WorldWideScience

Sample records for scattering momentum transfers

  1. On expansion of scattering amplitude at large momentum transfers

    International Nuclear Information System (INIS)

    Edneral, V.F.; Troshin, S.M.; Tyurin, N.E.

    1979-01-01

    The aim of the paper is to construct an iterative approximation for hadronic scattering amplitude and to search for the related small parameters. The expansion of the amplitude is obtained. A series is derived where the role of the small parameter is played by the quantity dependent on the momentum transfer. The appearance of the small parameter is directly related to the growth of total cross section. For the case g 2 not equal to 0 in the framework of the strong interaction theory model, based on the solution of three-domensional dynamical equation an expression is obtained for scattering amplitude in the form of a series over the quantity decreasing with the growth of momentum transfer

  2. Elastic electron scattering at large momentum transfer

    International Nuclear Information System (INIS)

    Arnold, R.G.

    1979-05-01

    A review is given of elastic electron scattering at large momentum transfer (Q 2 > 20 fm -2 ) from nuclei with A less than or equal to 4. Recent experimental results are reviewed and the current problems in interpretation of these results are pointed out. Some questions for future experiments are posed, and a preview of possible future measurements is presented. 28 references

  3. Nuclear Transparency in Large Momentum Transfer Quasielastic Scattering

    International Nuclear Information System (INIS)

    Mardor, I.; Aclander, J.; Alster, J.; Kosonovsky, E.; Mardor, Y.; Navon, I.; Piasetzky, E.; Durrant, S.; Barton, D.; Bunce, G.; Carroll, A.; Gushue, S.; Makdisi, Y.; Roser, T.; Tanaka, M.; Christensen, N.; Courant, H.; Marshak, M.; White, C.; Heppelmann, S.; Minor, E.D.; Wu, J.; Nicholson, H.; Sutton, C.S.; Russell, J.

    1998-01-01

    We measured simultaneously pp elastic and quasielastic (p,2p) scattering in hydrogen, deuterium, and carbon for momentum transfers of 4.8 to 6.2 (GeV/c) 2 at incoming momenta of 5.9 and 7.5 GeV/c and center-of-mass scattering angles in the range θ c.m. =83.7 degree - 90 degree . The nuclear transparency is defined as the ratio of the quasielastic cross section to the free pp cross section. At incoming momentum of 5.9 GeV/c , the transparency of carbon decreases by a factor of 2 from θ c.m. ≅85 degree to θ c.m. ≅89 degree . At the largest angle the transparency of carbon increases from 5.9 to 7.5 GeV/c by more than 50%. The transparency in deuterium does not depend on incoming momentum nor on θ c.m. . copyright 1998 The American Physical Society

  4. Inelastic electron photon scattering at moderate four momentum transfers

    International Nuclear Information System (INIS)

    Berger, C.; Genzel, H.; Grigull, R.; Lackas, W.; Raupach, F.; Klovning, A.; Lillestoel, E.; Skard, J.A.; Ackermann, H.; Buerger, J.

    1980-10-01

    We present new high statistics data on hadron production in photon photon reactions. The data are analyzed in terms of an electron photon scattering formalism. The dependence of the total cross section on Q 2 , the four momentum transfer squared of the scattered electron, and on the mass W of the hadronic system is investigated. The data are compared to predictions from Vector Dominance and the quark model. (orig.)

  5. Neutron scattering on liquid He4 at high momentum transfers

    International Nuclear Information System (INIS)

    Parlinski, K.

    1975-01-01

    Using the Sears method of expansion of the dynamic structure factor into a series over the inverse powers of the wave vector and five moments of the velocity correlation function, the distribution of neutrons scattered on liquid helium at T=0 K and at the momentum transfer k=14.33 A -1 is calculated. The calculated distribution takes into account the interaction among helium atoms. The distributions are compared with the experimental data. The results show that proper information of the occupation fraction of the zero-momentum state - the condensate - can be obtained by the neutron scatterng method at high-momentum transfers only when the interaction among helium atoms is taken into account. (author)

  6. Quasi-elastic scattering of electrons from 40Ca at high momentum transfer

    International Nuclear Information System (INIS)

    Yates, T.C.

    1992-01-01

    Previous quasi-elastic electron scattering experiments have yielded seemingly inconsistent results when the integrated longitudinal strength is compared to calculations using the relativistic fermi gas model. Measurements made at Saclay on 12 C, 40 Ca, 48 Ca, 56 Fe, and 208 Pb indicated a smaller integrated longitudinal strength than expected on the basis of the relativistic fermi gas model. However, 238 U data taken at Bates showed nearly the full expected longitudinal strength at a momentum transfer of 550 MeV/c. This is one of the outstanding discrepancies in nuclear physics. Earlier experiments were hampered in that high momentum transfer could not be obtained at forward angles where the longtudinal strength is a large fraction of the total strength. The present experiment was designed to take advantage of the higher energy capability (greater than 800 MeV) at Bates recirculated linac in order to obtain momentum transfers greater than 600 MeV/c at a scattering angle of 45.5 degrees. Under these conditions the longitudinal strength is 40-75% of the total quasi-elastic strength

  7. Magnetic electron scattering from deuterium at low-momentum transfer

    International Nuclear Information System (INIS)

    Jones, E.C. Jr.; Bendel, W.L.; Fagg, L.W.; Lindgren, R.A.

    1980-01-01

    The elastic and inelastic cross sections of deuterium for 56.4 MeV electrons scattered at 180 0 , have been measured up to an excitation energy of 19 MeV. The experimental cross sections are compared with those calculated by Miller, by Durand, and by Arenhoevel and Fabian, and also with the sum rules of O'Connell. The results indicate that the contribution of meson exchange currents at this low-momentum transfer is significant

  8. Momentum transfer in a Brillouin surface scattering

    International Nuclear Information System (INIS)

    Khater, A.F.

    1980-01-01

    The theory of acoustic excitation scattering in the surface of Brilloiun of opaque materials, is related to the question of momentum transfexed from radiation fields to the material when the incident eight is scattered in a measurable spectrum. (A.C.A.S.) [pt

  9. Large momentum transfer electron scattering from few-nucleon systems

    International Nuclear Information System (INIS)

    Arnold, R.G.

    1979-08-01

    A review is given of the experimental results from a series of measurements at SLAC of large momentum transfer (Q 2 > 20 fm -2 ) electron scattering at forward angles from nuclei with A less than or equal to 4. Theoretical interpretations of these data in terms of traditional nuclear physics models and in terms of quark constituent models are described. Some physics questions for future experiments are explored, and a preview of possible future measurements of magnetic structure functions of light nuclei at large Q 2 is given

  10. Measurement of diffractive scattering of photons with large momentum transfer at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Andreev, V.

    2008-09-01

    The first measurement of diffractive scattering of quasi-real photons with large momentum transfer γp → γY, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q 2 2 . Cross sections are measured as a function of W, the incident photonproton centre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175 2 . The W dependence is well described by a model based on perturbative QCD using a leading logarithmic approximation of the BFKL evolution. The measured vertical stroke t vertical stroke dependence is harder than that predicted by the model and those observed in exclusive vector meson production. (orig.)

  11. Measurement of diffractive scattering of photons with large momentum transfer at HERA

    Science.gov (United States)

    H1 Collaboration; Aaron, F. D.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Bacchetta, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deák, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Kutak, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Mudrinic, M.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G. D.; Pejchal, O.; Peng, H.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J. E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Tran, T. H.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wegener, D.; Wessels, M.; Wissing, Ch.; Wünsch, E.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2009-02-01

    The first measurement of diffractive scattering of quasi-real photons with large momentum transfer γp→γY, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q<0.01 GeV. Single differential cross sections are measured as a function of W, the incident photon-proton centre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175

  12. Measurement of Diffractive Scattering of Photons with Large Momentum Transfer at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Bacchetta, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Peng, H.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wegener, D.; Wessels, M.; Wissing, Ch.; Wunsch, E.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2009-01-01

    The first measurement of diffractive scattering of quasi-real photons with large momentum transfer gamma p -> gamma Y, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q^2 < 0.01 GeV^2. Cross sections are measured as a function of W, the incident photon-proton entre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175 < W < 247 GeV and 4<|t|<36 GeV^2. The W dependence is well described by a model based on perturbative QCD using a leading logarithmic approximation of the BFKL evolution. The measured |t| dependence is harder than that predicted by the model and those observed in exclusive vector meson production.

  13. Measurement of diffractive scattering of photons with large momentum transfer at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania)]|[Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2008-09-15

    The first measurement of diffractive scattering of quasi-real photons with large momentum transfer {gamma}p {yields} {gamma}Y, where Y is the proton dissociative system, is made using the H1 detector at HERA. The measurement is performed for initial photon virtualities Q{sup 2} < 0.01 GeV{sup 2}. Cross sections are measured as a function of W, the incident photonproton centre of mass energy, and t, the square of the four-momentum transferred at the proton vertex, in the range 175 < W < 247 GeV and 4 < vertical stroke t vertical stroke < 36 GeV{sup 2}. The W dependence is well described by a model based on perturbative QCD using a leading logarithmic approximation of the BFKL evolution. The measured vertical stroke t vertical stroke dependence is harder than that predicted by the model and those observed in exclusive vector meson production. (orig.)

  14. Electron--molecule scattering in momentum space

    International Nuclear Information System (INIS)

    Ritchie, B.

    1979-01-01

    We examine the Fourier transform of the Schroedinger equation for electron--molecule scattering, treated as potential scattering from a multicenter distribution of charged fixed in space. When the angle theta between R,the internuclear vector of a diatomic target, and q, the momentum transfer, is held fixed during the collision, then the directions of incidence and scattering are fixed relative to R. The process is then described as having a dynamical dependence on the magnitude of q, q, from which the scattering angle is determined, and a parametric dependence on q's direction relative to R. This approximation is used routinely at high energies in the calculation of the Born amplitude. Fixed--nuclei coordinate--space studies suggest that this approximation can be extended to low energies, provided the amplitude is taken from the solution of the integral equation of momentum space rather than from its inhomogeneity, proportional to the Born amplitude. We constrain R to be in the same direction relative to q', a virtual momentum transfer belonging to the kernel, as it is to q.Calculations are performed for the e, H 2 scattering in the static approximation, and cross sections averaged over theta/sub R/ are shown to be in good agreement with cross sections calculated by use of coupled spherical and coupled spheroidal partial wave theories. The angular distribution in the static approximation is also calculated at an incident energy close to 7 eV, where exchange is relatively unimportant. This result is in reasonably good agreement with that of R matrix theory in the static--exchange approximation. The extension of the theory to treat exchange is formulated and discussed. Also its extension to treat more complicated molecular targets is discussed

  15. Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer

    International Nuclear Information System (INIS)

    David Abbott; Abdellah Ahmidouch; Heinz Anklin; Francois Arvieux; Jacques Ball; Beedoe, S.; Elizabeth Beise; Louis Bimbot; Werner Boeglin; Herbert Breuer; Roger Carlini; Nicholas Chant; Samuel Danagoulian; Dow, K.; Jean-Eric Ducret; James Dunne; Lars Ewell; Laurent Eyraud; Christophe Furget; Michel Garcon; Ronald Gilman; Charles Glashausser; Paul Gueye; Kenneth Gustafsson; Kawtar Hafidi; Adrian Honegger; Juerg Jourdan; Serge Kox; Gerfried Kumbartzki; Lu, L.; Allison Lung; David Mack; Pete Markowitz; Justin McIntyre; David Meekins; Fernand Merchez; Joseph Mitchell; Mohring, R.; Sekazi Mtingwa; Hamlet Mkrtchyan; David Pitz; Liming Qin; Ronald Ransome; Jean-Sebastien Real; Philip Roos; Paul Rutt; Reyad Sawafta; Samuel Stepanyan; Raphael Tieulent; Egle Tomasi-Gustafsson; William Turchinetz; Kelley Vansyoc; Jochen Volmer; Eric Voutier; William Vulcan; Claude Williamson; Stephen Wood; Chen Yan; Jie Zhao; Wenxia Zhao

    2000-01-01

    Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c) 2 . The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q 2 the deuteron charge form factors G C and G Q . They are in good agreement with relativistic calculations and disagree with pQCD predictions

  16. Pion-proton elastic scattering at 20 and 50 GeV/c incident momenta in the momentum transfer range 0.7 2

    International Nuclear Information System (INIS)

    Asa'd, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Gjerpe, I.; Heymann, F.F.; Imrie, D.C.; Lowndes, R.; Lush, G.J.; Phillips, M.; Baglin, C.; Poulet, M.; Yvert, M.; Benso, S.; Buzzo, A.; Ferroni, S.; Gracco, V.; Macri, M.; Santroni, A.; Brobakken, K.; Bugge, L.; Buran, T.; Fearnley, T.; Helgaker, P.; Kirsebom, K.; Moe, A.; Soerensen, S.O.; Hansen, J.D.; Myrheim, J.; Skjevling, G.

    1982-01-01

    Measurements of the differential elastic cross sections for π - p scattering at incident momenta of 20 and 50 GeV/c and π + p at 50 GeV/c in the momentum transfer range 0.7 2 are presented. The data are compared with various models of elastic scattering. (orig.)

  17. Energy dependence of the Coulomb-nuclear interference at small momentum transfers

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    1997-01-01

    The analyzing power of the elastic proton-proton scattering at small momentum transfers and the effect of the Coulomb-nuclear interference are examined on the basis of the available experimental data at p L from 6 up to 200 GeV/c taking account of a phenomenological analysis at p L =6 GeV/c and of the dynamic high energy spin model. The structure of the spin-dependent elastic scattering amplitude at small momentum transfers is obtained. The predictions for the analyzing power at RHIC energies are made

  18. Towards a Precision Measurement of Parity-Violating e-p Elastic Scattering at Low Momentum Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jie [Univ. of Manitoba, Winnipeg (Canada)

    2012-01-01

    The goal of the Q-weak experiment is to make a measurement of the proton's weak charge QWp = 1 - 4 sin2W2(θW2(θWWp by measuring the parity violating asymmetry in elastic electron-proton scattering at low momentum transfer Q2 = 0.026 (GeV/c)2 and forward angles (8 degrees). The anticipated size of the asymmetry, based on the SM, is about 230 parts per billion (ppb). With the proposed accuracy, the experiment may probe new physics beyond Standard Model at the TeV scale. This thesis focuses on my contributions to the experiment, including track reconstruction for momentum transfer determination of the scattering process, and the focal plane scanner, a detector I designed and built to measure the flux profile of scattered electrons on the focal plane of the Q-weak spectrometer to assist in the extrapolation of low beam current tracking results to high beam current. Preliminary results from the commissioning and the first run period of the Q-weak experiment are reported and discussed.

  19. Inelastic electron scattering from 3He and 4He in the threshold region at high momentum transfer

    International Nuclear Information System (INIS)

    Rock, S.; Arnold, R.G.; Chertok, B.T.; Szalata, Z.M.; Day, D.; McCarthy, J.S.; Martin, F.; Mecking, B.A.; Sick, I.; Tamas, G.

    1981-01-01

    The cross section for inclusive inelastic electron scattering from the helium isotopes has been measured at momentum transfers squared of 0.8 less than or equal to Q 2 less than or equal to 5.0 (GeV/c) 2 for 3 He and 0.8 less than or equal to Q 2 less than or equal to 2.4 (GeV/c) 2 for 4 He. The data were taken at 10 0 and cover the range 1.0 2 /2M/sub He/ν, which includes the elastic peak, nuclear breakup threshold, the high momentum tail of the quasi elastic scattering, and pion production. The structure function, νW 2 , derived from the data is approaching a scaling limit at high Q 2 . It can be factored into a product of functions of Q 2 and of x as predicted by some models

  20. Low momentum transfer theorem for two photon exchange in lepton hardron scattering

    International Nuclear Information System (INIS)

    Penarrocha, J.A.; Bernabeu, J.

    1981-01-01

    The two photon contribution to lepton-hardon scattering is considered. Under the assumptions of Lorentz covarience, gauge invarience, unitarity, and analyticity, we prove a low momentum transfer theorem for the relevant amplitudes. Fixed energy dispersion relations tell us that their nonanalytic part, in the neighbourhood of t = 0, is given by the contribution of the two photon cut in the t-channel. The t-channel absorptive parts are obtained from unitarity. Their calculation has as input the two amplitudes corresponding to Compton scattering on the hadron with a pole contribution, and the continuum controlled at low t by the electromagnetic polarizabilities. By means of the dispersion integral, one proves the expansion k 1 (s)+k 2 (s)√-t+k 3 (s)tlog(-t)+O(t) for the continuum contribution, where k 1 (s) is the only unknown. Explicit expressions are obtained for the pole contribution as M→infinity, where M is the hadron mass, and for the continuum when (-t) 2 , where m is the muon mass and Λ is a characteristic parameter of the hadron structure

  1. Inelastic electron scattering at low momentum transfer

    International Nuclear Information System (INIS)

    Richter, A.

    1979-01-01

    Recent advances of high energy resolution (ΔE approx. 30 keV FWHM) inelastic electron scattering at low momentum transfer (q -1 ) using selected experimental data from the Darmstadt electron linear accelerator are discussed. Strong emphasis is given to a comparison of the data with theoretical nuclear model predictions. Of the low multipolarity electric transitions investigated, as examples only E1 transitions to unnatural parity states in 11 B and E2 transitions of the very fragmented isoscalar quadrupole giant resonance in 208 Pb are considered. In 11 B the role of the Os hole in the configuration of the 1/2 + , 3/2 + and 5/2 + states is quantitatively determined via an interference mechanism in the transition probability. By comparison of the high resolution data with RPA calculations the E2 EWSR in 208 Pb is found to be much less exhausted than anticipated from previous medium energy resolution (e,e) and hadron scattering experiments. In the case of M1 transitions it is shown that the simplest idealized independent particle shell-model prediction breaks down badly. In 28 Si, ground-state correlations influence largely the detected M1 strength and such ground-state correlations are also responsible for the occurence of a strong M1 transition to a state at Ex = 10.319 MeV in 40 Ca. In 90 Zr only about 10% of the theoretically expected M1 strength is seen in (e,e) and in 140 Ce and 208 Pb none (detection limit 1-2 μ 2 K). In the case of 208 Pb high resolution spectra exist now up to an excitation energy of Ex = approx. 12MeV. The continuous decrease of the M1 strength with mass number is corroborated by the behaviour of strong but very fragmented M2 transitions which are detected in 28 Si, 90 Zr, 140 Ce and 208 Pb concentrated at an excitation energy E x approx. 44A -1 / 3 MeV. In 90 Zr, the distribution of spacings and widths of the many Jπ = 2 states are consistent with a Wigner and Porter-Thomas distribution, respectively. (orig.) 891 KBE/orig. 892 ARA

  2. Large momentum transfer phenomena

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

    1978-01-01

    The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

  3. Measurement of the polarization parameter in 24 GeV/c pp elastic scattering at large momentum transfers

    CERN Document Server

    Antille, J; Dick, Louis; Gonidec, A; Kuroda, K; Kyberd, P; Michalowicz, A; Perret-Gallix, D; Salmon, G L; Werlen, M

    1981-01-01

    A measurement of the polarization parameter P/sub 0/ in pp elastic scattering has been made 24 GeV/c over the range of momentum transfer squared 0.7< mod t mod <5.0 (GeV/c)/sup 2/. The structure of P/sub 0/ has changed compared to typical lower energy data. The second peak is suppressed and a dip has appeared at mod t mod =3.6 (GeV/c)/sup 2/. (31 refs).

  4. Spin-directed momentum transfers in SIDIS baryon production

    International Nuclear Information System (INIS)

    Sivers, D.

    2016-01-01

    The measurement of transverse single-spin asymmetries for baryon production in the target fragmentation region of semi-inclusive deep-inelastic scattering (SIDIS), can produce important insight into those nonperturbative aspects of QCD directly associated with confinement and with the dynamical breaking of chiral symmetry. We discuss here, in terms of spin-directed momentum transfers, the powerful quantum field- theoretical constraints on the spin-orbit dynamics underlying these transverse spin observables. The A τ -odd spin-directed momentum shifts, originating either in the target nucleon (δk TN ) or in the QCD jets (δp TN ) produced in the deep inelastic scattering process, represent significant quantum entanglement effects connecting information from current fragmentation with observables in target fragmentation. (author)

  5. Dynamics of high momentum transfer processes

    International Nuclear Information System (INIS)

    Efremov, A.V.

    1977-01-01

    The high momentum transfer processes are considered in terms of field theory of quarks interacting through scalar or pseudoscalar gluons. This approach is based on an algorithm involving the consideration of the Feynman diagram asymptotical behaviour and its summation. The Parton model and quark counting power are an approximation of not too high momentum transfer when anti g 2 (q 2 )ln(-q 2 /Λ) 2 -invariant charge, Λ-boundary parameter. The violation of scaling beyond this region depends on the character of charge renormalization and is of the same kind as in the Wilson expansion approach. Scaling in this region is suppressed by anti g 4 factor for high psub(UPSILON) hadroproduction and wide angle elastic scattering, and by anti g 2 factor for inclusive lepton production and wide angle electro- and photoproduction. Parameter Λ is controlled by hadron masses and can be essential for not too high psub(UPSILON)

  6. The AKM theorem and oscillations in the hadron scattering amplitude at high energy and small momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, P.; Nicolescu, B. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Selyugin, O.V. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    1996-10-01

    It is shown that the high precision UA4/2 data for differential cross sections p-barp scattering are compatible with the presence of Auberson -Kinoshita - Martin (AKM) type of oscillations at very small momentum transfers. These oscillations seem to be periodic in {radical}|t|. The existence of such visible oscillations suggests a general mechanism of saturation of axiomatic bounds. As an illustration the consequences for extracting the parameter {rho} = ReF/ImF from dN/dt data are also discussed. (K.A.). 19 refs.

  7. Nuclear fragmentation energy and momentum transfer distributions in relativistic heavy-ion collisions

    Science.gov (United States)

    Khandelwal, Govind S.; Khan, Ferdous

    1989-01-01

    An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.

  8. Proton-proton elastic scattering at 50 GeV/c incident momentum in the momentum transfer range 0.82

    International Nuclear Information System (INIS)

    Baglin, C.; Guillaud, J.P.; Poulet, M.; Myrheim, J.; Asa'd, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M.; Brom, J.M.; Kenyon Gjerpe, I.; Buran, T.; Buzzo, A.; Ferroni, S.; Gracco, V.; Kirsebom, K.; Macri, M.; Santroni, A.; Skjevling, G.; Soerensen, S.O.

    1983-01-01

    A measurement of the proton-proton elastic differential cross section at 50 GeV/c incident momentum in the momentum transfer range 0.8 2 is presented. The data are compared to pp data at lower and higher energies, and to some model predictions. (orig.)

  9. High momentum transfer processes in QCD

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1978-01-01

    A unified approach to the investigation of inclusive high momentum transfer processes in the QCD framework is proposed. A modified parton model (with parton distribution functions depending on an additional renormalization parameter) is shown to be valid in all orders of perturbation theory. The approach is also applicable for studying wide-angle elastic scattering processes of colourless bound states of quarks (the hadrons). The asymptotic behaviour of pion electromagnetic form factor is calculated as an example

  10. Across-horizon scattering and information transfer

    Science.gov (United States)

    Emelyanov, V. A.; Klinkhamer, F. R.

    2018-06-01

    We address the question whether or not two electrically charged elementary particles can Coulomb scatter if one of these particles is inside the Schwarzschild black-hole horizon and the other outside. It can be shown that the quantum process is consistent with the local energy–momentum conservation law. This result implies that across-horizon scattering is a physical effect, relevant to astrophysical black holes. We propose a Gedankenexperiment which uses the quantum scattering process to transfer information from inside the black-hole horizon to outside.

  11. High energy approximations for nuclear knockout form factors at small momentum transfer

    International Nuclear Information System (INIS)

    Amado, R.D.; Cannata, F.; Dedonder, J.P.

    1985-01-01

    We obtain an explicit approximate expression for the nucleon knockout form factor at small momentum transfer induced by a scalar probe in a single particle model in terms of the momentum space bound state wave function. Our form preserves the orthogonality constraint without using explicitly the final state scattering wave function. We examine the leading large momentum behavior of the momentum space wave function and of correction terms to our expression for the form factor in the case where the bound state is an s state

  12. New results on kaon-proton elastic scattering at large momentum transfers

    International Nuclear Information System (INIS)

    Asa'd, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lowndes, R.; Lush, G.J.; Phillips, M.; Baglin, C.; Guillaud, J.P.; Poulet, M.; Yvert, M.; Hansen, J.D.; Myrheim, J.; Brobakken, K.; Buran, T.; Buzzo, A.; Ferroni, S.; Gracco, V.; Helgaker, P.; Kirsebom, K.; Santroni, A.; Skjevling, G.; Soerensen, S.O.

    1983-01-01

    Measurements of the K - p and K 8 p elastic differential cross sections at 20 and 50 GeV/c, respectively, have been made in the momentum transfer range 0.7< vertical stroketvertical stroke<8.0 GeV/c. (orig.)

  13. Momentum density of hcp and liquid helium-4 by inelastic neutron scattering

    International Nuclear Information System (INIS)

    Hilleke, R.O.

    1983-01-01

    A measurement of the momentum density in hcp and liquid 4 He by inelastic neutron scattering is reported. Using the Low Resolution Medium Energy Chopper Spectrometer at the Intense Pulsed Neutron Source at Argonne National Laboratory, momentum transfers in the range 12 to 22.5 A -1 were attained. At these momentum transfers, the momentum density of the sample is related to the dynamic structure factor by the impulse approximation. The measured momentum distribution is Gaussian and the kinetic energy is larger than proposed by existing theories. Data were taken on two solid samples, the first was a 19.45 cm 3 /mole hcp solid, the second was 18.20 cm 3 /mole; both solid samples were maintained at 1.70 K during data collection. Data were also taken on a liquid sample with a molar volume of 18.20 cm 3 /mole at 4.00 K. At 1.70 K the two solid samples are essentially in their ground states so that the measurement is of the ground state momentum density. The liquid sample was included to see if the difference between the liquid and solid momentum density at the same molar volume was observable

  14. Analyzing powers and proton spin transfer coefficients in the elastic scattering of 800 MeV polarized protons from an L-type polarized deuteron target at small momentum transfers

    International Nuclear Information System (INIS)

    Adams, D.L.

    1986-10-01

    Analyzing powers and spin transfer coefficients which describe the elastic scattering of polarized protons from a polarized deuteron target have been measured. The energy of the proton beam was 800 MeV and data were taken at laboratory scattering angles of 7, 11, 14, and 16.5 degrees. One analyzing power was also measured at 180 degrees. Three linearly independent orientations of the beam polarization were used and the target was polarized parallel and antiparallel to the direction of the beam momentum. The data were taken with the high resolution spectrometer at the Los Alamos Meson Physics Facility (experiment 685). The results are compared with multiple scattering predictions based on Dirac representations of the nucleon-nucleon scattering matrices. 27 refs., 28 figs., 4 tabs

  15. Transfer of orbital angular momentum to an optically trapped low-index particle

    International Nuclear Information System (INIS)

    Garces-Chavez, V.; Sibbett, W.; Dholakia, K.; Volke-Sepulveda, K.; Chavez-Cerda, S.

    2002-01-01

    We demonstrate the transfer of orbital angular momentum from a light beam to a trapped low-index particle. The particle is trapped in a dark annular region of a high-order Bessel beam and rotates around the beam axis due to scattering from the helical wave fronts of the light beam. A general theoretical geometrical optics model is developed that, applied to our specific situation, corroborates tweezing and transfer of orbital angular momentum to the low-index particle. Good quantitative agreement between theory and experiment for particle rotation rates is observed

  16. Quantum scattering theory on the momentum lattice

    International Nuclear Information System (INIS)

    Rubtsova, O. A.; Pomerantsev, V. N.; Kukulin, V. I.

    2009-01-01

    A new approach based on the wave-packet continuum discretization method recently developed by the present authors for solving quantum-mechanical scattering problems for atomic and nuclear scattering processes and few-body physics is described. The formalism uses the complete continuum discretization scheme in terms of the momentum stationary wave-packet basis, which leads to formulation of the scattering problem on a lattice in the momentum space. The solution of the few-body scattering problem can be found in the approach from linear matrix equations with nonsingular matrix elements, averaged on energy over lattice cells. The developed approach is illustrated by the solution of numerous two- and three-body scattering problems with local and nonlocal potentials below and well above the three-body breakup threshold.

  17. Investigation of the core-halo structure of the neutron-rich nuclei 6He and 8He by intermediate-energy elastic proton scattering at high momentum transfer

    International Nuclear Information System (INIS)

    Aksouh, F.

    2002-12-01

    The elastic proton scattering from the halo nuclei 6 He and 8 He was investigated in inverse kinematics at energies around 700 MeV/u with the aim to deduce the differential cross sections for the region of high momentum transfer, covering the first diffraction minimum. For this purpose, a liquid-hydrogen target was specially developed and used for the first time allowing to obtain low-background data as compared to commonly used targets made from C-H compounds. Previous data taken in the region of small momentum transfer were sensitive to the size and the peripheral shape of the total nuclear matter density distribution but not to the inner part. The present data allow for a more detailed insight in the structure of the alike core in 6,8 He through a better determination of the matter density distributions. Several density distributions calculated from different microscopic models were used to derive elastic scattering cross sections which are compared with the obtained data. (author)

  18. Baryon form factors at high momentum transfer and generalized parton distributions

    International Nuclear Information System (INIS)

    Stoler, Paul

    2002-01-01

    Nucleon form factors at high momentum transfer t are treated in the framework of generalized parton distributions (GPD's). The possibility of obtaining information about parton high transverse momentum components by application of GPD's to form factors is discussed. This is illustrated by applying an ad hoc 2-body parton wave function to elastic nucleon form factors F 1 and F 2 , the N→Δ transition magnetic form factor G M * , and the wide angle Compton scattering form factor R 1

  19. VLAD for epithermal neutron scattering experiments at large energy transfers

    International Nuclear Information System (INIS)

    Tardocchi, M; Gorini, G; Perelli-Cippo, E; Andreani, C; Imberti, S; Pietropaolo, A; Senesi, R; Rhodes, N R; Schooneveld, E M

    2006-01-01

    The Very Low Angle Detector (VLAD) bank will extend the kinematical region covered by today's epithermal neutron scattering experiments to low momentum transfer ( -1 ) together with large energy transfer 0 -4 0 . In this paper the design of VLAD is presented together with Montecarlo simulations of the detector performances. The results of tests made with prototype VLAD detectors are also presented, confirming the usefulness of the Resonance Detector for measurements at very low scattering angles

  20. Photoproduction of Phi-mesons at small momentum transfer

    International Nuclear Information System (INIS)

    Hirschmann, H.

    1975-09-01

    The differential cross section of the γp → PHI, p → K + K - p reaction is determined for four-momentum transfer (0 - 0.23) GeV 2 and for photon energies (4.6 - 6.62) GeV with very small error. The differential cross section is independent of energy, the dependence on four-momentum transfer is described by an exponential function with a slope parameter (5.2 +- 0.4) GeV -2 . The total cross section of the PHI-meson as well as its differential cross section for elastic scattering at the proton comes out too small by a factor of 0.6 - 0.7 and 0.5 relative to predictions of a combined vector-dominance-quark model. The trajectories of the forward-going K-mesons are recorded in proportional and spark chambers, a threshold Cherenkov counter discriminates against fast pions and electrons, the principle of track reconstruction out of spark coordinates are explained in detail. (BJ) [de

  1. The effect of scattering on single photon transmission of optical angular momentum

    International Nuclear Information System (INIS)

    Andrews, D L

    2011-01-01

    Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre–Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle

  2. The effect of scattering on single photon transmission of optical angular momentum

    Science.gov (United States)

    Andrews, D. L.

    2011-06-01

    Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre-Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle.

  3. Elastic electron scattering at low momentum transfer and muonic X-rays

    International Nuclear Information System (INIS)

    Barrett, R.C.

    Mean square charge radius obtained at low momentum transfer is discussed in model-independent way. Muonic X-ray energies and form factors being expressed in terms of generalized moments of the charge density, the linear constraint functions from Friar and Negele are used to obtain an idea of the model-dependent error, r 2 . 208 Pb, 4 Ca and 4 He are considered as examples

  4. Deuteron form factor measurements at low momentum transfers

    Directory of Open Access Journals (Sweden)

    Schlimme B. S.

    2016-01-01

    Full Text Available A precise measurement of the elastic electron-deuteron scattering cross section at four-momentum transfers of 0.24 fm−1 ≤ Q ≤ 2.7 fm−1 has been performed at the Mainz Microtron. In this paper we describe the utilized experimental setup and the necessary analysis procedure to precisely determine the deuteron charge form factor from these data. Finally, the deuteron charge radius rd can be extracted from an extrapolation of that form factor to Q2 = 0.

  5. Photon-momentum transfer in molecular photoionization

    Science.gov (United States)

    Chelkowski, Szczepan; Bandrauk, André D.

    2018-05-01

    In most models and theoretical calculations describing multiphoton ionization by infrared light, the dipole approximation is used. This is equivalent to setting the very small photon momentum to zero. Using numerical solutions of the (nondipole) three-dimensional time-dependent Schrödinger equation for one electron in a H2+ molecular ion we investigate the effect the photon-momentum transfer to the photoelectron in an H2+ ion in various regimes. We find that the photon-momentum transfer in a molecule is very different from the transfer in atoms due to two-center interference effects. The photon-momentum transfer is very sensitive to the symmetry of the initial electronic state and is strongly dependent on the internuclear distance and on the ellipticity of the laser.

  6. Transverse momentum in semi-inclusive deep inelastic scattering

    International Nuclear Information System (INIS)

    Ceccopieri, Federico Alberto; Trentadue, Luca

    2006-01-01

    Within the framework of perturbative quantum chromodynamics we derive the evolution equations for transverse momentum dependent distributions and apply them to the case of semi-inclusive deep inelastic scattering. The evolution equations encode the perturbative component of transverse momentum generated by collinear parton branchings. The current fragmentation is described via transverse momentum dependent parton densities and fragmentation functions. Target fragmentation instead is described via fracture functions. We present, to leading logarithmic accuracy, the corresponding semi-inclusive deep inelastic scattering cross-section, which applies to the entire phase space of the detected hadron. Some phenomenological implications and further developments are briefly outlined

  7. Angular momentum alignment in molecular beam scattering

    International Nuclear Information System (INIS)

    Treffers, M.A.

    1985-01-01

    It is shown how the angular momentum alignment in a molecular beam can be determined using laser-induced fluorescence in combination with precession of the angular momenta in a magnetic field. After a general analysis of the method, some results are presented to illustrate the possibilities of the method. Experimental data are presented on the alignment production for Na 2 molecules that made a collision induced angular momentum transition. Magnitude as well as direction of the alignment have been determined for scattering with several scattering partners and for a large number of scattering angles and transitions. The last chapter deals with the total alignment production in a final J-state, i.e. without state selection of the initial rotational state. (orig.)

  8. Electron scattering from high-momentum neutrons in deuterium

    International Nuclear Information System (INIS)

    Klimenko, A.V.; Kuhn, S.E.; Bueltmann, S.; Careccia, S.L.; Dharmawardane, K.V.; Dodge, G.E.; Guler, N.; Hyde-Wright, C.E.; Klein, A.; Tkachenko, S.; Weinstein, L.B.; Zhang, J.; Butuceanu, C.; Griffioen, K.A.; Baillie, N.; Fersch, R.G.; Funsten, H.; Egiyan, K.S.; Asryan, G.; Dashyan, N.B.

    2006-01-01

    We report results from an experiment measuring the semiinclusive reaction 2 H(e,e ' p s ) in which the proton p s is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CEBAF large acceptance spectrometer. A reduced cross section was extracted for different values of final state missing mass W*, backward proton momentum p → s , and momentum transfer Q 2 . The data are compared to a simple plane wave impulse approximation (PWIA) spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. Within the framework of the simple spectator model, a 'bound neutron structure function' F 2n eff was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where the effects of FSI appear to be smaller. For p s >0.4 GeV/c, where the neutron is far off-shell, the model overestimates the value of F 2n eff in the region of x* between 0.25 and 0.6. A dependence of the bound neutron structure function on the neutron's 'off-shell-ness' is one possible effect that can cause the observed deviation

  9. Momentum Transfer and Viscosity from Proton-Hydrogen Collisions Relevant to Shocks and Other Astrophysical Environments

    International Nuclear Information System (INIS)

    Schultz, David Robert; Krstic, Predrag S.; Lee, Teck G.; Raymond, J.C.

    2008-01-01

    The momentum transfer and viscosity cross sections for proton-hydrogen collisions are computed in the velocity range of ∼200-20,000 km s -1 relevant to a wide range of astrophysical environments such as SNR shocks, the solar wind, winds within young stellar objects or accretion disks, and the interstellar protons interacting with the heliosphere. A variety of theoretical approaches are used to arrive at a best estimate of these cross sections in this velocity range that smoothly connect with very accurate results previously computed for lower velocities. Contributions to the momentum transfer and viscosity cross sections from both elastic scattering and charge transfer are included

  10. Studies of diffractive scattering of photons at large momentum transfer and of the VFPS detector at HERA

    International Nuclear Information System (INIS)

    Hreus, Tomas

    2008-09-01

    In this thesis, two studies of the diffractive phenomena in the electron proton collisions with the H1 detector at HERA are presented. The rst is the study of the inclusive elastic diffractive events ep → eXp in the regime of high photon virtuality (Q 2 >few GeV 2 ), with the scattered proton detected by the Very Forward Proton Spectrometer (VFPS). The VFPS detector, designed to measure diffractive scattered protons with high acceptance, has been installed in 2004 to benefit from the HERA II luminosity increase. The selected event sample of an integrated luminosity of 130.2 pb -1 was collected in years 2006-2007. Data sample distributions are compared to the prediction based on the diffractive parton distribution functions, as extracted from the H1 measurement of the diffractive structure function F D(3) 2 at HERA I. After the study of the VFPS efficiency, the VFPS acceptance as a function of x P is estimated and studied in relation to the forward proton beam optics. The second study leads to the cross section measurement of the diffractive scattering of quasi-real photons off protons, γp → γY, with the large momentum transfer, vertical stroke t vertical stroke. The final state photon is separated from the proton dissociation system, Y, by a large rapidity gap and has a large transverse momentum, p T > 2 GeV. Large p T imply the presence of the hard scale t (vertical stroke t vertical stroke ≅ p 2 T ) and allows predictions of the perturbative QCD to be applied. The measurement is based on an integrated luminosity 46.2 pb -1 of data collected in the 1999-2000 running period. Cross sections σ(W) as a function of the incident photon-proton centre of mass energy, W, and dσ/d vertical stroke t vertical stroke are measured in the range Q 2 2 , 175 2 and y P <0.05. The cross section measurements have been compared to predictions of LLA BFKL calculations. (orig.)

  11. Parity violation in pp collisions at high momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Missimer, J; Wolfenstein, L [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA); Gunion, J [California Univ., Davis (USA)

    1976-08-23

    Estimates are given for the parity-violating asymmetry A(..pi../sup + -/) for the inclusive reaction p+p..--> pi../sup + -/+X at high momentum transfer, psub(T), using longitudinally polarized protons. The most reliable estimate is derived from a weak amplitude calculated by inserting a weak interaction in place of a hard scattering in the constituent interchange model of high psub(T) events. For values of psub(T) as large as 8 GeV/c, asymmetries A(..pi..) are expected to be of the order 10/sup -4/ or less.

  12. Low-momentum-transfer nonrelativistic limit of the relativistic impulse approximation expression for Compton-scattering doubly differential cross sections and characterization of their relativistic contributions

    International Nuclear Information System (INIS)

    LaJohn, L. A.

    2010-01-01

    The nonrelativistic (nr) impulse approximation (NRIA) expression for Compton-scattering doubly differential cross sections (DDCS) for inelastic photon scattering is recovered from the corresponding relativistic expression (RIA) of Ribberfors [Phys. Rev. B 12, 2067 (1975)] in the limit of low momentum transfer (q→0), valid even at relativistic incident photon energies ω 1 >m provided that the average initial momentum of the ejected electron i > is not too high, that is, i > b 1 >m using nr expressions when θ is small. For example, a 1% accuracy can be obtained when ω 1 =1 MeV if θ 1 increases into the MeV range, the maximum θ at which an accurate Compton peak can be obtained from nr expressions approaches closer to zero, because the θ at which the relativistic shift of CP to higher energy is greatest, which starts at 180 deg. when ω 1 min ,ρ rel ) (where p min is the relativistic version of the z component of the momentum of the initial electron and ρ rel is the relativistic charge density) and K(p min ) on p min . This characterization approach was used as a guide for making the nr QED S-matrix expression for the Compton peak kinematically relativistic. Such modified nr expressions can be more readily applied to large systems than the fully relativistic version.

  13. Relativistic one-boson-exchange model and elastic electron-deuteron scattering at high momentum transfer

    International Nuclear Information System (INIS)

    Hummel, E.; Tjon, J.A.

    1989-01-01

    Using the one-boson-exchange model a relativistic covariant analysis is carried out of the elastic electromagnetic form factors of the deuteron including the ρπγ and ωεγ mesonic-exchange-current contributions. The theoretical predictions are compared with the recent experimental data at high momentum transfer

  14. Hadronic wave functions and high momentum transfer interactions in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Huang, T.; Lepage, G.P.

    1983-01-01

    This chapter emphasizes the utility of a Fock state representation of the meson and baryon wave functions as a means not only to parametrize the effects of bound state dynamics in QCD phenomena, but also to interrelate exclusive, inclusive, and higher twist processes. Discusses hadronic wave functions in QCD, measures of hadronic wave functions (form factors of composite systems, form factors of mesons, the meson distribution amplitude); large momentum transfer exclusive processes (two-photon processes); deep inelastic lepton scattering; and the phenomenology of hadronic wave functions (measures of hadron wave functions, constraints on the pion and proton valence wave function, quark jet diffraction excitation, the ''unveiling'' of the hadronic wave function and intrinsic charm). Finds that the testing ground of perturbative QCD where rigorous, definitive tests of the theory can be made can now be extended throughout a large domain of large momentum transfer exclusive and inclusive lepton, photon, and hadron reactions

  15. Studies of diffractive scattering of photons at large momentum transfer and of the VFPS detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Hreus, Tomas

    2008-11-15

    In this thesis, two studies of the diffractive phenomena in the electron proton collisions with the H1 detector at HERA are presented. The rst is the study of the inclusive elastic diffractive events ep {yields} eXp in the regime of high photon virtuality (Q{sup 2}>few GeV{sup 2}), with the scattered proton detected by the Very Forward Proton Spectrometer (VFPS). The VFPS detector, designed to measure diffractive scattered protons with high acceptance, has been installed in 2004 to benefit from the HERA II luminosity increase. The selected event sample of an integrated luminosity of 130.2 pb{sup -1} was collected in years 2006-2007. Data sample distributions are compared to the prediction based on the diffractive parton distribution functions, as extracted from the H1 measurement of the diffractive structure function F{sup D(3)}{sub 2} at HERA I. After the study of the VFPS efficiency, the VFPS acceptance as a function of x{sub P} is estimated and studied in relation to the forward proton beam optics. The second study leads to the cross section measurement of the diffractive scattering of quasi-real photons off protons, {gamma}p {yields} {gamma}Y, with the large momentum transfer, vertical stroke t vertical stroke. The final state photon is separated from the proton dissociation system, Y, by a large rapidity gap and has a large transverse momentum, p{sub T} > 2 GeV. Large p{sub T} imply the presence of the hard scale t (vertical stroke t vertical stroke {approx_equal} p{sup 2}{sub T}) and allows predictions of the perturbative QCD to be applied. The measurement is based on an integrated luminosity 46.2 pb{sup -1} of data collected in the 1999-2000 running period. Cross sections {sigma}(W) as a function of the incident photon-proton centre of mass energy, W, and d{sigma}/d vertical stroke t vertical stroke are measured in the range Q{sup 2}<0.01 GeV{sup 2}, 175

  16. The form of electron-atom excitation amplitudes at high momentum transfers in the Faddeev-Watson approximation

    International Nuclear Information System (INIS)

    Catalan, G.; Roberts, M.J.

    1979-01-01

    A form of the off-shell Coulomb T matrix, which has a well defined on-shell limit, is used in the Faddeev-Watson multiple-scattering expansion for a direct three-body collision process. Using the excitation of atomic hydrogen by electron impact as an example, approximations to the second-order terms, which are valid for high momentum transfers of the incident electron, are derived. It is shown how the resulting asymptotic behaviour of the second-order Faddeev-Watson approximation is related to the high momentum transfer limit of the second Born approximation. The results are generalised to the excitation of more complex atoms. The asymptotic forms of the Faddeev-Watson and Born approximations are compared with other theories and with measurements of differential cross sections and angular correlation parameters for the excitation of H(2p) and He(2 1 P). The results indicate that the Faddeev-Watson approximation converges more rapidly at high momentum transfers than does the Born approximation. (author)

  17. Antineutrino Charged-Current Reactions on Hydrocarbon with Low Momentum Transfer

    Science.gov (United States)

    Gran, R.; Betancourt, M.; Elkins, M.; Rodrigues, P. A.; Akbar, F.; Aliaga, L.; Andrade, D. A.; Bashyal, A.; Bellantoni, L.; Bercellie, A.; Bodek, A.; Bravar, A.; Budd, H.; Vera, G. F. R. Caceres; Cai, T.; Carneiro, M. F.; Coplowe, D.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Gallagher, H.; Ghosh, A.; Haider, H.; Han, J. Y.; Harris, D. A.; Henry, S.; Jena, D.; Kleykamp, J.; Kordosky, M.; Le, T.; Leistico, J. R.; Lovlein, A.; Lu, X.-G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Nguyen, C.; Norrick, A.; Nuruzzaman, Olivier, A.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Ramírez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Ruterbories, D.; Schellman, H.; Salinas, C. J. Solano; Su, H.; Sultana, M.; Falero, S. Sánchez; Valencia, E.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; Minerva Collaboration

    2018-06-01

    We report on multinucleon effects in low momentum transfer (<0.8 GeV /c ) antineutrino interactions on plastic (CH) scintillator. These data are from the 2010-2011 antineutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well described when a screening effect at a low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasielastic, Δ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this antineutrino sample. We present the results as a double-differential cross section to accelerate the investigation of alternate models for antineutrino scattering off nuclei.

  18. Angular momentum effects in electron scattering from atoms

    International Nuclear Information System (INIS)

    Williams, J F; Cvejanovie, D; Samarin, S; Pravica, L; Napier, S; Sergeant, A

    2007-01-01

    This paper concerns angular momentum-dependent phenomena in excited gas-phase atoms using incident photons or electrons in scattering experiments. A brief overview indicates the main capabilities of experimental techniques and the information which can be deduced about atomic structure and dynamics from conservation of momenta with measurement of polarization and detection of the number of emerging electrons, photons and ions. Maximum information may be obtained when the incident particles and the targets are state-selected both before and after scattering. The fundamental scattering amplitudes and their relative phases, and consequently derived quantities such as the parameters describing the electron charge cloud of the atomic target, have enabled significant advances of understanding of collision mechanisms. The angular momentum-dependent scattering probabilities change when, for example, the spin-orbit interaction for the target electrons becomes large compared with the Coulomb electron-electron interactions and also when electron exchange and the relative orientation of the electron spins change. Several examples are discussed to indicate significant principles and recent advances. Major contributions to this field from the technology associated with electron spin production and detection time, as well as time-coincidence detection, are discussed. New results from the authors' laboratory are presented

  19. High-energy, large-momentum-transfer processes: Ladder diagrams in var-phi 3 theory

    International Nuclear Information System (INIS)

    Newton, C.L.J.

    1990-01-01

    Relativistic quantum field theories may help one to understand high-energy, large-momentum-transfer processes, where the center-of-mass energy is much larger than the transverse momentum transfers, which are in turn much larger than the masses of the participating particles. With this possibility in mind, the author studies ladder diagrams in var-phi 3 theory. He shows that in the limit s much-gt |t| much-gt m 2 , the scattering amplitude for the N-rung ladder diagram takes the form s -1 |t| -N+1 times a homogeneous polynomial of degree 2N - 2 and ln s and ln |t|. This polynomial takes different forms depending on the relation of ln |t| to ln s. More precisely, the asymptotic formula for the N-rung ladder diagram has points of non-analytically when ln |t| = γ ln s for γ = 1/2, 1/3, hor-ellipsis, 1/N-2

  20. A Measurement of the neutron electric form factor at very large momentum transfer using polaried electrions scattering from a polarized helium-3 target

    Energy Technology Data Exchange (ETDEWEB)

    Kelleher, Aidan [College of William and Mary, Williamsburg, VA (United States)

    2010-02-01

    Knowledge of the electric and magnetic elastic form factors of the nucleon is essential for an understanding of nucleon structure. Of the form factors, the electric form factor of the neutron has been measured over the smallest range in Q2 and with the lowest precision. Jefferson Lab experiment 02-013 used a novel new polarized 3 He target to nearly double the range of momentum transfer in which the neutron form factor has been studied and to measure it with much higher precision. Polarized electrons were scattered off this target, and both the scattered electron and neutron were detected. Gn E was measured to be 0.0242 ± 0.0020(stat) ± 0.0061(sys) and 0.0247 ± 0.0029(stat) ± 0.0031(sys) at Q2 = 1.7 and 2.5 GeV2 , respectively.

  1. Anti-Neutrino Charged-Current Reactions on Scintillator with Low Momentum Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gran, R.; et al.

    2018-03-25

    We report on multi-nucleon effects in low momentum transfer ($< 0.8$ GeV/c) anti-neutrino interactions on scintillator. These data are from the 2010-11 anti-neutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well-described when a screening effect at low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasi-elastic, $\\Delta$ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this anti-neutrino sample. We present the results as a double-differential cross section to accelerate investigation of alternate models for anti-neutrino scattering off nuclei.

  2. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A

    2013-01-01

    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  3. Hadron-proton elastic scattering at 50, 100, and 200 GeV/c momentum

    International Nuclear Information System (INIS)

    Akerlof, C.W.; Kotthaus, R.; Loveless, R.L.; Meyer, D.I.; Ambats, I.; Meyer, W.T.; Ward, C.E.W.; Eartly, D.P.; Lundy, R.A.; Pruss, S.M.; Yovanovitch, D.D.; Rust, D.R.

    1976-01-01

    Elastic scattering of hadrons on protons has been measured at momenta of 50, 100, and 200 GeV/c. The meson-proton scattering is found to be independent of momentum and meson type for -t > 0.8 (GeV/c) 2 . The momentum dependence of the pp dip at -t = 1.4 (GeV/c) 2 was investigated. Slope parameters are given

  4. The temperature dependence of the momentum distribution of beryllium measured by neutron Compton scattering

    International Nuclear Information System (INIS)

    Fielding, A.L.; Timms, D.; Mayers, J.

    1999-01-01

    A new neutron Compton scattering (NCS) measurement of the temperature dependence of the kinetic energy in polycrystalline beryllium at momentum transfers in the range 27.91 to 104.21 A -1 is presented. The measurements have been made with the Electron Volt Spectrometer (eVS) at the ISIS facility and the measured kinetic energies are shown to be in good agreement with calculations made in the harmonic approximation. Numerical simulations are also presented based on the Sears expansion which predict that final state effects in NCS experiments become less significant at elevated temperatures. (author)

  5. Measurement of π-p→π0n at large momentum transfer

    International Nuclear Information System (INIS)

    Apel, W.D.; Augenstein, K.H.; Krueger, M.; Mueller, H.; Schneider, H.; Sigurdsson, G.; Bertolucci, E.; Mannelli, I.; Pierazzini, G.M.; Quaglia, M.; Scribano, A.; Sergiampetri, F.; Vincelli, M.L.; Donskov, S.V.; Inyakin, A.V.; Kachanov, V.A.; Krasnokutsky, R.N.; Mikhailov, Yu.V.; Prokoshkin, Yu.D.; Shuvalov, R.S.; Toropin, A.N.; Leder, G.

    1977-01-01

    New results on a high statistics measurement of pion-nucleon charge exchange scattering at 40 GeV/c, extending in momentum transfer up to -t = 1.8 (GeV/c) 2 , are reported and compared with an optical impact parameter model, together with previous data for the reaction π - p→etan at the same energy. The imaginary part of the pole trajectory b 0 (s) is determined from the slope of the tangent to the maxima of (-t)sup(1/2) dsigma/dt. The linear increase of Im b 0 (s) with log s, which has been observed at low energies, continues up to 40 GeV/c. (Auth.)

  6. Nuclear response functions at large energy and momentum transfer

    International Nuclear Information System (INIS)

    Bertozzi, W.; Moniz, E.J.; Lourie, R.W.

    1991-01-01

    Quasifree nucleon processes are expected to dominate the nuclear electromagnetic response function for large energy and momentum transfers, i.e., for energy transfers large compared with nuclear single particle energies and momentum transfers large compared with typical nuclear momenta. Despite the evident success of the quasifree picture in providing the basic frame work for discussing and understanding the large energy, large momentum nuclear response, the limits of this picture have also become quite clear. In this article a selected set of inclusive and coincidence data are presented in order to define the limits of the quasifree picture more quantitatively. Specific dynamical mechanisms thought to be important in going beyond the quasifree picture are discussed as well. 75 refs, 37 figs

  7. The momentum transfer cross section and transport coefficients for low energy electrons in mercury

    International Nuclear Information System (INIS)

    McEachran, R P; Elford, M T

    2003-01-01

    The momentum transfer cross section for electrons incident on mercury atoms has been determined from the solution of Dirac-Fock scattering equations which included both static and dynamic multipole polarization potentials as well as full anti-symmetrization to incorporate exchange effects. This cross section is in excellent agreement between 0.2 and 3.0 eV with the cross section derived from the most recent experimental measurements. The discrepancy below 0.2 eV has been investigated using two-term transport theory

  8. On the complex angular momentum theory of scattering

    International Nuclear Information System (INIS)

    Thylwe, K.-E.

    1983-01-01

    A contribution to the theory of complex angular momentum techniques in the field of atomic and molecular collisions is given. A new, flexible representation of the scattering amplitude on the basis of realistic assumptions for the behaviour of the S matrix in the complex angular momentum plane is derived. The representation has the form of a sum of steepest-descent integrals, S-matrix residue terms and a symmetry-type background integral. The flexibility is due to the presence of two integer parameters which may be chosen conveniently so as to make the residue sums sufficiently convergent and to minimise the total number of important terms. (author)

  9. Inclusive electron scattering from nuclei in the quasielastic region at large momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fomin, Nadia [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2008-12-01

    Experiment E02-019, performed in Hall C at the Thomas Jefferson National Accelerator Facility (TJNAF), was a measurement of inclusive electron cross sections for several nuclei (2H,3He, 4He, 9Be,12C, 63Cu, and 197Au) in the quasielastic region at high momentum transfer. In the region of low energy transfer, the cross sections were analyzed in terms of the reduced response, F(y), by examining its y-scaling behavior. The data were also examined in terms of the nuclear structure function νWA 2 and its behavior in x and the Nachtmann variable ξ. The data show approximate scaling of νWA 2 in ξ for all targets at all kinematics, unlike scaling in x, which is confined to the DIS regime. However, y-scaling observations are limited to the kinematic region dominated by the quasielastic response (y <0), where some scaling violations arising from FSIs are observed.

  10. Exclusive processes at high momentum transfer

    CERN Document Server

    Radyushkin, Anatoly; Stoker, Paul

    2002-01-01

    This book focuses on the physics of exclusive processes at high momentum transfer and their description in terms of generalized parton distributions, perturbative QCD, and relativistic quark models. It covers recent developments in the field, both theoretical and experimental.

  11. Oscillations in the hadron scattering amplitude at high energy and small momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, B. [Institut de Physique Nucleaire, 91 - Orsay (France). Div. de Physique Theorique

    1997-12-31

    It is shown that the high precision dN/dt UA4/2 data at {radical}s = 541 GeV are compatible with the presence of Auberson - Kinoshita - Martin (AKM) type of oscillations at very small momentum transfers. These oscillations seem to be periodic in {radical}|t|, the corresponding period being {approx_equal} 2 x 10{sup -2} GeV. The existence of such visible oscillations suggests a general mechanism of saturation of axiomatic bounds. As an illustration the consequences for extracting the parameter {rho} = ReF/ImF from dN/dt data are also discussed. The necessity of specific future experiments in the crucially interesting TeV region of energy - at Tevatron, RHIC and LHC - is underlined. (author) 8 refs.

  12. CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    HAYASHI,H.; UDAGAWA,Y.; GILLET,J.M.; CALIEBE,W.A.; KAO,C.C.

    2001-08-01

    Inelastic x-ray scattering (IXS), complementary to other more established inelastic scattering probes, such as light scattering, electron scattering, and neutron scattering, is becoming an important experimental technique in the study of elementary excitations in condensed matters. Over the past decade, IXS with total energy resolution of few meV has been achieved, and is being used routinely in the study of phonon dispersions in solids and liquids as well as dynamics in disordered and biological systems. In the study of electronic excitations, IXS with total energy resolution on the order of 100 meV to 1 eV is gaining wider applications also. For example, IXS has been used to study collective excitations of valence electrons, single electron excitations of valence electrons, as well as core electron excitations. In comparison with the alternative scattering techniques mentioned above, IXS has several advantages. First, IXS probes the full momentum transfer range of the dielectric response of the sample, whereas light scattering is limited to very small momentum transfers, and electron scattering suffers the effects of multiple scattering at large momentum transfers. Second, since IXS measures the bulk properties of the sample it is not surface sensitive, therefore it does not require special preparation of the sample. The greater flexibility in sample conditions and environments makes IXS an ideal probe in the study of liquids and samples under extreme temperature, pressure, and magnetic field. Third, the tunability of synchrotron radiation sources enables IXS to exploit element specificity and resonant enhancement of scattering cross sections. Fourth, IXS is unique in the study of dynamics of liquids and amorphous solids because it can probe the particular region of energy-momentum transfer phase space, which is inaccessible to inelastic neutron scattering. On the other hand, the main disadvantages of IXS are the small cross sections and the strong absorption of

  13. High-energy proton scattering on nuclei

    CERN Document Server

    Klovning, A; Schlüpmann, K

    1973-01-01

    High-energy proton scattering on Be, C, Cu and Pb targets is studied using a single-arm spectrometer. The projectile momenta were 19 and 24 GeV/c, the square of the four-momentum transfer varied from t=0.1 to t =4.4 GeV/sup 2/. Momentum distributions of scattered protons are recorded in the high-momentum range. An application of multiple- scattering theory yielded agreement of calculation and experimental results to within a +or-30% uncertainty of the former. (15 refs).

  14. Symmetric large momentum transfer for atom interferometry with BECs

    Science.gov (United States)

    Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Rasel, Ernst M.; Quantus Collaboration

    2017-04-01

    We develop and demonstrate a novel scheme for a symmetric large momentum transfer beam splitter for interferometry with Bose-Einstein condensates. Large momentum transfer beam splitters are a key technique to enhance the scaling factor and sensitivity of an atom interferometer and to create largely delocalized superposition states. To realize the beam splitter, double Bragg diffraction is used to create a superposition of two symmetric momentum states. Afterwards both momentum states are loaded into a retro-reflected optical lattice and accelerated by Bloch oscillations on opposite directions, keeping the initial symmetry. The favorable scaling behavior of this symmetric acceleration, allows to transfer more than 1000 ℏk of total differential splitting in a single acceleration sequence of 6 ms duration while we still maintain a fraction of approx. 25% of the initial atom number. As a proof of the coherence of this beam splitter, contrast in a closed Mach-Zehnder atom interferometer has been observed with up to 208 ℏk of momentum separation, which equals a differential wave-packet velocity of approx. 1.1 m/s for 87Rb. The presented work is supported by the CRC 1128 geo-Q and the DLR with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-IV-Fallturm).

  15. The momentum transfer dependence of double excitations of helium

    International Nuclear Information System (INIS)

    Zhu Lin-Fan; Liu Xiao-Jing; Yuan Zhen-Sheng; Xu Ke-Zun

    2005-01-01

    The momentum transfer dependence of fundamental double excitation processes of helium is studied with high resolution and fast electron impact. It elucidates the dynamical correlations, in terms of internal correlation quantum numbers, K, T and A. The Fano profile parameters q, f a , ρ 2 , f and S of doubly excited states 2 (1,0) 2 +1se , 2 (0,1) 2 +1p0 and 2 (1,0) 2 +1De are determined as functions of momentum transfer K 2 . (author)

  16. Elastic π-d scattering at momentum of 552 MeV/c

    International Nuclear Information System (INIS)

    Dakhno, L.G.; Kravtsov, A.V.; Makarov, M.M.; Medvedev, V.I.; Obrant, G.Z.; Poromov, V.I.; Sarantsev, V.V.; Sokolov, G.L.; Sherman, S.G.

    1980-01-01

    The differential cross-section of the elastic π - d-scattering at the momentum of 552 MeV/c has been measured in the range of angles 20-180 deg in the L.s. by a deuterium 35-cm bubble chamber placed in a 14.8 kgf magnetic field. The total cross section of the elastic scattering is 7.9+-0.7 mbn. The results of calculations of the pion elastic scattering by deuteron performed by the Glauber theory are discussed

  17. Momentum and Angular Momentum Transfer in Oblique Impacts: Implications for Asteroid Rotations

    Science.gov (United States)

    Yanagisawa, Masahisa; Hasegawa, Sunao; Shirogane, Nobutoshi

    1996-09-01

    We conducted a series of high velocity oblique impact experiments (0.66-6.7 km/s) using polycarbonate (plastic) projectiles and targets made of mortar, aluminum alloy, and mild steel. We then calculated the efficiencies of momentum transfer for small cratering impacts. They are η = (M‧Vn‧)/(mvn) and ζ = (M‧Vt‧)/(mvt), wheremandvare the mass and velocity of a projectile, andM‧ andV‧ represent those of a postimpact target. Subscripts “n” and “t” denote the components normal and tangential to the target surface at the impact point, respectively. The main findings are: (1) η increases with increasing impact velocity; (2) η is larger for mortar than for ductile metallic targets; (3) ζ for mortar targets seems to increase with the impact velocity in the velocity range less than about 2 km/s and decrease with it in the higher velocity range; (4) ζ for the aluminum alloy targets correlates negatively with incident zenith angle of the projectile. In addition to these findings on the momentum transfer, we show theoretically that “ζL” can be expressed by η and ζ for small cratering impact. Here, ζLis the spin angular momentum that the target acquires at impact divided by the collisional angular momentum due to the projectile. This is an important parameter to study the collisional evolution of asteroid rotation. For a spherical target, ζLis shown to be well approximated by ζ.

  18. Transverse spin and transverse momentum in scattering of plane waves

    OpenAIRE

    Saha, Sudipta; Singh, Ankit K.; Ray, Subir K.; Banerjee, Ayan; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2016-01-01

    We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demon...

  19. Low momentum transfer measurements of pion electroproduction and virtual Compton scattering at the Delta resonance

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, Adam [Temple Univ., Philadelphia, PA (United States)

    2016-12-01

    Non-spherical components of the nucleon wave function are measured through p(e,e'p)π0 experiment at the Δ+(1232) resonance for Q2 = 0.04, 0.09, and 0.13 (GeV=c)2 utilizing the Jefferson National Accelerator Facility (JLab) pulsed beam and Hall A spectrometers. The new data extend the measurements of the Coulomb quadrupole amplitude to the lowest momentum transfer ever reached. The results disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The reported measurements indicate that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements. The Coulomb to magnetic multipole ratio (CMR) and generalized polarizability (GP) of the nucleon are also measured through virtual Compton scattering (VCS) for Q2 = 0.2(GeV=c)2 utilizing the Mainz Microtron (MAMI) continuous beam and A1 spectrometers. This data represents the first low Q2 GP measurement at the Δ+(1232) resonance. The GP measurement explores a region where previous data and theoretical calculations disagree. The CMR measurement will be the first VCS extraction to compare with world data generated through pion electroproduction. The Dispersion Relation (DR) model used for the VCS extraction provides a new theoretical framework for the data signal and backgrounds that is largely independent from the pion electroproduction models. The independence of the DR from the traditional models provides a strong crosscheck on the ability of the models to isolate the data signal.

  20. The nuclear spin response to intermediate energy protons and deuterons at low momentum transfer

    International Nuclear Information System (INIS)

    Baker, F.T.; Djalali, C.; Glashausser, C.; Lenske, H.; Love, W.G.; Tomasi-Gustafsson, E.; Wambach, J.

    1997-01-01

    Measurements of polarization transfer in the inelastic scattering of intermediate energy protons and deuterons have yielded a wealth of data on the spin response of nuclei. This work complements the well-known studies of Gamow-Teller strength in charge-exchange reactions. The emphasis here is on a consistent determination of the S=1, T=0 response, practical only with deuterons, and on the proper separation of S=0 and S=1 strength in proton spectra for appropriate comparison with sum rules. We concentrate on two nuclei, 40 Ca and 12 C, at momentum transfers below about 1 fm -1 and on excitations up to about 50 MeV. The continuum second random phase approximation provides the primary theoretical tool for calculating and interpreting the response in terms of properties of the nucleon-nucleon force inside the nuclear medium. The reaction mechanism is described by the DWIA, applied here to continuum proton scattering almost as rigorously as it is usually applied to low energy excitations. A new DWIA formalism for the description of spin observables in deuteron scattering is used. Comparison of the proton and deuteron data with each other and with RPA/DWIA calculations yields interesting insights into the current state of understanding of collectivity and the nuclear spin response. (orig.)

  1. Momentum transfer in relativistic heavy ion charge-exchange reactions

    Science.gov (United States)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  2. Transverse momentum in double parton scattering. Factorisation, evolution and matching

    Energy Technology Data Exchange (ETDEWEB)

    Buffing, Maarten G.A.; Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kasemets, Tomas [Nikhef, Amsterdam (Netherlands). Theory Group; VU Univ. Amsterdam (Netherlands)

    2017-08-15

    We give a description of double parton scattering with measured transverse momenta in the final state, extending the formalism for factorisation and resummation developed by Collins, Soper and Sterman for the production of colourless particles. After a detailed analysis of their colour structure, we derive and solve evolution equations in rapidity and renormalisation scale for the relevant soft factors and double parton distributions. We show how in the perturbative regime, transverse momentum dependent double parton distributions can be expressed in terms of simpler nonperturbative quantities and compute several of the corresponding perturbative kernels at one-loop accuracy. We then show how the coherent sum of single and double parton scattering can be simplified for perturbatively large transverse momenta, and we discuss to which order resummation can be performed with presently available results. As an auxiliary result, we derive a simple form for the square root factor in the Collins construction of transverse momentum dependent parton distributions.

  3. Transverse momentum in double parton scattering. Factorisation, evolution and matching

    International Nuclear Information System (INIS)

    Buffing, Maarten G.A.; Diehl, Markus; Kasemets, Tomas

    2017-08-01

    We give a description of double parton scattering with measured transverse momenta in the final state, extending the formalism for factorisation and resummation developed by Collins, Soper and Sterman for the production of colourless particles. After a detailed analysis of their colour structure, we derive and solve evolution equations in rapidity and renormalisation scale for the relevant soft factors and double parton distributions. We show how in the perturbative regime, transverse momentum dependent double parton distributions can be expressed in terms of simpler nonperturbative quantities and compute several of the corresponding perturbative kernels at one-loop accuracy. We then show how the coherent sum of single and double parton scattering can be simplified for perturbatively large transverse momenta, and we discuss to which order resummation can be performed with presently available results. As an auxiliary result, we derive a simple form for the square root factor in the Collins construction of transverse momentum dependent parton distributions.

  4. Angular momentum transfer in deep inelastic heavy ion collisions. Part 2

    International Nuclear Information System (INIS)

    Barbosa, V.C.; Soares, P.C.; Oliveira, Edgar C. de; Gomes, Luiz Carlos

    1985-01-01

    The Fokker-Planck equation which describes the angular momentum transfer in deep inelastic heavy ion collisions is solved by a stochastic simulation procedure. The fusion cross section calculation is discussed. The calculations show that the critical orbital angular momentum does not play such a special role as in the deterministic case. The results of all the angular momentum transfer and their fluctuations are calculated and compared with experimental results for the reactions 86 Kr+ 154 Sm at 610 MeV, 165 Ho+ 148 Sm, and 165 Ho+ 176 Yb at 1400 MeV. (Author) [pt

  5. Inelastic scattering. Time of flight

    International Nuclear Information System (INIS)

    Eccleston, R.

    1999-01-01

    It is the scattering function, S(Q,ω), which provides the link between the scattering data and the physical system being studied and is thereby the parameter of interest. The nature of the experiment will dictate the portions of momentum transfer - energy transfer space that is to be probed. The portions of Q-ω space that are accessible and the way it is covered determine the appropriateness of an instrument or technique to a particular experiment. One should also remember that if studying a polycrystalline of disordered material, momentum transfer need only by characterized by modulus Q whereas in studies of single crystals one is operating in four-dimensional Q x -Q y -Q z -ω space. (author)

  6. Temperature and momentum transfer dependence of the dynamics of the α-relaxation in polymer melts. A quasielastic neutron scattering study

    Science.gov (United States)

    Colmenero, J.; Alegría, A.; Arbe, A.; Frick, B.

    1992-12-01

    The dynamics of the α-relaxation in three glass-forming polymeric systems, poly(vinyl methyl ether) (PVME), poly(vinyl chloride) (PVC), and poly(bisphenol A, 2-hydroxypropylether) (PH) has been studied by means of quasielastic neutron scattering and compared with the results obtained from relaxation techniques. The results indicate that the dynamics of the α-relaxation in a wide timescale shows a clear non-Debye behaviour and can be well described by means of the same spectral shape, which is found to be independent of temperature and momentum transfer ( Q). Moreover, the Havriliak-Negami characteristic times deduced from the fitting of the experimental data can also be described using only one Vogel-Fulcher functional form. This implies a self-consistent description of the dynamics of the α-relaxation obtained by very different probes. Besides, we found that the Q-dependence of the characteristic times obtained by QENS is given by a power law, τ(Q) ∝ Q - n ( n > 2), n being dependent on the system, and that the Q-behaviour and the non-Debye behaviour are directly correlated. These results have main implications about the physical mechanisms behind the dynamics of the α-relaxation.

  7. Transverse momentum of gluons in ep-scattering at HERA

    International Nuclear Information System (INIS)

    Cholewa, A.

    2005-11-01

    A Monte Carlo analysis of the phase space of hard interacting gluons in ep-scattering is presented. The event generator CASCADE is used in combination with the program HZTOOL to identify the accessible regions of phase space of present HERA measurements. A map of the k t -x g -plane is presented to show that in the region -3≤log g ≤-1 transverse gluon momenta of up to k t >or sim 20 GeV are accessible to HERA measurements. Furthermore the observables x γ and the transverse jet energy E T are found to be highly sensitive to the transverse momentum and the longitudinal momentum fraction of gluons. (orig.) (orig.)

  8. Transverse momentum at work in high-energy scattering experiments

    Science.gov (United States)

    Signori, Andrea

    2017-01-01

    I will review some aspects of the definition and the phenomenology of Transverse-Momentum-Dependent distributions (TMDs) which are potentially interesting for the physics program at several current and future experimental facilities. First of all, I will review the definition of quark, gluon and Wilson loop TMDs based on gauge invariant hadronic matrix elements. Looking at the phenomenology of quarks, I will address the flavor dependence of the intrinsic transverse momentum in unpolarized TMDs, focusing on its extraction from Semi-Inclusive Deep-Inelastic Scattering. I will also present an estimate of its impact on the transverse momentum spectrum of W and Z bosons produced in unpolarized hadronic collisions and on the determination of the W boson mass. Moreover, the combined effect of the flavor dependence and the evolution of TMDs with the energy scale will be discussed for electron-positron annihilation. Concerning gluons, I will present from an effective theory point of view the TMD factorization theorem for the transverse momentum spectrum of pseudoscalar quarkonium produced in hadronic collisions. Relying on this, I will discuss the possibility of extracting precise information on (un)polarized gluon TMDs at a future Fixed Target Experiment at the LHC (AFTER@LHC).

  9. A complex angular momentum theory of modified Coulomb scattering

    International Nuclear Information System (INIS)

    Thylwe, K.E.; Connor, J.N.L.

    1985-01-01

    The paper develops an exact complex angular momentum (CAM) theory of elastic scattering for a complex optical potential with a Coulombic tail. The present CAM theory avoids complications due to the long range nature of the Coulombic potential in a straightforward way. The Sommerfeld-Watson transformation together with a travelling wave (near-side far-side) decomposition, is used to obtain an exact representation for the scattering amplitude f(theta) in terms of a background integral fsub(B)(theta) and a series of subamplitudes fsup((+-))sub(n)(theta). New exact representations are derived for fsub(B)(theta) when the scattering matrix element S(lambda) possesses local symmetries of the type S(-lambda)=S(lambda)exp(+-2iπlambda) and S(-lambda)=S(lambda). The exact results obtained in this paper unify the CAM theory of scattering for Coulombic and short range potentials and are especially suitable for the introduction of semiclassical approximations. (author)

  10. From neutron Compton profiles to momentum distribution: Assessment of direct numerical determination

    International Nuclear Information System (INIS)

    Senesi, R.; Flammini, D.; Romanelli, G.; Andreani, C.

    2013-01-01

    Inelastic neutron scattering at high momentum transfers, in the neutron Compton scattering regime, provides an access to the neutron Compton profiles, the analogous of Compton profiles in X-ray scattering. The line shape analysis of the neutron Compton profiles is usually carried out making use of multiparametric nonlinear fitting, garnering detailed information about the momentum distribution of the target atoms. This paper presents the proposal to directly determine numerically the momentum distribution from the profiles, thus eliminating the possible instabilities present in multiparametric fitting. A comparison with Monte Carlo simulations and with previous measurements on polycrystalline ice provides quantitative assessments of the proposed method

  11. Gravitational coupling to two-particle bound states and momentum conservation in deep inelastic scattering

    International Nuclear Information System (INIS)

    Batiz, Zoltan; Gross, Franz

    2000-01-01

    The momentum conservation sum rule for deep inelastic scattering (DIS) from composite particles is investigated using the general theory of relativity. For two (1+1)-dimensional examples, it is shown that covariant theories automatically satisy the DIS momentum conservation sum rule provided the bound state is covariantly normalized. Therefore, in these cases the two DIS sum rules for baryon conservation and momentum conservation are equivalent. (c) 2000 The American Physical Society

  12. Large discrepancies observed in theoretical studies of ion-impact ionization of the atomic targets at large momentum transfer

    Science.gov (United States)

    Ghorbani, Omid; Ghanbari-Adivi, Ebrahim

    2017-12-01

    A full quantum mechanical version of the three-body distorted wave-eikonal initial state (3DW-EIS) theory is developed to study of the single ionization of the atomic targets by ion impact at different momentum transfers. The calculations are performed both with and without including the internuclear interaction in the transition amplitude. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s2 ) and 24 \\text{Mev} \\text{O}8+\\text{-Li}~(2s ) collisions, the emission of the active electron into the scattering plane is considered and the fully differential cross-sections (FDCSs) are calculated for a fixed value of the ejected electron energy and a variety of momentum transfers. For both the specified collision systems, the obtained results are compared with the experimental data and with the cross-sections obtained using the semi-classical continuum distorted wave-eikonal initial state (CDW-EIS) approach. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s^2) , we also compared the results with those of a four-body three-Coulomb-wave (3CW) model. In general, we find some large discrepancies between the results obtained by different theories. These discrepancies are much more significant at larger momentum transfers. Also, for some ranges of the electron emission angles the results are much more sensitive to the internuclear interaction to be either turned on or off.

  13. Nuclear scattering studies by the scattering of medium-energy electrons. Progress report, January 1, 1977--October 31, 1977

    International Nuclear Information System (INIS)

    Peterson, G.A.

    1977-10-01

    Tune-up experiments were carried out at the Bates Linear Accelerator of Middleton, Massachusetts, on the 180 0 electron scattering apparatus designed and constructed by the University of Massachusetts under contract E(11-1)-2545. This apparatus serves as adjunct equipment to the Bates dispersion-matching spectrometer. Form factors were measured for the low-lying states of 27 Al over the momentum transfer range from 0.7 to 2.6 fm -1 . A paper was published in the Physical Review on low-momentum transfer elastic electron scattering from 3 He. The 3 He rms radius was determined to be 1.89 +- 0.05 fm from measurements made at the National Bureau of Standards over the momentum transfer range-squared between 0.032 and 0.34 fm -2 . A Physical Review paper was published in November, 1977, on the results of elastic electron scattering from 25 Mg over the momentum transfer range from 0.19 to 2.56 fm -1 at both forward and backward angles. Values of all of the ground-state multipole moments of both Coulomb and magnetic character were obtained. A paper was submitted for publication on the electroexcitation of giant dipole and quadrupole resonances in 20 Ne. Electric dipole and quadrupole strength was found throughout the region from 12.5 through 25 MeV. About 65% and 100% of the energy-weighted dipole and quadrupole sum rules, respectively, were exhausted. A preliminary run was made on 42 Ca and 44 Ca at the National Bureau of Standards for an incident electron energy of 54.3 MeV and a 145 0 scattering angle in an attempt to observe f/sub 7 / 2 / to f/sub 5 / 2 / magnetic dipole transitions. A paper was composed on the 160 0 inelastic scattering of electrons from 58 Ni at momentum transfers near 2 fm -1 . Strong M8 transitions were observed which are characterized by predominantly one particle--one hole excitations characterized by the configuration

  14. About the damping of quark-hadron form factors in relative quark momentum

    International Nuclear Information System (INIS)

    Lewin, K.; Kallies, W.

    1979-01-01

    A problem of sufficient damping of hadron bound states at nonasymptotic relative quark momenta is discussed. This phenomenon is considered in the connection with the power scaling beginning at momentum transfer | t | >= 2-3 GeV 2 . Damping of hadron bound states is obtained on the basis of a behaviour of four-quark Green's functions in the momentum transfer which is required by diffraction scattering

  15. Momentum transfer to rotating magnetized plasma from gun plasma injection

    International Nuclear Information System (INIS)

    Shamim, Imran; Hassam, A. B.; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.

    2006-01-01

    Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 8, 2057 (2001)] using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. [F. D. Witherspoon et al., Bull. Am. Phys. Soc. 50, LP1 87 (2005)]. The plasma gun would be located in the axial midplane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of the order of the initial momentum of the target plasma. Several numerical firings are done into the cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that up to 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented

  16. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Khan, F.; Townsend, L.W.

    1993-12-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies

  17. Virtual compton scattering off protons at moderately large momentum transfer

    International Nuclear Information System (INIS)

    Kroll, P.; Schuermann, M.; Guichon, P.A.M.

    1995-01-01

    The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction of photons and the Bethe-Heitler contamination are discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (authors). 35 refs., 8 figs., 1 tab

  18. Virtual compton scattering off protons at moderately large momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, P; Schuermann, M [Wuppertal Univ. (Gesamthochschule) (Germany); Guichon, P A.M. [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee

    1995-06-28

    The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction of photons and the Bethe-Heitler contamination are discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (authors). 35 refs., 8 figs., 1 tab.

  19. Virtual Compton scattering off protons at moderately large momentum transfer

    International Nuclear Information System (INIS)

    Kroll, P.

    1996-01-01

    The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction off protons and the Bethe-Heitler contamination are photon discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (orig.)

  20. High-energy, large-momentum-transfer processes: Ladder diagrams in φ3 theory. Pt. 2

    International Nuclear Information System (INIS)

    Osland, P.; Wu, T.T.; Harvard Univ., Cambridge, MA

    1987-01-01

    The scattering amplitude for the four-rung ladder diagram in φ 3 theory is evaluated at high energies and for large momentum transfers. The result takes the form of s -1 vertical stroketvertical stroke -3 multiplied by a homogeneous sixth-order polynomial in ln s and 1nvertical stroketvertical stroke. The novel and unexpected feature is that this polynomial is different depending on whether 1n vertical stroketvertical stroke is larger or less than 1/2 1n s. Thus the asymptotic formula is not analytic at 1n vertical stroketvertical stroke=1/2 1n s, although the first five derivatives are continuous. (orig.)

  1. High resolution inelastic electron scattering on 90Zr at low momentum transfer and strong fragmentation of the magnetic quadrupole strength

    International Nuclear Information System (INIS)

    Meuer, D.; Frey, R.; Hoffmann, D.H.H.; Richter, A.; Spamer, E.; Titze, O.; Knuepfer, W.

    1980-01-01

    High-resolution (FWHM approx. 30 keV) inelastic electron scattering on 90 Zr at low momentum transfer (0.20 -1 ) has been used to study magnetic transitions at excitation energies Esub(x) = 8-10 MeV. The experimental data were analyzed in the distorted-wave Born approximation (DWBA) with wave functions calculated in the random phase approximation (RPA). Three Jsup(π) = 1 + states have been identified Esub(x) = 8.233, 9.000 and 9.371 MeV. There is some indication of further very fragmented dipole strength and the upper limit for the total M1 strength in the investigated energy region is ΣB(M1)up 2 sub(K). It is much smaller than any theoretical prediction. Furthermore, a large number of 2 - states has been observed, with the center of gravity located at Esub(x) approx. 9 MeV. These states carry a total strength of ΣB(M2)up = 1000 μ 2 sub(K) x fm 2 . Their strong fragmentation is in qualitative agreement with theoretical calculations, but the deduced strength is much smaller than theoretically predicted. In addition the distributions of spacings and radiative widths of the 2 - states are consistent with a Wigner and a Porter-Thomas distribution, respectively. (orig.)

  2. Magnetic electron scattering

    International Nuclear Information System (INIS)

    Peterson, G.A.

    1989-01-01

    We briefly review some of the motivations, early results, and techniques of magnetic elastic and inelastic electron-nucleus scattering. We then discuss recent results, especially those acquired at high momentum transfers. 50 refs., 19 figs

  3. Neutral pion electroproduction and virtual Compton scattering on proton with four-momentum transfer squared Q2 = 1 GeV2. Measurement of cross-sections and of generalized polarizabilities

    International Nuclear Information System (INIS)

    Laveissiere, G.

    2001-11-01

    In hadronic physics, the nucleon structure and the quarks confinement are still topical issues. The neutral pion electroproduction and virtual Compton scattering (VCS) reactions allow us to access new observables that describe this structure. This work is focussed on the VCS experiment performed at Jefferson Lab in 1998. The 4 GeV electron beam is scattered off a cryogenic hydrogen target, and the scattered electron and recoiled proton are detected in coincidence in the twin hall A spectrometers. The photon (pion) is reconstructed using a missing particle technique. The data analysis allowed to extract the cross sections relative to both process at four-momentum transfer squared Q 2 = 1 GeV 2 . The VCS cross section has been extracted for the first time in the proton resonance region (W between 1.O and 2.0 GeV) through the photon electroproduction reaction. Around the pion-production threshold up to the Delta(1232) resonance region, these results lead to the measurement of the generalized polarizabilities, that describe the proton structure in the same way as the elastic form factors. Moreover, the neutral pion electroproduction cross section measurement in the resonance region has brought new constraints on the existing phenomenological models. (author)

  4. A model of diffraction scattering with unitary corrections

    International Nuclear Information System (INIS)

    Etim, E.; Malecki, A.; Satta, L.

    1989-01-01

    The inability of the multiple scattering model of Glauber and similar geometrical picture models to fit data at Collider energies, to fit low energy data at large momentum transfers and to explain the absence of multiple diffraction dips in the data is noted. It is argued and shown that a unitary correction to the multiple scattering amplitude gives rise to a better model and allows to fit all available data on nucleon-nucleon and nucleus-nucleus collisions at all energies and all momentum transfers. There are no multiple diffraction dips

  5. Interpreting angular momentum transfer between electromagnetic multipoles using vector spherical harmonics.

    Science.gov (United States)

    Grinter, Roger; Jones, Garth A

    2018-02-01

    The transfer of angular momentum between a quadrupole emitter and a dipole acceptor is investigated theoretically. Vector spherical harmonics are used to describe the angular part of the field of the mediating photon. Analytical results are presented for predicting angular momentum transfer between the emitter and absorber within a quantum electrodynamical framework. We interpret the allowability of such a process, which appears to violate conservation of angular momentum, in terms of the breakdown of the isotropy of space at the point of photon absorption (detection). That is, collapse of the wavefunction results in loss of all angular momentum information. This is consistent with Noether's Theorem and demystifies some common misconceptions about the nature of the photon. The results have implications for interpreting the detection of photons from multipole sources and offers insight into limits on information that can be extracted from quantum measurements in photonic systems.

  6. Neutron scattering investigation of magnetic excitations at high energy transfers

    International Nuclear Information System (INIS)

    Loong, C.K.

    1984-01-01

    With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures

  7. Measurement of the proton form factor ratio at low momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Moshe [Hebrew Univ. of Jerusalem (Israel)

    2016-08-01

    Experiment E08-007-II measured the proton elastic form factor ratio μGE=GM in the momentum transfer range of Q2 ~ 0.02 - 0.08 GeV2, the lowest ever measured by polarization transfer techniques. The experiment was performed at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia, USA during 2012. A polarized electron beam with energies of 1.1, 1.7, and 2.2 GeV was elastically scattered off a polarized solid NH3 target. The asymmetries between the cross section of positive and negative helicity states of the beam were determined. These asymmetries can be used to determine the form factor ratio. In this thesis, we present the asymmetry analysis of the experiment, discuss the main challenges and show preliminary results for part of the data. Preliminary asymmetries indicate an increase in the form factor ratio above unity. However, a complete analysis is required before any conclusion can be made. Further analysis is ongoing, and final asymmetry results and form factor extraction is expected during 2017. We also present first results for 14N asymmetries for elastic and quasi-elastic scattering. The measured asymmetries are in agreement with the shell model approximation, within the low accuracy of the measurement. A change in the asymmetry sign between the elastic and the quasi-elastic processes is seen, and should motivate further theoretical studies. These experimental asymmetries will also be useful for systematic studies of other experiments using polarized NH3 targets.

  8. Quasielastic 3Hp scattering at 2.5 GeV/c triton momentum

    International Nuclear Information System (INIS)

    Blinov, A.V.; Chuvilo, I.V.; Ergakov, V.A.

    1982-01-01

    The differential cross sections of the quasielastic 3 Hp-scattering at a 2.5 GeV/c tritium momentum (Tsub(p)=318 MeV) have been measured using the ITEP 80 cm hydrogen buble chamber. The experimental results are compared with the predictions of the Glauber-Sitenke multiple scattering theory combined with the the completeness condition for the excited nucleus wave functions. The validity of the Glauber sum rule for the differential cross sections is investigated

  9. Nuclear Effects in Neutrino Interactions at Low Momentum Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, Ethan Ryan [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-05-01

    This is a study to identify predicted effects of the carbon nucleus environment on neutrino - nucleus interactions with low momentum transfer. A large sample of neutrino interaction data collected by the MINERvA experiment is analyzed to show the distribution of charged hadron energy in a region with low momentum transfer. These distributions reveal a major discrepancy between the data and a popular interaction model with only the simplest Fermi gas nuclear effects. Detailed analysis of systematic uncertainties due to energy scale and resolution can account for only a little of the discrepancy. Two additional nuclear model effects, a suppression/screening effect (RPA), and the addition of a meson exchange current process (MEC), are shown to improve the description of the data.

  10. Development of model for studies on momentum transfer in electrochemical cells with entry region coil as turbulence promoter

    Science.gov (United States)

    Penta Rao, Tamarba; Rajendra Prasad, P.

    2018-04-01

    Entry region swirl promoters gain importance in industry because of its effectiveness in augmentation of mass and heat transfer augmentation. Design of equipment needs momentum transfer data along with mass or heat transfer data. Hence an experimental investigation was carried out with coaxially placed entry region spiral coil as turbulence promoters on momentum transfer in forced convection flow of electrolyte in circular conduits. Aqueous solution of sodium hydroxide and 0.01 M equimolal Ferri-ferro cyanide system was chosen for the study. The study covered parameters like effect of pitch of the coil, effect of length of the coil, diameter of the coil, diameter of the coil wire, diameter of the annular rod. The promoter is measured by limiting current technique using diffusion controlled electrochemical reactions. The study comprises of evaluation of momentum transfer rates at the outer wall of the electrochemical cell. Pressure drop measurements were also made to obtain the energy consumption pattern. Within the range of variables covered. The results are correlated by the momentum transfer similarity function. Momentum transfer coefficients were evaluated from measured limiting currents. Effect of each parameter was studied in terms of friction factor. A model was developed for momentum transfer. The experimental data on momentum transfer was modeled in terms of momentum transfer function and Reynolds number, geometric parameters.

  11. anti pp elastic scattering at 30 GeV/c incident momentum in the momentum transfer range 0.52

    International Nuclear Information System (INIS)

    Asa'd, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M.; Baglin, A.; Guillard, J.P.; Poulet, M.; Brom, J.M.; Myrheim, J.; Kenyon Gjerpe, I.; Buran, T.; Buzzo, A.; Ferroni, S.; Gracco, V.; Khan, E.; Kirsebom, K.; Macri, M.; Rossi, L.; Santroni, A.; Skjevling, G.; Sorensen, S.O.

    1983-01-01

    The anti pp elastic differential cross section at 30 GeV/c incident momentum has been measured in a two-arm spectrometer experiment (WA7) at the CERN SPS. The vertical stroketvertical stroke-range covered extends from 0.5 to 5.8 (GeV/c) 2 . A pronounced dip-bump structure is observed, with a sharp minimum around vertical stroketvertical strokeapprox.=1.7 (GeV/c) 2 . The results are compared with existing anti pp data at lower energies and with our earlier anti pp data at 50 GeV/c. A number of model predictions are discussed. We also compare the anti pp 30 GeV/c differential cross section with that of pp at the same momentum. Finally, the energy dependence of the anti pp fixed-vertical stroketvertical stroke differential cross section in the incident momentum range 3.6 to 50 GeV/c is presented. (orig.)

  12. Transverse momentum distributions and nuclear effects

    Directory of Open Access Journals (Sweden)

    Pace Emanuele

    2015-01-01

    Full Text Available A distorted spin-dependent spectral function for 3He is considered to take care of the final state interaction in the extraction of the quark transverse-momentum distributions in the neutron from semi-inclusive deep inelastic electron scattering off polarized 3He at finite momentum transfers. The generalization of the analysis in a Poincaré covariant framework within the light-front dynamics is outlined. The definition of the light-front spin-dependent spectral function for a J=1/2 system, as the nucleon, allows us to show that within the light-front dynamics and in the valence approximation only three of the six leading twist T-even transverse-momentum distributions are independent.

  13. Atomic scattering in the diffraction limit: electron transfer in keV Li+-Na(3s, 3p) collisions

    International Nuclear Information System (INIS)

    Poel, M van der; Nielsen, C V; Rybaltover, M; Nielsen, S E; Machholm, M; Andersen, N

    2002-01-01

    We measure angle differential cross sections (DCS) in Li + + Na → Li + Na + electron transfer collisions in the 2.7-24 keV energy range. We do this with a newly constructed apparatus which combines the experimental technique of cold target recoil ion momentum spectroscopy with a laser-cooled target. This setup yields a momentum resolution of 0.12 au, an order of magnitude better angular resolution than previous measurements on this system. This enables us to clearly resolve Fraunhofer-type diffraction patterns in the angle DCS. In particular, the angular width of the ring structure is given by the ratio of the de Broglie wavelength λ dB = 150 fm at a velocity v = 0.20 au and the effective atomic diameter for electron capture 2R = 20 au. Parallel AO and MO semiclassical coupled-channel calculations of the Na(3s, 3p) → Li(2s, 2p) state-to-state collision amplitudes have been performed, and quantum scattering amplitudes are derived by the eikonal method. The resulting angle-differential electron transfer cross sections and their diffraction patterns agree with the experimental level-to-level results over most scattering angles in the energy range

  14. Contribution of limb momentum to power transfer in athletic wheelchair pushing.

    Science.gov (United States)

    Masson, G; Bégin, M-A; Lopez Poncelas, M; Pelletier, S-K; Lessard, J-L; Laroche, J; Berrigan, F; Langelier, E; Smeesters, C; Rancourt, D

    2016-09-06

    Pushing capacity is a key parameter in athletic racing wheelchair performance. This study estimated the potential contribution of upper limb momentum to pushing. The question is relevant since it may affect the training strategy adopted by an athlete. A muscle-free Lagrangian dynamic model of the upper limb segments was developed and theoretical predictions of power transfer to the wheelchair were computed during the push phase. Results show that limb momentum capacity for pushing can be in the order of 40J per push cycle at 10m/s, but it varies with the specific pushing range chosen by the athlete. Although use of momentum could certainly help an athlete improve performance, quantifying the actual contribution of limb momentum to pushing is not trivial. A preliminary experimental investigation on an ergometer, along with a simplified model of the upper limb, suggests that momentum is not the sole contributor to power transfer to a wheelchair. Muscles substantially contribute to pushing, even at high speeds. Moreover, an optimal pushing range is challenging to find since it most likely differs if an athlete chooses a limb momentum pushing strategy versus a muscular exertion pushing strategy, or both at the same time. The study emphasizes the importance of controlling pushing range, although one should optimize it while also taking the dynamics of the recovery period into account. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Two-photon exchange corrections in elastic lepton-proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz (Germany)

    2015-07-01

    The measured value of the proton charge radius from the Lamb shift of energy levels in muonic hydrogen is in strong contradiction, by 7-8 standard deviations, with the value obtained from electronic hydrogen spectroscopy and the value extracted from unpolarized electron-proton scattering data. The dominant unaccounted higher order contribution in scattering experiments corresponds to the two photon exchange (TPE) diagram. The elastic contribution to the TPE correction was studied with the fixed momentum transfer dispersion relations and compared to the hadronic model with off-shell photon-nucleon vertices. A dispersion relation formalism with one subtraction was proposed. Theoretical predictions of the TPE elastic contribution to the unpolarized elastic electron-proton scattering and polarization transfer observables in the low momentum transfer region were made. The TPE formalism was generalized to the case of massive leptons and the elastic contribution was evaluated for the kinematics of upcoming muon-proton scattering experiment (MUSE).

  16. Momentum transfer dependence of generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Neetika [Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab (India)

    2016-11-15

    We revisit the model for parametrization of the momentum dependence of nucleon generalized parton distributions in the light of recent MRST measurements of parton distribution functions (A.D. Martin et al., Eur. Phys. J. C 63, 189 (2009)). Our parametrization method with a minimum set of free parameters give a sufficiently good description of data for Dirac and Pauli electromagnetic form factors of proton and neutron at small and intermediate values of momentum transfer. We also calculate the GPDs for up- and down-quarks by decomposing the electromagnetic form factors for the nucleon using the charge and isospin symmetry and also study the evolution of GPDs to a higher scale. We further investigate the transverse charge densities for both the unpolarized and transversely polarized nucleon and compare our results with Kelly's distribution. (orig.)

  17. SU(6)-strong breaking: structure functions and small momentum transfer properties of the nucleon

    International Nuclear Information System (INIS)

    Le Yaouanc, A.; Oliver, L.; Pene, O.; Raynal, J.C.

    1975-01-01

    A new approach in the study of the SU(6) symmetry breaking (in particular in deep inelastic electron-nucleon scattering) is presented. It is shown that there is a connection between deep inelastic and low momentum transfer or static properties of the nucleon, which extends much beyond the common SU(6) 56-assignments of the nucleon in both cases. This connection is provided by the realistic quark model (in which quarks are considered as real entities moving inside the hadron). Using this connection it is shown that the breaking of the prediction Fsub(2)sup(en)/Fsub(2)sup(ep)=2/3 is not truly related to chiral configuration mixings. An alternative solution, based on a true modification of the 56-assignment of the nucleon to a (56,L=0)+(70,L=0) mixing (called SU(6) strong mixing) is proposed. It is shown that the 'good' predictions of SU(6) are not much changed by this mixing. A complete description of the deep inelastic scattering including gluons and pairs is presented

  18. A momentum-space formulation without partial wave decomposition for scattering of two spin-half particles

    Energy Technology Data Exchange (ETDEWEB)

    Fachruddin, Imam, E-mail: imam.fachruddin@sci.ui.ac.id; Salam, Agus [Departemen Fisika, Universitas Indonesia, Depok 16424 (Indonesia)

    2016-03-11

    A new momentum-space formulation for scattering of two spin-half particles, both either identical or unidentical, is formulated. As basis states the free linear-momentum states are not expanded into the angular-momentum states, the system’s spin states are described by the product of the spin states of the two particles, and the system’s isospin states by the total isospin states of the two particles. We evaluate the Lippmann-Schwinger equations for the T-matrix elements in these basis states. The azimuthal behavior of the potential and of the T-matrix elements leads to a set of coupled integral equations for the T-matrix elements in two variables only, which are the magnitude of the relative momentum and the scattering angle. Some symmetry relations for the potential and the T-matrix elements reduce the number of the integral equations to be solved. A set of six spin operators to express any interaction of two spin-half particles is introduced. We show the spin-averaged differential cross section as being calculated in terms of the solution of the set of the integral equations.

  19. Neutron scattering from a substitutional mass defect

    International Nuclear Information System (INIS)

    Williams, R.D.; Lovesey, S.W.

    1985-06-01

    The dynamic structure factor is calculated for a low concentration of light mass scatterers substituted in a cubic crystal matrix. A new numerical method for the exact calculation is demonstrated. A local density of states for the low momentum transfer limit, and the shifts and widths of the oscillator peaks in the high momentum transfer limit are derived. The limitations of an approximation which decouples the defect from the lattice is discussed. (author)

  20. Shadowing effect in inelastic electron scattering on 12C and 27Al nuclei at small four momentum transfer

    International Nuclear Information System (INIS)

    Hartwig, S.; Heimlich, F.H.; Huber, G.; Roessle, E.; Koebberling, M.; Moritz, J.; Schmidt, K.H.; Wegener, D.; Zeller, D.; Karlsruhe Univ.; Bleckwenn, J.

    1977-08-01

    The cross section for inelastic electron scattering on 12 C and 27 Al nuclei has been measured for energy transfers of the virtual photon 2 . The influence of different sources of the radiative corrections is studied in detail. Shadowing effects, which increase with decreasing values of the scalling variable x, are observed for both nuclei. (orig.) [de

  1. Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2018-04-01

    X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to

  2. Analysis of elastic scattering at low momentum transfer

    International Nuclear Information System (INIS)

    Pumplin, J.

    1991-11-01

    A method for analyzing high energy elastic scattering data is described, which improves on previous methods to extract σ tot , σ el , B, and ρ=ReM(0)/ImM(0) from experiment by properly allowing for the curvature of 1ndσ/dt with t. The method is used to make a critical analysis of data at √s=19.4, 546, and 1800 GeV. It is found that previous analyses systematically underestimate the forward slope B. The large value of ρ obtained by UA4 at √s=546 GeV is shown to be doubtful. The method described here should aid in the analysis of forthcoming data from UA4/2 and E710. (orig.)

  3. Investigation of collective excitations in fluid neon by coherent neutron scattering at small scattering vectors

    International Nuclear Information System (INIS)

    Bell, H.G.

    1976-07-01

    The energy spectra of Ne studied under different temperatures and pressures with the aid of inelastic, coherent neutron scattering can be described by a scattering law derived from the basic hydrodynamic equations. The Brillouin lines found with very small momentum transfer 0.06 A -1 -1 are interpreted as collective, adiabatic pressure fluctuations. (orig./WL) [de

  4. Flavor decomposition of transverse momentum dependent parton distributions

    Directory of Open Access Journals (Sweden)

    Dotto Alessio Del

    2014-06-01

    Full Text Available We present an improved description of the semi-inclusive deep inelastic electron scattering off polarized 3He, providing information on the neutron single spin asymmetries. The analysis at finite momentum transfers in a Poincaré covariant framework is outlined and a quantitative estimate of the nuclear effects is presented.

  5. Absolute determination of the dominant amplitudes of the electroproduction of neutral pions at the momentum transfer of 0,630 GeV2

    International Nuclear Information System (INIS)

    Bantes, B.

    2003-10-01

    A complete Monte Carlo simulation for the neutral pion electroproduction experiment in the kinematics of the Δ(1232) that was carried out at the accelerator facility ELSA has been developed to correct the data concerning effects like detector resolution efficiencies, acceptances and radiation corrections. Results for the leading amplitudes are extracted at the four momentum transfer of 0.630 GeV 2 . Absolute cross sections are extracted using the well known elastic ep scattering to determine the luminosity. (orig.)

  6. Electroexcitation of the Δ+(1232 at low momentum transfer

    Directory of Open Access Journals (Sweden)

    A. Blomberg

    2016-09-01

    Full Text Available We report on new p(e,e′pπ∘ measurements at the Δ+(1232 resonance at the low momentum transfer region, where the mesonic cloud dynamics is predicted to be dominant and rapidly changing, offering a test bed for chiral effective field theory calculations. The new data explore the Q2 dependence of the resonant quadrupole amplitudes and for the first time indicate that the Electric and the Coulomb quadrupole amplitudes converge as Q2→0. The measurements of the Coulomb quadrupole amplitude have been extended to the lowest momentum transfer ever reached, and suggest that more than half of its magnitude is attributed to the mesonic cloud in this region. The new data disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The measurements indicate that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements.

  7. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics

    International Nuclear Information System (INIS)

    Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar

    2017-01-01

    Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre–Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of ~15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles. - Highlights: • Scattering of orbital angular momentum (OAM) laser beam by dielectric

  8. Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles

    Directory of Open Access Journals (Sweden)

    Jaćimovski Darko R.

    2014-01-01

    Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022

  9. Resummation for polarized semi-inclusive deep-inelastic scattering at small transverse momentum

    International Nuclear Information System (INIS)

    Koike, Yuji . E-mail koike@nt.sc.niigata-u.ac.jp; Nagashima, Junji; Vogelsang, Werner

    2006-01-01

    We study the transverse-momentum distribution of hadrons produced in semi-inclusive deep-inelastic scattering (SIDIS). We consider cross sections for various combinations of polarizations of the initial lepton and nucleon or the produced hadron, for which we perform the resummation of large double-logarithmic perturbative corrections arising at small transverse momentum. We present phenomenological results for the processes lp->lπX with longitudinally polarized leptons and protons. We discuss the impact of the perturbative resummation and of estimated non-perturbative contributions on the corresponding cross sections and their spin asymmetry. Our results should be relevant for ongoing studies in the COMPASS experiment at CERN, and for future experiments at the proposed eRHIC collider at BNL

  10. Large transverse momentum behavior of gauge theories

    International Nuclear Information System (INIS)

    Coquereaux, Robert; De Rafael, Eduardo.

    1977-05-01

    The large transverse momentum behavior of Compton scattering and Moeller scattering in Quantum Electrodynamics; and of elastic quark-quark scattering in Quantum Chromodynamics are examined in perturbation theory. The results strongly suggest that the large transverse momentum regime in gauge theories is governed by a differential equation of the Callan-Symanzik type with a suitable momentum dependent anomalous dimension term. An explicit solution for the quark-quark elastic scattering amplitude at large transverse momentum is given

  11. M-momentum transfer between gravitons, membranes, and fivebranes as perturbative gauge theory processes

    International Nuclear Information System (INIS)

    Keski-Vakkuri, E.; Kraus, P.

    1998-01-01

    Polchinski and Pouliot have shown that M-momentum transfer between membranes in supergravity can be understood as a non-perturbative instanton effect in gauge theory. Here we consider a dual process: electric flux transmission between D-branes. We show that this process can be described in perturbation theory as virtual string pair creation, and is closely related to Schwinger's treatment of the pair creation of charged particles in a uniform electric field. Through the application of dualities, our perturbative calculation gives results for various non-perturbative amplitudes, including M-momentum transfer between gravitons, membranes and longitudinal fivebranes. Thus perturbation theory plus dualities are sufficient to demonstrate agreement between supergravity and gauge theory for a number of M-momentum transferring processes. A variety of other processes where branes are transmitted between branes, e.g. (p,q)-string transmission in IIB theory, can also be studied. We discuss the implications of our results for proving the eleven-dimensional Lorentz invariance of matrix theory. (orig.)

  12. A new model for elastic deuteron-deuteron scattering

    International Nuclear Information System (INIS)

    Etim, E.; Satta, L.

    1988-01-01

    Straightforward application of the Glauber multiple scattering theory is drammatically challenged by data on elastic deuteron-deuteron scattering. The challenge has been argued to be met by an improved representation of the ground state wave function of the deuteron as an admixture of S-and D-waves. In the light of the failure of the Glauber and geometrical picture models in general, to explain proton-proton and proton-antiproton scattering data up to and including collider energies and for all momentum transfers, this argument becomes less and less compelling and more and more unconvincing. A model inspired by unitarity and which produces substantial elastic scattering through a unitarity sum over a specific class of intermediate states is presented. The model fits not only deuteron-deuteron, but also proton-proton, proton-antiproton and αN -> αN (N =α, d, He 3 ) data for all energies and momentum transfers. No detailed knowledge of ground state wave functions is required

  13. The Glauber model and heavy ion reaction and elastic scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Mehndiratta, Ajay [Physics Department, Indian Institute of Technology, Guwahati (India); Shukla, Prashant, E-mail: pshukla@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094 (India)

    2017-05-15

    We revisit the Glauber model to study the heavy ion reaction cross sections and elastic scattering angular distributions at low and intermediate energies. The Glauber model takes nucleon–nucleon cross sections and nuclear densities as inputs and has no free parameter and thus can predict the cross sections for unknown systems. The Glauber model works at low energies down to Coulomb barrier with very simple modifications. We present new parametrization of measured total cross sections as well as ratio of real to imaginary parts of the scattering amplitudes for pp and np collisions as a function of nucleon kinetic energy. The nuclear (charge) densities obtained by electron scattering form factors measured in large momentum transfer range are used in the calculations. The heavy ion reaction cross sections are calculated for light and heavy systems and are compared with available data measured over large energy range. The model gives excellent description of the data. The elastic scattering angular distributions are calculated for various systems at different energies. The model gives good description of the data at small momentum transfer but the calculations deviate from the data at large momentum transfer.

  14. Extraction of partonic transverse momentum distributions from semi-inclusive deep inelastic scattering and Drell-Yan data

    Energy Technology Data Exchange (ETDEWEB)

    Pisano, Cristian [Dipartimento di Fisica, Universita di Pavia; INFN, Sezione di Pavia Via Bassi 6, I-27100 Pavia, Italy; Bacchetta, Alessandro [Dipartimento di Fisica, Universita di Pavia; INFN, Sezione di Pavia Via Bassi 6, I-27100 Pavia, Italy; Delcarro, Filippo [Dipartimento di Fisica, Universita di Pavia; INFN, Sezione di Pavia Via Bassi 6, I-27100 Pavia, Italy; Radici, Marco [INFN, Sezione di Pavia Via Bassi 6, I-27100 Pavia, Italy; Signori, Andrea [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-04-01

    We present a first attempt at a global fit of unpolarized quark transverse momentum dependent distribution and fragmentation functions from available data on semi-inclusive deep-inelastic scattering, Drell-Yan and $Z$ boson production processes. This analysis is performed in the low transverse momentum region, at leading order in perturbative QCD and with the inclusion of energy scale evolution effects at the next-to-leading logarithmic accuracy.

  15. Impact parameter dynamics in quantum theory in large angle scattering

    International Nuclear Information System (INIS)

    Andriyanov, A.A.

    1975-01-01

    High energy behaviour of a free particle Green's function is studied for construction of the scattering amplitude. The main part of the Green's function is determined by eikonal scattering along the mean moment and by the total scattering along the transfered momentum. This ''impact'' approximation may be included as a first approximation in the iteration scheme for the scattering amplitude along the mean momentum, i.e. the ''impact'' perturbation theory. With the help of the ''impact'' approximation an expansion of the scattering amplitude in the impact parameter depending on interaction is obtained. These expansions are more correct than the eikonal expansions at large angle scattering. The results are illustrated grafically foe the exponential and the Yukawa potentials

  16. Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Directory of Open Access Journals (Sweden)

    Sylvia T. Cole

    2017-09-01

    Full Text Available The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations

  17. Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.

    Science.gov (United States)

    Shukla, P K; Eliasson, B; Stenflo, L

    2012-07-01

    We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.

  18. High energy neutron recoil scattering from liquid 4He

    International Nuclear Information System (INIS)

    Holt, R.S.; Needham, L.M.; Paoli, M.P.

    1987-10-01

    The neutron recoil scattering from liquid 4 He at 4.2 K and 1.6 K has been observed for a momentum transfer of 150 A -1 using the Electron Volt Spectrometer on the pulsed neutron source, ISIS. The experiment yielded mean atomic kinetic energy values = 14.8 +- 3 K at 4.2 K and = 14.6 +- 3.2 K at 1.6 K in good agreement with values obtained at lower momentum transfers. (author)

  19. High energy hadron scattering

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  20. Electron scattering studies by means of various nuclear models

    International Nuclear Information System (INIS)

    Essaniyazov, Sh.; Juraev, Sh.; Ismatov, E.I.

    2006-01-01

    Full text: Let us consider a general case of various interaction processes of electrons with nuclei. The study of the scattering o electrons of nuclei is the source of information on the structure of nuclei. At collision of fast electrons with nuclei, both elastic and inelastic scattering can be observed. Elastic scattering gives information on the sizes of nuclei, whereas the electrons inelastic scattering processes give important information on the dynamical properties of nuclei. In the first case, the characteristics of excited states, energy levels, their widths and others, and in the second case, momentum distribution of nucleons and other particles in nuclei are studied. Let us denote the momentum and the energy of the incident electron before and after the scattering as k and ε, and k' and ε', respectively. The angle between the vectors k and k' is denoted as θ. The scattering process is characterized by three parameters: k, k' and θ. However, it is convenient to introduce three other parameters instead of the indicated above. They are: energy ω ε - ε' and momentum q = k - k', transferred by electron at scattering, and the scattering angle θ. It is worth of mentioning the two reasons why the study of electron scattering is very effective tool to study the nuclear structure. First of all, the character of electron interaction with nucleus is a well-known electromagnetic interaction of electron with current and charge in nucleus. Secondly, this interaction is relatively weak (e 2 /ℎc) 2 = ω 2 is possible (since the photon mass is zero). In case of electrons, at fixed energy transfer ω various momentum transfer are possible. Therefore, at electron scattering study one can establish the dependence of the matrix elements of q, which are the Fourier-representations of the charge and current densities. Thus, it is possible to determine directly the spatial distribution of charge and current in nucleus. The inelastic scattering is accompanied by

  1. Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches

    International Nuclear Information System (INIS)

    Eya, I. O.; Urama, J. O.; Chukwude, A. E.

    2017-01-01

    We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir. In addition, the distribution of the fractional moment of inertia (i.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δ ν / ν ), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.

  2. Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches

    Energy Technology Data Exchange (ETDEWEB)

    Eya, I. O.; Urama, J. O.; Chukwude, A. E., E-mail: innocent.eya@unn.edu.ng, E-mail: innocent.eya@gmail.com [Department of Physics and Astronomy, University of Nigeria, Nsukka, Enugu State (Nigeria)

    2017-05-01

    We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir. In addition, the distribution of the fractional moment of inertia (i.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δ ν / ν ), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.

  3. Reduction of momentum transfer rates by parallel electric fields: A two-fluid demonstration

    International Nuclear Information System (INIS)

    Delamere, P.A.; Stenbaek-Nielsen, H.C.; Otto, A.

    2002-01-01

    Momentum transfer between an ionized gas cloud moving relative to an ambient magnetized plasma is a general problem in space plasma physics. Obvious examples include the Io-Jupiter interaction, comets, and coronal mass ejections. Active plasma experiments have demonstrated that momentum transfer rates associated with Alfven wave propagation are poorly understood. Barium injection experiments from the Combined Release and Radiation Effects Satellite (CRRES) have shown that dense ionized clouds are capable of ExB drifting over large distances perpendicular to the magnetic field. The CRRES 'skidding' distances were much larger than predicted by magnetohydrodynamic theory and it has been proposed that parallel electric fields were a key component in the skidding phenomenon. A two-fluid code was used to demonstrate the role of parallel electric fields in reducing momentum transfer between two distinct plasma populations. In this study, a dense plasma was initialized moving relative to an ambient plasma and perpendicular to B. Parallel electric fields were introduced via a friction term in the electron momentum equation and the collision frequency was scaled in proportion to the field-aligned current density. The simulation results showed that parallel electric fields decreased the decelerating magnetic tension force on the plasma cloud through a magnetic diffusion/reconnection process

  4. Diffraction and angular momentum effects in semiclassical atomic scattering theory

    International Nuclear Information System (INIS)

    Russek, A.

    1979-01-01

    The semiclassical scattering theory of Mott and Massey and Ford and Wheeler is here extended to multichannel scattering as occurs at a crossing or pseudocrossing of the transient molecule formed by the colliding atoms. The generalized theory incorporates both interference and diffraction phenomena, but the emphasis in this work is on diffraction. For small-angle scattering, diffraction effects become broader, not narrower, as the collision energy increases: ΔbΔtau > or = h[E/sub inc//(2m)]/sup 1/2/ relates the uncertainties in impact parameter b and reduced scattering angle tau = E/sub inc/theta, and determines the range in b required to resolve a structure in the deflection function of height Δtau. In the kilovolt range of collision energies, the effects of local maxima and minima in the deflection function are washed out, and the Airy-function approximation of Ford and Wheeler is inappropriate to describe the differential cross section. More generally, it is shown that at keV collision energies the stationary-phase approximation, heretofore essential in the reduction to the semiclassical limit, breaks down in the vicinity of a level crossing. An approximate theorem is proposed which remains valid in this region and elsewhere reduces to the standard stationary-phase approximation. Several illustrative examples are considered. A separate development treats the effect on the differential scattering cross section of a change in electronic angular momentum when electronic excitation occurs

  5. Experimental Study on Momentum Transfer of Surface Texture in Taylor-Couette Flow

    Science.gov (United States)

    Xue, Yabo; Yao, Zhenqiang; Cheng, De

    2017-05-01

    The behavior of Taylor-Couette (TC) flow has been extensively studied. However, no suitable torque prediction models exist for high-capacity fluid machinery. The Eckhardt-Grossmann-Lohse (EGL) theory, derived based on the Navier-Stokes equations, is proposed to model torque behavior. This theory suggests that surfaces are the significant energy transfer interfaces between cylinders and annular flow. This study mainly focuses on the effects of surface texture on momentum transfer behavior through global torque measurement. First, a power-law torque behavior model is built to reveal the relationship between dimensionless torque and the Taylor number based on the EGL theory. Second, TC flow apparatus is designed and built based on the CNC machine tool to verify the torque behavior model. Third, four surface texture films are tested to check the effects of surface texture on momentum transfer. A stereo microscope and three-dimensional topography instrument are employed to analyze surface morphology. Global torque behavior is measured by rotating a multi component dynamometer, and the effects of surface texture on the annular flow behavior are observed via images obtained using a high-speed camera. Finally, torque behaviors under four different surface conditions are fitted and compared. The experimental results indicate that surface textures have a remarkable influence on torque behavior, and that the peak roughness of surface texture enhances the momentum transfer by strengthening the fluctuation in the TC flow.

  6. Nuclear matter and electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sick, I [Dept. fuer Physik und Astronomie, Univ. Basel (Switzerland)

    1998-06-01

    We show that inclusive electron scattering at large momentum transfer allows a measurement of short-range properties of nuclear matter. This provides a very valuable constraint in selecting the calculations appropriate for predicting nuclear matter properties at the densities of astrophysical interest. (orig.)

  7. Role of the momentum transfer in the quenching of the Gamow-Teller strength

    Energy Technology Data Exchange (ETDEWEB)

    Marketin, Tomislav [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); Physics Department, Faculty of Science, University of Zagreb (Croatia); Martinez-Pinedo, Gabriel [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); Paar, Nils; Vretenar, Dario [Physics Department, Faculty of Science, University of Zagreb (Croatia)

    2012-07-01

    A fully consistent calculation of the Gamow-Teller strength is presented, based on a microscopic theoretical framework. Nuclear ground state is determined using the relativistic Hartree-Bogolyubov (RHB) model with density dependent meson-nucleon coupling constants, and transition rates are calculated via proton-neutron relativistic quasiparticle RPA using the same interaction as in the RHB equations. The (p,n) probe has a similar spin-isospin operator structure to the Gamow-Teller (GT) operator. However, they become comparable only if the GT cross section is measured at a very small momentum transfer q. At higher momentum transfer the isovector spin monopole (IVSM) mode occurs, with the r{sup 2}{sigma}{tau} transition operator. Unlike the Gamow-Teller operator which excites only the 0{Dirac_h}{omega} transitions, the isovector spin monopole operator can also excite 2{Dirac_h}{omega} transitions and can change the strength distribution at high excitation energies. We explore the strength beyond the resonance, examine the effect of momentum transfer on the total strength and compare the results with recent measurements.

  8. Ab initio calculation of scattering length and cross sections at very low energies for electron-helium scattering

    International Nuclear Information System (INIS)

    Saha, H.P.

    1993-01-01

    The multiconfiguration Hartree-Fock method for continuum wave functions has been used to calculate the scattering length and phase shifts over extremely low energies ranging from 0 to 1 eV very accurately for electron-helium scattering. The scattering length is calculated very accurately with wave functions computed exactly at zero energy, resulting in an upper bound of 1.1784. The electron correlation and polarization of the target by the scattering electron, which are very important in these calculations, have been taken into account in an accurate ab initio manner through the configuration-interaction procedure by optimizing both bound and continuum orbitals simultaneously at each kinetic energy of the scattered electron. Detailed results for scattering length, differential, total, and momentum-transfer cross sections obtained from the phase shifts are presented. The present scattering length is found to be in excellent agreement with the experimental result of Andrick and Bitsch [J. Phys. B 8, 402 (1975)] and the theoretical result of O'Malley, Burke, and Berrington [J. Phys. B 12, 953 (1979)]. There is excellent agreement between the present total cross sections and the corresponding experimental measurements of Buckman and Lohmann [J. Phys. B 19, 2547 (1986)]. The present momentum-transfer cross sections also show remarkable agreement with the experimental results of Crompton, Elford, and Robertson [Aust. J. Phys. 23, 667 (1970)

  9. Double scattering and final-state interaction in Xd ---> YNN

    CERN Document Server

    Alberi, G; Thomé, Z D

    1974-01-01

    A unified approach to double scattering, as well as the final-state interaction of the two nucleons at small and large momentum transfers are given. The closure sum rule for the final-state interaction at small momentum transfers is shown explicitly in a simple model for the deuteron wave function and nucleon interaction. An application for the process K/sup +/d to K/sup 0/pp is given, trying to explain discrepancies present in recent experiments. (35 refs).

  10. Charge and transverse momentum correlations in deep inelastic muon-proton scattering

    International Nuclear Information System (INIS)

    Arneodo, M.; Ferrero, M.I.; Maselli, S.; Peroni, C.; Bee, C.; Chima, J.S.; Clifft, R.; Edwards, M.; Norton, P.R.; Oakham, F.G.; Thompson, J.C.; Braun, H.; Brueck, H.; Drees, J.; Edwards, A.; Krueger, J.; Poetsch, M.; Dreyer, T.; Ernst, T.; Haas, J.; Kabuss, E.M.; Landgraf, U.; Mohr, W.; Rith, K.; Schlagboehmer, A.; Schroeder, T.; Stier, H.E.; Wallucks, W.; Geddes, N.; Johnson, A.S.; Loken, J.; Long, K.; Renton, P.; Taylor, G.N.; Williams, W.S.C.; Grard, F.; Windmolders, R.

    1986-01-01

    Correlations between charged hadrons are investigated in a 280 GeV muon-proton scattering experiment. Although most of the observed particles are decay products it is shown that the correlations found originate in the fragmentation process and are not due simply to resonance production. Correlations are demonstrated between hadrons close in rapidity with respect to their charges and to the directions of their momentum components perpendicular to the virtual photon axis. Such short range correlations are predicted by the standard hadronization models. (orig.)

  11. High-energy, large-momentum-transfer processes: Ladder diagrams in φ3 theory. Pt. 1

    International Nuclear Information System (INIS)

    Osland, P.; Wu, T.T.; Harvard Univ., Cambridge, MA

    1987-01-01

    Relativistic quantum field theories may give us useful guidance to understanding high-energy, large-momentum-transfer processes, where the center-of-mass energy is much larger than the transverse momentum transfers, which are in turn much larger than the masses of the participating particles. With this possibility in mind, we study the ladder diagrams in φ 3 theory. In this paper, some of the necessary techniques are developed and applied to the simplest cases of the fourth- and sixth-order ladder diagrams. (orig.)

  12. Transient radiative transfer in a scattering slab considering polarization.

    Science.gov (United States)

    Yi, Hongliang; Ben, Xun; Tan, Heping

    2013-11-04

    The characteristics of the transient and polarization must be considered for a complete and correct description of short-pulse laser transfer in a scattering medium. A Monte Carlo (MC) method combined with a time shift and superposition principle is developed to simulate transient vector (polarized) radiative transfer in a scattering medium. The transient vector radiative transfer matrix (TVRTM) is defined to describe the transient polarization behavior of short-pulse laser propagating in the scattering medium. According to the definition of reflectivity, a new criterion of reflection at Fresnel surface is presented. In order to improve the computational efficiency and accuracy, a time shift and superposition principle is applied to the MC model for transient vector radiative transfer. The results for transient scalar radiative transfer and steady-state vector radiative transfer are compared with those in published literatures, respectively, and an excellent agreement between them is observed, which validates the correctness of the present model. Finally, transient radiative transfer is simulated considering the polarization effect of short-pulse laser in a scattering medium, and the distributions of Stokes vector in angular and temporal space are presented.

  13. Charge-transfer and Mott-Hubbard Excitations in FeBo3: Fe K-edge resonant Inelastic x-ray scattering study

    International Nuclear Information System (INIS)

    Kim, J.; Shvydko, Y.

    2011-01-01

    Momentum-resolved resonant inelastic x-ray scattering (RIXS) spectroscopy has been carried out successfully at the Fe K-edge for the first time. The RIXS spectra of a FeBO 3 single crystal reveal a wealth of information on ∼ 1-10 eV electronic excitations. The IXS signal resonates when the incident photon energy approaches the pre-edge (1s - -3d) and the main-edge (1s - -4p) of the Fe K-edge absorption spectrum. The RIXS spectra measured at the pre-edge and the main-edge show quantitatively different dependences on the incident photon energy, momentum transfer, photon polarization, and temperature. We present a multielectron analysis of the Mott-Hubbard (MH) and charge transfer (CT) excitations, and calculate their energies. Electronic excitations observed in the pre-edge and main-edge RIXS spectra are interpreted as MH and CT excitations, respectively. We propose the electronic structure around the chemical potential in FeBO 3 based on the experimental data.

  14. Light scattering reviews 9 light scattering and radiative transfer

    CERN Document Server

    Kokhanovsky, Alexander A

    2014-01-01

    This book details modern methods of the radiative transfer theory. It presents recent advances in light scattering (measurements and theory) and highlights the newest developments in remote sensing of aerosol and cloud properties.

  15. Impact of improved momentum transfer coefficients on the dynamics and thermodynamics of the north Indian Ocean

    Science.gov (United States)

    Parekh, Anant; Gnanaseelan, C.; Jayakumar, A.

    2011-01-01

    Long time series of in situ observations from the north Indian Ocean are used to compute the momentum transfer coefficients over the north Indian Ocean. The transfer coefficients behave nonlinearly for low winds (<4 m/s), when most of the known empirical relations assume linear relations. Impact of momentum transfer coefficients on the upper ocean parameters is studied using an ocean general circulation model. The model experiments revealed that the Arabian Sea and Equatorial Indian Ocean are more sensitive to the momentum transfer coefficients than the Bay of Bengal and south Indian Ocean. The impact of momentum transfer coefficients on sea surface temperature is up to 0.3°C-0.4°C, on mixed layer depth is up to 10 m, and on thermocline depth is up to 15 m. Furthermore, the impact on the zonal current is maximum over the equatorial Indian Ocean (i.e., about 0.12 m/s in May and 0.15 m/s in October; both May and October are the period of Wyrtki jets and the difference in current has potential impact on the seasonal mass transport). The Sverdrup transport has maximum impact in the Bay of Bengal (3 to 4 Sv in August), whereas the Ekman transport has maximum impact in the Arabian Sea (4 Sv during May to July). These highlight the potential impact of accurate momentum forcing on the results from current ocean models.

  16. Scattering and transfer reactions with heavy ions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    From the elastic scattering analysis the input parameters are found for the inelastic scattering analysis and the transfer reactions of the heavy ion reactions. The main theme reported is the likeness and conection among these processes. (L.C.) [pt

  17. Continuum-mediated dark matter–baryon scattering

    CERN Document Server

    Katz, Andrey; Sajjad, Aqil

    2016-01-01

    Many models of dark matter scattering with baryons may be treated either as a simple contact interaction or as the exchange of a light mediator particle. We study an alternative, in which a continuum of light mediator states may be exchanged. This could arise, for instance, from coupling to a sector which is approximately conformal at the relevant momentum transfer scale. In the non-relativistic effective theory of dark matter-baryon scattering, which is useful for parametrizing direct detection signals, the effect of such continuum mediators is to multiply the amplitude by a function of the momentum transfer q, which in the simplest case is just a power law. We develop the basic framework and study two examples: the case where the mediator is a scalar operator coupling to the Higgs portal (which turns out to be highly constrained) and the case of an antisymmetric tensor operator ${\\cal O}_{\\mu \

  18. Pion photoproduction cross section at large momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sjoegren, Johan [Univ. of Glasgow, Scotland, United Kingdom

    2015-02-27

    The Real Compton Scattering experiment was performed in Hall A at the Thomas Jefferson National Accelerator Facility. It was designed to measure, for Compton scattering and π0-photoproduction, the differential cross section over a range of kinematic points and the polarisation transfer to the proton at a single kinematic point. The full range of the experiment in Mandelstam variables t and s was 1.6-6.46 GeV2 and 4.82-10.92 GeV2 respectively with beam energies of 2-6 GeV. The motivation for the experiment is to test the cross section and polarisation transfer predictions of perturbative QCD versus that of predictions from Generalised Parton Distribution models. This thesis will give an overview of the pertinent theory, experimental setup in Hall A and the extracting of the π0-photoproduction cross section.

  19. Constructing Nucleon Operators on a Lattice for Form Factors with High Momentum Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Syritsyn, Sergey [Stony Brook Univ., NY (United States); Gambhir, Arjun S. [College of William and Mary, Williamsburg, VA (United States); Musch, Bernhard U. [Univ. of Regensburg (Germany); Orginos, Konstantinos [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    We present preliminary results of computing nucleon form factor at high momentum transfer using the 'boosted' or 'momentum' smearing. We use gauge configurations generated with N f = 2 + 1dynamical Wilson-clover fermions and study the connected as well as disconnected contributions to the nucleon form factors. Our initial results indicate that boosted smearing helps to improve the signal for nucleon correlators at high momentum. However, we also find evidence for large excited state contributions, which will likely require variational analysis to isolate the boosted nucleon ground state.

  20. Phase variation of nucleon-nucleon amplitude for proton-12C elastic scattering

    International Nuclear Information System (INIS)

    Deng Yibing; Wang Shilai; Yin Gaofang

    2006-01-01

    Franco and Yin studied for α- 4 He, 3 He, 2 He, 1 He elastic-scattering by using the phase of the nucleon-nucleon elastic-scattering amplitude varies with momentum transfer in the framework of Glauber multiple scattering theory at intermediate energy. The phase variation leads to large changes in the differential cross sections, and brings the Glauber theory into agreement with experimental data. Later Lombard and Maillet is based on the suggestion by Franco and Yin studied for the p- 4 He elastic-scattering in the framework of Glauber theory, and found this phase to be actually important for the description of spin observables. Recently Wang Shilai and Deng Yibing et al studied for the p- 4 He elastic-scattering in the framework of KMT multiple scattering theory at intermediate energy, and found this phase lead to differential cross sections and polarization, which are in better agreement with experimental data. This paper is based on the suggestion by Franco and Yin that the phase of the nucleon-nucleon scattering amplitude should vary with momentum transfer. The proton elastic scattering on 12 C is studied in the KMT multiple scattering theory with microscopic momentum space first term optical potential. The Coulomb interactions are taken into account in our calculation. The theoretical calculation results show that the phase leads to differential cross section and polarization are in better agreement with experimental data. In conclusion this phase is actually important in the framework of KMT theory. (authors)

  1. Asymmetry in π-p↑ elastic scattering in momentum range 1.4-2.1 GeV/c

    International Nuclear Information System (INIS)

    Alekseev, I.G.; Budkovskij, P.E.; Kanavets, V.P.

    1989-01-01

    Results of systematic measurements of the asymmetry parameter in the elastic scattering of pions on polarized protons at 1.4-2.1 GeV/c in the back hemisphere are presented together with a test of the isospin invariance of the data set available on pion-proton scattering in the investigated momentum range. The obtained data and amplitude reconstruction results are compared with the current phase shift analysis predictions. 22 refs.; 10 figs

  2. Measurement of event shapes at large momentum transfer with the ATLAS detector in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Gul, Umar; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Basil; Schnoor, Ulrike; Schöning, André; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-11-20

    A measurement of event shape variables is presented for large momentum transfer proton-proton collisions using the ATLAS detector at the Large Hadron Collider. Six event shape variables calculated using hadronic jets are studied in inclusive multi-jet events in 35 pb$^{-1}$ of integrated luminosity at a center-of-mass energy of $\\sqrt{s}$ = 7 TeV. These measurements are compared to predictions by three Monte Carlo event generators containing leading-logarithmic parton showers matched to leading order matrix elements for 2 $\\to$ 2 and 2 $\\to$ n (n=2,...6) scattering. Measurements of the third-jet resolution parameter, aplanarity, thrust, sphericity, and transverse sphericity are generally well described. The mean value of each event shape variable is evaluated as a function of the average momentum of the two leading jets pT1 and pT2, with a mean pT approaching 1 TeV.

  3. Interstellar propulsion using a pellet stream for momentum transfer

    International Nuclear Information System (INIS)

    Singer, C.E.

    1979-10-01

    A pellet-stream concept for interstellar propulsion is described. Small pellets are accelerated in the solar system and accurately guided to an interstellar probe where they are intercepted and transfer momentum. This propulsion system appears to offer orders-of-magnitude improvements in terms of engineering simplicity and power requirements over any other known feasible system for transport over interstellar distance in a time comparable to a human lifespan

  4. VESUVIO. A project to provide enhanced neutron scattering capabilities at the highest energy transfers

    International Nuclear Information System (INIS)

    Tomkinson, J.; Bowden, Z.A.; Mayers, J.; Norris, J.; Rhodes, N.J.; Colognesi, D.; Fielding, A.L.; Praitano, M.

    1999-01-01

    Complete text of publication follows. The VESUVIO project is financed within the TMR-Access to Large Scale Facility (RTD project) of the European Community. It will provide unique prototype instrumentation at the ISIS neutron source which will build on the success and experience of the eVS spectrometer in measuring single particle dynamics of a wide range of condensed matter systems. The instrumentation is designed for high momentum (20A -1 -1 ) and energy (ℎω>1eV) transfer inelastic neutron scattering studies of microscopic dynamical properties such as, single particle kinetic energies and momentum distributions. Specific objectives are: a) to optimize and construct a high efficiency, high area detector, 6 Li doped scintillator glasses are being tested; b) to construct a sample tank capable of operating with either a cold, or room temperature, filter analyzers; c) to develop new electronics and data acquisition to handle the high count-rates which will be generated in the azimuthal detectors. Some examples of applications performed during the first year of the project will be presented. (author)

  5. Numerical prediction of heat transfer by natural convection and radiation in an enclosure filled with an isotropic scattering medium

    International Nuclear Information System (INIS)

    Moufekkir, F.; Moussaoui, M.A.; Mezrhab, A.; Naji, H.; Lemonnier, D.

    2012-01-01

    This paper deals with the numerical solution for natural convection and volumetric radiation in an isotropic scattering medium within a heated square cavity using a hybrid thermal lattice Boltzmann method (HTLBM). The multiple relaxation time lattice Boltzmann method (MRT-LBM) has been coupled to the finite difference method (FDM) to solve momentum and energy equations, while the discrete ordinates method (DOM) has been adopted to solve the radiative transfer equation (RTE) using the S8 quadrature. Based on these approaches, the effects of various influencing parameters such as the Rayleigh number (Ra), the wall emissivity (ε ι ), the Planck number (Pl), and the scattering albedo (ω), have been considered. The results presented in terms of isotherms, streamlines and averaged Nusselt number, show that in absence of radiation, the temperature and the flow fields are centro-symmetrics and the cavity core is thermally stratified. However, radiation causes an overall increase in the temperature and velocity gradients along both thermally active walls. The maximum heat transfer rate is obtained when the surfaces of the enclosure walls are regarded as blackbodies. It is also seen that the scattering medium can generate a multicellular flow.

  6. Electromagnetic and gravitational scattering at Planckian energies

    International Nuclear Information System (INIS)

    Das, S.; Majumdar, P.

    1994-11-01

    The scattering of pointlike particles at very large center of mass energies and fixed low momentum transfers, occurring due to both their electromagnetic and gravitational interactions is re-examined in the particular case when one of the particles carries magnetic charge. At Planckian center-of-mass energies, when gravitational dominance is normally expected, the presence of magnetic charge is shown to produce dramatic modifications to the scattering cross section as well as to the holomorphic structure of the scattering amplitude. (author). 20 refs

  7. Investigation of the core-halo structure of the neutron-rich nuclei {sup 6}He and {sup 8}He by intermediate-energy elastic proton scattering at high momentum transfer; Etude de la structure coeur-halo des noyaux riches en neutron {sup 6}He et {sup 8}He par la diffusion elastique de protons aux energies intermediaires etendue a la region du premier minimum de diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Aksouh, F

    2002-12-01

    The elastic proton scattering from the halo nuclei {sup 6}He and {sup 8}He was investigated in inverse kinematics at energies around 700 MeV/u with the aim to deduce the differential cross sections for the region of high momentum transfer, covering the first diffraction minimum. For this purpose, a liquid-hydrogen target was specially developed and used for the first time allowing to obtain low-background data as compared to commonly used targets made from C-H compounds. Previous data taken in the region of small momentum transfer were sensitive to the size and the peripheral shape of the total nuclear matter density distribution but not to the inner part. The present data allow for a more detailed insight in the structure of the alike core in {sup 6,8}He through a better determination of the matter density distributions. Several density distributions calculated from different microscopic models were used to derive elastic scattering cross sections which are compared with the obtained data. (author)

  8. Electron scattering off palladium isotopes

    International Nuclear Information System (INIS)

    Laan, J.B. van der.

    1986-01-01

    The low-lying states of the even Pd isotopes are characterized by vibrator-like properties. In this thesis the results of an electron scattering experiment on the Pd isotopes, designed to study the description of such nuclei in the Anharmonic Vibrator Model (AVM) and the Interacting Boson Approximation (IBA), are presented and discussed. Data have been taken at the high-resolution electron scattering facility of NIKHEF-K and covered a momentum-transfer range of 0.4 to 2.5 fm -1 . (Auth.)

  9. Superscaling analyses, lepton scattering and nucleon momentum distribution in nuclei

    International Nuclear Information System (INIS)

    Antonov, A.; Ivanov, M.; Gaidarov, M.; Caballero, J.A.; Barbaro, M.; Moya de Guerra, E.

    2009-01-01

    In this paper the following items have been presented: 1) Nucleon momentum distribution from the superscaling analyses of the QE scattering of electrons; 2) CDFM scaling functions in the QE- and _-regions; 3) Charge-changing neutrino scattering from nuclei in the QE- and –region and 4) Neutral current neutrino scattering from nuclei in the QE-region. At the end the following conclusions have been made: 1) 1 It is pointed out that f (ψ') for ψ' < -1 depends on the particular form of the power-law asymptotics of n(k) at large k and thus, is informative for the in-medium NN forces around the core. 2) The total f(ψ), the longitudinal f_L(ψ) and the transverse f_T(ψ) scaling functions are calculated within a new, more general approach within the Coherent Density Fluctuation Model (CDFM_I_I) by taking as starting point the hadronic tensor and the L- and T- response functions in the RFG model. 3) The approach leads to a slight violation of the zero-kind scaling [f_L(ψ)≠f_T(ψ)] in contrast with the situation in the RFG and CDFM_I models. It is found that the ratio f_L(ψ)/f_T(ψ) in the CDFM_I_I has similarities with that from the RPWIA approach (with Lorentz gauge) for positive ψ. 4) At q≳0:7 GeV/c the CDFM_I_I scaling function exhibits scaling of first kind and has a saturation of its asymptotic behavior. 5) The CDFM scaling functions are applied to calculate cross sections of inclusive electron scattering in the quasielastic and Δ-regions for nuclei with 12≤A≤208 at different energies and angles. The results are in agreement with available experimental data, especially in the QE region. 6) The CDFM scaling functions are applied to calculate charge-changing neutrino (antineutrino) scattering and also QE scattering via the weak neutral current on "1"2C at 1÷2 GeV incident energy.

  10. Double ionisation of helium in fast ion collisions: the role of momentum transfer

    International Nuclear Information System (INIS)

    Bapat, B.; Moshammer, R.; Schmitt, W.; Kollmus, H.; Ullrich, J.; Doerner, R.; Weber, T.; Khayyat, K.

    1999-01-01

    Double ionisation of helium in the perturbative regime has been explored in a kinematically complete collision experiment using 100 MeV/u C 6+ ions. Different ionisation mechanisms are identified by inspecting the angular distribution of the electrons as a function of the momentum transfer q to the target by the projectile. For q 1.2 a.u., the faster electron resulting from a binary encounter with the projectile is emitted along the direction of momentum transfer, while the other electron is distributed uniformly. Experimental data are compared with various model calculations based on the Bethe-Born approximation with shake-off. Surprisingly, the effect of the final state interaction is found to depend decisively on the choice of the initial state wave function. (orig.)

  11. Scaling laws with current for equilibrium momentum spread and emittances from intrabeam scattering and electron cooling

    International Nuclear Information System (INIS)

    Hasse, R.W.; Boine-Frankenheim, O.

    2004-01-01

    Based on the theories of Piwinski, Bjorken-Mtingawa and Martini of Coulomb scattering, expressions for the heating rates due to intrabeam scattering were known since a long time. Simplifications by Wei-Parzen and Rao and Piwinski led to analytic approximations which are easily applicable to existing lattices. We use these approximations and also the formulae from thermal equilibration of Struckmeier and equate them to either constant cooling rates from electron cooling or to the Novosibirsk cooling rates for electron cooling to calculate the equilibrium values of the horizontal and vertical emittances and the momentum spread (longitudinal emittance) for typical beams in the ESR or in the HESR. For constant cooling and all approximation formulae the ratio of current to the product of the three emittances remains almost constant. This yields a slope of the momentum spread with current between 0.2 and 0.3, in agreement with experimental data. Using the Novosibirsk cooling rates this slope is much larger

  12. Proton-4He elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Auger, J.P.; Gillespie, J.; Lombard, R.J.

    1975-12-01

    Differential elastic cross sections and polarizations are calculated in a multiple scattering formalism for proton- 4 He scattering for energies in the range 0.6-24GeV and for momentum transfers up to 4.0fmsup(-1). The calculations include Coulomb and spin effects. Corrections due to target-nucleon overlap and charge exchange are estimated. The results are compared with experimental data [fr

  13. The angle-angular momentum and entropic uncertainty relations for quantum scattering

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion, M.L.

    1999-01-01

    Recently the entropic uncertainty relations are obtained in a more general form by using Tsallis-like entropies for the quantum scattering. Hence, using Riesz theorem, the state-independent entropic angle-angular momentum uncertainty relations are proved for the Tsallis-like scattering entropies of spinless particles. The generalized entropic inequalities for the Tsallis-like entropies are presented. The two upper bounds are optimal bounds and can be obtained via Lagrange multipliers by extremizing the Tsallis-like entropies subject to the normalization constraints, respectively. The proof of the lower bound is provided by considering the condition that the angular distribution of probability, P(x) has, everywhere, a finite magnitude. Next, by using the Riesz Theorem a general result was obtained, appearing as inequalities valid for the case of hadron-hadron scattering. An important entropic uncertainty relation for the scattering of spinless particle was thus obtained. For σ el and dσ/dΩ, fixed from experiment, we proved that the optimal scattering entropies are the maximum possible entropies in the scattering process. In as previous paper it was shown that the experimental values of the entropies for the pion--nucleus scatterings are systematically described by the optimal entropies, at all available pion kinetic energies. In this sense the obtained results can also be considered as new experimental signatures for the validity of the principle of minimum distance in space of scattering states. The extension of the optimal state analysis to the generalized non-extensive statistics case, as well as, a test of the entropic inequalities, can be obtained in similar way by using non-extensive optimal entropies. Since this kind of analysis is more involved the numerical examples will be given in a following more extended paper. Finally, we believe that the results obtained here are encouraging for further investigations of the entropic uncertainty relations as well

  14. Departures from the impulse approximation in deep inelastic neutron scattering

    International Nuclear Information System (INIS)

    Mayers, J.

    1989-01-01

    A new formulation of the impulse approximation (IA) in deep inelastic neutron scattering is developed. It is shown that observed departures from the IA at intermediate momentum transfers are caused by the quantum nature of the initial state rather than final state effects, as has previously been assumed and that these effects become small at high temperatures. It is also argued that final state broadening is significant for He liquids in all feasible experiments, but that in other systems the IA is approached at high momentum transfers. (author)

  15. Quasiparticle scattering by quantum phase slips in one-dimensional superfluids

    International Nuclear Information System (INIS)

    Khlebnikov, S.

    2004-01-01

    Quantum phase slips (QPS) in narrow superfluid channels generate momentum by unwinding the supercurrent. In a uniform Bose gas, this momentum needs to be absorbed by quasiparticles (phonons). We show that this requirement results in an additional exponential suppression of the QPS rate (compared to the rate of QPS induced by a sharply localized perturbation). In BCS-paired fluids, momentum can be transferred to fermionic quasiparticles, and we find an interesting interplay between quasiparticle scattering on QPS and on disorder

  16. A new instrumental set-up for polarized neutron scattering experiments

    International Nuclear Information System (INIS)

    Schmidt, Wolfgang; Ohl, Michael

    2005-01-01

    Neutron scattering with polarization analysis is a powerful tool to determine magnetic structures and excitations. A common setup is to mount the sample at the center of a Helmholtz-type coil which can provide a magnetic field of any direction at the sample position and also a guide field along the neutron flight paths around the sample. Recent experiments showed quite a high demand for measurements at low momentum transfers. For the corresponding low scattering angles air scattering gives rise to a very large background. For this reason we have extended the standard setup to a combination of a large vacuum tank surrounded by electrical coils. The vacuum tank eliminates the air scattering and we can use the polarization analysis down to the lowest accessible momentum transfers. The coils themselves also show some new features: In contrary to the classic (symmetric) coil distribution we use an asymmetric setup which gives the advantage of a larger scattering window. Due to a more sophisticated current distribution this modified coil arrangement needs not to be rotated for different scattering conditions. The whole set-up will soon be available at IN12, a cold neutrons three-axis spectrometer operated by FZ Juelich in collaboration with CEA Grenoble as a CRG-B instrument at the Institut Laue Langevin in Grenoble

  17. Elastic scattering and quasi-elastic transfers

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1978-01-01

    Experiments are presented which it will be possible to carry out at GANIL on the elastic scattering of heavy ions: diffraction phenomena if the absorption is great, refraction phenomena if absorption is low. The determination of the optical parameters can be performed. The study of the quasi-elastic transfer reactions will make it possible to know the dynamics of the nuclear reactions, form exotic nuclei and study their energy excitation spectrum, and analyse the scattering and reaction cross sections [fr

  18. Quasielastic electron scattering from 40Ca

    International Nuclear Information System (INIS)

    Williamson, C.F.; Yates, T.C.; Schmitt, W.M.; Osborn, M.; Deady, M.; Zimmerman, P.D.; Blatchley, C.C.; Seth, K.K.; Sarmiento, M.; Parker, B.; Jin, Y.; Wright, L.E.; Onley, D.S.

    1997-01-01

    Differential cross sections for quasielastic electron scattering on 40 Ca have been measured at laboratory scattering angles of 45.5 degree, 90 degree, and 140 degree with bombarding energies ranging from 130 to 840 MeV. Transverse and longitudinal response functions have been extracted for momentum transfers from 300 to 500 MeV/c. Contrary to some previously reported results, the total observed longitudinal strength agrees with the relativistic Fermi gas prediction to within ±18%. copyright 1997 The American Physical Society

  19. Solution of the scattering T matrix equation in discrete complex momentum space

    International Nuclear Information System (INIS)

    Rawitscher, G.H.; Delic, G.

    1984-01-01

    The scattering solution to the Lippmann-Schwinger equation is expanded into a set of spherical Bessel functions of complex wave numbers, K/sub j/, with j = 1,2 , . . . , M. The value of each K/sub j/ is determined from the condition that the spherical Bessel function smoothly matches onto an asymptotically outgoing spherical Hankel (or Coulomb) function of the correct physical wave number at a matching point R. The spherical Bessel functions thus determined are Sturmian functions, and they form a complete set in the interval 0 to R. The coefficients of the expansion of the scattering function are determined by matrix inversion of a linear set of algebraic equations, which are equivalent to the solution of the T-matrix equation in complex momentum space. In view of the presence of a matching radius, no singularities are encountered for the Green's functions, and the inclusion of Coulomb potentials offers no computational difficulties. Three numerical examples are performed in order to illustrate the convergence of the elastic scattering matrix S with M. One of these consists of a set of coupled equations which describe the breakup of a deuteron as it scatters from the nucleus on 58 Ni. A value of M of 15 or less is found sufficient to reproduce the exact S matrix element to an accuracy of four figures after the decimal point

  20. High energy elastic hadron scattering

    International Nuclear Information System (INIS)

    Fearnly, T.A.

    1986-04-01

    The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described

  1. Large-t elastic scattering and diffraction dissocation

    International Nuclear Information System (INIS)

    Timmermans, J.

    1985-05-01

    Recent results, both from the ISR and the SantippS Collider, on proton-antiproton elastic scattering at large values of the four-momentum transfer squared, are presented. The results are compared with predictions of several theoretical models of high-energy collisions. Single diffraction dissociation at the Collider is also discussed. (orig.)

  2. Oscillations in the hadron scattering amplitude at high energy and small momentum transfer; Oscillations dans l`amplitude de diffusion hadronique a haute energie et petites moments de transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, Pierre; Basarab Nicolescu [Theoretical Physics Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Selyugin, O.V. [Lab. of Theoretical Physics, Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1999-10-01

    We show that the high precision dN/dt UA4/2 data at {radical} = 541 GeV are compatible with the presence of Auberson-Kinoshita-Martin (AKM) type of oscillations at very small momentum transfer. These oscillations seem to be periodic in {radical}|t|, the corresponding period being {approx_equal} 2 {center_dot}10{sup -2} GeV. The existence of such visible oscillations suggests a general mechanism of saturation of axiomatic bounds. As an illustration the consequences for extracting the parameter {rho} = ReF/ImF from dN/dt data are also discussed. (authors) 1 ref., 2 figs.

  3. Medium energy inelastic proton-nucleus scattering with spin dependent NN interaction

    International Nuclear Information System (INIS)

    Ahmad, I.; Auger, J.P.

    1981-12-01

    The previously proposed effective profile expansion method for the Glauber multiple scattering model calculation has been extended to the case of proton-nucleus inelastic scattering with spin dependent NN interaction. Using the method which turns out to be computationally simple and of relatively wider applicability, a study of sensitivity of proton-nucleus inelastic scattering calculation to the sometimes neglected momentum transfer dependence of the NN scattering amplitude has been made. We find that the calculated polarization is particularly sensitive in this respect. (author)

  4. Effects of polymer stresses on analogy between momentum and heat transfer in drag-reduced turbulent channel flow

    Science.gov (United States)

    Kim, Kyoungyoun; Sureshkumar, Radhakrishna

    2018-03-01

    The effects of polymer stresses on the analogy between momentum and heat transfer are examined by using a direct numerical simulation (DNS) of viscoelastic turbulent channel flows using a constant heat flux boundary condition. The Reynolds number based on the friction velocity and channel half height is 125, and the Prandtl number is 5. The polymer stress is modeled using the finitely extensible nonlinear elastic-Peterlin constitutive model, and low (15%), intermediate (34%), and high drag reduction (DR) (52%) cases are examined. The Colburn analogy is found to be inapplicable for viscoelastic turbulent flows, suggesting dissimilarity between the momentum and heat transfer at the macroscopic coefficient level. The mean temperature profile also shows behaviour different from the mean velocity profile in drag-reduced flows. In contrast to the dissimilarity in the mean profiles, the turbulent Prandtl number Prt predicted by the DNS is near unity. This implies that turbulent heat transfer is still analogous to turbulent momentum transfer in drag-reduced flows, as in Newtonian flow. An increase in DR is accompanied by an increase in the correlation coefficient ρuθ between the instantaneous fluctuations in the streamwise velocity u and temperature θ. The correlation coefficient between u' and wall-normal velocity fluctuations v', ρ-u v, exhibits a profile similar to that of ρ-θ v in drag-reduced and Newtonian flows. Finally, the budget analysis of the transport equations of turbulent heat flux shows a strong similarity between the turbulent momentum and heat transfer, which is consistent with the predictions of Prt near unity.

  5. The (3He,α) reaction mechanism. A study of the angular momentum transfer

    International Nuclear Information System (INIS)

    Guttormsen, M.; Bergholt, L.; Ingebretsen, F.; Loevhoeiden, G.; Messelt, S.; Rekstad, J.; Tveter, T.S.; Helstrup, H.; Thorsteinsen, T.F.

    1994-01-01

    The γ-rays emitted after the 163 Dy( 3 He,αxn) reactions at E( 3 He) = 45 MeV have been measured. The transferred angular momentum in the reaction is deduced from the side-feeding γ-intensities of the ground bands in the residual 162-x Dy isotopes. With decreasing α-energy the average spin transfer increases from similar 5h to similar 11h. The ( 3 He,α) reaction at these energies is dominated by direct processes. Even at the highest spin transfer the contribution from the compound reaction channel is negligible. ((orig.))

  6. Momentum transfer with light ions at energies from 70 MeV to 1000 MeV

    International Nuclear Information System (INIS)

    Saint Laurent, F.; Conjeaud, M.; Dayras, R.; Harar, S.; Oeschler, H.; Volant, C.

    1982-01-01

    Angular correlations of fission fragments induced by bombarding a 232 Th target with protons, deuterons and alpha particles of energies from 70 MeV to 1000 MeV have been measured. They give information about the forward momentum imparted to the fissioning nuclei. We present the average values of the transferred linear momentum ([p vertical stroke vertical stroke ]) as a function of the incident energy and propose a classification into three regimes of dominating processes leading to fission: (I) low-energy behaviour, for E/A less than 10 MeV/u [p vertical stroke vertical stroke ]/psub(i) approx. equal to 1. (II) Between 10 MeV/u and about 70 MeV/u, [p vertical stroke vertical stroke ]/psub(i) decreases progressively down to 0.5 but remains proportional to the projectile mass. (III) The region between 70 MeV/u and about 1000 MeV/u corresponds to a transition region where the projectiles, whatever their masses, tend to transfer the same momentum. (orig.)

  7. Nuclear and partonic dynamics in high energy elastic nucleus-nucleus scattering

    International Nuclear Information System (INIS)

    Malecki, A.

    1991-01-01

    A hybrid description of diffraction which combines a geometrical modelling of multiple scattering with many-channel effects resulting from intrinsic dynamics on nuclear and sub-nuclear level is presented. The application to the 4 He- 4 He elastic scattering is very satisfactory. Our analysis suggests that at large momentum transfers the parton constituents of nucleons immersed in nuclei are deconfined. (author)

  8. Measurements of recoil and projectile momentum distributions for 19-MeV F9+ + Ne collisions

    International Nuclear Information System (INIS)

    Frohne, V.; Cheng, S.; Ali, R.M.; Raphaelian, M.L.; Cocke, C.L.; Olson, R.

    1996-01-01

    The collision system of 19-MeV F 9+ on Ne has been studied using recoil and projectile momentum spectroscopy. For each event, identified by final recoil and projectile charge state, the three-dimensional momentum vector of the recoil ion and the transverse momentum vector of the projectile ion were measured. The transverse momenta of the recoil and projectile ions were found to be equal in magnitude and opposite in direction, indicating that the transverse momentum exchange is dominated by interactions between the two ion cores. The transverse momentum distributions are well described by nCTMC calculations. The longitudinal momentum distributions of the recoil ions show that a large fraction of the momentum transferred to the projectile is carried off by continuum electrons. The recoil ions are scattered slightly backward, in partial agreement with predictions of nCTMC calculations. copyright 1996 The American Physical Society

  9. Study of the proton structure by measurements of polarization transfers in real Compton scattering at J Lab

    International Nuclear Information System (INIS)

    Fanelli, C.; Salme, G.; Cisbani, E.; Hamilton, D.; Wojtsekhowski, B.

    2014-01-01

    A preliminary analysis of polarization-transfer data at large scattering angle (70 degrees), obtained in an experiment of real Compton scattering on proton, performed in Hall-C of Jefferson Lab, is presented. It is also discussed the relevance of this kind of experiments for shedding light on the non-perturbative structure of the proton, at low energy, and on the transition from the non-perturbative regime to the perturbative one, that occurs at high energy. Moreover, the possibility to extract Compton form factors and the Generalized Parton Distributions (GPD), one of the most promising theoretical tool to determine the total angular momentum contribution of quarks and gluons to nucleon spin, is emphasized. The preliminary results appear consistent with GPD's based and Regge predictions. This is not sufficient yet to exclude pQCD COZ (Chernyak-Oglobin-Zhitnistsky) model, but it is another preliminary indication that the handbag approach seems to be the dominant mechanism at the energy of the experiment

  10. Compton Scattering Cross Section on the Proton at High Momentum Transfer

    International Nuclear Information System (INIS)

    A. Danagoulian; V.H. Mamyan; M. Roedelbronn; K.A. Aniol; J.R.M. Annand; P.Y. Bertin; L. Bimbot; P. Bosted; J.R. Calarco; A. Camsonne; C.C. Chang; T.-H. Chang; J.-P. Chen; Seonho Choi; E. Chudakov; P. Degtyarenko; C.W. de Jager; A. Deur; D. Dutta; K. Egiyan; H. Gao; F. Garibaldi; O. Gayou; R. Gilman; A. Glamazdin; C. Glashausser; J. Gomez; D.J. Hamilton; J.-O. Hansen; D. Hayes; D.W. Higinbotham; W. Hinton; T. Horn; C. Howell; T. Hunyady; C.E. Hyde-Wright; X. Jiang; M.K. Jones; M. Khandaker; A. Ketikyan; V. Koubarovski; K. Kramer; G. Kumbartzki; G. Laveissiere; J. LeRose; R.A. Lindgren; D.J. Margaziotis; P. Markowitz; K. McCormick; Z.-E. Meziani; R. Michaels; P. Moussiegt; S. Nanda; A.M. Nathan; D.M. Nikolenko; V. Nelyubin; B.E. Norum; K. Paschke; L. Pentchev; C.F. Perdrisat; E. Piasetzky; R. Pomatsalyuk; V.A. Punjabi; I. Rachek; A. Radyushkin; B. Reitz; R. Roche; G. Ron; F. Sabatie; A. Saha; N. Savvinov; A. Shahinyan; Y. Shestakov; S. Sirca; K. Slifer; P. Solvignon; P. Stoler; S. Tajima; V. Sulkosky; L. Todor; B. Vlahovic; L.B. Weinstein; K. Wang; B. Wojtsekhowski; H. Voskanyan; H. Xiang; X. Zheng; L. Zhu

    2007-01-01

    Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/- 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark

  11. Large-t elastic scattering and diffraction dissocation

    International Nuclear Information System (INIS)

    Timmermans, J.

    1985-01-01

    Recent results, both from the ISR and the S anti p pS Collider, on proton-antiproton elastic scattering at large values of the four-momentum transfer squared, are presented. The results are compared with predictions of several theoretical models of high-energy collisions. Single diffraction dissociation at the Collider is also discussed. (author)

  12. Measurement of J/{psi} photoproduction at large momentum transfer at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)

    2009-09-15

    The proton-dissociative diffractive photoproduction of J/{psi} mesons has been studied in ep collisions with the ZEUS detector at HERA using an integrated luminosity of 112 pb{sup -1}. The cross section is presented as a function of the photon- proton centre-of-mass energy and of the squared four-momentum transfer at the proton vertex. The results are compared to perturbative QCD calculations. (orig.)

  13. Measurement of J/ψ photoproduction at large momentum transfer at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2009-09-01

    The proton-dissociative diffractive photoproduction of J/ψ mesons has been studied in ep collisions with the ZEUS detector at HERA using an integrated luminosity of 112 pb -1 . The cross section is presented as a function of the photon- proton centre-of-mass energy and of the squared four-momentum transfer at the proton vertex. The results are compared to perturbative QCD calculations. (orig.)

  14. Strong Three-magnon Scattering in Cuprates by Resonant X-rays

    OpenAIRE

    Ament, Luuk J. P.; Brink, Jeroen van den

    2010-01-01

    We show that Resonant Inelastic X-ray scattering (RIXS) is sensitive to three-magnon excitations in cuprates. Even if it requires three electrons to simultaneously flip their spin, the RIXS tri-magnon scattering amplitude is not small. At the Cu $L$-edge its intensity is generally larger than the bi-magnon one and at low transferred momentum even larger than the single-magnon intensity. At the copper $M$-edge the situation is yet more extreme: in this case three-magnon scattering is dominatin...

  15. A Neutron Scattering Study of Collective Excitations in Superfluid Helium

    DEFF Research Database (Denmark)

    Graf, E. H.; Minkiewicz, V. J.; Bjerrum Møller, Hans

    1974-01-01

    Extensive inelastic-neutron-scattering experiments have been performed on superfluid helium over a wide range of energy and momentum transfers. A high-resolution study has been made of the pressure dependence of the single-excitation scattering at the first maximum of the dispersion curve over...... of the multiexcitation scattering was also studied. It is shown that the multiphonon spectrum of a simple Debye solid with the phonon dispersion and single-excitation cross section of superfluid helium qualitatively reproduces these data....

  16. The laser elevator - Momentum transfer using an optical resonator

    Science.gov (United States)

    Meyer, Thomas R.; Mckay, Christopher P.; Mckenna, Paul M.

    1987-01-01

    In a conventional laser lightsail system the payload is propelled by the momentum imparted to it by the reflection of a laser beam without the use of any propellant. Because of the unfavorable relationship between energy and momentum in a light beam, these systems are very inefficient. The efficiency can be greatly improved, in principle, if the photons that impact the payload mirror are returned to the source and then redirected back toward the payload again. This system, which recirculates the laser beam, is defined as the 'laser elevator'. The gain of the laser elevator over conventional lightsails depends on the number of times the beam is recycled which is limited by the reflectance of the mirrors used, any losses in the transmission of the beam, and diffraction. Due to the increase pathlength of the folded beam, diffraction losses occur at smaller separations of the payload and the source mirror than for conventional lightsail system. The laser elevator has potential applications in launching to low earth orbit, orbital transfer, and rapid interplanetary delivery of small payloads.

  17. Energy evolution of the large-t elastic scattering and its correlation with multiparticle production

    International Nuclear Information System (INIS)

    Troshin, S. M.

    2013-01-01

    It is emphasized that the collective dynamics associated with color confinement is dominating over a point-like mechanism related to a scattering of the proton constituents at the currently available values of the momentum transferred in proton elastic scattering at the LHC. Deep-elastic scattering and its role in the dissimilation of the absorptive and reflective asymptotic scattering mechanisms are discussed with emphasis on the experimental signatures associated with the multiparticle production processes.

  18. Energy evolution of the large-t elastic scattering and its correlation with multiparticle production

    Energy Technology Data Exchange (ETDEWEB)

    Troshin, S. M. [Institute for High Energy Physics, Protvino, Moscow Region, 142281 (Russian Federation)

    2013-04-15

    It is emphasized that the collective dynamics associated with color confinement is dominating over a point-like mechanism related to a scattering of the proton constituents at the currently available values of the momentum transferred in proton elastic scattering at the LHC. Deep-elastic scattering and its role in the dissimilation of the absorptive and reflective asymptotic scattering mechanisms are discussed with emphasis on the experimental signatures associated with the multiparticle production processes.

  19. Polarization transfer in inelastic scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1980-01-01

    Polarization transfer experiments are now feasible for inelastic scattering experiments on complex nuclei. Experiments thus far have dealt with the spin-flip probability; this observable is sensitive to the action of spin-spin and tensor forces in inelastic scattering. Spin-flip probabilities at E approx. 40 MeV in isoscalar transitions in 12 C(12.71 MeV) and 15 O(8.89 MeV) show considerable deviation from DWBA-shell model predictions; this deviation indicates evidence for more complex reaction mechanisms. Experiments at intermediate energies will soon be possible and will yield data of much higher precision than is possible at lower (E < 100 MeV) energies. These experiments hold exciting promise in such areas as nuclear critical opalescence. 7 figures, 1 table

  20. A new method for the determination of the real part of the hadron elastic scattering amplitude at small angles and high energies

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, P. [Theory Group, Laboratoire de Physique Nucleaire et des Hautes Energies (LPNHE), CNRS, and Universite Pierre et Marie Curie, Paris (France)]. E-mail: gauron@in2p3.fr; Nicolescu, B. [Theory Group, Laboratoire de Physique Nucleaire et des Hautes Energies (LPNHE), CNRS, and Universite Pierre et Marie Curie, Paris (France)]. E-mail: nicolesc@lpnhep.in2p3.fr; Selyugin, O.V. [BLTP, JINR, Dubna, Moscow region (Russian Federation)]. E-mail: selugin@thsun1.jinr.ru

    2005-11-24

    A new method for the determination of the real part of the elastic scattering amplitude is examined for high energy proton-proton at small momentum transfer. This method allows us to decrease the number of model assumptions, to obtain the real part in a narrow region of momentum transfer and to test different models. The real part is computed at a given point t{sub min} near t=0 from the known Coulomb amplitude. Hence one obtains an important constraint on the real part of the forward scattering amplitude and therefore on the {rho}-parameter (measuring the ratio of the real to imaginary part of the scattering amplitude at t=0), which can be tested at LHC.

  1. Constraints on low energy Compton scattering amplitudes

    International Nuclear Information System (INIS)

    Raszillier, I.

    1979-04-01

    We derive the constraints and correlations of fairly general type for Compton scattering amplitudes at energies below photoproduction threshold and fixed momentum transfer, following from (an upper bound on) the corresponding differential cross section above photoproduction threshold. The derivation involves the solution of an extremal problem in a certain space of vector - valued analytic functions. (author)

  2. Scattering of electrons by alkali-halide molecules: LiBr and CsCl

    International Nuclear Information System (INIS)

    Vukovic, L.; Zuo, M.; Shen, G.F.; Stumpf, B.; Bederson, B.

    1989-01-01

    We have investigated small-angle electron scattering by highly polar molecules. Recoil experiments are performed at 5 and 20 eV for electrons scattered by LiBr and CsCl, within the shadow of the unscattered molecular beam. Low-angular-range scattering described by the Born approximation for rotating dipoles, combined with different theories for intermediate- and high-angle scattering, are compared with our results. Evaluated total scattering cross sections as well as momentum-transfer and viscosity cross sections are given. A general two-dimensional analysis of the recoil experiment is presented

  3. Measurement of Photon Production in the Very Forward Direction in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Belov, P.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Bruncko, D.; Bunyatyan, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cvach, J.; Dainton, J.B.; Daum, K.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Egli, S.; Eliseev, A.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, H.; Kapichine, M.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Kogler, R.; Kostka, P.; Kraemer, M.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lopez-Fernandez, R.; Lubimov, V.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mudrinic, M.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Tabasco, J.E.Ruiz; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sykora, T.; Thompson, P.D.; Tran, T.H.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.

    2011-01-01

    The production of photons at very small angles with respect to the proton beam direction is studied in deep-inelastic positron-proton scattering at HERA. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of $126 \\mathrm{pb}^{-1}$. The analysis covers the range of negative four momentum transfer squared at the positron vertex $67.9$ as a function of its transverse momentum $p_T^{lead}$ and longitudinal momentum fraction of the incoming proton $x_L^{lead}$. In addition, the cross sections are studied as a function of the sum of the longitudinal momentum fraction $x_L^{sum}$ of all photons in the pseudorapidity range $\\eta>7.9$. The cross sections are normalised to the inclusive deep-inelastic scattering cross section and compared to the predictions of models of deep-inelastic scattering and models of the hadronic interactions of high energy cosmic rays.

  4. Diffraction scattering of strongly bound system

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.

    1982-04-01

    The scattering of a hadron on a strongly bound system of two hadrons (dihadron) is considered in the high-energy limit for the relative hadron-dihadron motion. The dihadron scatterer motion and the internal interaction are included in our consideration. It is shown that only small values of the internal transfer momentum of dihadron particles bring the principal contribution to the three-particle propagator in eikonal approximation. On the basis of the exact analytical solution of the integral equation for the total Green function the scattering amplitude is derived. It is shown that the scattering amplitude contains only single, double, and triple scattering terms. The three new terms to the Glauber formula for the total cross section are obtained. These terms decrease both the true total hadron-hadron cross section and the screening correction. (orig.)

  5. Measurement of the momentum transferred between contacting bodies during the LISA test-mass release phase—uncertainty estimation

    International Nuclear Information System (INIS)

    De Cecco, M; Bortoluzzi, D; Da Lio, M; Baglivo, L; Benedetti, M

    2009-01-01

    The requirements for the Laser Interferometer Space Antenna (LISA) test-mass (TM) release phase are analysed in view of the building up of a testing facility aimed at on-Earth qualification of the release mechanism. Accordingly, the release of the TM to free-fall must provide a linear momentum transferred to the TM not exceeding 10 −5 kg m s −1 . In order to test this requirement, a double pendulum system has been developed. The mock-ups of the TM and the release-dedicated plunger are brought into contact and then the latter is quickly retracted. During and after release, the TM motion is measured by a laser interferometer. The transferred momentum is estimated from the free oscillations following the plunger retraction by means of a Wiener–Kolmogorov optimal filter. This work is aimed at modelling the measurement chain, taking into account procedure, instruments, mechanisms and data elaboration in order to estimate the uncertainty associated with the transferred momentum measurement by means of Monte Carlo simulation

  6. Raman scattering of light off a superconductor

    International Nuclear Information System (INIS)

    Cuden, C.B.

    1976-01-01

    Raman scattering off a superconducting surface is formulated using Kubo's nonlinear response theory in a form suitable for systematic diagrammatic expansion. The effects of the sample surface are correctly taken into account. It is shown that in the presence of vacuum polarization processes, the contribution to the scattering efficiency from the density-density correlation function considered in the literature, is reduced. The relevant four-vertex parts, describing inelastic scattering of light by electronic excitations via intermediate interband states in a superconductor, are calculated. Frequency and temperature dependence of the relative scattering efficiency for the large momentum transfer (Pippard limit), and constant transition matrix elements, are obtained. The estimated magnitude of the total scattering efficiency is of the order of 10 -11

  7. Scaling limit of deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    A. Radyushkin

    2000-07-01

    The author outlines a perturbative QCD approach to the analysis of the deeply virtual Compton scattering process {gamma}{sup *}p {r_arrow} {gamma}p{prime} in the limit of vanishing momentum transfer t=(p{prime}{minus}p){sup 2}. The DVCS amplitude in this limit exhibits a scaling behavior described by a two-argument distributions F(x,y) which specify the fractions of the initial momentum p and the momentum transfer r {equivalent_to} p{prime}{minus}p carried by the constituents of the nucleon. The kernel R(x,y;{xi},{eta}) governing the evolution of the non-forward distributions F(x,y) has a remarkable property: it produces the GLAPD evolution kernel P(x/{xi}) when integrated over y and reduces to the Brodsky-Lepage evolution kernel V(y,{eta}) after the x-integration. This property is used to construct the solution of the one-loop evolution equation for the flavor non-singlet part of the non-forward quark distribution.

  8. Quasi-elastic (QENS) and inelastic neutron scattering (INS) on hexamethylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Krawczyk, J. [H. Niewodniczanski Institute of Nuclear Physics PAN, NZ3, ul. Radzikowskiego 152, 31-342 Cracow (Poland)]. E-mail: jan.krawczyk@ifj.edu.pl; Mayer, J. [H. Niewodniczanski Institute of Nuclear Physics PAN, NZ3, ul. Radzikowskiego 152, 31-342 Cracow (Poland); Natkaniec, I. [H. Niewodniczanski Institute of Nuclear Physics PAN, NZ3, ul. Radzikowskiego 152, 31-342 Cracow (Poland): Frank Laboratory of Neutron Physics, JINR, 141980 Dubna, Russia (Russian Federation); Nowina Konopka, M. [H. Niewodniczanski Institute of Nuclear Physics PAN, NZ3, ul. Radzikowskiego 152, 31-342 Cracow (Poland); Pawlukojc [Frank Laboratory of Neutron Physics, JINR, 141980 Dubna, Russia (RU): Institute of Nuclear Chemistry and Technology, 03-195 Warszawa (Poland); Steinsvoll, O. [Institute for Energy Technology, 2007 Kjeller (Norway); Janik, J.A. [H. Niewodniczanski Institute of Nuclear Physics PAN, NZ3, ul. Radzikowskiego 152, 31-342 Cracow (Poland)

    2005-05-15

    The Quasi-elastic Neutron scattering (QENS) spectra of polycrystalline hexamethylbenzene (HMB) were measured for temperatures from 10K to room temperature (phase III and phase II) for momentum transfer 1.9A{sup -1}. The Inelastic Neutron scattering (INS) and QENS spectra for momentum transfer 0.5-2.9A{sup -1} were measured at T=20, 100 and 130K for energy transfer up to 200meV. The low-resolution diffraction patterns, used as the phase indicator, were also obtained. In the phase III (below 117K), we see practically no quasi-elastic broadening. In phase II, the broadening changes with the temperature are in good agreement with the Arrhenius law. The estimated activation barrier to reorientation is 6kJ/mol. The fitted mean time between instantaneous 120{sup o} jumps of CH{sub 3} groups changes from 10{sup -11}s at T=130K to 2x10{sup -13}s at room temperature. On the basis of EISF versus momentum transfer dependency it is hardly possible to decide what is the geometry of the reorientation. Both reorientation of the CH{sub 3} groups around the three-fold symmetry axis and reorientation of the whole molecule around the six-fold symmetry axis of the benzene ring could describe our results, the former being more probable. The measured INS spectra are compared with the quantum chemical ab initio calculations performed for an isolated HMB molecule.

  9. Quasi-elastic (QENS) and inelastic neutron scattering (INS) on hexamethylbenzene

    International Nuclear Information System (INIS)

    Krawczyk, J.; Mayer, J.; Natkaniec, I.; Nowina Konopka, M.; Pawlukojc; Steinsvoll, O.; Janik, J.A.

    2005-01-01

    The Quasi-elastic Neutron scattering (QENS) spectra of polycrystalline hexamethylbenzene (HMB) were measured for temperatures from 10K to room temperature (phase III and phase II) for momentum transfer 1.9A -1 . The Inelastic Neutron scattering (INS) and QENS spectra for momentum transfer 0.5-2.9A -1 were measured at T=20, 100 and 130K for energy transfer up to 200meV. The low-resolution diffraction patterns, used as the phase indicator, were also obtained. In the phase III (below 117K), we see practically no quasi-elastic broadening. In phase II, the broadening changes with the temperature are in good agreement with the Arrhenius law. The estimated activation barrier to reorientation is 6kJ/mol. The fitted mean time between instantaneous 120 o jumps of CH 3 groups changes from 10 -11 s at T=130K to 2x10 -13 s at room temperature. On the basis of EISF versus momentum transfer dependency it is hardly possible to decide what is the geometry of the reorientation. Both reorientation of the CH 3 groups around the three-fold symmetry axis and reorientation of the whole molecule around the six-fold symmetry axis of the benzene ring could describe our results, the former being more probable. The measured INS spectra are compared with the quantum chemical ab initio calculations performed for an isolated HMB molecule

  10. Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array

    International Nuclear Information System (INIS)

    Alexeyev, C. N.; Volyar, A. V.; Yavorsky, M. A.

    2011-01-01

    We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.

  11. Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyev, C. N.; Volyar, A. V. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Yavorsky, M. A. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Universite Bordeaux and CNRS, LOMA, UMR 5798, FR-33400 Talence (France)

    2011-12-15

    We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.

  12. Energy transfer in scattering by rotating potentials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Quantum mechanical scattering theory is studied for time-dependent. Schrödinger ... the energy transferred to a particle by collision with a rotating blade. Keywords. ..... terms of the unitary group for some time-independent generator. This will ...

  13. Practical way to avoid spurious geometrical contributions in Brillouin light scattering experiments at variable scattering angles.

    Science.gov (United States)

    Battistoni, Andrea; Bencivenga, Filippo; Fioretto, Daniele; Masciovecchio, Claudio

    2014-10-15

    In this Letter, we present a simple method to avoid the well-known spurious contributions in the Brillouin light scattering (BLS) spectrum arising from the finite aperture of collection optics. The method relies on the use of special spatial filters able to select the scattered light with arbitrary precision around a given value of the momentum transfer (Q). We demonstrate the effectiveness of such filters by analyzing the BLS spectra of a reference sample as a function of scattering angle. This practical and inexpensive method could be an extremely useful tool to fully exploit the potentiality of Brillouin acoustic spectroscopy, as it will easily allow for effective Q-variable experiments with unparalleled luminosity and resolution.

  14. Simulations of momentum transfer process between solar wind plasma and bias voltage tethers of electric sail thruster

    Science.gov (United States)

    Xia, Guangqing; Han, Yajie; Chen, Liuwei; Wei, Yanming; Yu, Yang; Chen, Maolin

    2018-06-01

    The interaction between the solar wind plasma and the bias voltage of long tethers is the basic mechanism of the electric sail thruster. The momentum transfer process between the solar wind plasma and electric tethers was investigated using a 2D full particle PIC method. The coupled electric field distribution and deflected ion trajectory under different bias voltages were compared, and the influence of bias voltage on momentum transfer process was analyzed. The results show that the high potential of the bias voltage of long tethers will slow down, stagnate, reflect and deflect a large number of ions, so that ion cavities are formed in the vicinity of the tether, and the ions will transmit the axial momentum to the sail tethers to produce the thrust. Compared to the singe tether, double tethers show a better thrust performance.

  15. Elastic and inelastic electron scattering on tensor polarized deuteron

    International Nuclear Information System (INIS)

    Zevakov, S.A.; Barkov, L.M.; Arenkhovel', Kh.

    2006-01-01

    The components T 20 and T 21 of the tensor analysis capability of the elastic electron scattering on deuteron are measured in the momentum transfer range of 8.4-21.6 fm -2 . The form factors of deuteron G C and G Q are defined in the momentum transfer range where the monopole charge form factor G C turns into zero. The preliminary measuring results of T 20 , T 21 and T 22 of the deuteron photodisintegration reaction in the photon energy range of 25-500 MeV and the proton departure angles equal to 20 deg-40 deg and 75 deg-105 deg are presented. The experimental results are compared with the theoretical predictions [ru

  16. Pion elastic and inelastic scattering from 15N

    International Nuclear Information System (INIS)

    Saunders, D.P.

    1991-12-01

    Data were obtained on the Clinton P. Anderson Los Alamos Meson Physics Facility Energetic Pion Channel and Spectrometer for elastic and inelastic pion scattering from ground state 15 N nuclei. States observed here included those of 0.0, 5.27, 6.32, 7.16, 7.30, 7.57, 8.31, 8.57, 9.15, 9.76, 9.9, 10.7, 11.3, 11.9, 12.5, 12.9, 13.1, 14.1, 14.4, 14.6, 15.0, 16.5, 16.9, 17.2, 17.6, 18.3, 18.7, and 18.9 MeV excitation energies. Angular distributions were obtained for scattering at angles from 25 degree to 90 degree in 5 degree increments with an incident pion energy of 164 MeV. Optical model analyses of the elastic (0 MeV) angular distributions with equal point proton and neutron densities in both momentum and coordinate space formulations accurately predict the data, although the two formulations require different energy shifts to do so. This difference is thought to be a result of the more accurate nonlocal representation of the nuclear potential in the momentum space code. Additional spectra were obtained for scattering at constant momentum transfers of .94 and 1.57 fm -1 in order to generate constant momentum transfer excitation functions. Use of these excitation functions, σ(π + )/σ(π - ) ratios, and shell model DWIA calculations allowed identification of several excited states having shell-model-like, single particle-hole, pure spin-flip excitations. Shell model and collective model DWIA calculations, as well as the q = .94 and 1.57 fm -1 excitation functions and the σ(π + )/σ(π - ) ratios indicate that the other states are generally well represented by a shell model description with collective enhancements

  17. Advances on detectors for low-angle scattering of epithermal neutrons

    International Nuclear Information System (INIS)

    Perelli Cippo, E; Gorini, G; Tardocchi, M; Andreani, C; Pietropaolo, A; Senesi, R; Rhodes, N J; Schoonveld, E M

    2008-01-01

    The Very Low Angle Detector (VLAD) installed at the ISIS spallation neutron source is a novel instrument for epithermal neutron scattering with a range of applications in solid state physics. VLAD extends the kinematical space of the VESUVIO spectrometer to low momentum transfers at neutron energies above 1 eV. Measurements at scattering angles as low as 1° have been made with limitations due to the achievable signal/background ratio. (technical design note)

  18. Inclusive quasielastic and deep inelastic electron scattering at high energies

    International Nuclear Information System (INIS)

    Day, D.B.

    1990-01-01

    With high electron energies a kinematic regime can be reached where it will be possible to separate quasielastic and deep inelastic scattering. We present a short description of these processes which dominate the inclusive spectrum. Using the highest momentum transfer data available to guide our estimates, we give the kinematic requirements and the cross sections expected. These results indicate that inclusive scattering at high q has a yet unfilled potential. 18 refs., 13 figs

  19. Momentum-dependent excitation processes in crystalline and amorphous films of conjugated oligomers

    International Nuclear Information System (INIS)

    Zojer, E.; Knupfer, M.; Shuai, Z.; Fink, J.; Bredas, J.L.; Hoerhold, H.-H.; Grimme, J.; Scherf, U.; Benincori, T.; Leising, G.

    2000-01-01

    The electronic structure of periodic materials is usually described on the basis of band-structure models, in which each state is not only characterized by its energy but also by the corresponding electron momentum. In this paper we present investigations of momentum-dependent excitation processes in a number of molecular crystals and amorphous thin films. For our studies we have chosen ladder-type quinquephenyl (5LP), distyrylbenzene (3PV), a substituted quinquephenylenevinylene (5PV), and a bridged quarterthienyl (4TB). These substances are representative for several classes of conjugated organic materials. Their physical properties are dominated by the molecular building blocks. The investigated films, however, also allow us to study differences in the characteristics of crystalline (3PV and 4TB), partly amorphous (5LP) and fully amorphous (5PV) systems. Momentum-dependent excitations are induced by inelastic electron scattering in electron-energy-loss spectroscopy (EELS) experiments. The experimental data are compared to molecule based post-Hartree-Fock quantum-chemical simulations performed with the intermediate neglect of differential overlap (INDO) approach coupled to a configuration interaction (CI) technique applying the proper momentum-dependent transition matrix elements. Our results show that even in relatively small systems the molecular electronic states can be characterized by an associated range in momentum space. In addition, differences between inelastic electron scattering spectra for low values of momentum transfer and the optical data obtained for the crystalline samples underline the strong impact of light propagation on the absorption characteristics of highly anisotropic crystalline materials

  20. Pion scattering from very light nuclei

    International Nuclear Information System (INIS)

    Berman, B.

    1993-01-01

    Selected recent elastic and inelastic pion-scattering experiments on 3 H, 3 He, and 4 He will be reviewed. Particular attention will be given to multinucleon or cluster aspects of the data, and to possible comparisons with electron-scattering results. From elastic scattering from 3 H and 3 He at forward angles, one can extract the matter distribution of the paired neutrons in 3 H as well as that of the paired protons in 3 He. At backward angles, scattering from correlated nucleon pairs and/or two-step processes play an important role. For inelastic scattering, the momentum-transfer dependence of the cross section varies strongly with incident energy. Elastic scattering from a polarized 3 He target shows a strong asymmetry near 90 degrees. Elastic scattering from 4 He yields results which cannot be fitted with a simple optical model. An for inelastic scattering from 4 He, analysis of the data requires an important contribution from direct triton knockout

  1. Constituent models and large transverse momentum reactions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1975-01-01

    The discussion of constituent models and large transverse momentum reactions includes the structure of hard scattering models, dimensional counting rules for large transverse momentum reactions, dimensional counting and exclusive processes, the deuteron form factor, applications to inclusive reactions, predictions for meson and photon beams, the charge-cubed test for the e/sup +-/p → e/sup +-/γX asymmetry, the quasi-elastic peak in inclusive hadronic reactions, correlations, and the multiplicity bump at large transverse momentum. Also covered are the partition method for bound state calculations, proofs of dimensional counting, minimal neutralization and quark--quark scattering, the development of the constituent interchange model, and the A dependence of high transverse momentum reactions

  2. On conservation of the baryon chirality in the processes with large momentum transfer

    International Nuclear Information System (INIS)

    Ioffe, B.L.

    1976-01-01

    The hypothesis of the baryon chirality conservation in the processes with large momentum transfer is suggested and some arguments in its favour are made. Experimental implicatiosns of this assumption for weak and electromagnetic form factors of transitions in the baryon octet and of transitions N → Δ, N → Σsup(*) are considered

  3. Effects of nuclear structure in the spin-dependent scattering of weakly interacting massive particles

    Science.gov (United States)

    Nikolaev, M. A.; Klapdor-Kleingrothaus, H. V.

    1993-06-01

    We present calculations of the nuclear from factors for spin-dependent elastic scattering of dark matter WIMPs from123Te and131Xe isotopes, proposed to be used for dark matter detection. A method based on the theory of finite Fermi systems was used to describe the reduction of the single-particle spin-dependent matrix elements in the nuclear medium. Nucleon single-particle states were calculated in a realistic shell model potential; pairing effects were treated within the BCS model. The coupling of the lowest single-particle levels in123Te to collective 2+ excitations of the core was taken into account phenomenologically. The calculated nuclear form factors are considerably less then the single-particle ones for low momentum transfer. At high momentum transfer some dynamical amplification takes place due to the pion exchange term in the effective nuclear interaction. But as the momentum transfer increases, the difference disappears, the momentum transfer increases and the quenching effect disappears. The shape of the nuclear form factor for the131Xe isotope differs from the one obtained using an oscillator basis.

  4. Effects of nuclear structure in the spin-dependent scattering of weakly interacting massive particles

    International Nuclear Information System (INIS)

    Nikolaev, M.A.; Klapdor-Kleingrothaus, H.V.

    1993-01-01

    We present calculations of the nuclear from factors for spin-dependent elastic scattering of dark matter WIMPs from 123 Te and 131 Xe isotopes, proposed to be used for dark matter detection. A method based on the theory of finite Fermi systems was used to describe the reduction of the single-particle spin-dependent matrix elements in the nuclear medium. Nucelon single-particle states were calculated in a realistic shell model potential; pairing effects were treated within the BCS model. The coupling of the lowest single-particle levels in 123 Te to collective 2 + excitations of the core was taken into account phenomenologically. The calculated nuclear form factors are considerably less then the single-particle ones for low momentum transfer. At high momentum transfer some dynamical amplification takes place due to the pion exchange term in the effective nuclear interaction. But as the momentum transfer increases, the difference disappears, the momentum transfer increases and quenching effect disappears. The shape of the nuclear form factor for the 131 Xe isotope differs from the one obtained using an oscillator basis. (orig.)

  5. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Kevin H.

    2014-07-14

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  6. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.

    Science.gov (United States)

    Voit, Florian; Hohmann, Ansgar; Schäfer, Jan; Kienle, Alwin

    2012-04-01

    For many research areas in biomedical optics, information about scattering of polarized light in turbid media is of increasing importance. Scattering simulations within this field are mainly performed on the basis of radiative transfer theory. In this study a polarization sensitive Monte Carlo solution of radiative transfer theory is compared to exact Maxwell solutions for all elements of the scattering Müller matrix. Different scatterer volume concentrations are modeled as a multitude of monodisperse nonabsorbing spheres randomly positioned in a cubic simulation volume which is irradiated with monochromatic incident light. For all Müller matrix elements effects due to dependent scattering and multiple scattering are analysed. The results are in overall good agreement between the two methods with deviations related to dependent scattering being prominent for high volume concentrations and high scattering angles.

  7. Corrections to the leading eikonal amplitude for high-energy scattering and quasipotential approach

    International Nuclear Information System (INIS)

    Nguyen Suan Hani; Nguyen Duy Hung

    2003-12-01

    Asymptotic behaviour of the scattering amplitude for two scalar particle at high energy and fixed momentum transfers is reconsidered in quantum field theory. In the framework of the quasipotential approach and the modified perturbation theory a systematic scheme of finding the leading eikonal scattering amplitudes and its corrections is developed and constructed. The connection between the solutions obtained by quasipotential and functional approaches is also discussed. (author)

  8. Investigation of incomplete linear momentum transfer in heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Leray, S.

    1986-07-01

    At intermediate energies, heavy ion central collisions lead to the incomplete fusion of the incident nuclei while part of the initial linear momentum is carried away by fast light particles. Experiments were performed with 30 MeV per nucleon neon and 20, 35 and 44 MeV per nucleon argon projectiles bombarding heavy targets. Results obtained with 30 MeV per nucleon neon and 20 MeV per nucleon argon beams are in good agreement with an empirical law established with lighter projectiles. On the contrary, 35 and 44 MeV per nucleon argon projectiles do not follow the same law and fission fragments progressively disappear. A simple model explains the evolution of the amount of transferred linear momentum versus incident energy. The disappearance of the fusion products of the composite system observed with argon projectiles beyond 35 MeV per nucleon is explained by a limitation of the excitation energy per nucleon which can be deposited in a nucleus. The limit is evaluated from nucleon binding energy in nuclei and probability to emit clusters and is in good agreement with experimental data. Because of the coupling between intrinsic motion of nucleons and relative motion of nuclei, some nucleons have a kinetic energy high enough to be emitted: a theoretical model is proposed which rather well fits the data concerning fast nucleons but cannot explain the measured amounts of transferred linear momentum. This is attributed to the existence of other mechanisms [fr

  9. Heat and momentum transfer from an atmospheric argon hydrogen plasma jet to spherical particles

    International Nuclear Information System (INIS)

    Vaessen, P.H.M.

    1984-01-01

    In this thesis the author describes the energy and momentum transfer from the plasma jet to the spray particles. This is done both experimentally and theoretically. Also the internal energy process of the recombining plasma is discussed. All elastic and inelastic collisional and radiative processes, as well as transport effects within the plasma are considered. In the next section, the so called passive spectroscopy is treated. It describes the diagnostics of electron density and temperature measurement, as well as the investigation on heat content of the particles. Spatially resolved electron density and temperature profiles are presented. Next, the active spectroscopy, i.e. the laser Doppler anemometer is dealt with. With this diagnostic, axial spray-particle velocities inside the plasma jet were determined. The author also presents heat and momentum transfer modelling of the plasma, related to the plasma particle interaction. Finally, a one dimensional model verification is made, using the experimentally determined particle velocity and plasma temperature profiles. (Auth.)

  10. Neutron elastic scattering at very small angles

    CERN Multimedia

    2002-01-01

    This experiment will measure neutron-proton elastic scattering at very small angles and hence very small four-momentum transfer, |t|. The range of |t| depends on the incident neutron momentum of the events but the geometrical acceptance will cover the angular range 0.025 < $\\Theta_{lab}$ < 1.9 mrad. The higher figure could be extended to 8.4 mrad by changing the geometry of the experiment in a later phase. \\\\ \\\\ The neutron beam will be highly collimated and will be derived from a 400 GeV external proton beam of up to $4 \\times 10^{10}$ protons per pulse in the SPS North Area Hall 1. The hydrogen target will be gaseous, operating at 40 atm. pressure and acts as a multiwire proportional chamber to detect the recoil protons. The forward neutron will be detected and located by interaction in a neutron vertex detector and its energy measured by a conventional steel plate calorimeter. \\\\ \\\\ The experiment will cover the angular region of nucleon-nucleon scattering which is dominated by Coulomb scattering ...

  11. Theory of deep inelastic neutron scattering: Hard-core perturbation theory

    International Nuclear Information System (INIS)

    Silver, R.N.

    1988-01-01

    Details are presented of a new many-body theory for deep inelastic neutron scattering (DINS) experiments to measure momentum distributions in quantum fluids and solids. The high-momentum and energy-transfer scattering law in helium is shown to be a convolution of the impulse approximation with a final-state broadening function which depends on the scattering phase shifts and the radial distribution function. The predicted broadening satisfies approximate Y scaling, is neither Lorentzian nor Gaussian, and obeys the f, ω 2 , and ω 3 sum rules. The derivation uses a combination of Liouville perturbation theory, projection superoperators, and semiclassical methods which I term ''hard-core perturbation theory.'' A review is presented of the predictions of prior theories for DINS experiments in relation to the present work. A subsequent paper will present massive numerical predictions and a discussion of DINS experiments on superfluid 4 He

  12. Multiple nucleon transfer in damped nuclear collisions. [Lectures, mass charge, and linear and angular momentum transport

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, J.

    1979-07-01

    This lecture discusses a theory for the transport of mass, charge, linear, and angular momentum and energy in damped nuclear collisions, as induced by multiple transfer of individual nucleons. 11 references.

  13. Large-angle theory for pion-nucleus scattering at high energies

    International Nuclear Information System (INIS)

    Hoock, D.W. Jr.

    1978-01-01

    An approximate solution for high-energy, projectile-nucleus, multiple scattering is developed from the exact Watson series and applied to pion scattering for 12 C and 4 He. Agreement with measured differential cross sections available from the literature for the range 150 to 260 MeV pion laboratory energies is surprisingly good. The approximation method expands the propagators of the Watson series about the transverse component of the momentum transfer. Contributions of each of the first two terms to double scattering from a Gaussian potential are compared to the exact solution. The purely plane-wave propagation produces a scattering amplitude that agrees to order (k 0 a) -1 with the exact solution at the forward and backward directions at high energies. The second (off-axis) propagation term produces an amplitude that is one order smaller at forward angles and two orders smaller at 180 0 than the exact amplitude. At intermediate angles it is of the same order. The general multiple-scattering series is approximated with selection of plane-wave propagation as the fundamental process at large and small angles. This model suggests that a single nucleon accepts most of the momentum transfer for backward scattering. The resulting multiple-scattering formula agrees with the well-known high-energy eikonal theory at small angles and the backward-angle scattering formula of Chen at exactly 180 0 . A lowest-order formula that includes off-axis propagation is also derived. Predicted differential cross sections are found to be sensitive to nucleon motion and binding. For 4 He the effect of the nuclear potential on the pion kinetic energy is also examined and found to produce significant changes in the predicted cross sections

  14. Application of the Radiative Transfer Equation (RTE) to Scattering by ...

    African Journals Online (AJOL)

    Application of the Radiative Transfer Equation (RTE) to Scattering by a Dust Aerosol Layer. ... Incident radiation in its journey through the atmosphere before reaching the earth surface encounters particles of different sizes and composition such as dust aerosols resulting in interactions that lead to absorption and scattering.

  15. Nucleon Compton Scattering with Two Space-Like Photons

    International Nuclear Information System (INIS)

    Andrei Afanasev; I. Akushevich; N.P. Merenkov

    2002-01-01

    We calculate two-photon exchange effects for elastic electron-proton scattering at high momentum transfers. The corresponding nucleon Compton amplitude is defined by two space-like virtual photons that appear to have significant virtualities. We make predictions for (a) a single-spin beam asymmetry, and (b) a single-spin target asymmetry or recoil proton polarization caused by an unpolarized electron beam

  16. Evidences from electron momentum spectroscopy for ultra-fast charge transfers and structural reorganizations in a floppy molecule: Ethanol

    International Nuclear Information System (INIS)

    Deleuze, Michael S; Hajgato, Balazs; Morini, Filippo

    2009-01-01

    Calculations of electron momentum distributions employing advanced Dyson orbital theories and statistical thermodynamics beyond the RRHO approximation fail to quantitatively reproduce the outermost momentum profile inferred from experiments on ethanol employing high resolution Electron Momentum Spectroscopy [1]. Study of the influence of nuclear dynamics in the initial ground state and final ionized state indicates that this discrepancy between theory and experiment reflects a charge transfer occurring during an ultra-fast dissociation of the ethanol radical cation into a methyl radical and H 2 C=O-H + .

  17. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  18. Elastic scattering crossovers from 50 to 175 GeV

    International Nuclear Information System (INIS)

    Anderson, R.L.; Ayres, D.S.; Barton, D.S.; Brenner, A.E.; Butler, J.; Cutts, D.; DeMarzo, C.; Diebold, R.; Elias, J.E.; Fines, J.; Friedman, J.I.; Gittelman, B.; Gottschalk, B.; Guerriero, L.; Gustavson, D.; Kendall, H.W.; Lanou, R.E.; Lavopa, P.; Levinson, L.J.; Litt, J.; Loh, E.; Maclay, G.J.; Maggi, G.; Massimo, J.T.; Meunier, R.; Mikenberg, G.; Nelson, B.; Posa, F.; Rich, K.; Ritson, D.M.; Rosenson, L.; Selvaggi, G.; Sogard, M.; Spinelli, P.; Verdier, R.; Waldner, F.; Weitsch, G.A.

    1976-01-01

    A comparison of K/sup plus-or-minus/p and p/sup plus-or-minus/p elastic scattering is made for incident energy 50 to 175 GeV. Average values of 0.19 +- 0.04 and 0.11 +- 0.02 GeV 2 were found for the invariant-momentum-transfer values of the Kp and pp crossover points, respectively

  19. Small Angle X-Ray Scattering Detector

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  20. The measurement of antiproton-proton total cross sections and small-angle elastic scattering at low momentum

    International Nuclear Information System (INIS)

    Linssen, L.H.A.J.

    1986-01-01

    In this thesis two low-momentum antiproton-proton (anti pp) experiments are described. The first one is a set of 24 high statistics anti pp total cross section measurements as a function of the incoming antiproton momentum between p=388 MeV/c and p=599 MeV/c. These measurements simultaneously yield the charge exchange cross section (anti pp → anti nn). The second one comprises two high statistics anti pp small-angle elastic scattering measurements at p=233 MeV/c and p=272 MeV/c. The measurements were carried out using the high quality antiproton beam extracted from the Low Energy Antiproton Ring (LEAR) at CERN. The physics motivation for these experiments is a search for anti pp resonances or bound states on one hand, and a detailed study of the anti pp interaction on the other hand. (orig.)

  1. Anti pp elastic scattering at 30 GeV/c incident momentum in the momentum transfer range 0. 5<-t<5. 8(GeV/c)/sup 2/

    Energy Technology Data Exchange (ETDEWEB)

    Asa' d, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M. (University Coll., London (UK)); Baglin, A.

    1983-10-27

    The anti pp elastic differential cross section at 30 GeV/c incident momentum has been measured in a two-arm spectrometer experiment (WA7) at the CERN SPS. The vertical stroketvertical stroke-range covered extends from 0.5 to 5.8 (GeV/c)/sup 2/. A pronounced dip-bump structure is observed, with a sharp minimum around vertical stroketvertical strokeapprox.=1.7 (GeV/c)/sup 2/. The results are compared with existing anti pp data at lower energies and with our earlier anti pp data at 50 GeV/c. A number of model predictions are discussed. We also compare the anti pp 30 GeV/c differential cross section with that of pp at the same momentum. Finally, the energy dependence of the anti pp fixed-vertical stroketvertical stroke differential cross section in the incident momentum range 3.6 to 50 GeV/c is presented.

  2. Elastic scattering of charged mesons, antiprotons and protons on protons at incident momenta of 20, 30 and 50 GeV/c in the momentum tranfer range 0.52

    International Nuclear Information System (INIS)

    Asa'd, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M.; Baglin, C.; Guillaud, J.P.; Poulet, M.; Myrheim, J.; Gjerpe, I.K.; Buran, T.; Buzzo, A.; Ferroni, S.; Gracco, V.; Kirsebom, K.; Macri, M.; Santroni, A.; Soersdal, T.

    1985-01-01

    Results are presented from experiment WA7 at the CERN SPS, which has measured the elastic differential cross sections of πsup(+-)p, Ksup(+-)p, anti pp and pp at incident momenta of 20, 30 and 50 GeV/c. The measurements cover the momentum transfer range 0.5 2 , corresponding to c.m. scattering angles between 10 0 and 50 0 . The experimental set-up, trigger logic and data analysis are described. The experimental results are compared with existing meson-proton and nucleon-proton data at lower and higher energies covering the medium- and large-vertical stroketvertical stroke region. Some prominent models and their predictions for elastic scattering at WA7 energies and beyond are reviewed, with emphasis on geometrical scaling, factorizing eikonal models, lowest-order QCD and other dynamical exchange-type models. Results for anti pp two-body annihilation into π - π + and K - K + at 30 and 50 GeV/c, obtained in parallel with the elastic anti pp data, are also presented. (orig.)

  3. Compton-scattering from hydrogen, deuterium and complex nuclei at photonenergies of 3 and 5 Gev under very small scattering angles

    International Nuclear Information System (INIS)

    Kahl, T.

    1976-01-01

    Compton scattering on hydrogen, deuterium and heavy nuclei up to hold was studied at very small momentum transfer and at two energies. Measurements were carried out in the region 0.002LT= /t/ LT=0.06 (GeV/c)**2 at 5 GeV and in the region 0.001 LT=/t/LT=0.02 (GeV/c)**2 at 3 GeV. (orig.) [de

  4. Electron-helium scattering in Debye plasmas

    International Nuclear Information System (INIS)

    Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor; Janev, R. K.

    2011-01-01

    Electron-helium scattering in weakly coupled hot-dense (Debye) plasma has been investigated using the convergent close-coupling method. The Yukawa-type Debye-Hueckel potential has been used to describe plasma Coulomb screening effects. Benchmark results are presented for momentum transfer cross sections, excitation, ionization, and total cross sections for scattering from the ground and metastable states of helium. Calculations cover the entire energy range up to 1000 eV for the no screening case and various Debye lengths (5-100 a 0 ). We find that as the screening interaction increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.

  5. A Study of the $Q^{2}$ Dependence of the QCD Coupling Constant from the Transverse Momentum of Jets in Deep Inelastic Muon Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Janet Marie [Harvard U.

    1993-01-01

    Experiment 665 at Fermilab is the first deep inelastic scattering experiment to obtain data in a kinematic range where jets can be identified on an event-by-event basis. In this thesis, using the average squared transverse momentum of the jets produced in deep inelastic muon scattering, a quantity is calculated which Perturbative QCD predicts to be equal to $\\alpha_3$ the strong coupling constant. The quantity is studied as a function of $Q^2$, the negative 4-momentum squared of the virtual photon, for 3 < $Q^2$ < 25 $GeV^2$. The data a.re shown to be consistent with the predictions of PQCD with $\\Lambda ^{\\eta_f = 4}_{DIS}$ = 359 ± 31 (stat) ± 149 (sys) MeV. However this may have a significant theoretical error due to uncalculated higher order corrections. This thesis provides a detailed description of the characteristics of the identified jets. The transverse momentum due to fragmentation is measured to be ($P^2_{\\tau}frag$) = 0.0820 ±0.002(stat) ±0.005(sys). Using naive assumptions about the jets, the intrinsic transverse momentum is measured to be ($k^2_{\\tau}$) = 0.27 ±0.01 (stat) ±0.03 (sys) Gev·2

  6. Transverse spin and momentum correlations in quantum ...

    Indian Academy of Sciences (India)

    asymmetry for a longitudinally polarized target in semi-inclusive deep inelastic scattering. Keywords. .... integrate out ξ and perform the momentum integration over the diquark momentum ...... [53] European Muon: M Arneodo et al, Z. Phys. C34 ...

  7. A sample cell to study hydrate formation with x-ray scattering

    International Nuclear Information System (INIS)

    Conrad, Heiko; Lehmkuehler, Felix; Sternemann, Christian; Feroughi, Omid; Tolan, Metin; Simonelli, Laura; Huotari, Simo

    2009-01-01

    We present a new sample cell for measuring nonresonant inelastic x-ray scattering spectra of a tetrahydrofuran (THF)-water liquid mixture and THF hydrate. The hydrate is formed inside the cell after nucleation seeds have been offered by a special magnetic stirring mechanism. Hydrate formation was verified by wide angle x-ray scattering and nonresonant x-ray Raman scattering spectra at the oxygen K-edge. A broad range of scattering angles can be studied with this cell which is necessary for momentum transfer dependent inelastic x-ray scattering. This cell is ideal to examine other liquid hydrate formers or other liquid samples, which have to be mixed in situ during the measurements.

  8. Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions

    International Nuclear Information System (INIS)

    Tarvainen, Tanja; Vauhkonen, Marko; Kolehmainen, Ville; Arridge, Simon R; Kaipio, Jari P

    2005-01-01

    In this paper, a coupled radiative transfer equation and diffusion approximation model is extended for light propagation in turbid medium with low-scattering and non-scattering regions. The light propagation is modelled with the radiative transfer equation in sub-domains in which the assumptions of the diffusion approximation are not valid. The diffusion approximation is used elsewhere in the domain. The two equations are coupled through their boundary conditions and they are solved simultaneously using the finite element method. The streamline diffusion modification is used to avoid the ray-effect problem in the finite element solution of the radiative transfer equation. The proposed method is tested with simulations. The results of the coupled model are compared with the finite element solutions of the radiative transfer equation and the diffusion approximation and with results of Monte Carlo simulation. The results show that the coupled model can be used to describe photon migration in turbid medium with low-scattering and non-scattering regions more accurately than the conventional diffusion model

  9. Coulomb interference and bending slope in hadron-hadron scattering

    International Nuclear Information System (INIS)

    Pereira, Flavio I.; Ferreira, Erasmo

    1994-01-01

    With the purpose of testing the results of QCD calculations on the structure of the forward elastic scattering cross-section, we analyse the coulombic-nuclear interference occurring at small values of the momentum transfer. We emphasize the influence of the hadronic structures on the determination of the Coulomb phase and consequently on the t-dependence of the strong interaction slope parameter. (author)

  10. Measuring momentum for charged particle tomography

    Science.gov (United States)

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  11. Quantum effects in deep inelastic neutron scattering

    International Nuclear Information System (INIS)

    Mayers, J.

    1989-07-01

    In the Impulse Approximation (IA), which is used to interpret deep inelastic neutron scattering (DINS) measurements, it is assumed both that the target system can be treated as a gas of free atoms and that the struck atom recoils freely after the collision with the neutron. Departures from the IA are generally attributed to final state effects (FSE), which are due to the inaccuracy of the latter assumption. However it is shown that even when FSE are neglected, significant departures from the IA occur at low temperatures due to inaccuracies in the former assumption. These are referred to as initial state effects (ISE) and are due to the quantum nature of the initial state. Comparison with experimental data and exactly soluble models shows that ISE largely account for observed asymmetries and peak shifts in the neutron scattering function S(q,ω), compared with the IA prediction. It is shown that when FSE are neglected, ISE can also be neglected when either the momentum transfer or the temperature is high. Finally it is shown that FSE should be negligible at high momentum transfers in systems other than quantum fluids and that therefore in this regime the IA is reached in such systems. (author)

  12. Probing Proton Spin Structure: A Measurement of g2 at Four-momentum Transfer of 2 to 6 GeV2

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, James [Univ. of Virginia, Charlottesville, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2011-12-01

    The Spin Asymmetries of the Nucleon Experiment investigated the spin structure of the proton via inclusive electron scattering at the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory in Newport News, VA. A double-polarization measurement of polarized asymmetries was performed using the University of Virginia solid polarized ammonia target with target polarization aligned longitudinal and near transverse to the electron beam, allowing the extraction of the spin asymmetries A1 and A2, and spin structure functions g1 and g2. Polarized electrons of energies of 4.7 and 5.9 GeV were scattered to be viewed by a novel, non-magnetic array of detectors observing a four-momentum transfer range of 2 to 6 GeV2. This document addresses the extraction of the spin asymmetries and spin structure functions, with a focus on spin structure function g2, which we have measured as a function of x and W in four Q2 bins.

  13. Normal Spin Asymmetries in Elastic Electron-Proton Scattering

    International Nuclear Information System (INIS)

    M. Gorchtein; P.A.M. Guichon; M. Vanderhaeghen

    2004-01-01

    We discuss the two-photon exchange contribution to observables which involve lepton helicity flip in elastic lepton-nucleon scattering. This contribution is accessed through the single spin asymmetry for a lepton beam polarized normal to the scattering plane. We estimate this beam normal spin asymmetry at large momentum transfer using a parton model and we express the corresponding amplitude in terms of generalized parton distributions. We further discuss this observable in the quasi-RCS kinematics which may be dominant at certain kinematical conditions and find it to be governed by the photon helicity-flip RCS amplitudes

  14. Normal Spin Asymmetries in Elastic Electron-Proton Scattering

    International Nuclear Information System (INIS)

    Gorchtein, M.; Guichon, P.A.M.; Vanderhaeghen, M.

    2005-01-01

    We discuss the two-photon exchange contribution to observables which involve lepton helicity flip in elastic lepton-nucleon scattering. This contribution is accessed through the single spin asymmetry for a lepton beam polarized normal to the scattering plane. We estimate this beam normal spin asymmetry at large momentum transfer using a parton model and we express the corresponding amplitude in terms of generalized parton distributions. We further discuss this observable in the quasi-RCS kinematics which may be dominant at certain kinematical conditions and find it to be governed by the photon helicity-flip RCS amplitudes

  15. Measurement of photon production in the very forward direction in deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2011-06-15

    The production of photons at very small angles with respect to the proton beam direction is studied in deep-inelastic positron-proton scattering at HERA. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 126 pb{sup -1}. The analysis covers the range of negative four momentum transfer squared at the positron vertex 67.9 as a function of its transverse momentum p{sub T}{sup lead} and longitudinal momentum fraction of the incoming proton x{sub L}{sup lead}. In addition, the cross sections are studied as a function of the sum of the longitudinal momentum fraction x{sub L}{sup sum} of all photons in the pseudorapidity range {eta}>7.9. The cross sections are normalised to the inclusive deep-inelastic scattering cross section and compared to the predictions of models of deep-inelastic scattering and models of the hadronic interactions of high energy cosmic rays. (orig.)

  16. Measurement of photon production in the very forward direction in deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Podgorica (ME); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Inst. (Armenia); Barrelet, E. [Univ. Pierre et Marie Curie Paris 6, LPNHE, Paris (France); Univ. Denis Diderot Paris 7, CNRS/IN2P3, Paris (France); Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [Univ. Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Univ. of Belgrade, Vinca Institute of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham (United Kingdom); Bruncko, D.; Cerny, V.; Ferencei, J. [Slovak Academy of Sciences, Inst. of Experimental Physics, Kosice (Slovakia)] [and others

    2011-10-15

    The production of photons at very small angles with respect to the proton beam direction is studied in deep-inelastic positron-proton scattering at HERA. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 126 pb{sup -1}. The analysis covers the range of negative four momentum transfer squared at the positron vertex 67.9 as a function of its transverse momentum p{sub T}{sup lead} and longitudinal momentum fraction of the incoming proton x{sub L}{sup lead}. In addition, the cross sections are studied as a function of the sum of the longitudinal momentum fraction x{sub L}{sup sum} of all photons in the pseudorapidity range {eta}>7.9. The cross sections are normalised to the inclusive deep-inelastic scattering cross section and compared to the predictions of models of deep-inelastic scattering and models of the hadronic interactions of high energy cosmic rays. (orig.)

  17. On the observability of the quark orbital angular momentum distribution

    Energy Technology Data Exchange (ETDEWEB)

    Courtoy, Aurore, E-mail: aurore.courtoy@ulg.be [IFPA, AGO Department, Université de Liège, Bât. B5, Sart Tilman, B-4000 Liège (Belgium); Laboratori Nazionali di Frascati, INFN, Frascati (Italy); Goldstein, Gary R., E-mail: gary.goldstein@tufts.edu [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Osvaldo Gonzalez Hernandez, J., E-mail: jog4m@virginia.edu [Istituto Nazionale di Fisica Nucleare (INFN) – Sezione di Torino, via P. Giuria, 1, 10125 Torino (Italy); Liuti, Simonetta, E-mail: sl4y@virginia.edu [University of Virginia – Physics Department, 382 McCormick Rd., Charlottesville, VA 22904 (United States); Laboratori Nazionali di Frascati, INFN, Frascati (Italy); Rajan, Abha, E-mail: ar5xc@virginia.edu [University of Virginia – Physics Department, 382 McCormick Rd., Charlottesville, VA 22904 (United States)

    2014-04-04

    We argue that due to parity constraints, the helicity combination of the purely momentum space counterparts of the Wigner distributions – the generalized transverse momentum distributions – that describes the configuration of an unpolarized quark in a longitudinally polarized nucleon can enter the deeply virtual Compton scattering amplitude only through matrix elements involving a final state interaction. The relevant matrix elements in turn involve light-cone operators projections in the transverse direction, or they appear in the deeply virtual Compton scattering amplitude at twist three. Orbital angular momentum or the spin structure of the nucleon was a major reason for these various distributions and amplitudes to have been introduced. We show that the twist three contributions associated with orbital angular momentum are related to the target-spin asymmetry in deeply virtual Compton scattering, already measured at HERMES.

  18. Cross section measurements of the elastic electron - deuteron scattering at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, Yvonne [Universitaet Mainz, Institut fuer Kernphysik (Germany); Collaboration: A1-Collaboration

    2015-07-01

    The electromagnetic form factors of light nuclei provide a sensitive test of our understanding of nuclei. Because the deuteron has spin one, three form factors are needed to fully describe the electromagnetic structure of the deuteron. Especially the deuteron charge radius is a favourite observable to compare experiment and calculation. Recently, an extensive measurement campaign has been performed at MAMI (Mainzer Microtron) to determine the deuteron charge radius using elastic electron scattering - with the aim to halve the error compared to previous such experiments. The experiment took place at the 3-spectrometer facility of the A1-collaboration. Cross section measurements of the elastic electron-deuteron scattering have been performed for 180 different kinematic settings in the low momentum transfer region. From these, the charge form factor can precisely be determined. Fitting the form factor with an appropiate fit function, the radius can then be determined from the slope at zero momentum transfer. The determined radius could then be used as a counterweight to the value obtained from the advanced atomic Lamb shift measurements, thus providing additional insight to the proton radius puzzle.

  19. Quantum mechanical study of elastic scattering and rotational excitation of CO by electrons

    Science.gov (United States)

    Onda, K.; Truhlar, D. G.

    1980-01-01

    Coupling calculations of differential, integral, and momentum transfer cross sections for pure elastic scattering and rotational excitation of CO by electron impact are reported. The calculations are based on a static charge distribution that has correct dipole and quadrupole moments, has cusps at the nuclei, and is augmented by an SCF treatment of charge polarization and a local approximation for exchange. The rotationally summed cross sections, with no adjustable parameters in the scattering calculation, are in reasonably good agreement with the experimental cross sections but are somewhat larger at small scattering angles.

  20. Deuteron-deuteron scattering at 3.0, 3.4 and 3.7 GeV/c, theoretical interpretation in the Glauber model

    International Nuclear Information System (INIS)

    Ballot, J.L.; L'Huillier, M.; Combes, M.P.; Tatischeff, B.

    1984-01-01

    An analysis of deuteron-deuteron scattering data at 3.0, 3.4 and 3.7 GeV/c is given in the framework of the Glauber NN multiple scattering model. The model accounts qualitatively well for the larger momentum transfer data. The model cannot reproduce the observed experimental bump at small transfer in the region of missing mass 2GeV/c, because pionic processes have been considered. Nevertheless it shows that the nucleon background is important

  1. Diffuse scattering in metallic tin polymorphs

    International Nuclear Information System (INIS)

    Wehinger, Björn; Bosak, Alexeï; Piccolboni, Giuseppe; Krisch, Michael; Refson, Keith; Chernyshov, Dmitry; Ivanov, Alexandre; Rumiantsev, Alexander

    2014-01-01

    The lattice dynamics of the metallic tin β and γ polymorphs has been studied by a combination of diffuse scattering, inelastic x-ray scattering and density functional perturbation theory. The non-symmorphic space group of the β -tin structure results in unusual asymmetry of thermal diffuse scattering. Strong resemblance of the diffuse scattering intensity distribution in β and γ-tin were observed, reflecting the structural relationship between the two phases and revealing the qualitative similarity of the underlying electronic potential. The strong influence of the electron subsystem on inter-ionic interactions creates anomalies in the phonon dispersion relations. All observed features are described in great detail by the density functional perturbation theory for both β - and γ-tin at arbitrary momentum transfers. The combined approach delivers thus a complete picture of the lattice dynamics in harmonic description. (paper)

  2. Magneto optical trap recoil ion momentum spectroscopy: application to ion-atom collisions

    International Nuclear Information System (INIS)

    Blieck, J.

    2008-10-01

    87 Rb atoms have been cooled, trapped and prepared as targets for collision studies with 2 and 5 keV Na + projectiles. The physics studied deals with charge exchange processes. The active electron, which is generally the most peripheral electron of the atomic target, is transferred from the target onto the ionic projectile. The ionized target is called recoil ion. The technique used to study this physics is the MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) technique, which combines a magneto optical trap and a recoil ion momentum spectrometer. The spectrometer is used for the measurement of the recoil ions momentum, which gives access to all the information of the collision: the Q-value (which is the potential energy difference of the active electron on each particle) and the scattering angle of the projectile. The trap provides extremely cold targets to optimize the measurement of the momentum, and to release the latter from thermal motion. Through cinematically complete experiments, the MOTRIMS technique gives access to better resolutions on momentum measurements. Measurements of differential cross sections in initial and final capture states and in scattering angle have been done. Results obtained for differential cross sections in initial and final states show globally a good agreement with theory and an other experiment. Nevertheless, discrepancies with theory and this other experiment are shown for the measurements of doubly differential cross sections. These discrepancies are not understood yet. The particularity of the experimental setup designed and tested in this work, namely a low background noise, allows a great sensitivity to weak capture channels, and brings a technical and scientific gain compared with previous works. (author)

  3. Orbital angular momentum of photons, plasmons and neutrinos in a plasma

    Science.gov (United States)

    Mendonca, J. T.; Thidé, Bo; Then, H.; Ali, S.

    2009-11-01

    We study the exchange of angular momentum between electromagnetic and electrostatic waves in a plasma, due to the stimulated Raman and Brillouin backscatering processes [1]. Angular momentum states for plasmon and phonon fields are introduced for the first time. We demonstrate that these states can be excited by nonlinear wave mixing, associated with the scattering processes. This could be relevant for plasma diagnostics, both in laboratory and in space. Nonlinearly coupled paraxial equations and instability growth rates are derived. The characteristic features of the plasmon modes with finite angular momentum are also discussed. The potential problem is solved and the angular momentum is explicitly calculated [2]. Finally, it is shown that an electron-neutrino beam, propagating in a background plasma, can be decomposed into orbital momentum states, similar to that of photon states. Coupling between different neutrino states, in the presence of a plasma vortex, is considered. We show that plasma vorticity can be transfered to the neutrino beam, which is relevant to the understanding of the neutrino sources in astrophysics. [1] J.T. Mendonca et al., PRL 102, 185005 (2009). [2] S. Ali and J.T. Mendonca, PoP (2009) submitted. [3] J.T. Mendonca and B. Thide, Europhys. Lett. 84, 41001 (2008).

  4. Effects of hadronic colour structure in quasi-elastic and charge-exchange scattering on nuclei

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Zakharov, B.G.

    1986-01-01

    Effects of hadronic hidden colour screening are considered in hadron-nucleus interaction. It is shown that in the quasi-free charge exchange-reaction nuclear matter becomes transparent for the scattered hadron if the momentum transfer is large enough. The available experimental data confirm this prediction of QCD

  5. Elastic scattering of. pi. /sup -/ mesons on protons in the Coulomb-nuclear interference region at 33-60 GeV/c. [Total and differential cross sections,scattering amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Apokin, V D; Vasiliev, A N; Derevshchikov, A A; Matulenko, Yu A; Meschanin, A P; Mysnik, A I; Nurushev, S B; Saraykin, A I; Siksin, V V; Smirnov, E V [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov. Inst. Fiziki Vysokikh Ehnergij

    1976-04-19

    Differential cross sections for the elastic scattering of negative pions on protons, as well as total cross sections have been measured for the incident momentum range from 33 up to 60 GeV/c. The values for four-momentum transfer were within the limits of -(10/sup -3/-8x10/sup -2/) (GeV/c)/sup 2/. The energy dependence of the ratio rho(0) of the real part of the forward elastic scattering amplitude to the imaginary part has been determined from the experimental data. The magnitude rho(0) smoothly increases from (-10.9+-1.2)% at momenta 33.52 GeV/c up to (-1.8+-1.8)% at 59.4 GeV/c. The results obtained are compared with the predictions of theoretical models.

  6. Scattering in quantum field theory: the M.P.S.A. approach in complex momentum space

    International Nuclear Information System (INIS)

    Bros, J.

    1981-02-01

    In this course, we intend to show how 'Many-Particle Structure Analysis' (M.P.S.A.) can be worked out in the standard field-theoretical framework, by using integral relations in complex momentum space involving 'l-particle irreducible kernels'. The ultimate purpose of this approach is to obtain the best possible knowledge of the singularities (location, nature, type of ramification) and of the ambient holomorphy (or meromorphy) domains of the n-point Green functions and scattering amplitudes, and at the same time to derive analytic structural equations for them which display the global organization of these singularities. The generation of Landau singularities for integrals and Fredholm resolvents, taken on cycles in complex space, will be explained on the basis of the Picard-Lefschetz formula (presented and used in simple situations). Among various results described, we present and analyse a structural equation for the six-point function (and for the 3 → 3 particle scattering function), valid in a domain containing the three-particle normal threshold

  7. Double-slit experiment in momentum space

    Science.gov (United States)

    Ivanov, I. P.; Seipt, D.; Surzhykov, A.; Fritzsche, S.

    2016-08-01

    Young's classic double-slit experiment demonstrates the reality of interference when waves and particles travel simultaneously along two different spatial paths. Here, we propose a double-slit experiment in momentum space, realized in the free-space elastic scattering of vortex electrons. We show that this process proceeds along two paths in momentum space, which are well localized and well separated from each other. For such vortex beams, the (plane-wave) amplitudes along the two paths acquire adjustable phase shifts and produce interference fringes in the final angular distribution. We argue that this experiment can be realized with the present-day technology. We show that it gives experimental access to the Coulomb phase, a quantity which plays an important role in all charged particle scattering but which usual scattering experiments are insensitive to.

  8. Small-angle neutron scattering at pulsed sources compared to reactor sources

    International Nuclear Information System (INIS)

    Hjelm, R.P. Jr.; Seeger, P.A.; Thiyagarajan, P.

    1990-01-01

    Detailed comparisons of measurements made on small-angle neutron scattering instruments at pulsed spallation and reactor sources show that the results from the two types of instruments are comparable. It is further demonstrated that spallation instruments are preferable for measurements in the mid-momentum transfer domain or when a large domain is needed. 8 refs., 2 figs

  9. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics

    Science.gov (United States)

    Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar

    2017-02-01

    Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre-Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of 15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles.

  10. Anisotropic scattering in three dimensional differential approximation of radiation heat transfer

    International Nuclear Information System (INIS)

    Condiff, D.W.

    1987-01-01

    The differential approximation is extended to account for anisotropic scattering in invariant three dimensional form. A moment method using polyadic Legendre functions establishes that pressure cross sections should take precedence over extinction cross sections for treating radiation heat transfer in an absorbing, emitting, and scattering medium, and that use of these cross sections accounts for the extent of preferred forward or backwards scattering. The procedure and principle is extended to polyadic P-N approximations

  11. Multiple scattering theory of radiative transfer in inhomogeneous atmospheres.

    Science.gov (United States)

    Kanal, M.

    1973-01-01

    In this paper we treat the multiple scattering theory of radiative transfer in plane-parallel inhomogeneous atmospheres. The treatment presented here may be adopted to model atmospheres characterized by an optical depth dependent coherent scattering phase function. For the purpose of illustration we consider the semi-infinite medium in which the absorption property of the atmosphere is characterized by an exponential function. The methodology employed here is the extension of the case treated previously by the author for homogeneous atmospheres.

  12. The determination of electron momentum densities by inelastic scattering gamma-ray-electron coincidence measurements: The (γ,eγ)-experiment

    International Nuclear Information System (INIS)

    Rollason, A.J.; Bell, F.; Schneider, J.R.

    1989-09-01

    Measurements have been made of the recoiling electron in 320 keV gamma ray inelastic scattering collisions in thin aluminium targets. The angular correlation of these electrons detected in coincidence with the scattered photon is in agreement with the kinematic requirements of the Compton effect and is correctly predicted by Monte Carlo simulations based on the impulse approximation. Further simulations of ideal-geometry experiments indicate that information about the initial electron momenta is available from an examination of those electron-photon events originating in a surface layer of one electronic mean free path depth and that elastic scattering of the recoil electrons from greater depths produces a nearly flat background to this signal. The results clearly demonstrate the feasibility of the (γ,eγ) experiment for studying electron momentum densities with synchrotron radiation. (orig.) With 23 refs., 17 figs

  13. A condensed matter electron momentum spectrometer with parallel detection in energy and momentum

    Energy Technology Data Exchange (ETDEWEB)

    Storer, P; Caprari, R S; Clark, S A.C.; Vos, M; Weigold, E

    1994-03-01

    An electron momentum spectrometer has been constructed which measures electron binding energies and momenta by fully determining the kinematics of the incident, scattered and ejected electrons resulting from (e,2e) ionizing collisions in a thin solid foil. The spectrometer operates with incident beam energies of 20-30 keV in an asymmetric, non-coplanar scattering geometry. Bethe ridge kinematics are used. The technique uses transmission through the target foil, but it is most sensitive to the surface from which the 1.2 keV electrons emerge, to a depth of about 5 nm. Scattered and ejected electron energies and azimuthal angles are detected in parallel using position sensitive detection, yielding true coincidence count rates of 6 Hz from a 5.5 nm thick evaporated carbon target and an incident beam current of around 100 nA. The energy resolution is approximately 1.3 eV and momentum resolution approximately 0.15 a{sub 0}{sup -1}. The energy resolution could readily be improved by monochromating the incident electron beam. 28 refs., 15 figs.

  14. A condensed matter electron momentum spectrometer with parallel detection in energy and momentum

    International Nuclear Information System (INIS)

    Storer, P.; Caprari, R.S.; Clark, S.A.C.; Vos, M.; Weigold, E.

    1994-03-01

    An electron momentum spectrometer has been constructed which measures electron binding energies and momenta by fully determining the kinematics of the incident, scattered and ejected electrons resulting from (e,2e) ionizing collisions in a thin solid foil. The spectrometer operates with incident beam energies of 20-30 keV in an asymmetric, non-coplanar scattering geometry. Bethe ridge kinematics are used. The technique uses transmission through the target foil, but it is most sensitive to the surface from which the 1.2 keV electrons emerge, to a depth of about 5 nm. Scattered and ejected electron energies and azimuthal angles are detected in parallel using position sensitive detection, yielding true coincidence count rates of 6 Hz from a 5.5 nm thick evaporated carbon target and an incident beam current of around 100 nA. The energy resolution is approximately 1.3 eV and momentum resolution approximately 0.15 a 0 -1 . The energy resolution could readily be improved by monochromating the incident electron beam. 28 refs., 15 figs

  15. Transfer of momentum, mass and charge in heavy ion collisions

    International Nuclear Information System (INIS)

    Beck, F.; Feldmeier, H.; Dworzecka, M.

    1979-01-01

    A model for the first two phases of heavy ion collisions based on the transport of single nucleons through the window between the two scattering nuclei is described in some detail. It is pointed out that the model can account simultaneously for a large portion of the energy transfer from relative to intrinsic motion and for the observed variances in mass and charge numbers for reaction times up to the order of 10 -21 s. (P.L.)

  16. The nucleon-nucleus scattering at intermediate energies

    International Nuclear Information System (INIS)

    Auger, J.-P.

    1976-01-01

    The Glauber model has the merit to connect directly the nucleon-nucleus elastic differential cross section with the nucleon-nucleon amplitude and nuclear densities. The general agreement between the 1 GeV proton elastic scattering differential cross sections calculated without adjustable parameter and the experimental data (from He 4 to Pb 208 ) is rather satisfactory up to 2. - 2.5 fm -1 momentum transfer. Although the 1 GeV proton elastic scattering experiments constitute at present one of the best method in determining neutron densities, it seems that self-consistent calculations bring the best knowledge of these densities. The model independent analysis performed with electron and proton scattering experiments show that the difference between neutron and proton r.m.s. radius cannot be determined better than 25-30% for Pb 208 [fr

  17. Fluctuation theorem for entropy production during effusion of an ideal gas with momentum transfer.

    Science.gov (United States)

    Wood, Kevin; Van den Broeck, C; Kawai, R; Lindenberg, Katja

    2007-06-01

    We derive an exact expression for entropy production during effusion of an ideal gas driven by momentum transfer in addition to energy and particle flux. Following the treatment in Cleuren [Phys. Rev. E 74, 021117 (2006)], we construct a master equation formulation of the process and explicitly verify the thermodynamic fluctuation theorem, thereby directly exhibiting its extended applicability to particle flows and hence to hydrodynamic systems.

  18. Anomalous neutron Compton scattering cross section in zirconium hydride

    International Nuclear Information System (INIS)

    Abdul-Redah, T.; Krzystyniak, M.; Mayers, J.; Chatzidimitriou-Dreismann, C.A.

    2005-01-01

    In the last few years we observed a shortfall of intensity of neutrons scattered from protons in various materials including metal hydrogen systems using neutron Compton scattering (NCS) on the VESUVIO instrument (ISIS, UK). This anomaly has been attributed to the existence of short-lived quantum entangled states of protons in these materials. Here we report on results of very recent NCS measurements on ZrH 2 at room temperature. Also here an anomalous shortfall of scattering intensity due to protons is observed. In contrast to previous experiments on NbH 0.8 , the anomalies found in ZrH 2 are independent of the scattering angle (or momentum transfer). These different results are discussed in the light of recent criticisms and experimental tests related to the data analysis procedure on VESUVIO

  19. Evolution of the transfer function characterization of surface scatter phenomena

    Science.gov (United States)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus    o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log   o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.

  20. Radiative transfer equation accounting for rotational Raman scattering and its solution by the discrete-ordinates method

    International Nuclear Information System (INIS)

    Rozanov, Vladimir V.; Vountas, Marco

    2014-01-01

    Rotational Raman scattering of solar light in Earth's atmosphere leads to the filling-in of Fraunhofer and telluric lines observed in the reflected spectrum. The phenomenological derivation of the inelastic radiative transfer equation including rotational Raman scattering is presented. The different forms of the approximate radiative transfer equation with first-order rotational Raman scattering terms are obtained employing the Cabannes, Rayleigh, and Cabannes–Rayleigh scattering models. The solution of these equations is considered in the framework of the discrete-ordinates method using rigorous and approximate approaches to derive particular integrals. An alternative forward-adjoint technique is suggested as well. A detailed description of the model including the exact spectral matching and a binning scheme that significantly speeds up the calculations is given. The considered solution techniques are implemented in the radiative transfer software package SCIATRAN and a specified benchmark setup is presented to enable readers to compare with own results transparently. -- Highlights: • We derived the radiative transfer equation accounting for rotational Raman scattering. • Different approximate radiative transfer approaches with first order scattering were used. • Rigorous and approximate approaches are shown to derive particular integrals. • An alternative forward-adjoint technique is suggested as well. • An additional spectral binning scheme which speeds up the calculations is presented

  1. Momentum transfer theory of non-conservative charged particle transport in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Vrhovac, S.B.; Petrovic, Z.Lj.

    1995-01-01

    Momentum - transfer approximation is applied to momentum and energy balance equations describing reacting particle swarms in gases in crossed electric and magnetic fields. Transport coefficients of charged particles undergoing both inelastic and reactive, non-particle-conserving collisions with a gas of neutral molecules are calculated. Momentum - transfer theory (MTT) has been developed mainly by Robson and collaborators. It has been applied to a single reactive gas and mixtures of reactive gases in electric field only. MTT has also been applied in crossed electric and magnetic fields recently and independently of our work but the reactive collisions were not considered. Consider a swarm of electrons of charge e and mass m moving with velocity rvec v through a neutral gas under the influence of an applied electric rvec E and magnetic rvec B field. The collision processes which we shall investigate are limited to elastic, inelastic and reactive collisions of electrons with gas molecules. Here we interpret reactive collisions as collisions which produce change in number of the swarm particles. Reactive collisions involve creation (ionization by electron impact) or loss (electron attachment) of swarm particles. We consider only single ionization in approximation of the mass ratio m/m 0 0 are masses of electrons and neutral particles, respectively. We assume that the stage of evolution of the swarm is the hydrodynamic limit (HDL). In HDL, the space - time dependence of all properties is carried by the number density n of swarm particles

  2. Analyses of electron and proton scattering to low excitation isoscalar states in 20Ne, 24Mg and 28Si

    International Nuclear Information System (INIS)

    Amos, K.; Bauhoff, W.

    1983-01-01

    Intermediate energy inelastic proton scattering differential cross section and polarization data from the 2 1 + states in 24 Mg and 28 Si and from the 4 1 + states in 28 Si have been analysed using the Distorted Wave Approximation with large basis models of nuclear structure. These structure models were tested by use in analyses of the longitudinal form factors obtained from inelastic electron scattering, so that analyses of the intermediate energy (p,p') data from the same transitions are then sensitive tests of the two-nucleon t-matrix. Data from these and other 2 1 + transitions in 12 C and 20 Ne at 49 MeV (24 MeV in the case of 20 Ne), were also analysed to compare models of t-matrices at lower energies. An ancilliary study of the momentum transfer dependence of effective charges has been made as both s-d shell and large basis structure models have been used to compare with form factor data up to momentum transfers of 2.5 fm -1 . The deduced momentum dependence of the effective charges is significant

  3. Investigation of high-energy inelastic neutron scattering from liquid water confined in silica xerogel

    International Nuclear Information System (INIS)

    Perelli-Cippo, E.; Andreani, C.; Casalboni, M.; Dire, S.; Fernandez-Canoto, D.; Gorini, G.; Imberti, S.; Pietropaolo, A.; Prosposito, P.; Schutzmann, S.; Senesi, R.; Tardocchi, M.

    2006-01-01

    High-energy inelastic neutron scattering (HINS) employing epithermal neutrons is a new technique under development at the VESUVIO spectrometer at ISIS, aiming to access the high-energy and low wave-vector transfer region in neutron scattering experiments at eV energies. New neutron detectors have been developed for HINS based on the resonant detector (RD). These make use of the detection of prompt gammas after neutron absorption in an analyzer foil. The RD is used in the very low angle detector (VLAD) bank, which will extend the explored kinematical region to momentum transfer -1 , whilst still keeping energy transfer >300 meV. The final VLAD will cover the scattering range 1-5 o and will be installed by the end of 2005. The results obtained with prototype VLAD detectors on polycrystalline ice and liquid water in silica xerogels provide a demonstration of the feasibility of the measurements under realistic conditions

  4. Probing Quark-Gluon Interactions with Transverse Polarized Scattering

    International Nuclear Information System (INIS)

    Rondon, Oscar A.

    2011-01-01

    Transverse polarized inelastic scattering extends the power of the electromagnetic interaction as a probe of nucleon dynamics beyond the leading order regime explored with longitudinally polarized DIS. In transverse polarized scattering, the twist-3 g 2 spin structure function contributes at the same order as the longitudinal, twist-2, g 1 , so interactions between quarks and gluons can be studied, opening a window on the mechanisms of confinement. This talk reports the results of Jefferson Lab's Resonances Spin Structure experiment measurement of g 2 and the d 2 twist-3 quark matrix element at a four-momentum transfer of 1.3 GeV 2 .

  5. Scattering of 7-GeV muons in nuclei

    International Nuclear Information System (INIS)

    May, M.; Aslanides, E.; Lederman, L.M.; Limon, P.; Rapp, P.; Entenberg, A.; Jostlein, H.; Kim, I.J.; Konigsman, K.; Kostoulas, I.G.; Melissinos, A.C.; Gittleson, H.; Kirk, T.; Murtagh, M.; Tannenbaum, M.J.; Sculli, J.; White, T.; Yamanouchi, T.

    1975-01-01

    We have measured the inclusive scattering of muons of average energy 7.2 GeV from a variety of nuclear targets in the four-momentum-transfer range 0.6 2 2 . We find that the data can be well represented as an incoherent sum of muon-proton and muon-neutron scattering except in the region x (equivalent1/ω=Q 2 /2mν) <0.1 A fit in this region by the form A)=sigma/subA//(Z/A) sigma/subp/+(N/A) sigma/subn/=A/sup rho/ yields a value of the exponent rho of 0.963plus-or-minus0.006

  6. Importance of channel coupling for very large angle proton-nucleus scattering and the failure of the optical model

    International Nuclear Information System (INIS)

    Amado, R.D.; Sparrow, D.A.

    1984-01-01

    The importance of inelastic channels in proton-nucleus scattering grows with momentum transfer, q, so that for large q coupled channels are required. This happens when the elastic and inelastic cross sections become comparable. We incorporate these ideas in a simple analytic framework to explain the large angle p- 208 Pb elastic scattering data at 800 MeV for which standard optical model calculations have failed completely

  7. Detector system for e-d scattering experiments on the VEPP-3 storage ring

    International Nuclear Information System (INIS)

    Isaeva, L.G.; Lazarenko, B.A.; Nikolenko, D.M.; Popov, S.G.; Rachek, I.A.; Ukraintsev, Yu.G.; Tsentalovich, E.P.; Wojtsekhowski, B.B.; Nelubin, V.V.

    1993-01-01

    Experiments on electron scattering from polarized deuterons were carried out on the VEPP-3 storage ring at the Novosibirsk Institute for Nuclear Physics. The e-D coincidences were detected for elastic scattering experiments, and the p-n coincidences for photo disintegration studies. The tensor analyzing power of the elastic scattering was measured in the range of momentum transfer up to 3 f -1 , and of photo disintegration in the range of photon energy up to 500 MeV. The detector system created for these experiments and the data analysis procedures are described in this paper. (orig.)

  8. Measurement of the structure function F2 of the proton in deep inelastic e-p scattering with the H1 detector at the HERA storage ring

    International Nuclear Information System (INIS)

    Wellisch, J.P.

    1994-02-01

    This thesis presents the measurement of the structure function F 2 of the proton with the H1 detector at 10 GeV 2 2 2 and 10 -4 -2 . The analysis contains the data of the first year of the HERA operation. The applied integrated luminosity amounts to 22.5 nb -1 . Contrarily to earlier experiments of the deep inelastic scattering it is at H1 possible to apply also the hadronic final state for the reconstruction of the event kinematics. In this thesis ten methods for the reconstruction of the event kinematics are indicated and studied in the region Q 2 2 in detailed detector simulation on resolution, systematic effects, measurable kinematical range and sensitivity to radiation of photons from the electron. For H1 as most advantageous methods for the reconstruction of the event kinematics on the one hand the exclusive application of the electron information and on the other hand the combination of the measurement of the momentum transfer from energy and direction of the scattered electron with the measurement of the relative energy transfer y from the scattering of electron and quark have been proved. Thereby a new, for the range of small momentum transfers especially suited method, for the reconstruction of the scattering angle of the quark was indicated. A significant increasement of the structure function F 2 of the proton at small x. At large x the continuation to the results found in earlier measurements is continuous. At fixed x the structure function increases slowly in agreement with the predictions of QCD with increasing momentum transfer

  9. Radiative heat transfer in strongly forward scattering media using the discrete ordinates method

    Science.gov (United States)

    Granate, Pedro; Coelho, Pedro J.; Roger, Maxime

    2016-03-01

    The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, often yielding satisfactory results. However, in the presence of strongly forward scattering media, this method does not generally conserve the scattering energy and the phase function asymmetry factor. Because of this, the normalization of the phase function has been proposed to guarantee that the scattering energy and the asymmetry factor are conserved. Various authors have used different normalization techniques. Three of these are compared in the present work, along with two other methods, one based on the finite volume method (FVM) and another one based on the spherical harmonics discrete ordinates method (SHDOM). In addition, the approximation of the Henyey-Greenstein phase function by a different one is investigated as an alternative to the phase function normalization. The approximate phase function is given by the sum of a Dirac delta function, which accounts for the forward scattering peak, and a smoother scaled phase function. In this study, these techniques are applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain with a purely scattering medium, an axisymmetric cylindrical enclosure containing an emitting-absorbing-scattering medium, and a three-dimensional transient problem with collimated irradiation. The present results show that accurate predictions are achieved for strongly forward scattering media when the phase function is normalized in such a way that both the scattered energy and the phase function asymmetry factor are conserved. The normalization of the phase function may be avoided using the FVM or the SHDOM to evaluate the in-scattering term of the radiative transfer equation. Both methods yield results whose accuracy is similar to that obtained using the DOM along with normalization of the phase function. Very satisfactory predictions were also achieved using the delta-M phase function, while the delta

  10. Manifestation of 12-quark bag state of 4He nucleus in elastic d4He scattering

    International Nuclear Information System (INIS)

    Mosallem, A.M.; Uzhinskij, V.V.

    2002-01-01

    The 4 He d elastic scattering at the momentum of 19.8 GeV/c is analyzed in the framework of the Glauber theory. The scattering amplitude was evaluated using different sets of values of the nucleon-nucleon amplitude parameters and the 4 He density function as a superposition of the Gaussian functions. It is shown that it is impossible to describe simultaneously the p 4 He and d 4 He elastic scattering cross sections using the same set of the NN-amplitude parameters. Inclusion of the twelve-quark bag admixture to the ground state of the 4 He nucleus in the calculations allows one to reproduce the experimental data quite well. It is shown that the admixture manifests itself in the d 4 He elastic scattering in the whole region of the momentum transfer. At small t the effect can be at the level of ∼ 10%. At large t it can be ∼30%

  11. Hadron Transverse Momentum Distributions in Muon Deep Inelastic Scattering at 160 GeV/$c$

    CERN Document Server

    Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Andrieux, V; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M jr; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Hoppner, Ch; Horikawa, N; d'Hose, N; Huber, S; Ishimoto, S; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kuchinski, N; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Morreale, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W D; Nunes, A.S; Olshevsky, A G; Ostrick, M; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Rajotte, J F; Ramos, S; Reicherz, G; Rocco, E; Rodionov, V; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schluter, T; Schmidt, A; Schmidt, K; Schmitt, L; Schmiden, H; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Thibaud, F; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M

    2013-01-01

    Multiplicities of charged hadrons produced in deep inelastic muon scattering off a $^6$LiD target have been measured as a function of the DIS variables $x_{Bj}$, $Q^2$, $W^2$ and the final state hadron variables $p_T$ and $z$. The $p_T^2$ distributions are fitted with a single exponential function at low values of $p_T^2$ to determine the dependence of $\\langle p_T^2 \\rangle$ on $x_{Bj}$, $Q^2$, $W^2$ and $z$. The $z$-dependence of $\\langle p_T^2 \\rangle$ is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, $\\langle k_{\\perp}^2 \\rangle$, as a function of $x_{Bj}$ and $Q^2$ in a leading order QCD parton model.

  12. Gamma-ray multiplicity measurements and angular momentum transfer in deeply inelastic collisions

    International Nuclear Information System (INIS)

    Perrin, N.; Peter, J.

    1977-01-01

    In DIC, the part of the initial orbital angular momentum l which is transferred into internal angular momenta Δl of the fragments depends on the degree of cohesion of the composite system. The (few) measured gamma-rays multiplicities are compared to those observed for similar compound nuclei and for fission fragments. Δl increases with the kinetic energy relaxation. For medium-mass systems, the cohesion varies continuously from the rolling to the sticking situation when the decay time of the composite system increases. The rigid body situation is obtained for a small part of the relaxed events. For heavy systems, rigid rotation seems to be much more common, which will allow to extract information on the deflection function. The time needed to reach the rigid situation is intermediate between those of kinetic energy relaxation and mass asymmetry relaxation. An additional angular momentum can be added in the fragments, due to a bending mode at the scission-point, like in fission. That can explain the observed low anisotropy of the gamma-rays angular distribution

  13. Production of 149Tb in deep inelastic transfer reactions: an approach to the angular momentum of fragments

    International Nuclear Information System (INIS)

    Rivet, M.F.; Bimbot, R.; Gardes, D.; Fleury, A.; Hubert, F.; Llabador, Y.

    1978-01-01

    The excitation functions for deep inelastic reactions in which two to six charges are transferred from 40 Ar and 63 Cu ions to rare earth targets have been measured using activation techniques, the observed radionuclides being 150 Dy, 151 Dy and 149 gTb. From the comparison of the curves relative to 149 gTb and those relative to 150 Dy, 151 Dy, it was deduced that the low spin isomer 149 gTb was produced with significant probability for low incident energies. Using data from (heavy ions, xn) reactions, it was possible to attribute this production to the deexcitation of Tb fragments formed in deep inelastic transfers with angular momenta lower than 9n. This result is in good agreement with the angular momentum calculations performed under the hypothesis that the initial angular momentum window leading to deep inelastic reactions is situated between the critical angular momentum for fusion and that corresponding to grazing collisions. As far as Cu induced reactions are concerned, both hypothesis of rolling and sticking are consistent with the experimental data. For Ar induced reactions, the results indicate that the stage of sticking is not reached when the incident energy is lower than 200 MeV

  14. Study of the atomic motion in methanol by slow neutron scattering

    International Nuclear Information System (INIS)

    Rodrigues, C.

    1979-01-01

    Cold neutron scattering data are reported for methyl alcohol in the liquid phase at room temperature. The quasielastic scattering was interpreted using the Larsson and Bergstedt model, that takes into account intramolecular motions and molecular diffusion. On the basis of this model, one finds for the relaxation time of the hindered rotation of the CH 3 group within the molecule a value 2,4 x 10 -12 sec. The analysis of the quasielastic scattering to the L-B model explain in a consistent way our experimental results in a range of momentum transfers of about 0.80 - 1.55A -1 . In the inelastic region some structure is observed at energy transfers of 22, 17 and 5 meV. The 17 meV energy transfer is associated with the 1→0 transition of the torsional oscillations of the methyl group. The activation energy for the above motion was calculated to be E=1.3 kcal/mol, in good agreement with the value of the barrier height for internal rotation of the CH 3 in methanol, obtained by microwave methods. (Author) [pt

  15. Energy and Momentum Relaxation Times of 2D Electrons Due to Near Surface Deformation Potential Scattering

    Science.gov (United States)

    Pipa, Viktor; Vasko, Fedor; Mitin, Vladimir

    1997-03-01

    The low temperature energy and momentum relaxation rates of 2D electron gas placed near the free or clamped surface of a semi-infinit sample are calculated. To describe the electron-acoustic phonon interaction with allowance of the surface effect the method of elasticity theory Green functions was used. This method allows to take into account the reflection of acoustic waves from the surface and related mutual conversion of LA and TA waves. It is shown that the strength of the deformation potential scattering at low temperatures substantially depends on the mechanical conditions at the surface: relaxation rates are suppressed for the free surface while for the rigid one the rates are enhanced. The dependence of the conductivity on the distance between the 2D layer and the surface is discussed. The effect is most pronounced in the range of temperatures 2 sl pF < T < (2 hbar s_l)/d, where pF is the Fermi momentum, sl is the velocity of LA waves, d is the width of the quantum well.

  16. Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Bystritskaya, L.; Fedotov, A.; Lubimov, V.; Ozerov, D.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Roosen, R.; Staykova, Z.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; Placakyte, R.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Radescu, V.; Sauter, M.; Schoening, A.; Joensson, L.; Jung, H.; Kapichine, M.; Makankine, A.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; Stella, B.; Sykora, T.; Tsakov, I.; Wegener, D.

    2012-01-01

    The cross section of diffractive deep-inelastic scattering ep→eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x P 2 in squared four-momentum transfer at the proton vertex and 4 2 2 in photon virtuality. The differential cross sections extrapolated to vertical stroke t vertical stroke 2 are in agreement with next-to-leading order QCD predictions based on diffractive parton distribution functions extracted from measurements of inclusive and dijet cross sections in diffractive deep-inelastic scattering. The data are also compared with leading order Monte Carlo models. (orig.)

  17. (p,4He) elastic scattering at 350, 650, 1050, and 1150 MeV

    International Nuclear Information System (INIS)

    Aslanides, E.; Brochard, F.; Gorodetzky, P.; Hibou, F.; Lambert, E.

    1977-01-01

    Angular distributions of p- 4 He elastic scattering differential cross sections have been measured at 350, 650, 1050 and 1150 MeV, in regions of four-momentum transfer squared t=0.02-0.71 (GeV/c) 2 . These new measurements confirm the absence of a pronounced first diffraction minimum. New theoretical analyses are also presented. (Auth.)

  18. Analysis of pp and pp-bar in forward scattering using derivative dispersion relations

    International Nuclear Information System (INIS)

    Kohara, A. K.; Ferreira, E.; Kodama, T.

    2010-01-01

    We describe the amplitudes for pp and pp-bar scattering at small momentum transfers, where Coulomb and nuclear interference occurs, with special attention to the slopes of the real and imaginary parts. The forward amplitudes are assumed to have simple exponential forms, depending on four parameters σ, ρ, B I , B R , with B I ≠ B R .

  19. Pion form factor in QCD at intermediate momentum transfers

    Science.gov (United States)

    Braun, V. M.; Khodjamirian, A.; Maul, M.

    2000-04-01

    We present a quantitative analysis of the electromagnetic pion form factor in the light-cone sum rule approach, including radiative corrections and higher-twist effects. The comparison to the existing data favors the asymptotic profile of the pion distribution amplitude and allows us to estimate the deviation: [∫du/uφπ(u)]/[∫du/uφasπ(u)]=1.1+/-0.1 at the scale of 1 GeV. Special attention is paid to the precise definition and interplay of soft and hard contributions at intermediate momentum transfer, and to the matching of the sum rule to the perturbative QCD prediction. We observe a strong numerical cancellation between the soft (end-point) contribution and power-suppressed hard contributions of higher twist, so that the total nonperturbative correction to the usual PQCD result turns out to be of the order of 30% for Q2~1 GeV2.

  20. The momentum distribution inside nucleus

    International Nuclear Information System (INIS)

    Fujita, T.

    1985-01-01

    Discussions are made on several reactions which can determine the momentum distribution inside nucleus. The first reaction discussed is the high energy heavy ion collision. This reaction involves many nucleons which interact strongly. Therefore, one must be careful for any possible final state interactions. The expression for the single particle momentum distribution is given. And it can be said that the expression is consistent with the description of the energetic neutrons from muon capture by heavy nucleus. The best way to determine the momentum distribution would be the lepton-nucleus scattering since it does not involve the strong interaction in the initial channel. Another reaction discussed is the backward proton production, which is governed by quite complicated reaction processes. Therefore, the determination of the momentum distribution is only indirect. Noverthless, it is found that this reaction presents a very interesting and important information on the momentum distribution. (Aoki, K.)

  1. Energy-momentum tensor in quantum field theory

    International Nuclear Information System (INIS)

    Fujikawa, K.

    1981-01-01

    The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path-integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat--space-time limit, all the Ward-Takahashi identities associated with space-time transformations including the global dilatation become free from anomalies in terms of this energy-momentum tensor, reflecting the general covariance of the integral measure; the trace of this tensor is thus finite at zero momentum transfer for renormalizable theories. The Jacobian for the local conformal transformation, however, becomes nontrivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization-group b function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise

  2. Energy-momentum tensor in quantum field theory

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo.

    1980-12-01

    The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat space-time limit, all the Ward-Takahashi identities associate with space-time transformations including the global dilatation become free from anomalies, reflecting the general covariance of the integral measure; the trace of this energy-momentum tensor is thus finite at the zero momentum transfer. The Jacobian for the local conformal transformation however becomes non-trivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at the vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization group β-function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at the vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise. (author)

  3. Limits on Momentum-Dependent Asymmetric Dark Matter with CRESST-II.

    Science.gov (United States)

    Angloher, G; Bento, A; Bucci, C; Canonica, L; Defay, X; Erb, A; Feilitzsch, F V; Ferreiro Iachellini, N; Gorla, P; Gütlein, A; Hauff, D; Jochum, J; Kiefer, M; Kluck, H; Kraus, H; Lanfranchi, J-C; Loebell, J; Münster, A; Pagliarone, C; Petricca, F; Potzel, W; Pröbst, F; Reindl, F; Schäffner, K; Schieck, J; Schönert, S; Seidel, W; Stodolsky, L; Strandhagen, C; Strauss, R; Tanzke, A; Trinh Thi, H H; Türkoğlu, C; Uffinger, M; Ulrich, A; Usherov, I; Wawoczny, S; Willers, M; Wüstrich, M; Zöller, A

    2016-07-08

    The usual assumption in direct dark matter searches is to consider only the spin-dependent or spin-independent scattering of dark matter particles. However, especially in models with light dark matter particles O(GeV/c^{2}), operators which carry additional powers of the momentum transfer q^{2} can become dominant. One such model based on asymmetric dark matter has been invoked to overcome discrepancies in helioseismology and an indication was found for a particle with a preferred mass of 3  GeV/c^{2} and a cross section of 10^{-37}  cm^{2}. Recent data from the CRESST-II experiment, which uses cryogenic detectors based on CaWO_{4} to search for nuclear recoils induced by dark matter particles, are used to constrain these momentum-dependent models. The low energy threshold of 307 eV for nuclear recoils of the detector used, allows us to rule out the proposed best fit value above.

  4. ELECTRON SCATTERING EXPERIMENTS ON THE NEUTRON AND PROTON

    Energy Technology Data Exchange (ETDEWEB)

    Berkelman, Karl

    1963-06-15

    The electric and magnetic helicity form factors of the proton are measured at 4-momentum transfers (squared) of 25 to 45 f/sup -2/, by means of electron scattering by protons at high energies. The results are combined with other e/sup -/--p and e/sup -/--d experimental findings in order to show the proton form fuctors from 0 to 45 f/sup -2/ and the neutron form factors from 0 to 25 f/sup -2/. (T.F.H.)

  5. Meson widths and form factor at intermediate momentum transfer in nonperturbative QCD

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Smilga, A.V.

    1982-01-01

    A general method is proposed for the QCD based calculations of form factors at intermediate momentum transfer Q 2 and of the partial widths of the low-lying meson resonances. The basic idea is to use the QCD sum rules for the vertex functions. With this method the pion electromagnetic form factor along with electromagnetic form factors of rho- and A 1 mesons and transition form factors γπ → A 1 at 0.5 2 2 are calculated. The widths rho+2π and A 1 → rhoπ are also determined. +.he results are in a good agreement with experiment

  6. Deep inelastic scattering

    International Nuclear Information System (INIS)

    Zakharov, V.I.

    1977-01-01

    The present status of the quark-parton-gluon picture of deep inelastic scattering is reviewed. The general framework is mostly theoretical and covers investigations since 1970. Predictions of the parton model and of the asymptotically free field theories are compared with experimental data available. The valence quark approximation is concluded to be valid in most cases, but fails to account for the data on the total momentum transfer. On the basis of gluon corrections introduced to the parton model certain predictions concerning both the deep inelastic structure functions and form factors are made. The contributions of gluon exchanges and gluon bremsstrahlung are highlighted. Asymptotic freedom is concluded to be very attractive and provide qualitative explanation to some experimental observations (scaling violations, breaking of the Drell-Yan-West type relations). Lepton-nuclear scattering is pointed out to be helpful in probing the nature of nuclear forces and studying the space-time picture of the parton model

  7. Chaotic scattering in heavy-ion reactions with mass transfer

    International Nuclear Information System (INIS)

    Rodriguez Padron, Emilio; Guzman Martinez, Fernando

    1998-01-01

    The role of the mass transfer in heavy ion collisions is analyzed in the framework of a simple semi phenomenological model searching for chaotic scattering effects. The model couples the relative motion of the ions to a collective degree of freedom. The collective degree of freedom is identified by the mass asymmetry of the system. A Saxon-Woods potential is used for nucleus-nucleus interaction whiles a harmonic potential rules the temporal behaviour of the collective degree of freedom. This model shows chaotic scattering which could be an explanation for certain types of cross-section fluctuations observed in this kind of reactions

  8. Core polarisation and configuration mixing in 58Ni studied by high resolution electron scattering

    International Nuclear Information System (INIS)

    Blok, H.

    1986-01-01

    The nucleus 58 Ni is studied by inelastic electron-scattering. This nucleus has two valence neutrons outside a closed 58 Ni core which implies that no valence protons contribute to the transitions and thus, besides configuration mixing of the valence neutrons, proton-core polarization can be studied in detail. From inelastic electron-scattering data one obtains the charge- and current-transition densities by determining the Fourier-Bessel transform of the cross sections measured over a wide range of linear momenta transferred to the nucleus. The results of an analysis of the excitation of two 0 ++ states at low-momentum transfer are presented. These transitions are particularly interesting for studying core-polarization contributions. (Auth.)

  9. Momentum distribution in the nucleus. II

    International Nuclear Information System (INIS)

    Amado, R.D.; Woloshyn, R.M.

    1977-01-01

    We calculate the single particle momentum distribution n(q) for a one-dimensional model with delta forces. There is a domain of q for which n(q) has an exponential falloff; but, after allowance is made for the nonsaturation in the model, that domain does not grow significantly with particle number. The relation of this result to large momentum scattering from the nucleus and to the Hartree approximation is briefly discussed

  10. Electron momentum spectroscopy of the core state of solid carbon

    International Nuclear Information System (INIS)

    Caprari, R.S.; Clark, S.A.C.; McCarthy, I.E.; Storer, P.J.; Vos, M.; Weigold, E.

    1994-08-01

    Electron momentum spectroscopy (binary encounter (e,2e)) experimental results are presented for the core state of an amorphous carbon allotrope. The (e,2e) cross section has two identifiable regions. One is a narrow energy width 'core band peak' that does not disperse with momentum. At higher binding energies there is an energy diffuse 'multiple scattering continuum', which is a consequence of (e,2e) collisions with core electrons that are accompanied by inelastic scattering of one or more of the incoming or outgoing electrons. Comparisons of experimental momentum distributions with the Hartree-Fock atomic carbon ls orbital are presented for both regions. 16 refs., 4 figs

  11. Scope and limitations of high energy electron scattering in obtaining relevant structural information about atoms and molecules

    International Nuclear Information System (INIS)

    Ketkar, S.N.

    1984-01-01

    During the course of this work experiments were undertaken to measure the scattering cross-sections for high energy electrons scattering from various target systems. The experiments can be broadly classified into two categories, one dealing with rather small systems and the other dealing with large systems (at least in the view of physicists). Although the experimental aspects, in so much as the experimental measurement of the intensities of the scattered electron is concerned, is the same for both the cases the motivation for performing the experiment is totally different. In the first case, simple atomic and molecular target systems, namely He, H 2 and D 2 , are used. For such systems, good theoretical framework is available and critical comparisons of experimental cross sections are made with theoretical predictions. Attention is focussed mainly at small momentum transfer (up to 10A -1 ), and correlation and binding effects are studied. In the second case, somewhat larger molecular systems, namely naphthalene, anthraquinone, anthracene and dichromium tetraacetate are used. For such systems attention is focused at large momentum transfer (from 10 to 25 A -1 ) to obtain structural information about the molecules

  12. Elastic scattering of low-energy electrons from ammonia

    International Nuclear Information System (INIS)

    Alle, D.T.; Gulley, R.J.; Buckman, S.J.; Brunger, M.J.

    1992-01-01

    We report absolute differential cross section measurements for vibrationally elastic electron scattering from NH 3 at incident energies from 2-30 eV. The present results, from a crossed electron-molecular beam apparatus, represent the first comprehensive experimental attempt to quantify the elastic electron-NH 3 scattering process. At each energy studied we have integrated our differential cross section data to generate total elastic and elastic momentum transfer cross sections and a critical comparison of both our differential and integral cross sections against previous experiment and theory is provided. We also report our observation of a strong Feshbach resonance in the elastic channel at an energy of 5.59 ± 0.05 eV. (Author)

  13. Hadron transverse momentum distributions in muon deep inelastic scattering at 160 GeV/c

    International Nuclear Information System (INIS)

    Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Schmidt, A.; Alekseev, M.G.; Birsa, R.; Bravar, A.; Dalla Torre, S.; Dasgupta, S.S.; Gobbo, B.; Sozzi, F.; Steiger, L.; Tessaro, S.; Tessarotto, F.; Alexakhin, V.Yu.; Alexeev, G.D.; Efremov, A.; Gavrichtchouk, O.P.; Gushterski, R.; Guskov, A.; Ivanshin, Yu.; Kroumchtein, Z.V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Olshevsky, A.G.; Rodionov, V.; Rossiyskaya, N.S.; Sapozhnikov, M.G.; Savin, I.A.; Shevchenko, O.Yu.; Zemlyanichkina, E.; Zhuravlev, N.; Alexandrov, Yu.; Zavertyaev, M.; Amoroso, A.; Balestra, F.; Bertini, R.; Chiosso, M.; Garfagnini, R.; Gnesi, I.; Grasso, A.; Kotzinian, A.M.; Parsamyan, B.; Piragino, G.; Sosio, S.; Andrieux, V.; Bedfer, Y.; Boer, M.; Burtin, E.; Capozza, L.; Ferrero, A.; Hose, N. d'; Kunne, F.; Magnon, A.; Marchand, C.; Morreale, A.; Neyret, D.; Platchkov, S.; Thibaud, F.; Vandenbroucke, M.; Wollny, H.; Austregesilo, A.; Bicker, K.; Badelek, B.; Barth, J.; Bieling, J.; Goertz, S.; Klein, F.; Panknin, R.; Pretz, J.; Windmolders, R.; Baum, G.; Berlin, A.; Gautheron, F.; Hess, C.; Kisselev, Yu.; Koivuniemi, J.H.; Meyer, W.; Reicherz, G.; Wang, L.; Bernhard, J.; Harrach, D. von; Jasinski, P.; Kabuss, E.; Kang, D.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M.; Bisplinghoff, J.; Eversheim, P.D.; Hinterberger, F.; Jahn, R.; Joosten, R.; Schmiden, H.; Bordalo, P.; Franco, C.; Nunes, A.S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M.; Bradamante, F.; Bressan, A.; Duic, V.; Elia, C.; Giorgi, M.; Levorato, S.; Martin, A.; Sbrizzai, G.; Schiavon, P.; Buechele, M.; Fischer, H.; Guthoerl, T.; Heinsius, F.H.; Herrmann, F.; Koenigsmann, K.; Nerling, F.; Nowak, W.D.; Schill, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Ter Wolbeek, J.; Chung, S.U.; Friedrich, J.M.; Grabmueller, S.; Grube, B.; Haas, F.; Hoeppner, C.; Huber, S.; Ketzer, B.; Kraemer, M.; Mann, A.; Nagel, T.; Neubert, S.; Paul, S.; Schmitt, L.; Uhl, S.; Cicuttin, A.; Crespo, M.L.; Dasgupta, S.; Sarkar, S.; Sinha, L.; Denisov, O.Yu.; Maggiora, A.; Takekawa, S.; Donskov, S.V.; Filin, A.; Khaustov, G.V.; Khokhlov, Yu.A.; Kolosov, V.N.; Konstantinov, V.F.; Lednev, A.A.; Mikhailov, Yu.V.; Nikolaenko, V.I.; Polyakov, V.A.; Ryabchikov, D.I.; Samoylenko, V.D.; Doshita, N.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Suzuki, H.; Duennweber, W.; Faessler, M.; Geyer, R.; Rajotte, J.F.; Schlueter, T.; Uman, I.; Dziewiecki, M.; Kurjata, R.P.; Marzec, J.; Zaremba, K.; Ziembicki, M.; Finger, M.; Finger, M.; Slunecka, M.; Du Fresne von Hohenesche, N.; Frolov, V.; Mallot, G.K.; Rocco, E.; Schoenning, K.; Schott, M.; Gerassimov, S.; Konorov, I.; Horikawa, N.; Jary, V.; Novy, J.; Virius, M.; Klimaszewski, K.; Kurek, K.; Rondio, E.; Sandacz, A.; Sulej, R.; Sznajder, P.; Wislicki, W.; Kouznetsov, O.; Lichtenstadt, J.; Makke, N.; Matsuda, T.; Panzieri, D.; Polak, J.; Srnka, A.; Sulc, M.

    2013-01-01

    Multiplicities of charged hadrons produced in deep inelastic muon scattering off a 6 LiD target have been measured as a function of the DIS variables x Bj , Q 2 , W 2 and the final state hadron variables p T and z. The p T 2 distributions are fitted with a single exponential function at low values of p T 2 to determine the dependence of left angle p T 2 right angle on x Bj , Q 2 , W 2 and z. The z-dependence of left angle p T 2 right angle is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, left angle k perpendicular to 2 right angle, as a function of x Bj and Q 2 in a leading order QCD parton model. (orig.)

  14. Incoherent neutron scattering functions for random jump diffusion in bounded and infinite media

    International Nuclear Information System (INIS)

    Hall, P.L.; Ross, D.K.

    1981-01-01

    The incoherent neutron scattering function for unbounded jump diffusion is calculated from random walk theory assuming a gaussian distribution of jump lengths. The method is then applied to calculate the scattering function for spatially bounded random jumps in one dimension. The dependence on momentum transfer of the quasi-elastic energy broadenings predicted by this model and a previous model for bounded one-dimensional continuous diffusion are calculated and compared with the predictions of models for diffusion in unbounded media. The one-dimensional solutions can readily be generalized to three dimensions to provide a description of quasi-elastic scattering of neutrons by molecules undergoing localized random motions. (author)

  15. A new impact picture for low and high energy proton-proton elastic scattering

    International Nuclear Information System (INIS)

    Bourrely, C.; Soffer, J.; Wu, Tai Tsun

    1978-05-01

    The impact picture that was used several years ago to predict the increase of total and integrated differential cross sections at high energies was improved significantly. The major improvements consist of the following: (1) the dependence of the Pomeron term on the momentum transfer is taken from a modified version of the relation between matter distribution and charge distribution; (2) Regge backgrounds are properly taken into account; and (3) a simple non-trivial form is used for the hadronic matter current in the proton. For proton-proton elastic scattering, the phenomenological differential cross section is in good agreement with the experimental data in the laboratory momentum range of 14 GeV/c to 2000 GeV/c, and is predicted for ISABELLE energy. Because of the third improvement, predictions are obtained for both polarization and R parameters for proton-proton elastic scattering

  16. A phenomenological approach to angular momentum transfer in deep inelastic heavy ion collisions

    International Nuclear Information System (INIS)

    Barbosa, V.C.; Soares, P.C.; Oliveira, Edgar C. de; Gomes, Luiz Carlos

    1985-01-01

    The total angular momentum transfer measured in the reactions 165 Ho on 176 Yb, 154 Sm and sup(Nat)Ag at 1400 MeV and 86 Kr + 152 Sm 610 MeV were analised on the basis of a classical model with friction forces including, besides the relative motion of the ions, their rotations and quadrupole vibrations. The ratios of tangential or pivotal to radial friction were fixed by the analysis and found to be 1/20. No strong evidences of the sticking mechanisms were found. (Author) [pt

  17. Manifestation of 12-quark bag state of sup 4 He nucleus in elastic d sup 4 He scattering

    CERN Document Server

    Mosallem, A M

    2002-01-01

    The sup 4 He d elastic scattering at the momentum of 19.8 GeV/c is analyzed in the framework of the Glauber theory. The scattering amplitude was evaluated using different sets of values of the nucleon-nucleon amplitude parameters and the sup 4 He density function as a superposition of the Gaussian functions. It is shown that it is impossible to describe simultaneously the p sup 4 He and d sup 4 He elastic scattering cross sections using the same set of the NN-amplitude parameters. Inclusion of the twelve-quark bag admixture to the ground state of the sup 4 He nucleus in the calculations allows one to reproduce the experimental data quite well. It is shown that the admixture manifests itself in the d sup 4 He elastic scattering in the whole region of the momentum transfer. At small t the effect can be at the level of approx 10%. At large t it can be approx 30%

  18. Incomplete momentum transfer components in /sup 16/O + /sup 12/C Fusion at 20 MeV/A

    Energy Technology Data Exchange (ETDEWEB)

    Menchaca-Rocha, A.; Brandan, M.E. (Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires); Dacal, A.; Galindo, A.; Mahoney, J.; Murphy, M.; Rae, W.D.M. (California Univ., Berkeley (USA). Lawrence Berkeley Lab.)

    1983-01-27

    The energy spectra of Z = 3-9 particles from reactions induced by 20 MeV/A /sup 16/O on /sup 12/C have been measured. The systematics found from the fusion-like residues clearly deviate from those expected for complete fusion, giving evidence for important incomplete momentum transfer components.

  19. Momentum sharing in imbalanced Fermi systems

    Science.gov (United States)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16

    2014-10-01

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  20. Momentum sharing in imbalanced Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. M. -T.; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D' Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. M.; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatie, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using C-12, Al-27, Fe-56, and Pb-208 targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  1. The electrodisintegration of the deuteron reaction at high four-momentum transfer

    Science.gov (United States)

    Ibrahim, Hassan F.

    This dissertation presents the highest four-momentum transfer, Q2, quasielastic (xBj = 1) results from Experiment E01-020 which systematically explored the 2H(e, e'p)n reaction ("Electro-disintegration" of the deuteron) at three different four-momentum transfers, Q 2 = 0.8, 2.1, and 3.5 GeV2 and missing momenta, pmiss = 0, 100, 200, 300, 400, and 500 GeV including separations of the longitudinal-transverse interference response function, RLT, and extraction of the longitudinal-transverse asymmetry, ALT. This systematic approach will help to understand the reaction mechanism and the deuteron structure down to the short range part of the nucleon-nucleon interaction which is one of the fundamental missions of nuclear physics. By studying the very short distance structure of the deuteron, one may also determine whether or to what extent the description of nuclei in terms of nucleon/meson degrees of freedom must be supplemented by inclusion of explicit quark effects. The unique combination of energy, current, duty factor, and control of systematics for Hall A at Jefferson Lab made Jefferson Lab the only facility in the world where these systematic studies of the deuteron can be undertaken. This is especially true when we want to understand the short range structure of the deuteron where high energies and high luminosity/duty factor are needed. All these features of Jefferson Lab allow us to examine large missing momenta (short range scales) at kinematics where the effects of final state interactions (FSI), meson exchange currents (MEC), and isobar currents (IC) are minimal, making the extraction of the deuteron structure less model-dependent. Jefferson Lab also provides the kinematical flexibility to perform the separation of RLT over a broad range of missing momenta and momentum transfers. Experiment E01-020 used the standard Hall A equipment in coincidence configuration in addition to the cryogenic target system. The low and middle Q2 kinematics were completed in June

  2. Is physics in the infinite momentum frame independent of the compactificaction radius?

    International Nuclear Information System (INIS)

    Gueijosa, A.

    1998-01-01

    With the aim of clarifying the eleven-dimensional content of matrix theory, we examine the dependence of a theory in the infinite momentum frame (IMF) on the (purely spatial) longitudinal compactification radius R. It is shown that in a point particle theory the generic scattering amplitude becomes independent of R in the IMF. Processes with zero longitudinal momentum transfer are found to be exceptional. The same question is addressed in a theory with extended objects. A one-loop type II string amplitude is shown to be R-independent in the IMF, and to coincide with that of the uncompactified theory. No exceptional processes exist in this case. The possible implications of these results for M theory are discussed. In particular, if amplitudes in M theory are independent of R in the IMF, matrix theory can be rightfully expected (in the N→∞ limit) to describe uncompactified M theory. (orig.)

  3. Measurement of Dijet Production in Diffractive Deep-Inelastic Scattering with a Leading Proton at HERA

    CERN Document Server

    Aaron, F.D.

    2012-04-18

    The cross section of diffractive deep-inelastic scattering ep \\rightarrow eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss xIP < 0.1 and covers the range 0.1 < |t| < 0.7 GeV2 in squared four-momentum transfer at the proton vertex and 4 < Q2 < 110 GeV2 in photon virtuality. The differential cross sections extrapolated to |t| < 1 GeV2 are in agreement with next-toleading order QCD predictions based on diffractive parton distribution functions extracted from measurements of inclusive and dijet cross sections in diffractive deep-inelastic scattering. The data are also compared with leading order Monte Carlo models.

  4. On the exchange of orbital angular momentum between twisted photons and atomic electrons

    International Nuclear Information System (INIS)

    Davis, Basil S; Kaplan, L; McGuire, J H

    2013-01-01

    We obtain an expression for the matrix element for scattering of a twisted (Laguerre–Gaussian profile) photon from a hydrogen atom. We consider photons incoming with an orbital angular momentum (OAM) of ℓħ, carried by a factor of e iℓϕ not present in a plane-wave or pure Gaussian profile beam. The nature of the transfer of +2ℓ units of OAM from the photon to the azimuthal atomic quantum number of the atom is investigated. We obtain simple formulas for these OAM flip transitions for elastic forward scattering of twisted photons when the photon wavelength λ is large compared with the atomic target size a, and small compared with the Rayleigh range z R , which characterizes the collimation length of the twisted photon beam. (paper)

  5. Anomalous resonance-radiation energy-transfer rate in a scattering dispersive medium

    International Nuclear Information System (INIS)

    Shekhtman, V.L.

    1992-01-01

    This paper describes a generalization of the concept of group velocity as an energy-transfer rate in a dispersive medium with complex refractive index when the polaritons, which are energy carriers, undergo scattering, in contrast to the classical concept of the group velocity of free polaritons (i.e., without scattering in the medium). The concept of delay time from quantum multichannel-scattering, theory is used as the fundamental concept. Based on Maxwell's equations and the new mathematical Φ-function method, a consistent conceptual definition of group velocity in terms of the ratio of the coherent-energy flux density to the coherent-energy density is obtained for the first time, and a critical analysis of the earlier (Brillouin) understanding of energy-transfer rate is given in the light of radiation-trapping theory and the quantum theory of resonance scattering. The role of generalized group velocity is examined for the interpretation of the phenomenon of multiple resonance scattering, or radiation diffusion. The question of causality for the given problem is touched upon; a new relationship is obtained, called the microcausality condition, which limits the anomalous values of group velocity by way of the indeterminacy principle and the relativistic causality principle for macroscopic time intervals directly measurable in experiment, whereby attention is focused on the connection of the given microcausality condition and the well-known Wigner inequality for the time delay of spherical waves. 22 refs

  6. High-Energy antipp and pp Elastic Scattering and Nucleon Structure

    International Nuclear Information System (INIS)

    Islam, M.M.; Innocente, V.; Fearnley, T.; Sanguinetti, G.

    1987-01-01

    High-energy antipp and pp elastic data from the CERN Collider and the ISR are analyzed in the nucleon valence core model. Diffraction is described by a profile function that incorporates crossing symmetry and saturation of Froissart-Martin bound. The model is found to provide a very satisfactory description of the elastic scattering over the whole range of energy and momentum transfer. Implications of the analysis on QCD models of nucleon structure are pointed out

  7. High-Energy antipp and pp Elastic Scattering and Nucleon Structure

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Innocente, V.; Fearnley, T.; Sanguinetti, G.

    1987-07-15

    High-energy antipp and pp elastic data from the CERN Collider and the ISR are analyzed in the nucleon valence core model. Diffraction is described by a profile function that incorporates crossing symmetry and saturation of Froissart-Martin bound. The model is found to provide a very satisfactory description of the elastic scattering over the whole range of energy and momentum transfer. Implications of the analysis on QCD models of nucleon structure are pointed out.

  8. Comments on leading mesons in anti p Ne - reactions at 607 MeV/c incident momentum in terms of four-momentum transfers in two-vertex diagrams

    International Nuclear Information System (INIS)

    Breivik, F.O.; Haatuft, A.; Halsteinslid, A.

    1990-02-01

    Based on previous observations of anti p Ne - reactions the author discuss, in terms of four-momentum transfers, why only leading pions are seen in events detected by their Λ-decays, and only leading kaons in the events detected by their neutral K-decays. The experimental results are consistent with a two-vertex model with strange or non-strange baryon exchange. 3 refs.; 4 figs.; 1 tab

  9. Data reduction for neutron scattering from plutonium samples. Final report

    International Nuclear Information System (INIS)

    Seeger, P.A.

    1997-01-01

    An experiment performed in August, 1993, on the Low-Q Diffractometer (LQD) at the Manual Lujan Jr. Neutron Scattering Center (MLNSC) was designed to study the formation and annealing of He bubbles in aged 239 Pu metal. Significant complications arise in the reduction of the data because of the very high total neutron cross section of 239 Pu, and also because the sample are difficult to make uniform and to characterize. This report gives the details of the data and the data reduction procedures, presents the resulting scattering patterns in terms of macroscopic cross section as a function of momentum transfer, and suggests improvements for future experiments

  10. Momentum scale in the HARP TPC

    CERN Document Server

    Catanesi, M G; Edgecock, R; Ellis, M; Soler, F J P; Gössling, C; Bunyatov, S; Krasnoperov, A; Popov, B; Serdiouk, V; Tereschenko, V; Di Capua, E; Vidal-Sitjes, G; Artamonov, A; Giani, S; Gilardoni, S; Gorbunov, P; Grant, A; Grossheim, A; Ivanchenko, V; Kayis-Topaksu, A; Panman, J; Papadopoulos, I; Chernyaev, E; Tsukerman, I; Veenhof, R; Wiebusch, C; Zucchelli, P; Blondel, A; Borghi, S; Morone, M C; Prior, G; Schroeter, R; Meurer, C; Gastaldi, Ugo; Mills, G B; Graulich, J S; Grégoire, G; Bonesini, M; Ferri, F; Kirsanov, M; Bagulya, A; Grichine, V; Polukhina, N; Palladino, V; Coney, L; Schmitz, D; Barr, G; De Santo, A; Bobisut, F; Gibin, D; Guglielmi, A; Mezzetto, M; Dumarchez, J; Dore, U; Orestano, D; Pastore, F; Tonazzo, A; Tortora, L; Booth, C; Howlett, L; Bogomilov, M; Chizhov, M; Kolev, D; Tsenov, R; Piperov, S; Temnikov, P; Apollonio, M; Chimenti, P; Giannini, G; Burguet-Castell, J; Cervera-Villanueva, A; Gómez-Cadenas, J J; Martín-Albo, J; Novella, P; Sorel, M

    2007-01-01

    Recently a claim was made that the reconstruction of the large angle tracks in the HARP TPC was affected by a momentum bias as large as 15% at 500 MeV/c transverse momentum. In the following we recall the main issues with the momentum measurement in the HARP TPC, and describe the cross-checks made to validate the momentum scale. Proton-proton elastic scattering data off the hydrogen target are used to alibrate the momentum of charged particles with a precision evaluated to be 3.5%. A full description of the time development of the dynamic distortions in the TPC during physics spills is now available together with a correction algorithm. This allows a new cross-check using an enlarged data set made by comparing positive and negative pion elasticscattering data collected with negative polarity of the solenoid magnet. These data confirm the absence of a bias in the sagitta measurement. The dE/dx versus momentum curves are revisited, and shown to provide a confirmation that the HARP momentum calibration is correc...

  11. Deuteron-deuteron elastic scattering at high energies

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Ali, S.

    1991-01-01

    The eikonal picture which has theoretical foundations in some areas of physics has been successful in explaining various aspects of elastic scattering at high energies. Chou and Yang first proposed a preliminary version of the eikonal model for hadron-hadron elastic scattering. The model is based on geometrical considerations in which hadrons are treated as extended objects. Elastic scattering then results from the propagation of attenuated wave function. By assuming that at high energies the scattering amplitude is purely imaginary and that the hadronic matter distribution is proportional to the charge distribution on protons, Durand and Lipes studied high energy pp scattering on the basis of this prestine model. Later on, the model was extended to other elastic reactions. However, a survey of literature shows that it has been successful only in the diffraction peak region. It has been shown that the pristine Chou-Yange model can explain the differential cross section for deuteron-deuteron elastic scattering at √s = 53 GeV in the diffraction peak region. In order to fit the large momentum transfer data, the generalized Chou-Yang model is used

  12. Scattering by a slab containing randomly located cylinders: comparison between radiative transfer and electromagnetic simulation.

    Science.gov (United States)

    Roux, L; Mareschal, P; Vukadinovic, N; Thibaud, J B; Greffet, J J

    2001-02-01

    This study is devoted to the examination of scattering of waves by a slab containing randomly located cylinders. For the first time to our knowledge, the complete transmission problem has been solved numerically. We have compared the radiative transfer theory with a numerical solution of the wave equation. We discuss the coherent effects, such as forward-scattering dip and backscattering enhancement. It is seen that the radiative transfer equation can be used with great accuracy even for optically thin systems whose geometric thickness is comparable with the wavelength. We have also shown the presence of dependent scattering.

  13. Dynamical evolution of angular momentum in damped nuclear reactions. I. Accumulation of angular momentum by nucleon transfer

    International Nuclear Information System (INIS)

    Doessing, T.; Randrup, J.

    1984-01-01

    An important goal in the theory of nuclear dynamics is to understand the observed transport phenomena in terms of the basic microscopic processes in the system. For this purpose a model was developed in which the dissipative mechanism responsible for the transport process is the transfer of nucleons between the two reacting nuclides. Until now, most efforts to confront that theory with data have concentrated on the evolution of the charge and mass distribution with energy loss, and overall good agreement has been obtained for a variety of features. While this success lends strong support to the theory, it is important to broaden the contact with experiment by considering also other aspects of the data. Therefore the authors have undertaken a comprehensive study of the angular momentum variables which represent six additional observables (three for each fragment spin) and thus provide a rich testing ground for the theory

  14. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng, E-mail: dssu@imr.ac.cn [Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016 (China)

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  15. Comparison of the 12C(e,e'p) cross section at low momentum transfer with a relativistic calculation

    International Nuclear Information System (INIS)

    Tamae, T.; Sato, Y.; Yokokawa, T.; Asano, Y.; Kawabata, M.; Konno, O.; Nakagawa, I.; Nishikawa, I.; Hirota, K.; Yamazaki, H.; Kimura, R.; Miyase, H.; Tsubota, H.; Giusti, C.; Meucci, A.

    2009-01-01

    The (e,e ' p 0 ) cross section of 12 C has been measured at an energy transfer of 60 MeV and a momentum transfer of 104.4 MeV/c using a 197.5 MeV continuous electron beam. The cross section at missing momenta between 181.5 and 304.8 MeV/c obtained from the experiment is compared with theoretical calculations based on the relativistic distorted-wave impulse approximation with and without meson-exchange currents (MEC). The contribution of MEC due to the seagull current is large in the high-missing-momentum region, in particular for the longitudinal component. The cross sections calculated using three different current-conserving operators (cc1, cc2, and cc3) are similar, in contrast to the (γ,p) reaction, where the operators give very different results. The shape of the measured cross section is well described by the calculations, whereas its magnitude is slightly smaller than that described by the calculations.

  16. Proton-proton elastic scattering at the LHC energy of $\\sqrt{s}$ = 7 TeV

    OpenAIRE

    Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.S.; Calicchio, M.; Catanesi, M.G.; Covault, C.; Csanad, M.

    2011-01-01

    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at √ s = 7 TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (σbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t| , the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of δ t = 0.1 GeV √ |t|. In this letter the...

  17. Hard scattering on light nuclei: a convenient way to study parton correlations

    International Nuclear Information System (INIS)

    Calucci, G.; Treleani, D.

    2011-01-01

    The one-body partonic distributions in the hadrons are well investigated using electromagnetic or weak interactions. If we wish to exploit the same procedure to study the two-body distributions we should study the very rare events with multiple electromagnetic or weak interactions on the same hadron.The alternative is to study events with hard QCD double scattering of partons of the same hadron, such events become more and more abundant when the energy of the colliding hadrons grows. In fact at very high energies even the parton at small fractional momentum χ may suffer collisions with momentum transfer large enough to allow a perturbative treatment

  18. Light scattering reviews 7 radiative transfer and optical properties of atmosphere and underlying surface

    CERN Document Server

    Kokhanovsky, Alexander A

    2014-01-01

    This book describes modern advances in radiative transfer and light scattering. Coverage includes fast radiative transfer techniques, use of polarization in remote sensing and recent developments in remote sensing of snow properties from space observations.

  19. On the physics of electron transfer (drift) in the substance: about the reason of “abnormal” fast transfer of electrons in the plasma of tokamak and at known Bohm’s diffusion

    Science.gov (United States)

    Boriev, I. A.

    2018-03-01

    An analysis of the problem of so-called “abnormal” fast transfer of electrons in tokamak plasma, which turned out much faster than the result of accepted calculation, is given. Such transfer of hot electrons leads to unexpectedly fast destruction of the inner tokamak wall with ejection of its matter in plasma volume, what violates a condition of plasma confinement for controlled thermonuclear fusion. It is shown, taking into account real physics of electron drift in the gas (plasma) and using the conservation law for momentum of electron transfer (drift), that the drift velocity of elastically scattered electrons should be significantly greater than that of accepted calculation. The reason is that the relaxation time of the momentum of electron transfer, to which the electron drift velocity is proportional, is significantly greater (from 16 up to 4 times) than the electron free path time. Therefore, generally accepted replacement of the relaxation time, which is unknown a priori, by the electron free path time, leads to significant (16 times for thermal electrons) underestimation of electron drift velocity (mobility). This result means, that transfer of elastically (and isotropically) scattered electrons in the gas phase should be so fast, and corresponds to multiplying coefficient (16), introduced by D. Bohm to explain the observed by him “abnormal” fast diffusion of electrons.

  20. On the radiative corrections of deep inelastic scattering of muon neutrino on nucleon

    International Nuclear Information System (INIS)

    So Sang Guk

    1986-01-01

    The radiative corrections of deep inelastic scattering process VΜP→ ΜN are considered. Matrix element which takes Feynman one photon exchange diagrams into account at high transfer momentum are used. Based on calculation of the matrix element one can obtain matrix element for given process. It is shown that the effective cross section which takes one photon exchange into account is obtained. (author)

  1. Studies of momentum transfer and X-ray spectra in a laser-produced plasma

    International Nuclear Information System (INIS)

    Leroy, Pierre

    Studies of momentum transfer from a ballistic pendulum appear to give satisfactory results for absorbed laser energies in excess of 200 mJ i.e. for fluxes in the 3.10 10 to 3.10 12 W.cm -2 range. A hard X-ray component attributed to fast electrons was revealed by an X-ray spectrometer with a PM system of greater sensitivity than PIN diodes. The laser energy is however too weak to enable studies to be conducted as a function of laser flux or measurements to be performed on targets of low Z [fr

  2. Combined Natural Convection and Radiation Heat Transfer of Various Absorbing-Emitting-Scattering Media in a Square Cavity

    Directory of Open Access Journals (Sweden)

    Xianglong Liu

    2014-01-01

    Full Text Available A numerical model is developed to simulate combined natural convection and radiation heat transfer of various anisotropic absorbing-emitting-scattering media in a 2D square cavity based on the discrete ordinate (DO method and Boussinesq assumption. The effects of Rayleigh number, optical thickness, scattering ratio, scattering phase function, and aspect ratio of square cavity on the behaviors of heat transfer are studied. The results show that the heat transfer of absorbing-emitting-scattering media is the combined results of radiation and natural convection, which depends on the physical properties and the aspect ratio of the cavity. When the natural convection becomes significant, the convection heat transfer is enhanced, and the distributions of NuR and Nuc along the walls are obviously distorted. As the optical thickness increases, NuR along the hot wall decreases. As the scattering ratio decreases, the NuR along the walls decreases. At the higher aspect ratio, the more intensive thermal radiation and natural convection are formed, which increase the radiation and convection heat fluxes. This paper provides the theoretical research for the optimal thermal design and practical operation of the high temperature industrial equipments.

  3. Recent single ARM electron scattering experiments at Saclay

    International Nuclear Information System (INIS)

    Frois, B.

    1981-07-01

    Some recent electron scattering experiments at intermediate energies performed at the Saclay linear accelerator (ALS) are presented. First the definitive results of the measurements of the size of valence orbits by magnetic elastic electron scattering are discussed and followed by an overview of the study of charge distributions in closed shell nuclei. These results are among the most stringent experimental tests of nuclear theory because they probe without ambiguity the shape of nuclei. Then, it is shown how the details of the transition densities of the first excited states of 152 Sm have been brought out by very high momentum transfer experiments. Finally, the results of the investigation of mesonic degrees of freedom in deuterium and helium-3 are presented

  4. Light scattering by multiple spheres: comparison between Maxwell theory and radiative-transfer-theory calculations.

    Science.gov (United States)

    Voit, Florian; Schäfer, Jan; Kienle, Alwin

    2009-09-01

    We present a methodology to compare results of classical radiative transfer theory against exact solutions of Maxwell theory for a high number of spheres. We calculated light propagation in a cubic scattering region (20 x 20 x 20 microm(3)) consisting of different concentrations of polystyrene spheres in water (diameter 2 microm) by an analytical solution of Maxwell theory and by a numerical solution of radiative transfer theory. The relative deviation of differential as well as total scattering cross sections obtained by both approaches was evaluated for each sphere concentration. For the considered case, we found that deviations due to radiative transfer theory remain small, even for concentrations up to ca. 20 vol. %.

  5. Effect of reflecting modes on combined heat transfer within an anisotropic scattering slab

    International Nuclear Information System (INIS)

    Yi Hongliang; Tan Heping; Lu Yiping

    2005-01-01

    Under various interface reflecting modes, different transient thermal responses will occur in the media. Combined radiative-conductive heat transfer is investigated within a participating, anisotropic scattering gray planar slab. The two interfaces of the slab are considered to be diffuse and semitransparent. Using the ray tracing method, an anisotropic scattering radiative transfer model for diffuse reflection at boundaries is set up, and with the help of direct radiative transfer coefficients, corresponding radiative transfer coefficients (RTCs) are deduced. RTCs are used to calculate the radiative source term in energy equation. Transient energy equation is solved by the full implicit control-volume method under the external radiative-convective boundary conditions. The influences of two reflecting modes including both specular reflection and diffuse reflection on transient temperature fields and steady heat flux are examined. According to numerical results obtained in this paper, it is found that there exits great difference in thermal behavior between slabs with diffuse interfaces and that with specular interfaces for slabs with big refractive index

  6. Electron collisions with phenol: Total, integral, differential, and momentum transfer cross sections and the role of multichannel coupling effects on the elastic channel

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Romarly F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Oliveira, Eliane M. de; Lima, Marco A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Bettega, Márcio H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Varella, Márcio T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, São Paulo (Brazil); Jones, Darryl B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Brunger, Michael J. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Blanco, Francisco [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Ciudad Universitaria, 2840 Madrid (Spain); Colmenares, Rafael [Hospital Ramón y Cajal, 28034 Madrid (Spain); and others

    2015-03-14

    We report theoretical and experimental total cross sections for electron scattering by phenol (C{sub 6}H{sub 5}OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the N{sub open}-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the number of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].

  7. The elastic scattering between heavy ions using Glauber model

    International Nuclear Information System (INIS)

    Esmael, E.H.; El-Muhbad, SH.A.

    2002-01-01

    The differential cross sections of the elastic scattering of 1 2 C+ 12 C at energies 1016, 1449 and 2400 MeV and 1 6O +1 2C at energy 1503 MeV are calculated using high energy folding model. An analytical expression for the optical potential is derived. The effect of introducing imaginary phase and the dependence of the ratio of the real to imaginary parts of the forward nucleon-nucleon scattering amplitude on the square of momentum transfer are taken into consideration. Two different types of nuclear densities of the projectile and the target nuclei are considered. The considered systems of interaction are studied by using both modified Glauber I and modified Glauber II. The results show that the elastic scattering differential cross section for the considered interacting systems can be satisfactorily reproduced by this model

  8. Hadron scattering in an asymmetric box

    International Nuclear Information System (INIS)

    Li Xin; Chen Ying; Meng Guozhan; Feng Xu; Gong Ming; He Song; Li Gang; Liu Chuan; Liu Yubin; Ma Jianping; Meng Xiangfei; Shen Yan; Zhang Jianbo

    2007-01-01

    We propose to study hadron-hadron scattering using lattice QCD in an asymmetric box which allows one to access more non-degenerate low-momentum modes for a given volume. The conventional Luescher's formula applicable in a symmetric box is modified accordingly. To illustrate the feasibility of this approach, pion-pion elastic scattering phase shifts in the I = 2, J = 0 channel are calculated within quenched approximation using improved gauge and Wilson fermion actions on anisotropic lattices in an asymmetric box. After the chiral and continuum extrapolation, we find that our quenched results for the scattering phase shifts in this channel are consistent with the experimental data when the three-momentum of the pion is below 300MeV. Agreement is also found when compared with previous theoretical results from lattice and other means. Moreover, with the usage of asymmetric volume, we are able to compute the scattering phases in the low-momentum range (pion three momentum less than about 350MeV in the center of mass frame) for over a dozen values of the pion three-momenta, much more than using the conventional symmetric box with comparable volume

  9. Measurement of small angle antiproton-proton elastic scattering at √s =546 and 1800 GeV

    International Nuclear Information System (INIS)

    Abe, F.; Albrow, M.; Amidei, D.; Anway-Wiese, C.; Apollinari, G.; Atac, M.; Auchincloss, P.; Azzi, P.; Bacchetta, N.; Baden, A.R.; Badgett, W.; Bailey, M.W.; Bamberger, A.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Bensinger, J.; Beretvas, A.; Berge, J.P.; Bertolucci, S.; Biery, K.; Bhadra, S.; Binkley, M.; Bisello, D.; Blair, R.; Blocker, C.; Bodek, A.; Bolognesi, V.; Booth, A.W.; Boswell, C.; Brandenburg, G.; Brown, D.; Buckley-Geer, E.; Budd, H.S.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Campagnari, C.; Campbell, M.; Caner, A.; Carey, R.; Carithers, W.; Carlsmith, D.; Carroll, J.T.; Cashmore, R.; Castro, A.; Cen, Y.; Cervelli, F.; Chadwick, K.; Chapman, J.; Chapin, T.J.; Chiarelli, G.; Chinowsky, W.; Cihangir, S.; Clark, A.G.; Cobal, M.; Connor, D.; Contreras, M.; Cooper, J.; Cordelli, M.; Crane, D.; Cunningham, J.D.; Day, C.; DeJongh, F.; Dell'Agnello, S.; Dell'Orso, M.; Demortier, L.; Denby, B.; Derwent, P.F.; Devlin, T.; Dickson, M.; Drucker, R.B.; Dunn, A.; Einsweiler, K.; Elias, J.E.; Ely, R.; Eno, S.; Errede, S.; Etchegoyen, A.; Farhat, B.; Frautschi, M.; Feldman, G.J.; Flaugher, B.; Foster, G.W.; Franklin, M.; Freeman, J.; Fuess, T.; Fukui, Y.; Garfinkel, A.F.; Gauthier, A.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Gold, M.; Gonzalez, J.; Goulianos, K.; Grassmann, H.; Grieco, G.M.; Grindley, R.; Grosso-Pilcher, C.; Haber, C.; Hahn, S.R.; Handler, R.; Hara, K.; Harral, B.; Harris, R.M.; Hauger, S.A.; Hauser, J.; Hawk, C.; Hessing, T.; Hollebeek, R.; Holloway, L.; Hoelscher, A.; Hong, S.; Houk, G.; Hu, P.; Hubbard, B.; Huffman, B.T.; Hughes, R.; Hurst, P.; Huth, J.; Hylen, J.; Incagli, M.; Ino, T.; Iso, H.; Jessop, C.P.; Johnson, R.P.; Joshi, U.; Kadel, R.W.; Kamon, T.; Kanda, S.; Kardelis, D.A.; Karliner, I.; Kearns, E.; Keeble, L.; Kephart, R.; Kesten, P.

    1994-01-01

    Antiproton-proton elastic scattering was measured at c.m.s. energies √s =546 and 1800 GeV in the range of four-momentum transfer squared 0.025 2 . The data are well described by the exponential form e bt with a slope b=15.28±0.58 (16.98±0.25) GeV -2 at √s =546 (1800) GeV. The elastic scattering cross sections are, respectively, σ el =12.87±0.30 and 19.70±0.85 mb

  10. Scattering of wave packets with phases

    Energy Technology Data Exchange (ETDEWEB)

    Karlovets, Dmitry V. [Department of Physics, Tomsk State University, Lenina Ave. 36, 634050 Tomsk (Russian Federation)

    2017-03-09

    A general problem of 2→N{sub f} scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in (3+1) D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet σ{sub p}/〈p〉 as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the scattering amplitude. A model-independent analysis of these effects is made. Two ways of measuring how a Coulomb phase and a hadronic one change with a transferred momentum t are discussed.

  11. On the inverse problem in high-energy elastic hadron scattering and the applicability of a representation for the real part of the amplitude

    International Nuclear Information System (INIS)

    Fagundes, Daniel Almeida

    2010-01-01

    The theoretical description of high-energy elastic hadron scattering constitutes an open problem in both, the underlying quantum field theory of strong interactions (QCD) and the phenomenological context. In this work the inverse problem in elastic hadron scattering is discussed in the impact parameter and eikonal frameworks, specifically a study on the empirical extraction of the profile, the inelastic overlap and the eikonal functions, from the experimental data and some principles and high-energy theorems (model independent). The analysis is limited to elastic proton-proton scattering in the center of momentum energy interval 19.4 - 62.5 GeV. In particular, a novel representation for the Martin's Real Part Formula is introduced but without the scaling property and suitable for empirical analysis. By means of this representation, and two other parametrizations previously introduced (constrained and unconstrained), several properties of the inelastic overlap function and the imaginary part of the eikonal (opacity) in the momentum transfer space are determined, in special: (1) evidence of a peripheral effect (tail) in the inelastic overlap function in the parameter impact space above 2 fm; (2) development of analytical parametrizations for this function leading to three gaussian components with centers at 0.0, ∼0.7 and ∼1.3 fm; (3) evidence of a finite zero (change of sign) in the opacity function in the momentum transfer space; (4) development of empirical parametrization for this function consistent with form factors as a product of two monopoles with constrained masses (not a dipole type) and a term with zero; (5) detailed discussion on the determination of the opacity function in the momentum transfer space through the semi-analytical approach. The applicability of these empirical results in the development of eikonal models (mainly those inspired in QCD) is also discussed. (author)

  12. Elastic scattering of gamma radiation in solids

    International Nuclear Information System (INIS)

    Goncalves, O.D.

    1987-01-01

    The elastic scattering of gamma rays in solids is studied: Rayleigh scattering as well as Bragg scattering in Laue geometries. We measured Rayleigh cross sections for U, Pb, Pt, W, Sn, Ag, Mo, Cd, Zn, and Cu with gamma energies ranging from 60 to 660 KeV and angles between 5 0 and 140 0 . The experimental data are compared with form factor theories and second order perturbation theories and the limits of validity of both are established. In the 60 KeV experiment, a competition between Rayleigh and Bragg effects is found in the region of low momentum transfer. The Bragg experiments were performed using the gamma ray diffractometer from the Hahn-Meitner Institut (Berlin) with gammas of 317 KeV and angles up to 2 0 . In particular, we studied the effect of annealing in nearly perfect Czochralski Silicon crystals with high perfection in the crystallographic structure. The results are compared with Kinematical and Dynamical theories. (author)

  13. Momentum sharing in imbalanced Fermi systems

    OpenAIRE

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.

    2014-01-01

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in ne...

  14. Deep inelastic scattering with leading protons or large rapidity gaps at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2008-12-01

    The dissociation of virtual photons, γ * p→ Xp, in events with a large rapidity gap between X and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities Q 2 > 2 GeV 2 and γ * p centre-of-mass energies 40 X > 2 GeV, where M X is the mass of the hadronic final state, X. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of t, the squared four-momentum transfer at the proton vertex and Φ, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of Q 2 and x P , the fraction of the proton's momentum carried by the diffractive exchange, as well as β, the Bjorken variable defined with respect to the diffractive exchange. (orig.)

  15. Final state effects in inclusive quasielastic electron scattering from nuclei: Clues from quantum fluids

    International Nuclear Information System (INIS)

    Silver, R.N.; Clark, J.W.

    1988-01-01

    The impulse approximation (IA) predicts that momentum distributions, n/sub k/, in many-body systems should be measurable by inclusive quasielastic scattering at high energy and momentum (w,Q) transfer. The observations that the cross section appears to satisfy ''Y-scaling'' (i.e., is a function not of both w and Q of a single variable, Y) is usually taken as a signature of the IA. In nuclear physics, inelastic electron scattering at GeV energies should reveal the high momentum components of the nuclear wave function. In quantum fluids, neutron scattering at hundreds of MeV energies should measure the Bose condensate in superfluid /sup 4/He and the Fermi surface discontinuity and depletion of the Fermi sea in /sup 3/He. In molecular and condensed matter systems, X-ray Compton scattering at keV energies reveals electronic n/sub k/. Such experiments test many-body wave functions calculated by methods such as Green Function and Path Integral Monte Carlo, and Fermi Hypernetted Chain. However, an outstanding issue has been the corrections to the IA due to the scattering of the recoiling particle from neighboring particles, which are termed ''final state effects'' (FSE). The FSE should be especially important in nuclei and quantum fluids where the potentials have steeply repulsive cores. While there have been a variety of theories proposed for FSE, until now none has been adequately tested by experiment. Recently, the ''hard core perturbation theory'' (HCPT) for FSE in quantum fluids by Silver has been successfully compared to new neutron scattering measurements on /sup 4/He by P. E. Sokol and colleagues. In this paper, we shall discuss the lessons of this success for the extraction of n/sub k/ in nuclei by inclusive ''quasielastic electron-nucleus scattering'' (QENS). 19 refs., 12 figs

  16. Comparison of inelastic electron and positron scattering cross sections on 12C and 27Al

    International Nuclear Information System (INIS)

    Hartwig, S.; Heimlich, F.H.; Huber, G.; Roessle, E.; Koebberling, M.; Moritz, J.; Schmidt, K.H.; Wegener, D.; Zeller, D.; Bleckwenn, J.

    1977-06-01

    The +/- ratio R of the cross sections for inelastic positron and electron scattering on 12 C and 27 Al has been measured for four momentum transfers (0.08 - 0.45) GeV 2 /c 2 of the virtual photon and invariant masses 0.95 GeV +- 0.0007), no q 2 respectively W dependence of the ratio is observed. (orig.) [de

  17. Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory

    International Nuclear Information System (INIS)

    Ma, L.X.; Tan, J.Y.; Zhao, J.M.; Wang, F.Q.; Wang, C.A.

    2017-01-01

    The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus–Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus–Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied. - Highlights: • The Muller matrix of randomly distributed, densely packed spheres are investigated. • The effects of multiple scattering and dependent scattering are analyzed. • The accuracy of radiative transfer theory for densely packed spheres is discussed. • Dependent scattering correction takes effect at medium size parameter or smaller. • Performance of dependent scattering correction

  18. Measurement of Deeply Virtual Compton Scattering at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Berndt, T.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cao, Jun; Caron, S.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solovev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Straumann, U.; Swart, M.; Tasevsky, M.; Chernyshov, V.; Chetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassilev, S.; Vazdik, Y.; Vichnevski, A.; Wacker, K.; Wallny, R.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, C.; Werner, M.; Werner, N.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2001-01-01

    A measurement is presented of elastic Deeply Virtual Compton Scattering e^+ + p -> e^+ + photon + p at HERA using data taken with the H1 detector. The cross section is measured as a function of the photon virtuality, Q^2, and the invariant mass, W, of the gamma p system, in the kinematic range 2 < Q^2 < 20 GeV^2, 30 < W < 120 GeV and |t| < 1 GeV^2, where t is the squared momentum transfer to the proton. The measurement is compared to QCD based calculations.

  19. Selectron production in quasi-elastic electron-proton scattering

    International Nuclear Information System (INIS)

    Bartels, J.; Hollik, W.

    1985-08-01

    We calculate the cross section for the production of selectrons in quasi-elastic electron proton scattering at HERA energies. In the region of very small momentum transfer the cross section turns out to be large: e.g. sigma=36 pb for a selectron mass of 60 GeV, tsub(min) 2 ), and photino mass small compared to the selectron mass. Together with the clean experimental signature, this large cross section makes the reaction e+P->e+γ tilde+P one of the most promising HERA-processes in connection with the search for supersymmetric particles. (orig.)

  20. Quantum translator-rotator: inelastic neutron scattering of dihydrogen molecules trapped inside anisotropic fullerene cages.

    Science.gov (United States)

    Horsewill, A J; Panesar, K S; Rols, S; Johnson, M R; Murata, Y; Komatsu, K; Mamone, S; Danquigny, A; Cuda, F; Maltsev, S; Grossel, M C; Carravetta, M; Levitt, M H

    2009-01-09

    We report an inelastic neutron scattering investigation of the quantum dynamics of hydrogen molecules trapped inside anisotropic fullerene cages. Transitions among the manifold of quantized rotational and translational states are directly observed. The spectra recorded as a function of energy and momentum transfer are interpreted in terms of the rotational potential and the cage dimensions. The thermodynamics of orthohydrogen and parahydrogen are investigated through temperature dependence measurements.

  1. Measurement of through-going particle momentum by means of multiple scattering with the ICARUS T600 TPC

    International Nuclear Information System (INIS)

    Ankowski, A.; Graczyk, K.; Nowak, J.; Sobczyk, J.; Antonello, M.; Cavanna, F.; Piano Mortari, G.; Segreto, E.; Aprili, P.; Arneodo, F.; Palamara, O.; Badertscher, A.; Ge, Y.; Laffranchi, M.; Messina, M.; Rubbia, A.; Baiboussinov, B.; Baldo Ceolin, M.; Centro, S.; Gibin, D.; Guglielmi, A.; Meng, G.; Pietropaolo, F.; Varanini, F.; Ventura, S.; Battistoni, G.; Muraro, S.; Sala, P.R.; Benetti, P.; Borio di Tigliole, A.; Brunetti, R.; Calligarich, E.; De Vecchi, C.; Dolfini, R.; Gigli Berzolari, A.; Grandi, L.; Mauri, F.; Menegolli, A.; Montanari, C.; Piazzoli, A.; Prata, M.; Prata, M.C.; Przewlocki, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Scannicchio, D.; Vignoli, C.; Bueno, A.; Carmona, M.C.; Garcia-Gamez, D.; Lozano, J.; Martinez de la Ossa, A.; Melgarejo, A.J.; Navas, S.; Carbonara, F.; Cocco, A.G.; Di Cicco, A.; Ereditato, A.; Fiorillo, G.; Rossi, B.; Cennini, P.; Ferrari, A.; Cesana, A.; Terrani, M.; Cline, D.B.; Lisowski, B.; Matthey, C.; Otwinowski, S.; Seo, Y.; Wang, H.; Yang, X.; Cieslik, K.; Dabrowska, A.; Markiewicz, M.; Stefan, D.; Szarska, M.; Wachala, T.; Zalewska, A.; Gil-Botella, I.; Holeczek, J.; Kisiel, J.; Kielczewska, D.; Lagoda, J.; Posiadala, M.; Kozlowski, T.; Mijakowski, P.; Rondio, E.; Stepaniak, J.; Szeptycka, M.; Periale, L.; Picchi, P.; Polchlopek, W.; Sergiampietri, F.; Sulej, R.

    2006-01-01

    The ICARUS collaboration has demonstrated, following the operation of a 600 ton (T600) detector at shallow depth, that the technique based on liquid argon time projection chambers is now mature. The study of rare events, not contemplated in the standard model, can greatly benefit from the use of this kind of detectors. In particular, a deeper understanding of atmospheric neutrino properties will be obtained thanks to the unprecedented quality of the data ICARUS provides. However if we concentrate on the T600 performance, most of the ν μ charged current sample will be partially contained, due to the reduced dimensions of the detector. In this article, we address the problem of how well we can determine the kinematics of events having partially contained tracks. The analysis of a large sample of atmospheric muons collected during the T600 test run demonstrates that, in case the recorded track is at least one meter long, the muon momentum can be reconstructed by an algorithm that measures the multiple Coulomb scattering along the particle's path. Moreover, we show that momentum resolution can be improved by almost a factor two using an algorithm based on the Kalman filtering technique. (orig.)

  2. Effects of an anode sheath on energy and momentum transfer in vacuum arcs

    International Nuclear Information System (INIS)

    Wang, Zhenxing; Zhou, Zhipeng; Tian, Yunbo; Wang, Haoran; Wang, Jianhua; Geng, Yingsan; Liu, Zhiyuan

    2017-01-01

    Anode phenomena under high-current vacuum arcs have a significant impact on the interrupting capacity of vacuum interrupters. However, the vacuum arc energy flux and momentum flux on the anode—which are necessary boundary conditions for simulations—are either set to an imaginary distribution or calculated using simple formulas without considering anode sheath regulatory effects. The objective of this paper is to reveal the anode sheath effects on regulating the energy and momentum transfer from the arc column to the anode surface in vacuum arcs. A particle-in-cell model for the anode sheath is developed. The required input parameters are obtained from a magnetohydrodynamic model for the arc column. From the results, there exists a sheath near the anode with a negative voltage drop. Both the electron density and the ion density significantly decline in the anode sheath region. The kinetic energy of the ions absorbed by the anode consists of directed kinetic energy, random kinetic energy, and sheath acceleration energy. The sheath acceleration energy contribution is the largest, and the random kinetic energy also accounts for a large part that cannot be ignored. The arc pressure on the anode surface is mainly caused by ion impact, and the accelerating effect of the anode sheath on the ions cannot be neglected in pressure calculations. In addition, in the case of an arc current at 15 kA, the input energy and momentum upon the anode surface is not obviously affected by the evaporated atoms at surface temperatures of 1600 K and 2000 K. (paper)

  3. On the harmonic analysis of the elastic scattering amplitude of two spinless particles at fixed momentum transfer

    International Nuclear Information System (INIS)

    Viano, G.A.

    1980-01-01

    The harmonic analysis of the elastic scattering amplitude F(s,t) of two spinless particles, at fixed t<0, is here revisited using the non-euclidean Fourier analysis in the sense of Helgason, and the approach of Ehrenpresis to the special functions. With these techniques it is possible to derive the Fourier and Laplace transforms for the scattering amplitude. Indeed these transforms are obtained by projecting the amplitude on functions which play a role similar to that played by the exponentials on the real line; here we show how to construct these functions, using essentially geometrical tools. Since the harmonic analysis is a decomposition which separates the dynamics from the symmetry of the problem, we obtain an explicit geometrical characterization of those terms which reflect the symmetry

  4. Secondary relaxation in two engineering thermoplastics by neutron scattering and dielectric spectroscopy

    CERN Document Server

    Arrese, S; Alegria, A; Colmenero, J; Frick, B

    2002-01-01

    We present a preliminary investigation of the dynamics of glassy polycarbonate (PC) and polysulfone (PSF) by means of quasielastic neutron scattering and dielectric spectroscopy. Whereas the consideration of pure phenylene ring pi-flips is enough to explain the momentum-transfer (Q) dependence of the inelastic intensity measured for PSF, in the case of PC the Q dependence of both the coherent and the incoherent scattering functions reveal the existence in this polymer of some more complex motion of the phenylene ring. On the other hand, the similarity of the energy landscapes deduced from the different techniques points to a closely related molecular origin for all the relaxation/motions observed. (orig.)

  5. Secondary relaxation in two engineering thermoplastics by neutron scattering and dielectric spectroscopy

    International Nuclear Information System (INIS)

    Arrese-Igor, S.; Arbe, A.; Alegria, A.; Colmenero, J.; Frick, B.

    2002-01-01

    We present a preliminary investigation of the dynamics of glassy polycarbonate (PC) and polysulfone (PSF) by means of quasielastic neutron scattering and dielectric spectroscopy. Whereas the consideration of pure phenylene ring π-flips is enough to explain the momentum-transfer (Q) dependence of the inelastic intensity measured for PSF, in the case of PC the Q dependence of both the coherent and the incoherent scattering functions reveal the existence in this polymer of some more complex motion of the phenylene ring. On the other hand, the similarity of the energy landscapes deduced from the different techniques points to a closely related molecular origin for all the relaxation/motions observed. (orig.)

  6. Studies in deep inelastic scattering and vector meson photoproduction

    International Nuclear Information System (INIS)

    Busenitz, J.K.

    1985-01-01

    The first part of this thesis is devoted to a space-time analysis of deep inelastic scattering from protons at rest. Techniques are developed for identifying important space-time regions. These are then applied to obtain a space-time picture of deep inelastic scattering in the leading logarithmic approximation of QCD, Physical mechanisms responsible for the space-time picture are discussed. In the second part of this thesis he reports on the observations of elastic omega photoproduction from hydrogen by Fermilab Experiment-401. The omega was detected via its decay into the π + π - π 0 channel. Measurements of the energy, momentum transfer, and angular dependence of the cross section have been made for photon energies between 60 and 225 GeV

  7. Contributions to atomic microdynamics study in some liquid metals by means of soft neutrons scattering

    International Nuclear Information System (INIS)

    Rotarescu, G.

    1981-01-01

    Measurements of inelastic scattering of soft neutrons on Bi and liquid Pb, applying all the necessary corrections in view of obtaining the dYnamic structure factor S(Q,ω) were performed. The F(Q,t) function of intermediate scattering was obtained by means of the Fourier transformation of S(Q,ω). Special attention was devoted to one multiple scattering correction, especially at small scattering angles, taking into account its influence on the results. A comparison of the experimental results with three recent theoretical models has shown a good agreement in the range of intermediate and high Q values. Measurements of neutron inelastic scattering on liquid sodium at a temperature of 233 Cdeg within a momentum transfer range of 1 A -1 -1 were performed. The scattering law S(α,β) that was compared to a series of theoretical models has been determined from the experimental data. The validity of the theoretical models for different ranges of energy and momenta was thoroughly checked. S(α,β) was calculated for each type of scattering since sodium proves a mixed, coherent and incoherent scattering agent. A study on the influence of the even interaction potential upon the S(Q,ω) dynamic structure factor, the fourth order momentum ω 4 (Q) and uoon the spectral function C(Q,ω) of longitudinal current correlations was performed. For this purpose, four potentials with oscillations at great distances and a Lennard-Jones type potential were used. (author)

  8. The integration of improved Monte Carlo compton scattering algorithms into the Integrated TIGER Series

    International Nuclear Information System (INIS)

    Quirk, Thomas J. IV

    2004-01-01

    The Integrated TIGER Series (ITS) is a software package that solves coupled electron-photon transport problems. ITS performs analog photon tracking for energies between 1 keV and 1 GeV. Unlike its deterministic counterpart, the Monte Carlo calculations of ITS do not require a memory-intensive meshing of phase space; however, its solutions carry statistical variations. Reducing these variations is heavily dependent on runtime. Monte Carlo simulations must therefore be both physically accurate and computationally efficient. Compton scattering is the dominant photon interaction above 100 keV and below 5-10 MeV, with higher cutoffs occurring in lighter atoms. In its current model of Compton scattering, ITS corrects the differential Klein-Nishina cross sections (which assumes a stationary, free electron) with the incoherent scattering function, a function dependent on both the momentum transfer and the atomic number of the scattering medium. While this technique accounts for binding effects on the scattering angle, it excludes the Doppler broadening the Compton line undergoes because of the momentum distribution in each bound state. To correct for these effects, Ribbefor's relativistic impulse approximation (IA) will be employed to create scattering cross section differential in both energy and angle for each element. Using the parameterizations suggested by Brusa et al., scattered photon energies and angle can be accurately sampled at a high efficiency with minimal physical data. Two-body kinematics then dictates the electron's scattered direction and energy. Finally, the atomic ionization is relaxed via Auger emission or fluorescence. Future work will extend these improvements in incoherent scattering to compounds and to adjoint calculations.

  9. Theory of Raman scattering in coupled electron-phonon systems

    Science.gov (United States)

    Itai, K.

    1992-01-01

    The Raman spectrum is calculated for a coupled conduction-electron-phonon system in the zero-momentum-transfer limit. The Raman scattering is due to electron-hole excitations and phonons as well. The phonons of those branches that contribute to the electron self-energy and the correction of the electron-phonon vertex are assumed to have flat energy dispersion (the Einstein phonons). The effect of electron-impurity scattering is also incorporated. Both the electron-phonon interaction and the electron-impurity interaction cause the fluctuation of the electron distribution between different parts of the Fermi surface, which results in overdamped zero-sound modes of various symmetries. The scattering cross section is obtained by solving the Bethe-Salpeter equation. The spectrum shows a lower threshold at the smallest Einstein phonon energy when only the electron-phonon interaction is taken into consideration. When impurities are also taken into consideration, the threshold disappears.

  10. Electron Scattering from MERCURY-198 and Mercury -204.

    Science.gov (United States)

    Laksanaboonsong, Jarungsaeng

    This experiment is the first electron scattering study on mercury isotopes. Electron scattering from ^{198}Hg and ^{204 }Hg has been performed at the NIKHEF-K Medium Energy Accelerator. Measured cross sections cover an effective momentum transfer range from 0.4 to 2.9 fm^ {-1}. Elastic cross sections were determined for scattering from both isotopes. Cross section for inelastic excitations in ^{198}Hg below 3 MeV were also determined. Measured cross sections were fit using DWBA phase shift codes to determine coefficients for Fourier-Bessel expansions of ground state and transition charge densities. Differences between the ground state charge densities of the two isotopes reveal the effect of the polarization of the proton core in response to the addition of neutrons. Spin and parity of several excited states of ^{198}Hg were determined. Extracted transition densities of these states show their predominantly collective nature. Charge densities for members of the ground state rotational band were compared with axially symmetric Hartree-Fock and geometrical model predictions.

  11. Molecule scattering from insulator and metal surfaces

    International Nuclear Information System (INIS)

    Moroz, Iryna; Ambaye, Hailemariam; Manson, J R

    2004-01-01

    Calculations are carried out and compared with data for the scattering of CH 4 molecules from a LiF(001) surface and for O 2 scattering from Al(111). The theory is a mixed classical-quantum formalism that includes energy and momentum transfers between the surface and projectile for translational and rotational motions as well as internal mode excitation of the projectile molecule. The translational and rotational degrees of freedom couple most strongly to multiphonon excitations of the surface and are treated with classical dynamics. Internal vibrational excitations of the molecules are treated with a semiclassical formalism with extension to arbitrary numbers of modes and arbitrary quantum numbers. Calculations show good agreement for the dependence on incident translational energy, incident beam angle and surface temperature when compared with data for energy-resolved intensity spectra and angular distributions

  12. Hadron transverse momentum distributions in muon deep inelastic scattering at 160 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Schmidt, A. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Alekseev, M.G.; Birsa, R.; Bravar, A.; Dalla Torre, S.; Dasgupta, S.S.; Gobbo, B.; Sozzi, F.; Steiger, L.; Tessaro, S.; Tessarotto, F. [Trieste Section of INFN, Trieste (Italy); Alexakhin, V.Yu.; Alexeev, G.D.; Efremov, A.; Gavrichtchouk, O.P.; Gushterski, R.; Guskov, A.; Ivanshin, Yu.; Kroumchtein, Z.V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Olshevsky, A.G.; Rodionov, V.; Rossiyskaya, N.S.; Sapozhnikov, M.G.; Savin, I.A.; Shevchenko, O.Yu.; Zemlyanichkina, E.; Zhuravlev, N. [Joint Institute for Nuclear Research, Dubna, Moscow region (Russian Federation); Alexandrov, Yu.; Zavertyaev, M. [Lebedev Physical Institute, Moscow (Russian Federation); Amoroso, A.; Balestra, F.; Bertini, R.; Chiosso, M.; Garfagnini, R.; Gnesi, I.; Grasso, A.; Kotzinian, A.M.; Parsamyan, B.; Piragino, G.; Sosio, S. [University of Turin, Department of Physics (Italy); Torino Section of INFN, Turin (Italy); Andrieux, V.; Bedfer, Y.; Boer, M.; Burtin, E.; Capozza, L.; Ferrero, A.; Hose, N. d' ; Kunne, F.; Magnon, A.; Marchand, C.; Morreale, A.; Neyret, D.; Platchkov, S.; Thibaud, F.; Vandenbroucke, M.; Wollny, H. [CEA IRFU/SPhN Saclay, Gif-sur-Yvette (France); Austregesilo, A.; Bicker, K. [CERN, Geneva 23 (Switzerland); Technische Universitaet Muenchen, Physik Department, Garching (Germany); Badelek, B. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Barth, J.; Bieling, J.; Goertz, S.; Klein, F.; Panknin, R.; Pretz, J.; Windmolders, R. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Baum, G. [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany); Berlin, A.; Gautheron, F.; Hess, C.; Kisselev, Yu.; Koivuniemi, J.H.; Meyer, W.; Reicherz, G.; Wang, L. [Universitaet Bochum, Institut fuer Experimentalphysik, Bochum (Germany); Bernhard, J.; Harrach, D. von; Jasinski, P.; Kabuss, E.; Kang, D.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); Bisplinghoff, J.; Eversheim, P.D.; Hinterberger, F.; Jahn, R.; Joosten, R.; Schmiden, H. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Bordalo, P.; Franco, C.; Nunes, A.S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M. [LIP, Lisbon (Portugal); Bradamante, F.; Bressan, A.; Duic, V.; Elia, C.; Giorgi, M.; Levorato, S.; Martin, A.; Sbrizzai, G.; Schiavon, P. [University of Trieste, Department of Physics (Italy); Trieste Section of INFN, Trieste (Italy); Buechele, M.; Fischer, H.; Guthoerl, T.; Heinsius, F.H.; Herrmann, F.; Koenigsmann, K.; Nerling, F.; Nowak, W.D.; Schill, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Ter Wolbeek, J. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Chung, S.U.; Friedrich, J.M.; Grabmueller, S.; Grube, B.; Haas, F.; Hoeppner, C.; Huber, S.; Ketzer, B.; Kraemer, M.; Mann, A.; Nagel, T.; Neubert, S.; Paul, S.; Schmitt, L.; Uhl, S. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Cicuttin, A.; Crespo, M.L. [Abdus Salam ICTP, Trieste (Italy); Trieste Section of INFN, Trieste (Italy); Dasgupta, S.; Sarkar, S.; Sinha, L. [Matrivani Institute of Experimental Research and Education, Calcutta (India); Denisov, O.Yu.; Maggiora, A.; Takekawa, S. [Torino Section of INFN, Turin (Italy); Donskov, S.V.; Filin, A.; Khaustov, G.V.; Khokhlov, Yu.A.; Kolosov, V.N.; Konstantinov, V.F.; Lednev, A.A.; Mikhailov, Yu.V.; Nikolaenko, V.I.; Polyakov, V.A.; Ryabchikov, D.I.; Samoylenko, V.D. [State Research Center of the Russian Federation, Institute for High Energy Physics, Protvino (Russian Federation); Doshita, N.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Suzuki, H. [Yamagata University, Yamagata (Japan); Duennweber, W.; Faessler, M.; Geyer, R.; Rajotte, J.F.; Schlueter, T.; Uman, I. [Ludwig-Maximilians-Universitaet Muenchen, Department fuer Physik, Munich (Germany); Dziewiecki, M.; Kurjata, R.P.; Marzec, J.; Zaremba, K.; Ziembicki, M. [Warsaw University of Technology, Institute of Radioelectronics, Warsaw (Poland); Finger, M.; Finger, M.; Slunecka, M. [Charles University in Prague, Faculty of Mathematics and Physics, Prague (Czech Republic); Du Fresne von Hohenesche, N. [CERN, Geneva 23 (Switzerland); Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); Frolov, V.; Mallot, G.K.; Rocco, E.; Schoenning, K.; Schott, M. [CERN, Geneva 23 (Switzerland); Gerassimov, S.; Konorov, I. [Lebedev Physical Institute, Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department, Garching (Germany); Horikawa, N. [Nagoya University, Nagoya (Japan); Jary, V.; Novy, J.; Virius, M. [Czech Technical University in Prague, Prague (Czech Republic); Klimaszewski, K.; Kurek, K.; Rondio, E.; Sandacz, A.; Sulej, R.; Sznajder, P.; Wislicki, W. [National Centre for Nuclear Research, Warsaw (Poland); Kouznetsov, O. [Joint Institute for Nuclear Research, Dubna, Moscow region (Russian Federation); CEA IRFU/SPhN Saclay, Gif-sur-Yvette (France); Lichtenstadt, J. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Makke, N. [CEA IRFU/SPhN Saclay, Gif-sur-Yvette (France); University of Trieste, Department of Physics (Italy); Trieste Section of INFN, Trieste (Italy); Matsuda, T. [University of Miyazaki, Miyazaki (Japan); Panzieri, D. [Torino Section of INFN, Turin (Italy); University of Eastern Piedmont, Alessandria (Italy); Polak, J. [Technical University in Liberec, Liberec (Czech Republic); University of Trieste, Department of Physics (Italy); Trieste Section of INFN, Trieste (Italy); Srnka, A. [AS CR, Institute of Scientific Instruments, Brno (Czech Republic); Sulc, M. [Technical University in Liberec, Liberec (Czech Republic)

    2013-08-15

    Multiplicities of charged hadrons produced in deep inelastic muon scattering off a {sup 6}LiD target have been measured as a function of the DIS variables x{sub Bj}, Q{sup 2}, W{sup 2} and the final state hadron variables p{sub T} and z. The p{sub T}{sup 2} distributions are fitted with a single exponential function at low values of p{sub T}{sup 2} to determine the dependence of left angle p{sub T}{sup 2} right angle on x{sub Bj}, Q{sup 2}, W{sup 2} and z. The z-dependence of left angle p{sub T}{sup 2} right angle is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, left angle k {sub perpendicular} {sub to} {sup 2} right angle, as a function of x{sub Bj} and Q{sup 2} in a leading order QCD parton model. (orig.)

  13. Neutron Inelastic Scattering Study of Transverse Spin Fluctuations in CsNiF3: a Soliton-only Central Peak

    DEFF Research Database (Denmark)

    Steiner, M.; Kakurai, K.; Knop, W.

    1982-01-01

    We have observed a quasi-elastic contribution to the spectrum of the transverse spin fluctuations Sperp;(Q, ω), perpendicular to an applied magnetic field in the easy plane of the one-dimensional ferromagnet CsNiF3. According to the present theoretical understanding this contribution is due solel...... to soliton quasi-particles and it should not contain two-magnon scattering. The observed dependence on momentum transfer is as expected for soliton scattering with zero intensity at qc = 0 rising through a maximum with increasing qc....

  14. Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V. [Lebedev Physical Inst., Moscow (RU)] (and others)

    2011-09-15

    The cross section of diffractive deep-inelastic scattering ep{yields}eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x{sub P}<0.1 and covers the range 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4scattering. The data are also compared with leading order Monte Carlo models. (orig.)

  15. Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Inst., Yerevan (Armenia); Barrelet, E. [CNRS/IN2P3, LPNHE, Univ. Pierre et Marie Curie Paris 6, Univ. Denis Diderot Paris 7, Paris (France); Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [CNRS/IN2P3, LAL, Univ. Paris-Sud, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [CNRS/IN2P3, LLR, Ecole Polytechnique, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Univ. of Belgrade, Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham (United Kingdom); Bruncko, D.; Cerny, V.; Ferencei, J. [Slovak Academy of Sciences, Kosice (Slovakia)] [and others

    2012-04-15

    The cross section of diffractive deep-inelastic scattering ep{yields}eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x{sub P}<0.1 and covers the range 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4scattering. The data are also compared with leading order Monte Carlo models. (orig.)

  16. Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis

    Science.gov (United States)

    Liu, X.; Wu, W.; Yang, Q.

    2017-12-01

    Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.

  17. Observation of structure in large-momentum-transfer π-p elastic scattering at 200 GeV/c

    International Nuclear Information System (INIS)

    Baker, W.F.; Eartly, D.P.; Klinger, J.S.; Lennox, A.J.; Rubinstein, R.; Kalbach, R.M.; Krueger, K.W.; Pifer, A.E.; McHugh, S.F.; Kaplan, D.H.; Karchin, P.; Orear, J.

    1981-01-01

    Results are presented on the measurement of 200-GeV/c π - p elastic scattering from -t of 0.8 to 11 (GeV/c) 2 . As -t is increased, dsigma/dt falls by approx.6 decades to a prominent dip at 4 (GeV/c) 2 , followed by a second maximum and then a slow decrease with increasing -t

  18. Very large solid angle spectrometer for single arm electron scattering experiments

    International Nuclear Information System (INIS)

    Leconte, P.

    1981-01-01

    Major information about short range behavior of nuclear forces should be obtained through electron scattering experiments at high momentum transfer. Cross sections will be very low as is usually the case in electron scattering. In order to reach them, the solid angle of the detection system will have to be enlarged. Traditional optics cannot give correct answer to the problem. For very large apertures, it is impossible to obtain good focussing properties which provide accurate momentum/position correlation with no dependence on the entrance angles. Furthermore, the experiment will require the measurement of these angles. It means that the final system will be equipped with a complete set of position sensitive detectors able to measure positions and angles of trajectories in both planes. Then, the question arises: is it really necessary to provide good focussing, or more precisely: is it possible to get all the required information without the help of a sophisticated predetermined magnetic optics. We try to answer this question and then to sketch from a new point of view the best spectrometer we could think of

  19. Effect of resonant-to-bulk electron momentum transfer on the efficiency of electron-cyclotron current-drive

    International Nuclear Information System (INIS)

    Matsuda, Y.; Smith, G.R.; Cohen, R.H.

    1989-01-01

    Efficiency of current drive by electron cyclotron waves is investigated numerically by a bounce-averaged Fokker-Planck code to ellucidate the effects of momentum transfer from resonant to bulk-electrons, finite bulk temperature relative to the energy of resonant electrons, and trapped electrons. Comparisons are made with existing theories to assess their validity and quantitative difference between theory and code results. Difference of nearly a factor of 2 was found in efficiency between some theory and code results. (author)

  20. X-ray scattering signatures of β-thalassemia

    International Nuclear Information System (INIS)

    Desouky, Omar S.; Elshemey, Wael M.; Selim, Nabila S.

    2009-01-01

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm -1 , respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; β-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of β-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm -1 , in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  1. X-ray scattering signatures of β-thalassemia

    Science.gov (United States)

    Desouky, Omar S.; Elshemey, Wael M.; Selim, Nabila S.

    2009-08-01

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm -1, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; β-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of β-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm -1, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  2. X-ray scattering signatures of {beta}-thalassemia

    Energy Technology Data Exchange (ETDEWEB)

    Desouky, Omar S. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT) (Egypt); Elshemey, Wael M. [Biophysics Department, Faculty of Science, Cairo University (Egypt)], E-mail: waelelshemey@yahoo.com; Selim, Nabila S. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT) (Egypt)

    2009-08-11

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm{sup -1}, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; {beta}-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of {beta}-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm{sup -1}, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  3. Observation of the Hadronic Final State Charge Asymmetry in High Q^2 Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Alexa, C.; Alimujiang, K.; Andreev, V.; Antunovic, B.; Asmone, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.-J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jonsson, L.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; von den Driesch, M.; Wegener, D.; Wissing, Ch.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.; Zus, R.

    2009-01-01

    A first measurement is presented of the charge asymmetry in the hadronic final state from the hard interaction in deep-inelastic ep neutral current scattering at HERA. The measurement is performed in the range of negative squared four momentum transfer 100momentum, x_p, for positively and negatively charged particles, measured in the current region of the Breit frame, is studied together with its evolution as a function of Q. The results are compared to Monte Carlo models at the hadron and parton level.

  4. Observation of the hadronic final state charge asymmetry in high Q2 deep-inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.

    2009-06-01

    A first measurement is presented of the charge asymmetry in the hadronic final state from the hard interaction in deep-inelastic ep neutral current scattering at HERA. The measurement is performed in the range of negative squared four momentum transfer 100 2 2 . The difference between the event normalised distributions of the scaled momentum, x p , for positively and negatively charged particles, measured in the current region of the Breit frame, is studied together with its evolution as a function of Q. The results are compared to Monte Carlo models at the hadron and parton level. (orig.)

  5. Automated Angular Momentum Recoupling Algebra

    Science.gov (United States)

    Williams, H. T.; Silbar, Richard R.

    1992-04-01

    We present a set of heuristic rules for algebraic solution of angular momentum recoupling problems. The general problem reduces to that of finding an optimal path from one binary tree (representing the angular momentum coupling scheme for the reduced matrix element) to another (representing the sub-integrals and spin sums to be done). The method lends itself to implementation on a microcomputer, and we have developed such an implementation using a dialect of LISP. We describe both how our code, called RACAH, works and how it appears to the user. We illustrate the use of RACAH for several transition and scattering amplitude matrix elements occurring in atomic, nuclear, and particle physics.

  6. Anisotropy in the inelastic neutron scattering from fcc NiH

    International Nuclear Information System (INIS)

    Antonov, V.E.; Fedotov, V.K.; Gnesin, B.A.; Kolesnikov, A.I.; Grosse, G.; Ivanov, A.S.; Wagner, F.E.

    2000-01-01

    A sample of nearly stoichiometric fcc nickel hydride in the form of polycrystalline plates with strong texture was studied by inelastic neutron scattering (INS) in two different orientations, with the [100] axis of the texture parallel and at an angle of 45 to the direction of neutron momentum transfer. The INS spectra were measured at 5 K with energy transfers ω ranging from 26 to 380 meV. In the region of the second and third band of optical hydrogen vibrations, they showed a significant directional dependence. A similar anisotropy was recently observed in the INS spectrum of fcc palladium hydride, and the now available data for NiH and PdH are discussed together. (orig.)

  7. Mapping momentum-dependent electron-phonon coupling and nonequilibrium phonon dynamics with ultrafast electron diffuse scattering

    Science.gov (United States)

    Stern, Mark J.; René de Cotret, Laurent P.; Otto, Martin R.; Chatelain, Robert P.; Boisvert, Jean-Philippe; Sutton, Mark; Siwick, Bradley J.

    2018-04-01

    Despite their fundamental role in determining material properties, detailed momentum-dependent information on the strength of electron-phonon and phonon-phonon coupling (EPC and PPC, respectively) across the entire Brillouin zone has remained elusive. Here we demonstrate that ultrafast electron diffuse scattering (UEDS) directly provides such information. By exploiting symmetry-based selection rules and time resolution, scattering from different phonon branches can be distinguished even without energy resolution. Using graphite as a model system, we show that UEDS patterns map the relative EPC and PPC strength through their profound sensitivity to photoinduced changes in phonon populations. We measure strong EPC to the K -point TO phonon of A1' symmetry (K -A1' ) and along the entire TO branch between Γ -K , not only to the Γ -E2 g phonon. We also determine that the subsequent phonon relaxation of these strongly coupled optical phonons involve three stages: decay via several identifiable channels to TA and LA phonons (1 -2 ps), intraband thermalization of the non-equilibrium TA/LA phonon populations (30 -40 ps) and interband relaxation of the TA/LA modes (115 ps). Combining UEDS with ultrafast angle-resolved photoelectron spectroscopy will yield a complete picture of the dynamics within and between electron and phonon subsystems, helping to unravel complex phases in which the intertwined nature of these systems has a strong influence on emergent properties.

  8. Deuterium electrodisintegration at high recoil momentum

    International Nuclear Information System (INIS)

    Steenholen, G.

    1996-01-01

    The availability of continuous electron beams made it possible to carry out various deuterium electro-disintegration experiments in kinematical domains corresponding to a high recoil momentum. Three such experiments are discussed: 1) the left-right asymmetry with respect to the direction of the momentum transfer has been measured with good precision; 2) cross sections have been obtained in a kinematical region well above the quasi-elastic peak; 3) data have been taken in quasi-elastic kinematics that can be used to study high-momentum components in the deuterium wave function [ru

  9. An experimental approach to angular momentum transfer in heavy ion reactions

    International Nuclear Information System (INIS)

    Babinet, R.

    1980-01-01

    The current experimental status on angular momentum transfer status in heavy ion reactions is reviewed. After a short presentation of the basic theoretical concepts that are underlying all the research works in this field, the experimental techniques that have been commonly used are presented. Results obtained by the γ-multiplicity method are discussed first. Then come, for the very heavy systems, the sequential fission data, followed by the results of a recent experiment on light charged particles. The simple theoretical concepts that are introduced first are continuously used as guidelines to discuss the following results. The respective advantages but also the basic limitations of the above three experimental techniques are exposed. Although they are expected to work best in different regions of the mass table, it is shown, that they give complementary informations which have been most useful in improving our understanding of the tangential friction mechanism

  10. One-neutron and two-neutron transfer in the scattering

    International Nuclear Information System (INIS)

    Reisdorf, W.N.; Lau, P.H.; Vandenbosch, R.

    1975-01-01

    Angular distributions have been measured for one- and two-neutron transfer reactions induced by 18 O beams on 16 O targets at laboratory bombarding energies of 42 and 52 MeV. The reactions populating the ground and first excited states of 17 O and 18 O are analyzed in terms of single step finite range plus recoil DWBA theory taking into account antisymmetrization effects. Special attention is paid to an internally consistent description of the observed absolute magnitudes of all the reactions and to the theoretically expected interferences between various backward-forward scattering mechanisms. The importance of neutron transfer in accounting for different absorbing properties of the 16 O- 18 O systems as compared to the 16 O- 16 O system is shown. (13 figures, 2 tables)

  11. Angular momentum transfer in primordial discs and the rotation of the first stars

    Science.gov (United States)

    Hirano, Shingo; Bromm, Volker

    2018-05-01

    We investigate the rotation velocity of the first stars by modelling the angular momentum transfer in the primordial accretion disc. Assessing the impact of magnetic braking, we consider the transition in angular momentum transport mode at the Alfvén radius, from the dynamically dominated free-fall accretion to the magnetically dominated solid-body one. The accreting protostar at the centre of the primordial star-forming cloud rotates with close to breakup speed in the case without magnetic fields. Considering a physically motivated model for small-scale turbulent dynamo amplification, we find that stellar rotation speed quickly declines if a large fraction of the initial turbulent energy is converted to magnetic energy (≳ 0.14). Alternatively, if the dynamo process were inefficient, for amplification due to flux freezing, stars would become slow rotators if the pre-galactic magnetic field strength is above a critical value, ≃10-8.2 G, evaluated at a scale of nH = 1 cm-3, which is significantly higher than plausible cosmological seed values (˜10-15 G). Because of the rapid decline of the stellar rotational speed over a narrow range in model parameters, the first stars encounter a bimodal fate: rapid rotation at almost the breakup level, or the near absence of any rotation.

  12. Study of the diffusion movements of water by quasi-elastic scattering of slow neutrons

    International Nuclear Information System (INIS)

    Yamazaki, Ione Makiko

    1980-01-01

    The diffusion movements of water at three different temperatures in the liquid state have been studied by slow neutron quasi-elastic scattering. The measurements have been performed using the IPEN Triple Axis Spectrometer. Broadening and integrated intensity of the quasi-elastic line have been determined for several momentum transfer (K) in the range 0,7627 ≤ K ≤ 2,993 A -1 . The broadening of the quasi-elastic peaks as function of momentum transfer (K) observed at various temperatures has been interpreted in terms of globular diffusion models. The results obtained at 30 deg C have been explained in a consistent way considering the translational and rotational globular diffusion movements. To describe the results obtained at 55 deg and 70 deg C only the translational globular diffusion model was sufficient. This analysis indicates the existence in water of globules with distance of the farest proton position to the center of gravity of the globule 4,5 A, corroborating the idea of quasi-crystalline structure for water. The Debye-Waller factor has been obtained through the analysis of the integrated intensity of quasi-elastic scattering peaks over the K 2 measured range. From this analysis an estimative of the mean square displacement was obtained. (author)

  13. Elastic scattering of charged mesons, antiprotons and protons on protons at incident momenta of 20, 30 and 50 GeV/c in the momentum tranfer range 0. 5 <= -t < 8 (GeV/c)/sup 2/

    Energy Technology Data Exchange (ETDEWEB)

    Asa' d, Z.; Coupland, M.; Davis, D.G.; Duff, B.G.; Fearnley, T.; Heymann, F.F.; Imrie, D.C.; Lush, G.J.; Phillips, M. (University Coll., London (UK)); Baglin, C.

    1985-06-24

    Results are presented from experiment WA7 at the CERN SPS, which has measured the elastic differential cross sections of ..pi..sup(+-)p, Ksup(+-)p, anti pp and pp at incident momenta of 20, 30 and 50 GeV/c. The measurements cover the momentum transfer range 0.5 < vertical stroketvertical stroke < 8 (GeV/c)/sup 2/, corresponding to c.m. scattering angles between 10/sup 0/ and 50/sup 0/. The experimental set-up, trigger logic and data analysis are described. The experimental results are compared with existing meson-proton and nucleon-proton data at lower and higher energies covering the medium- and large-vertical stroketvertical stroke region. Some prominent models and their predictions for elastic scattering at WA7 energies and beyond are reviewed, with emphasis on geometrical scaling, factorizing eikonal models, lowest-order QCD and other dynamical exchange-type models. Results for anti pp two-body annihilation into ..pi../sup -/..pi../sup +/ and K/sup -/K/sup +/ at 30 and 50 GeV/c, obtained in parallel with the elastic anti pp data, are also presented.

  14. The Proton Coulomb Form Factor from Polarized Inclusive e-p Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Christopher Matthew [Univ. of Virginia, Charlottesville, VA (United States)

    2001-05-01

    The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia (15NH3) target at a four momentum transfer squared of Q2 = 0.5 (GeV/c)2. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in 15NH3. The asymmetry, Ap, has been used to determine the proton elastic form factor GEp. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.

  15. Nuclear rotational population patterns in heavy-ion scattering and transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J O; Stoyer, M A [Lawrence Berkeley Lab., CA (USA); Canto, L F; Donangelo, R [Universidade Federal do Rio de Janeiro, RJ (Brazil); Ring, P [Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik

    1991-05-01

    A model of {sup 239}Pu with decoupled neutron is used for theoretical calculations of rotational population patterns in heavy ion inelastic scattering and one-neutron transfer reactions. The system treated in {sup 90}Zr on {sup 239}Pu at the near-barrier energy of 500 MeV and backscattering angles of 180deg and 140deg. The influence of the complex nuclear optical potential is seen to be very strong, and the Nilsson wave function of the odd neutron produces a distinctive pattern in the transfer reaction. (orig.).

  16. Transverse momentum of partons. From low to high pT

    International Nuclear Information System (INIS)

    Diehl, Markus

    2008-11-01

    Transverse-momentum spectra in hard processes are typically described either in terms of intrinsic transverse momentum of partons, or in terms of perturbative radiation. The relation between these descriptions is discussed for the example of semi-inclusive deep inelastic scattering, with special focus on the angular distribution of the observed hadron. This involves nontrivial theoretical issues, such as the proper definition of transverse-momentum dependent parton distributions, and has practical consequences for the description of p T spectra in phenomenology. (orig.)

  17. On model-independent analyses of elastic hadron scattering

    International Nuclear Information System (INIS)

    Avila, R.F.; Campos, S.D.; Menon, M.J.; Montanha, J.

    2007-01-01

    By means of an almost model-independent parametrization for the elastic hadron-hadron amplitude, as a function of the energy and the momentum transfer, we obtain good descriptions of the physical quantities that characterize elastic proton-proton and antiproton-proton scattering (total cross section, r parameter and differential cross section). The parametrization is inferred on empirical grounds and selected according to high energy theorems and limits from axiomatic quantum field theory. Based on the predictive character of the approach we present predictions for the above physical quantities at the Brookhaven RHIC, Fermilab Tevatron and CERN LHC energies. (author)

  18. Mesonic effects in the elastic electron deuteron scattering

    International Nuclear Information System (INIS)

    Konopka, G.

    1981-01-01

    The present thesis was concerned with the study of the electromagnetic structure of the deuteron in the framework of the OBE model using elastic electron-deuteron scattering with high momentum transfer. In the framework of the S-matrix formalism the differential cross sections was derived in first Born approximation. The calculation of the invariant amplitude led to the introduction of the electric and magnetic structure functions. From these structure functions the electromagnetic form factor was calculated. Furthermore the effective OBE-potential was derived in the framework of a projection procedure on the base of unitary transformations. (orig./HSI). [de

  19. First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nucleus Deep Inelastic Scattering at MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, Joel A. [Univ. of Florida, Gainesville, FL (United States)

    2015-01-01

    Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets.

  20. Electroproduction at large momentum transfers

    International Nuclear Information System (INIS)

    van Bibber, K.

    1991-03-01

    The possibilities of electroproduction experiments at a facility such as the proposed European electron accelerator are discussed. Examples given are from studies of hadronization, color transparency, backward production, virtual Compton scattering and target spectator decay. Some conclusions about machine parameters are drawn. 25 refs., 15 figs

  1. Asymptotic neutron scattering laws for anomalously diffusing quantum particles

    Energy Technology Data Exchange (ETDEWEB)

    Kneller, Gerald R. [Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans (France); Université d’Orléans, Chateau de la Source-Ave. du Parc Floral, 45067 Orléans (France); Synchrotron-SOLEIL, L’Orme de Merisiers, 91192 Gif-sur-Yvette (France)

    2016-07-28

    The paper deals with a model-free approach to the analysis of quasielastic neutron scattering intensities from anomalously diffusing quantum particles. All quantities are inferred from the asymptotic form of their time-dependent mean square displacements which grow ∝t{sup α}, with 0 ≤ α < 2. Confined diffusion (α = 0) is here explicitly included. We discuss in particular the intermediate scattering function for long times and the Fourier spectrum of the velocity autocorrelation function for small frequencies. Quantum effects enter in both cases through the general symmetry properties of quantum time correlation functions. It is shown that the fractional diffusion constant can be expressed by a Green-Kubo type relation involving the real part of the velocity autocorrelation function. The theory is exact in the diffusive regime and at moderate momentum transfers.

  2. Effect of resonant-to-bulk electron momentum transfer on the efficiency of electron-cyclotron current drive

    International Nuclear Information System (INIS)

    Matsuda, Y.; Smith, G.R.; Cohen, R.H.

    1988-01-01

    Efficiency of current drive by electron-cyclotron waves is investigated numerically by a bounce-average Fokker-Planck code to elucidate the effects of momentum transfer from resonant to bulk electrons, finite bulk temperature relative to the energy of resonant electrons, and trapped electrons. Comparisons are made with existing theories to assess their validity and quantitative difference between theory and code results. Difference of nearly a factor of 2 was found in efficiency between some theory and code results. 4 refs., 4 figs

  3. Deep inelastic scattering with leading protons or large rapidity gaps at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)

    2008-12-15

    The dissociation of virtual photons, {gamma}{sup *}p{yields} Xp, in events with a large rapidity gap between X and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities Q{sup 2}> 2 GeV{sup 2} and {gamma}{sup *}p centre-of-mass energies 40 2 GeV, where M{sub X} is the mass of the hadronic final state, X. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of t, the squared four-momentum transfer at the proton vertex and {phi}, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of Q{sup 2} and x{sub P}, the fraction of the proton's momentum carried by the diffractive exchange, as well as {beta}, the Bjorken variable defined with respect to the diffractive exchange. (orig.)

  4. Coulomb sums for 7Li nucleus at 3-momentum transfers q=1,250...1,625 fm-1

    International Nuclear Information System (INIS)

    Buki, A.Yu.; Shevchenko, N.G.; Timchenko, I.S.

    2009-01-01

    The experimental response functions of 7 Li nucleus at effective 3-momentum transfers q = 1.250; 1.375; 1.500 and 1.625 fm -1 are presented. The longitudinal response functions were used to evaluate the Coulomb sum values. The Coulomb sums for 6 Li obtained by us earlier were applied to analyze these data. The Coulomb sums of lithium isotopes were compared with the well-known Coulomb sums values of the other nuclei

  5. Model independent dispersion approach to proton Compton scattering

    International Nuclear Information System (INIS)

    Caprini, I.; Radescu, E.E.

    1980-12-01

    The proton Compton scattering at low and intermediate energies is studied by means of a dispersion framework which exploits in an optimal way the (fixed momentum transfer) analyticity properties of the amplitudes in conjunction with the consequences of the (s-channel) unitarity. The mathematical background of the work consists of methods specific to boundary value problems for analytic vector-valued functions and interpolation theory. In comparison with previous related work, the external problems to be solved now are much more difficult because of the inclusion of the photoproduction input and also lead to additional computational complications. The lower bounds on the differential cross-section, obtained without any reference to subtractions and annihilation channel contributions, appear sufficiently restrictive to evidentiate rigorously some inconsistencies between results of single pion photoproduction multipole extractions and proton Compton scattering data. (author)

  6. Energy spectrum of Compton scattering of laser photons on relativistic electrons

    International Nuclear Information System (INIS)

    Ando, Hiroaki; Yoneda, Yasuharu

    1976-01-01

    The high energy photons in gamma-ray region are obtainable by the Compton scattering of laser photons on relativistic electrons. But the motion of the electrons in the storage ring is not necessarily uniform. In the study of the uneven effect, the energy distribution of scattered photons is derived from the assumed momentum distribution of incident electrons. It is generally impossible to derive the momentum distribution of incident electrons from the energy spectrum of scattered photons. The additional conditions which make this possible in a special case are considered. A calculational method is examined for deriving the energy spectrum of scattered photons from the assumed momentum distribution of incident electrons. (Mori, K.)

  7. Neutron scattering on partially deuterated polybutadiene

    CERN Document Server

    Kahle, S; Monkenbusch, M; Richter, D; Arbe, A; Colmenero, J; Frick, B

    2002-01-01

    The molecular nature of the secondary relaxation (Johari-Goldstein relaxation) and its relationship with the alpha relaxation is in most cases still unknown. In order to access these processes on a molecular level, it is necessary to obtain spatial information of the relaxation. Through the momentum-transfer dependence of the dynamic structure factor S(Q,t), this information can be provided by quasielastic neutron scattering techniques. The large difference in scattering lengths between hydrogen and deuterium allows us to accentuate specific correlations between atoms in a polymer melt. Here, we report on recent results on a polybutadiene melt, where the double bond was hydrogeneous, while the methylene groups carried deuterons (d4h2-PB). In this way the correlations between the double bonds are emphasised. We will show that the double bond/double bond correlation function, generated in this way, shows the same temperature dependence as the viscosity at higher temperatures at the structure factor peak maximum...

  8. Final-state interactions and superscaling in the semi-relativistic approach to quasielastic electron and neutrino scattering

    International Nuclear Information System (INIS)

    Amaro, J. E.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.; Udias, J. M.

    2007-01-01

    The semi-relativistic approach to electron and neutrino quasielastic scattering from nuclei is extended to include final-state interactions. Starting with the usual nonrelativistic continuum shell model, the problem is relativized by using the semi-relativistic expansion of the current in powers of the initial nucleon momentum and relativistic kinematics. Two different approaches are considered for the final-state interactions: the Smith-Wambach 2p-2h damping model and the Dirac-equation-based potential extracted from a relativistic mean-field plus the Darwin factor. Using the latter, the scaling properties of (e,e ' ) and (ν μ ,μ - ) cross sections for intermediate momentum transfers are investigated

  9. Preliminary Examination of X-ray Scattering from Human Tissues

    International Nuclear Information System (INIS)

    Desouky, O.S.; Wilkinson, S.; Hall, C.; Rogers, K.; Round, A.

    2008-01-01

    Small Angle x-ray scattering (SAXS) and wide angle x-ray scattering (WAXS) patterns have been recorded from different human soft tissues using x-ray synchrotron radiation.Pathological breast, normal kidney and lung tissues show SAXS peaks at q-values equal to 0.291 nm -1 and 0.481 nm -1 (d 21.6 nm and d =13. nm) which are the 3 r d and 5 t h order of the well known axial D-spacing of collagen fibrils. The diffraction is particularly intense in the meridional direction indicating some febrile alignment. In contrast, the normal tissue of brain, liver and heart shows diffuse scatter.The wide-angle coherent scattering from normal human tissues of brain, liver, heart, lung, and kidney is typical of that for amorphous materials. The scatter of the healthy adipose breast tissue shows a sharp peak at momentum transfer 1.24 nm -1 (d= 0.417 nm). The data of the other tissues appears to consist of a broad scattering peak. The two scattering regimes succeed in differentiating between the two major components of breast tissue, collagen and adipose tissue. The results of this study suggest that the soft tissues may have scattering patterns that are characteristics for the particular tissue types and tissue disease state. These results indicate that it may be possible use the coherent scattering as a diagnostic tool

  10. Development of the Very Low Angle Detector (VLAD) for detection of epithermal neutrons at low momentum transfers

    International Nuclear Information System (INIS)

    Tardocchi, M.; Andreani, C.; Cremonesi, O.; Gorini, G.; Perelli-Cippo, E.; Pietropaolo, A.; Rhodes, N.; Schooneveld, E.; Senesi, R.

    2006-01-01

    New perspectives for epithermal neutron spectroscopy are opened up by the recent development of new instrumentation for inverse geometry time of flight spectrometers at pulsed neutron sources. One example is the Very Low Angle Detector (VLAD) bank which will be installed as an upgrade of the VESUVIO neutron spectrometer, at the ISIS pulsed neutron source. VLAD is developed for detecting epithermal neutrons in the 1-100 eV energy range at very low scattering angles (l deg. - 5 deg.). VLAD will extend the kinematical region covered by today's neutron scattering experiments to the region of low wave vector transfers ( -1 ) and high energy transfers (>1 eV). Accessing such kinematical region will allow new experimental studies in condensed matter systems. The neutron detection is based on Resonance Detectors (RD), which consist of the combination of a resonance foil used as neutron-to-gamma converter and a photon detector. The results obtained with a prototype VLAD detector confirm the potential of this kind of experiments at scattering angles as low as 2 deg. - 5 deg. GEANT4 simulations are used to address issues, such as detector cross talk, which arise with the construction of compact RD arrays

  11. Nuclear physics. Momentum sharing in imbalanced Fermi systems.

    Science.gov (United States)

    Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I

    2014-10-31

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.

  12. Picture book of nucleon--nucleon scattering: amplitudes, models, double- and triple-spin observables

    International Nuclear Information System (INIS)

    Field, R.D.; Stevens, P.R.

    1975-01-01

    A comprehensive study of nucleon-nucleon scattering is presented with particular emphasis on the underlying amplitude structure. The five complex NN amplitudes are determined as a function of energy and momentum transfer from existing pp, anti pp, and np elastic scattering data and np and anti pp CHEX data. Some constraints determined from meson-baryon fits are imposed. The resulting amplitudes are used to make predictions of forthcoming double- and triple-spin measurements, and are also compared with the model amplitudes of Kane and Seidl. In addition, the usefulness of transversity amplitudes in NN scattering is discussed, the status of our present knowledge concerning them is examined, and model predictions of these amplitudes are displayed. The paper is presented in a ''picture book'' form so that the reader can get a good overview of NN scattering by studying the figures and reading the tables and figure captions

  13. Elastic scattering, inelastic scattering, and transfer reactions induced by 12C bombardment of 12C

    International Nuclear Information System (INIS)

    Stokstad, R.G.; Wieland, R.M.; Fulmer, C.B.; Hensley, D.C.; Raman, S.; Snell, A.H.; Stelson, P.H.

    1977-06-01

    Graphs and tables of differential cross sections are presented for the elastic scattering of 12 C by 12 C, the single excitation (Q = -4.43 MeV) and the mutual excitation (Q = -8.86 MeV) for 14 bombarding energies in the range 70.7 less than or equal to E/sub lab/ less than or equal to 126.7 MeV. Differential cross sections for one- and two-nucleon transfer are presented for E/sub lab/ = 93.8 MeV

  14. Dynamic. cap alpha. -transfer polarisation potentials and the large angle scattering of /sup 16/O + /sup 28/Si

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M S; Aleixo, A N; Canto, L F; Carrilho, P; Donangelo, R; Paula, L.S. de

    1987-07-01

    A closed expression is derived for the dynamic ..cap alpha..-transfer polarisation potential for heavy-ion elastic scattering. The back-angle angular distributions for the elastic scattering of /sup 16/O + /sup 28/Si obtained by adding this polarisation potential to the E-18 interaction are shown to be in good agreement with the data if an ..cap alpha..-transfer spectroscopic factor of 0.4 is used.

  15. High-momentum response of liquid He3

    International Nuclear Information System (INIS)

    Mazzanti, F.; Polls, A.; Boronat, J.; Casulleras, J.

    2004-01-01

    A final-state-effects formalism suitable to analyze the high-momentum response of Fermi liquids is presented and used to study the dynamic structure function of liquid He 3 . The theory, developed as a natural extension of the Gersch-Rodriguez formalism, incorporates the Fermi statistics explicitly through a new additive term which depends on the semidiagonal two-body density matrix. The use of a realistic momentum distribution, calculated using the diffusion Monte Carlo method, and the inclusion of this additive correction allows for good agreement with available deep-inelastic neutron scattering data

  16. Influence of miscut on crystal truncation rod scattering

    International Nuclear Information System (INIS)

    Munkholm, A.; Brennan, S.

    1999-01-01

    X-rays can be used to measure the roughness of a surface by the study of crystal truncation rod scattering. It is shown that for a simple cubic lattice the presence of a miscut surface with a regular step array has no effect on the scattered intensity of a single rod and that a distribution of terrace widths on the surface is shown to have the same effect as adding roughness to the surface. For a perfect crystal without miscut, the scattered intensity is the sum of the intensity from all the rods with the same in-plane momentum transfer. For all real crystals, the scattered intensity is better described as that from a single rod. It is shown that data-collection strategies must correctly account for the sample miscut or there is a potential for improperly measuring the rod intensity. This can result in an asymmetry in the rod intensity above and below the Bragg peak, which can be misinterpreted as being due to a relaxation of the surface. The calculations presented here are compared with data for silicon (001) wafers with 0.1 and 4 miscuts. (orig.)

  17. Eikonal propagators and high-energy parton-parton scattering in gauge theories

    International Nuclear Information System (INIS)

    Meggiolaro, Enrico

    2001-01-01

    In this paper we consider 'soft' high-energy parton-parton scattering processes in gauge theories, i.e., elastic scattering processes involving partons at very high squared energies s in the center of mass and small squared transferred momentum t (s→∞, t 2 ). By a direct resummation of perturbation theory in the limit we are considering, we derive expressions for the truncated-connected quark (antiquark) propagator in an external gluon field, as well as for the residue at the pole of the full unrenormalized propagator, both for scalar and fermion gauge theories. These are the basic ingredients to derive high-energy parton-parton scattering amplitudes, using the LSZ reduction formulae and a functional integral approach. The above procedure is also extended to include the case in which at least one of the partons is a gluon. The meaning and the validity of the results are discussed

  18. Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media

    Science.gov (United States)

    Liu, L. H.; Tan, J. Y.

    2007-02-01

    A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.

  19. Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media

    International Nuclear Information System (INIS)

    Liu, L.H.; Tan, J.Y.

    2007-01-01

    A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media

  20. A new radiative transfer scattering phase function discretisation approach with inherent energy conservation

    CSIR Research Space (South Africa)

    Roos, TH

    2014-06-01

    Full Text Available large sphere scattering phase function distributions of interest for packed bed radiative heat transfer: the analytic distribution for a diffusely reflecting sphere (a backscattering test case) and the distribution for a transparent sphere (n = 1...

  1. Distance- and momentum-dependence of modern nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Feldmeier, Hans; Neff, Thomas; Weber, Dennis

    2015-01-01

    A phase-space representation of nuclear interactions, which depends on the distance r vector and relative momentum p vector of the nucleons, is presented. It visualizes in an intuitive way the non-local behavior introduced by cutoffs in momentum space or renormalization procedures that are used to adapt the interaction to low momentum many-body Hilbert spaces, as done in the unitary correlation operator method (UCOM) or with the similarity renormalization group (SRG). It allows to develop intuition about the various interactions and illustrates how the softened interactions reduce the short-range repulsion in favor of non-locality or momentum dependence while keeping the scattering phase shifts invariant. It also reveals that these effective interactions can have undesired complicated momentum dependencies at momenta around and above the Fermi momentum. Properties, similarities, and differences of the Argonne and the N3LO chiral potential, and their UCOM and SRG derivatives are discussed. (author)

  2. Elastic and charge-exchange scattering of pions from 3He and 3H

    International Nuclear Information System (INIS)

    Gibson, B.F.; Hess, A.T.

    1976-04-01

    We have examined (1) the elastic scattering of pions from the isodoublet 3 He and 3 H and (2) the single charge-exchange reaction 3 H(π + ,π 0 ) 3 He using a formalism which incorporates the π-N multiple scattering to all orders. Emphasis is placed on numerical results which illustrate those features of the differential cross sections that are expected to be of interest to the experimentalist. Realistic nuclear densities corresponding to the form factors of elastic electron scattering were used. Charge-exchange cross sections are presented in terms of angular distributions for both the π 0 and the recoil nucleus. In elastic scattering, Coulomb-nuclear interference effects are significant at incident pion kinetic energies of less than 100 MeV; form factor effects are apparent at large momentum transfer. Comparison of data and theory for π + - 3 He with that for π - - 3 He (or the conjugate π + - 3 H) will provide a test of the convergence of the fixed scatterer, multiple-scattering formalism utilized in this report. 21 figures

  3. QCD Evolution of the Transverse Momentum Dependent Correlations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian; Liang, Zuo-Tang; Yuan, Feng

    2008-12-10

    We study the QCD evolution for the twist-three quark-gluon correlation functions associated with the transverse momentum odd quark distributions. Different from that for the leading twist quark distributions, these evolution equations involve more general twist-three functions beyond the correlation functions themselves. They provide important information on nucleon structure, and can be studied in the semi-inclusive hadron production in deep inelastic scattering and Drell-Yan lepton pair production in pp scattering process.

  4. Antiproton-Proton Glory Scattering

    CERN Multimedia

    2002-01-01

    This experiment measures @*p and K|-p backwards scattering between 8 and 16 GeV/c in the Omega spectrometer using the S1 beam, with sensitivities of several events per nanobarn. The mechanism responsible for backward scattering in channels not mediated by particle exchange is not understood, and could be almost energy-independent glory scattering, especially since relatively high cross sections of 190~(@*p) and 120~(K|-p)nb have been measured earlier at 5~GeV/c. @p|-p backwards scattering is measured for monitoring purposes. The trigger requires a forward particle of momentum close to the beam momentum. Absence of light in the two forward Cerenkov counters indicates that the particle is a proton. Combinations of an incident @p|- and an outgoing K|+, or an incident K|- or @* and an outgoing @p|+, cover the following byproducts: @*p~@A~@p|+@p|- which is an (allowed) baryon exchange reaction, and the exotic exchange reactions @p|-p~@A~K|+Y K|-p~@A~@p|+Y|-, where Y|- may be the @S|- or the Y*|-(1385).

  5. Neutron scattering from quantum liquids

    International Nuclear Information System (INIS)

    Cowley, R.A.

    1976-01-01

    Recent neutron scattering measurements on the quantum liquids 4 He and 3 He are described. In the Bose superfluid there is a well-defined excitation for wave vectors less than 3.6 A -1 . In the Fermi liquid measurements are much more difficult because of the large absorption cross section, but measurements at the Institute Laue-Langevin have shown that there are no well-defined excitations at 0.63 0 K for wave vectors between 1.0 and 2.6 A -1 . The difference between these results is due to the existence of particle-hole excitations in the Fermi liquid into which collective excitations can decay. Because of the simplicity of the excitations in 4 He, it has become a testing ground for the effects of the interactions between the excitations. Measurements are described which show that while roton-roton interactions are attractive at small wave vectors they are repulsive at larger wave vectors. The scattering at large momentum transfer in 4 He has been measured, but its interpretation is still open to question

  6. Nucleon momentum distribution in deuteron and other nuclei within the light-front dynamics method

    International Nuclear Information System (INIS)

    Antonov, A.N.; Gaidarov, M.K.; Ivanov, M.V.; Kadrev, D.N.; Krumova, G.Z.; Hodgson, P.E.; Geramb, H.V. von

    2002-01-01

    The relativistic light-front dynamics (LFD) method has been shown to give a correct description of the most recent data for the deuteron monopole and quadrupole charge form factors obtained at the Jefferson Laboratory for elastic electron-deuteron scattering for six values of the squared momentum transfer between 0.66 and 1.7 (GeV/c) 2 . The good agreement with the data is in contrast with the results of the existing nonrelativistic approaches. In this work we first make a complementary test of the LFD applying it to calculate another important characteristic, the nucleon momentum distribution n(q) of the deuteron, using six invariant functions f i (i=1,...,6) instead of two (S and D waves) in the nonrelativistic case. The comparison with the y-scaling data shows the decisive role of the function f 5 which at q≥500 MeV/c exceeds all other f functions (as well as the S and D waves) for the correct description of n(q) of the deuteron in the high-momentum region. Comparison with other calculations using S and D waves corresponding to various nucleon-nucleon potentials is made. Second, using clear indications that the high-momentum components of n(q) in heavier nuclei are related to those in the deuteron, we develop an approach within the natural orbital representation to calculate n(q) in (A,Z) nuclei on the basis of the deuteron momentum distribution. As examples, n(q) in 4 He, 12 C, and 56 Fe are calculated and good agreement with the y-scaling data is obtained

  7. Comparison of hard scattering models for particle production at large transverse momentum. 2

    International Nuclear Information System (INIS)

    Schiller, A.; Ilgenfritz, E.M.; Kripfganz, J.; Moehring, H.J.; Ranft, G.; Ranft, J.

    1977-01-01

    Single particle distributions of π + and π - at large transverse momentum are analysed using various hard collision models: qq → qq, qantiq → MantiM, qM → qM. The transverse momentum dependence at thetasub(cm) = 90 0 is well described in all models except qantiq → MantiM. This model has problems with the ratios (pp → π + +X)/(π +- p → π 0 +X). Presently available data on rapidity distributions of pions in π - p and pantip collisions are at rather low transverse momentum (however large xsub(perpendicular) = 2psub(perpendicular)/√s) where it is not obvious that hard collision models should dominate. The data, in particular the π - /π + asymmetry are well described by all models except qM → Mq (CIM). At large values of transverse momentum significant differences between the models are predicted. (author)

  8. Virtual two-loop corrections to Bhabha scattering

    International Nuclear Information System (INIS)

    Bjoerkevoll, K.S.

    1992-03-01

    The author has developed methods for the calculation of contributions from six ladder-like diagrams to Bhabha scattering. The leading terms both for separate diagrams and for the sum of the gauge-invariant set of all diagrams have been calculated. The study has been limited to contributions from Feynman diagrams without real photons, and all calculations have been done with s>> |t| >>m 2 , where s is the center of mass energy squared, t is the square of the transferred four-momentum, and m is the electron mass. For the separate diagrams the results depend upon how λ 2 is related to s, |t| and m 2 , whereas the leading term of the sum of the six diagrams is the same in the cases that have been considered. The methods described should be valuable for calculations of contributions from other Feynman diagrams, in particular QED corrections to Bhabha scattering or pair production at small angles. 23 refs., 5 figs., 5 tabs

  9. Heat and momentum transfer for magnetoconvection in a vertical external magnetic field

    Science.gov (United States)

    Zürner, Till; Liu, Wenjun; Krasnov, Dmitry; Schumacher, Jörg

    2016-11-01

    The scaling theory of Grossmann and Lohse for the turbulent heat and momentum transfer is extended to the magnetoconvection case in the presence of a (strong) vertical magnetic field. The comparison with existing laboratory experiments and direct numerical simulations in the quasistatic limit allows to restrict the parameter space to very low Prandtl and magnetic Prandtl numbers and thus to reduce the number of unknown parameters in the model. Also included is the Chandrasekhar limit for which the outer magnetic induction field B is large enough such that convective motion is suppressed and heat is transported by diffusion. Our theory identifies four distinct regimes of magnetoconvection which are distinguished by the strength of the outer magnetic field and the level of turbulence in the flow, respectively. LIMTECH Research Alliance and Research Training Group GK 1567 on Lorentz Force Velocimetry, funded by the Deutsche Forschungsgemeinschaft.

  10. Neutral pion electroproduction and virtual Compton scattering on proton with four-momentum transfer squared Q{sup 2} = 1 GeV{sup 2}. Measurement of cross-sections and of generalized polarizabilities; Electroproduction de photons et de pions sur le proton au quadrimoment de transfert Q{sup 2} = 1.0 GeV{sup 2}. Mesure des sections efficaces et extraction des polarisabilites generalisees

    Energy Technology Data Exchange (ETDEWEB)

    Laveissiere, G

    2001-11-01

    In hadronic physics, the nucleon structure and the quarks confinement are still topical issues. The neutral pion electroproduction and virtual Compton scattering (VCS) reactions allow us to access new observables that describe this structure. This work is focussed on the VCS experiment performed at Jefferson Lab in 1998. The 4 GeV electron beam is scattered off a cryogenic hydrogen target, and the scattered electron and recoiled proton are detected in coincidence in the twin hall A spectrometers. The photon (pion) is reconstructed using a missing particle technique. The data analysis allowed to extract the cross sections relative to both process at four-momentum transfer squared Q{sup 2} = 1 GeV{sup 2}. The VCS cross section has been extracted for the first time in the proton resonance region (W between 1.O and 2.0 GeV) through the photon electroproduction reaction. Around the pion-production threshold up to the Delta(1232) resonance region, these results lead to the measurement of the generalized polarizabilities, that describe the proton structure in the same way as the elastic form factors. Moreover, the neutral pion electroproduction cross section measurement in the resonance region has brought new constraints on the existing phenomenological models. (author)

  11. Circumstances under which various approximate relativistic and nonrelativistic theories yield accurate Compton scattering doubly differential cross sections at high photon energy

    International Nuclear Information System (INIS)

    LaJohn, L A; Pratt, R H

    2009-01-01

    We discuss the increase in error with increasing nuclear charge Z in the use of the relativistic impulse approximation (RIA) for the calculation of Compton K-shell scattering doubly differential cross sections (DDCS). We also show that nonrelativistic (nr) expressions can be used to obtain accurate peak region DDCS at scattering angles less than about 35 0 even at incident photon energies ω i exceeding 1 MeV, if Z<30. This is possible because in the Compton peak region, as θ→0, a low momentum transfer limit is being approached.

  12. The amplituhedron from momentum twistor diagrams

    International Nuclear Information System (INIS)

    Bai, Yuntao; He, Song

    2015-01-01

    We propose a new diagrammatic formulation of the all-loop scattering amplitudes/Wilson loops in planar N=4 SYM, dubbed the “momentum-twistor diagrams”. These are on-shell-diagrams obtained by gluing trivalent black and white vertices in momentum twistor space, which, in the reduced diagram case, are known to be related to diagrams in the original twistor space. The new diagrams are manifestly Yangian invariant, and they naturally represent factorization and forward-limit contributions in the all-loop BCFW recursion relations in momentum twistor space, in a fashion that is completely different from those in momentum space. We show how to construct and evaluate momentum-twistor diagrams, and how to use them to obtain tree-level amplitudes and loop-level integrands; in particular the latter involve isolated bubble-structures for loop variables arising from forward limits, or the entangled removal of particles. From each diagram, the generalized “boundary measurement” directly gives the C, D matrices, thus a cell in the amplituhedron associated with the amplitude, and we expect that our diagrammatic representations of the amplitude provide triangulations of the amplituhedron. To demonstrate the computational power of the formalism, we give explicit results for general two-loop integrands, and the cells of the amplituhedron for two-loop MHV amplitudes.

  13. Backward elastic p3He-scattering and high momentum components of 3He wave function

    International Nuclear Information System (INIS)

    Uzikov, Yu.N.

    1998-01-01

    It is shown that owing to a dominance of np-pair transfer mechanism of backward elastic p 3 He-scattering for incident proton kinetic energies T p > 1 GeV the cross section of this process is defined mainly by the values of the Faddeev component of the wave function of 3 He nucleus, φ 23 (q 23 , p 1 ), at high relative momenta q 23 > 0.6 GeV/c of the NN-pair in the 1 S 0 -state and at low spectator momenta p 1 ∼ 0 - 0.2 GeV/c

  14. Analysis of transverse momentum and event shape in νN scattering

    International Nuclear Information System (INIS)

    Bosetti, P.C.; Graessler, H.; Lanske, D.; Schulte, R.; Schultze, K.; Simopoulou, E.; Vayaki, A.; Barnham, K.W.J.; Hamisi, F.; Miller, D.B.; Mobayyen, M.M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Hoffmann, E.; Katz, U.F.; Kern, J.; Schmitz, N.; Wittek, W.; Albajar, C.; Batley, J.R.; Myatt, G.; Perkins, D.H.; Radojicic, D.; Renton, P.; Saitta, S.; Bullock, F.W.; Burke, S.

    1990-01-01

    The transverse momentum distributions of hadrons produced in neutrino-nucleon charged current interactions and their dependence on W are analysed in detail. It is found that the components of the transverse momentum in the event plane and normal to it increase with W at about the same rate throughout the available W range. A comparison with e + e - data is made. Studies of the energy flow and angular distributions in the events classified as planar do not show clear evidence for high energy, wide angle gluon radiation, in contrast to the conclusion of a previous analysis of similar neutrino data. (orig.)

  15. Alpha Momentum and Price Momentum

    Directory of Open Access Journals (Sweden)

    Hannah Lea Hühn

    2018-05-01

    Full Text Available We analyze a novel alpha momentum strategy that invests in stocks based on three-factor alphas which we estimate using daily returns. The empirical analysis for the U.S. and for Europe shows that (i past alpha has power in predicting the cross-section of stock returns; (ii alpha momentum exhibits less dynamic factor exposures than price momentum and (iii alpha momentum dominates price momentum only in the U.S. Connecting both strategies to behavioral explanations, alpha momentum is more related to an underreaction to firm-specific news while price momentum is primarily driven by price overshooting due to momentum trading.

  16. A Study of Transverse Momentum and Jets using Forward Hadrons and Photons in Deep Inelastic Muon Scattering at 490-GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Michael, Douglas Grant [Harvard U.

    1990-01-01

    The transverse momentum and energy-flow properties of forward ($x_F$ > 0) charged . hadrons and photons in deep inelastic muon scattering at 490GeV/c have been studied. Single particle transverse momentum and average transverse momentum as a function of $x_{Feynmen}$ are presented.Events are found to have a planar structure and transverse momentum spectra in and out of the event plane are presented. Data in the kinematic range $Q^2 > 3$ $GeV^2/c^2$ and 20 < W < 30 GeV/$c^2$ are used to search for two jets of particles in the forward direction. Energy and particle flow with.in the hadronic event plane are presented with several different cuts made on the data. A jet reconstruction algorithm is applied and properties of the forward jets are studied. For all plots, comparison is made with predictions from the Lund Monte Carlo tuned in different fashions. It is found that it is necessary to include hard QCD processes (gluon bremsstrahlung and photon-gluon fusion) in order to achieve good agreen1eut between the data and the Monte Carlo. In addition, it is shown that the data have more multi-jet events than predicted by the default version of the Lund ( 4.3) Monte Carlo.. It is suggested that it is necessary to increase the overall 'jettiness' by either increasing the primordial gluon distribution of the nucleon or adjusting the production cross section in the Monte Carlo. The possibility of an increased gluon distribution is presented and compared to data.

  17. Scaling laws governing the multiple scattering of diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1992-01-01

    The trajectories of fast molecules during and after penetration through foils are governed by Coulomb explosion and distorted by multiple scattering and other penetration phenomena. A scattering event may cause the energy available for Coulomb explosion to increase or decrease, and angular momentum may be transferred to the molecule. Because of continuing Coulomb explosion inside and outside the target foil, the transmission pattern recorded at a detector far away from the target is not just a linear superposition of Coulomb explosion and multiple scattering. The velocity distribution of an initially monochromatic and well-collimated, but randomly oriented, beam of molecular ions is governed by a generalization of the standard Bothe-Landau integral that governs the multiple scattering of atomic ions. Emphasis has been laid on the distribution in relative velocity and, in particular, relative energy. The statistical distributions governing the longitudinal motion (i.e., the relative motion along the molecular axis) and the rotational motion can be scaled into standard multiple-scattering distributions of atomic ions. The two scaling laws are very different. For thin target foils, the significance of rotational energy transfer is enhanced by an order of magnitude compared to switched-off Coulomb explosion. A distribution for the total relative energy (i.e., longitudinal plus rotational motion) has also been found, but its scaling behavior is more complex. Explicit examples given for all three distributions refer to power-law scattering. As a first approximation, scattering events undergone by the two atoms in the molecule were assumed uncorrelated. A separate section has been devoted to an estimate of the effect of impact-parameter correlation on the multiple scattering of penetrating molecules

  18. Diffractive photoproduction of ρ mesons with large momentum transfer at HERA

    Science.gov (United States)

    H1 Collaboration; Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička, T.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lüke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R. R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauvan, E.; Schätzel, S.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, Ch.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-07-01

    The diffractive photoproduction of ρ mesons, ep→eρY, with large momentum transfer squared at the proton vertex, |t|, is studied with the H1 detector at HERA using an integrated luminosity of 20.1 pb. The photon proton centre of mass energy spans the range 75

  19. Diffractive Photoproduction of Rho Mesons with Large Momentum Transfer at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Truol, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, Marcel; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Ya.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    The diffractive photoproduction of rho mesons, e p \\to e rho Y, with large momentum transfer squared at the proton vertex, |t|, is studied with the H1 detector at HERA using an integrated luminosity of 20.1 pb^{-1}. The photon-proton centre of mass energy spans the range 75 < W < 95 GeV, the photon virtuality is restricted to Q^2 < 0.01 GeV^2 and the mass M_Y of the proton remnant is below 5 GeV. The t dependence of the cross section is measured for the range 1.5 < |t| < 10.0 GeV^2 and is well described by a power law, dsigma/ d|t| \\propto |t|^{-n}. The spin density matrix elements, which provide information on the helicity structure of the interaction, are extracted using measurements of angular distributions of the rho decay products. The data indicate a violation of s-channel helicity conservation, with contributions from both single and double helicity-flip being observed. The results are compared to the predictions of perturbative QCD models.

  20. The adiabatic approximation in multichannel scattering

    International Nuclear Information System (INIS)

    Schulte, A.M.

    1978-01-01

    Using two-dimensional models, an attempt has been made to get an impression of the conditions of validity of the adiabatic approximation. For a nucleon bound to a rotating nucleus the Coriolis coupling is neglected and the relation between this nuclear Coriolis coupling and the classical Coriolis force has been examined. The approximation for particle scattering from an axially symmetric rotating nucleus based on a short duration of the collision, has been combined with an approximation based on the limitation of angular momentum transfer between particle and nucleus. Numerical calculations demonstrate the validity of the new combined method. The concept of time duration for quantum mechanical collisions has also been studied, as has the collective description of permanently deformed nuclei. (C.F.)

  1. Azimuthal asymmetry and transverse momentum of hadrons in deep inelastic muon scattering at 490 GeV

    International Nuclear Information System (INIS)

    Baker, M.D.

    1993-01-01

    The forward charged hadrons produced in deep inelastic scattering of 490 GeV muons from deuterium were studied. The data were taken by the E665 collaboration during the 1987-1988 Fermilab fixed target run. 3 x 10 4 Events (6 x 10 4 hadrons) were collected over a large range of kinematic variables: 100 GeV 2 2 2 , 0.003 Bj Bj s ) QCD effects are expected to contribute to an azimuthal asymmetry and to an increase in the average transverse momentum. Some theoretical work in the literature concerning these effects is described and some original results are derived concerning the effects of primordial k perpendicular on the azimuthal distribution. A Monte Carlo program is described which includes these theoretical effects and models fragmentation, the detector response, and the event reconstruction. The data exhibit several surprising effects. First, the phi asymmetry in the data is independent of Q 2 , while theoretically it should be more pronounced at low Q 2 and vanish at high Q 2 . Second, the phi asymmetry is carried by the most energetic particle in each event, which the author calls the Rank 1 particle, and there is very little phi asymmetry of the other charged hadrons. Third, the phi asymmetry in the Rank 1 particle is independent of the hadron energy fraction z h . The Monte Carlo predicts a strong z h dependence and little rank dependence. Finally, the seagull plot shows an unexpected increase in transverse momentum p T for high energy hadrons (z h > 0.4) as a function of Q 2

  2. Deuteron breakup in the 2H(e,e'p) reaction at low momentum transfer and close to threshold

    International Nuclear Information System (INIS)

    Neumann-Cosel, P. von; Richter, A.; Schrieder, G.; Shevchenko, A.; Stiller, A.; Arenhoevel, H.

    2002-04-01

    Deuteron breakup has been studied in a 2 H(e, e'p) coincidence experiment at low momentum transfer and for energies close to threshold. The longitudinal-plus-transverse (L + T) and longitudinal-transverse interference (LT) cross sections are deduced. Nonrelativistic calculations based on the Bonn potential and including leading order relativistic contributions, meson exchange currents and isobar configurations describe the (L + T) data well. Surprisingly large deviations of 30 to 45% are observed for the LT contribution. (orig.)

  3. Electron scattering from 17O

    International Nuclear Information System (INIS)

    Kim, J.C.; Hicks, R.S.; Yen, R.; Auer, I.P.; Caplan, H.S.; Bergstrom, J.C.

    1978-01-01

    Cross sections for elastic and inelastic scattering of electrons from 17 O have been measured for momentum transfers up to 1.2 fm -1 . The elastic cross section indicates that the rms charge radii of 17 O and 16 O are equal to within a few parts in a thousand: 2 17 >sup(1/2)/ 2 16 >sub(1/2)=1.0015+-0.0025. Reduced transition probabilities and ground-state radiative widths are deduced for 17 O excited states below 9 MeV. Various aspects of the inelastic spectrum are discussed, with emphasis on the 'single-particle' levels at 0.871 (1/2 + ) and 5.083 (3/2 + ) MeV, the levels at 7.569 (7/2 - ) and 7.378 (5/2 + ) MeV, and the spectrum of electric octupole excitations. (Auth.)

  4. Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory

    Science.gov (United States)

    Zeng, Yuehua

    2017-01-01

    This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.

  5. Cross sections for inelastic scattering of electrons by atoms: selected topics related to electron microscopy

    International Nuclear Information System (INIS)

    Inokuti, M.; Manson, S.T.

    1982-01-01

    We begin with a resume of the Bethe theory, which provides a general framework for discussing the inelastic scattering of fast electrons and leads to powerful criteria for judging the reliability of cross-section data. The central notion of the theory is the generalized oscillator strength as a function of both the energy transfer and the momentum transfer, and is the only non-trivial factor in the inelastic-scattering cross section. Although the Bethe theory was initially conceived for free atoms, its basic ideas apply to solids, with suitable generalizations; in this respect, the notion of the dielectric response function is the most fundamental. Topics selected for discussion include the generalized oscillator strengths for the K-shell and L-shell ionization for all atoms with Z less than or equal to 30, evaluated by use of the Hartree-Slater potential. As a function of the energy transfer, the generalized oscillator strength most often shows a non-monotonic structure near the K-shell and L-shell thresholds, which has been interpreted as manifestations of electron-wave propagation through atomic fields. For molecules and solids, there are additional structures due to the scattering of ejected electrons by the fields of other atoms

  6. Measurements of the Proton Elastic-Form-Factor Ratio μpGEp/GMp at Low Momentum Transfer

    International Nuclear Information System (INIS)

    Ron, G.; Piasetzky, E.; Pomerantz, I.; Shneor, R.; Glister, J.; Lee, B.; Choi, Seonho; Kang, H.; Oh, Y.; Song, J.; Yan, X.; Allada, K.; Dutta, C.; Armstrong, W.; Meziani, Z.-E.; Yao, H.; Arrington, J.; Solvignon, P.; Beck, A.; May-Tal Beck, S.

    2007-01-01

    High-precision measurements of the proton elastic form-factor ratio, μ p G E p /G M p , have been made at four-momentum transfer, Q 2 , values between 0.2 and 0.5 GeV 2 . The new data, while consistent with previous results, clearly show a ratio less than unity and significant differences from the central values of several recent phenomenological fits. By combining the new form-factor ratio data with an existing cross-section measurement, one finds that in this Q 2 range the deviation from unity is primarily due to G E p being smaller than expected

  7. Large Logarithms in the Beam Normal Spin Asymmetry of Elastic Electron--Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Andrei Afanasev; Mykola Merenkov

    2004-06-01

    We study a parity-conserving single-spin beam asymmetry of elastic electron-proton scattering induced by an absorptive part of the two-photon exchange amplitude. It is demonstrated that excitation of inelastic hadronic intermediate states by the consecutive exchange of two photons leads to logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. The asymmetry at small electron scattering angles is expressed in terms of the total photoproduction cross section on the proton, and is predicted to reach the magnitude of 20-30 parts per million. At these conditions and fixed 4-momentum transfers, the asymmetry is rising logarithmically with increasing electron beam energy, following the high-energy diffractive behavior of total photoproduction cross section on the proton.

  8. Enhancing the performances of a resonance detector spectrometer for deep inelastic neutron scattering measurements

    International Nuclear Information System (INIS)

    Filabozzi, A.; Pace, E.; Pietropaolo, A.

    2012-01-01

    The possibility is explored to sum up neutron Compton profiles at different scattering angles in deep inelastic neutron scattering measurements within the Resonance Detector (RD) configuration to enhance the statistics for a more reliable extraction of the momentum distribution of the constituents in the target. The RD configuration allows to select the energy of the scattered neutrons up to several tens of electron Volt, thus accessing energy and wave vector transfers well above 1 eV and 30 Å −1 , respectively. In the high-q/ω regime, the final state effects could be considered as negligible, as shown in a series of simulations using a Monte Carlo method with different inverse geometry instrument setups. The simulations show that it could be possible to conceive an instrument set up where the RD configuration allows the proper summation of several spectra at different scattering angles, providing a good separation of the proton recoil signal from that of the heavier atoms, thus avoiding the cell subtraction by fitting procedure.

  9. Diffractive Photoproduction of J/psi Mesons with Large Momentum Transfer at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Beglarian, A.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, C.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Chekelian, V.; Clarke, D.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grabski, V.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Haidt, D.; Hajduk, L.; Haller, J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Koutouev, R.; Koutov, A.; Kroseberg, J.; Kruger, K.; Kueckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luders, S.; Luke, D.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milstead, D.; Mohrdieck, S.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Newman, Paul R.; Niebergall, F.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Petrukhin, A.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Povh, B.; Raicevic, N.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Volchinski, V.; Wacker, K.; Wagner, J.; Wallny, R.; Waugh, B.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winde, M.; Winter, G.G.; Wissing, C.; Woehrling, E.E.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; zur Nedden, M.

    2003-01-01

    The diffractive photoproduction of J/psi mesons is measured with the H1 detector at the ep collider HERA using an integrated luminosity of 78 pb^-1. The differential cross section d sigma(gamma p -> J/psi Y) / d t is studied in the range 2 < |t| < 30 GeV^2, where t is the square of the four-momentum transferred at the proton vertex. The cross section is also presented as a function of the photon-proton centre-of-mass energy W in three t intervals, spanning the range 50 < W < 200 GeV. A fast rise of the cross section with W is observed for each t range and the slope for the effective linear Pomeron trajectory is measured to be alpha^\\prime= -0.0135 \\pm 0.0074 (stat.) \\pm 0.0051 (syst.) GeV^-2. The measurements are compared with perturbative QCD models based on BFKL and DGLAP evolution. The data are found to be compatible with s-channel helicity conservation.

  10. KS0 production at high Q2 in deep inelastic ep scattering at H1

    International Nuclear Information System (INIS)

    Ruiz Tabasco, Julia Elizabeth

    2010-12-01

    The production of K S 0 mesons is studied using deep-inelastic scattering events (DIS) recorded with the H1 detector at the HERA ep collider. The measurements are performed in the phase space defined by the four-momentum transfer squared of the photon, 145 GeV 2 2 . The differential production cross sections of the K S 0 meson are presented as function of the kinematic variables Q 2 and x, the transverse momentum p T and the pseudorapidity η of the particle in laboratory frame, and as function of the momentum fraction x p BF and transverse momentum p T BF in the Breit Frame. Moreover, the K S 0 production rate is compared to the production of charged particles and to the production of DIS events in the same region of phase space. The data are compared to theoretical predictions, based on leading order Monte Carlo programs with matched parton showers. The Monte Carlo models are also used for studies of the flavour contribution to the K S 0 production and parton density function dependence. (orig.)

  11. Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation

    Energy Technology Data Exchange (ETDEWEB)

    Desantes, J.M.; Salvador, F.J.; Lopez, J.J.; Morena, J. de la [Universidad Politecnica de Valencia, CMT-Motores Termicos, Valencia (Spain)

    2011-02-15

    In this paper, a research aimed at quantifying mass and momentum transfer in the near-nozzle field of diesel sprays injected into stagnant ambient air is reported. The study combines X-ray measurements for two different nozzles and axial positions, which provide mass distributions in the spray, with a theoretical model based on momentum flux conservation, which was previously validated. This investigation has allowed the validation of Gaussian profiles for local fuel concentration and velocity near the nozzle exit, as well as the determination of Schmidt number at realistic diesel spray conditions. This information could be very useful for those who are interested in spray modeling, especially at high-pressure injection conditions. (orig.)

  12. Measurement of the electron--deuteron elastic scattering cross section in the range 0.8 less than or equal to q2 less than or equal to 6 GeV2

    International Nuclear Information System (INIS)

    Arnold, R.G.; Chertok, B.T.; Dally, E.B.; Grigorian, A.; Jordan, C.L.; Schuetz, W.P.; Zdarko, R.; Martin, F.; Mecking, B.A.

    1975-06-01

    Preliminary results of elastic eD scattering at large momentum transfer performed at the Stanford Linear Accelerator Center using two high resolution spectrometers in coincidence are reported. The deuteron structure function A(q 2 ) is deduced at 9 values of q 2 from a comparison of elastic eD and eP coincident yields and the world's eP cross sections. These measurements extend the range of q 2 by 4.5 over previous work, and in this new range A(q 2 ) is observed to approach 1/q 20 momentum dependence. Results are in sharp disagreement with the meson exchange calculations, and they are in rough agreement with the nonrelativistic potential models, and they are in agreement with the predictions of the quark dimensional scaling model which pictures the deuteron as a bound state of 6 quarks at large momentum transfer

  13. Nuclear momentum distribution and relativistic heavy-ion reactions

    International Nuclear Information System (INIS)

    Wong, C.Y.; Blankenbecler, R.

    1980-01-01

    In terms of a direct fragmentation process and a hard-scattering process, the proton-inclusive data for the reaction α + 12 C → p + X have been successfully analyzed. The extracted semiempirical momentum distribution indicates possible evidence of nuclear correlations and final-state interactions. 4 figures

  14. Problems in the links between scattering data and interaction potentials

    Energy Technology Data Exchange (ETDEWEB)

    Amos, K.

    1995-10-01

    The scattering function is of paramount importance in any approaches by which quantitative information on the interaction between colliding quantal systems of nuclear, atomic or molecular type, may be sought from measured, elastic scattering data. Therein there are two possible spectral parameters, the energy and the angular momentum. Most experimental results suggest use of fixed energy and variable angular momentum schemes. Such fixed energy data and their analyses are the subject of this report, with particular emphasis placed upon the problems of the link between data and the scattering function. 18 figs.

  15. Problems in the links between scattering data and interaction potentials

    International Nuclear Information System (INIS)

    Amos, K.

    1995-01-01

    The scattering function is of paramount importance in any approaches by which quantitative information on the interaction between colliding quantal systems of nuclear, atomic or molecular type, may be sought from measured, elastic scattering data. Therein there are two possible spectral parameters, the energy and the angular momentum. Most experimental results suggest use of fixed energy and variable angular momentum schemes. Such fixed energy data and their analyses are the subject of this report, with particular emphasis placed upon the problems of the link between data and the scattering function. 18 figs

  16. Determination of line profiles on nano-structured surfaces using EUV and x-ray scattering

    Science.gov (United States)

    Soltwisch, Victor; Wernecke, Jan; Haase, Anton; Probst, Jürgen; Schoengen, Max; Krumrey, Michael; Scholze, Frank; Pomplun, Jan; Burger, Sven

    2014-09-01

    Non-imaging techniques like X-ray scattering are supposed to play an important role in the further development of CD metrology for the semiconductor industry. Grazing Incidence Small Angle X-ray Scattering (GISAXS) provides directly assessable information on structure roughness and long-range periodic perturbations. The disadvantage of the method is the large footprint of the X-ray beam on the sample due to the extremely shallow angle of incidence. This can be overcome by using wavelengths in the extreme ultraviolet (EUV) spectral range, EUV small angle scattering (EUVSAS), which allows for much steeper angles of incidence but preserves the range of momentum transfer that can be observed. Generally, the potentially higher momentum transfer at shorter wavelengths is counterbalanced by decreasing diffraction efficiency. This results in a practical limit of about 10 nm pitch for which it is possible to observe at least the +/- 1st diffraction orders with reasonable efficiency. At the Physikalisch-Technische Bundesanstalt (PTB), the available photon energy range extends from 50 eV up to 10 keV at two adjacent beamlines. PTB commissioned a new versatile Ellipso-Scatterometer which is capable of measuring 6" square substrates in a clean, hydrocarbon-free environment with full flexibility regarding the direction of the incident light polarization. The reconstruction of line profiles using a geometrical model with six free parameters, based on a finite element method (FEM) Maxwell solver and a particle swarm based least-squares optimization yielded consistent results for EUV-SAS and GISAXS. In this contribution we present scatterometry data for line gratings and consistent reconstruction results of the line geometry for EUV-SAS and GISAXS.

  17. Absolute Negative Resistance Induced by Directional Electron-Electron Scattering in a Two-Dimensional Electron Gas

    Science.gov (United States)

    Kaya, Ismet I.; Eberl, Karl

    2007-05-01

    A three-terminal device formed by two electrostatic barriers crossing an asymmetrically patterned two-dimensional electron gas displays an unusual potential depression at the middle contact, yielding absolute negative resistance. The device displays momentum and current transfer ratios that far exceed unity. The observed reversal of the current or potential in the middle terminal can be interpreted as the analog of Bernoulli’s effect in a Fermi liquid. The results are explained by directional scattering of electrons in two dimensions.

  18. Electron scattering by CO2: Elastic scattering, rotational excitation, and excitation of the asymmetric stretch at 10 eV impact energy

    International Nuclear Information System (INIS)

    Thirumalai, D.; Onda, K.; Truhlar, D.G.

    1981-01-01

    Coupled-channels calculations based on an effective potential are presented for electron scattering by CO 2 at 10 eV impact energy. The processes studied are pure elastic scattering, rotational excitation, and vibrational excitation of the asymmetric stretch; the vibrational excitation is always accompanied by rotational excitation. The quantities calculated are differential, partial, integral, and momentum transfer cross sections, both state to state and summed over final rotational states for a given final vibrational level. The effective potential is based on the INDOX2/1s method for the static and polarization potentials and the semiclassical exchange approximation for the exchange potential. There are no empirical parameters. The present calculations are compared to experiment and to previous calculations where available, and we also perform calculations with an altered polarization potential to further elucidate the reasons for the differences from one of the previous calculations. The agreement of the present results with the experimental rotationally summed, vibrationally inelastic differential cross section is excellent

  19. Study of simple super-critical fluids (CO2, C2D6) through neutron scattering, Raman spectroscopy and molecular dynamic simulations

    International Nuclear Information System (INIS)

    Longelin, St.

    2004-04-01

    Super-critical fluids are largely used in industrial sectors. However the knowledge of the physical phenomena in which they are involved stays insufficient because of their particular properties. A new model of adjusting molecular structures is proposed, this model has been validated through neutron scattering experiments with high momentum transfer on C 2 D 6 . The experimental representation of the critical universal function for C 2 D 6 and CO 2 has been obtained through the neutron echo spin and by relying on structure measurements made through neutron elastic scattering at small angles. Raman spectroscopy and molecular dynamics simulation have been used to feature structure and dynamics. Scattering as well as microscopic molecular density fluctuations have been analysed

  20. Pion elastic scattering from polarized 13C in the energy region of the P33 resonance

    International Nuclear Information System (INIS)

    Yifen, Yen

    1992-08-01

    Asymmetries (A y ) and differential cross sections (dσ/dΩ) were measured for π + and π - elastic scattering using polarized and unpolarized 13 C targets. The experiment was done at the Los Alamos Meson Physics Facility with the pion beam from the Low Energy Pion channel. The scattered pions were detected with the Large Acceptance Spectrometer. The 13 C nuclei in 13 C-enriched 1-butanol were polarized by the dynamic nuclear polarilization method. Angular distributions of both A y and dσ/dΩ were measured below the P 33 resonance at the incident energy of 130 MeV for π + and π - , and above the resonance at 223 MeV for π + and at 226 MeV for π - . In addition, A y and dσ/dΩ were measured in a range of momentum transfers, 1.75 ≤ q ≤ 2.05 fm - , at several energies. At 130 MeV, the values of A y are significantly different from zero for π - scattering. For π + at 130 MeV and for both π - and π + at all other energies, the A y are mostly consistent with zero. Theoretical analyses were done using different nuclear structure models. The data were not reproduced by the presently available nuclear wave functions. It was found that the asymmetry is strongly sensitive to the quadrupole spin flip part of the transition. The data of this thesis complement measurements of the magnetic form factor from electron scattering. In attempts to fit both the asymmetry and the magnetic form factor, it was found that the pion asymmetry data are not reproduced by the wavefunctions which fit the magnetic form factor at low momentum transfers

  1. Investigation of inelastic scattering of ultracold neutrons with small energy transfer at solid state surfaces

    International Nuclear Information System (INIS)

    Lychagin, E.V.; Muzychka, A.Yu.; Nekhaev, G.V.; Strelkov, A.V.; Shvetsov, V.N.; Nesvizhevskij, V.V.; Tal'daev, R.R.

    2001-01-01

    Inelastic scattering of neutrons with small energy transfer of ∼10 -7 eV was investigated using gravitational UCN spectrometer. The probability of such a process at stainless steel and beryllium surfaces was measured. It was also estimated at copper surface. The measurement showed that the detected flux of neutrons scattered at beryllium and copper surfaces is ∼ 2 times higher at room temperature compared to that at the liquid nitrogen temperature. (author)

  2. Multiple scattering effects with cyclical terms in active remote sensing of vegetated surface using vector radiative transfer theory

    Science.gov (United States)

    The energy transport in a vegetated (corn) surface layer is examined by solving the vector radiative transfer equation using a numerical iterative approach. This approach allows a higher order that includes the multiple scattering effects. Multiple scattering effects are important when the optical t...

  3. Tsallis-like entropies in quantum scattering

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion, M.L.

    1998-01-01

    In this work, the following entropies in quantum scattering are defined: the informational angular entropy, S θ ; Tsallis-like angular entropies, S q (θ); the angular momentum entropy, S L ; the Tsallis-like angular momentum entropies, S q (L); the angle-angular momentum entropy, S θL . These entropies are defined as natural measures of the uncertainties corresponding to the distribution probabilities. If we are interested in obtaining a measure of uncertainty of the simultaneous realization of the probability distributions, than, we have to calculate the entropy corresponding to these distributions. The expression of angle-angular momentum entropy is given. The relation between the Tsallis entropies and the angle-angular momentum entropy is derived

  4. Deeply virtual Compton scattering from gauge/gravity duality

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Miguel S.; Djuric, Marko [University of Porto (Portugal)

    2013-04-15

    We use gauge/gravity duality to study deeply virtual Compton scattering (DVCS) in the limit of high center of mass energy at fixed momentum transfer, corresponding to the limit of low Bjorken x, where the process is dominated by the exchange of the pomeron. At strong coupling, the pomeron is described as the graviton Regge trajectory in AdS space, with a hard wall to mimic confinement effects. This model agrees with HERA data in a large kinematical range. The behavior of the DVCS cross section for very high energies, inside saturation, can be explained by a simple AdS black disk model. In a restricted kinematical window, this model agrees with HERA data as well.

  5. Deeply virtual Compton scattering from gauge/gravity duality

    International Nuclear Information System (INIS)

    Costa, Miguel S.; Djurić, Marko

    2013-01-01

    We use gauge/gravity duality to study deeply virtual Compton scattering (DVCS) in the limit of high center of mass energy at fixed momentum transfer, corresponding to the limit of low Bjorken x, where the process is dominated by the exchange of the pomeron. At strong coupling, the pomeron is described as the graviton Regge trajectory in AdS space, with a hard wall to mimic confinement effects. This model agrees with HERA data in a large kinematical range. The behavior of the DVCS cross section for very high energies, inside saturation, can be explained by a simple AdS black disk model. In a restricted kinematical window, this model agrees with HERA data as well.

  6. Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking

    Science.gov (United States)

    Picardi, Michela F.; Zayats, Anatoly V.; Rodríguez-Fortuño, Francisco J.

    2018-03-01

    Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.

  7. Identification of human breast pathologies by X-ray elastic scattering; Identificacao de patologias mamarias atraves do espalhamento elastico de raios X

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Andre L.C.; Antoniassi, Marcelo; Poletti, Martin E., E-mail: andre_conceicao@yahoo.com.b [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2011-07-01

    In this paper we determine the scattering profiles of normal, benign and malignant human breast samples in a momentum transfer range of 0.07nm{sup -1} {<=}q{<=}70.55nm{sup -1}, resulted from combining WAXS (wide angle x-ray scattering) and SAXS (small angle x-ray scattering) data. The results showed considerable differences between the scattering profiles of each tissue type. Based on this fact, some parameters, representing structural features, were extracted from these scattering profiles and submitted to a discriminant analysis. From statistical analysis, the ratio between the peak intensities at q=19.8nm{sup -1} and q=13.9nm{sup -1} and the intensity of third order axial collagen peak arose as two potentials breast tissue classifiers and, from combining them it was possible differentiate among normal, benign and malignant lesions. (author)

  8. Measurements of Polarization Transfers in Real Compton Scattering by a proton target at JLAB. A new source of information on the 3D shape of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Fanelli, Cristiano V. [Sapienza Univ. of Rome (Italy)

    2015-03-01

    In this thesis work, results of the analysis of the polarization transfers measured in real Compton scattering (RCS) by the Collaboration E07-002 at the Je fferson Lab Hall-C are presented. The data were collected at large scattering angle (theta_cm = 70deg) and with a polarized incident photon beam at an average energy of 3.8 GeV. Such a kind of experiments allows one to understand more deeply the reaction mechanism, that involves a real photon, by extracting both Compton form factors and Generalized Parton Distributions (GPDs) (also relevant for possibly shedding light on the total angular momentum of the nucleon). The obtained results for the longitudinal and transverse polarization transfers K_LL and K_LT, are of crucial importance, since they confirm unambiguously the disagreement between experimental data and pQCD prediction, as it was found in E99-114 experiment, and favor the Handbag mechanism. The E99-114 and E07-002 results can contribute to attract new interest on the great yield of the Compton scattering by a nucleon target, as demonstrated by the recent approval of an experimental proposal submitted to the Jefferson Lab PAC 42 for a Wide-angle Compton Scattering experiment, at 8 and 10 GeV Photon Energies. The new experiments approved to run with the updated 12 GeV electron beam at JLab, are characterized by much higher luminosities, and a new GEM tracker is under development to tackle the challenging backgrounds. Within this context, we present a new multistep tracking algorithm, based on (i) a Neural Network (NN) designed for a fast and efficient association of the hits measured by the GEM detector which allows the track identification, and (ii) the application of both a Kalman filter and Rauch-Tung-Striebel smoother to further improve the track reconstruction. The full procedure, i.e. NN and filtering, appears very promising, with high performances in terms of both association effciency and reconstruction accuracy, and these preliminary results will

  9. Elastic electron scattering from 14N, 15N, 16O and 18O at small momentum transfer

    International Nuclear Information System (INIS)

    Schuetz, W.

    1973-01-01

    At the Darmstadt linear accelerator, cross-sections for the elastic scattering of electrons on 14 N and 16 O relative to the proton and on 15 N and 18 O relative to 14 N and 16 O were measured at energies 30 MeV 0 0 (q 2 -2 ). The experiments were done with gas targets, the target containers being thin-walled aluminium cylinders. The data were evaluated by means of the partial-wave method assuming a charge distribution according to the shell model. (orig./WL) [de

  10. Effect of the strange axial form factor on structure functions for neutral current neutrino scattering in the quasielastic region

    International Nuclear Information System (INIS)

    Kim, Kyungsik

    2011-01-01

    We study the effect of the strange axial form factor on various structure functions for the neutral reaction of neutrino-nucleus scattering in the quasielastic region within the framework of a relativistic single particle model. We use 12 C as the target nucleus, and the incident neutrino energy range is between 150 MeV and 1.5 GeV. The structure functions are extracted at a fixed three momentum transfer and energy transfer by using the intrinsic helicity of neutrino. While the effect of the strange axial form factor is very small, the effect on various structure functions is exhibited explicitly.

  11. Molecular bonding in SF6 measured by elastic electron scattering

    International Nuclear Information System (INIS)

    Miller, J.D.; Fink, M.

    1992-01-01

    Elastic differential cross-section measurements of gaseous SF 6 were made with 30 keV electrons in the range of 0.25 bohrs -1 ≤s≤10 bohrs -1 . Structural parameters derived in this study closely matched those found in an earlier total (elastic plus inelastic) scattering investigation. Multiple-scattering effects were incorporated in the structural refinement. The discrepancies between the independent atom model and the measured differential cross section reproduce earlier total scattering results for momentum transfers of greater than 5 bohrs -1 . By extending the measurements to smaller s values, a closer examination of a Hartree--Fock calculation for SF 6 was possible. It was found that the difference curve obtained from the Hartree--Fock calculation matched the experimental data in this region. A more quantitative analysis was performed using the analytic expressions of Bonham and Fink to compute moments of the molecular charge distribution from the differential cross-section data. Comparison of these results with similar fits to the Hartree--Fock calculation confirmed the good agreement between the Hartree--Fock calculation and the current elastic data

  12. Thermal-neutron multiple scattering: critical double scattering

    International Nuclear Information System (INIS)

    Holm, W.A.

    1976-01-01

    A quantum mechanical formulation for multiple scattering of thermal-neutrons from macroscopic targets is presented and applied to single and double scattering. Critical nuclear scattering from liquids and critical magnetic scattering from ferromagnets are treated in detail in the quasielastic approximation for target systems slightly above their critical points. Numerical estimates are made of the double scattering contribution to the critical magnetic cross section using relevant parameters from actual experiments performed on various ferromagnets. The effect is to alter the usual Lorentzian line shape dependence on neutron wave vector transfer. Comparison with corresponding deviations in line shape resulting from the use of Fisher's modified form of the Ornstein-Zernike spin correlations within the framework of single scattering theory leads to values for the critical exponent eta of the modified correlations which reproduce the effect of double scattering. In addition, it is shown that by restricting the range of applicability of the multiple scattering theory from the outset to critical scattering, Glauber's high energy approximation can be used to provide a much simpler and more powerful description of multiple scattering effects. When sufficiently close to the critical point, it provides a closed form expression for the differential cross section which includes all orders of scattering and has the same form as the single scattering cross section with a modified exponent for the wave vector transfer

  13. Deep inelastic neutron scattering

    International Nuclear Information System (INIS)

    Mayers, J.

    1989-03-01

    The report is based on an invited talk given at a conference on ''Neutron Scattering at ISIS: Recent Highlights in Condensed Matter Research'', which was held in Rome, 1988, and is intended as an introduction to the techniques of Deep Inelastic Neutron Scattering. The subject is discussed under the following topic headings:- the impulse approximation I.A., scaling behaviour, kinematical consequences of energy and momentum conservation, examples of measurements, derivation of the I.A., the I.A. in a harmonic system, and validity of the I.A. in neutron scattering. (U.K.)

  14. Neutron Compton scattering from selectively deuterated acetanilide

    Science.gov (United States)

    Wanderlingh, U. N.; Fielding, A. L.; Middendorf, H. D.

    With the aim of developing the application of neutron Compton scattering (NCS) to molecular systems of biophysical interest, we are using the Compton spectrometer EVS at ISIS to characterize the momentum distribution of protons in peptide groups. In this contribution we present NCS measurements of the recoil peak (Compton profile) due to the amide proton in otherwise fully deuterated acetanilide (ACN), a widely studied model system for H-bonding and energy transfer in biomolecules. We obtain values for the average width of the potential well of the amide proton and its mean kinetic energy. Deviations from the Gaussian form of the Compton profile, analyzed on the basis of an expansion due to Sears, provide data relating to the Laplacian of the proton potential.

  15. Effective coupling functions extracted from the scattering experiments with polarized protons at moderate energies

    International Nuclear Information System (INIS)

    Barut, A.O.; Anders, T.B.; Jachmann, W.

    1992-06-01

    The experimental data for the polarization asymmetries of pp-scattering available at the scattering angle θ = 90 deg. and at various moderate energies, as well as at E = 2.4434 GeV and various scattering angles are described by smooth phenomenological coupling functions for scalar, vector, tensor and the ''magnetic moment'' couplings as well as the corresponding parity conserving axial couplings. The analysis shows a predominant role of the ''axial magnetic moment'', the axial scalar, and the axial vector interactions. Moreover, the data contain oscillations of the type sin(qw 0 -π)/(qw 0 -π), where q is the square root of the energy-momentum transfer. The oscillations have amplitudes of 5%, and a constant frequency w o = 2π/0.88 m p . They arise from oscillating modulations up to 25% of the non-axial coupling functions. 8 refs, 21 figs, 4 tabs

  16. How to calculate the Coulomb scattering amplitude

    International Nuclear Information System (INIS)

    Grosse, H.; Narnhofer, H.; Thirring, W.

    1974-01-01

    The derivation of scattering amplitudes for Coulomb scattering is discussed. A derivation of the S-matrix elements for a dense set of states in momentum space is given in the framework of time dependent scattering theory. The convergence of the S-matrix is studied. A purely algebraic derivation of the S-matrix elements and phase shifts is also presented. (HFdV)

  17. Relativistic quark model and behaviour of the meson electromagnetic form factors at small and intermediate momentum transfer Q2

    International Nuclear Information System (INIS)

    Bagdasaryan, A.S.; Esaybegyan, S.V.; Ter-Isaakyan, N.L.

    1982-01-01

    In a model of hadrons composed of relativistic quarks a description of meson static characteristics and pion electromagnetic form factor in the range of small and intermediate values of momentum transfer 0 2 2 have obtained. It is shown that in such a model the data available on the pion electromagnetic form factor may be described basing on a simplest quark without gluon exchange. The contribution of a one-gluon exchange diagram in such a model cannot exceed 30%

  18. Polarized scattered light from self-luminous exoplanets. Three-dimensional scattering radiative transfer with ARTES

    Science.gov (United States)

    Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.

    2017-11-01

    Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron

  19. Current fragmentation in deep inelastic scattering

    International Nuclear Information System (INIS)

    Hamer, C.J.

    1975-04-01

    It is argued that the current fragmentation products in deep inelastic electron scattering will not be distributed in a 'one-dimensional' rapidity plateau as in the parton model picture of Feynman and Bjorken. A reaction mechanism with a multiperipheral topology, but which the above configuration might have been achieved, does not in fact populate the current fragmentation plateau; and unless partons are actually observed in the final state, it cannot lead to Bjorken scaling. The basic reason for this failure is shown to be the fact that when a particle is produced in the current fragmentation plateau, the adjacent momentum transfer in the multiperipheral chain becomes large and negative: such processes are inevitably suppressed. Instead, the current fragmentation products are likely to be generated by a fragmentation, or sequential decay process. (author)

  20. Bessel-weighted asymmetries in semi-inclusive deep inelastic scattering

    NARCIS (Netherlands)

    Boer, D.; Gamberg, L.; Musch, B. U.; Prokudin, A.

    2011-01-01

    The concept of weighted asymmetries is revisited for semi-inclusive deep inelastic scattering. We consider the cross section in Fourier space, conjugate to the outgoing hadron's transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation

  1. Elastic and inelastic proton-nucleus scattering at 156MeV: experimental study and analysis in impulse approximation

    International Nuclear Information System (INIS)

    Comparat, Vincent.

    1975-01-01

    In this work a high spatial resolution hodoscope is described. Scattered particles are detected in the image plane of a magnetic spectrometer by a proportional chamber with 96 wires of 1mm spacing. This hodoscope has been used for elastic and inelastic scattering experiments, of 156MeV protons, on 11 targets ranging from 12 C to 209 Bi. A phenomenological optical model calculation has been carried out to analyse the experimental elastic cross sections data. The dependance of the parameters as a function of the number of mass or the incident energy has been studied. The inelastic scattering results have been interpreted within the framework of the D.W.I.A. As the final results are dependant of the nucleon model, the optical potential parameters as well as the finite range approximation, several trials have been performed. Nevertheless, the DWIA seems to give about twice the experimental values for collective excitations in light or medium nuclei. The first order optical potential derived from the impulse approximation was calculated and the results compared to the experimental elastic cross sections. Several approximations were tested as non locality, off energy shell effects and the motion of the target nucleon. The usual approximation on these quantities are justified if the momentum transfer is less than 3fm -1 . The nucleon-nucleus transition matrix is obtained by solving the Lippmann-Schwinger equation, using the moment method. The first order optical potential derived from these calculations is not realistic. The intensity of the nucleon-nucleon transition is too important, and that explained the disagreement at low momentum transfers. This study shows that the multiple scattering expansion of the Lippmann-Schwinger equation, is not a good method to obtain the exact solution. It is better to do some approximations (i.e. of shell approximation) directly on the integral equation [fr

  2. Scaling function, spectral function and nucleon momentum distribution in nuclei

    International Nuclear Information System (INIS)

    Antonov, A.N.; Ivanov, M.V.; Caballero, J.A.; Barbaro, M.B.; Udias, J.M.; Moya de Guerra, E.; Donnelly, T.W.

    2010-01-01

    The aim of the study is to find a good simultaneous description of the spectral function and the momentum distribution in relation to the realistic scaling function obtained from inclusive electron-nuclei scattering experiments. We start with a modified Hartree-Fock spectral function in which the energy dependent part (δ-function) is replaced by the Gaussian distributions with hole state widths as free parameters. We calculate the scaling function and the nucleon momentum distribution on the basis of the spectral function constructed in this way, trying to find a good description of the experimental data. The obtained scaling function has a weak asymmetry and the momentum distribution has not got a high-momentum tail in the case when harmonic-oscillator single-particle wave functions are used. So, to improve the behavior of the momentum distribution we used the basis of natural orbitals (NO) in which short-range correlations are partly incorporated. The results for the scaling function show again a weak asymmetry, but in this case the momentum distribution has a high-momentum tail. As a next step we include final-state interactions (FSI) in the calculations to reproduce the experimentally observed asymmetry of the scaling function. (author)

  3. Calculation of the thermal neutron scattering kernel using the synthetic model. Pt. 2. Zero-order energy transfer kernel

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1995-01-01

    A comprehensive unified description of the application of Granada's Synthetic Model to the slow-neutron scattering by the molecular systems is continued. Detailed formulae for the zero-order energy transfer kernel are presented basing on the general formalism of the model. An explicit analytical formula for the total scattering cross section as a function of the incident neutron energy is also obtained. Expressions of the free gas model for the zero-order scattering kernel and for total scattering kernel are considered as a sub-case of the Synthetic Model. (author). 10 refs

  4. Rise of mean multiplicity depending on transverse momentum

    International Nuclear Information System (INIS)

    Troshin, S.M.

    1977-01-01

    Dependence of mean multiplicity on the transversal momentum transfer is studied. In framework of the model in view, based on possible probabilitic interpretation of the unitarity condition, and assuming a weak correlation between the recoil particle momenta in the intermediate n-particle state, it is shown that mean multiplicity increases linearly with rise of the transversal momentum. Behaviour of the mean multiplicity depending on the impact parameter is also studied

  5. Transfer by anisotropic scattering between subsets of the unit sphere of directions in linear transport theory

    International Nuclear Information System (INIS)

    Trombetti, T.

    1990-01-01

    The exact kernel method is presented for linear transport problems with azimuth-dependent angular fluxes. It is based on the evaluation of average scattering densities (ASD's) that fully describe the neutron (or particle) transfer between subsets of the unit sphere of directions by anisotropic scattering. Reciprocity and other ASD functional properties are proved and combined with the symmetry properties of suitable SN quadrature sets. This greatly reduces the number of independent ASD's to be computed and stored. An approach for performing ASD computations with reciprocity checks is presented. ASD expressions of the scattering source for typical 2D geometries are explicitly given. (author)

  6. Angular momentum conservation law in light-front quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.; /SLAC /Stanford U.

    2017-03-01

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.

  7. Cascaded Bragg scattering in fiber optics.

    Science.gov (United States)

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  8. Hadron--deuteron scattering at 50 GeV

    International Nuclear Information System (INIS)

    Levinson, L.J.

    1978-06-01

    The forward scattering of π + , π - , and protons on deuterons and protons was measured with a single arm spectrometer at the Fermi National Accelerator Laboratory. The energy was 50 GeV and the invariant 4-momentum transfer range was .06 2 for π + and p, and .06 - . The missing mass, determined by the spectrometer, selected proton elastic and deuteron elastic-plus-breakup scattering, rejecting particle and resonance production events. The measured proton and deuteron differential cross sections were analyzed in the context of the Glauber Theory of deuteron elastic-plus-breakup scattering and a neutron elastic differential cross section was extracted. The theory and analysis were tested by comparing the π + n cross section extracted from the π + d and n + p data with the π - p data; by I-spin symmetry the π + n cross section must equal the π - p. The same test was done for π - n. The proton--neutron elastic differential cross section was then extracted from the pd and pp data. The theory and the data were not found to be consistent within the random errors. Systematic errors are probably the cause; several possible systematic errors are discussed. Also an attempt to use recoil particle detectors to extract the deuteron elastic and the neutron cross sections is reported

  9. Particle production at large transverse momentum and hard collision models

    International Nuclear Information System (INIS)

    Ranft, G.; Ranft, J.

    1977-04-01

    The majority of the presently available experimental data is consistent with hard scattering models. Therefore the hard scattering model seems to be well established. There is good evidence for jets in large transverse momentum reactions as predicted by these models. The overall picture is however not yet well enough understood. We mention only the empirical hard scattering cross section introduced in most of the models, the lack of a deep theoretical understanding of the interplay between quark confinement and jet production, and the fact that we are not yet able to discriminate conclusively between the many proposed hard scattering models. The status of different hard collision models discussed in this paper is summarized. (author)

  10. Momentum, heat and vapour transfer on the surface of an open duct under the influence of wind

    International Nuclear Information System (INIS)

    Wengefeld, P.

    1978-01-01

    The increasing power demand and the resulting increase in the number of thermal power plants have incurred increasing environmental pollution. For this reason, the paper presents an experimental and theoretical investigation of the processes of heat transfer on a water surface due to convection and evaporation under the influence of a current of air. It is found that the analogy between heat and water vapour transfer is fulfilled in good approximation and that the results are thus valid for evaporation as well as for sensible heat transfer. A generally valid formula for the mean evaporation rate cannot be derived from the experiments as the parameter of surface roughness is changing with the length of the water surface which is exposed to the air current. The calculation formula for the ratio between sensible and latent heat transfer (Bowen ratio), which is required, according to this paper has a scattering range of only +-20% as against the +-40% commonly assumed. (GL) [de

  11. Cross measurements of linear momentum transfer and energy dissipation in collisions between 290 MeV 20Ne and 238U

    International Nuclear Information System (INIS)

    Galin, J.; Ingold, G.; Jahnke, U.; Hilscher, D.; Lehmann, M.; Rossner, H.; Schwinn, E.

    1988-01-01

    The 20 Ne+U reactions are investigated at 290 MeV bombarding energy. The linear momentum transfer and excitation energy are deduced eventwise from the respective measurements of the folding angle between correlated fission fragments and the neutron multiplicity. A simple incomplete fusion picture is shown to essentially account for the data. The sensitivity of the two measurements in order to infer the violence of a collision is discussed in details. (orig.)

  12. Non-analog Monte Carlo estimators for radiation momentum deposition

    International Nuclear Information System (INIS)

    Hykes, Joshua M.; Densmore, Jeffery D.

    2009-01-01

    The standard method for calculating radiation momentum deposition in Monte Carlo simulations is the analog estimator, which tallies the change in a particle's momentum at each interaction with the matter. Unfortunately, the analog estimator can suffer from large amounts of statistical error. In this paper, we present three new non-analog techniques for estimating momentum deposition. Specifically, we use absorption, collision, and track-length estimators to evaluate a simple integral expression for momentum deposition that does not contain terms that can cause large amounts of statistical error in the analog scheme. We compare our new non-analog estimators to the analog estimator with a set of test problems that encompass a wide range of material properties and both isotropic and anisotropic scattering. In nearly all cases, the new non-analog estimators outperform the analog estimator. The track-length estimator consistently yields the highest performance gains, improving upon the analog-estimator figure of merit by factors of up to two orders of magnitude.

  13. Polarization measurements in high energy elastic scattering of pions, kaons, protons and antiprotons on protons and comparison with Regge phenomenology

    International Nuclear Information System (INIS)

    Gaidot, A.; Bruneton, C.; Bystricky, J.; Cozzika, G.; Deregel, J.; Ducros, Y.; Khantine-Langlois, F.; Lehar, F.; Lesquen, A. de; Merlo, J.P.; Miyashita, S.; Movchet, J.; Pierrard, J.; Raoul, J.C.; Van Rossum, L.; Kanavets, V.P.

    1975-01-01

    The polarization parameter P has been measured for elastic scattering on polarized protons, of π - , K - and anti-p at 40GeV/c and of π + , K + and p at 45GeV/c. Four-momentum transfer ranges from -0.08 to -1.8(GeV/c) 2 for π - p and pp, and from -0.08 to -1.2(GeV/c) 2 for π + , K + or K - and anti-p [fr

  14. A successive order of scattering model for solving vector radiative transfer in the atmosphere

    International Nuclear Information System (INIS)

    Min Qilong; Duan Minzheng

    2004-01-01

    A full vector radiative transfer model for vertically inhomogeneous plane-parallel media has been developed by using the successive order of scattering approach. In this model, a fast analytical expansion of Fourier decomposition is implemented and an exponent-linear assumption is used for vertical integration. An analytic angular interpolation method of post-processing source function is also implemented to accurately interpolate the Stokes vector at arbitrary angles for a given solution. It has been tested against the benchmarks for the case of randomly orientated oblate spheroids, illustrating a good agreement for each stokes vector (within 0.01%). Sensitivity tests have been conducted to illustrate the accuracy of vertical integration and angle interpolation approaches. The contribution of each scattering order for different optical depths and single scattering albedos are also analyzed

  15. Spin waves in full-polarized state of Dzyaloshinskii-Moriya helimagnets: Small-angle neutron scattering study

    Science.gov (United States)

    Grigoriev, S. V.; Sukhanov, A. S.; Altynbaev, E. V.; Siegfried, S.-A.; Heinemann, A.; Kizhe, P.; Maleyev, S. V.

    2015-12-01

    We develop the technique to study the spin-wave dynamics of the full-polarized state of the Dzyaloshinskii-Moriya helimagnets by polarized small-angle neutron scattering. We have experimentally proven that the spin-waves dispersion in this state has the anisotropic form. We show that the neutron scattering image displays a circle with a certain radius which is centered at the momentum transfer corresponding to the helix wave vector in helimagnetic phase ks, which is oriented along the applied magnetic field H . The radius of this circle is directly related to the spin-wave stiffness of this system. This scattering depends on the neutron polarization showing the one-handed nature of the spin waves in Dzyaloshinskii-Moriya helimagnets in the full-polarized phase. We show that the spin-wave stiffness A for MnSi helimagnet decreased twice as the temperature increases from zero to the critical temperature Tc.

  16. Multiple scattering theory of X-ray absorption. A review

    International Nuclear Information System (INIS)

    Fonda, L.

    1991-11-01

    We review the basic elements of the theory of X-ray absorption using the tools provided by the theory of multiple scattering. A momentum space approach of clear physical insight is used where the final formulas expressing EXAFS and XANES, i.e. the structures appearing in the absorption coefficient above the edge of a deep core level threshold, are given in terms of eigenstates of the photoelectron momentum. A simple graphic representation is given for the multiple scattering function. (author). 38 refs, 4 figs, 1 tab

  17. Hadron production at LHC in dipole momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Basso, E. A.; Gay Ducati, M. B. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 - Porto Alegre, RS (Brazil); De Oliveira, E. G. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05314-970 Sao Paulo, SP (Brazil)

    2013-03-25

    The dipole color approach is the framework that considers the quark-antiquark pair scattering off the target. The rapidity evolution of color dipoles is given by the nonlinear Balitsky-Kovchegov (BK) equation, for which analytical solutions are not yet known. A good way to explore the asymptotic BK solutions is through the traveling wave method of QCD, that uses a correspondence between the BK evolution equation in momentum space and reaction-diffusion physics. Using the traveling wave based AGBS model for the dipole amplitude in momentum space, and within the k{sub t}-factorization formalism, we describe the LHC data on single inclusive hadron yield for p-p collisions.

  18. Hadron production at LHC in dipole momentum space

    International Nuclear Information System (INIS)

    Basso, E. A.; Gay Ducati, M. B.; De Oliveira, E. G.

    2013-01-01

    The dipole color approach is the framework that considers the quark-antiquark pair scattering off the target. The rapidity evolution of color dipoles is given by the nonlinear Balitsky-Kovchegov (BK) equation, for which analytical solutions are not yet known. A good way to explore the asymptotic BK solutions is through the traveling wave method of QCD, that uses a correspondence between the BK evolution equation in momentum space and reaction-diffusion physics. Using the traveling wave based AGBS model for the dipole amplitude in momentum space, and within the k t -factorization formalism, we describe the LHC data on single inclusive hadron yield for p–p collisions.

  19. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal–organic framework material HKUST-1

    Energy Technology Data Exchange (ETDEWEB)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I.F. [ISIS Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX (United Kingdom); Millange, Franck [Institut Lavoisier Versailles (CNRS UMR 8180), Université de Versailles, 78035 Versailles (France); Walton, Richard I., E-mail: r.i.walton@warwick.ac.uk [Department of Chemistry, University of Warwick, CV4 7AL, Coventry (United Kingdom)

    2013-12-12

    Highlights: • Binding sites for dihydrogen in a metal–organic framework have been identified. • The combination of diffraction and spectroscopy shows competitive filling of various adsorption sites. • Inelastic neutron scattering over wide-momentum transfer reveals new models for hydrogen-framework interactions. - Abstract: We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal–organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal–organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.

  20. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal–organic framework material HKUST-1

    International Nuclear Information System (INIS)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I.F.; Millange, Franck; Walton, Richard I.

    2013-01-01

    Highlights: • Binding sites for dihydrogen in a metal–organic framework have been identified. • The combination of diffraction and spectroscopy shows competitive filling of various adsorption sites. • Inelastic neutron scattering over wide-momentum transfer reveals new models for hydrogen-framework interactions. - Abstract: We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal–organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal–organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host