimum scattering antennas

    Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans

    1974-01-01

    Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed...

  8. Laser measure of sea salinity, temperature and turbidity in depth

    Hirschberg, J. G.; Wouters, A. W.; Byrne, J. D.

    1974-01-01

    A method is described in which a pulsed laser is used to probe the sea. Backscattered light is analyzed in time, intensity and wavelength. Tyndall, Raman and Brillouin scattering are used to obtain the backscatter turbidity, sound velocity, salinity, and the temperature as a function of depth.

  9. Shave-off depth profiling: Depth profiling with an absolute depth scale

    Nojima, M.; Maekawa, A.; Yamamoto, T.; Tomiyasu, B.; Sakamoto, T.; Owari, M.; Nihei, Y.

    2006-01-01

    Shave-off depth profiling provides profiling with an absolute depth scale. This method uses a focused ion beam (FIB) micro-machining process to provide the depth profile. We show that the shave-off depth profile of a particle reflected the spherical shape of the sample and signal intensities had no relationship to the depth. Through the introduction of FIB micro-sampling, the shave-off depth profiling of a dynamic random access memory (DRAM) tip was carried out. The shave-off profile agreed with a blue print from the manufacturing process. Finally, shave-off depth profiling is discussed with respect to resolutions and future directions

  10. Power-law index and penetration depth of (NdxSmxGd1−2x)Ba2Cu3O7−δ films studied by AC susceptibility

    Li, Xiaofen; He, Dong; Grivel, Jean-Claude

    2012-01-01

    Superconducting (NdxSmxGd1−2x)Ba2Cu3O7−δ films with x=0, 0.1, 0.25, 0.33 were grown by PLD on STO single crystal substrates. The power-law index n and penetration depth λ are studied by AC susceptibility. During cooling, n in films with x ≠ 0 increases much slower compared with the films with x =....... The films with x ≠ 0 also tend to have a longer penetration depth. These properties might be related to the higher possibility for disorder in the mixed (Nd,Sm,Gd)BCO films....

  11. Anomalous neutron scattering and feroelectric modes

    Viswanathan, K.S.

    1977-01-01

    It is suggested that anomalous neutron scattering could prove a powerful experimental tool in studying ferroelectric phase transition, the sublattice displacements of the soft modes as well as their symmetry characteristics. (author)

  12. Change of the high-latitude ionosphere during heating by a powerful short radio wave of the EISCAT/Heating complex according to signals of the GLONASS satellite and the incoherent scattering radar

    Tereshchenko E. D.

    2018-03-01

    Full Text Available Results of observations of variations of temperature, electron concentration and total electron content of the high-latitude region of the ionosphere during its modification by powerful short radio waves of the heating complex EISCAT/Heating (Tromsø, Norway according to signals of the GLONASS satellites and the incoherent scattering UHF EISCAT radar (Tromsø, Norway have been provided. The geometry of passes of the GLONASS and GPS satellites for operating conditions of the heating complex in Tromsø has been considered. It has been shown that during the experiments on the EISCAT/Heating complex for the study of the modified structure of the high-latitude ionosphere it is more convenient to use the GLONASS satellites. Parameters of orbits of these satellites allow researching changes of total electron content in the direction along the geomagnetic field line at the place of observation. It has been shown that during heating of the ionosphere by powerful short radio waves its structure is becoming an irregular one. Operation of the heating complex in the mode "switched on – switched off" has caused appearance of wavy variations of total electron content with the periods close to the heating period. The main features of behavior of the total electron content in the case of the continuous heating of the ionosphere in the direction of the magnetic zenith according to the GLONASS satellite are: reduction of total electron content in the central zone of the antenna diagram, i. e. in the direction of the magnetic zenith, and presence of the increased values of total electron content at the edges of the heating zone. According to the incoherent scattering radar the heating of the ionosphere by the powerful short radio wave has created the region of the increased electron temperature and electron concentration along the direction of the magnetic zenith. The behavior of total electron content according to the GLONASS satellite and the radar of

  13. Bidirectional optical scattering facility

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...

  14. Fatigue and damage tolerance scatter models

    Raikher, Veniamin L.

    1994-09-01

    Effective Total Fatigue Life and Crack Growth Scatter Models are proposed. The first of them is based on the power form of the Wohler curve, fatigue scatter dependence on mean life value, cycle stress ratio influence on fatigue scatter, and validated description of the mean stress influence on the mean fatigue life. The second uses in addition are fracture mechanics approach, assumption of initial damage existence, and Paris equation. Simple formulas are derived for configurations of models. A preliminary identification of the parameters of the models is fulfilled on the basis of experimental data. Some new and important results for fatigue and crack growth scatter characteristics are obtained.

  15. Hydrogen analysis depth calibration by CORTEO Monte-Carlo simulation

    Moser, M., E-mail: marcus.moser@unibw.de [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Fakultät für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Reichart, P.; Bergmaier, A.; Greubel, C. [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Fakultät für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany); Schiettekatte, F. [Université de Montréal, Département de Physique, Montréal, QC H3C 3J7 (Canada); Dollinger, G., E-mail: guenther.dollinger@unibw.de [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik LRT2, Fakultät für Luft- und Raumfahrttechnik, 85577 Neubiberg (Germany)

    2016-03-15

    Hydrogen imaging with sub-μm lateral resolution and sub-ppm sensitivity has become possible with coincident proton–proton (pp) scattering analysis (Reichart et al., 2004). Depth information is evaluated from the energy sum signal with respect to energy loss of both protons on their path through the sample. In first order, there is no angular dependence due to elastic scattering. In second order, a path length effect due to different energy loss on the paths of the protons causes an angular dependence of the energy sum. Therefore, the energy sum signal has to be de-convoluted depending on the matrix composition, i.e. mainly the atomic number Z, in order to get a depth calibrated hydrogen profile. Although the path effect can be calculated analytically in first order, multiple scattering effects lead to significant deviations in the depth profile. Hence, in our new approach, we use the CORTEO Monte-Carlo code (Schiettekatte, 2008) in order to calculate the depth of a coincidence event depending on the scattering angle. The code takes individual detector geometry into account. In this paper we show, that the code correctly reproduces measured pp-scattering energy spectra with roughness effects considered. With more than 100 μm thick Mylar-sandwich targets (Si, Fe, Ge) we demonstrate the deconvolution of the energy spectra on our current multistrip detector at the microprobe SNAKE at the Munich tandem accelerator lab. As a result, hydrogen profiles can be evaluated with an accuracy in depth of about 1% of the sample thickness.

  16. Seed drill instrumentation for spatial coulter depth measurements

    Kirkegaard Nielsen, Søren; Munkholm, Lars Juhl; Lamandé, Mathieu

    2017-01-01

    coulter depth varied up to ±5 mm between the blocks. In addition, significant depth variations between the individual coulters were found. The mean depths varied between −14.2 and −25.9 mm for the eleven coulters. The mean shallowest coulter depth (−14.2 mm) was measured for the coulter running...... in the wheel track of the tractor. The power spectral densities (distribution) of the coulter depth oscillation frequencies showed that the majority of oscillations occurred below 0.5 Hz without any natural vibration frequency. The study concluded that the instrumentation concept was functional for on...

  17. A simple formula for depth dose calculation for Co-60 teletherapy beam dosimetry

    Tripathi, U.B.; Kelkar, N.Y.

    1979-01-01

    Knowledge of dose at all points of interest in the plane of tumour is essential for treatment planning. A very simple formula for scatter dose calculation along the central axis of a Co-60 beam has been derived. This formula uses primary dose at depth d, scatter air ratio at the depth of maximum ionisation and the effective depth of the volume, irradiating the medium. The method for calculation of percentage depth dose at any point in the principal plane has been explained in detail. The simple form of the formulation will help in improving the treatment plans for treatments of lesions using Co-60 teletherapy machines. (orig.) [de

  18. The enhancement of thermoelectric power and scattering of carriers in Bi{sub 2{minus}x}Sn{sub x}Te{sub 3} single crystals

    Kulbachinskii, V A; Negishi, H; Sasaki, M; Giman, Y; Inoue, M

    1997-07-01

    Thermoelectric power, electrical resistivity, and Hall effect of p-type Bi{sub 2{minus}x}Sn{sub x}Te{sub 3} (0 < x < 0.03) singlecrystals have been measured in the temperature range 4.2--300K. By doping of Sn atoms into the host Bi{sub 2}Te{sub 3} lattice, the enhancement in the thermoelectric power is observed in the intermediate temperature range 30--150K for x {le} 0,0075. The activation type behavior of Hall coefficient and resistivity are found which corresponds to the Sn-induced impurity band located above the second lower valence band.

  19. Commercial applications of neutron scattering

    Hutchings, M.T.

    1993-01-01

    The fact that industry is now willing to pay the full commercial cost for certain neutron scattering experiments aimed at solving its urgent materials - related problems is a true testimony to the usefulness of neutrons as microscopic probes. This paper gives examples of such use of three techniques drawn mainly from our experience at AEA Technology Harwell Laboratory. These are diffraction to measure residual stress, small angle neutron scattering to examine hardening precipitates in ferritic steels brought about by irradiation, and reflectivity to study amorphous diamond layers deposited on silicon. In most cases it is the penetrative power of the neutron which proves to be its best asset for commercial industrial applicaitons. (author)

  20. Thomson scattering if FIR radiation

    Evans, D.E.

    1976-12-01

    The frequency spectrum of radiation scattered by collective density fluctuations of electrons in a hot plasma is influenced by ion and electron temperatures, impurity concentration and plasma effective charge, magnetic field, and the level of microturbulence. A pulsed laser suitable for measuring collective scattering in a tokamak will have infrared wavelength, power of the order of MWs and bandwidth of a few 10s of MHz. The extent to which these conditions can be met by optically pumped submillimetre lasers, including narrow band oscillators, amplifiers and superradiance - injection assemblies operated in CH 3 F and D 2 O, under development at the Culham Laboratory, is discussed. (author)

  1. Institutional Strength in Depth

    Weightman, M.

    2016-01-01

    Much work has been undertaken in order to identify, learn and implement the lessons from the TEPCO Fukushima Daiichi nuclear accident. These have mainly targeted on engineering or operational lessons. Less attention has been paid to the institutional lessons, although there have been some measures to improve individual peer reviews, particularly by the World Association of Nuclear Operators, and the authoritative IAEA report published in 2015 brought forward several important lessons for regulators and advocated a system approach. The report noted that one of the contributing factors the accident was the tendency of stakeholders not to challenge. Additionally, it reported deficiencies in the regulatory authority and system. Earlier, the root cause of the accident was identified by a Japanese independent parliamentary report as being cultural and institutional. The sum total of the institutions, the safety system, was ineffective. While it is important to address the many technical and operational lessons these may not necessary address this more fundamental lesson, and may not serve to provide robust defences against human or institutional failings over a wide variety of possible events and combinations. The overall lesson is that we can have rigorous and comprehensive safety standards and other tools in place to deliver high levels of safety, but ultimately what is important is the ability of the nuclear safety system to ensure that the relevant institutions diligently and effectively apply those standards and tools — to be robust and resilient. This has led to the consideration of applying the principles of the strength in depth philosophy to a nuclear safety system as a way of providing a framework for developing, assessing, reviewing and improving the system. At an IAEA conference in October 2013, a model was presented for a robust national nuclear safety system based on strength in depth philosophy. The model highlighted three main layers: industry, the

  2. Offshore Wind Technology Depth Zones

    National Oceanic and Atmospheric Administration, Department of Commerce — Coastal bathymetric depth, measured in meters at depth values of: -30, -60, -900 Shallow Zone (0-30m): Technology has been demonstrated on a commercial scale at...

  3. Narrow nuclear resonance profiling of Al with subnanometric depth resolution

    Rosa, E.B.O. da; Krug, C.; Stedile, F.C.; Morais, J.; Baumvol, I.J.R.

    2002-01-01

    We report on the use of the narrow and isolated resonance at 404.9 keV in the cross-section curve of the 27 Al(p,γ) 28 Si nuclear reaction for profiling Al in ultrathin aluminum oxide films on Si. The samples were characterized as-deposited and after thermal annealing, so that Al transport could be studied. An estimated depth resolution of approximately 0.4 nm near the surface of the films could be obtained owing to: (i) the very small resonance width; (ii) the high stopping power of Al 2 O 3 for 404.9 keV protons; (iii) the high energy stability of the proton beam provided by the 500 kV HVEE ion implanter at Porto Alegre; and (iv) an apparent thickness magnification by a factor between 2.0 and 2.4 with the use of glancing incidence. This technique is compared to other methods for Al profiling like medium energy ion scattering and some sputtering-based techniques

  4. Movable Thomson scattering system based on optical fiber (TS-probe)

    Narihara, K.; Hayashi, H.

    2009-01-01

    This paper proposes a movable compact Thomson scattering (TS) system based on optical fibers (TS-probe). A TS-probe consists of a probe head, optical fiber, a laser-diode, polychromators and lock-in amplifiers. A laser beam optics and light collection optics are mounted rigidly on a probe head with a fixed scattering position. Laser light and scattered light are transmitted by flexible optical fibers, enabling us to move the TS-prove head freely during plasma discharge. The light signal scattered from an amplitude-modulated laser is detected against the plasma light based on the principle of the lock-in amplifier. With a modulated laser power of 300W, the scattered signal from a sheet plasma of 15 mm depth and n e -10 19 m -3 will be measured with 10% accuracy by setting the integrating time to 0.1 s. The TS-probe head is like a 1/20 model of the currently operating LHD-TS. (author)

  5. Depth-resolved ballistic imaging in a low-depth-of-field optical Kerr gated imaging system

    Zheng, Yipeng; Tan, Wenjiang, E-mail: tanwenjiang@mail.xjtu.edu.cn; Si, Jinhai; Ren, YuHu; Xu, Shichao; Hou, Xun [Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xianning-xilu 28, Xi' an 710049 (China); Tong, Junyi [Departments of Applied Physics, Xi' an University of Technology, Xi' an 710048 (China)

    2016-09-07

    We demonstrate depth-resolved imaging in a ballistic imaging system, in which a heterodyned femtosecond optical Kerr gate is introduced to extract useful imaging photons for detecting an object hidden in turbid media and a compound lens is proposed to ensure both the depth-resolved imaging capability and the long working distance. Two objects of about 15-μm widths hidden in a polystyrene-sphere suspension have been successfully imaged with approximately 600-μm depth resolution. Modulation-transfer-function curves with the object in and away from the object plane have also been measured to confirm the depth-resolved imaging capability of the low-depth-of-field (low-DOF) ballistic imaging system. This imaging approach shows potential for application in research of the internal structure of highly scattering fuel spray.

  6. Atmospheric scattering corrections to solar radiometry

    Box, M.A.; Deepak, A.

    1979-01-01

    Whenever a solar radiometer is used to measure direct solar radiation, some diffuse sky radiation invariably enters the detector's field of view along with the direct beam. Therefore, the atmospheric optical depth obtained by the use of Bouguer's transmission law (also called Beer-Lambert's law), that is valid only for direct radiation, needs to be corrected by taking account of the scattered radiation. In this paper we shall discuss the correction factors needed to account for the diffuse (i.e., singly and multiply scattered) radiation and the algorithms developed for retrieving aerosol size distribution from such measurements. For a radiometer with a small field of view (half-cone angle 0 ) and relatively clear skies (optical depths <0.4), it is shown that the total diffuse contributions represents approximately l% of the total intensity. It is assumed here that the main contributions to the diffuse radiation within the detector's view cone are due to single scattering by molecules and aerosols and multiple scattering by molecules alone, aerosol multiple scattering contributions being treated as negligibly small. The theory and the numerical results discussed in this paper will be helpful not only in making corrections to the measured optical depth data but also in designing improved solar radiometers

  7. Depth protection system

    Arita, Setsuo; Izumi, Shigeru; Suzuki, Satoru; Noguchi, Atomi.

    1988-01-01

    Purpose: To previously set a nuclear reactor toward safety side by the reactor scram if an emergency core cooling system is failed to operate. Constitution If abnormality occurs in an emergency core cooling system or an aqueous boric acid injection system, a reactor protection system is operated and, if the reactor protection system shows an abnormal state, a control rod withdrawal inhibition system is operated as a fundamental way. For instance, when the driving power source voltage for the emergency core cooling system is detected and, if it is lower than a predetermined value, the reactor protection system is operated. Alternatively, if the voltage goes lower than the predetermined value, the control rod withdrawal is inhibited. In addition, stopping for the feedwater system is inhibited. Further, integrity of the driving means for the emergency core cooling system is positively checked and the protection function is operated depending on the result of check. Since the nuclear reactor can be set toward the safety side even if the voltage for the driving power source of the aqueous boric acid injection system is lower than a predetermined value, the reactor safety can further be improved. (Horiuchi, T.)

  8. Neutron scattering. Lectures

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  9. Neutron scattering. Lectures

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2013-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  10. Neutron scattering. Lectures

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  11. Crack-depth effects in the cylindrically guided wave technique for bolt and pump-shaft inspections

    Tsai, Y.M.; Liu, S.N.; Light, G.M.

    1991-01-01

    Nuclear power plants have experienced the failures of bolts and pump shafts. The industry is concerned about nondestructive evaluation (NDE) techniques that can be applied to these components. The cylindrically guided wave technique (CGWT) has been developed to detect the simulated circumferential defects in long bolts and studs. The ultrasonic CGWT employs the zero-degree longitudinal waves constrained to travel within the boundary of the components with cylindrical shape during inspection. When longitudinal waves are guided to travel along a cylinder, and impinge onto a circumferential defect, the waves are scattered at the crack on the cylinder surface. In this work, the wave scattering at the circumferential crack on a long cylinder is investigated. The transfer factor of the scattered waves is calculated for a wide range of frequency spectra. The scattered waveform at a distance away from a crack is calculated. The effect that crack depth exerts to the waveform in CGWT is shown. CGWT signals, waveform calculation and so on are reported. (K.I.)

  12. Scattering of Lamb waves in a composite plate

    Bratton, Robert; Datta, Subhendu; Shah, Arvind

    1991-01-01

    A combined analytical and finite element technique is developed to gain a better understanding of the scattering of elastic waves by defects. This hybrid method is capable of predicting scattered displacements from arbitrary shaped defects as well as inclusions of different material. The continuity of traction and displacements at the boundaries of the two areas provided the necessary equations to find the nodal displacements and expansion coefficients. Results clearly illustrate the influence of increasing crack depth on the scattered signal.

  13. Neutron scattering. Lectures

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  14. Neutron scattering. Lectures

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  15. Power station for producing hydrogen and oxygen under pressure by electrolysis of water at great depth, then transformation into energy by propulsion of the two gases and combustion of their mixture

    Imberteche, R.J.

    1974-01-01

    A description is given of water distillation and electric power accumulation systems. First, by modifying the gas exhaust orifice of the reactor, the steam emerging from it is recovered, transformed into water and its properties used. Second, the power station's possibility of accumulating energy and releasing it as desired is employed [fr

  16. Enhanced photoelectric performance in self-powered UV detectors based on ZnO nanowires with plasmonic Au nanoparticles scattered electrolyte

    Zeng, Yiyu; Ye, Zhizhen; Lu, Bin; Dai, Wei; Pan, Xinhua

    2016-04-01

    Vertically aligned ZnO nanowires (NWs) were grown on a fluorine-doped tin-oxide-coated glass substrate by a hydrothermal method. Au nanoparticles were well dispersed in the mixed solution of ethanol and deionized water. A simple self-powered ultraviolet detector based on solid-liquid heterojunction was fabricated, utilizing ZnO NWs as active photoanode and such prepared mixed solution as electrolyte. The introduction of Au nanoparticles results in considerable improvements in the responsivity and sensitivity of the device compared with the one using deionized water as electrolyte, which is attributed to the enhanced light harvesting by Au nanoparticles.

  17. Differences in the analyzing powers of p-d and n-d elastic scattering data as possible evidence of charge symmetry breaking

    Vlahovic, B.; Soldi, A.

    1993-01-01

    The differences between the n-d and the p-d analyzing powers lend themselves to investigate Coulomb and charge symmetry breaking effects in the nucleon-nucleon interaction. We examine these differences over a range of angles, bracketing the Λ y maximum around 120 degrees, for energies from 3 to 14 MeV. We conclude that a correction of the data to account for the slowing down of tile proton under the Coulomb affect does not account for these differences and this suggests that charge symmetry breaking effect are possibly responsible

  18. Scatterings and Quantum Effects in (Al ,In )N /GaN Heterostructures for High-Power and High-Frequency Electronics

    Wang, Leizhi; Yin, Ming; Khan, Asif; Muhtadi, Sakib; Asif, Fatima; Choi, Eun Sang; Datta, Timir

    2018-02-01

    Charge transport in the wide-band-gap (Al ,In )N /GaN heterostructures with high carrier density approximately 2 ×1013 cm-2 is investigated over a large range of temperature (270 mK ≤T ≤280 K ) and magnetic field (0 ≤B ≤18 T ). We observe the first evidence of weak localization in the two-dimensional electron gas in this system. From the Shubnikov-de Haas (SdH) oscillations a relatively light effective mass of 0.23 me is determined. Furthermore, the linear dependence with temperature (T power and high-frequency electronics.

  19. Defence in depth perspectives

    Veneau, Tania; Ferrier, Agnes; Barbaud, Jean

    2017-01-01

    The Defence in Depth (DiD) concept was introduced to the field of nuclear safety in the sixties and early seventies. Even though it was not well developed at the beginning, the principles rapidly became close to those currently used. The concept was then composed of 3 levels, and was already associated with operating conditions. These principles have progressed over time and now there are five levels, including progressively situations issued from design extension conditions, to cope with severe accidents and dealing with accident management off-site. Indeed, human and organizational features are considered as a part of the safety provisions at all levels in an integrated approach that is not just related to reactor design. That's the current vision from IAEA, addressed first in INSAG 3 then in INSAG 10, and in the IAEA standards requirements currently addressed by SSR-2/1 superseding NS-R-1). These five levels of DiD are also referred to in other texts including WENRA documents in Europe, but also in the national requirements from different countries. Thus, the application of DiD principle has become a recognized international practice. The 2011 Fukushima Daiichi accidents, even if they raised many questions on nuclear safety issues, confirmed the merits of the DiD concept. Indeed, lessons learned from the accidents have reinforced the use of the DiD concept to ensure adequate safety. The discussions focused more on the implementation of the concept (how it has been or can be used in practice) than the concept itself, and in particular on the following subjects: the notion of level robustness, generally addressed separately from the levels definition, but playing an important role for the efficiency of the concept; the notion of levels independence and the need for strengthening them; the role of diversity to achieve levels independence. However, a prescription of additional diversity and independence across all safety levels could result in inappropriately

  20. Scattering Solar Thermal Concentrators

    Giebink, Noel C. [Pennsylvania State Univ., State College, PA (United States)

    2015-01-31

    concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.

  1. Analysis of multiple scattering effects in optical Doppler tomography

    Yura, H.T.; Thrane, L.; Andersen, Peter E.

    2005-01-01

    Optical Doppler tomography (ODT) combines Doppler velocimetry and optical coherence tomography (OCT) to obtain high-resolution cross-sectional imaging of particle flow velocity in scattering media such as the human retina and skin. Here, we present the results of a theoretical analysis of ODT where...... multiple scattering effects are included. The purpose of this analysis is to determine how multiple scattering affects the estimation of the depth-resolved localized flow velocity. Depth-resolved velocity estimates are obtained directly from the corresponding mean or standard deviation of the observed...

  2. Calculated depth-dose distributions for H+ and He+ beams in liquid water

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2009-01-01

    We have calculated the dose distribution delivered by proton and helium beams in liquid water as a function of the target-depth, for incident energies in the range 0.5-10 MeV/u. The motion of the projectiles through the stopping medium is simulated by a code that combines Monte Carlo and a finite differences algorithm to consider the electronic stopping power, evaluated in the dielectric framework, and the multiple nuclear scattering with the target nuclei. Changes in projectile charge-state are taken into account dynamically as it moves through the target. We use the MELF-GOS model to describe the energy loss function of liquid water, obtaining a value of 79.4 eV for its mean excitation energy. Our calculated stopping powers and depth-dose distributions are compared with those obtained using other methods to describe the energy loss function of liquid water, such as the extended Drude and the Penn models, as well as with the prediction of the SRIM code and the tables of ICRU.

  3. Evaluation of Depth of Field for depth perception in DVR

    Grosset, A.V.Pascal; Schott, Mathias; Bonneau, Georges-Pierre; Hansen, Charles D.

    2013-01-01

    In this paper we present a user study on the use of Depth of Field for depth perception in Direct Volume Rendering. Direct Volume Rendering with Phong shading and perspective projection is used as the baseline. Depth of Field is then added to see its impact on the correct perception of ordinal depth. Accuracy and response time are used as the metrics to evaluate the usefulness of Depth of Field. The onsite user study has two parts: static and dynamic. Eye tracking is used to monitor the gaze of the subjects. From our results we see that though Depth of Field does not act as a proper depth cue in all conditions, it can be used to reinforce the perception of which feature is in front of the other. The best results (high accuracy & fast response time) for correct perception of ordinal depth occurs when the front feature (out of the two features users were to choose from) is in focus and perspective projection is used. © 2013 IEEE.

  4. Evaluation of Depth of Field for depth perception in DVR

    Grosset, A.V.Pascal

    2013-02-01

    In this paper we present a user study on the use of Depth of Field for depth perception in Direct Volume Rendering. Direct Volume Rendering with Phong shading and perspective projection is used as the baseline. Depth of Field is then added to see its impact on the correct perception of ordinal depth. Accuracy and response time are used as the metrics to evaluate the usefulness of Depth of Field. The onsite user study has two parts: static and dynamic. Eye tracking is used to monitor the gaze of the subjects. From our results we see that though Depth of Field does not act as a proper depth cue in all conditions, it can be used to reinforce the perception of which feature is in front of the other. The best results (high accuracy & fast response time) for correct perception of ordinal depth occurs when the front feature (out of the two features users were to choose from) is in focus and perspective projection is used. © 2013 IEEE.

  5. Electron scattering by trapped fermionic atoms

    Wang Haijun; Jhe, Wonho

    2002-01-01

    Considering the Fermi gases of alkali-metal atoms that are trapped in a harmonic potential, we study theoretically the elastic and inelastic scattering of the electrons by the trapped Fermi atoms and present the corresponding differential cross sections. We also obtain the stopping power for the cases that the electronic state as well as the center-of-mass state are excited both separately and simultaneously. It is shown that the elastic scattering process is no longer coherent in contrast to the electron scattering by the atomic Bose-Einstein condensate (BEC). For the inelastic scattering process, on the other hand, the differential cross section is found to be proportional to the 2/3 power of the number of the trapped atoms. In particular, the trapped fermionic atoms display the effect of ''Fermi surface,'' that is, only the energy levels near the Fermi energy have dominant contributions to the scattering process. Moreover, it is found that the stopping power scales as the 7/6 power of the atomic number. These results are fundamentally different from those of the electron scattering by the atomic BEC, mainly due to the different statistics obeyed by the trapped atomic systems

  6. Scattering and multiple scattering in disordered materials

    Weaver, R.L.; Butler, W.H.

    1992-01-01

    The papers in this section were presented at a joint session of symposium V on Applications of Multiple Scattering Theory and of Symposium P on Disordered Systems. They show that the ideas of scattering theory can help us to understand a very broad class of phenomena

  7. Neutron scattering from fractals

    Kjems, Jørgen; Freltoft, T.; Richter, D.

    1986-01-01

    The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...

  8. Scatter from optical components

    Stover, J.C.

    1989-01-01

    This book is covered under the following topics: measurement and analysis techniques; BRDF standards, comparisons, and anomalies; scatter measurement of several materials; scatter from contaminations; and optical system contamination: effects, measurement, and control

  9. Depth dependent stress revealed by aftershocks

    Narteau, C.; Shebalin, P.

    2017-12-01

    Aftershocks occur in response to perturbations of the state of stress induced either by earthquakes or human activities. Along major strike-slip fault segments of the San Andreas fault system, the time-delay before the onset of the power-law aftershock decay rate (the c-value) varies by three orders of magnitude in the first twenty kilometers below the surface. Despite the influence of the lithostatic stress, there is no continuous change in c-value with respect to depth. Instead, two decay phases are separated by an abrupt increase at an intermediate depth range of 2 to 5 km. This transitional regime is the only one observed in fluid-injection-induced seismic areas. This provides strong evidence for the role of fluid and a porosity reduction mechanism at depth of few kilometers in active fault zones. Aftershock statistics can then be used to predict the evolution the differential shear stress with depth until the brittle-ductile transition is reached.

  10. Development of hot water utilizing power plants in fiscal 1999. Development of technology to collect geothermal resources in great depths/Development of technology to excavate geothermal resources in great depths (Designing whole development); 1999 nendo nessui riyo hatsuden plant nado kaihatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen kussaku gijutsu no kaihatsu (zentai kaihatsu sekkei)

    NONE

    2000-03-01

    Technological development has been made on excavation of geothermal wells, which are dense, hard, and high in temperature and pressure, in developing geothermal resources in great depths. This paper summarizes the achievements in fiscal 1999. This fiscal year has performed the excavation test using an actual well to verify the reliability in practical use of the developed heat-resistant and durable bit. The test was executed by using a bit with a diameter of 8-1/2 inches in a ground bet having a maximum temperature of 300 degrees C in the Yamakawa geothermal field. As a result, good site evaluation was obtained that the wear and tear after lift-up showed no problems, and sufficient performance was verified in the drilling rate and durability. In addition, the low specific gravity cement for high temperature use that has been newly developed was given a cement mixing test to identify its workability at site and hardening properties, at a test well with a temperature of about 40 degrees C in the Okiri geothermal field. The actual well test was performed in a large-scale lost water occurred in a return well during an excavation by Nittestu-Kagoshima Geothermal Company. Effects were recognized in measures to prevent water loss. (NEDO)

  11. Impeller Submergence Depth for Stirred Tanks

    Thiyam T. Devi

    2011-11-01

    Full Text Available Impeller submergence governs the performance of mixing tanks employed in oxygen transfer operation. Present work experimentally investigates the effect of impeller submergence depths on oxygen transfer and corresponding power consumption. It has been found that at higher range of impeller submergence, mixing tanks consume less power and gives higher values of oxygen transfer coefficient. Optimal range of submergence depth is 0.7 to 0.9 times the impeller diameter. Copyright ©2011 BCREC UNDIP. All rights reserved.(Received: 4th March 2011; Revised: 12nd July 2011; Accepted: 14th July 2011[How to Cite: T.T. Devi, A.P. Sinha, M. Thakre, and B. Kumar. (2011. Impeller Submergence Depth for Stirred Tanks. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 123-128. doi:10.9767/bcrec.6.2.826.123-128][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.826.123-128 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/826] | View in 

  12. Electron scattering from tetrahydrofuran

    Fuss, M C; Sanz, A G; García, G; Muñoz, A; Oller, J C; Blanco, F; Do, T P T; Brunger, M J; Almeida, D; Limão-Vieira, P

    2012-01-01

    Electron scattering from Tetrahydrofuran (C 4 H 8 O) was investigated over a wide range of energies. Following a mixed experimental and theoretical approach, total scattering, elastic scattering and ionization cross sections as well as electron energy loss distributions were obtained.

  13. Neutron-proton scattering

    Doll, P.

    1990-02-01

    Neutron-proton scattering as fundamental interaction process below and above hundred MeV is discussed. Quark model inspired interactions and phenomenological potential models are described. The seminar also indicates the experimental improvements for achieving new precise scattering data. Concluding remarks indicate the relevance of nucleon-nucleon scattering results to finite nuclei. (orig.) [de

  14. Neutron Scattering Software

    Home Page | Facilities | Reference | Software | Conferences | Announcements | Mailing Lists Neutron Scattering Banner Neutron Scattering Software A new portal for neutron scattering has just been established sets KUPLOT: data plotting and fitting software ILL/TAS: Matlab probrams for analyzing triple axis data

  15. Magnetic photon scattering

    Lovesey, S.W.

    1987-05-01

    The report reviews, at an introductory level, the theory of photon scattering from condensed matter. Magnetic scattering, which arises from first-order relativistic corrections to the Thomson scattering amplitude, is treated in detail and related to the corresponding interaction in the magnetic neutron diffraction amplitude. (author)

  16. Polarized Neutron Scattering

    Roessli, B.; Böni, P.

    2000-01-01

    The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.

  17. Hard scattering and gauge/string duality

    Polchinski, Joseph; Strassler, Matthew J.

    2002-01-01

    We consider high-energy fixed-angle scattering of glueballs in confining gauge theories that have supergravity duals. Although the effective description is in terms of the scattering of strings, we find that the amplitudes are hard (power law). This is a consequence of the warped geometry of the dual theory, which has the effect that in an inertial frame the string process is never in the soft regime. At small angle we find hard and Regge behaviors in different kinematic regions

  18. Small-angle neutron-scattering experiments

    Hardy, A.D.; Thomas, M.W.; Rouse, K.D.

    1981-04-01

    A brief introduction to the technique of small-angle neutron scattering is given. The layout and operation of the small-angle scattering spectrometer, mounted on the AERE PLUTO reactor, is also described. Results obtained using the spectrometer are presented for three materials (doped uranium dioxide, Magnox cladding and nitrided steel) of interest to Springfields Nuclear Power Development Laboratories. The results obtained are discussed in relation to other known data for these materials. (author)

  19. A triple spectrograph system for low stray light Thomson scattering measurements

    Sande, van de M.J.; Mullen, van der J.J.A.M.

    2001-01-01

    Thomson scattering is scattering of photons by the electrons in a plasma. From the scattering spectrum, the electron temperature and density (Te, ne) of the plasma can be deduced. In the past decade, the development of high power lasers and sensitive detection devices has made Thomson scattering a

  20. Seismic scatterers in the mid-lower mantle beneath Tonga-Fiji

    Kaneshima, Satoshi

    2018-01-01

    We analyze deep and intermediate-depth earthquakes at the Tonga-Fiji region in order to reveal the distribution of scattering objects in the mid-lower mantle. By array processing waveform data recorded at regional seismograph stations in the US, Alaska, and Japan, we investigate S-to-P scattering waves in the P coda, which arise from kilometer-scale chemically distinct objects in the mid-lower mantle beneath Tonga-Fiji. With ten scatterers previously reported by the author included, twenty-three mid-lower mantle scatterers have been detected below 900 km depth, while scatterers deeper than 1900 km have not been identified. Strong mid-lower mantle S-to-P scattering most frequently occurs at the scatterers located within a depth range between 1400 km and 1600 km. The number of scatterers decreases below 1600 km depth, and the deeper objects tend to be weaker. The scatterer distribution may reflect diminishing elastic anomalies of basaltic rocks with depth relative to the surrounding mantle rocks, which mineral physics has predicted to occur. The predominant occurrence of strong S-to-P scattering waves within a narrow depth range may reflect significant reduction of rigidity due to the ferro-elastic transformation of stishovite in basaltic rocks. Very large signals associated with mid-mantle scatterers are observed only for a small portion of the entire earthquake-array pairs. Such infrequent observations of large scattering signals, combined with quite large event-to-event differences in the scattering intensity for each scatterer, suggest both that the strong arrivals approximately represent ray theoretical S-to-P converted waves at objects with a plane geometry. The plane portions of the strong scatterers may often dip steeply, with the size exceeding 100 km. For a few strong scatterers, the range of receivers showing clear scattered waves varies substantially from earthquake-array pair to pair. Some of the scatterers are also observed at different arrays that have

  1. Millimeter wave scattering off a whistler wave in a tokamak

    Sawhney, B.K.; Singh, S.V.; Tripathi, V.K.

    1994-01-01

    Obliquely propagating whistler waves through a plasma cause density perturbations. A high frequency electromagnetic wave sent into such a perturbed region suffers scattering. The process can be used as a diagnostics for whistler. We have developed a theory of electromagnetic wave scattering in a tokamak where density profile is taken a parabolic. Numerical calculations have been carried out to evaluate the ratio of the power of the scattered electromagnetic wave to that of the incident electromagnetic wave. The scattered power decreases with the frequency of the incident electromagnetic wave. For typical parameters, the ratio of the power of the scattered to the incident electromagnetic wave comes out to be of the order of 10 -4 at a scattering angle of 3 which can be detected. (author). 2 refs, 1 fig

  2. Hermite scatterers in an ultraviolet sky

    Parker, Kevin J.

    2017-12-01

    The scattering from spherical inhomogeneities has been a major historical topic in acoustics, optics, and electromagnetics and the phenomenon shapes our perception of the world including the blue sky. The long wavelength limit of ;Rayleigh scattering; is characterized by intensity proportional to k4 (or λ-4) where k is the wavenumber and λ is the wavelength. With the advance of nanotechnology, it is possible to produce scatterers that are inhomogeneous with material properties that are functions of radius r, such as concentric shells. We demonstrate that with proper choice of material properties linked to the Hermite polynomials in r, scatterers can have long wavelength scattering behavior of higher powers: k8, k16, and higher. These ;Hermite scatterers; could be useful in providing unique signatures (or colors) to regions where they are present. If suspended in air under white light, the back-scattered spectrum would be shifted from blue towards violet and then ultraviolet as the higher order Hermite scatterers were illuminated.

  3. Measurement of the analysing power T20 in the backward elastic scattering d-vector.p in the region of Δ-excitation and theoretical analysis of this reaction

    Boudard, A.

    1984-03-01

    We have measured the analysing power T 20 in the backward elastic scattering d.p for 16 energies of the deuteron from 300 MeV to 2300 MeV. This is the region of the observed bump in the backward excitation function of the cross section. This bump is usually thought to be a signature of a Δ(3/2,3/2 + ) dynamically excited in the intermediate state. We have also measured Ay and Ayy from 70 0 to 180 0 for Tsub(d) = 1200 MeV. We have compared both T 20 and the backward cross section with a coherent sum between direct neutron exchange (ONT) and Δ excitation by intermediate exchange of π and rho mesons (TME). The overall shape of the cross section is reproduced. Unlike the earlier measurement from Argonne, there is a deep minimum in T 20 at Tsub(d) = 600 MeV, in agreement with the predictions of direct exchange models. However, an additional structure producing a second minimum at Tsub(d) = 1400 MeV (√S = 3240 MeV) is never reproduced by our calculations. This suggests either that refinements in the Δ treatment are needed or that a new reaction mechanism (resonance) takes place in that region [fr

  4. Accident management-defence in depth in Indian PHWRS

    Jagannad, V.B.L.; Reddy, V.V.; Hajela, Sameer; Bhatia, C.M.; Nair, Suma

    2015-01-01

    Defence in Depth (DiD) is the established safety principle for the design of Nuclear Power Plants (NPPs). Accident at Fukushima Dai-ichi had highlighted the importance of provisions at Level-4 and 5 of DiD. Post Fukushima accident, on-site measures have been strengthened for Indian Nuclear Power Plants. On procedural front, Accident Management Guidelines have been introduced to handle events more severe than design basis accidents. This paper elaborates enhancement of Defence in Depth provisions for Indian Nuclear Power Plants. (author)

  5. Magnetic X-Ray Scattering with Synchrotron Radiation

    Moncton, D. E.; Gibbs, D.; Bohr, Jakob

    1986-01-01

    With the availability of high-brilliance synchrotron radiation from multiple wigglers, magnetic X-ray scattering has become a powerful new probe of magnetic structure and phase transitions. Similar to the well-established magnetic neutron scattering technique, magnetic X-ray scattering methods have...... many complementary advantages. A brief review is presented of the history of magnetic X-ray scattering as well as recent results obtained in studies of the rare-earth magnet holmium with emphasis on instrumentational aspects. In particular, the development of a simple polarization analyzer...... to distinguish charge and magnetic scattering is described....

  6. ISLSCP II Ecosystem Rooting Depths

    National Aeronautics and Space Administration — The goal of this study was to predict the global distribution of plant rooting depths based on data about global aboveground vegetation structure and climate....

  7. ISLSCP II Ecosystem Rooting Depths

    National Aeronautics and Space Administration — ABSTRACT: The goal of this study was to predict the global distribution of plant rooting depths based on data about global aboveground vegetation structure and...

  8. Phase transitions and neutron scattering

    Shirane, G.

    1993-01-01

    A review is given of recent advances in neutron scattering studies of solid state physics. I have selected the study of a structural phase transition as the best example to demonstrate the power of neutron scattering techniques. Since energy analysis is relatively easy, the dynamical aspects of a transition can be elucidated by the neutron probe. I shall discuss in some detail current experiments on the 100 K transition in SrTiO 3 , the crystal which has been the paradigm of neutron studies of phase transitions for many years. This new experiment attempts to clarify the relation between the neutron central peak, observed in energy scans, and the two length scales observed in recent x-ray diffraction studies where only scans in momentum space are possible. (author)

  9. Tensor-guided fitting of subduction slab depths

    Bazargani, Farhad; Hayes, Gavin P.

    2013-01-01

    Geophysical measurements are often acquired at scattered locations in space. Therefore, interpolating or fitting the sparsely sampled data as a uniform function of space (a procedure commonly known as gridding) is a ubiquitous problem in geophysics. Most gridding methods require a model of spatial correlation for data. This spatial correlation model can often be inferred from some sort of secondary information, which may also be sparsely sampled in space. In this paper, we present a new method to model the geometry of a subducting slab in which we use a data‐fitting approach to address the problem. Earthquakes and active‐source seismic surveys provide estimates of depths of subducting slabs but only at scattered locations. In addition to estimates of depths from earthquake locations, focal mechanisms of subduction zone earthquakes also provide estimates of the strikes of the subducting slab on which they occur. We use these spatially sparse strike samples and the Earth’s curved surface geometry to infer a model for spatial correlation that guides a blended neighbor interpolation of slab depths. We then modify the interpolation method to account for the uncertainties associated with the depth estimates.

  10. Transport theory of sputtering I: Depth of origin of sputtered atoms

    Zhang, Z.L.

    1999-01-01

    Sputter theory employing a sum of two power cross sections has been implemented. Compared with the well known Lindhard power cross section (V∝r -1/m ), a sum of two such cross sections can give a much better approximation to the Born-Mayer scattering in the low energy region (m ∼ 0.1). By using both one and two power cross sections, we have solved the linear transport equations describing the sputtering problem asymptotically. As usual, electronic stopping is ignored in the analysis. It has further been proved that Falcone's theory of the atom ejection process contradicts transport theory. The Andersen-Sigmund relation for partial sputtering yield ratios between two elements in an arbitrary multicomponent target has been derived by both methods. The energy deposited in the target surface layers has been computed for a few typical ion-target combinations. The numerical curves show that both theories generate almost the same results (error <10%) for m=3D0.2. It is also shown that, if the sputtering yield equals the corresponding one in Sigmund's theory, the depth of origin of sputtered atoms must be shorter than in Sigmund's theory for 0.25 m ≥ 3D 0. The former even may be only about one half of the latter as long as m=3D0. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. High bit depth infrared image compression via low bit depth codecs

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-08-01

    Future infrared remote sensing systems, such as monitoring of the Earth's environment by satellites, infrastructure inspection by unmanned airborne vehicles etc., will require 16 bit depth infrared images to be compressed and stored or transmitted for further analysis. Such systems are equipped with low power embedded platforms where image or video data is compressed by a hardware block called the video processing unit (VPU). However, in many cases using two 8-bit VPUs can provide advantages compared with using higher bit depth image compression directly. We propose to compress 16 bit depth images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed by an image or video codec with 8 bits per pixel input format. We analyze how the compression parameters for both MSB and LSB images should be chosen to provide the maximum objective quality for a given compression ratio. Finally, we apply the proposed infrared image compression method utilizing JPEG and H.264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can achieve similar result as 16 bit HEVC codec.

  12. A practical block detector for a depth encoding PET camera

    Rogers, J.G.; Moisan, C.; Hoskinson, E.M.

    1995-10-01

    The depth-of-interaction effect in block detectors degrades the image resolution in commercial PET cameras and impedes the natural evolution of smaller, less expensive cameras. A method for correcting the measured position of each detected gamma ray by measuring its depth-of-interaction was tested and found to recover 38% of the lost resolution in a table-top 50 cm diameter camera. To obtain the desired depth sensitivity, standard commercial detectors were modified by a simple and practical process, which is suitable for mass production of the detectors. The impact of the detectors modifications on central image resolution and on the ability of the camera to correct for object scatter were also measured. (authors)

  13. A Theory of Exoplanet Transits with Light Scattering

    Robinson, Tyler D., E-mail: tydrobin@ucsc.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2017-02-20

    Exoplanet transit spectroscopy enables the characterization of distant worlds, and will yield key results for NASA's James Webb Space Telescope . However, transit spectra models are often simplified, omitting potentially important processes like refraction and multiple scattering. While the former process has seen recent development, the effects of light multiple scattering on exoplanet transit spectra have received little attention. Here, we develop a detailed theory of exoplanet transit spectroscopy that extends to the full refracting and multiple scattering case. We explore the importance of scattering for planet-wide cloud layers, where the relevant parameters are the slant scattering optical depth, the scattering asymmetry parameter, and the angular size of the host star. The latter determines the size of the “target” for a photon that is back-mapped from an observer. We provide results that straightforwardly indicate the potential importance of multiple scattering for transit spectra. When the orbital distance is smaller than 10–20 times the stellar radius, multiple scattering effects for aerosols with asymmetry parameters larger than 0.8–0.9 can become significant. We provide examples of the impacts of cloud/haze multiple scattering on transit spectra of a hot Jupiter-like exoplanet. For cases with a forward and conservatively scattering cloud/haze, differences due to multiple scattering effects can exceed 200 ppm, but shrink to zero at wavelength ranges corresponding to strong gas absorption or when the slant optical depth of the cloud exceeds several tens. We conclude with a discussion of types of aerosols for which multiple scattering in transit spectra may be important.

  14. An analysis of depth dose characteristics of photon in water

    Buzdar, S.A.; Rao, M.A.; Nazir, A.

    2009-01-01

    Photon beam is most widely being used for radiation therapy. Biological effect of radiation is concerned with the evaluation of energy absorbed in the tissues. It was aimed to analyse the depth dose characteristics of x-ray beams of diverse energies to enhance the quality of radiotherapy treatment planning. Depth dose characteristics of different energy photon beams in water have been analysed. Photon beam is attenuated by the medium and the transmitted beam with less intensity causes lesser absorbed dose as depth increases. Relative attenuation on certain points on the beam axis and certain percentage of doses on different depths for available energies has been investigated. Photon beam depth dose characteristics do not show identical attributes as interaction of x-ray with matter is mainly governed by beam quality. Attenuation and penetration parameters of photon show variation with dosimetric parameters like field size due to scattering and Source to Surface Distance due to inverse square law, but the major parameter in photon interactions is its energy. Detailed analysis of photon Depth Dose characteristics helps to select appropriate beam for radiotherapy treatment when variety of beam energies available. Evaluation of this type of characteristics will help to establish theoretical relationships between dosimetric parameters to confirm measured values of dosimetric quantities, and hence to increase accuracy in radiotherapy treatment. (author)

  15. Scattering with polarized neutrons

    Schweizer, J.

    2007-01-01

    In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)

  16. Neutron scattering and magnetism

    Mackintosh, A.R.

    1983-01-01

    Those properties of the neutron which make it a unique tool for the study of magnetism are described. The scattering of neutrons by magnetic solids is briefly reviewed, with emphasis on the information on the magnetic structure and dynamics which is inherent in the scattering cross-section. The contribution of neutron scattering to our understanding of magnetic ordering, excitations and phase transitions is illustrated by experimental results on a variety of magnetic crystals. (author)

  17. Stationary theory of scattering

    Kato, T.

    1977-01-01

    A variant of the stationary methods is described, and it is shown that it is useful in a wide range of problems, including scattering, by long-range potentials, two-space scattering, and multichannel scattering. The method is based on the notion of spectral forms. The paper is restricted to the simplest case of continuous spectral forms defined on a Banach space embedded in the basic Hilbert space. (P.D.)

  18. Scattering from black holes

    Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.

    1987-01-01

    This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging

  19. Quantum theory of scattering

    Wu Ta You

    1962-01-01

    This volume addresses the broad formal aspects and applications of the quantum theory of scattering in atomic and nuclear collisions. An encyclopedic source of pioneering work, it serves as a text for students and a reference for professionals in the fields of chemistry, physics, and astrophysics. The self-contained treatment begins with the general theory of scattering of a particle by a central field. Subsequent chapters explore particle scattering by a non-central field, collisions between composite particles, the time-dependent theory of scattering, and nuclear reactions. An examinati

  20. Cross plane scattering correction

    Shao, L.; Karp, J.S.

    1990-01-01

    Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution

  1. Raman scattering in the atmospheres of the major planets

    Cochran, W.D.; Trafton, L.M.

    1978-01-01

    A method is developed for calculating the rate at which photons are Raman scattered as a function of frequency and depth in an inhomogeneous anisotropically scattering atmosphere. This method is used to determine the effects of Raman scattering by H 2 in the atmospheres of the major planets. Raman scattering causes an insufficient decrease in the blue and ultraviolet to explain the albedos of all of the planets; an additional source of extinction is necessary in this spectral region. Approximately 0.5-2.0% of the blue continuum photons have undergone Raman scattering in the shallow atmospheres of Jupiter and Saturn, while in the deep atmospheres of Uranus and Neptune Raman scattering accounts for abount 10-15% of the blue continuum intensity. The filling in of the cores of solar lines and the production of Raman-shifted ghosts of the Fraunhofer spectrum will be detectable effects in all of the major planets. Raman scattering has a significant influence on the formation and profiles of the strong red and near-infrared CH 4 bands on Uranus and Neptune. The residual intensity in the cores of these bands may be fully explained as a result of Raman scattering by H 2 . This scattering of photons into the cores of saturated absorption bands will cause an underestimate of the abundance of the absorber unless the effects of Raman scattering by H 2 in an inhomogeneous atmosphere are properly included in the analysis

  2. Scattered P'P' waves observed at short distances

    Earle, Paul S.; Rost, Sebastian; Shearer, Peter M.; Thomas, Christine

    2011-01-01

    We detect previously unreported 1 Hz scattered waves at epicentral distances between 30° and 50° and at times between 2300 and 2450 s after the earthquake origin. These waves likely result from off-azimuth scattering of PKPbc to PKPbc in the upper mantle and crust and provide a new tool for mapping variations in fine-scale (10 km) mantle heterogeneity. Array beams from the Large Aperture Seismic Array (LASA) clearly image the scattered energy gradually emerging from the noise and reaching its peak amplitude about 80 s later, and returning to the noise level after 150 s. Stacks of transverse versus radial slowness (ρt, ρr) show two peaks at about (2, -2) and (-2,-2) s/°, indicating the waves arrive along the major arc path (180° to 360°) and significantly off azimuth. We propose a mantle and surface PKPbc to PKPbc scattering mechanism for these observations because (1) it agrees with the initiation time and distinctive slowness signature of the scattered waves and (2) it follows a scattering path analogous to previously observed deep-mantle PK•KP scattering (Chang and Cleary, 1981). The observed upper-mantle scattered waves and PK•KP waves fit into a broader set of scattered waves that we call P′•d•P′, which can scatter from any depth, d, in the mantle.

  3. Deep and optically resolved imaging through scattering media by space-reversed propagation.

    Glastre, W; Jacquin, O; Hugon, O; Guillet de Chatellus, H; Lacot, E

    2012-12-01

    We propose a novel technique of microscopy to overcome the effects of both scattering and limitation of the accessible depth due to the objective working distance. By combining laser optical feedback imaging with acoustic photon tagging and synthetic aperture refocusing we demonstrate an ultimate shot noise sensitivity at low power (required to preserve the tissues) and a high resolution beyond the microscope working distance. More precisely, with a laser power of 10 mW, we obtain images with a micrometric resolution over approximately eight transport mean free paths, corresponding to 1.3 times the microscope working distance. Various applications such as biomedical diagnosis and research and development of new drugs and therapies can benefit from our imaging setup.

  4. Heat flow of standard depth

    Cull, J.P.

    1981-01-01

    Secular and long-term periodic changes in surface temperature cause perturbations to the geothermal gradient which may be significant to depths of at least 1000 m, and major corrections are required to determine absolute values of heat flow from the Earth's interior. However, detailed climatic models remain contentious and estimates of error in geothermal gradients differ widely. Consequently, regions of anomalous heat flow which could contain geothermal resources may be more easily resolved by measuring relative values at a standard depth (e.g. 100 m) so that all data are subject to similar corrections. (orig./ME)

  5. Medium energy ion scattering (MEIS)

    Dittmann, K.; Markwitz, A.

    2009-01-01

    This report gives an overview about the technique and experimental study of medium energy ion scattering (MEIS) as a quantitative technique to determine and analyse the composition and geometrical structure of crystalline surfaces and near surface-layers by measuring the energy and yield of the backscattered ions. The use of a lower energy range of 50 to 500 keV accelerated ions impinging onto the target surface and the application of a high-resolution electrostatic energy analyser (ESA) makes medium energy ion scattering spectroscopy into a high depth resolution and surface-sensitive version of RBS with less resulting damage effects. This report details the first steps of research in that field of measurement technology using medium energetic backscattered ions detected by means of a semiconductor radiation detector instead of an ESA. The study of medium energy ion scattering (MEIS) has been performed using the 40 keV industrial ion implanter established at GNS Sciences remodelled with supplementary high voltage insulation for the ion source in order to apply voltages up to 45 kV, extra apertures installed in the beamline and sample chamber in order to set the beam diameter accurately, and a semiconductor radiation detector. For measurement purposes a beam of positive charged helium ions accelerated to an energy of about 80 keV has been used impinging onto target surfaces of lead implanted into silicon (PbSi), scandium implanted into aluminium (ScAl), aluminium foil (Al) and glassy carbon (C). First results show that it is possible to use the upgraded industrial implanter for medium energy ion scattering. The beam of 4 He 2+ with an energy up to 88 keV has been focussed to 1 mm in diameter. The 5 nA ion beam hit the samples under 2 x 10 -8 mbar. The results using the surface barrier detector show scattering events from the samples. Cooling of the detector to liquid nitrogen temperatures reduced the electronic noise in the backscattering spectrum close to zero. A

  6. Contribution of double scattering to structural coloration in quasiordered nanostructures of bird feathers

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G. J.; Dufresne, Eric R.; Cao, Hui

    2010-05-01

    We measured the polarization- and angle-resolved optical scattering and reflection spectra of the quasiordered nanostructures in the bird feather barbs. In addition to the primary peak that originates from single scattering, we observed a secondary peak which exhibits depolarization and distinct angular dispersion. We explained the secondary peak in terms of double scattering, i.e., light is scattered successively twice by the structure. The two sequential single-scattering events are considered uncorrelated. Using the Fourier power spectra of the nanostructures obtained from the small-angle x-ray scattering experiment, we calculated the double scattering of light in various directions. The double-scattering spectrum is broader than the single-scattering spectrum, and it splits into two subpeaks at larger scattering angle. The good agreement between the simulation results and the experimental data confirms that double scattering of light makes a significant contribution to the structural color.

  7. Contribution of double scattering to structural coloration in quasiordered nanostructures of bird feathers

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui (Yale)

    2010-07-28

    We measured the polarization- and angle-resolved optical scattering and reflection spectra of the quasiordered nanostructures in the bird feather barbs. In addition to the primary peak that originates from single scattering, we observed a secondary peak which exhibits depolarization and distinct angular dispersion. We explained the secondary peak in terms of double scattering, i.e., light is scattered successively twice by the structure. The two sequential single-scattering events are considered uncorrelated. Using the Fourier power spectra of the nanostructures obtained from the small-angle x-ray scattering experiment, we calculated the double scattering of light in various directions. The double-scattering spectrum is broader than the single-scattering spectrum, and it splits into two subpeaks at larger scattering angle. The good agreement between the simulation results and the experimental data confirms that double scattering of light makes a significant contribution to the structural color.

  8. Small angle scattering and polymers

    Cotton, J.P.

    1996-01-01

    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs

  9. Hadron scattering, resonances, and QCD

    Briceño, R. A.

    2016-11-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  10. Applications of phase conjugate mirror to Thomson scattering diagnostics (invited)

    Hatae, T.; Naito, O.; Nakatsuka, M.; Yoshida, H.

    2006-01-01

    A high performance phase conjugate mirror based on stimulated Brillouin scattering (SBS-PCM) has been applied to the Thomson scattering system in the JT-60U tokamak for the first time in order to improve the measurement performance. A SBS-PCM realized a high reflectivity of 95% at a high input power of 145 W (2.9 J, 50 Hz). Using the SBS-PCM, two methods have been developed to increase the intensity of scattered light. For the first method, we have developed a new optical design to provide a double-pass scattering method with the SBS-PCM. A laser beam passing through the plasma is reflected by the SBS-PCM. The reflected beam passes the plasma again along the same path by means of the phase conjugation of the optically nonlinear stimulated Brillouin scattering process. The double-pass Thomson scattering method using the SBS-PCM has demonstrated an increase of the scattered light by a factor of 1.6 compared with the single-pass scattering method in JT-60U. A multipass Thomson scattering method in which the laser beam can be confined between a couple of SBS-PCMs is also proposed. It is estimated that the multipass scattering method generates the scattered light more than several times as large as that of the single-pass scattering method. For the second method, a high-average-power yttrium aluminum garnet (Nd:YAG) laser system has been developed using the SBS-PCM. The SBS-PCM effectively compensated thermal degradation at two amplifier lines, and the average power was increased by a factor of >8 from 45 W (1.5 J, 30 Hz) to 373 W (7.46 J, 50 Hz). A Nd:YAG laser (5 J, 100 Hz) for the edge Thomson scattering in International Thermonuclear Experimental Reactor (ITER) has been designed based on the result

  11. Depth of source from long period P-waves

    Roy, Falguni

    1986-01-01

    Short period (SP) seismograms are much better than long period (LP) seismograms to get the time resolution needed for the focal depth estimation. However, complex scattering effects due to crustal inhomogeneities and also the multi-pathing of signals usually complicate the short period records. On the other hand the seismograms from long period signals demonstrate clear coherent body waves. Therefore, for intermediate depths (15-60 km) prediction error filtering of LP signals will be useful for identifying the depth phases. Such a study has been carried out in the first part of this report. In a group of 7 events, the p p phases have been extracted from LP signals and the depths so estimated compared well with the published data. For explosions at shallow depths (depth p phases will tend to cancel each other in LP seismograms. As the source depth increases, the cancellation becomes less effective. This feature can be used for the identification of an event as well as for getting an estimate of the source depth. This phenomenon can be successfully exploited for identifying multiple explosions, because at teleseismic distances (Δ > 30 o ) no LP (around 20s period) P waves will be seen in the seismogram due to such events whereas relatively strong SP signals and LP Rayleigh waves will be observed. This phenomenon has been studied for 16 events. For three of these events having m b as high as 6.1 and presumed to be underground explosions, one could not see any P wave on remaining 13 events (which were classified as earthquakes), it was possible to set a threshold value of m b above which an earthquake should produce LP P-wave signals at a given distance. (author)

  12. Pursuing the Depths of Knowledge

    Boyles, Nancy

    2016-01-01

    Today's state literacy standards and assessments demand deeper levels of knowledge from students. But many teachers ask, "What does depth of knowledge look like on these new, more rigorous assessments? How do we prepare students for this kind of thinking?" In this article, Nancy Boyles uses a sampling of questions from the PARCC and SBAC…

  13. Multiple scattering theory of radiative transfer in inhomogeneous atmospheres.

    Kanal, M.

    1973-01-01

    In this paper we treat the multiple scattering theory of radiative transfer in plane-parallel inhomogeneous atmospheres. The treatment presented here may be adopted to model atmospheres characterized by an optical depth dependent coherent scattering phase function. For the purpose of illustration we consider the semi-infinite medium in which the absorption property of the atmosphere is characterized by an exponential function. The methodology employed here is the extension of the case treated previously by the author for homogeneous atmospheres.

  14. Numerical Computational Technique for Scattering from Underwater Objects

    T. Ratna Mani; Raj Kumar; Odamapally Vijay Kumar

    2013-01-01

    This paper presents a computational technique for mono-static and bi-static scattering from underwater objects of different shape such as submarines. The scatter has been computed using finite element time domain (FETD) method, based on the superposition of reflections, from the different elements reaching the receiver at a particular instant in time. The results calculated by this method has been verified with the published results based on ramp response technique. An in-depth parametric s...

  15. Pion-pion scattering

    Kuehnelt, H.

    1975-01-01

    We discuss a few properties of scattering amplitudes proved within the framework of the field theory and their significance in the derivation of quantitative statements. The state of the boundaries for the scattering lengths is to be especially discussed as well as the question as to how far it is possible to exclude various solutions from phase displacement analyses. (orig./LH) [de

  16. Modelling Hyperboloid Sound Scattering

    Burry, Jane; Davis, Daniel; Peters, Brady

    2011-01-01

    The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...... both physical and digital models at three distinct scales. The results suggest hyperboloid geometry, while difficult to fabricate, facilitates sound scattering....

  17. Introductory theory of neutron scattering

    Gunn, J.M.F.

    1986-12-01

    The paper comprises a set of six lecture notes which were delivered to the summer school on 'Neutron Scattering at a pulsed source', Rutherford Laboratory, United Kingdom, 1986. The lectures concern the physical principles of neutron scattering. The topics of the lectures include: diffraction, incoherent inelastic scattering, connection with the Schroedinger equation, magnetic scattering, coherent inelastic scattering, and surfaces and neutron optics. (UK)

  18. Role of the interaction processes in the depth-dose distribution of proton beams in liquid water

    Garcia-Molina, Rafael; Abril, Isabel; De Vera, Pablo; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2012-01-01

    We use a simulation code, based on Molecular Dynamics and Monte Carlo, to investigate the depth-dose profile and lateral radial spreading of swift proton beams in liquid water. The stochastic nature of the projectile-target interaction is accounted for in a detailed manner by including in a consistent way fluctuations in both the energy loss due to inelastic collisions and the angular deflection from multiple elastic scattering. Depth-variation of the projectile charge-state as it slows down into the target, due to electron capture and loss processes, is also considered. By selectively switching on/off these stochastic processes in the simulation, we evaluate the contribution of each one of them to the Bragg curve. Our simulations show that the inclusion of the energy-loss straggling sizeably affects the width of the Bragg peak, whose position is mainly determined by the stopping power. The lateral spread of the beam as a function of the depth in the target is also examined.

  19. Diffuse scattering of neutrons

    Novion, C.H. de.

    1981-02-01

    The use of neutron scattering to study atomic disorder in metals and alloys is described. The diffuse elastic scattering of neutrons by a perfect crystal lattice leads to a diffraction spectrum with only Bragg spreads. the existence of disorder in the crystal results in intensity and position modifications to these spreads, and above all, to the appearance of a low intensity scatter between Bragg peaks. The elastic scattering of neutrons is treated in this text, i.e. by measuring the number of scattered neutrons having the same energy as the incident neutrons. Such measurements yield information on the static disorder in the crystal and time average fluctuations in composition and atomic displacements [fr

  20. Development of the point-depletion code DEPTH

    She, Ding; Wang, Kan; Yu, Ganglin

    2013-01-01

    Highlights: ► The DEPTH code has been developed for the large-scale depletion system. ► DEPTH uses the data library which is convenient to couple with MC codes. ► TTA and matrix exponential methods are implemented and compared. ► DEPTH is able to calculate integral quantities based on the matrix inverse. ► Code-to-code comparisons prove the accuracy and efficiency of DEPTH. -- Abstract: The burnup analysis is an important aspect in reactor physics, which is generally done by coupling of transport calculations and point-depletion calculations. DEPTH is a newly-developed point-depletion code of handling large burnup depletion systems and detailed depletion chains. For better coupling with Monte Carlo transport codes, DEPTH uses data libraries based on the combination of ORIGEN-2 and ORIGEN-S and allows users to assign problem-dependent libraries for each depletion step. DEPTH implements various algorithms of treating the stiff depletion systems, including the Transmutation trajectory analysis (TTA), the Chebyshev Rational Approximation Method (CRAM), the Quadrature-based Rational Approximation Method (QRAM) and the Laguerre Polynomial Approximation Method (LPAM). Three different modes are supported by DEPTH to execute the decay, constant flux and constant power calculations. In addition to obtaining the instantaneous quantities of the radioactivity, decay heats and reaction rates, DEPTH is able to calculate the integral quantities by a time-integrated solver. Through calculations compared with ORIGEN-2, the validity of DEPTH in point-depletion calculations is proved. The accuracy and efficiency of depletion algorithms are also discussed. In addition, an actual pin-cell burnup case is calculated to illustrate the DEPTH code performance in coupling with the RMC Monte Carlo code

  1. Inelastic Light Scattering Processes

    Fouche, Daniel G.; Chang, Richard K.

    1973-01-01

    Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.

  2. Variation in Depth Dose Data between Open and Wedge Fields for 6 MV X-Rays

    U, Hong; Ryu, M. S. Samuel; Park, In Kyu

    1989-01-01

    Central axis depth dose data for 6 MV X-rays, including tissue maximum ratios, were measured for wedge fields according to Tatcher equation. In wedge fields, the differences in magnitude which increased with depth, field size, and wedge thickness increased when compared with the corresponding open field data. However, phantom scatter correction factors for wedge fields differed less that 1% from the corresponding open field factors. The differences in central axis percent depth dose between two types of fields indicated beam hardening by the wedge filter. The deviation of percent depth doses and scatter correction factors between the effective wedge field and the nominal wedge field at same angle was negligible. The differences were less than 3.26% between the nominal or effective wedge fields and the open fields for percent depth doses to the depth 7cm in 6cm x 6cm field. For larger (10cm x 10cm) field size, however, the deviation of percent depth doses between the nominal or effective wedge fields and the open fields were greater-dosimetric errors were 3.56% at depth 7cm and nearly 5.30% at 12cm. We suggest that the percent depth doses of individual wedge and wedge transmission factors should be considered for the dose calculation or monitor setting in the treatment of deep seated tumor

  3. Protoplanetary disks and exoplanets in scattered light

    Stolker, T.

    2017-01-01

    High-contrast imaging facilitates the direct detection of protoplanetary disks in scattered light and self-luminous exoplanets on long-period orbits. The combined power of extreme adaptive optics and differential imaging techniques delivers high spatial resolution images of disk morphologies down to

  4. Thomson scattering measurements on an atmospheric Ar dc discharge lamp

    Zhu, Xiao-Yan; Redwitz, M.; Kieft, E.R.; Sande, van de M.J.; Mullen, van der J.J.A.M.

    2004-01-01

    Thomson scattering (TS) experiments have been performed in the region near the electrodes of a dc powered model lamp filled with 1-2 bar argon gas. In order to suppress the false stray light and Rayleigh scattered photons, a triple grating spectrograph was used. In this way the electron density and

  5. Inelastic magnetic scattering of polarized neutrons by a superconducting ring

    Agafonov, A. I.

    2011-01-01

    The inelastic scattering of cold neutrons by a ring leads to quantum jumps of a superconducting current which correspond to a decrease in the fluxoid quantum number by one or several units while the change in the ring energy is transferred to the kinetic energy of the scattered neutron. The scattering cross sections of transversely polarized neutrons have been calculated for a thin type-II superconductor ring, the thickness of which is smaller than the field penetration depth but larger than the electron mean free path.

  6. Quantitative spectromicroscopy from inelastically scattered photoelectrons in the hard X-ray range

    Renault, O., E-mail: olivier.renault@cea.fr; Zborowski, C.; Risterucci, P. [Univ. Grenoble Alpes, F-38000 Grenoble, France and CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Wiemann, C.; Schneider, C. M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Grenet, G. [Institut des Nanotechnologies de Lyon, Ecole Centrale, 69134 Ecully Cedex (France); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2016-07-04

    We demonstrate quantitative, highly bulk-sensitive x-ray photoelectron emission microscopy by analysis of inelastically scattered photoelectrons in the hard X-ray range, enabling elemental depth distribution analysis in deeply buried layers. We show results on patterned structures used in electrical testing of high electron mobility power transistor devices with an epitaxial Al{sub 0.25}Ga{sub 0.75}N channel and a Ti/Al metal contact. From the image series taken over an energy range of up to 120 eV in the Ti 1s loss feature region and over a typical 100 μm field of view, one can accurately retrieve, using background analysis together with an optimized scattering cross-section, the Ti depth distribution from 14 nm up to 25 nm below the surface. The method paves the way to multi-elemental, bulk-sensitive 3D imaging and investigation of phenomena at deeply buried interfaces and microscopic scales by photoemission.

  7. Light scattering studies at UNICAMP

    Luzzi, R.; Cerdeira, H.A.; Salzberg, J.; Vasconcellos, A.R.; Frota Pessoa, S.; Reis, F.G. dos; Ferrari, C.A.; Algarte, C.A.S.; Tenan, M.A.

    1975-01-01

    Current theoretical studies on light scattering spectroscopy at UNICAMP is presented briefly, such as: inelastic scattering of radiation from a solid state plasma; resonant Ramman scattering; high excitation effects; saturated semiconductors and glasses

  8. Intercomparison On Depth Dose Measurement

    Rohmah, N; Akhadi, M

    1996-01-01

    Intercomparation on personal dose evaluation system has been carried out between CSRSR-NAEA of Indonesia toward Standard Laboratory of JAERI (Japan) and ARL (Australia). The intercomparison was in 10 amm depth dose measurement , Hp (10), from the intercomparison result could be stated that personal depth dose measurement conducted by CSRSR was sufficiently good. Deviation of dose measurement result using personal dosemeter of TLD BG-1 type which were used by CSRSR in the intercomparison and routine photon personal dose monitoring was still in internationally agreed limit. Maximum deviation of reported doses by CSRSR compared to delivered doses for dosemeter irradiation by JAERI was -10.0 percent and by ARL was +29 percent. Maximum deviation permitted in personal dose monitoring is ± 50 percent

  9. Simulating Microwave Scattering for Wetland Vegetation in Poyang Lake, Southeast China, Using a Coherent Scattering Model

    Jingjuan Liao

    2015-07-01

    Full Text Available We developed a polarimetric coherent electromagnetic scattering model for Poyang Lake wetland vegetation. Realistic canopy structures including curved leaves and the lodging situation of the vegetation were taken into account, and the situation at the ground surface was established using an Advanced Integral Equation Model combined with Oh’s 2002 model. This new model can reasonably describe the coherence effect caused by the phase differences of the electromagnetic fields scattered from different particles by different scattering mechanisms. We obtained good agreement between the modeling results and C-band data from the Radarsat-2 satellite. A simulation of scattering from the vegetation in Poyang Lake showed that direct vegetation scattering and the single-ground-bounce mechanism are the dominant scattering mechanisms in the C-band and L-band, while the effects of the double-ground-bounce mechanism are very small. We note that the curvature of the leaves and the lodging characteristics of the vegetation cannot be ignored in the modeling process. Monitoring soil moisture in the Poyang Lake wetland with the C-band data was not feasible because of the density and depth of Poyang Lake vegetation. When the density of Poyang Lake Carex increases, the backscattering coefficient either decreases or remains stable.

  10. Applications of positron depth profiling

    Hakvoort, R.A.

    1993-01-01

    In this thesis some contributions of the positron-depth profiling technique to materials science have been described. Following studies are carried out: Positron-annihilation measurements on neon-implanted steel; Void creation in silicon by helium implantation; Density of vacancy-type defects present in amorphous silicon prepared by ion implantation; Measurements of other types of amorphous silicon; Epitaxial cobalt disilicide prepared by cobalt outdiffusion. Positron-annihilation experiments on low-pressure CVD silicon-nitride films. (orig./MM)

  11. Applications of positron depth profiling

    Hakvoort, R A

    1993-12-23

    In this thesis some contributions of the positron-depth profiling technique to materials science have been described. Following studies are carried out: Positron-annihilation measurements on neon-implanted steel; Void creation in silicon by helium implantation; Density of vacancy-type defects present in amorphous silicon prepared by ion implantation; Measurements of other types of amorphous silicon; Epitaxial cobalt disilicide prepared by cobalt outdiffusion. Positron-annihilation experiments on low-pressure CVD silicon-nitride films. (orig./MM).

  12. Virtual neutron scattering experiments

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    . In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus......We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering...

  13. Scattering on magnetic monopoles

    Petry, H.R.

    1980-01-01

    The time-dependent scattering theory of charged particles on magnetic monopoles is investigated within a mathematical frame-work, which duely pays attention to the fact that the wavefunctions of the scattered particles are sections in a non-trivial complex line-bundle. It is found that Moeller operators have to be defined in a way which takes into account the peculiar long-range behaviour of the monopole field. Formulas for the scattering matrix and the differential cross-section are derived, and, as a by-product, a momentum space picture for particles, which are described by sections in the underlying complex line-bundle, is presented. (orig.)

  14. Deep inelastic neutron scattering

    Mayers, J.

    1989-03-01

    The report is based on an invited talk given at a conference on ''Neutron Scattering at ISIS: Recent Highlights in Condensed Matter Research'', which was held in Rome, 1988, and is intended as an introduction to the techniques of Deep Inelastic Neutron Scattering. The subject is discussed under the following topic headings:- the impulse approximation I.A., scaling behaviour, kinematical consequences of energy and momentum conservation, examples of measurements, derivation of the I.A., the I.A. in a harmonic system, and validity of the I.A. in neutron scattering. (U.K.)

  15. Calculation of mixed depth for some metal-Si systems

    Poker, D.B.

    1986-01-01

    The linearity of mixing during ion beam mixing of metals on Si has been found to depend critically upon the method by which the mixed depth is determined. For nonstoichiometric, diffuse mixing, several methods of calculating the mixed depth may be used, namely: integrated area, moment, error function, and 10%-90%. For stoichiometric mixing, the determination of the mixed depth is somewhat more straightforward, and several of the same methods may be used. Some of these methods suffer from the exhibition of an initial offset due to the finite detector resolution. An empirical method of removing the offset using a cubic correction is an improvement, but adds a nonlinear perturbation to the power law dependence on dose, approaching 2/3 for small depths. The effect of detector resolution on the measured depth of mixing is given for several methods, using simulated data with a linear increase in depth as a function of dose. The results effect on the exponent of a power law fit to the dose dependence is given. Only the moment method is immune to the resolution effects

  16. Scattering from randomly oriented scatterers of arbitrary shape in the low-frequency limit with application to vegetation

    Karam, M. A.; Fung, A. K.

    1984-01-01

    A general theory of intensity scattering from small particles of arbitrary shape was developed based on the radiative transfer theory. Upon permitting the particles to orient in accordance with any prescribed distribution, scattering models can be derived. By making an appropriate choice of the particle size, the scattering model may be used to estimate scattering from media such as snow, vegetation and sea ice. For the purpose of illustration only comparisons with measurements from a vegetated medium are shown. The difference in scattering between elliptic and circular shaped leaves is demonstrated. In the low frequency limit, the major factors on backscattering from vegetation are found to be the depth of the vegetation layer and the orientation distribution of the leaves. The shape of the leaf is of secondary importance.

  17. Momentum distribution at great depths when electron axial channeling

    Khokonov, M.Kh.; Tuguz, F.K.

    1989-01-01

    The electron distribution in momenta during axial channeling in thick monocrystals in great depths is estimated. The estimate was carried out with respect to the fact that due to diffusion the angular momentum of the electron can change only in a limited region of phase space and that multiple scattering only takes place on thermal oscillations of nuclei of the crystal lattice. It is shown that in thick monocrystals the distribution in momenta can be considered uniform on the greater part of the way of channeled electrons which can simplity the qualitative consideration of spectral-angular characteristics forming during this radiation

  18. Extreme depth-of-field intraocular lenses

    Baker, Kenneth M.

    1996-05-01

    A new technology brings the full aperture single vision pseudophakic eye's effective hyperfocal distance within the half-meter range. A modulated index IOL containing a subsurface zeroth order coherent microlenticular mosaic defined by an index gradient adds a normalizing function to the vergences or parallactic angles of incoming light rays subtended from field object points and redirects them, in the case of near-field images, to that of far-field images. Along with a scalar reduction of the IOL's linear focal range, this results in an extreme depth of field with a narrow depth of focus and avoids the focal split-up, halo, and inherent reduction in contrast of multifocal IOLs. A high microlenticular spatial frequency, which, while still retaining an anisotropic medium, results in a nearly total zeroth order propagation throughout the visible spectrum. The curved lens surfaces still provide most of the refractive power of the IOL, and the unique holographic fabrication technology is especially suitable not only for IOLs but also for contact lenses, artificial corneas, and miniature lens elements for cameras and other optical devices.

  19. Electron scattering from pyrimidine

    Colmenares, Rafael; Fuss, Martina C; García, Gustavo; Oller, Juan C; Muñoz, Antonio; Blanco, Francisco; Almeida, Diogo; Limão-Vieira, Paulo

    2014-01-01

    Electron scattering from pyrimidine (C 4 H 4 N 2 ) was investigated over a wide range of energies. Following different experimental and theoretical approaches, total, elastic and ionization cross sections as well as electron energy loss distributions were obtained.

  20. Gravitational Bhabha scattering

    Santos, A F; Khanna, Faqir C

    2017-01-01

    Gravitoelectromagnetism (GEM) as a theory for gravity has been developed similar to the electromagnetic field theory. A weak field approximation of Einstein theory of relativity is similar to GEM. This theory has been quantized. Traditional Bhabha scattering, electron–positron scattering, is based on quantized electrodynamics theory. Usually the amplitude is written in terms of one photon exchange process. With the development of quantized GEM theory, the scattering amplitude will have an additional component based on an exchange of one graviton at the lowest order of perturbation theory. An analysis will provide the relative importance of the two amplitudes for Bhabha scattering. This will allow an analysis of the relative importance of the two amplitudes as the energy of the exchanged particles increases. (paper)

  1. Applied electromagnetic scattering theory

    Osipov, Andrey A

    2017-01-01

    Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...

  2. Scattering by bound nucleons

    Tezuka, Hirokazu.

    1984-10-01

    Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)

  3. LIDAR Thomson scattering

    1991-07-01

    This collection contains 21 papers on the application and development of LIDAR (Light Detection and Ranging) Thomson scattering techniques for the determination of spatially resolved electron temperature and density in magnetic confinement experiments, particularly tokamaks. Refs, figs and tabs

  4. Magnetic electron scattering

    Peterson, G.A.

    1989-01-01

    We briefly review some of the motivations, early results, and techniques of magnetic elastic and inelastic electron-nucleus scattering. We then discuss recent results, especially those acquired at high momentum transfers. 50 refs., 19 figs

  5. Deep inelastic lepton scattering

    Nachtmann, O.

    1977-01-01

    Deep inelastic electron (muon) nucleon and neutrino nucleon scattering as well as electron positron annihilation into hadrons are reviewed from a theoretical point of view. The emphasis is placed on comparisons of quantum chromodynamics with the data. (orig.) [de

  6. X-ray scattering of soft matter

    Stribeck, N.

    2007-01-01

    This coherently written volume summarizes the analytical power of modern X-ray scattering in the field of soft matter. Applications of X-ray scattering to soft matter have advanced considerably within recent years, both conceptually and technically. There are now mature high-power X-ray sources, synchrotrons and rotating anodes, as well as high-speed detectors, which have become readily available and which make the whole process more viable. High-quality time-resolved experiments on polymer structure can now be performed with ease, a major advancement due to the genuine power of the scattering method. This manual is a detailed description of simple tools that can elucidate the mechanisms of structure evolution in the studied materials. It is also a step-by-step guide to more advanced methods of the latest X-ray scattering techniques, and breaks down these methods. Data analysis based on clear, unequivocal results is rendered simple and straightforward - with a stress on the careful planning of experiments and adequate recording of all required data. This book, then, serves as a useful ready-reference guide. It has been written for the modern scientist who is a generalist and needs a concise reference, and demonstrates typical errors in data evaluation. (orig.)

  7. Small angle neutron scattering

    Bernardini, G.; Cherubini, G.; Fioravanti, A.; Olivi, A.

    1976-09-01

    A method for the analysis of the data derived from neutron small angle scattering measurements has been accomplished in the case of homogeneous particles, starting from the basic theory without making any assumption on the form of particle size distribution function. The experimental scattering curves are interpreted with the aid the computer by means of a proper routine. The parameters obtained are compared with the corresponding ones derived from observations at the transmission electron microscope

  8. Pp scattering at SIN

    Aprile-Giboni, E.; Cantale, G.; Hausammann, R.

    1983-01-01

    Using the PM1 polarized proton beam at SIN and a polarized target, the elastic pp scattering as well as the inelastic channel pp → π + d have been studied between 400 and 600 MeV. For the elastic reaction, a sufficient number of spin dependent parameters has been measured in order to do a direct reconstruction of the scattering matrix between 38 0 /sub cm/ and 90 0 /sub cm/. 10 references, 6 figures

  9. Electron scattering by molecular oxygen

    Duddy, P.E.

    1999-03-01

    Collisions of electrons with molecules is one of the fundamental processes which occur both in atomic and molecular physics and also in chemistry. These collisions are vital in determining the energy balance and transport properties of electrons in gases and plasmas at low temperatures. There are many important applications for the basic understanding of these collision processes. For example, the study of planetary atmospheres and the interstellar medium involves electron collisions with both molecules and molecular ions. In particular, two of the major cooling mechanisms of electrons in the Earth's ionosphere are (i) the fine structure changing transitions of oxygen atoms by electron impact and (ii) the resonant electron-impact vibrational excitation of N 2 . Other applications include magnetohydrodynamic power generation and laser physics. A molecule, by definition, will contain more than one nucleus and consequently the effect of nuclear motion in the molecule leads to many extra processes in electron scattering by molecules which cannot occur in electron-atom scattering. As for atoms, both elastic and inelastic scattering occur, but in the case of inelastic electron scattering by molecules, the target molecule is excited to a different state by the process. The excitation may be one, or some combination, of rotational, vibrational and electronic transitions. Other reactions which may occur include dissociation of the molecule into its constituent atoms or ionisation. Another difficulty arises when considering the interactions between the electron and the molecule, This interaction, which considerably complicates the calculation, is non-spherical and various methods have been developed over the years to represent this interaction. This thesis considers electron scattering by molecular oxygen in the low energy range i.e. 0-15eV. These collisions are of considerable interest in atmospheric physics and chemistry where the electron impact excitation of O 2 has

  10. Neutron scattering applications in structural biology: now and the future

    Trewhella, J [Los Alamos National Lab., NM (United States)

    1996-05-01

    Neutrons have an important role to play in structural biology. Neutron crystallography, small-angle neutron scattering and inelastic neutron scattering techniques all contribute unique information on biomolecular structures. In particular, solution scattering techniques give critical information on the conformations and dispositions of the components of complex assemblies under a wide variety of relevant conditions. The power of these methods is demonstrated here by studies of protein/DNA complexes, and Ca{sup 2+}-binding proteins complexed with their regulatory targets. In addition, we demonstrate the utility of a new structural approach using neutron resonance scattering. The impact of biological neutron scattering to date has been constrained principally by the available fluxes at neutron sources and the true potential of these approaches will only be realized with the development of new more powerful neutron sources. (author)

  11. Magnetism and magnetic materials probed with neutron scattering

    Velthuis, S.G.E. te; Pappas, C.

    2014-01-01

    Neutron scattering techniques are becoming increasingly accessible to a broader range of scientific communities, in part due to the onset of next-generation, high-power spallation sources, high-performance, sophisticated instruments and data analysis tools. These technical advances also advantageously impact research into magnetism and magnetic materials, where neutrons play a major role. In this Current Perspective series, the achievements and future prospects of elastic and inelastic neutron scattering, polarized neutron reflectometry, small angle neutron scattering, and neutron imaging, are highlighted as they apply to research into magnetic frustration, superconductivity and magnetism at the nanoscale. - Highlights: • Introduction to Current Perspective series titled Magnetism and Magnetic Materials probed with Neutron Scattering. • Elastic and inelastic neutron scattering in systems with magnetic frustration and superconductivity. • Small angle neutron scattering and polarized neutron reflectometry in studying magnetism at the nanoscale. • Imaging of magnetic fields and domains

  12. Point sources and multipoles in inverse scattering theory

    Potthast, Roland

    2001-01-01

    Over the last twenty years, the growing availability of computing power has had an enormous impact on the classical fields of direct and inverse scattering. The study of inverse scattering, in particular, has developed rapidly with the ability to perform computational simulations of scattering processes and led to remarkable advances in a range of applications, from medical imaging and radar to remote sensing and seismic exploration. Point Sources and Multipoles in Inverse Scattering Theory provides a survey of recent developments in inverse acoustic and electromagnetic scattering theory. Focusing on methods developed over the last six years by Colton, Kirsch, and the author, this treatment uses point sources combined with several far-reaching techniques to obtain qualitative reconstruction methods. The author addresses questions of uniqueness, stability, and reconstructions for both two-and three-dimensional problems.With interest in extracting information about an object through scattered waves at an all-ti...

  13. Magnetism and magnetic materials probed with neutron scattering

    Velthuis, S.G.E. te, E-mail: tevelthuis@anl.gov [Materials Science Division, Argonne National Laboratory, 9700 S Cass Ave, Argonne, IL 60439 (United States); Pappas, C. [Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, NL-2629JB Delft (Netherlands)

    2014-01-15

    Neutron scattering techniques are becoming increasingly accessible to a broader range of scientific communities, in part due to the onset of next-generation, high-power spallation sources, high-performance, sophisticated instruments and data analysis tools. These technical advances also advantageously impact research into magnetism and magnetic materials, where neutrons play a major role. In this Current Perspective series, the achievements and future prospects of elastic and inelastic neutron scattering, polarized neutron reflectometry, small angle neutron scattering, and neutron imaging, are highlighted as they apply to research into magnetic frustration, superconductivity and magnetism at the nanoscale. - Highlights: • Introduction to Current Perspective series titled Magnetism and Magnetic Materials probed with Neutron Scattering. • Elastic and inelastic neutron scattering in systems with magnetic frustration and superconductivity. • Small angle neutron scattering and polarized neutron reflectometry in studying magnetism at the nanoscale. • Imaging of magnetic fields and domains.

  14. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D

    Brookman, M. W., E-mail: brookmanmw@fusion.gat.com [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Austin, M. E.; McLean, A. G. [Lawrence Livermore National Lab, Livermore, California 94500 (United States); Carlstrom, T. N.; Hyatt, A. W.; Lohr, J. [General Atomics, San Diego, California 92122 (United States)

    2016-11-15

    Thomson scattering produces n{sub e} profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n{sub e} ∝ I{sub TS}, which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n{sub e} calibration is adjusted against an absolute n{sub e} from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n{sub e} from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as “ECH pump-out” generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.

  15. Scattered radiation from applicators in clinical electron beams

    Battum, L J van; Zee, W van der; Huizenga, H

    2003-01-01

    In radiotherapy with high-energy (4-25 MeV) electron beams, scattered radiation from the electron applicator influences the dose distribution in the patient. In most currently available treatment planning systems for radiotherapy this component is not explicitly included and handled only by a slight change of the intensity of the primary beam. The scattered radiation from an applicator changes with the field size and distance from the applicator. The amount of scattered radiation is dependent on the applicator design and on the formation of the electron beam in the treatment head. Electron applicators currently applied in most treatment machines are essentially a set of diaphragms, but still do produce scattered radiation. This paper investigates the present level of scattered dose from electron applicators, and as such provides an extensive set of measured data. The data provided could for instance serve as example input data or benchmark data for advanced treatment planning algorithms which employ a parametrized initial phase space to characterize the clinical electron beam. Central axis depth dose curves of the electron beams have been measured with and without applicators in place, for various applicator sizes and energies, for a Siemens Primus, a Varian 2300 C/D and an Elekta SLi accelerator. Scattered radiation generated by the applicator has been found by subtraction of the central axis depth dose curves, obtained with and without applicator. Scattered radiation from Siemens, Varian and Elekta electron applicators is still significant and cannot be neglected in advanced treatment planning. Scattered radiation at the surface of a water phantom can be as high as 12%. Scattered radiation decreases almost linearly with depth. Scattered radiation from Varian applicators shows clear dependence on beam energy. The Elekta applicators produce less scattered radiation than those of Varian and Siemens, but feature a higher effective angular variance. The scattered

  16. Ultrasound-mediated Optical Imaging and Focusing in Scattering Media

    Suzuki, Yuta

    Because of its non-ionizing and molecular sensing nature, light has been an attractive tool in biomedicine. Scanning an optical focus allows not only high-resolution imaging but also manipulation and therapy. However, due to multiple photon scattering events, conventional optical focusing using an ordinary lens is limited to shallow depths of one transport mean free path (lt'), which corresponds to approximately 1 mm in human tissue. To overcome this limitation, ultrasonic modulation (or encoding ) of diffuse light inside scattering media has enabled us to develop both deep-tissue optical imaging and focusing techniques, namely, ultrasound-modulated optical tomography (UOT) and time-reversed ultrasonically encoded (TRUE) optical focusing. While UOT measures the power of the encoded light to obtain an image, TRUE focusing generates a time-reversed (or phase-conjugated) copy of the encoded light, using a phase-conjugate mirror to focus light inside scattering media beyond 1 lt'. However, despite extensive progress in both UOT and TRUE focusing, the low signal-to-noise ratio in encoded-light detection remains a challenge to meeting both the speed and depth requirements for in vivo applications. This dissertation describes technological advancements of both UOT and TRUE focusing, in terms of their signal detection sensitivities, operational depths, and operational speeds. The first part of this dissertation describes sensitivity improvements of encoded-light detection in UOT, achieved by using a large area (˜5 cm x 5 cm) photorefractive polymer. The photorefractive polymer allowed us to improve the detection etendue by more than 10 times that of previous detection schemes. It has enabled us to resolve absorbing objects embedded inside diffused media thicker than 80 lt', using moderate light power and short ultrasound pulses. The second part of this dissertation describes energy enhancement and fluorescent excitation using TRUE focusing in turbid media, using

  17. Design and characteristics of a scattering chamber for PIXE analysis

    Oliver, A.; Miranda, J.; Lopez, K.; Mercado, F.; Flores, A.H.

    1989-01-01

    A scattering chamber for Particle Induced x-ray Emission (PIXE) analysis is described. This chamber was designed and constructed for thin film thickness measurements and depth profiling. The chamber operation characteristics and versatility in materials analysis are shown. (Author). 18 refs, 6 figs

  18. Approximate solutions of some problems of scattering of surface ...

    A Choudhary

    Abstract. A class of mixed boundary value problems (bvps), occurring in the study of scattering of surface water waves by thin vertical rigid barriers placed in water of finite depth, is examined for their approximate solutions. Two different placings of vertical barriers are analyzed, namely, (i) a partially immersed barrier and.

  19. Scattering of atoms on a Bose-Einstein condensate

    Poulsen, Uffe V.; Moelmer, Klaus

    2003-01-01

    We study the scattering properties of a Bose-Einstein condensate held in a finite depth well when the incoming particles are identical to the ones in the condensate. We calculate phase shifts and corresponding transmission and reflection coefficients, and we show that the transmission times can be negative, i.e., the atomic wave packet seemingly leaves the condensate before it arrives

  20. Light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities based on hybrid simplified spherical harmonics with radiosity model.

    Yang, Defu; Chen, Xueli; Peng, Zhen; Wang, Xiaorui; Ripoll, Jorge; Wang, Jing; Liang, Jimin

    2013-01-01

    Modeling light propagation in the whole body is essential and necessary for optical imaging. However, non-scattering, low-scattering and high absorption regions commonly exist in biological tissues, which lead to inaccuracy of the existing light transport models. In this paper, a novel hybrid light transport model that couples the simplified spherical harmonics approximation (SPN) with the radiosity theory (HSRM) was presented, to accurately describe light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities. In the model, the radiosity theory was used to characterize the light transport in non-scattering regions and the SPN was employed to handle the scattering problems, including subsets of low-scattering and high absorption. A Neumann source constructed by the light transport in the non-scattering region and formed at the interface between the non-scattering and scattering regions was superposed into the original light source, to couple the SPN with the radiosity theory. The accuracy and effectiveness of the HSRM was first verified with both regular and digital mouse model based simulations and a physical phantom based experiment. The feasibility and applicability of the HSRM was then investigated by a broad range of optical properties. Lastly, the influence of depth of the light source on the model was also discussed. Primary results showed that the proposed model provided high performance for light transport in turbid media with non-scattering, low-scattering and high absorption heterogeneities.

  1. SIMULATION OF THE Ku-BAND RADAR ALTIMETER SEA ICE EFFECTIVE SCATTERING SURFACE

    Tonboe, Rasmus; Andersen, Søren; Pedersen, Leif Toudal

    2006-01-01

    A radiative transfer model is used to simulate the sea ice radar altimeter effective scattering surface variability as a function of snow depth and density. Under dry snow conditions without layering these are the primary snow parameters affecting the scattering surface variability. The model is ...

  2. Multiple scattering of elliptically polarized light in two-dimensional medium with large inhomogeneities

    Gorodnichev, E. E., E-mail: gorodn@theor.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    For elliptically polarized light incident on a two-dimensional medium with large inhomogeneities, the Stokes parameters of scattered waves are calculated. Multiple scattering is assumed to be sharply anisotropic. The degree of polarization of scattered radiation is shown to be a nonmonotonic function of depth when the incident wave is circularly polarized or its polarization vector is not parallel to the symmetry axis of the inhomogeneities.

  3. Radiative MRI Coil Design Using Parasitic Scatterers

    Sanchez-Heredia, Juan D.; Avendal, Johan; Bibic, Adnan

    2018-01-01

    allows for antenna design techniques to be adapted to RF coil designs. This study proposes the use of parasitic scatterers to improve the performance of an existing 7T MRI coil called the single-sided adapted dipole (SSAD) antenna. The results reveal that scatterers arranged in a Yagi fashion can......Conventionally, radiofrequency (RF) coils used for magnetic resonance imaging (MRI) are electrically small and designed for nearfield operation. Therefore, existing antenna design techniques are mostly irrelevant for RF coils. However, the use of higher frequencies in ultrahigh field (UHF) MRI...... be applied to reduce local specific absorption rate (SAR) maxima of a reference SSAD by 40% with only a 6% decrease in the propagated B1 + field at the tissue depth of 15 cm. The higher directivity of the proposed design also decreasing the coupling with additional elements, making this antenna...

  4. The dependence of percentage depth dose on the source-to-skin ...

    The variation of percentage depth dose (PDD) with source-to-skin distance (SSD) for kilovoltage X-rays used in radiotherapy has been investigated. Based on physical parameters of photon fluence, absorption and scatter during interaction of radiation with tissue, a mathematical model was developed to predict the PDDs at ...

  5. Direction-of-Arrival Analysis of Airborne Ice Depth Sounder Data

    Nielsen, Ulrik; Yan, Jie-Bang; Gogineni, Sivaprasad

    2017-01-01

    In this paper, we analyze the direction-of arrival(DOA) of the ice-sheet data collected over Jakobshavn Glacier with the airborne Multichannel Radar Depth Sounder (MCRDS) during the 2006 field season. We extracted weak ice–bed echoes buried in signals scattered by the rough surface of the fast...

  6. Retrieval of Aerosol Optical Depth Over Land by Inverse Modeling of Multi-Source Satellite Data

    Wu, Y.

    2018-01-01

    The Aerosol Optical Depth (AOD), a measure of the scattering and absorption of light by aerosols, has been extensively used for scientific research such as monitoring air quality near the surface due to fine particles aggregated, aerosol radiative forcing (cooling effect against the warming effect

  7. Elements of slow-neutron scattering basics, techniques, and applications

    Carpenter, J M

    2015-01-01

    Providing a comprehensive and up-to-date introduction to the theory and applications of slow-neutron scattering, this detailed book equips readers with the fundamental principles of neutron studies, including the background and evolving development of neutron sources, facility design, neutron scattering instrumentation and techniques, and applications in materials phenomena. Drawing on the authors' extensive experience in this field, this text explores the implications of slow-neutron research in greater depth and breadth than ever before in an accessible yet rigorous manner suitable for both students and researchers in the fields of physics, biology, and materials engineering. Through pedagogical examples and in-depth discussion, readers will be able to grasp the full scope of the field of neutron scattering, from theoretical background through to practical, scientific applications.

  8. Defence in Depth and Ageing Management

    Fabbri, S.; Vega, G.; Diluch, A.; Versaci, R., E-mail: versaci@cnea.gov.ar [Comisión Nacional de Energía Atómica, Buenos Aires (Argentina)

    2014-10-15

    Accident prevention is the first safety priority of both designers and operators. It is achieved through the use of reliable structures, components, systems and procedures in a plant operated by personnel who are committed to a strong safety culture. For future nuclear power plants, consideration of multiple failures and severe accidents will be achieved in a more systematic and complete way from the design stage. Defence in depth (DID) consists of a hierarchical deployment of different levels of equipment and procedures in order to maintain the effectiveness of physical barriers placed between radioactive materials and workers, the public or the environment, in normal operation, anticipated operational occurrences and, for some barriers, in accidents at the plant. The primary way of preventing accidents is to achieve a high quality in design, construction and operation of the plant, and thereby to ensure that deviations from normal operation are infrequent. The best way to meet these premises of effectiveness of the barriers and the Systems, Structures and Components (SSCs) is to develop an ageing management programme to prevent potential failures and accidents. In this work we will refer to the ageing management programme for Atucha I and Atucha II power plants and to the Atucha I spent fuel storage. (author)

  9. A study on the directional dependence of scatter ray in radiography

    Oh, Hyun Joo; Kim, Sung Soo; Kim, Young Il; Lee, Who Min; Kim, Hak Sung; Lim, Han Young; Kim, Heung Tae; Lee, Sang Suk

    1995-01-01

    In this papper, the back, forward, side and 45 .deg. oblique scatter dose were measured the X-ray exposure conditions 60, 80, 100, 120 kV, FFD 100 cm, FS 20 x 20 cm, toward the 25 x 25cm x 10 ∼ 20cm of solid water, paraffin and MiX-DP phantom, and Pb, Cu, AI, and styrofoam materials, by the electrometer and 5.3 cc ionization chamber. The obtained results are summarized as following. 1. The percentage depth dose(PDD) at the range of the diagnostic x-ray energy were appeared 50 % depth dose at the 2 cm depth with 60 kV, and 5 cm depth with 120 kV X-ray, 10 % depth dose at the 10 cm depth with 60 kV and 14 cm depth with 120 kV X-ray, 5 % below depth dose at the 20 cm depth. 2. The back scatter dose which were generated the surface of Pb, Cu and Al metal plates were 10 % below, and than the back scatter dose at the Pb plate were a most amount of these which were about 10 %, and were appeared the order of Cu and AI. 3. The percentage forward scatter were appeared from 50 % to 65 %, and the more phantom thickness become, the more forward scatter were increased with the ratio of 5 % per 5 cm thickness. 4. The percentage back scatter which were generated the tissue equivalence materials solid water, paraffin and MiX-DP were from 20 % to 40 %, and than the back scatter dose at the solid water were a mast amount of those, and paraffin and MiX-DP were appeared with the next values. 5. The percentage 90 .deg. lateral and 45 .deg. oblique side scatter dose were measured from 4 % to 12 %. a most amount of scatter dose which were generated from the patient in radiography were the forward scatter, the next values were the back scatter, the third values were the 90 .deg. lateral scatter

  10. Real-time depth processing for embedded platforms

    Rahnama, Oscar; Makarov, Aleksej; Torr, Philip

    2017-05-01

    Obtaining depth information of a scene is an important requirement in many computer-vision and robotics applications. For embedded platforms, passive stereo systems have many advantages over their active counterparts (i.e. LiDAR, Infrared). They are power efficient, cheap, robust to lighting conditions and inherently synchronized to the RGB images of the scene. However, stereo depth estimation is a computationally expensive task that operates over large amounts of data. For embedded applications which are often constrained by power consumption, obtaining accurate results in real-time is a challenge. We demonstrate a computationally and memory efficient implementation of a stereo block-matching algorithm in FPGA. The computational core achieves a throughput of 577 fps at standard VGA resolution whilst consuming less than 3 Watts of power. The data is processed using an in-stream approach that minimizes memory-access bottlenecks and best matches the raster scan readout of modern digital image sensors.

  11. Distribution in depth of quasars

    Schmidt, M.; Green, R.F.

    1980-01-01

    The authors discuss the distribution in depth of different kinds of quasars: quasi-stellar radio sources with steep radio spectrum, those with flat radio spectrum, and optically selected quasars. All exhibit an increase of space density with distance to a different degree. The optically selected quasars, in particular, show a steep increase of surface density with magnitude. The steepness of the increase is inconsistent with a uniform distribution of quasars in the local hypothesis. In the cosmological hypothesis the co-moving space density of optically selected quasars increases by a factor of 100,000 to a redshift of 2, and by factors of 1000 and 10 for steep-spectrum and flat-spectrum radio quasars, respectively. (Auth.)

  12. Simplicial band depth for multivariate functional data

    López-Pintado, Sara

    2014-03-05

    We propose notions of simplicial band depth for multivariate functional data that extend the univariate functional band depth. The proposed simplicial band depths provide simple and natural criteria to measure the centrality of a trajectory within a sample of curves. Based on these depths, a sample of multivariate curves can be ordered from the center outward and order statistics can be defined. Properties of the proposed depths, such as invariance and consistency, can be established. A simulation study shows the robustness of this new definition of depth and the advantages of using a multivariate depth versus the marginal depths for detecting outliers. Real data examples from growth curves and signature data are used to illustrate the performance and usefulness of the proposed depths. © 2014 Springer-Verlag Berlin Heidelberg.

  13. Pion scattering and nuclear dynamics

    Johnson, M.B.

    1988-01-01

    A phenomenological optical-model analysis of pion elastic scattering and single- and double-charge-exchange scattering to isobaric-analog states is reviewed. Interpretation of the optical-model parameters is briefly discussed, and several applications and extensions are considered. The applications include the study of various nuclear properties, including neutron deformation and surface-fluctuation contributions to the density. One promising extension for the near future would be to develop a microscopic approach based on powerful momentum-space methods brought to existence over the last decade. In this, the lowest-order optical potential as well as specific higher-order pieces would be worked out in terms of microscopic pion-nucleon and delta-nucleon interactions that can be determined within modern meson-theoretical frameworks. A second extension, of a more phenomenological nature, would use coupled-channel methods and shell-model wave functions to study dynamical nuclear correlations in pion double charge exchange. 35 refs., 11 figs., 1 tab

  14. Using elastic peak electron spectroscopy for enhanced depth resolution in sputter profiling

    Hofmann, S.; Kesler, V.

    2002-01-01

    Elastic peak electron spectroscopy (EPES) is an alternative to AES in sputter depth profiling of thin film structures. In contrast to AES, EPES depth profiling is not influenced by chemical effects. The high count rate ensures a good signal to noise ratio, that is lower measurement times and/or higher precision. In addition, because of the elastically scattered electrons travel twice through the sample, the effective escape depth is reduced, an important factor for the depth resolution function. Thus, the depth resolution is increased. EPES depth profiling was successfully applied to a Ge/Si multilayer structure. For an elastic peak energy of 1.0 keV the information depth is considerably lower (0.8 nm) as compared to the Ge (LMM, 1147 eV) peak (1.6 nm) used in AES depth profiling, resulting in a respectively improved depth resolution for EPES profiling under otherwise similar profiling conditions. EPES depth profiling is successfully applied to measure small diffusion lengths at Ge/Si interfaces of the order of 1 nm. (Authors)

  15. German neutron scattering conference. Programme and abstracts

    Brueckel, Thomas (ed.)

    2012-07-01

    The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.

  16. Studies in small angle scattering techniques

    Moellenbach, K.

    1980-03-01

    Small angle scattering of neutrons, X-rays and γ-rays are found among the spectroscopic methods developed in the recent years. Although these techniques differ from each other in many respects, e.g. radiation sources and technical equipment needed, their power to resolve physical phenomena and areas of application can be discussed in a general scheme. Selected examples are given illustrating the use of specific technical methods. Jahn-Teller driven structural phase transitions in Rare Earth zircons were studied with neutron scattering as well as small angle γ-ray diffraction. The study of neutron scattering from formations of magnetic domains in the Ising ferromagnet LiTbF 4 is a second example. Both these examples represent more than experimental test cases since the theoretical interpretations of the data obtained are discussed as well. As a last example the use of small angle scattering methods for the study of molecular biological samples is discussed. In particular the experimental procedures used in connection with scattering from aqueous solutions of proteins and protein complexes are given. (Auth.)

  17. German neutron scattering conference. Programme and abstracts

    Brueckel, Thomas

    2012-01-01

    The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.

  18. Virtual neutron scattering experiments

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2016-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  19. Electron scattering off nuclei

    Gattone, A.O.

    1989-01-01

    Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author) [es

  20. Cold moderator scattering kernels

    MacFarlane, R.E.

    1989-01-01

    New thermal-scattering-law files in ENDF format have been developed for solid methane, liquid methane liquid ortho- and para-hydrogen, and liquid ortho- and para-deuterium using up-to-date models that include such effects as incoherent elastic scattering in the solid, diffusion and hindered vibration and rotations in the liquids, and spin correlations for the hydrogen and deuterium. These files were generated with the new LEAPR module of the NJOY Nuclear Data Processing System. Other modules of this system were used to produce cross sections for these moderators in the correct format for the continuous-energy Monte Carlo code (MCNP) being used for cold-moderator-design calculations at the Los Alamos Neutron Scattering Center (LANSCE). 20 refs., 14 figs

  1. Electromagnetic scattering theory

    Bird, J. F.; Farrell, R. A.

    1986-01-01

    Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.

  2. Transverse tomography by Compton scattering scintigraphy

    Askienazy, S.; Lumbroso, J.; Lacaille, J.M.; Fredy, D.; Constans, J.P.; Barritault, L.

    The technique of tomography by Compton-scattering was applied to the exploration of the brain. Studies were carried out on phantoms and on patients and the first results are considered highly encouraging. On a phantom skull, holes at a depth of 7 cm are visible even on analogue documents and whatever their position with regard to the bone. On patients the ventricle cavities were revealed and comparisons with gas encephalograpy showed good agreement between the two techniques. The studies on phantoms also testified to the very low dose received by the patient: about 300 mRem for 2 million counts per section [fr

  3. Optimizing visual comfort for stereoscopic 3D display based on color-plus-depth signals.

    Shao, Feng; Jiang, Qiuping; Fu, Randi; Yu, Mei; Jiang, Gangyi

    2016-05-30

    Visual comfort is a long-facing problem in stereoscopic 3D (S3D) display. In this paper, targeting to produce S3D content based on color-plus-depth signals, a general framework for depth mapping to optimize visual comfort for S3D display is proposed. The main motivation of this work is to remap the depth range of color-plus-depth signals to a new depth range that is suitable to comfortable S3D display. Towards this end, we first remap the depth range globally based on the adjusted zero disparity plane, and then present a two-stage global and local depth optimization solution to solve the visual comfort problem. The remapped depth map is used to generate the S3D output. We demonstrate the power of our approach on perceptually uncomfortable and comfortable stereoscopic images.

  4. Neutron scattering. Experiment manuals

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  5. Nuclear Compton scattering

    Christillin, P.

    1986-01-01

    The theory of nuclear Compton scattering is reformulated with explicit consideration of both virtual and real pionic degrees of freedom. The effects due to low-lying nuclear states, to seagull terms, to pion condensation and to the Δ dynamics in the nucleus and their interplay in the different energy regions are examined. It is shown that all corrections to the one-body terms, of diffractive behaviour determined by the nuclear form factor, have an effective two-body character. The possibility of using Compton scattering as a complementary source of information about nuclear dynamics is restressed. (author)

  6. Diffraction in nuclear scattering

    Wojciechowski, H.

    1986-01-01

    The elastic scattering amplitudes for charged and neutral particles have been decomposed into diffractive and refractive parts by splitting the nuclear elastic scattering matrix elements into components responsible for these effects. It has been shown that the pure geometrical diffractive effect which carries no information about the nuclear interaction is always predominant at forward angle of elastic angular distributions. This fact suggests that for strongly absorbed particles only elastic cross section at backward angles, i.e. the refractive cross section, can give us basic information about the central nuclear potential. 12 refs., 4 figs., 1 tab. (author)

  7. Proton nuclear scattering radiography

    Saudinos, J.

    1982-04-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: 3-dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore the nuclear scattering radiography (NSR) is a well adapted method to gating techniques allowing the radiography of fast periodic moving objects. Results obtained on phantoms, formalin fixed head and moving object are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiograph faster and to get a practical method are discussed

  8. Slow neutron scattering experiments

    Moon, R.M.

    1985-01-01

    Neutron scattering is a versatile technique that has been successfully applied to condensed-matter physics, biology, polymer science, chemistry, and materials science. The United States lost its leadership role in this field to Western Europe about 10 years ago. Recently, a modest investment in the United States in new facilities and a positive attitude on the part of the national laboratories toward outside users have resulted in a dramatic increase in the number of US scientists involved in neutron scattering research. Plans are being made for investments in new and improved facilities that could return the leadership role to the United States. 23 references, 4 figures, 3 tables

  9. Neutron scattering. Experiment manuals

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2014-01-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  10. Electron-atom scattering

    McCarthy, I.E.

    1991-07-01

    The coupled-channels-optical method has been implemented using two different approximations to the optical potential. The half-on-shell optical potential involves drastic approximations for numerical feasibility but still gives a good semiquantitative description of the effect of uncoupled channels on electron scattering from hydrogen, helium and sodium. The distorted-wave optical potential makes no approximations other than the weak coupling approximation for uncoupled channels. In applications to hydrogen and sodium it shows promise of describing scattering phenomena excellently at all energies. 27 refs., 5 figs

  11. Neutron scattering. Experiment manuals

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  12. Updating default depths in the ISC bulletin

    Bolton, Maiclaire K.; Storchak, Dmitry A.; Harris, James

    2006-09-01

    The International Seismological Centre (ISC) publishes the definitive global bulletin of earthquake locations. In the ISC bulletin, we aim to obtain a free depth, but often this is not possible. Subsequently, the first option is to obtain a depth derived from depth phases. If depth phases are not available, we then use the reported depth from a reputable local agency. Finally, as a last resort, we set a default depth. In the past, common depths of 10, 33, or multiples of 50 km have been assigned. Assigning a more meaningful default depth, specific to a seismic region will increase the consistency of earthquake locations within the ISC bulletin and allow the ISC to publish better positions and magnitude estimates. It will also improve the association of reported secondary arrivals to corresponding seismic events. We aim to produce a global set of default depths, based on a typical depth for each area, from well-constrained events in the ISC bulletin or where depth could be constrained using a consistent set of depth phase arrivals provided by a number of different reporters. In certain areas, we must resort to using other assumptions. For these cases, we use a global crustal model (Crust2.0) to set default depths to half the thickness of the crust.

  13. Enhanced Raman scattering in porous silicon grating.

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  14. Hydrologic controls on the development of equilibrium soil depths

    Nicotina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.

    2010-12-01

    . Our results show the ability of the model to describe properly the mean soil depth and the broad features of the distribution of measured data. However, local comparisons show significant scatter whose origin is discussed.

  15. EOP TDRs (Temperature-Depth-Recordings) Data

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature-depth-recorders (TDRs) were attached to commercial longline and research Cobb trawl gear to obtain absolute depth and temperature measurement during...

  16. Simplicial band depth for multivariate functional data

    Ló pez-Pintado, Sara; Sun, Ying; Lin, Juan K.; Genton, Marc G.

    2014-01-01

    sample of curves. Based on these depths, a sample of multivariate curves can be ordered from the center outward and order statistics can be defined. Properties of the proposed depths, such as invariance and consistency, can be established. A simulation

  17. Scatter Dose in Patients in Radiation Therapy

    Schmidt, W. F. O.

    2003-01-01

    Patients undergoing radiation therapy are often treated with high energy radiation (bremsstrahlung) which causes scatter doses in the patients from various sources as photon scatter coming from collimator, gantry, patient, patient table or room (walls, floor, air) or particle doses resulting from gamma-particle reactions in the atomic nucleus if the photon energies are above 8 MeV. In the last years new treatment techniques like IMRT (esp the step-and-shoot- or the MIMIC-techniques) have increased interest in these topics again. In the lecture an overview about recent measurements on scatter doses resulting from gantry, table and room shall be given. Scatter doses resulting from the volume treated in the patient to other critical parts of the body like eyes, ovarii etc. have been measured in two diploma works in our institute and are compared with a program (PERIDOSE; van der Giessen, Netherlands) to estimate them. In some cases these scatter doses have led to changes of treatment modalities. Also an overview and estimation of doses resulting from photon-particle interactions is given according to a publication from Gudowska et al.(Gudowska I, Brahme A, Andreo P, Gudowski W, Kierkegaard J. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV. Phys Med Biol 1999; 44(9):2099-2125.). Energy dose has been calculated with Monte Carlo-methods and is compared with analytical methods for 50 MV bremsstrahlung. From these data biologically effective doses from particles in different depths of the body can be estimated also for energies used in normal radiotherapy. (author)

  18. Gaspe hole sets depth record

    1970-03-09

    The deepest diamond-cored hole in the Western Hemisphere, Gulf Sunnybank No. 1 on the Gaspe Peninsula of Quebec, has been completed at a depth of 11,600 ft. This is the deepest cored hole to be drilled anywhere in search of oil and gas production, and the deepest to be drilled using a wire-line core recovery technique. The well was completed in 183 days, and was cored continuously below the surface casing which was set and cemented at 1,004 ft. After underreaming a portion of the bottom of the hole, intermediate casing was set and cemented at 8,000 ft as a safety precaution against possible high oil or gas-fluid pressure. Actual coring time, after deducting time for underreaming and casing operations, was 152 days. Because of the cost of transporting a conventional oil-drilling rig to the E. location, the 89-ft mining rig was modified for the project. The contractor was Heath and Sherwood Drilling (Western) Ltd.

  19. Phonon scattering in graphite

    Wagner, P.

    1976-04-01

    Effects on graphite thermal conductivities due to controlled alterations of the graphite structure by impurity addition, porosity, and neutron irradiation are shown to be consistent with the phonon-scattering formulation 1/l = Σ/sub i equals 1/sup/n/ 1/l/sub i/. Observed temperature effects on these doped and irradiated graphites are also explained by this mechanism

  20. High energy hadron scattering

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  1. Critical scattering by bubbles

    Fiedler-Ferrari, N.; Nussenzveig, H.M.

    1986-11-01

    We apply the complex angular momentum theory to the problem of the critical scattering of light by spherical cavities in the high frequency limit (permittivity greater than the external media) (e.g, air bubble in water) (M.W.O.) [pt

  2. Radiation scattering techniques

    Edmonds, E.A.

    1986-01-01

    Radiation backscattering techniques are useful when access to an item to be inspected is restricted to one side. These techniques are very sensitive to geometrical effects. Scattering processes and their application to the determination of voids, thickness measuring, well-logging and the use of x-ray fluorescence techniques are discussed. (U.K.)

  3. Scattering theory. 2. ed.

    Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2016-07-01

    This corrected and updated second edition of ''Scattering Theory'' presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is kept as low as at all possible and deeper questions related to the mathematical foundations of scattering theory are passed by. It should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. The book is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.

  4. Lepton-nucleon scattering

    Windmolders, R.

    1989-01-01

    In this paper the following topics are reviewed: 1. the structure functions measured in deep inelastic e-N, μ-N and ν-N scattering; 2. nuclear effects on the structure functions; 3. nuclear effects on the fragmentation functions; 4. the spin dependent structure functions and their interpretation in terms of nucleon constituents. (orig./HSI)

  5. Deeply Virtual Neutrino Scattering

    Ales Psaker

    2007-01-01

    We investigate the extension of the deeply virtual Compton scattering process into the weak interaction sector. Standard electromagnetic Compton scattering provides a unique tool for studying hadrons, which is one of the most fascinating frontiers of modern science. In this process the relevant Compton scattering amplitude probes the hadron structure by means of two quark electromagnetic currents. We argue that replacing one of the currents with the weak interaction current can promise a new insight. The paper is organized as follows. In Sec. II we briefly discuss the features of the handbag factorization scheme. We introduce a new set of phenomenological functions, known as generalized parton distributions (GPDs) [1-6], and discuss some of their basic properties in Sec. III. An application of the GPD formalism to the neutrino-induced deeply virtual Compton scattering in the kinematics relevant to future high-intensity neutrino experiments is given in Sec. IV. The cross section results are presented in Sec. V. Finally, in Sec. VI we draw some conclusions and discuss future prospects. Some of the formal results in this paper have appeared in preliminary reports in Refs. [7] and [8], whereas a comprehensive analysis of the weak neutral and weak charged current DVCS reactions in collaboration with W. Melnitchouk and A. Radyushkin has been presented in Ref. [9

  6. Symposium on neutron scattering

    Lehmann, M.S.; Saenger, W.; Hildebrandt, G.; Dachs, H.

    1984-01-01

    Extended abstracts of the named symposium are presented. The first part of this report contains the abstracts of the lectures, the second those of the posters. Topics discussed on the symposium include neutron diffraction and neutron scattering studies in magnetism, solid state chemistry and physics, materials research. Some papers discussing instruments and methods are included too. (GSCH)

  7. Inversion assuming weak scattering

    Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus

    2013-01-01

    due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...

  8. Atom electron scattering

    Santoso, B.

    1976-01-01

    Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)

  9. Electron Scattering on deuterium

    Platchkov, S.

    1987-01-01

    Selected electron scattering experiments on the deuteron system are discussed. The main advantages of the electromagnetic probe are recalled. The deuteron A(q 2 ) structure function is analyzed and found to be very sensitive to the neutron electric form factor. Electrodisintegration of the deuteron near threshold is presented as evidence for the importance of meson exchange currents in nuclei [fr

  10. Parity violating electron scattering

    McKeown, R.D.

    1990-01-01

    Previous measurements of parity violation in electron scattering are reviewed with particular emphasis on experimental techniques. Significant progress in the attainment of higher precision is evident in these efforts. These pioneering experiments provide a basis for consideration of a future program of such measurements. In this paper some future plans and possibilities in this field are discussed

  11. Heavy ion elastic scatterings

    Mermaz, M.C.

    1984-01-01

    Diffraction and refraction play an important role in particle elastic scattering. The optical model treats correctly and simultaneously both phenomena but without disentangling them. Semi-classical discussions in terms of trajectories emphasize the refractive aspect due to the real part of the optical potential. The separation due to to R.C. Fuller of the quantal cross section into two components coming from opposite side of the target nucleus allows to understand better the refractive phenomenon and the origin of the observed oscillations in the elastic scattering angular distributions. We shall see that the real part of the potential is responsible of a Coulomb and a nuclear rainbow which allows to determine better the nuclear potential in the interior region near the nuclear surface since the volume absorption eliminates any effect of the real part of the potential for the internal partial scattering waves. Resonance phenomena seen in heavy ion scattering will be discussed in terms of optical model potential and Regge pole analysis. Compound nucleus resonances or quasi-molecular states can be indeed the more correct and fundamental alternative

  12. Multienergy anomalous diffuse scattering

    Kopecký, Miloš; Fábry, Jan; Kub, Jiří; Lausi, A.; Busetto, E.

    2008-01-01

    Roč. 100, č. 19 (2008), 195504/1-195504/4 ISSN 0031-9007 R&D Projects: GA AV ČR IAA100100529 Institutional research plan: CEZ:AV0Z10100523 Keywords : diffuse scattering * x-rays * structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008

  13. Correlation in atomic scattering

    McGuire, J.H.

    1987-01-01

    Correlation due to the Coulomb interactions between electrons in many-electron targets colliding with charged particles is formulated, and various approximate probability amplitudes are evaluated. In the limit that the electron-electron, 1/r/sub i//sub j/, correlation interactions are ignored or approximated by central potentials, the independent-electron approximation is obtained. Two types of correlations, or corrections to the independent-electron approximation due to 1/r/sub i//sub j/ terms, are identified: namely, static and scattering correlation. Static correlation is that contained in the asymptotic, e.g., bound-state, wave functions. Scattering correlation, arising from correlation in the scattering operator, is new and is considered in some detail. Expressions for a scattering correlation amplitude, static correlation or rearrangement amplitude, and independent-electron or direct amplitude are derived at high collision velocity and compared. At high velocities the direct and rearrangement amplitudes dominate. At very high velocities, ν, the rearrangement amplitude falls off less rapidly with ν than the direct amplitude which, however, is dominant as electron-electron correlation tends to zero. Comparisons with experimental observations are discussed

  14. Superradiative scattering magnons

    Shrivastava, K.N.

    1980-01-01

    A magnon-photon interaction for the magnetic vector of the electromagnetic wave perpendicular to the direction of magnetization in a ferromagnet is constructed. The magnon part of the interaction is reduced with the use of Bogoliubov transformation. The resulting magnon-photon interaction is found to contain several interesting new radiation effects. The self energy of the magnon is calculated and life times arising from the radiation scattering are predicted. The magnon frequency shift due to the radiation field is found. One of the terms arising from the one-magnon one-photon scattering gives a line width in reasonable agreement with the experimentally measured value of ferromagnetic resonance line width in yttrium iron garnet. Surface magnon scattering is indicated and the contribution of this type of scattering to the radiative line width is discussed. The problem of magnetic superradiance is indicated and it is shown that in anisotropic ferromagnets the emission is proportional to the sqare of the number of magnons and the divergence is considerably minimized. Accordingly the magnetic superradiance emerges as a hyperradiance with much more radiation intensity than in the case of disordered atomic superradiance. (author)

  15. Inelastic magnon scattering

    Robert de Mello Koch

    2017-05-01

    Full Text Available We study the worldsheet S-matrix of a string attached to a D-brane in AdS5×S5. The D-brane is either a giant graviton or a dual giant graviton. In the gauge theory, the operators we consider belong to the su(2|3 sector of the theory. Magnon excitations of open strings can exhibit both elastic (when magnons in the bulk of the string scatter and inelastic (when magnons at the endpoint of an open string participate scattering. Both of these S-matrices are determined (up to an overall phase by the su(2|22 global symmetry of the theory. In this note we study the S-matrix for inelastic scattering. We show that it exhibits poles corresponding to boundstates of bulk and boundary magnons. A crossing equation is derived for the overall phase. It reproduces the crossing equation for maximal giant gravitons, in the appropriate limit. Finally, scattering in the su(2 sector is computed to two loops. This two loop result, which determines the overall phase to two loops, will be useful when a unique solution to the crossing equation is to be selected.

  16. On the scattering over the GKP vacuum

    Fioravanti, Davide; Piscaglia, Simone; Rossi, Marco

    2014-01-01

    By converting the asymptotic Bethe Ansatz (ABA) of N=4 SYM into non-linear integral equations, we find 2D scattering amplitudes of excitations on top of the GKP vacuum. We prove that this is a suitable and powerful set-up for the understanding and computation of the whole S-matrix. We show that all the amplitudes depend on the fundamental scalar–scalar one

  17. Visual Discomfort and Depth-of-Field

    Louise O'Hare

    2013-05-01

    Full Text Available Visual discomfort has been reported for certain visual stimuli and under particular viewing conditions, such as stereoscopic viewing. In stereoscopic viewing, visual discomfort can be caused by a conflict between accommodation and convergence cues that may specify different distances in depth. Earlier research has shown that depth-of-field, which is the distance range in depth in the scene that is perceived to be sharp, influences both the perception of egocentric distance to the focal plane, and the distance range in depth between objects in the scene. Because depth-of-field may also be in conflict with convergence and the accommodative state of the eyes, we raised the question of whether depth-of-field affects discomfort when viewing stereoscopic photographs. The first experiment assessed whether discomfort increases when depth-of-field is in conflict with coherent accommodation–convergence cues to distance in depth. The second experiment assessed whether depth-of-field influences discomfort from a pre-existing accommodation–convergence conflict. Results showed no effect of depth-of-field on visual discomfort. These results suggest therefore that depth-of-field can be used as a cue to depth without inducing discomfort in the viewer, even when cue conflicts are large.

  18. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering

    Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik

    2018-05-01

    The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.

  19. Magnetothermoelectric properties of layered structures for ion impurity scattering

    Figarova, S. R.; Huseynov, H. I.; Figarov, V. R.

    2018-05-01

    In the paper, longitudinal and transverse thermoelectric powers are considered in a magnetic field parallel to the layer plane for scattering of charge carriers by weakly screened impurity ions. Based on the semiclassical approximation, it is obtained that, depending on the position of the Fermi level relative to the miniband top and superlattice period, the thermoelectric power can change sign and amplify.

  20. Small angle neutron scattering

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  1. Listening to light scattering in turbid media: quantitative optical scattering imaging using photoacoustic measurements with one-wavelength illumination

    Yuan, Zhen; Li, Xiaoqi; Xi, Lei

    2014-01-01

    Biomedical photoacoustic tomography (PAT), as a potential imaging modality, can visualize tissue structure and function with high spatial resolution and excellent optical contrast. It is widely recognized that the ability of quantitatively imaging optical absorption and scattering coefficients from photoacoustic measurements is essential before PAT can become a powerful imaging modality. Existing quantitative PAT (qPAT), while successful, has been focused on recovering absorption coefficient only by assuming scattering coefficient a constant. An effective method for photoacoustically recovering optical scattering coefficient is presently not available. Here we propose and experimentally validate such a method for quantitative scattering coefficient imaging using photoacoustic data from one-wavelength illumination. The reconstruction method developed combines conventional PAT with the photon diffusion equation in a novel way to realize the recovery of scattering coefficient. We demonstrate the method using various objects having scattering contrast only or both absorption and scattering contrasts embedded in turbid media. The listening-to-light-scattering method described will be able to provide high resolution scattering imaging for various biomedical applications ranging from breast to brain imaging. (papers)

  2. Light scattering reviews 8 radiative transfer and light scattering

    Kokhanovsky, Alexander A

    2013-01-01

    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  3. Controlling pool depth during VAR of Alloy 718

    Lopez, F.; Beaman, J.; Williamson, R.; Evans, D.

    2016-07-01

    A longtime goal of superalloy producers has been to control the geometry of the liquid pool in solidifying ingots. Accurate pool depth control at appropriate values is expected to result in ingots free of segregation defects. This article describes an industrial VAR experiment in which a 430mm (17 in) diameter Alloy 718 electrode was melted into a 510mm (20 in) ingot. In the experiment, the depth of the liquid pool at the mid-radius was controlled to three different set-points: 137 mm (nominal), 193 mm (deep) and 118 mm (shallow). At each level, the pool depth was marked by a power cutback of several minutes. The ingot was sectioned and longitudinal slices were cut out. Analysis of the photographed ingot revealed that accurate control was obtained for both the nominal and deep pool cases, while the third one was not conclusive.

  4. FDTD scattered field formulation for scatterers in stratified dispersive media.

    Olkkonen, Juuso

    2010-03-01

    We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.

  5. Aerosol Optical Depth Over India

    David, Liji Mary; Ravishankara, A. R.; Kodros, John K.; Venkataraman, Chandra; Sadavarte, Pankaj; Pierce, Jeffrey R.; Chaliyakunnel, Sreelekha; Millet, Dylan B.

    2018-04-01

    Tropospheric aerosol optical depth (AOD) over India was simulated by Goddard Earth Observing System (GEOS)-Chem, a global 3-D chemical-transport model, using SMOG (Speciated Multi-pOllutant Generator from Indian Institute of Technology Bombay) and GEOS-Chem (GC) (current inventories used in the GEOS-Chem model) inventories for 2012. The simulated AODs were 80% (SMOG) and 60% (GC) of those measured by the satellites (Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer). There is no strong seasonal variation in AOD over India. The peak AOD values are observed/simulated during summer. The simulated AOD using SMOG inventory has particulate black and organic carbon AOD higher by a factor 5 and 3, respectively, compared to GC inventory. The model underpredicted coarse-mode AOD but agreed for fine-mode AOD with Aerosol Robotic Network data. It captured dust only over Western India, which is a desert, and not elsewhere, probably due to inaccurate dust transport and/or noninclusion of other dust sources. The calculated AOD, after dust correction, showed the general features in its observed spatial variation. Highest AOD values were observed over the Indo-Gangetic Plain followed by Central and Southern India with lowest values in Northern India. Transport of aerosols from Indo-Gangetic Plain and Central India into Eastern India, where emissions are low, is significant. The major contributors to total AOD over India are inorganic aerosol (41-64%), organic carbon (14-26%), and dust (7-32%). AOD over most regions of India is a factor of 5 or higher than over the United States.

  6. Is visual short-term memory depthful?

    Reeves, Adam; Lei, Quan

    2014-03-01

    Does visual short-term memory (VSTM) depend on depth, as it might be if information was stored in more than one depth layer? Depth is critical in natural viewing and might be expected to affect retention, but whether this is so is currently unknown. Cued partial reports of letter arrays (Sperling, 1960) were measured up to 700 ms after display termination. Adding stereoscopic depth hardly affected VSTM capacity or decay inferred from total errors. The pattern of transposition errors (letters reported from an uncued row) was almost independent of depth and cue delay. We conclude that VSTM is effectively two-dimensional. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Variations in depth-dose data between open and wedge fields for 4-MV x-rays

    Sewchand, W.; Khan, F.M.; Williamson, J.

    1978-01-01

    Central-axis depth-dose data for 4-MV x rays, including tissue-maximum ratios, were measured for wedge fields. Comparison with corresponding open-field data revealed differences in magnitude which increased with depth, field size, and wedge thickness. However, phantom scatter correction factors for the wedge fields differed less than 1% from corresponding open-field factors. The differences in central-axis percent depth doses between the two types of fields indicate beam hardening by the wedge filter. This study also implies that the derivation of tissue-maximum ratios from central-axis percent depth is as valid for wedge as for open fields

  8. Q-space analysis of light scattering by ice crystals

    Heinson, Yuli W.; Maughan, Justin B.; Ding, Jiachen; Chakrabarti, Amitabha; Yang, Ping; Sorensen, Christopher M.

    2016-12-01

    Q-space analysis is applied to extensive simulations of the single-scattering properties of ice crystals with various habits/shapes over a range of sizes. The analysis uncovers features common to all the shapes: a forward scattering regime with intensity quantitatively related to the Rayleigh scattering by the particle and the internal coupling parameter, followed by a Guinier regime dependent upon the particle size, a complex power law regime with incipient two dimensional diffraction effects, and, in some cases, an enhanced backscattering regime. The effects of significant absorption on the scattering profile are also studied. The overall features found for the ice crystals are similar to features in scattering from same sized spheres.

  9. Scattering of radio frequency waves by blob-filaments

    Myra, J. R.; D'Ippolito, D. A.

    2010-01-01

    Radio frequency waves used for heating and current drive in magnetic confinement experiments must traverse the scrape-off-layer (SOL) and edge plasma before reaching the core. The edge and SOL plasmas are strongly turbulent and intermittent in both space and time. As a first approximation, the SOL can be treated as a tenuous background plasma upon which denser filamentary field-aligned blobs of plasma are superimposed. The blobs are approximately stationary on the rf time scale. The scattering of plane waves in the ion-cyclotron to lower-hybrid frequency range from a cylindrical blob is treated here in the cold plasma fluid model. Scattering widths are derived for incident fast and slow waves, and the scattered power fraction is estimated. Processes such as scattering-induced mode conversion, scattering resonances, and shadowing are investigated.

  10. Dielectric effects on Thomson scattering in a relativistic magnetized plasma

    Bindslev, H.

    1991-01-01

    The effects of the dielectric properties of a relativistic magnetized plasma on the scattering of electromagnetic radiation by fluctuations in electron density are investigated. The origin of the density fluctuations is not considered. Expressions for the scattering cross-section and the scattered...... power accepted by the receiving antenna are derived for a plasma with spatial dispersion. The resulting expressions allow thermal motion to be included in the description of the plasma and remain valid for frequencies of the probing radiation in the region of omega(p) and omega(ce), provided...... the absorption is small. Symmetry between variables relating to incident and scattered fields is demonstrated and shown to be in agreement with the reciprocity relation. Earlier results are confirmed in the cold plasma limit. Significant relativistic effects, of practical importance to the scattering...

  11. Neural network scatter correction technique for digital radiography

    Boone, J.M.

    1990-01-01

    This paper presents a scatter correction technique based on artificial neural networks. The technique utilizes the acquisition of a conventional digital radiographic image, coupled with the acquisition of a multiple pencil beam (micro-aperture) digital image. Image subtraction results in a sparsely sampled estimate of the scatter component in the image. The neural network is trained to develop a causal relationship between image data on the low-pass filtered open field image and the sparsely sampled scatter image, and then the trained network is used to correct the entire image (pixel by pixel) in a manner which is operationally similar to but potentially more powerful than convolution. The technique is described and is illustrated using clinical primary component images combined with scatter component images that are realistically simulated using the results from previously reported Monte Carlo investigations. The results indicate that an accurate scatter correction can be realized using this technique

  12. Scattered-field FDTD and PSTD algorithms with CPML absorbing boundary conditions for light scattering by aerosols

    Sun, Wenbo; Videen, Gorden; Fu, Qiang; Hu, Yongxiang

    2013-01-01

    As fundamental parameters for polarized-radiative-transfer calculations, the single-scattering phase matrix of irregularly shaped aerosol particles must be accurately modeled. In this study, a scattered-field finite-difference time-domain (FDTD) model and a scattered-field pseudo-spectral time-domain (PSTD) model are developed for light scattering by arbitrarily shaped dielectric aerosols. The convolutional perfectly matched layer (CPML) absorbing boundary condition (ABC) is used to truncate the computational domain. It is found that the PSTD method is generally more accurate than the FDTD in calculation of the single-scattering properties given similar spatial cell sizes. Since the PSTD can use a coarser grid for large particles, it can lower the memory requirement in the calculation. However, the Fourier transformations in the PSTD need significantly more CPU time than simple subtractions in the FDTD, and the fast Fourier transform requires a power of 2 elements in calculations, thus using the PSTD could not significantly reduce the CPU time required in the numerical modeling. Furthermore, because the scattered-field FDTD/PSTD equations include incident-wave source terms, the FDTD/PSTD model allows for the inclusion of an arbitrarily incident wave source, including a plane parallel wave or a Gaussian beam like those emitted by lasers usually used in laboratory particle characterizations, etc. The scattered-field FDTD and PSTD light-scattering models can be used to calculate single-scattering properties of arbitrarily shaped aerosol particles over broad size and wavelength ranges. -- Highlights: • Scattered-field FDTD and PSTD models are developed for light scattering by aerosols. • Convolutional perfectly matched layer absorbing boundary condition is used. • PSTD is generally more accurate than FDTD in calculating single-scattering properties. • Using same spatial resolution, PSTD requires much larger CPU time than FDTD

  13. Electroweak physics and electron scattering

    Henley, E.M.; Hwang, W.Y.P.

    1988-01-01

    The electroweak theory is developed and applied to electron scattering from nucleons and light nuclei. It is shown that these scatterings can be used to test the standard theory and probe structure effects. 33 refs., 5 figs

  14. Regge poles and alpha scattering

    Ceuleneer, R.

    1974-01-01

    The direct Regge pole model as a means of describing resonances in elastic particle scattering has been used for the analysis of the so-called ''anormalous large angle scattering'' of alpha particles by spinless nuclei. (Z.M.)

  15. Electromagnetic scattering from random media

    Field, Timothy R

    2009-01-01

    - ;The book develops the dynamical theory of scattering from random media from first principles. Its key findings are to characterize the time evolution of the scattered field in terms of stochastic differential equations, and to illustrate this framework

  16. Study of Compton broadening due to electron-photon scattering

    Srinivasa Rao M.

    2010-01-01

    Full Text Available We have investigated the effects of Compton broadening due to electron-photon scattering in hot stellar atmospheres. A purely electron-photon scattering media is assumed to have plane parallel geometry with an input radia­tion field localized on one side of the slab. The method is based on the discrete space theory of radiative transfer for the intensity of emitted radiation. The solution is developed to study the importance of scattering of radiation by free electrons in high temperature stellar atmospheres which produces a brodening and shift in spectral lines because of the Compton effect and the Doppler effect arising from mass and thermal motions of scattering electrons. It is noticed that the Comptonized spectrum depends on three parameters: the optical depth of the medium, the temperature of the thermal electrons and the viewing angle. We also showed that the Compton effect produces red shift and asymmetry in the line. These two effects increase as the optical depth increases. It is also noticed that the emergent specific intensities become completely asymmetric for higher optical depths.

  17. Study of Compton Broadening Due to Electron-Photon Scattering

    Srinivasa Rao, M.

    2010-06-01

    Full Text Available We have investigated the effects of Compton broadening due to electron-photon scattering in hot stellar atmospheres. A purely electron-photon scattering media is assumed to have plane parallel geometry with an input radiation field localized on one side of the slab. The method is based on the discrete space theory of radiative transfer for the intensity of emitted radiation.The solution is developed to study the importance of scattering of radiation by free electrons in high temperature stellar atmospheres which produces a brodening and shift in spectral lines because of the Compton effect and the Doppler effect arising from mass and thermal motions of scattering electrons.It is noticed that the Comptonized spectrum depends on three parameters: the optical depth of the medium, the temperature of the thermal electrons and the viewing angle.We also showed that the Compton effect produces red shift and asymmetry in the line. These two effects increase as the optical depth increases. It is also noticed that the emergent specific intensities become completely asymmetric for higher optical depths.

  18. Experimental observation of energy dependence of saturation thickness of multiply scattered gamma photons

    Singh, Manpreet; Singh, Gurvinderjit; Singh, Bhajan; Sandhu, B.S.

    2008-01-01

    The gamma photons continue to soften in energy as the number of scatterings increases in the target having finite dimensions both in depth and lateral dimensions. The number of multiply scattered photons increases with an increase in target thickness, and saturates at a particular value of the target thickness known as saturation thickness (depth). The present measurements are carried out to study the energy dependence of saturation thickness of multiply scattered gamma photons from targets of various thicknesses. The scattered photons are detected by a properly shielded NaI(Tl) gamma ray detector placed at 90 deg. to the incident beam. We observe that the saturation thickness increases with increasing incident gamma photon energy. Monte Carlo calculations based upon the package developed by Bauer and Pattison [Compton scattering experiments at the HMI (1981), HMI-B 364, pp. 1-106] support the present experimental results

  19. CONFERENCE: Elastic and diffractive scattering

    White, Alan

    1989-09-15

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago.

  20. Multichannel optical mapping: investigation of depth information

    Sase, Ichiro; Eda, Hideo; Seiyama, Akitoshi; Tanabe, Hiroki C.; Takatsuki, Akira; Yanagida, Toshio

    2001-06-01

    Near infrared (NIR) light has become a powerful tool for non-invasive imaging of human brain activity. Many systems have been developed to capture the changes in regional brain blood flow and hemoglobin oxygenation, which occur in the human cortex in response to neural activity. We have developed a multi-channel reflectance imaging system, which can be used as a `mapping device' and also as a `multi-channel spectrophotometer'. In the present study, we visualized changes in the hemodynamics of the human occipital region in multiple ways. (1) Stimulating left and right primary visual cortex independently by showing sector shaped checkerboards sequentially over the contralateral visual field, resulted in corresponding changes in the hemodynamics observed by `mapping' measurement. (2) Simultaneous measurement of functional-MRI and NIR (changes in total hemoglobin) during visual stimulation showed good spatial and temporal correlation with each other. (3) Placing multiple channels densely over the occipital region demonstrated spatial patterns more precisely, and depth information was also acquired by placing each pair of illumination and detection fibers at various distances. These results indicate that optical method can provide data for 3D analysis of human brain functions.

  1. Electron scattering on molecular hydrogen

    Wingerden, B. van.

    1980-01-01

    The author considers scattering phenomena which occur when a beam of electrons interacts with a molecular hydrogen gas of low density. Depending on the energy loss of the scattered electrons one can distinguish elastic scattering, excitation and (auto)ionization of the H 2 -molecule. The latter processes may also lead to dissociation. These processes are investigated in four experiments in increasing detail. (Auth.)

  2. Scattering Of Nonplanar Acoustic Waves

    Gillman, Judith M.; Farassat, F.; Myers, M. K.

    1995-01-01

    Report presents theoretical study of scattering of nonplanar acoustic waves by rigid bodies. Study performed as part of effort to develop means of predicting scattering, from aircraft fuselages, of noise made by rotating blades. Basic approach was to model acoustic scattering by use of boundary integral equation to solve equation by the Galerkin method.

  3. Electron scattering for exotic nuclei

    2014-11-04

    Nov 4, 2014 ... A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world's first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density ...

  4. Scattering theory and chemical reactions

    Kuppermann, A.

    1988-01-01

    In this course, scattering theory and chemical reactions are presented including scattering of one particle by a potential, n-particle systems, colinear triatomic molecules and the study of reactive scattering for 3-dimensional triatomic systems. (A.C.A.S.) [pt

  5. Estimates of the Spectral Aerosol Single Sea Scattering Albedo and Aerosol Radiative Effects during SAFARI 2000

    Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat; Russell, Philip B.

    2003-01-01

    Using measurements of the spectral solar radiative flux and optical depth for 2 days (24 August and 6 September 2000) during the SAFARI 2000 intensive field experiment and a detailed radiative transfer model, we estimate the spectral single scattering albedo of the aerosol layer. The single scattering albedo is similar on the 2 days even though the optical depth for the aerosol layer was quite different. The aerosol single scattering albedo was between 0.85 and 0.90 at 350 nm, decreasing to 0.6 in the near infrared. The magnitude and decrease with wavelength of the single scattering albedo are consistent with the absorption properties of small black carbon particles. We estimate the uncertainty in the single scattering albedo due to the uncertainty in the measured fractional absorption and optical depths. The uncertainty in the single scattering albedo is significantly less on the high-optical-depth day (6 September) than on the low-optical-depth day (24 August). On the high-optical-depth day, the uncertainty in the single scattering albedo is 0.02 in the midvisible whereas on the low-optical-depth day the uncertainty is 0.08 in the midvisible. On both days, the uncertainty becomes larger in the near infrared. We compute the radiative effect of the aerosol by comparing calculations with and without the aerosol. The effect at the top of the atmosphere (TOA) is to cool the atmosphere by 13 W/sq m on 24 August and 17 W/sq m on 6 September. The effect on the downward flux at the surface is a reduction of 57 W/sq m on 24 August and 200 W/sq m on 6 September. The aerosol effect on the downward flux at the surface is in good agreement with the results reported from the Indian Ocean Experiment (INDOEX).

  6. Rayleigh scattering under light-atom coherent interaction

    Takamizawa, Akifumi; Shimoda, Koichi

    2012-01-01

    Semi-classical calculation of an oscillating dipole induced in a two-level atom indicates that spherical radiation from the dipole under coherent interaction, i.e., Rayleigh scattering, has a power level comparable to that of spontaneous emission resulting from an incoherent process. Whereas spontaneous emission is nearly isotropic and has random polarization generally, Rayleigh scattering is strongly anisotropic and polarized in association with incident light. In the case where Rabi frequen...

  7. Deep inelastic scattering in spontaneously broken gauge models

    Goloskokov, S.V.; Mikhov, S.G.; Morozov, P.T.; Stamenov, D.B.

    1975-01-01

    Deep inelastic lepton hadron scattering in the simplest spontaneously broken symmetry (the Kibble model) is analyzed. A hypothesis that the invariant coupling constant of the quartic selfinteraction for large spacelike momenta tends to a finite asymptotic value without spoiling the asymptotic freedom for the invariant coupling constant of the Yang-Mills field is used. It is shown that Biorken scaling for the moments of the structure functions of the deep inelastic lepton hadron scattering is violated by powers of logarithms

  8. Binocular depth processing in the ventral visual pathway

    Verhoef, Bram-Ernst; Vogels, Rufin; Janssen, Peter

    2016-01-01

    One of the most powerful forms of depth perception capitalizes on the small relative displacements, or binocular disparities, in the images projected onto each eye. The brain employs these disparities to facilitate various computations, including sensori-motor transformations (reaching, grasping), scene segmentation and object recognition. In accordance with these different functions, disparity activates a large number of regions in the brain of both humans and monkeys. Here, we review how di...

  9. Deep inelastic scattering

    Zakharov, V.I.

    1977-01-01

    The present status of the quark-parton-gluon picture of deep inelastic scattering is reviewed. The general framework is mostly theoretical and covers investigations since 1970. Predictions of the parton model and of the asymptotically free field theories are compared with experimental data available. The valence quark approximation is concluded to be valid in most cases, but fails to account for the data on the total momentum transfer. On the basis of gluon corrections introduced to the parton model certain predictions concerning both the deep inelastic structure functions and form factors are made. The contributions of gluon exchanges and gluon bremsstrahlung are highlighted. Asymptotic freedom is concluded to be very attractive and provide qualitative explanation to some experimental observations (scaling violations, breaking of the Drell-Yan-West type relations). Lepton-nuclear scattering is pointed out to be helpful in probing the nature of nuclear forces and studying the space-time picture of the parton model

  10. Semiclassical scattering theory

    Di Salvo, A.

    1985-01-01

    It is intended to write the semiclassical scattering amplitude as a sum of terms, each of them being associated to trajectory. First of all the classical equations of motion are studied, considering both the analytical (real and complex) solutions and a certain type of singular solutions, which behave similary to the difracted rays in optics; in particular, in the case of a central nuclear potential, classical effects like rainbow and orbiting and also wave effects like diffraction and direct reflection are singled out. Successively, considering the Debye expansion of the scattering amplitude relative to a central nuclear potential, and evaluating asymptotically each term by means of the saddle point technique, the decay exponents and difraction coefficients relative to such a potential are determined

  11. Stationary scattering theory

    Combes, J.M.

    1980-10-01

    A complementary approach to the time dependent scattering theory for one-body Schroedinger operators is presented. The stationary theory is concerned with objects of quantum theory like scattering waves and amplitudes. In the more recent abstract stationary theory some generalized form of the Lippman-Schwinger equation plays the basic role. Solving this equation leads to a linear map between generalized eigenfunctions of the perturbed and unperturbed operators. This map is the section at fixed energy of the wave-operator from the time dependent theory. Although the radiation condition does not appears explicitely in this formulation it can be shown to hold a posteriori in a variety of situations thus restoring the link with physical theories

  12. Pion nucleus scattering lengths

    Huang, W.T.; Levinson, C.A.; Banerjee, M.K.

    1971-09-01

    Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs

  13. Magnetic diffuse scattering

    Cable, J.W.

    1987-01-01

    The diffuse scattering of neutrons from magnetic materials provides unique and important information regarding the spatial correlations of the atoms and the spins. Such measurements have been extensively applied to magnetically ordered systems, such as the ferromagnetic binary alloys, for which the observed correlations describe the magnetic moment fluctuations associated with local environment effects. With the advent of polarization analysis, these techniques are increasingly being applied to study disordered paramagnetic systems such as the spin-glasses and the diluted magnetic semiconductors. The spin-pair correlations obtained are essential in understanding the exchange interactions of such systems. In this paper, we describe recent neutron diffuse scattering results on the atom-pair and spin-pair correlations in some of these disordered magnetic systems. 56 refs

  14. Magnetic inelastic scattering: Present results and future trends

    Osborn, R.

    1996-04-01

    Experience over the last 15 years has shsown that pulsed neutron spectrometers are able to contribute to the field of magnetic inelastic scattering. Such spectrometers have high resolution and wide dynamic range, both of which are necessary in order to characterize the magnetic response of the complex systems of current interest, ranging from rare earth-transition metal permanent magnets to quantum critical scatterers. Howevera, all these studies have been constrained by current flux limitations. The development of more powerful spallation neutron sources, such as the JHP, is likely to transform these interesting demonstrations of the potential of pulsed neutron scattering into routine tools for the study of magnetic correlations.

  15. Scattering of charged particles

    Barrachina, R.O.; Macek, J.H.

    1989-01-01

    Different methods of avoiding the known difficulties of the Coulomb potential scattering theory are reviewed. Mulherin and Zinnes' [J. Math. Phys. 11, 1402 (1976)] ''distorted'' free waves and van Haeringen's [J. Math. Phys. 17, 995 (1976)] Coulomb asymptotic states are considered. The equivalence of both approaches on the energy shell is shown. Actually the possibility of deriving the first method within van Haeringen's formalism by means of a distorted wave procedure is demonstrated

  16. Molecular-beam scattering

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N 2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl → NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2 2 P/sub 3/2/) and Na(3 2 P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included

  17. Analytic nuclear scattering theories

    Di Marzio, F.; University of Melbourne, Parkville, VIC

    1999-01-01

    A wide range of nuclear reactions are examined in an analytical version of the usual distorted wave Born approximation. This new approach provides either semi analytic or fully analytic descriptions of the nuclear scattering processes. The resulting computational simplifications, when used within the limits of validity, allow very detailed tests of both nuclear interaction models as well as large basis models of nuclear structure to be performed

  18. Polarimetric neutron scattering

    Tasset, F.

    2001-01-01

    Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)

  19. Means on scattered compacta

    Banakh, T.; Bonnet, R.; Kubiś, Wieslaw

    2014-01-01

    Roč. 2, č. 1 (2014), s. 5-10 ISSN 2299-3231 R&D Projects: GA ČR(CZ) GAP201/12/0290 Institutional support: RVO:67985840 Keywords : scattered compact space * mean operation Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/taa.2014.2.issue-1/taa-2014-0002/taa-2014-0002.xml

  20. Classical scattering cross section in sputtering transport theory

    Zhang Zhulin

    2002-01-01

    For Lindhard scaling interaction potential scattering commonly used in sputtering theory, the authors analyzed the great difference between Sigmund's single power and the double power cross sections calculated. The double power cross sections can give a much better approximation to the Born-Mayer scattering in the low energy region (m∼0.1). In particular, to solve the transport equations by K r -C potential interaction given by Urbassek few years ago, only the double power cross sections (m∼0.1) can yield better approximate results for the number of recoils. Therefore, the Sigmund's single power cross section might be replaced by the double power cross sections in low energy collision cascade theory

  1. Neutron scattering in Australia

    Knott, R.B.

    1994-01-01

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains

  2. Neutron scattering in Australia

    Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1994-12-31

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.

  3. Basic scattering theory

    Queen, N.M.

    1978-01-01

    This series of lectures on basic scattering theory were given as part of a course for postgraduate high energy physicists and were designed to acquaint the student with some of the basic language and formalism used for the phenomenological description of nuclear reactions and decay processes used for the study of elementary particle interactions. Well established and model independent aspects of scattering theory, which are the basis of S-matrix theory, are considered. The subject is considered under the following headings; the S-matrix, cross sections and decay rates, phase space, relativistic kinematics, the Mandelstam variables, the flux factor, two-body phase space, Dalitz plots, other kinematic plots, two-particle reactions, unitarity, the partial-wave expansion, resonances (single-channel case), multi-channel resonances, analyticity and crossing, dispersion relations, the one-particle exchange model, the density matrix, mathematical properties of the density matrix, the density matrix in scattering processes, the density matrix in decay processes, and the helicity formalism. Some exercises for the students are included. (U.K.)

  4. pp-elastic scattering

    Aprile, E; Cantale, G; Degli-Agosti, S; Hausammann, R; Heer, E; Hess, R; Lechanoine-LeLuc, C; Leo, W; Morenzoni, S; Onel, Y [Geneva Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire

    1983-01-01

    The aim of the elastic pp experimental program at SIN was to measure enough spin dependent parameters in order to do a direct experimental reconstruction of the elastic scattering amplitudes at a few energies between 400 and 600 MeV and at several angles between 38/sup 0/ cm and 90/sup 0/ cm. This reconstruction was not possible until recently due to lack of experimental data. Information instead has come mainly from phase shift analysis (PSA). The only way to extract the elastic scattering amplitudes without any hypotheses except those of basic symmetries, is to measure a sufficient set of spin dependent parameters at a given angle and energy. With this in view, the authors have measured at 448, 494, 515, 536 and 579 MeV, the polarization, the spin correlation parameters Asub(00nn), Asub(00ss), Asub(00kk), Asub(00ks), the 2-spin parameters Dsub(n0n0), Ksub(n00n), Dsub(s'0s0), Dsub(s'0k0) and the 3-spin parameters Msub(s'0sn), Msub(s'0kn) between 34/sup 0/ cm and 118/sup 0/ cm. A few of these parameters have also been measured at 560 and 470 MeV and at a few energies below 448 MeV. The indices refer to the polarization orientation of the scattered, recoil, beam and target particle respectively.

  5. Small scatterers in the lower mantle observed at German broadband arrays

    Thomas, C.; Weber, M.; Wicks, C.W.; Scherbaum, F.

    1999-01-01

    Seismograms of earthquakes from the South Pacific recorded at a German broadband array and network show precursors to PKPdf. These precursors mainly originate from off-path scattering of PKPab or a nearby PKPbc to P (for receiver-side scattering) or from scattering of P to PKPab or PKPbc on the PKPdf path (for source-side scattering). Standard array processing techniques based on plane wave approximations (such as vespagram or frequency-wavenumber analysis) are inadequate for investigating these precursors since scattered waves cannot be approximated as plane waves for arrays and networks larger than 300 x 300 km for short-period waves. We therefore develop a migration method to estimate the location of scatterers in the mantle, at the core-mantle boundary and at the top of the outer core. With our method we are able to find isolated scatterers at the source side and the receiver side, although the depth of the scatterer is not well constrained. However, from looking at the first possible arrival time of precursors at different depth and the region where scattering can take place (scattering volume), we believe that the location of the scatterers is in the lowermost mantle. Since we have detected scatterers in regions where ultralow-velocity zones have been discovered recently, we think that the precursor energy possibly originates from scattering at partial melt at the base of the mantle. Comparing results from broadband and band-pass-filtered data the detection of small-scale structure of the ultralow-velocity zones becomes possible. Copyright 1999 by the American Geophysical Union.

  6. Compton scattering revisited

    Pratt, R.H., E-mail: rpratt@pitt.ed [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); LaJohn, L.A., E-mail: lal18@pitt.ed [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Florescu, V., E-mail: flor@barutu.fizica.unibuc.r [Centre for Advanced Quantum Physics, University of Bucharest, MG-11 Bucharest-Magurele, 077125 Magurele (Romania); Suric, T., E-mail: suric@irb.h [R. Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Chatterjee, B.K., E-mail: barun_k_chatterjee@yahoo.co [Department of Physics, Bose Institute, Kolkata 700009 (India); Roy, S.C., E-mail: suprakash.roy@gmail.co [Department of Physics, Bose Institute, Kolkata 700009 (India)

    2010-02-15

    We review the standard theory of Compton scattering from bound electrons, and we describe recent findings that require modification of the usual understanding, noting the nature of consequences for experiment. The subject began with Compton and scattering from free electrons. Experiment actually involved bound electrons, and this was accommodated with the use of impulse approximation (IA), which described inelastic scattering from bound electrons in terms of scattering from free electrons. This was good for the Compton peak but failed for soft final photons. The standard theory was formalized by Eisenberger and Platzman (EP) [1970. Phys. Rev. A 2, 415], whose work also suggested why impulse approximation was better than one would expect, for doubly differential cross sections (DDCS), but not for triply differential cross sections (TDCS). A relativistic version of IA (RIA) was worked out by Ribberfors [1975. Phys. Rev. B 12, 2067]. And Suric et al. [1991. Phys. Rev. Lett. 67, 189] and Bergstrom et al. [1993. Phys. Rev. A 48, 1134] developed a full relativistic second order S-matrix treatment, not making impulse approximation, but within independent particle approximation (IPA). Newer developments in the theory of Compton scattering include: (1) Demonstration that the EP estimates of the validity of IA are incorrect, although the qualitative conclusion remains unchanged; IA is not to be understood as the first term in a standard series expansion. (2) The greater validity of IA for DDCS than for the TDCS, which when integrated give DDCS, is related to the existence of a sum rule, only valid for DDCS. (3) The so-called 'asymmetry' of a Compton profile is primarily to be understood as simply the shift of the peak position in the profile; symmetric and anti-symmetric deviations from a shifted Compton profile are very small, except for high Z inner shells where further p{sup -}>.A{sup -}> effects come into play. (4) Most relativistic effects, except at low

  7. Compton scattering revisited

    Pratt, R.H.; LaJohn, L.A.; Florescu, V.; Suric, T.; Chatterjee, B.K.; Roy, S.C.

    2010-01-01

    We review the standard theory of Compton scattering from bound electrons, and we describe recent findings that require modification of the usual understanding, noting the nature of consequences for experiment. The subject began with Compton and scattering from free electrons. Experiment actually involved bound electrons, and this was accommodated with the use of impulse approximation (IA), which described inelastic scattering from bound electrons in terms of scattering from free electrons. This was good for the Compton peak but failed for soft final photons. The standard theory was formalized by Eisenberger and Platzman (EP) [1970. Phys. Rev. A 2, 415], whose work also suggested why impulse approximation was better than one would expect, for doubly differential cross sections (DDCS), but not for triply differential cross sections (TDCS). A relativistic version of IA (RIA) was worked out by Ribberfors [1975. Phys. Rev. B 12, 2067]. And Suric et al. [1991. Phys. Rev. Lett. 67, 189] and Bergstrom et al. [1993. Phys. Rev. A 48, 1134] developed a full relativistic second order S-matrix treatment, not making impulse approximation, but within independent particle approximation (IPA). Newer developments in the theory of Compton scattering include: (1) Demonstration that the EP estimates of the validity of IA are incorrect, although the qualitative conclusion remains unchanged; IA is not to be understood as the first term in a standard series expansion. (2) The greater validity of IA for DDCS than for the TDCS, which when integrated give DDCS, is related to the existence of a sum rule, only valid for DDCS. (3) The so-called 'asymmetry' of a Compton profile is primarily to be understood as simply the shift of the peak position in the profile; symmetric and anti-symmetric deviations from a shifted Compton profile are very small, except for high Z inner shells where further p → .A → effects come into play. (4) Most relativistic effects, except at low energies, are to be

  8. Observability-in-depth: An essential complement to the defense-in-depth safety strategy in the nuclear industry

    Favaro, Francesca M.; Saleh, Joseph H. [Georgia Institute of Technology, Atlanta (United States)

    2014-12-15

    Defense-in-depth is a fundamental safety principle for the design and operation of nuclear power plants. Despite its general appeal, defense-in-depth is not without its drawbacks, which include its potential for concealing the occurrence of hazardous states in a system, and more generally rendering the latter more opaque for its operators and managers, thus resulting in safety blind spots. This in turn translates into a shrinking of the time window available for operators to identify an unfolding hazardous condition or situation and intervene to abate it. To prevent this drawback from materializing, we propose propose in this work a novel safety principle termed 'observability-in-depth'. We characterize it as the set of provisions technical, operational, and organizational designed to enable the monitoring and identification of emerging hazardous conditions and accident pathogens in real-time and over different time-scales. Observability-in-depth also requires the monitoring of conditions of all safety barriers that implement defense-in-depth; and in so doing it supports sense making of identified hazardous conditions, and the understanding of potential accident sequences that might follow (how they can propagate). Observability-in-depth is thus an information-centric principle, and its importance in accident prevention is in the value of the information it provides and actions or safety interventions it spurs. We examine several 'event reports' from the U.S. Nuclear Regulatory Commission database, which illustrate specific instances of violation of the observability-in-depth safety principle and the consequences that followed (e.g., unmonitored releases and loss of containments). We also revisit the Three Mile Island accident in light of the proposed principle, and identify causes and consequences of the lack of observability-in-depth related to this accident sequence. We illustrate both the benefits of adopting the observability-in-depth

  9. BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION

    Pynn, Roger; Baker, Shenda Mary; Louca, Despo A.; McGreevy, Robert L.; Ekkebus, Allen E.; Kszos, Lynn A.; Anderson, Ian S.

    2008-01-01

    In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreach program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron scattering education. A

  10. BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION

    Pynn, Roger [ORNL; Baker, Shenda Mary [ORNL; Louca, Despo A [ORNL; McGreevy, Robert L [ORNL; Ekkebus, Allen E [ORNL; Kszos, Lynn A [ORNL; Anderson, Ian S [ORNL

    2008-10-01

    In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreach program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron

  11. Gravitational scattering of electromagnetic radiation

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  12. Some results on inverse scattering

    Ramm, A.G.

    2008-01-01

    A review of some of the author's results in the area of inverse scattering is given. The following topics are discussed: (1) Property C and applications, (2) Stable inversion of fixed-energy 3D scattering data and its error estimate, (3) Inverse scattering with 'incomplete' data, (4) Inverse scattering for inhomogeneous Schroedinger equation, (5) Krein's inverse scattering method, (6) Invertibility of the steps in Gel'fand-Levitan, Marchenko, and Krein inversion methods, (7) The Newton-Sabatier and Cox-Thompson procedures are not inversion methods, (8) Resonances: existence, location, perturbation theory, (9) Born inversion as an ill-posed problem, (10) Inverse obstacle scattering with fixed-frequency data, (11) Inverse scattering with data at a fixed energy and a fixed incident direction, (12) Creating materials with a desired refraction coefficient and wave-focusing properties. (author)

  13. Strongly correlated electrons at high pressure: an approach by inelastic X-Ray scattering

    Rueff, J.P.

    2007-06-01

    Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)

  14. Coding of Depth Images for 3DTV

    Zamarin, Marco; Forchhammer, Søren

    In this short paper a brief overview of the topic of coding and compression of depth images for multi-view image and video coding is provided. Depth images represent a convenient way to describe distances in the 3D scene, useful for 3D video processing purposes. Standard approaches...... for the compression of depth images are described and compared against some recent specialized algorithms able to achieve higher compression performances. Future research directions close the paper....

  15. GNF Defense in Depth Update

    Lingenfelter, Andrew A.; Schneider, Robert J.; Cantonwine, Paul E.; Moore, Brian; Rea, John; Crawford, Douglas C. [Global Nuclear Fuel, P.O. Box 780 M/C H25, Wilmington, NC 28402 (United States)

    2009-06-15

    Global Nuclear Fuel (GNF) has designed, fabricated, and placed into operation more than 9 million fuel rods in approximately 135 thousand assemblies. Customer satisfaction has always compelled GNF to reduce fuel rod failures (defined here as fuel rods that breach or leak in service), However, increasing success with and subsequent expectations for economic performance of nuclear reactor plants have raised broader Industry emphasis on fuel reliability. In 2005, GNF established its Defense-in-Depth (DID) Program for the purpose of focusing attention on the many aspects of fuel design, fabrication, performance, and utilization that affect fuel reliability as well as on the key methods that govern the utilization of GNF fuel. The Program is structured to address each of the identified in-service, fuel failure mechanisms. This paper provides a summary of GNF fuel performance, following previous updates. This paper will discuss recent GNF fuel reliability and channel performance, GNF2 introduction status, and methods. GNF's more recent fuel experience includes approximately 3.8 million GE11/13 (9x9) and GE12/14 (10x10) fuel rods, well over half of which are the GE12/14 design. (Those figures also include roughly 25,000 recently-introduced GNF2 fuel rods.) Reliability, expressed as annual, observed fuel failure rates (i.e., number of rods failed each year divided by the number of opportunities, or fuel rods in service), has improved for each year since 2005. The GNF fuel failure rate for years leading up to 2007 and 2008 has been on the order of 5 to 7 ppm (excluding the corrosion events of 2001-2003), and as of this writing (January 2009) the current in-service failure has decreased to around 1.5 ppm. Failures in GE14 fuel rod failures have been primarily due to debris-fretting (> 60%), with other failures being duty-related or yet undetermined. The only failure observed in GNF2 to date was a single, early-life debris failure in a bundle not equipped with GNF

  16. Depth Perception In Remote Stereoscopic Viewing Systems

    Diner, Daniel B.; Von Sydow, Marika

    1989-01-01

    Report describes theoretical and experimental studies of perception of depth by human operators through stereoscopic video systems. Purpose of such studies to optimize dual-camera configurations used to view workspaces of remote manipulators at distances of 1 to 3 m from cameras. According to analysis, static stereoscopic depth distortion decreased, without decreasing stereoscopitc depth resolution, by increasing camera-to-object and intercamera distances and camera focal length. Further predicts dynamic stereoscopic depth distortion reduced by rotating cameras around center of circle passing through point of convergence of viewing axes and first nodal points of two camera lenses.

  17. Directional Joint Bilateral Filter for Depth Images

    Anh Vu Le

    2014-06-01

    Full Text Available Depth maps taken by the low cost Kinect sensor are often noisy and incomplete. Thus, post-processing for obtaining reliable depth maps is necessary for advanced image and video applications such as object recognition and multi-view rendering. In this paper, we propose adaptive directional filters that fill the holes and suppress the noise in depth maps. Specifically, novel filters whose window shapes are adaptively adjusted based on the edge direction of the color image are presented. Experimental results show that our method yields higher quality filtered depth maps than other existing methods, especially at the edge boundaries.

  18. ACCURACY ANALYSIS OF KINECT DEPTH DATA

    K. Khoshelham

    2012-09-01

    Full Text Available This paper presents an investigation of the geometric quality of depth data obtained by the Kinect sensor. Based on the mathematical model of depth measurement by the sensor a theoretical error analysis is presented, which provides an insight into the factors influencing the accuracy of the data. Experimental results show that the random error of depth measurement increases with increasing distance to the sensor, and ranges from a few millimetres up to about 4 cm at the maximum range of the sensor. The accuracy of the data is also found to be influenced by the low resolution of the depth measurements.

  19. An Exploration of the Needling Depth in Acupuncture: The Safe Needling Depth and the Needling Depth of Clinical Efficacy

    Jaung-Geng Lin

    2013-01-01

    Full Text Available Objective. To explore the existing scientific information regarding safe needling depth of acupuncture points and the needling depth of clinical efficacy. Methods. We searched the PubMed, EMBASE, Cochrane, Allied and Complementary Medicine (AMED, The National Center for Complementary and Alternative Medicine (NCCAM, and China National Knowledge Infrastructure (CNKI databases to identify relevant monographs and related references from 1991 to 2013. Chinese journals and theses/dissertations were hand searched. Results. 47 studies were recruited and divided into 6 groups by measuring tools, that is, MRI, in vivo evaluation, CT, ultrasound, dissected specimen of cadavers, and another group with clinical efficacy. Each research was analyzed for study design, definition of safe depth, and factors that would affect the measured depths. Depths of clinical efficacy were discussed from the perspective of de-qi and other clinical observations. Conclusions. Great inconsistency in depth of each point measured from different subject groups and tools exists. The definition of safe depth should be established through standardization. There is also lack of researches to compare the clinical efficacy. A well-designed clinical trial selecting proper measuring tools to decide the actual and advisable needling depth for each point, to avoid adverse effects or complications and promote optimal clinical efficacy, is a top priority.

  20. Coherent scattering of CO2 light from ion-acoustic waves

    Peratt, A.L.; Watterson, R.L.; Derfler, H.

    1977-01-01

    Scattering of laser radiation from ion-acoustic waves in a plasma is investigated analytically and experimentally. The formulation predicts a coherent component of the scattered power on a largely incoherent background spectrum when the acoustic analog of Bragg's law and Doppler shift conditions are satisfied. The experiment consists of a hybrid CO 2 laser system capable of either low power continuous wave or high power pulsed mode operation. A heterodyne light mixing scheme is used to detect the scattered power. The proportionality predicted by the theory is verified by scattering from externally excited acoustic and ion-acoustic waves; continuous wave and pulsed modes in each case. Measurement of the ion-acoustic dispersion relation by continuous wave scattering is also presented

  1. Polarized neutron scattering research: the beginning

    Mezei, F.

    2005-01-01

    The visionary idea of using neutron scattering for the study of magnetic phenomena in condensed matter was proposed by Bloch in 1936, mere 4 years after the neutron was discovered. It was based on one of the surprises the neutron presented the scientific community with: it is neutral, yet it has a magnetic moment, which latter was then not yet directly observed though. Although the first results proved to be mathematically wrong, due to a non-trivial ambiguity of classical electromagnetism theory, which could only be settled by neutron beam experiments 15 years later, the recognition lead to the advent of a most productive area of modern research, which culminated in the development of the powerful and sophisticated techniques of polarized neutron scattering. This recollection traces the early milestones of the development of the field in strong interaction between theory and experiment

  2. Duality and multi-gluon scattering

    Mangano, M.; Parke, S.; Xu Zhan

    1988-01-01

    For the six-gluon scattering process we give explicit and simple expressions for the amplitude and its square. To achieve this we use an analogy with string theories to identify a unique procedure for writing the multi-gluon scattering amplitudes in terms of a sum of gauge invariant dual sub-amplitudes multiplied by an appropriate color (Chan-Paton) factor. The sub-amplitudes defined in this way are invariant under cyclic permutations, satisfy powerful identities which relate different non-cyclic permutations and factorize in the soft gluon limit, the two-gluon collinear limit and on multi-gluon poles. Also, to leading order in the number of colors these sub-amplitudes sum incoherently in the square of the full matrix element. The results contained here are important for Monte Carlo studies of multi-jet processes at hadron colliders as well as for understanding the general structure of QCD. (orig.)

  3. Resonances in the proton-6Li scattering

    Haller, M.

    1986-01-01

    The differential cross section and the analyzing power of the p+ 6 Li scattering were measured in the laboratory energy range from 1.6 respectively 2.8 MeV to 10 MeV at 45 respectively 40 energies in full angular distributions. The data were subjected both to an analysis in the optical model which yielded already hints to resonance effects and to a comphrehensive scattering-phase analysis for L=0, 1, and 2 under inclusion of channel spin and orbital angular momentum mixings. The consistent description of all data required the assumption of broad resonance structures. An approximate parametrization by a Breit-Wigner formula allowed the estimation of the resonance parameters. (orig./HSI) [de

  4. Analysis of scattered radiation in an irradiated body by means of the monte carlo simulation

    Kato, Hideki; Nakamura, Masaru; Tsuiki, Saeko; Shimizu, Ikuo; Higashi, Naoki; Kamada, Takao

    1992-01-01

    Isodose charts for oblique incidence are simply obtained from normal isodose data of correcting methods such as the tissue-air ratio (TAR) method, the effective source-skin distance (SSD) method etc. Although, in these correcting methods, the depth dose data on the beam axis remained as the normal depth dose data, which were measured on the geometry of perpendicular incidence. In this paper, the primary and scattered dose on the beam axis for 60 Co gamma-ray oblique incidence were calculated by means of the Monthe Carlo simulation, and the variation of the percentage depth dose and scatter factor were evaluated for oblique incident angles. The scattered dose distribution was altered for change in the oblique incident angle. Also, for increasing the angle, percentage depth dose (PDD) was decreased and the scatter factor was increased. If the depth dose for oblique incidence was calculated using normal PDD data and normal scatter factors, the results become an underestimation of the shallow region up to several cm, and an overesitimation for the deep region. (author)

  5. Inelastic scattering of neutrons

    Sal'nikov, O.A.

    1984-06-01

    The paper reviews the main problems concerning the mechanism of the inelastic scatterings of neutrons by nuclei, concentrating on the different models which calculate the angular distributions. In the region of overlapping levels, both the compound nucleus mechanism and the preequilibrium Griffin (exciton) model are discussed, and their contribution relative to that of a direct mechanism is considered. The parametrization of the level density and of the nuclear moment of inertia are also discussed. The excitation functions of discrete levels are also presented, and the importance of elucidating their five structure (for practical calculations, such as for shielding) is pointed out

  6. Proton nuclear scattering radiography

    Duchazeaubeneix, J.C.; Faivre, J.C.; Garreta, D.

    1982-10-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: direct 3- dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore, it is a well adapted method to gating techniques allowing the radiography of fast periodic moving systems. Results obtained on different objects (light and heavy materials) are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiography faster and to get a practical method are discussed

  7. Quasi-elastic scattering

    Pizzi, J.R.

    1975-01-01

    In a first part, the kinematical conditions which are chosen to study quasi free scattering reactions are presented, as well as the impulse approximation which is used to interpret the experimental data. Then, the evolution of the study of these reactions in the last few years is analyzed. Three recent experiments are presented and discussed. Two of them deal with α-clusters studied by (p,pα) reaction at 157 and 600MeV. The third is concerned with d, t and 3 He clusters studied by (p,px) reaction at 75MeV [fr

  8. Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix

    Bodenschatz, Nico; Lam, Sylvia; Carraro, Anita; Korbelik, Jagoda; Miller, Dianne M.; McAlpine, Jessica N.; Lee, Marette; Kienle, Alwin; MacAulay, Calum

    2016-06-01

    A fiber optic imaging approach is presented using structured illumination for quantification of almost pure epithelial backscattering. We employ multiple spatially modulated projection patterns and camera-based reflectance capture to image depth-dependent epithelial scattering. The potential diagnostic value of our approach is investigated on cervical ex vivo tissue specimens. Our study indicates a strong backscattering increase in the upper part of the cervical epithelium caused by dysplastic microstructural changes. Quantization of relative depth-dependent backscattering is confirmed as a potentially useful diagnostic feature for detection of precancerous lesions in cervical squamous epithelium.

  9. A new method for depth profiling

    Chittleborough, C.W.; Chaudhri, M.A.; Rouse, J.L.

    1978-01-01

    A simple method for obtaining depth profiles of concentrations has been developed for charged particle induced nuclear reactions which produce γ-rays or neutrons. This method is particularly suitable for non-resonant reactions but is also applicable to resonant reactions and can examine the concentration of the sought nuclide throughout the entire activation depth of the incoming particles in the matrix

  10. Stimulated Brillouin scattering threshold in fiber amplifiers

    Liang Liping; Chang Liping

    2011-01-01

    Based on the wave coupling theory and the evolution model of the critical pump power (or Brillouin threshold) for stimulated Brillouin scattering (SBS) in double-clad fiber amplifiers, the influence of signal bandwidth, fiber-core diameter and amplifier gain on SBS threshold is simulated theoretically. And experimental measurements of SBS are presented in ytterbium-doped double-clad fiber amplifiers with single-frequency hundred nanosecond pulse amplification. Under different input signal pulses, the forward amplified pulse distortion is observed when the pulse energy is up to 660 nJ and the peak power is up to 3.3 W in the pulse amplification with pulse duration of 200 ns and repetition rate of 1 Hz. And the backward SBS narrow pulse appears. The pulse peak power equals to SBS threshold. Good agreement is shown between the modeled and experimental data. (authors)

  11. Depth of origin of magma in eruptions.

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-09-26

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.

  12. Semi-Automatic Image Labelling Using Depth Information

    Mostafa Pordel

    2015-05-01

    Full Text Available Image labeling tools help to extract objects within images to be used as ground truth for learning and testing in object detection processes. The inputs for such tools are usually RGB images. However with new widely available low-cost sensors like Microsoft Kinect it is possible to use depth images in addition to RGB images. Despite many existing powerful tools for image labeling, there is a need for RGB-depth adapted tools. We present a new interactive labeling tool that partially automates image labeling, with two major contributions. First, the method extends the concept of image segmentation from RGB to RGB-depth using Fuzzy C-Means clustering, connected component labeling and superpixels, and generates bounding pixels to extract the desired objects. Second, it minimizes the interaction time needed for object extraction by doing an efficient segmentation in RGB-depth space. Very few clicks are needed for the entire procedure compared to existing, tools. When the desired object is the closest object to the camera, which is often the case in robotics applications, no clicks at all are required to accurately extract the object.

  13. Case depth in SAE 1020 steel using barkhausen noise

    Alessandra Drehmer

    2013-01-01

    Full Text Available The most widely used thermochemical process for surface hardening of steels is case hardening. Using several different heat treatments, martensitic surface layers were formed on SAE 1020 steel into which carbon had been diffused. Case depths were measured by traditional destructive techniques. Barkhausen noise measurements were made and both the RMS Barkhausen pulse envelope and the fast Fourier transform (FFT were obtained from numerical calculation. The FFT amplitudes, functions of frequency, were associated with distance from the sample surface using the skin depth equation δ = 1/ (πfσµ½ , where f is the frequency of the electromagnetic wave, s is the electrical conductivity, and µ is the magnetic permeability. We define a normalized power index (NPI which can be used to estimate case depths. The NPI is discussed in relation to the sample microstructure and it is shown that the case depth is most easily determined when the magnetic properties of the surface layer and core are substantially different.

  14. Polarized Raman spectroscopy of bone tissue: watch the scattering

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-02-01

    Polarized Raman spectroscopy is widely used in the study of molecular composition and orientation in synthetic and natural polymer systems. Here, we describe the use of Raman spectroscopy to extract quantitative orientation information from bone tissue. Bone tissue poses special challenges to the use of polarized Raman spectroscopy for measurement of orientation distribution functions because the tissue is turbid and birefringent. Multiple scattering in turbid media depolarizes light and is potentially a source of error. Using a Raman microprobe, we show that repeating the measurements with a series of objectives of differing numerical apertures can be used to assess the contributions of sample turbidity and depth of field to the calculated orientation distribution functions. With this test, an optic can be chosen to minimize the systematic errors introduced by multiple scattering events. With adequate knowledge of the optical properties of these bone tissues, we can determine if elastic light scattering affects the polarized Raman measurements.

  15. Single Crystal Diffuse Neutron Scattering

    Richard Welberry

    2018-01-01

    Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.

  16. [Inelastic electron scattering from surfaces

    1993-01-01

    This program is aimed at the quantitative study of surface dynamical processes (vibrational, magnetic excitations) in crystalline slabs, ultrathin-layered materials, and chemisorbed systems on substrates, and of the geometric structure connected to these dynamical excitations. High-resolution electron-energy loss spectroscopy (HREELS) is a powerful probe. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50-300 eV). The analyses has been used to study surfaces of ordered alloys (NiAl). Ab-initio surface lattice dynamical results were combined with phonon-loss cross sections to achieve a more accurate microscopic description. First-principles phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross-section calculations. The combined microscopic approach was used to analyze EELS data of Cu(0001) and Ag(001) at two points. Positron diffraction is discussed as a structural and imaging tool. The relation between geometric structure of a film and its local magnetic properties will be studied in the future, along with other things

  17. Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes

    Antonio Ancona

    2012-08-01

    Full Text Available In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.

  18. On the variability of sea drag in finite water depth

    Toffoli, A.; Loffredo, L.; Le Roy, P.; LefèVre, J.-M.; Babanin, A. V.

    2012-11-01

    The coupling between the atmospheric boundary layer and the ocean surface in large-scale models is usually parameterized in terms of the sea drag coefficient, which is routinely estimated as a function of mean wind speed. The scatter of data around such parametric dependencies, however, is very significant and imposes a serious limitation on the forecasts and predictions that make use of sea surface drag parameterizations. The analysis of an atmospheric and wave data set collected in finite water depth at the Lake George measurement site (Australia) suggests that this variability relates to a number of parameters at the air-sea interface other than wind speed alone. In particular, results indicate that the sea drag depends on water depth and wave steepness, which make the wave profile more vertically asymmetric, and the concentration of water vapor in the air, which modifies air density and friction velocity. These dependencies are used to derive parametric functions based on the combined contribution of wind, waves and relative humidity. A standard statistical analysis confirms a substantial improvement in the prediction of the drag coefficient and sea surface roughness when additional parameters are taken into account.

  19. FIR laser scattering and heterodyne receiver measurements on Alcator C

    Woskoboinikow, P.; Praddaude, H.C.; Mulligan, W.J.; Cohn, D.R.; Lax, B.

    1982-01-01

    The MIT program to develop high power collective Thomson scattering diagnostics is presented. The D 2 O laser Thomson scattering system is operational on Alcator C tokamak. The major components include a 0.5 MW, 150 ns D 2 O laser, a heterodyne receiver mixer, a 25 MW, 381 μ DCOOD laser local oscillator and X-band I.F. electronics including a 32 channel multiplexer filter centered at 9.4 GHz with 80 MHz wide channels. Initial scattering measurement showed high level of stray D 2 O laser power. The spectrum was obtained by operating the Thomson scattering diagnostics with no plasma in the tokamak. An X-band notch filter was placed after the Schottky diode mixer to reject a 240 MHz band centered at 9.4 GHz. The stray light level was reduced by 16 to 20 db. Other sources of background noise such as strong non-thermal scattering and ECE did not appear to be a problem. A gas filled cell was placed on the Alcator C scattering system to reduce the level of stray light. Work is underway to improve the transverse mode quality of the laser and receiver to improve matching to the beam and viewing dumps. (Kato, T.)

  20. A diode laser-based velocimeter providing point measurements in unseeded flows using modulated filtered Rayleigh scattering (MFRS)

    Jagodzinski, Jeremy James

    2007-12-01

    The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change

  1. Brillouin scattering at high pressures

    Grimsditch, M.; Polian, A.

    1988-02-01

    Technical advances which have made Brillouin scattering a useful tool in high pressure diamond anvil cell (DAC) studies, viz. multipassing and tandem operation of Fabry-Perot interferometers, are reviewed. Experimental aspects, such as allowed scattering geometries, are outlined and the data analysis required to transform Brillouin spectra into sound velocities and elastic constants is presented. Experimental results on H 2 , N 2 , Ar, and He are presented, and the close relationship between the Brillouin scattering results and equations of state is highlighted

  2. Inelastic scattering and deformation parameters

    Ford, J.L.C. Jr.

    1978-01-01

    In recent years there has been extensive study of nuclear shape parameters by electron scattering, μ meson atomic transitions, Coulomb excitation and direct nuclear inelastic scattering. Inelastic scattering of strongly absorbed particles, e.g., alpha-particles and heavy ions, at energies below and above the Coulomb barrier probe the charge and mass distributions within the nucleus. This paper summarizes measurements in this field performed at Oak Ridge National Laboratory

  3. Weak Deeply Virtual Compton Scattering

    Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin

    2006-01-01

    We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities

  4. Scattering theory for Stark Hamiltonians

    Jensen, Arne

    1994-01-01

    An introduction to the spectral and scattering theory for Schroedinger operators is given. An abstract short range scattering theory is developed. It is applied to perturbations of the Laplacian. Particular attention is paid to the study of Stark Hamiltonians. The main result is an explanation of the discrepancy between the classical and the quantum scattering theory for one-dimensional Stark Hamiltonians. (author). 47 refs

  5. Femtosecond laser excitation of dielectric materials: experiments and modeling of optical properties and ablation depths

    Wædegaard, Kristian Juncher; Frislev, Martin Thomas; Balling, Peter

    2013-01-01

    Modeling of the interaction between a dielec- tric material and ultrashort laser pulses provides the tem- poral evolution of the electronic excitation and the optical properties of the dielectric. Experimentally determined re- flectances and ablation depths for sapphire are compared...... to the calculations. A decrease in reflectance at high fluences is observed experimentally, which demonstrates the neces- sity of a temperature-dependent electron scattering rate in the model. The comparison thus provides new constraints on the optical parameters of the model....

  6. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging

    Dunsby, C; French, P M W

    2003-01-01

    This article aims to review the panoply of techniques for realising optical imaging through turbid media such as biological tissue. It begins by briefly discussing optical scattering and outlines the various approaches that have been developed to image through scattering media including spatial filtering, time-gated imaging and coherence-based techniques. The discussion includes scanning and wide-field techniques and concentrates on techniques to discriminate in favour of unscattered ballistic light although imaging with scattered light is briefly reviewed. Wide-field coherence-gated imaging techniques are discussed in some detail with particular emphasis placed on techniques to achieve real-time high-resolution three-dimensional imaging including through turbid media, providing rapid whole-field acquisition and high depth and transverse spatial resolution images. (topical review)

  7. Assessing the measurement of aerosol single scattering albedo by Cavity Attenuated Phase-Shift Single Scattering Monitor (CAPS PMssa)

    Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas

    2016-04-01

    The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient

  8. CONFERENCE: Elastic and diffractive scattering

    White, Alan

    1989-01-01

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago

  9. Light scattering by small particles

    Hulst, H C van de

    1981-01-01

    ""A must for researchers using the techniques of light scattering."" ? S. C. Snowdon, Journal of the Franklin InstituteThe measurement of light scattering of independent, homogeneous particles has many useful applications in physical chemistry, meteorology and astronomy. There is, however, a sizeable gap between the abstract formulae related to electromagnetic-wave-scattering phenomena, and the computation of reliable figures and curves. Dr. van de Hulst's book enables researchers to bridge that gap. The product of twelve years of work, it is an exhaustive study of light-scattering properties

  10. Light Scattering at Various Angles

    Latimer, Paul; Pyle, B. E.

    1972-01-01

    The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610

  11. Dispersion Decay and Scattering Theory

    Komech, Alexander

    2012-01-01

    A simplified, yet rigorous treatment of scattering theory methods and their applications Dispersion Decay and Scattering Theory provides thorough, easy-to-understand guidance on the application of scattering theory methods to modern problems in mathematics, quantum physics, and mathematical physics. Introducing spectral methods with applications to dispersion time-decay and scattering theory, this book presents, for the first time, the Agmon-Jensen-Kato spectral theory for the Schr?dinger equation, extending the theory to the Klein-Gordon equation. The dispersion decay plays a crucial role i

  12. Introduction to Schroedinger inverse scattering

    Roberts, T.M.

    1991-01-01

    Schroedinger inverse scattering uses scattering coefficients and bound state data to compute underlying potentials. Inverse scattering has been studied extensively for isolated potentials q(x), which tend to zero as vertical strokexvertical stroke→∞. Inverse scattering for isolated impurities in backgrounds p(x) that are periodic, are Heaviside steps, are constant for x>0 and periodic for x<0, or that tend to zero as x→∞ and tend to ∞ as x→-∞, have also been studied. This paper identifies literature for the five inverse problems just mentioned, and for four other inverse problems. Heaviside-step backgrounds are discussed at length. (orig.)

  13. Multiple Scattering Model for Optical Coherence Tomography with Rytov Approximation

    Li, Muxingzi

    2017-04-24

    Optical Coherence Tomography (OCT) is a coherence-gated, micrometer-resolution imaging technique that focuses a broadband near-infrared laser beam to penetrate into optical scattering media, e.g. biological tissues. The OCT resolution is split into two parts, with the axial resolution defined by half the coherence length, and the depth-dependent lateral resolution determined by the beam geometry, which is well described by a Gaussian beam model. The depth dependence of lateral resolution directly results in the defocusing effect outside the confocal region and restricts current OCT probes to small numerical aperture (NA) at the expense of lateral resolution near the focus. Another limitation on OCT development is the presence of a mixture of speckles due to multiple scatterers within the coherence length, and other random noise. Motivated by the above two challenges, a multiple scattering model based on Rytov approximation and Gaussian beam optics is proposed for the OCT setup. Some previous papers have adopted the first Born approximation with the assumption of small perturbation of the incident field in inhomogeneous media. The Rytov method of the same order with smooth phase perturbation assumption benefits from a wider spatial range of validity. A deconvolution method for solving the inverse problem associated with the first Rytov approximation is developed, significantly reducing the defocusing effect through depth and therefore extending the feasible range of NA.

  14. Scene depth estimation using a moving camera

    Sune, Jean-Luc

    1995-01-01

    This thesis presents a solution of the depth-from-motion problem. The movement of the monocular observer is known. We have focused our research on a direct method which avoid the optical flow estimation required by classical approaches. The direct application of this method is not exploitable. We need to define a validity domain to extract the set of image points where it is possible to get a correct depth value. Also, we use a multi-scale approach to improve the derivatives estimation. The depth estimation for a given scale is obtained by the minimisation of an energy function established in the context of statistic regularization. A fusion operator, merging the various spatial and temporal scales, has been used to estimate the final depth map. A correction-prediction schema is used to integrate the temporal information from an image sequence. The predicted depth map is considered as an additional observation and integrated in the fusion process. At each time, an error depth map is associated to the estimated depth map. (author) [fr

  15. Light scattering from polymer solutions and nanoparticle dispersions

    Schärtl, Wolfgang; Janca, Josef

    2007-01-01

    Light scattering is a very powerful method to characterize the structure of polymers and nanoparticles in solution. Recent technical developments have strongly enhanced the possible applications of this technique, overcoming previous limitations like sample turbidity or insufficient experimental time scales. However, despite their importance, these new developments have not yet been presented in a comprehensive form. In addition, and maybe even more important to the broad audience, there lacks a simple-to-read textbook for students and non-experts interested in the basic principles and fundamental techniques of light scattering. As part of the Springer Laboratory series, this book tries not only to provide such a simple-to-read and illustrative textbook about the seemingly very complicated topic of light scattering from polymers and nanoparticles in dilute solution, but also intends to cover some of the newest technical developments in experimental light scattering.

  16. Magnon and phonon thermometry with inelastic light scattering

    Olsson, Kevin S.; An, Kyongmo; Li, Xiaoqin

    2018-04-01

    Spin caloritronics investigates the interplay between the transport of spin and heat. In the spin Seebeck effect, a thermal gradient across a magnetic material generates a spin current. A temperature difference between the energy carriers of the spin and lattice subsystems, namely the magnons and phonons, is necessary for such thermal nonequilibrium generation of spin current. Inelastic light scattering is a powerful method that can resolve the individual temperatures of magnons and phonons. In this review, we discuss the thermometry capabilities of inelastic light scattering for measuring optical and acoustic phonons, as well as magnons. A scattering spectrum offers three temperature sensitive parameters: frequency shift, linewidth, and integrated intensity. We discuss the temperatures measured via each of these parameters for both phonon and magnons. Finally, we discuss inelastic light scattering experiments that have examined the magnon and phonon temperatures in thermal nonequilibrium which are particularly relevant to spin caloritronic phenomena.

  17. A Theory of Radar Scattering by the Moon

    Senior, T. B. A.; Siegel, K. M.

    1959-01-01

    A theory is described in which the moon is regarded as a "quasi-smooth" scatterer at radar frequencies. A scattered pulse is then composed of a number of individual returns each of which is provided by a single scattering area. In this manner it is possible to account for all the major features of the pulse, and the evidence in favor of the theory is presented. From a study of the measured power received at different frequencies, it is shown that the scattering area nearest to the earth is the source of a specular return, and it is then possible to obtain information about the material of which the area is composed. The electromagnetic constants are derived and their significance discussed.

  18. Hydrologic regulation of plant rooting depth.

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G; Jackson, Robert B; Otero-Casal, Carlos

    2017-10-03

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  19. Hydrologic regulation of plant rooting depth

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-10-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (˜1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  20. A Discrete Scatterer Technique for Evaluating Electromagnetic Scattering from Trees

    2016-09-01

    Trees by DaHan Liao Approved for public release; distribution is unlimited. NOTICES Disclaimers The findings...for Evaluating Electromagnetic Scattering from Trees by DaHan Liao Sensors and Electron Devices Directorate, ARL...Technique for Evaluating Electromagnetic Scattering from Trees 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S