WorldWideScience

Sample records for scattering imaging technique

  1. Importance of Doppler broadening in Compton scatter imaging techniques

    Science.gov (United States)

    Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji; Seltzer, S. M.; Hubbell, John H.; Zeniya, Tsutomu; Akatsuka, Takao; Cesareo, Roberto; Brunetti, Antonio; Gigante, Giovanni E.

    2001-12-01

    Compton scattering is a potential tool for the determination of bone mineral content or tissue density for dose planning purposes, and requires knowledge of the energy distribution of the X-rays through biological materials of medical interest in the X-ray and (gamma) -ray region. The energy distribution is utilized in a number of ways in diagnostic radiology, for example, in determining primary photon spectra, electron densities in separate volumes, and in tomography and imaging. The choice of the X-ray energy is more related to X-ray absorption, where as that of the scattering angle is more related to geometry. The evaluation of all the contributions are mandatory in Compton profile measurements and is important in X-ray imaging systems in order to achieve good results. In view of this, Compton profile cross-sections for few biological materials are estimated at nineteen K(alpha) X-ray energies and 60 keV (Am-241) photons. Energy broadening, geometrical broadening from 1 to 180 degree(s), FWHM of J(Pz) and FWHM of Compton energy broadening has been evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 keV and 1.0 keV for 60 keV photons. The interaction cross sections for the above materials are estimated using fractions-by-weight of the constituent elements. Input data for these tables are purely theoretical.

  2. A scatter-corrected list-mode reconstruction and a practical scatter/random approximation technique for dynamic PET imaging

    International Nuclear Information System (INIS)

    Cheng, J-C; Rahmim, Arman; Blinder, Stephan; Camborde, Marie-Laure; Raywood, Kelvin; Sossi, Vesna

    2007-01-01

    We describe an ordinary Poisson list-mode expectation maximization (OP-LMEM) algorithm with a sinogram-based scatter correction method based on the single scatter simulation (SSS) technique and a random correction method based on the variance-reduced delayed-coincidence technique. We also describe a practical approximate scatter and random-estimation approach for dynamic PET studies based on a time-averaged scatter and random estimate followed by scaling according to the global numbers of true coincidences and randoms for each temporal frame. The quantitative accuracy achieved using OP-LMEM was compared to that obtained using the histogram-mode 3D ordinary Poisson ordered subset expectation maximization (3D-OP) algorithm with similar scatter and random correction methods, and they showed excellent agreement. The accuracy of the approximated scatter and random estimates was tested by comparing time activity curves (TACs) as well as the spatial scatter distribution from dynamic non-human primate studies obtained from the conventional (frame-based) approach and those obtained from the approximate approach. An excellent agreement was found, and the time required for the calculation of scatter and random estimates in the dynamic studies became much less dependent on the number of frames (we achieved a nearly four times faster performance on the scatter and random estimates by applying the proposed method). The precision of the scatter fraction was also demonstrated for the conventional and the approximate approach using phantom studies

  3. Investigating the Nanoporous Structure of Aluminosilicate Geopolymers with Small Angle Scattering and Imaging Techniques

    International Nuclear Information System (INIS)

    Maitland, C.F.; Buckley, C.E.; O'Connor, B.H.; Rowles, M.R.; Hart, R.D.; Gilbert, E.P.; Connolly, J.

    2005-01-01

    Full text: Rowles and O'Connor optimised the compressive strength of a geopolymer produced by sodium silicate-activation of metakaolinite, and found that this material may have a greater compressive strength than ordinary Portland cement. It has been observed that similar metakaolin-based geopolymers have a multiscale structure that consists of partially dissolved metakaolinite embedded in a nanoporous matrix. The characteristics of the nanostructure within this matrix influence the physical properties of the geopolymer. An investigation, using small-angle neutron scattering and imaging techniques, into how the matrix nanostructure varies with chemical composition of the starting material has been undertaken. The results of this investigation will be reported. (authors)

  4. Coherent anti-stokes Raman scattering (CARS) microscopy: a novel technique for imaging the retina.

    Science.gov (United States)

    Masihzadeh, Omid; Ammar, David A; Kahook, Malik Y; Lei, Tim C

    2013-05-01

    To image the cellular and noncellular structures of the retina in an intact mouse eye without the application of exogenous fluorescent labels using noninvasive, nondestructive techniques. Freshly enucleated mouse eyes were imaged using two nonlinear optical techniques: coherent anti-Stokes Raman scattering (CARS) and two-photon autofluorescence (TPAF). Cross sectional transverse sections and sequential flat (en face) sagittal sections were collected from a region of sclera approximately midway between the limbus and optic nerve. Imaging proceeded from the surface of the sclera to a depth of ∼60 μm. The fluorescent signal from collagen fibers within the sclera was evident in the TPAF channel; the scleral collagen fibers showed no organization and appeared randomly packed. The sclera contained regions lacking TPAF and CARS fluorescence of ∼3 to 15 μm in diameter that could represent small vessels or scleral fibroblasts. Intense punctate CARS signals from the retinal pigment epithelial layer were of a size and shape of retinyl storage esters. Rod outer segments could be identified by the CARS signal from their lipid-rich plasma membranes. CARS microscopy can be used to image the outer regions of the mammalian retina without the use of a fluorescent dye or exogenously expressed recombinant protein. With technical advancements, CARS/TPAF may represent a new avenue for noninvasively imaging the retina and might complement modalities currently used in clinical practice.

  5. Radiation scattering techniques

    International Nuclear Information System (INIS)

    Edmonds, E.A.

    1986-01-01

    Radiation backscattering techniques are useful when access to an item to be inspected is restricted to one side. These techniques are very sensitive to geometrical effects. Scattering processes and their application to the determination of voids, thickness measuring, well-logging and the use of x-ray fluorescence techniques are discussed. (U.K.)

  6. Thermal dependence of ultrasound contrast agents scattering efficiency for echographic imaging techniques

    Science.gov (United States)

    Biagioni, Angelo; Bettucci, Andrea; Passeri, Daniele; Alippi, Adriano

    2015-06-01

    Ultrasound contrast agents are used in echographic imaging techniques to enhance image contrast. In addition, they may represent an interesting solution to the problem of non-invasive temperature monitoring inside the human body, based on some thermal variations of their physical properties. Contrast agents, indeed, are inserted into blood circulation and they reach the most important organs inside the human body; consequently, any thermometric property that they may possess, could be exploited for realizing a non-invasive thermometer. They essentially are a suspension of microbubbles containing a gas enclosed in a phospholipid membrane; temperature variations induce structural modifications of the microbubble phospholipid shell, thus causing thermal dependence of contrast agent's elastic characteristics. In this paper, the acoustic scattering efficiency of a bulk suspension of of SonoVue® (Bracco SpA Milan, Italy) has been studied using a pulse-echo technique in the frequency range 1-17 MHz, as it depends upon temperatures between 25 and 65°C. Experimental data confirm that the ultrasonic attenuation coefficient of SonoVue® depends on temperature between 25 and 60°C. Chemical composition of the bubble shell seem to support the hypothesis that a phase transition in the microstructure of lipid-coated microbubbles could play a key role in explaining such effect.

  7. Large-scale User Facility Imaging and Scattering Techniques to Facilitate Basic Medical Research

    International Nuclear Information System (INIS)

    Miller, Stephen D.; Bilheux, Jean-Christophe; Gleason, Shaun Scott; Nichols, Trent L.; Bingham, Philip R.; Green, Mark L.

    2011-01-01

    measurement techniques including imaging and tomography. The next generation NSLS-II facility is now under construction. The Advanced Light Source (ALS) commissioned in 1993 has one of the world's brightest sources of coherent long wavelength x-rays suitable for probing biological samples in 3D. The Advanced Photon Source at Argonne National Laboratory also has a number of x-ray beamlines dedicated to imaging and tomography suitable for biological and medical imaging research. The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) also has a number of beamlines suitable for studying the structure and dynamics of proteins and other biological systems. A neutron imaging and tomography beamline is currently being planned for SNS. Similarly, the High Flux Isotope Reactor (HFIR) also at ORNL has beamlines suitable for examining biological matter and has an operational imaging beamline. In addition, the production of medical isotopes is another important HFIR function. These user facilities have been intended to facilitate basic and applied research and were not explicitly designed with the intention to scan patients the same way a commercial medical imaging scanner does. Oftentimes the beam power is significantly more powerful than those produced by medical scanners. Thus the ionizing radiation effects of these beams must be considered when contemplating how these facilities can contribute to medical research. Suitable research areas involving user facilities include the study of proteins, human and animal tissue sample scanning, and in some cases, the study of non-human vertebrate animals such as various rodent species. The process for scanning biological and animal specimens must be approved by the facility biosafety review board. The national laboratories provide a number of imaging and scattering instruments which can be used to facilitate basic medical research. These resources are available competitively via the scientific peer review process for

  8. New neutron imaging techniques to close the gap to scattering applications

    International Nuclear Information System (INIS)

    Lehmann, Eberhard H.; Peetermans, S.; Trtik, P.; Betz, B.; Grünzweig, C.

    2017-01-01

    Neutron scattering and neutron imaging are activities at the strong neutron sources which have been developed rather independently. However, there are similarities and overlaps in the research topics to which both methods can contribute and thus useful synergies can be found. In particular, the spatial resolution of neutron imaging has improved recently, which - together with the enhancement of the efficiency in data acquisition- can be exploited to narrow the energy band and to implement more sophisticated methods like neutron grating interferometry. This paper provides a report about the current options in neutron imaging and describes how the gap to neutron scattering data can be closed in the future, e.g. by diffractive imaging, the use of polarized neutrons and the dark-field imagining of relevant materials. This overview is focused onto the interaction between neutron imaging and neutron scattering with the aim of synergy. It reflects mainly the authors’ experiences at their PSI facilities without ignoring the activities at the different other labs world-wide. (paper)

  9. New neutron imaging techniques to close the gap to scattering applications

    Science.gov (United States)

    Lehmann, Eberhard H.; Peetermans, S.; Trtik, P.; Betz, B.; Grünzweig, C.

    2017-01-01

    Neutron scattering and neutron imaging are activities at the strong neutron sources which have been developed rather independently. However, there are similarities and overlaps in the research topics to which both methods can contribute and thus useful synergies can be found. In particular, the spatial resolution of neutron imaging has improved recently, which - together with the enhancement of the efficiency in data acquisition- can be exploited to narrow the energy band and to implement more sophisticated methods like neutron grating interferometry. This paper provides a report about the current options in neutron imaging and describes how the gap to neutron scattering data can be closed in the future, e.g. by diffractive imaging, the use of polarized neutrons and the dark-field imagining of relevant materials. This overview is focused onto the interaction between neutron imaging and neutron scattering with the aim of synergy. It reflects mainly the authors’ experiences at their PSI facilities without ignoring the activities at the different other labs world-wide.

  10. MCNP simulations of a new time-resolved Compton scattering imaging technique

    International Nuclear Information System (INIS)

    Ilan, Y.

    2004-01-01

    Medical images of human tissue can be produced using Computed Tomography (CT), Positron Emission Tomography (PET), Ultrasound or Magnetic Resonance Imaging (MRI). In all of the above techniques, in order to get a three-dimensional (3D) image, one has to rotate or move the source, the detectors or the scanned target. This procedure is complicated, time consuming and increases the cost and weight of the scanning equipment. Time resolved optical tomography has been suggested as an alternative to the above conventional methods. This technique implies near infrared light (NIR) and fast time-resolved detectors to obtain a 3D image of the scanned target. However, due to the limited penetration of the NIR light in the tissue, the application of this technique is limited to soft tissue like a female breast or a premature infant brain

  11. Pulse sliced picosecond Ballistic Imaging and two planar elastic scattering: Development of the techniques and their application to diesel sprays

    Science.gov (United States)

    Duran, Sean Patrick Hynes

    A line of sight imaging technique was developed which utilized pulse slicing of laser pulses to shorten the duration of the parent laser pulse, thereby making time gating more effective at removing multiple scattered light. This included the development of an optical train which utilized a Kerr cell to selectively pass the initial part of the laser pulse while rejecting photons contained later within the pulse. This line of sight ballistic imaging technique was applied to image high-pressure fuel sprays injected into conditions typically encountered in a diesel combustion chamber. Varying the environmental conditions into which the fuel was injected revealed trends in spray behavior which depend on both temperature and pressure. Different fuel types were also studied in this experiment which demonstrated remarkably different shedding structures from one another. Additional experiments were performed to characterize the imaging technique at ambient conditions. The technique was modified to use two wavelengths to allow further rejection of scattered light. The roles of spatial, temporal and polarization filtration were examined by imaging an USAF 1951 line-pair target through a highly scattering field of polystyrene micro-spheres. The optical density of the scattering field was varied by both the optical path length and number densities of the spheres. The equal optical density, but with variable path length results demonstrated the need for an aggressively shorter pulse length to effectively image the distance scales typical encountered in the primary breakup regions of diesel sprays. Results indicate that the system performance improved via the use of two wavelengths. A final investigation was undertaken to image coherent light which has elastically scattered orthogonal to the direction of the laser pulse. Two wavelengths were focused into ˜150 micron sheets via a cylindrical lens and passed under the injector nozzle. The two sheets were adjustable spatially to

  12. Neural network scatter correction technique for digital radiography

    International Nuclear Information System (INIS)

    Boone, J.M.

    1990-01-01

    This paper presents a scatter correction technique based on artificial neural networks. The technique utilizes the acquisition of a conventional digital radiographic image, coupled with the acquisition of a multiple pencil beam (micro-aperture) digital image. Image subtraction results in a sparsely sampled estimate of the scatter component in the image. The neural network is trained to develop a causal relationship between image data on the low-pass filtered open field image and the sparsely sampled scatter image, and then the trained network is used to correct the entire image (pixel by pixel) in a manner which is operationally similar to but potentially more powerful than convolution. The technique is described and is illustrated using clinical primary component images combined with scatter component images that are realistically simulated using the results from previously reported Monte Carlo investigations. The results indicate that an accurate scatter correction can be realized using this technique

  13. New Techniques in Neutron Scattering

    DEFF Research Database (Denmark)

    Birk, Jonas Okkels

    potential performance than any existing facility, however in order to use this pulse structure optimally many existing neutron scattering instruments will need to be redesigned. This defense will concentrate on the design and optimization of the inverse time-of-flight cold neutron spectrometer CAMEA......, simulations and prototyping to optimize the instrument and ensure that it will deliver the predicted performance when constructed. During the design a new prismatic analyser concept that can be of interest to many other neutron spectrometers was developed. The design work was compiled into an instrument......Neutron scattering is an important experimental technique in amongst others solid state physics, biophysics, and engineering. This year construction of European Spallation Source (ESS) was commenced in Lund, Sweeden. The facility will use a new long pulsed source principle to obtain higher...

  14. New techniques in neutron scattering

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1993-01-01

    New neutron sources being planned, such as the Advanced Neutron Source (ANS) or the European Spallation Source (ESS), will provide an order of magnitude flux increase over what is available today, but neutron scattering will still remain a signal-limited technique. At the same time, the development of new materials, such as polymer and ceramic composites or a variety of complex fluids, will increasingly require neutron-based research. This paper will discuss some of the new techniques which will allow us to make better use of the available neutrons, either through improved instrumentation or through sample manipulation. Discussion will center primarily on unpolarized neutron techniques since polarized neutrons will be the subject of the next paper. (author)

  15. Study on image quality of radiograph in radiographic examination for circumferential welded joint. 1. Basic study on scattered radiation in double wall exposure technique

    International Nuclear Information System (INIS)

    Kato, Kiyoshi; Ooka, Norikazu.

    1997-01-01

    Wire type Image Quality Indicators (I. Q. I.) are usually used for the evaluation of the image quality of radiographs in radiographic examinations specified in the Japanese Industrial Standard (JIS). The relationship between the sensitivity of the Image Quality Indicator and the radiographic contrast in single wall exposure technique has already been well understood. However, the relationship in double wall exposure technique is still under discussion. As a result of the fundamental experiments using flat plates, it was found in this study that the image quality of radiograph depends on the ratio of scattered X-rays generated in the focus side test plate to transmitted X-rays, and that the ratio varies in inverse proportion to the distance between the flat plates. It was also shown that the simulation method based on the Compton Effect is effective in obtaining the ratio of scattered to transmitted X-rays in the double wall exposure technique for a pipe of more than 100 mm diameter. (author)

  16. Compton scatter correction for planner scintigraphic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vaan Steelandt, E; Dobbeleir, A; Vanregemorter, J [Algemeen Ziekenhuis Middelheim, Antwerp (Belgium). Dept. of Nuclear Medicine and Radiotherapy

    1995-12-01

    A major problem in nuclear medicine is the image degradation due to Compton scatter in the patient. Photons emitted by the radioactive tracer scatter in collision with electrons of the surrounding tissue. Due to the resulting loss of energy and change in direction, the scattered photons induce an object dependant background on the images. This results in a degradation of the contrast of warm and cold lesions. Although theoretically interesting, most of the techniques proposed in literature like the use of symmetrical photopeaks can not be implemented on the commonly used gamma camera due to the energy/linearity/sensitivity corrections applied in the detector. A method for a single energy isotope based on existing methods with adjustments towards daily practice and clinical situations is proposed. It is assumed that the scatter image, recorded from photons collected within a scatter window adjacent to the photo peak, is a reasonable close approximation of the true scatter component of the image reconstructed from the photo peak window. A fraction `k` of the image using the scatter window is subtracted from the image recorded in the photo peak window to produce the compensated image. The principal matter of the method is the right value for the factor `k`, which is determined in a mathematical way and confirmed by experiments. To determine `k`, different kinds of scatter media are used and are positioned in different ways in order to simulate a clinical situation. For a secondary energy window from 100 to 124 keV below a photo peak window from 126 to 154 keV, a value of 0.7 is found. This value has been verified using both an antropomorph thyroid phantom and the Rollo contrast phantom.

  17. Bistatic Forward Scattering Radar Detection and Imaging

    Directory of Open Access Journals (Sweden)

    Hu Cheng

    2016-06-01

    Full Text Available Forward Scattering Radar (FSR is a special type of bistatic radar that can implement image detection, imaging, and identification using the forward scattering signals provided by the moving targets that cross the baseline between the transmitter and receiver. Because the forward scattering effect has a vital significance in increasing the targets’ Radar Cross Section (RCS, FSR is quite advantageous for use in counter stealth detection. This paper first introduces the front line technology used in forward scattering RCS, FSR detection, and Shadow Inverse Synthetic Aperture Radar (SISAR imaging and key problems such as the statistical characteristics of forward scattering clutter, accurate parameter estimation, and multitarget discrimination are then analyzed. Subsequently, the current research progress in FSR detection and SISAR imaging are described in detail, including the theories and experiments. In addition, with reference to the BeiDou navigation satellite, the results of forward scattering experiments in civil aircraft detection are shown. Finally, this paper considers future developments in FSR target detection and imaging and presents a new, promising technique for stealth target detection.

  18. A Discrete Scatterer Technique for Evaluating Electromagnetic Scattering from Trees

    Science.gov (United States)

    2016-09-01

    Trees by DaHan Liao Approved for public release; distribution is unlimited. NOTICES Disclaimers The findings...for Evaluating Electromagnetic Scattering from Trees by DaHan Liao Sensors and Electron Devices Directorate, ARL...Technique for Evaluating Electromagnetic Scattering from Trees 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  19. Scattering influence in mammographic image

    International Nuclear Information System (INIS)

    Poletti, Martin Eduardo; Almeida, Adelaide de

    1996-01-01

    The quantification of mammographic images affected by scattered radiation is studied. The average glandular dose as a function of kVp and breast thickness for breast composition 50/50% is also evaluated. The results show that the contrast decreases with increasing of kVp and breast thickness, and the average glandular dose increase with increasing breast thickness and decreases with increasing kVp

  20. A three-color absorption/scattering imaging technique for simultaneous measurements on distributions of temperature and fuel concentration in a spray

    Science.gov (United States)

    Qi, Wenyuan; Zhang, Yuyin

    2018-04-01

    A three-color imaging technique was proposed for simultaneous measurements on distributions of fuel/air mixture temperature and fuel vapor/liquid concentrations in evaporating sprays. The idea is based on that the vapor concentration is proportional to the absorption of vapor to UV light, the liquid-phase concentration is related to the light extinction due to scattering of droplet to visible light, and the mixture temperature can be correlated to the absorbance ratio at two absorbing wavelengths or narrow bands. For verifying the imaging system, the molar absorption coefficients of p-xylene at the three narrow bands, which were centered respectively at 265, 289, and 532 nm with FWHM of 10 nm, were measured in a specially designed calibration chamber at different temperatures (423-606 K) and pressure of 3.6 bar. It was found that the ratio of the molar absorption coefficients of p-xylene at the two narrow bands centered at the two UV wavelengths is sensitive to the mixture temperature. On the other hand, the distributions of fuel vapor/liquid concentrations can be obtained by use of absorbance due to ultraviolet absorption of vapor and visible light scattering of droplets. Combining these two methods, a simultaneous measurement on distributions of mixture temperature and fuel vapor/liquid concentrations can be realized. In addition, the temperature field obtained from the ratio of the two absorbing narrow bands can be further used to improve the measurement accuracy of vapor/liquid concentrations, because the absorption coefficients depend on temperature. This diagnostic was applied to an evaporating spray inside a high-temperature and high-pressure constant volume chamber.

  1. Forward scattering effects on muon imaging

    Science.gov (United States)

    Gómez, H.; Gibert, D.; Goy, C.; Jourde, K.; Karyotakis, Y.; Katsanevas, S.; Marteau, J.; Rosas-Carbajal, M.; Tonazzo, A.

    2017-12-01

    Muon imaging is one of the most promising non-invasive techniques for density structure scanning, specially for large objects reaching the kilometre scale. It has already interesting applications in different fields like geophysics or nuclear safety and has been proposed for some others like engineering or archaeology. One of the approaches of this technique is based on the well-known radiography principle, by reconstructing the incident direction of the detected muons after crossing the studied objects. In this case, muons detected after a previous forward scattering on the object surface represent an irreducible background noise, leading to a bias on the measurement and consequently on the reconstruction of the object mean density. Therefore, a prior characterization of this effect represents valuable information to conveniently correct the obtained results. Although the muon scattering process has been already theoretically described, a general study of this process has been carried out based on Monte Carlo simulations, resulting in a versatile tool to evaluate this effect for different object geometries and compositions. As an example, these simulations have been used to evaluate the impact of forward scattered muons on two different applications of muon imaging: archaeology and volcanology, revealing a significant impact on the latter case. The general way in which all the tools used have been developed can allow to make equivalent studies in the future for other muon imaging applications following the same procedure.

  2. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  3. New Programs Utilizing Light Scattering and Flow Imaging Techniques for Macromolecular Crystal Growth and Fluid Dynamics Studies

    Science.gov (United States)

    2003-01-01

    Dr. Phil Segre, a physicist by training, is a recent addition to the Biotech group, SD46, having joined NASA in August of 2000. Over the past two years he has been developing a laboratory for the study of macromolecular and protein crystal growth. The main apparatus for this work is a Dynamic Light Scattering apparatus, DLS, which is capable of making highly precise measurements of size distributions of both protein solutions and protein crystals. With Drs. Chernov and Thomas (USRA), he has begun a collaboration studying the affects of protein impurities on protein crystal growth and subsequent crystal quality. One of the hypotheses behind the differences between Earth and space grown protein crystals is that the absorption of harmful impurities is reduced in space due to the absence of convective flows. Using DLS measurements we are examining crystal growth with varying amounts of impurities and testing whether there is a strong physical basis behind this hypothesis. With Dr. Joe Ng of UAH he has been collaborating on a project to examine the folding/unfolding dynamics of large RNA complexes. A detailed understanding of this process is necessary for the handling of RNA in biotech applications, and the DLS instrument gives details and results beyond that of other instruments. With Prof. Jim McClymer of the University of Maine (summer faculty visitor to NASA in 2001, 2002), we have been studying the crystallization process in model colloidal suspensions whose behavior in some cases can mimic that of much smaller protein solutions. An understanding of the self-assembly of colloids is the first step in the process of engineering novel materials for photonic and light switching applications. Finally, he has begun an investigation into the physics of particle sedimentation. In addition to the DLS instrument he also has an instrument (called PIV) that can measure flow fields of fluids. The applications are to the dynamics of protein crystal motions both on earth and in

  4. Compton scatter imaging: A tool for historical exploration

    International Nuclear Information System (INIS)

    Harding, G.; Harding, E.

    2010-01-01

    This review discusses the principles and technological realisation of a technique, termed Compton scatter imaging (CSI), which is based on spatially resolved detection of Compton scattered X-rays. The applicational focus of this review is to objects of historical interest. Following a historical survey of CSI, a description is given of the major characteristics of Compton X-ray scatter. In particular back-scattered X-rays allow massive objects to be imaged, which would otherwise be too absorbing for the conventional transmission X-ray technique. The ComScan (an acronym for Compton scatter scanner) is a commercially available backscatter imaging system, which is discussed here in some detail. ComScan images from some artefacts of historical interest, namely a fresco, an Egyptian mummy and a mediaeval clasp are presented and their use in historical analysis is indicated. The utility of scientific and technical advance for not only exploring history, but also restoring it, is briefly discussed.

  5. POLARIZATION IMAGING AND SCATTERING MODEL OF CANCEROUS LIVER TISSUES

    Directory of Open Access Journals (Sweden)

    DONGZHI LI

    2013-07-01

    Full Text Available We apply different polarization imaging techniques for cancerous liver tissues, and compare the relative contrasts for difference polarization imaging (DPI, degree of polarization imaging (DOPI and rotating linear polarization imaging (RLPI. Experimental results show that a number of polarization imaging parameters are capable of differentiating cancerous cells in isotropic liver tissues. To analyze the contrast mechanism of the cancer-sensitive polarization imaging parameters, we propose a scattering model containing two types of spherical scatterers and carry on Monte Carlo simulations based on this bi-component model. Both the experimental and Monte Carlo simulated results show that the RLPI technique can provide a good imaging contrast of cancerous tissues. The bi-component scattering model provides a useful tool to analyze the contrast mechanism of polarization imaging of cancerous tissues.

  6. Deconvolution of shift-variant broadening for Compton scatter imaging

    International Nuclear Information System (INIS)

    Evans, Brian L.; Martin, Jeffrey B.; Roggemann, Michael C.

    1999-01-01

    A technique is presented for deconvolving shift-variant Doppler broadening of singly Compton scattered gamma rays from their recorded energy distribution. Doppler broadening is important in Compton scatter imaging techniques employing gamma rays with energies below roughly 100 keV. The deconvolution unfolds an approximation to the angular distribution of scattered photons from their recorded energy distribution in the presence of statistical noise and background counts. Two unfolding methods are presented, one based on a least-squares algorithm and one based on a maximum likelihood algorithm. Angular distributions unfolded from measurements made on small scattering targets show less evidence of Compton broadening. This deconvolution is shown to improve the quality of filtered backprojection images in multiplexed Compton scatter tomography. Improved sharpness and contrast are evident in the images constructed from unfolded signals

  7. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...... various requirements to be fulfilled in the design of an imaging system for breast cancer detection and some strategies to overcome these limitations....

  8. Neutron Scattering in Biology Techniques and Applications

    CERN Document Server

    Fitter, Jörg; Katsaras, John

    2006-01-01

    The advent of new neutron facilities and the improvement of existing sources and instruments world wide supply the biological community with many new opportunities in the areas of structural biology and biological physics. The present volume offers a clear description of the various neutron-scattering techniques currently being used to answer biologically relevant questions. Their utility is illustrated through examples by some of the leading researchers in the field of neutron scattering. This volume will be a reference for researchers and a step-by-step guide for young scientists entering the field and the advanced graduate student.

  9. Multimodality imaging techniques.

    Science.gov (United States)

    Martí-Bonmatí, Luis; Sopena, Ramón; Bartumeus, Paula; Sopena, Pablo

    2010-01-01

    In multimodality imaging, the need to combine morphofunctional information can be approached by either acquiring images at different times (asynchronous), and fused them through digital image manipulation techniques or simultaneously acquiring images (synchronous) and merging them automatically. The asynchronous post-processing solution presents various constraints, mainly conditioned by the different positioning of the patient in the two scans acquired at different times in separated machines. The best solution to achieve consistency in time and space is obtained by the synchronous image acquisition. There are many multimodal technologies in molecular imaging. In this review we will focus on those multimodality image techniques more commonly used in the field of diagnostic imaging (SPECT-CT, PET-CT) and new developments (as PET-MR). The technological innovations and development of new tracers and smart probes are the main key points that will condition multimodality image and diagnostic imaging professionals' future. Although SPECT-CT and PET-CT are standard in most clinical scenarios, MR imaging has some advantages, providing excellent soft-tissue contrast and multidimensional functional, structural and morphological information. The next frontier is to develop efficient detectors and electronics systems capable of detecting two modality signals at the same time. Not only PET-MR but also MR-US or optic-PET will be introduced in clinical scenarios. Even more, MR diffusion-weighted, pharmacokinetic imaging, spectroscopy or functional BOLD imaging will merge with PET tracers to further increase molecular imaging as a relevant medical discipline. Multimodality imaging techniques will play a leading role in relevant clinical applications. The development of new diagnostic imaging research areas, mainly in the field of oncology, cardiology and neuropsychiatry, will impact the way medicine is performed today. Both clinical and experimental multimodality studies, in

  10. Studies in small angle scattering techniques

    International Nuclear Information System (INIS)

    Moellenbach, K.

    1980-03-01

    Small angle scattering of neutrons, X-rays and γ-rays are found among the spectroscopic methods developed in the recent years. Although these techniques differ from each other in many respects, e.g. radiation sources and technical equipment needed, their power to resolve physical phenomena and areas of application can be discussed in a general scheme. Selected examples are given illustrating the use of specific technical methods. Jahn-Teller driven structural phase transitions in Rare Earth zircons were studied with neutron scattering as well as small angle γ-ray diffraction. The study of neutron scattering from formations of magnetic domains in the Ising ferromagnet LiTbF 4 is a second example. Both these examples represent more than experimental test cases since the theoretical interpretations of the data obtained are discussed as well. As a last example the use of small angle scattering methods for the study of molecular biological samples is discussed. In particular the experimental procedures used in connection with scattering from aqueous solutions of proteins and protein complexes are given. (Auth.)

  11. Slot technique - an alternative method of scatter reduction in radiography

    International Nuclear Information System (INIS)

    Panzer, W.; Widenmann, L.

    1983-01-01

    The most common method of scatter reduction in radiography is the use of an antiscatter grid. Its disadvantage is the absorption of a certain percentage of primary radiation in the lead strips of the grid and the fact that due to the limited thickness of the lead strips their scatter absorption is also limited. A possibility for avoiding this disadvantage is offered by the so-called slot technique, ie, the successive exposure of the subject with a narrow fan beam provided by slots in rather thick lead plates. The results of a comparison between grid and slot technique regarding dose to the patient, scatter reduction, image quality and the effect of automatic exposure control are reported. (author)

  12. Scattered radiation in fan beam imaging systems

    International Nuclear Information System (INIS)

    Johns, P.C.; Yaffe, M.

    1982-01-01

    Scatter-to-primary energy fluence ratios (S/P) have been studied for fan x-ray beams as used in CT scanners and slit projection radiography systems. The dependence of S/P on phantom diameter, distance from phantom to image receptor, and kilovoltage is presented. An empirical equation is given that predicts S/P over a wide range of fan beam imaging configurations. For CT body scans on a 4th-generation machine, S/P is approximately 5%. Scattered radiation can produce a significant cupping artefact in CT images which is similar to that due to beam hardening. When multiple slices are used in scanned slit radiography, they can be arranged such that the increase in S/P is negligible. Calculations of scatter-to-primary ratios for first order scattering showed that for fan beams the contribution of coherent scatter is comparable to or greater than that of incoherent first scatter

  13. Significance of multiple scattering in imaging through turbid media

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.

    1986-01-01

    The degradation of image quality in a turbid medium is analyzed within the framework of the small-angle approximation, the diffusion approximation, and a rigorous two-dimensional radiative transfer equation. These three approaches allow us to emphasize different aspects of the imaging problem when multiple scattering effects are important. For a medium with a forward-peaked phase function, the separation of multiple scattering into a series of scatterings of various order provides a fruitful technique. The use of the diffusion approximation and transport theory extends the determination of the modulation transfer function to a turbid medium with an arbitrary degree of anisotropy

  14. Scattered Radiation Emission Imaging: Principles and Applications

    Directory of Open Access Journals (Sweden)

    M. K. Nguyen

    2011-01-01

    Full Text Available Imaging processes built on the Compton scattering effect have been under continuing investigation since it was first suggested in the 50s. However, despite many innovative contributions, there are still formidable theoretical and technical challenges to overcome. In this paper, we review the state-of-the-art principles of the so-called scattered radiation emission imaging. Basically, it consists of using the cleverly collected scattered radiation from a radiating object to reconstruct its inner structure. Image formation is based on the mathematical concept of compounded conical projection. It entails a Radon transform defined on circular cone surfaces in order to express the scattered radiation flux density on a detecting pixel. We discuss in particular invertible cases of such conical Radon transforms which form a mathematical basis for image reconstruction methods. Numerical simulations performed in two and three space dimensions speak in favor of the viability of this imaging principle and its potential applications in various fields.

  15. Imaging partons in exclusive scattering processes

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus

    2012-06-15

    The spatial distribution of partons in the proton can be probed in suitable exclusive scattering processes. I report on recent performance estimates for parton imaging at a proposed Electron-Ion Collider.

  16. Imaging an event horizon: mitigation of scattering toward Sagittarius A*

    Energy Technology Data Exchange (ETDEWEB)

    Fish, Vincent L.; Lu, Ru-Sen; Doeleman, Sheperd S.; Pankratius, Victor [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Johnson, Michael D.; Narayan, Ramesh; Vertatschitsch, Laura E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bouman, Katherine L.; Zoran, Daniel; Freeman, William T. [Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139 (United States); Psaltis, Dimitrios [Astronomy and Physics Departments, University of Arizona, 933 North Cherry Street, Tucson, AZ 85721 (United States); Broderick, Avery E. [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Gwinn, Carl R., E-mail: vfish@haystack.mit.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2014-11-10

    The image of the emission surrounding the black hole in the center of the Milky Way is predicted to exhibit the imprint of general relativistic (GR) effects, including the existence of a shadow feature and a photon ring of diameter ∼50 μas. Structure on these scales can be resolved by millimeter-wavelength very long baseline interferometry. However, strong-field GR features of interest will be blurred at λ ≥ 1.3 mm due to scattering by interstellar electrons. The scattering properties are well understood over most of the relevant range of baseline lengths, suggesting that the scattering may be (mostly) invertible. We simulate observations of a model image of Sgr A* and demonstrate that the effects of scattering can indeed be mitigated by correcting the visibilities before reconstructing the image. This technique is also applicable to Sgr A* at longer wavelengths.

  17. Time of flight imaging through scattering environments (Conference Presentation)

    Science.gov (United States)

    Le, Toan H.; Breitbach, Eric C.; Jackson, Jonathan A.; Velten, Andreas

    2017-02-01

    Light scattering is a primary obstacle to imaging in many environments. On small scales in biomedical microscopy and diffuse tomography scenarios scattering is caused by tissue. On larger scales scattering from dust and fog provide challenges to vision systems for self driving cars and naval remote imaging systems. We are developing scale models for scattering environments and investigation methods for improved imaging particularly using time of flight transient information. With the emergence of Single Photon Avalanche Diode detectors and fast semiconductor lasers, illumination and capture on picosecond timescales are becoming possible in inexpensive, compact, and robust devices. This opens up opportunities for new computational imaging techniques that make use of photon time of flight. Time of flight or range information is used in remote imaging scenarios in gated viewing and in biomedical imaging in time resolved diffuse tomography. In addition spatial filtering is popular in biomedical scenarios with structured illumination and confocal microscopy. We are presenting a combination analytical, computational, and experimental models that allow us develop and test imaging methods across scattering scenarios and scales. This framework will be used for proof of concept experiments to evaluate new computational imaging methods.

  18. Study of a new scatter rejection technique in digital radiography

    International Nuclear Information System (INIS)

    Bottari, S.; Ciocci, M.A.; Fortunato, M.; Maestro, P.; Malakhov, N.; Marrocchesi, P.S.; Meucci, M.; Millucci, V.; Paoletti, R.; Scribano, A.; Turini, N.

    2001-01-01

    A new technique for digital mammography based on the use of a collimator and an anti-scatter grid coupled with a mosaic detector has been studied with a Monte Carlo program. The simulation, with a low-energy spectrum X-ray beam and a breast phantom, provides a quantitative assessment of the capability of the method to reduce the physical background of the image due to scattering in the body, without introducing image artifacts. With minor modifications to the existing X-ray facilities, the method could also be applied to area detectors. To verify the results of the simulation, an experimental setup based on a CCD camera coupled via a fiber optic plate to a CsI(Tl) scintillator is under test

  19. Study of a new scatter rejection technique in digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Bottari, S.; Ciocci, M.A. E-mail: ciocci@pi.infn.it; Fortunato, M.; Maestro, P.; Malakhov, N.; Marrocchesi, P.S.; Meucci, M.; Millucci, V.; Paoletti, R.; Scribano, A.; Turini, N

    2001-04-01

    A new technique for digital mammography based on the use of a collimator and an anti-scatter grid coupled with a mosaic detector has been studied with a Monte Carlo program. The simulation, with a low-energy spectrum X-ray beam and a breast phantom, provides a quantitative assessment of the capability of the method to reduce the physical background of the image due to scattering in the body, without introducing image artifacts. With minor modifications to the existing X-ray facilities, the method could also be applied to area detectors. To verify the results of the simulation, an experimental setup based on a CCD camera coupled via a fiber optic plate to a CsI(Tl) scintillator is under test.

  20. SU-E-I-07: An Improved Technique for Scatter Correction in PET

    International Nuclear Information System (INIS)

    Lin, S; Wang, Y; Lue, K; Lin, H; Chuang, K

    2014-01-01

    Purpose: In positron emission tomography (PET), the single scatter simulation (SSS) algorithm is widely used for scatter estimation in clinical scans. However, bias usually occurs at the essential steps of scaling the computed SSS distribution to real scatter amounts by employing the scatter-only projection tail. The bias can be amplified when the scatter-only projection tail is too small, resulting in incorrect scatter correction. To this end, we propose a novel scatter calibration technique to accurately estimate the amount of scatter using pre-determined scatter fraction (SF) function instead of the employment of scatter-only tail information. Methods: As the SF depends on the radioactivity distribution and the attenuating material of the patient, an accurate theoretical relation cannot be devised. Instead, we constructed an empirical transformation function between SFs and average attenuation coefficients based on a serious of phantom studies with different sizes and materials. From the average attenuation coefficient, the predicted SFs were calculated using empirical transformation function. Hence, real scatter amount can be obtained by scaling the SSS distribution with the predicted SFs. The simulation was conducted using the SimSET. The Siemens Biograph™ 6 PET scanner was modeled in this study. The Software for Tomographic Image Reconstruction (STIR) was employed to estimate the scatter and reconstruct images. The EEC phantom was adopted to evaluate the performance of our proposed technique. Results: The scatter-corrected image of our method demonstrated improved image contrast over that of SSS. For our technique and SSS of the reconstructed images, the normalized standard deviation were 0.053 and 0.182, respectively; the root mean squared errors were 11.852 and 13.767, respectively. Conclusion: We have proposed an alternative method to calibrate SSS (C-SSS) to the absolute scatter amounts using SF. This method can avoid the bias caused by the insufficient

  1. SU-E-I-07: An Improved Technique for Scatter Correction in PET

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S; Wang, Y; Lue, K; Lin, H; Chuang, K [Chuang, National Tsing Hua University, Hsichu, Taiwan (China)

    2014-06-01

    Purpose: In positron emission tomography (PET), the single scatter simulation (SSS) algorithm is widely used for scatter estimation in clinical scans. However, bias usually occurs at the essential steps of scaling the computed SSS distribution to real scatter amounts by employing the scatter-only projection tail. The bias can be amplified when the scatter-only projection tail is too small, resulting in incorrect scatter correction. To this end, we propose a novel scatter calibration technique to accurately estimate the amount of scatter using pre-determined scatter fraction (SF) function instead of the employment of scatter-only tail information. Methods: As the SF depends on the radioactivity distribution and the attenuating material of the patient, an accurate theoretical relation cannot be devised. Instead, we constructed an empirical transformation function between SFs and average attenuation coefficients based on a serious of phantom studies with different sizes and materials. From the average attenuation coefficient, the predicted SFs were calculated using empirical transformation function. Hence, real scatter amount can be obtained by scaling the SSS distribution with the predicted SFs. The simulation was conducted using the SimSET. The Siemens Biograph™ 6 PET scanner was modeled in this study. The Software for Tomographic Image Reconstruction (STIR) was employed to estimate the scatter and reconstruct images. The EEC phantom was adopted to evaluate the performance of our proposed technique. Results: The scatter-corrected image of our method demonstrated improved image contrast over that of SSS. For our technique and SSS of the reconstructed images, the normalized standard deviation were 0.053 and 0.182, respectively; the root mean squared errors were 11.852 and 13.767, respectively. Conclusion: We have proposed an alternative method to calibrate SSS (C-SSS) to the absolute scatter amounts using SF. This method can avoid the bias caused by the insufficient

  2. Optimizing Nanoscale Quantitative Optical Imaging of Subfield Scattering Targets

    Science.gov (United States)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui; Sohn, Martin; Silver, Richard M.

    2016-01-01

    The full 3-D scattered field above finite sets of features has been shown to contain a continuum of spatial frequency information, and with novel optical microscopy techniques and electromagnetic modeling, deep-subwavelength geometrical parameters can be determined. Similarly, by using simulations, scattering geometries and experimental conditions can be established to tailor scattered fields that yield lower parametric uncertainties while decreasing the number of measurements and the area of such finite sets of features. Such optimized conditions are reported through quantitative optical imaging in 193 nm scatterfield microscopy using feature sets up to four times smaller in area than state-of-the-art critical dimension targets. PMID:27805660

  3. High repetition Thomson scattering profile measurements using a nonimaging technique

    International Nuclear Information System (INIS)

    Zigler, A.

    1983-01-01

    The Thomson scattering technique is one of the most useful diagnostics for the study of magnetically confined plasmas. In this work, a simple multi-space and time Thomson scattering technique has been proposed. The spatial resolution is obtained by conversion of the scattered laser light collected from different plasma points into a time sequence. This can be done by focusing the image of the laser beam through a wideangle lens onto an array of fiber optic light pipes. Since the laser emits relatively short pulses (1020 nsec), scattered light pulses from each of the light pipes can be delayed relative to one another without overlapping. Such delays can be achieved by using an array of fiber optics of differing lengths (2-4 meters). The light is transmitted then into a spectrometer and detected by fast detectros (few nsec rise and fall time). Reconstruction from the time sequence to the spatial structure is obtained by using existing fast gate circuits. The data then is A/D converted and handled by using a data acquisition system

  4. Image Improvement Techniques

    Science.gov (United States)

    Shine, R. A.

    1997-05-01

    Over the last decade, a repertoire of techniques have been developed and/or refined to improve the quality of high spatial resolution solar movies taken from ground based observatories. These include real time image motion corrections, frame selection, phase diversity measurements of the wavefront, and extensive post processing to partially remove atmospheric distortion. Their practical application has been made possible by the increasing availability and decreasing cost of large CCD's with fast digital readouts and high speed computer workstations with large memories. Most successful have been broad band (0.3 to 10 nm) filtergram movies which can use exposure times of 10 to 30 ms, short enough to ``freeze'' atmospheric motions. Even so, only a handful of movies with excellent image quality for more than a hour have been obtained to date. Narrowband filtergrams (about 0.01 nm), such as those required for constructing magnetograms and Dopplergrams, have been more challenging although some single images approach the quality of the best continuum images. Some promising new techniques and instruments, together with persistence and good luck, should continue the progress made in the last several years.

  5. Dental caries imaging using hyperspectral stimulated Raman scattering microscopy

    Science.gov (United States)

    Wang, Zi; Zheng, Wei; Jian, Lin; Huang, Zhiwei

    2016-03-01

    We report the development of a polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of dental caries. In our imaging system, hyperspectral SRS images (512×512 pixels) in both fingerprint region (800-1800 cm-1) and high-wavenumber region (2800-3600 cm-1) are acquired in minutes by scanning the wavelength of OPO output, which is a thousand times faster than conventional confocal micro Raman imaging. SRS spectra variations from normal enamel to caries obtained from the hyperspectral SRS images show the loss of phosphate and carbonate in the carious region. While polarization-resolved SRS images at 959 cm-1 demonstrate that the caries has higher depolarization ratio. Our results demonstrate that the polarization resolved-hyperspectral SRS imaging technique developed allows for rapid identification of the biochemical and structural changes of dental caries.

  6. Transfection and imaging of diamond nanocrystals as scattering optical labels

    International Nuclear Information System (INIS)

    Smith, Bradley R.; Niebert, Marcus; Plakhotnik, Taras; Zvyagin, Andrei V.

    2007-01-01

    We report on the first demonstration of nanodiamond (ND) as a scattering optical label in a biological environment. NDs were efficiently transfected into cells using cationic liposomes, and imaged using differential interference and Hoffman modulation 'space' contrast microscopy techniques. We have shown that 55 nm NDs are biologically inert and produce a bright signal compared to the cell background. ND as a scattering label presents the possibility for extended biological imaging with relatively little thermal or biochemical perturbations due to the optical transparency and biologically inert nature of diamond

  7. Incoherent imaging using dynamically scattered coherent electrons

    International Nuclear Information System (INIS)

    Nellist, P.D.; Pennycook, S.J.

    1999-01-01

    We use a Bloch wave approach to show that, even for coherent dynamical scattering from a stationary lattice with no absorption, annular dark-field imaging in a scanning transmission electron microscope gives a direct incoherent structure image of the atomic-column positions of a zone-axis-aligned crystal. Although many Bloch waves may be excited by the probe, the detector provides a filtering effect so that the 1s-type bound states are found to dominate the image contrast for typical experimental conditions. We also find that the column intensity is related to the transverse kinetic energy of the 1s states, which gives atomic number, Z, contrast. The additional effects of phonon scattering are discussed, in particular the reasons why phonon scattering is not a prerequisite for transverse incoherence. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Healing X-ray scattering images

    Directory of Open Access Journals (Sweden)

    Jiliang Liu

    2017-07-01

    Full Text Available X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuse versus sharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.

  9. Psoriatic arthritis: imaging techniques

    Directory of Open Access Journals (Sweden)

    E. Lubrano

    2012-06-01

    Full Text Available Imaging techniques to assess psoriatic arthritis (PsA include radiography, ultrasonography (US, magnetic resonance imaging (MRI, computed tomography (CT and bone scintigraphy. The radiographic hallmark of PsA is the combination of destructive changes (joint erosions, tuft resorption, osteolysis with bone proliferation (including periarticular and shaft periostitis, ankylosis, spur formation and non-marginal syndesmophytes. US has an increasing important role in the evaluation of PsA. In fact, power Doppler US is useful mainly for its ability to assess musculoskeletal (joints, tendons, entheses and cutaneous (skin and nails involvement, to monitor efficacy of therapy and to guide steroid injections at the level of inflamed joints, tendon sheaths and entheses. MRI allows direct visualization of inflammation in peripheral and axial joints, and peripheral and axial entheses, and has dramatically improved the possibilities for early diagnosis and objective monitoring of the disease process in PsA. MRI has allowed explaining the relationships among enthesitis, synovitis and osteitis in PsA, supporting a SpA pattern of inflammation where enthesitis is the primary target of inflammation. CT has little role in assessment of peripheral joints, but it may be useful in assessing elements of spine disease. CT accuracy is similar to MRI in assessment of erosions in sacroiliac joint involvement, but CT is not as effective in detecting synovial inflammation. Bone scintigraphy lacks specificity and is now supplanted with US and MRI techniques.

  10. Imaging moving objects from multiply scattered waves and multiple sensors

    International Nuclear Information System (INIS)

    Miranda, Analee; Cheney, Margaret

    2013-01-01

    In this paper, we develop a linearized imaging theory that combines the spatial, temporal and spectral components of multiply scattered waves as they scatter from moving objects. In particular, we consider the case of multiple fixed sensors transmitting and receiving information from multiply scattered waves. We use a priori information about the multipath background. We use a simple model for multiple scattering, namely scattering from a fixed, perfectly reflecting (mirror) plane. We base our image reconstruction and velocity estimation technique on a modification of a filtered backprojection method that produces a phase-space image. We plot examples of point-spread functions for different geometries and waveforms, and from these plots, we estimate the resolution in space and velocity. Through this analysis, we are able to identify how the imaging system depends on parameters such as bandwidth and number of sensors. We ultimately show that enhanced phase-space resolution for a distribution of moving and stationary targets in a multipath environment may be achieved using multiple sensors. (paper)

  11. Relevant Scatterers Characterization in SAR Images

    Science.gov (United States)

    Chaabouni, Houda; Datcu, Mihai

    2006-11-01

    Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.

  12. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging

    International Nuclear Information System (INIS)

    Dunsby, C; French, P M W

    2003-01-01

    This article aims to review the panoply of techniques for realising optical imaging through turbid media such as biological tissue. It begins by briefly discussing optical scattering and outlines the various approaches that have been developed to image through scattering media including spatial filtering, time-gated imaging and coherence-based techniques. The discussion includes scanning and wide-field techniques and concentrates on techniques to discriminate in favour of unscattered ballistic light although imaging with scattered light is briefly reviewed. Wide-field coherence-gated imaging techniques are discussed in some detail with particular emphasis placed on techniques to achieve real-time high-resolution three-dimensional imaging including through turbid media, providing rapid whole-field acquisition and high depth and transverse spatial resolution images. (topical review)

  13. Experimental technique of small angle neutron scattering

    International Nuclear Information System (INIS)

    Xia Qingzhong; Chen Bo

    2006-03-01

    The main parts of Small Angle Neutron Scattering (SANS) spectrometer, and their function and different parameters are introduced from experimental aspect. Detailed information is also introduced for SANS spectrometer 'Membrana-2'. Based on practical experiments, the fundamental requirements and working condition for SANS experiments, including sample preparation, detector calibration, standard sample selection and data preliminary process are described. (authors)

  14. Lectures on neutron scattering techniques: 1

    International Nuclear Information System (INIS)

    Carlile, C.J.

    1988-08-01

    The lecture on the production of neutrons was presented at a Summer School on neutron scattering, Rome, 1986. A description is given of the production of neutrons by natural radioactive sources, fission, and particle accelerator sources. Modern neutron sources with high intensities are discussed including the ISIS pulsed neutron source at the Rutherford Appleton Laboratory and the High Flux Reactor at the Institut Laue Langevin. (U.K.)

  15. Numerical Computational Technique for Scattering from Underwater Objects

    OpenAIRE

    T. Ratna Mani; Raj Kumar; Odamapally Vijay Kumar

    2013-01-01

    This paper presents a computational technique for mono-static and bi-static scattering from underwater objects of different shape such as submarines. The scatter has been computed using finite element time domain (FETD) method, based on the superposition of reflections, from the different elements reaching the receiver at a particular instant in time. The results calculated by this method has been verified with the published results based on ramp response technique. An in-depth parametric s...

  16. Scattering Correction For Image Reconstruction In Flash Radiography

    International Nuclear Information System (INIS)

    Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo

    2013-01-01

    Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency

  17. Scattering Correction For Image Reconstruction In Flash Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo [Xi' an Jiaotong Univ., Xi' an (China)

    2013-08-15

    Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency.

  18. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    International Nuclear Information System (INIS)

    Redler, G; Bernard, D; Templeton, A; Chu, J; Nair, C Kumaran; Turian, J

    2015-01-01

    approach, employing multiple simulation techniques and experiments, is taken to demonstrate the feasibility of a novel scatter imaging modality for the necessary real-time image guidance

  19. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Bernard, D; Templeton, A; Chu, J [Rush University Medical Center, Chicago, IL (United States); Nair, C Kumaran [University of Chicago, Chicago, IL (United States); Turian, J [Rush University Medical Center, Chicago, IL (United States); Rush Radiosurgery LLC, Chicago, IL (United States)

    2015-06-15

    approach, employing multiple simulation techniques and experiments, is taken to demonstrate the feasibility of a novel scatter imaging modality for the necessary real-time image guidance.

  20. Review of advanced imaging techniques

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2012-01-01

    Full Text Available Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies" at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy. This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques.

  1. Novel imaging techniques for the nuclear microprobe

    International Nuclear Information System (INIS)

    Saint, A.

    1998-01-01

    Many of the developments of the scanning electron microscope (SEM) have been paralleled during the development of the scanning nuclear microprobe. Secondary electrons were used in the early development of both devices to provide specimen imaging due to the large numbers of secondaries produced per incident charged particle. Other imaging contrast techniques have also been developed on both machines. These include X-ray analysis, scattering contrast, transmission microscopy, channelling induced charge and others. The 'cross-section dependent' imaging techniques such as PIXE, RBS, NRA, etc., rely on the beam current on target for a given resolution. This has prompted research and development of brighter ion sources to maintain probe resolution at high beam current. Higher beam current bring problems with beam damage to the specimen. Low beam current techniques however rely on high countrate data collection systems, but this is only for spectroscopy. To produce an image we can increase beam currents to produce live-time images for specimen manipulation and observation. The work presented here will focus on some developments in live-time imaging with a nuclear micro probe that have taken place recently at the School of Physics, Microanalytical Research Centre (MARC), University of Melbourne

  2. Automated medical image segmentation techniques

    Directory of Open Access Journals (Sweden)

    Sharma Neeraj

    2010-01-01

    Full Text Available Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  3. Urologic imaging and interventional techniques

    International Nuclear Information System (INIS)

    Bush, W.H.

    1989-01-01

    This book provides an overview of all imaging modalities and invasive techniques of the genitourinary system. Three general chapters discuss ionic and nonionic contrast media, the management of reactions to contrast media, and radiation doses from various uroradiologic procedures. Chapters are devoted to intravenous pyelography, computed tomography, magnetic resonance imaging, ultrasound, nuclear medicine, lymphography, arteriography, and venography. Two chapters discuss the pediatric applications of uroradiology and ultrasound. Two chapters integrate the various imaging techniques of the upper and lower genitourinary systems into an algorithmic approach for various pathologic entities

  4. Inelastic scattering using the three-axis spectrometer technique

    International Nuclear Information System (INIS)

    Currat, R.

    1999-01-01

    The three-axis technique is a basic neutron scattering technique for inelastic work on single-crystal specimens. There is, at the moment, a fair degree of complementarity between TAS instruments on steady-state sources and TOF instruments on steady-state or pulsed sources. The technique is described, the issue of TAS versus TOF method is discussed, and investigations relating to the resolution functions are presented. (K.A.)

  5. Numerical simulation of scattering wave imaging in a goaf

    Institute of Scientific and Technical Information of China (English)

    Li Juanjuan; Pan Dongming; Liao Taiping; Hu Mingshun; Wang Linlin

    2011-01-01

    Goafs are threats to safe mining. Their imaging effects or those of other complex geological bodies are often poor in conventional reflected wave images. Hence, accurate detection of goals has become an important problem, to be solved with a sense of urgency. Based on scattering theory, we used an equivalent offset method to extract Common Scattering Point gathers, in order to analyze different scattering wave characteristics between Common Scattering Point and Common Mid Point gathers and to compare stack and migration imaging effects. Our research results show that the scattering wave imaging method is more efficient than the conventional imaging method and is therefore a more effective imaging method for detecting goats and other complex geological bodies. It has important implications for safe mining procedures and infrastructures.

  6. Developments in medical imaging techniques

    International Nuclear Information System (INIS)

    Kramer, Cornelis

    1979-01-01

    A review of the developments in medical imaging in the past 25 years shows a strong increase in the number of physical methods which have become available for obtaining images of diagnostic value. It is shown that despite this proliferation of methods the equipment used for obtaining the images can be based on a common structure. Also the resulting images can be characterized by a few relevant parameters which indicate their information content. On the basis of this common architecture a study is made of the potential capabilities of the large number of medical imaging techniques available now and in the future. Also the requirements and possibilities for handling the images obtained and for controlling the diagnostic systems are investigated [fr

  7. Marchenko imaging below an overburden with random scatterers

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Thorbecke, J.W.; Van der Neut, J.R.; Vasconcelos, I.; Slob, E.C.

    2014-01-01

    Marchenko imaging is a new way to deal with internal multiple scattering in migration. It has been designed for layered media with smooth interfaces. Here we analyze the performance of the Marchenko scheme for a medium with many point scatterers. Although the conditions for Marchenko imaging are

  8. Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.

    Science.gov (United States)

    Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth

    2018-01-01

    H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  9. Fluid temperature measurement technique by using Raman scattering

    International Nuclear Information System (INIS)

    An, Jeong Soo; Yang, Sun Kyu; Min, Kyung Ho; Chung, Moon Ki; Choi, Young Don

    1999-06-01

    Temperature measurement technique by using Raman scattering was developed for the liquid water at temperature of 20 - 90 degree C and atmospheric pressure. Strong relationship between Raman scattering characteristics and liquid temperature change was observed. Various kinds of measurement techniques, such as Peak Intensity, Peak Wavelength, FWHM (Full Width at Half Maximum), PMCR ( Polymer Monomer Concentration RAte), TSIR (Temperature Sensitive Intensity Ratio), IDIA (Integral Difference Intensity Area) were tested. TSIR has the highest accuracy in mean error or 0.1 deg C and standard deviation of 0.1248 deg C. This report is one of the results in developing process of Raman temperature measurement technique. Next research step is to develop Raman temperature measurement technique at the high temperature and high pressure conditions in single or two phase flows. (author). 13 refs., 3 tabs., 38 figs

  10. Study of scattering in bi-dimensional neutron radiographic images

    International Nuclear Information System (INIS)

    Oliveira, K.A.M. de; Crispim, V.R.; Silva, F.C.

    2009-01-01

    The effect of neutron scattering frequently causes distortions in neutron radiographic images and, thus, reduces the quality. In this project, a type of filter, comprised of cadmium (a neutron absorber), was used in the form of a grid to correct this effect. This device generated image data in the discrete shadow bands of the absorber, components relative to neutron scattering on the test object and surroundings. Scattering image data processing, together with the original neutron radiographic image, resulted in a corrected image with improved edge delineation and, thus, greater definition in the neutron radiographic image of the test object. The objective of this study is to propose a theoretical/experimental methodology that is capable of eliminating the components relative to neutron scattering in neutron radiographic images, coming from the material that composes the test object and the materials that compose the surrounding area. (author)

  11. Imaging techniques for ultrasonic testing

    International Nuclear Information System (INIS)

    2013-01-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [de

  12. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method

    International Nuclear Information System (INIS)

    Shidahara, Miho; Kato, Takashi; Kawatsu, Shoji; Yoshimura, Kumiko; Ito, Kengo; Watabe, Hiroshi; Kim, Kyeong Min; Iida, Hidehiro; Kato, Rikio

    2005-01-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99m Tc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I AC μb with Chang's attenuation correction factor. The scatter component image is estimated by convolving I AC μb with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99m Tc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine. (orig.)

  13. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method

    Energy Technology Data Exchange (ETDEWEB)

    Shidahara, Miho; Kato, Takashi; Kawatsu, Shoji; Yoshimura, Kumiko; Ito, Kengo [National Center for Geriatrics and Gerontology Research Institute, Department of Brain Science and Molecular Imaging, Obu, Aichi (Japan); Watabe, Hiroshi; Kim, Kyeong Min; Iida, Hidehiro [National Cardiovascular Center Research Institute, Department of Investigative Radiology, Suita (Japan); Kato, Rikio [National Center for Geriatrics and Gerontology, Department of Radiology, Obu (Japan)

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with {sup 99m}Tc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I{sub AC}{sup {mu}}{sup b} with Chang's attenuation correction factor. The scatter component image is estimated by convolving I{sub AC}{sup {mu}}{sup b} with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and {sup 99m}Tc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine. (orig.)

  14. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method.

    Science.gov (United States)

    Shidahara, Miho; Watabe, Hiroshi; Kim, Kyeong Min; Kato, Takashi; Kawatsu, Shoji; Kato, Rikio; Yoshimura, Kumiko; Iida, Hidehiro; Ito, Kengo

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99mTc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I(mub)AC with Chang's attenuation correction factor. The scatter component image is estimated by convolving I(mub)AC with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99mTc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine.

  15. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  16. Elements of slow-neutron scattering basics, techniques, and applications

    CERN Document Server

    Carpenter, J M

    2015-01-01

    Providing a comprehensive and up-to-date introduction to the theory and applications of slow-neutron scattering, this detailed book equips readers with the fundamental principles of neutron studies, including the background and evolving development of neutron sources, facility design, neutron scattering instrumentation and techniques, and applications in materials phenomena. Drawing on the authors' extensive experience in this field, this text explores the implications of slow-neutron research in greater depth and breadth than ever before in an accessible yet rigorous manner suitable for both students and researchers in the fields of physics, biology, and materials engineering. Through pedagogical examples and in-depth discussion, readers will be able to grasp the full scope of the field of neutron scattering, from theoretical background through to practical, scientific applications.

  17. Electronic properties of Be and Al by Compton scattering technique

    International Nuclear Information System (INIS)

    Aguiar, J.C.; Di Rocco, H.O.

    2011-01-01

    In this work, electronic properties of beryllium and aluminum are examined by using Compton scattering technique. The method is based on the irradiation of samples using a beam narrow of mono- energetic photons of 59.54 keV product of radioactive decay of Am -241 . Scattered radiation is collected by a high resolution semiconductor detector positioned at an angle of 90°. The measured spectrum is commonly called Compton profile and contains useful information about the electronic structure of the material. The experimental results are compared with theoretical calculations such as density functional theory showing a good agreement. However, these results show some discrepancies with many libraries used in codes such as Monte Carlo simulation. Since these libraries are based on the values tabulated by Biggs, Mendelsohn and Mann 1975 thus overestimating the scattered radiation on the material. (authors) [es

  18. Multiplexing and de-multiplexing with scattering media for large field of view and multispectral imaging

    Science.gov (United States)

    Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong

    2018-02-01

    Large field of view multispectral imaging through scattering medium is a fundamental quest in optics community. It has gained special attention from researchers in recent years for its wide range of potential applications. However, the main bottlenecks of the current imaging systems are the requirements on specific illumination, poor image quality and limited field of view. In this work, we demonstrated a single-shot high-resolution colour-imaging through scattering media using a monochromatic camera. This novel imaging technique is enabled by the spatial, spectral decorrelation property and the optical memory effect of the scattering media. Moreover the use of deconvolution image processing further annihilate above-mentioned drawbacks arise due iterative refocusing, scanning or phase retrieval procedures.

  19. Physical explanation of the SLIPI technique by the large scatterer approximation of the RTE

    International Nuclear Information System (INIS)

    Kristensson, Elias; Kristensson, Gerhard

    2017-01-01

    Visualizing the interior of a turbid scattering media by means light-based methods is not a straightforward task because of multiple light scattering, which generates image blur. To overcome this issue, a technique called Structured Laser Illumination Planar Imaging (SLIPI) was developed within the field of spray imaging. The method is based on a ‘light coding’ strategy to distinguish between directly and multiply scattered light, allowing the intensity from the latter to be suppressed by means of data post-processing. Recently, the performance of the SLIPI technique was investigated, during which deviations from theoretical predictions were discovered. In this paper, we aim to explain the origin of these deviations, and to achieve this end, we have performed several SLIPI measurements under well-controlled conditions. Our experimental results are compared with a theoretical model that is based on the large scatterer approximation of the Radiative Transfer Equation but modified according to certain constraints. Specifically, our model is designed to (1) ignore all off-axis intensity contributions, (2) to treat unperturbed- and forward-scattered light equally and (3) to accept light to scatter within a narrow forward-cone as we believe these are the rules governing the SLIPI technique. The comparison conclusively shows that optical measurements based on scattering and/or attenuation in turbid media can be subject to significant errors if not all aspects of light-matter interactions are considered. Our results indicate, as were expected, that forward-scattering can lead to deviations between experiments and theoretical predictions, especially when probing relatively large particles. Yet, the model also suggests that the spatial frequency of the superimposed ‘light code’ as well as the spreading of the light-probe are important factors one also needs to consider. The observed deviations from theoretical predictions could, however, potentially be exploited to

  20. Prior image constrained scatter correction in cone-beam computed tomography image-guided radiation therapy.

    Science.gov (United States)

    Brunner, Stephen; Nett, Brian E; Tolakanahalli, Ranjini; Chen, Guang-Hong

    2011-02-21

    X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.

  1. Raman Imaging Techniques and Applications

    CERN Document Server

    2012-01-01

    Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

  2. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    International Nuclear Information System (INIS)

    Johnson, Michael D.

    2016-01-01

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imaging come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.

  3. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D., E-mail: mjohnson@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-12-10

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imaging come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.

  4. Biological Small Angle Scattering: Techniques, Strategies and Tips

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Barnali [University at Buffalo (SUNY); Muñoz, Inés G. [Centro Nacional de Investigaciones Oncológicas Madrid, Madrid, Spain; Urban, Volker S. [ORNL; Qian, Shuo [ORNL

    2017-12-01

    This book provides a clear, comprehensible and up-to-date description of how Small Angle Scattering (SAS) can help structural biology researchers. SAS is an efficient technique that offers structural information on how biological macromolecules behave in solution. SAS provides distinct and complementary data for integrative structural biology approaches in combination with other widely used probes, such as X-ray crystallography, Nuclear magnetic resonance, Mass spectrometry and Cryo-electron Microscopy. The development of brilliant synchrotron small-angle X-ray scattering (SAXS) beam lines has increased the number of researchers interested in solution scattering. SAS is especially useful for studying conformational changes in proteins, highly flexible proteins, and intrinsically disordered proteins. Small-angle neutron scattering (SANS) with neutron contrast variation is ideally suited for studying multi-component assemblies as well as membrane proteins that are stabilized in surfactant micelles or vesicles. SAS is also used for studying dynamic processes of protein fibrillation in amyloid diseases, and pharmaceutical drug delivery. The combination with size-exclusion chromatography further increases the range of SAS applications.The book is written by leading experts in solution SAS methodologies. The principles and theoretical background of various SAS techniques are included, along with practical aspects that range from sample preparation to data presentation for publication. Topics covered include techniques for improving data quality and analysis, as well as different scientific applications of SAS. With abundant illustrations and practical tips, we hope the clear explanations of the principles and the reviews on the latest progresses will serve as a guide through all aspects of biological solution SAS.The scope of this book is particularly relevant for structural biology researchers who are new to SAS. Advanced users of the technique will find it helpful for

  5. Imaging through scattering media by Fourier filtering and single-pixel detection

    Science.gov (United States)

    Jauregui-Sánchez, Y.; Clemente, P.; Lancis, J.; Tajahuerce, E.

    2018-02-01

    We present a novel imaging system that combines the principles of Fourier spatial filtering and single-pixel imaging in order to recover images of an object hidden behind a turbid medium by transillumination. We compare the performance of our single-pixel imaging setup with that of a conventional system. We conclude that the introduction of Fourier gating improves the contrast of images in both cases. Furthermore, we show that the combination of single-pixel imaging and Fourier spatial filtering techniques is particularly well adapted to provide images of objects transmitted through scattering media.

  6. Linearized least-square imaging of internally scattered data

    KAUST Repository

    Aldawood, Ali; Hoteit, Ibrahim; Turkiyyah, George M.; Zuberi, M. A H; Alkhalifah, Tariq Ali

    2014-01-01

    Internal multiples deteriorate the quality of the migrated image obtained conventionally by imaging single scattering energy. However, imaging internal multiples properly has the potential to enhance the migrated image because they illuminate zones in the subsurface that are poorly illuminated by single-scattering energy such as nearly vertical faults. Standard migration of these multiples provide subsurface reflectivity distributions with low spatial resolution and migration artifacts due to the limited recording aperture, coarse sources and receivers sampling, and the band-limited nature of the source wavelet. Hence, we apply a linearized least-square inversion scheme to mitigate the effect of the migration artifacts, enhance the spatial resolution, and provide more accurate amplitude information when imaging internal multiples. Application to synthetic data demonstrated the effectiveness of the proposed inversion in imaging a reflector that is poorly illuminated by single-scattering energy. The least-square inversion of doublescattered data helped delineate that reflector with minimal acquisition fingerprint.

  7. Incoherent scatter studies of upper atmosphere dynamics and coding technique

    International Nuclear Information System (INIS)

    Haeggstroem, Ingemar.

    1990-09-01

    Observations by the EISCAT incoherent scatter radar are used to study the dynamics of the auroral upper atmosphere. The study describes some effects of the strong plasma convection occurring at these latitudes and a new coding technique for incoherent scatter radars. A technique to determine the thermospheric neutral wind from incoherent scatter measurements is described. Simultaneous Fabry-Perot interferometer measurements of the wind are compared with those derived from the radar data. F-region electron density depletions in the afternoon/evening sector of the auroral zone, identified as the main ionospheric trough, are investigated. In a statistical study, based on wide latitude scanning experiment made at solar minimum, the trough appearance at a given latitude is compared to the geomagnetic index K p , and an empirical model predicting the latitude of the trough is proposed. Detailed studies, using different experiment modes, show that the equatorward edge of the auroral oval is co-located of up to 1 degree poleward of the trough minimum, which in turn is co-located with the peak convective electric field, with its boundary 1 degree - 2 degree equatorward of the trough minimum. It is shown that the F-region ion composition changes from pure 0 + to molecular ion dominated (NO + /O 2 + ) as the trough moves into the region probed by the radar. In a special case, where a geomagnetic sudden impulse caused an expansion of the plasma convection pattern, the equatorward trough progression is studied together with ionosonde measurements. A new coding technique for incoherent scatter radar measurement is introduced and described. The method, called alternating codes, provides significantly more accurate estimates of the plasma parameters than can be obtained by frequency commutated multipulse measurements. Simple explanations of the method are given as well as a precise definition. Two examples of application of the alternating codes are presented, showing the high

  8. The effect of Compton scattering on quantitative SPECT imaging

    International Nuclear Information System (INIS)

    Beck, J.W.; Jaszczak, R.J.; Starmer, C.F.

    1982-01-01

    A Monte Carlo code has been developed to simulate the response of a SPECT system. The accuracy of the code has been verified and has been used in this research to study and illustrate the effects of Compton scatter on quantitative SPECT measurements. The effects of Compton scattered radiation on gamma camera response have been discussed by several authors, and will be extended to rotating gamma camera SPECT systems. The unique feature of this research includes the pictorial illustration of the Compton scattered and the unscattered components of the photopeak data on SPECT imaging by simulating phantom studies with and without Compton scatter

  9. Scattering features for lung cancer detection in fibered confocal fluorescence microscopy images.

    Science.gov (United States)

    Rakotomamonjy, Alain; Petitjean, Caroline; Salaün, Mathieu; Thiberville, Luc

    2014-06-01

    To assess the feasibility of lung cancer diagnosis using fibered confocal fluorescence microscopy (FCFM) imaging technique and scattering features for pattern recognition. FCFM imaging technique is a new medical imaging technique for which interest has yet to be established for diagnosis. This paper addresses the problem of lung cancer detection using FCFM images and, as a first contribution, assesses the feasibility of computer-aided diagnosis through these images. Towards this aim, we have built a pattern recognition scheme which involves a feature extraction stage and a classification stage. The second contribution relies on the features used for discrimination. Indeed, we have employed the so-called scattering transform for extracting discriminative features, which are robust to small deformations in the images. We have also compared and combined these features with classical yet powerful features like local binary patterns (LBP) and their variants denoted as local quinary patterns (LQP). We show that scattering features yielded to better recognition performances than classical features like LBP and their LQP variants for the FCFM image classification problems. Another finding is that LBP-based and scattering-based features provide complementary discriminative information and, in some situations, we empirically establish that performance can be improved when jointly using LBP, LQP and scattering features. In this work we analyze the joint capability of FCFM images and scattering features for lung cancer diagnosis. The proposed method achieves a good recognition rate for such a diagnosis problem. It also performs well when used in conjunction with other features for other classical medical imaging classification problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Influence of X-ray scatter radiation on image quality in Digital Breast Tomosynthesis (DBT)

    International Nuclear Information System (INIS)

    Rodrigues, M.J.; Di Maria, S.; Baptista, M.; Belchior, A.; Afonso, J.; Venâncio, J.; Vaz, P.

    2017-01-01

    Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging technique that was developed to solve the principal limitation of mammography, namely the overlapping tissue effect. This issue in standard mammography (SM) leads to two main problems: low sensitivity (difficulty to detect lesions) and low specificity (non-negligible percentage of false positives). Although DBT is now being introduced in clinical practice the features of this technique have not yet been fully and accurately assessed. Consequently, optimization studies in terms of choosing the most suitable parameters which maximize image quality according to the known limits of breast dosimetry are currently performing. In DBT, scatter radiation can lead to a loss of contrast and to an increase of image noise by reducing the signal-to-difference-noise ratio (SDNR) of a lesion. Moreover the use of an anti-scatter grid is a concern due to the low exposure of the photon flux available per projection. For this reason the main aim of this study was to analyze the influence of the scatter radiation on image quality and the dose delivered to the breast. In particular a detailed analysis of the scatter radiation on the optimal energy that maximizes the SDNR was performed for different monochromatic energies and voltages. To reach this objective the PenEasy Monte Carlo (MC) simulation tool imbedded in the general-purpose main program PENELOPE, was used. After a successful validation of the MC model with measurements, 2D projection images of primary, coherent and incoherent photons were obtained. For that, a homogeneous breast phantom (2, 4, 6, 8 cm) with 25%, 50% and 75% glandular compositions was used, including a 5 mm thick tumor. The images were generated for each monochromatic X-ray energies in the range from 16 keV to 32 keV. For each angular projection considered (25 angular projections covering an arc of 50°) the scatter-to-primary ratio (SPR), the mean glandular dose (MGD) and the signal

  11. Simple smoothing technique to reduce data scattering in physics experiments

    International Nuclear Information System (INIS)

    Levesque, L

    2008-01-01

    This paper describes an experiment involving motorized motion and a method to reduce data scattering from data acquisition. Jitter or minute instrumental vibrations add noise to a detected signal, which often renders small modulations of a graph very difficult to interpret. Here we describe a method to reduce scattering amongst data points from the signal measured by a photodetector that is motorized and scanned in a direction parallel to the plane of a rectangular slit during a computer-controlled diffraction experiment. The smoothing technique is investigated using subsets of many data points from the data acquisition. A limit for the number of data points in a subset is determined from the results based on the trend of the small measured signal to avoid severe changes in the shape of the signal from the averaging procedure. This simple smoothing method can be achieved using any type of spreadsheet software

  12. Compton scatter imaging: A promising modality for image guidance in lung stereotactic body radiation therapy.

    Science.gov (United States)

    Redler, Gage; Jones, Kevin C; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C H

    2018-03-01

    Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. © 2018 American Association of Physicists in Medicine.

  13. Investigation of damage in KDP using scattering techniques

    International Nuclear Information System (INIS)

    Woods, B.; Runkel, M.; Yan, M.; Staggs, M.; Zaitseva, N.; Kozlowski, M.; De Yoreo, J.

    1997-01-01

    Interest in producing high damage threshold KH 2 PO 4 (KDP) and (D x H 1-x ) 2 PO 4 (DKDP)(also called KD*P) for frequency conversion and optical switching applications is driven by the requirements of the National Ignition Facility (NIF). Presently only the best crystals meet the NIF system requirements at the third harmonic (351 nm) and only after a laser conditioning process. Neither the mechanism for damage in bulk KDP nor the mechanism for conditioning is understood. As part of a development effort to increase the damage thresholds of KDP and DKDP, we have been developing techniques to pinpoint the locations where damage will initiate in the bulk material. After we find these locations we will use other measurement techniques to determine how these locations differ from the other surrounding material and why they cause damage. This will allow crystal growers to focus their efforts to improve damage thresholds. Historically damage thresholds have increased it is believed as a consequence of increased purity of the growth solution and through the use of constant filtration during the growth process. As a result we believe that damage is caused by defects in the crystals and have conducted a series of experiments using light scatter to locate these defects and to determine when and where damage occurs. In this paper we present results which show a low correlation between light scatter from bulk defects in KDP and the initiation sites for damage. We have also studied the effects of thermal conditioning on light scatter, strain induced birefringence and damage threshold. We have seen evidence that regions of high strain also exhibit lower damage threshold than the surrounding lower strain material. When thermally conditioned, these crystals show a decrease in some of the strong linear scattering features and a decrease in the strain birefringence while the damage threshold in these regions increased to that of the surrounding bulk material

  14. Imaging XPS - a new technique

    International Nuclear Information System (INIS)

    Gurker, N.; Ebel, M.F.; Ebel, H.

    1983-01-01

    XPS imaging promises to be a powerful analytic tool because it enables specific information on both elements and bonding to be recorded on a two-dimensional distribution map. As far as the authors are aware, the only scanning XPS method to date which has been found to be practical is essentially a scanned-particle-beam method, like scanning AES, and it is only applicable to thin film specimens. This paper provides the basic ideas of a new imaging XPS technique based on a quite different concept. It will be applicable to any kind of specimen that can be analysed in a conventional XPS system. It makes use of the dispersion properties of a spherical condenser-type spectrometer and applies a two-dimensional electron detection device for decoding the energy and emission position of an analysed photoelectron. Experimental arrangement and theory of operation are presented. (author)

  15. Modelling of classical ghost images obtained using scattered light

    International Nuclear Information System (INIS)

    Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A

    2007-01-01

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres

  16. Modelling of classical ghost images obtained using scattered light

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A [School of Physics, University of Melbourne, Victoria, 3010 (Australia)

    2007-08-15

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres.

  17. Efficient scatter model for simulation of ultrasound images from computed tomography data

    Science.gov (United States)

    D'Amato, J. P.; Lo Vercio, L.; Rubi, P.; Fernandez Vera, E.; Barbuzza, R.; Del Fresno, M.; Larrabide, I.

    2015-12-01

    Background and motivation: Real-time ultrasound simulation refers to the process of computationally creating fully synthetic ultrasound images instantly. Due to the high value of specialized low cost training for healthcare professionals, there is a growing interest in the use of this technology and the development of high fidelity systems that simulate the acquisitions of echographic images. The objective is to create an efficient and reproducible simulator that can run either on notebooks or desktops using low cost devices. Materials and methods: We present an interactive ultrasound simulator based on CT data. This simulator is based on ray-casting and provides real-time interaction capabilities. The simulation of scattering that is coherent with the transducer position in real time is also introduced. Such noise is produced using a simplified model of multiplicative noise and convolution with point spread functions (PSF) tailored for this purpose. Results: The computational efficiency of scattering maps generation was revised with an improved performance. This allowed a more efficient simulation of coherent scattering in the synthetic echographic images while providing highly realistic result. We describe some quality and performance metrics to validate these results, where a performance of up to 55fps was achieved. Conclusion: The proposed technique for real-time scattering modeling provides realistic yet computationally efficient scatter distributions. The error between the original image and the simulated scattering image was compared for the proposed method and the state-of-the-art, showing negligible differences in its distribution.

  18. Studies of molecular dynamics with neutron scattering techniques. Part of a coordinated programme on neutron scattering techniques

    International Nuclear Information System (INIS)

    Vinhas, L.A.

    1980-05-01

    Molecular dynamics was studied in samples of tert-butanol, cyclohexanol and methanol, using neutron inelastic and quasi-elastic techniques. The frequency spectra of cyclohexanol in crystalline phase were interpreted by assigning individual energy peaks to hindered rotation of molecules, lattice vibration, hydrogen bond stretching and ring bending modes. Neutron quasi-elastic scattering measurements permitted the testing of models for molecular diffusion as a function of temperature. The interpretation of neutron incoherent inelastic scattering on methanol indicated the different modes of molecular dynamics in this material; individual inelastic peaks in the spectra could be assigned to vibrations of crystalline lattice, stretching of hydrogen bond and vibrational and torsional modes of CH 3 OH molecule. The results of the experimental work on tertbutanol indicate two distinct modes of motion in this material: individual molecular librations are superposed to a cooperative rotation diffusion which occurs both in solid and in liquid state

  19. Optics for Advanced Neutron Imaging and Scattering

    International Nuclear Information System (INIS)

    Moncton, David E.; Khaykovich, Boris

    2016-01-01

    During the report period, we continued the work as outlined in the original proposal. We have analyzed potential optical designs of Wolter mirrors for the neutron-imaging instrument VENUS, which is under construction at SNS. In parallel, we have conducted the initial polarized imaging experiment at Helmholtz Zentrum, Berlin, one of very few of currently available polarized-imaging facilities worldwide.

  20. Direct time-domain techniques for transient radiation and scattering

    International Nuclear Information System (INIS)

    Miller, E.K.; Landt, J.A.

    1976-01-01

    A tutorial introduction to transient electromagnetics, focusing on direct time-domain techniques, is presented. Physical, mathematical, numerical, and experimental aspects of time-domain methods, with emphasis on wire objects excited as antennas or scatters are examined. Numerous computed examples illustrate the characteristics of direct time-domain procedures, especially where they may offer advantages over procedures in the more familiar frequency domain. These advantages include greater solution efficiency for many types of problems, the ability to handle nonlinearities, improved physical insight and interpretability, availability of wide-band information from a single calculation, and the possibility of isolating interactions among various parts of an object using time-range gating

  1. Electromagnetic scattering using the iterative multi-region technique

    CERN Document Server

    Al Sharkawy, Mohamed H

    2007-01-01

    In this work, an iterative approach using the finite difference frequency domain method is presented to solve the problem of scattering from large-scale electromagnetic structures. The idea of the proposed iterative approach is to divide one computational domain into smaller subregions and solve each subregion separately. Then the subregion solutions are combined iteratively to obtain a solution for the complete domain. As a result, a considerable reduction in the computation time and memory is achieved. This procedure is referred to as the iterative multiregion (IMR) technique.Different enhan

  2. Imaging back scattered and near back scattered light in ignition scale plasmas

    International Nuclear Information System (INIS)

    Kirkwood, R.K.; Back, C.A.; Glenzer, S.H.; Moody, J.D.

    1996-01-01

    Diagnostics have been developed and fielded at the Nova laser facility that image scattered light in the vicinity of the final laser focusing lens. The absolute calibration of optical components exposed to the target debris have been achieved by a combination of routine in situ calibration and maintenance. The scattering observed from plasmas relevant to ignition experiments indicates that light scattered just outside the lens can be larger than that collected by the lens, and is a significant factor in the energy balance when the f number is high

  3. Ultrasound-mediated Optical Imaging and Focusing in Scattering Media

    Science.gov (United States)

    Suzuki, Yuta

    Because of its non-ionizing and molecular sensing nature, light has been an attractive tool in biomedicine. Scanning an optical focus allows not only high-resolution imaging but also manipulation and therapy. However, due to multiple photon scattering events, conventional optical focusing using an ordinary lens is limited to shallow depths of one transport mean free path (lt'), which corresponds to approximately 1 mm in human tissue. To overcome this limitation, ultrasonic modulation (or encoding ) of diffuse light inside scattering media has enabled us to develop both deep-tissue optical imaging and focusing techniques, namely, ultrasound-modulated optical tomography (UOT) and time-reversed ultrasonically encoded (TRUE) optical focusing. While UOT measures the power of the encoded light to obtain an image, TRUE focusing generates a time-reversed (or phase-conjugated) copy of the encoded light, using a phase-conjugate mirror to focus light inside scattering media beyond 1 lt'. However, despite extensive progress in both UOT and TRUE focusing, the low signal-to-noise ratio in encoded-light detection remains a challenge to meeting both the speed and depth requirements for in vivo applications. This dissertation describes technological advancements of both UOT and TRUE focusing, in terms of their signal detection sensitivities, operational depths, and operational speeds. The first part of this dissertation describes sensitivity improvements of encoded-light detection in UOT, achieved by using a large area (˜5 cm x 5 cm) photorefractive polymer. The photorefractive polymer allowed us to improve the detection etendue by more than 10 times that of previous detection schemes. It has enabled us to resolve absorbing objects embedded inside diffused media thicker than 80 lt', using moderate light power and short ultrasound pulses. The second part of this dissertation describes energy enhancement and fluorescent excitation using TRUE focusing in turbid media, using

  4. Imaging techniques for myocardial inflammation

    International Nuclear Information System (INIS)

    O'Connell, J.B.; Henkin, R.E.; Robinson, J.A.

    1986-01-01

    Dilated cardiomyopathy (DC) represents a heterogeneous group of disorders which results in morbidity and mortality in young individuals. Recent evidence suggests that a subset of these patients have histologic evidence of myocarditis which is potentially treatable with immunosuppression. The identification of myocardial inflammation may therefore lead to development of therapeutic regimens designed to treat the cause rather than the effect of the myocardial disease. Ultimately, this may result in improvement in the abysmal prognosis of DC. The currently accepted technique for identification of active myocardial inflammation is endomyocardial biopsy. This technique is not perfect, however, since pathologic standards for the diagnosis of myocarditis have not been established. Furthermore, focal inflammation may give rise to sampling error. The inflammation-avid radioisotope gallium-67 citrate has been used as an adjunct to biopsy improving the yield of myocarditis from 7 percent to 36 percent. Serial imaging correlates well to biopsy results. Future studies are designed to study the applicability of lymphocyte labelling techniques to myocardial inflammatory disease

  5. Mitigating the effect of optical back-scatter in multispectral underwater imaging

    International Nuclear Information System (INIS)

    Mortazavi, Halleh; Oakley, John P; Barkat, Braham

    2013-01-01

    Multispectral imaging is a very useful technique for extracting information from the underwater world. However, optical back-scatter changes the intensity value in each spectral band and this distorts the estimated spectrum. In this work, a filter is used to detect the level of optical back-scatter in each spectral band from a set of multispectral images. Extraction of underwater object spectra can be done by subtracting the estimated level of optical back-scatter and scaling the remainder in each spectral band from the captured image in the corresponding band. An experiment has been designed to show the performance of the proposed filter for correcting the set of multispectral underwater images and recovering the pixel spectra. The multispectral images are captured by a B/W CCD digital camera with a fast tunable liquid-crystal filter in 33 narrow spectral bands in clear and different levels of turbid water. Reference estimates for the optical back-scatter spectra are found by comparing a clear and a degraded set of multispectral images. The accuracy and consistency of the proposed method, the extended Oakley–Bu cost function, is examined by comparing the estimated values with the reference level of an optical back-scatter spectrum. The same comparison is made for the simple estimation approach. The results show that the simple method is not reliable and fail to estimate the level of optical back-scatter spectrum accurately. The results from processing experimental images in turbid water show that the effect of optical back-scatter can be mitigated in the image of each spectral band and, as a result, the spectra of the object can be recovered. However, for a very high level of turbid water the recovery is limited because of the effect of extinction. (paper)

  6. Scattered image artifacts from cone beam computed tomography and its clinical potential in bone mineral density estimation.

    Science.gov (United States)

    Ko, Hoon; Jeong, Kwanmoon; Lee, Chang-Hoon; Jun, Hong Young; Jeong, Changwon; Lee, Myeung Su; Nam, Yunyoung; Yoon, Kwon-Ha; Lee, Jinseok

    2016-01-01

    Image artifacts affect the quality of medical images and may obscure anatomic structure and pathology. Numerous methods for suppression and correction of scattered image artifacts have been suggested in the past three decades. In this paper, we assessed the feasibility of use of information on scattered artifacts for estimation of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or quantitative computed tomographic imaging (QCT). To investigate the relationship between scattered image artifacts and BMD, we first used a forearm phantom and cone-beam computed tomography. In the phantom, we considered two regions of interest-bone-equivalent solid material containing 50 mg HA per cm(-3) and water-to represent low- and high-density trabecular bone, respectively. We compared the scattered image artifacts in the high-density material with those in the low-density material. The technique was then applied to osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation. The high-density material produced a greater number of scattered image artifacts than the low-density material. Moreover, the radius and ulna of healthy subjects produced a greater number of scattered image artifacts than those from osteoporosis patients. Although other parameters, such as bone thickness and X-ray incidence, should be considered, our technique facilitated BMD estimation directly without DXA or QCT. We believe that BMD estimation based on assessment of scattered image artifacts may benefit the prevention, early treatment and management of osteoporosis.

  7. The generalized multipole technique for light scattering recent developments

    CERN Document Server

    Eremin, Yuri

    2018-01-01

    This book presents the Generalized Multipole Technique as a fast and powerful theoretical and computation tool to simulate light scattering by nonspherical particles. It also demonstrates the considerable potential of the method. In recent years, the concept has been applied in new fields, such as simulation of electron energy loss spectroscopy and has been used to extend other methods, like the null-field method, making it more widely applicable. The authors discuss particular implementations of the GMT methods, such as the Discrete Sources Method (DSM), Multiple Multipole Program (MMP), the Method of Auxiliary Sources (MAS), the Filamentary Current Method (FCM), the Method of Fictitious Sources (MFS) and the Null-Field Method with Discrete Sources (NFM-DS). The Generalized Multipole Technique is a surface-based method to find the solution of a boundary-value problem for a given differential equation by expanding the fields in terms of fundamental or other singular solutions of this equation. The amplitudes ...

  8. A novel data processing technique for image reconstruction of penumbral imaging

    Science.gov (United States)

    Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin

    2011-06-01

    CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.

  9. A parallelizable compression scheme for Monte Carlo scatter system matrices in PET image reconstruction

    International Nuclear Information System (INIS)

    Rehfeld, Niklas; Alber, Markus

    2007-01-01

    Scatter correction techniques in iterative positron emission tomography (PET) reconstruction increasingly utilize Monte Carlo (MC) simulations which are very well suited to model scatter in the inhomogeneous patient. Due to memory constraints the results of these simulations are not stored in the system matrix, but added or subtracted as a constant term or recalculated in the projector at each iteration. This implies that scatter is not considered in the back-projector. The presented scheme provides a method to store the simulated Monte Carlo scatter in a compressed scatter system matrix. The compression is based on parametrization and B-spline approximation and allows the formation of the scatter matrix based on low statistics simulations. The compression as well as the retrieval of the matrix elements are parallelizable. It is shown that the proposed compression scheme provides sufficient compression so that the storage in memory of a scatter system matrix for a 3D scanner is feasible. Scatter matrices of two different 2D scanner geometries were compressed and used for reconstruction as a proof of concept. Compression ratios of 0.1% could be achieved and scatter induced artifacts in the images were successfully reduced by using the compressed matrices in the reconstruction algorithm

  10. Tooling Techniques Enhance Medical Imaging

    Science.gov (United States)

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.

  11. Lensless ghost imaging through the strongly scattering medium

    International Nuclear Information System (INIS)

    Yang Zhe; Zhao Xueliang; Li Junlin; Zhao Lianjie; Qin Wei

    2016-01-01

    Lensless ghost imaging has attracted much interest in recent years due to its profound physics and potential applications. In this paper we report studies of the robust properties of the lensless ghost imaging system with a pseudo-thermal light source in a strongly scattering medium. The effects of the positions of the strong medium on the ghost imaging are investigated. In the lensless ghost imaging system, a pseudo-thermal light is split into two correlated beams by a beam splitter. One beam goes to a charge-coupled detector camera, labeled as CCD2. The other beam goes to an object and then is collected in another charge-coupled detector camera, labeled as CCD1, which serves as a bucket detector. When the strong medium, a pane of ground glass disk, is placed between the object and CCD1, the bucket detector, the quality of ghost imaging is barely affected and a good image could still be obtained. The quality of the ghost imaging can also be maintained, even when the ground glass is rotating, which is the strongest scattering medium so far. However, when the strongly scattering medium is present in the optical path from the light source to CCD2 or the object, the lensless ghost imaging system hardly retrieves the image of the object. A theoretical analysis in terms of the second-order correlation function is also provided. (paper)

  12. Automatically identifying scatter in fluorescence data using robust techniques

    DEFF Research Database (Denmark)

    Engelen, S.; Frosch, Stina; Hubert, M.

    2007-01-01

    as input data for three different PARAFAC methods. Firstly inserting missing values in the scatter regions are tested, secondly an interpolation of the scatter regions is performed and finally the scatter regions are down-weighted. These results show that the PARAFAC method to choose after scatter...

  13. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    Science.gov (United States)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future

  14. Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model

    Science.gov (United States)

    Hu, Shuai; Gao, Taichang; Liu, Lei; Li, Hao; Chen, Ming; Yang, Bo

    2018-04-01

    PSTD (Pseudo Spectral Time Domain) is an excellent model for the light scattering simulation of nonspherical aerosol particles. However, due to the particularity of its discretization form of the Maxwell's equations, the traditional Total Field/Scattering Field (TF/SF) technique for FDTD (Finite Differential Time Domain) is not applicable to PSTD, and the time-consuming pure scattering field technique is mainly applied to introduce the incident wave. To this end, the weighted TF/SF technique proposed by X. Gao is generalized and applied to the 3D-PSTD scattering model. Using this technique, the incident light can be effectively introduced by modifying the electromagnetic components in an inserted connecting region between the total field and the scattering field region with incident terms, where the incident terms are obtained by weighting the incident field by a window function. To optimally determine the thickness of connection region and the window function type for PSTD calculations, their influence on the modeling accuracy is firstly analyzed. To further verify the effectiveness and advantages of the weighted TF/SF technique, the improved PSTD model is validated against the PSTD model equipped with pure scattering field technique in both calculation accuracy and efficiency. The results show that, the performance of PSTD seems to be not sensitive to variation of window functions. The number of the connection layer required decreases with the increasing of spatial resolution, where for spatial resolution of 24 grids per wavelength, a 6-layer region is thick enough. The scattering phase matrices and integral scattering parameters obtained by the improved PSTD show an excellent consistency with those well-tested models for spherical and nonspherical particles, illustrating that the weighted TF/SF technique can introduce the incident precisely. The weighted TF/SF technique shows higher computational efficiency than pure scattering technique.

  15. Coherent Raman scattering: Applications in imaging and sensing

    Science.gov (United States)

    Cui, Meng

    In this thesis, I discuss the theory, implementation and applications of coherent Raman scattering to imaging and sensing. A time domain interferometric method has been developed to collect high resolution shot-noise-limited Raman spectra over the Raman fingerprint regime and completely remove the electronic background signal in coherent Raman scattering. Compared with other existing coherent Raman microscopy methods, this time domain approach is proved to be simpler and more robust in rejecting background signal. We apply this method to image polymers and biological samples and demonstrate that the same setup can be used to collect two photon fluorescence and self phase modulation signals. A signal to noise ratio analysis is performed to show that this time domain method has a comparable signal to noise ratio to spectral domain methods, which we confirm experimentally. The coherent Raman method is also compared with spontaneous Raman scattering. The conditions under which coherent methods provide signal enhancement are discussed and experiments are performed to compare coherent Raman scattering with spontaneous Raman scattering under typical biological imaging conditions. A critical power, above which coherent Raman scattering is more sensitive than spontaneous Raman scattering, is experimentally determined to be ˜1mW in samples of high molecule concentration with a 75MHz laser system. This finding is contrary to claims that coherent methods provide many orders of magnitude enhancement under comparable conditions. In addition to the far field applications, I also discuss the combination of our time domain coherent Raman method with near field enhancement to explore the possibility of sensing and near field imaging. We report the first direct time-resolved coherent Raman measurement performed on a nanostructured substrate for molecule sensing. The preliminary results demonstrate that sub 20 fs pulses can be used to obtain coherent Raman spectra from a small number

  16. Neutron scattering techniques in the examination of recycled aggregate concrete

    International Nuclear Information System (INIS)

    Krezel, A.; Alabaster, P.; Bakshi, E.; McManus, K.

    1999-01-01

    Full text: Researchers at Swinburne University of Technology (SUT) have undertaken a research project aiming initially at better understanding the effects of any chemical impurities in Recycled Concrete Aggregate (RCA) on the microstructure development of Recycled Aggregate Concrete (RAC). Furthermore, a porosity of RCA and RAC and its effect on the acoustic performance and mechanical properties is being investigated. A number of conventional tests have been employed to examine the porosity of the aggregate and concrete made from RCA ranging from Volume of Permeable Voids test, through nitrogen adsorption to scanning electron microscopy. These tests are performed at SUT to characterise pores structure including pore size and volume as well as their surface area. The preparation of samples differs for the various tests, and this is a main reason contributing to inconsistencies in the results from these tests. None-the-less the results indicate strong positive correlation of inherent and purposely introduced porosity in RAC to its sound absorption capacities. Some inconsistency in the results is also due to the complexity of concrete itself compounded by the use of recycled material. However, the research has been granted a Grant from Australian Institute of Nuclear Science and Engineering (AINSE) which allows to conduct RAC examination using Small Angle Neutron Scattering (SANS). This neutron scattering technique characterises pore structure in a non-destructive manner. The results from this method should augment these obtained from conventional methods

  17. Comparative evaluation of scatter correction techniques in 3D positron emission tomography

    CERN Document Server

    Zaidi, H

    2000-01-01

    Much research and development has been concentrated on the scatter compensation required for quantitative 3D PET. Increasingly sophisticated scatter correction procedures are under investigation, particularly those based on accurate scatter models, and iterative reconstruction-based scatter compensation approaches. The main difference among the correction methods is the way in which the scatter component in the selected energy window is estimated. Monte Carlo methods give further insight and might in themselves offer a possible correction procedure. Methods: Five scatter correction methods are compared in this paper where applicable. The dual-energy window (DEW) technique, the convolution-subtraction (CVS) method, two variants of the Monte Carlo-based scatter correction technique (MCBSC1 and MCBSC2) and our newly developed statistical reconstruction-based scatter correction (SRBSC) method. These scatter correction techniques are evaluated using Monte Carlo simulation studies, experimental phantom measurements...

  18. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules.

    Science.gov (United States)

    Hong, Senlian; Chen, Tao; Zhu, Yuntao; Li, Ang; Huang, Yanyi; Chen, Xing

    2014-06-02

    Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman-silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label-free microscopies. The bioorthogonal Raman imaging of various biomolecules tagged with an alkyne by a state-of-the-art Raman imaging technique, stimulated Raman scattering (SRS) microscopy, is reported. This imaging method affords non-invasiveness, high sensitivity, and molecular specificity and therefore should find broad applications in live-cell imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Imaging Techniques in Endodontics: An Overview

    Science.gov (United States)

    Deepak, B. S.; Subash, T. S.; Narmatha, V. J.; Anamika, T.; Snehil, T. K.; Nandini, D. B.

    2012-01-01

    This review provides an overview of the relevance of imaging techniques such as, computed tomography, cone beam computed tomography, and ultrasound, to endodontic practice. Many limitations of the conventional radiographic techniques have been overcome by the newer methods. Advantages and disadvantages of various imaging techniques in endodontic practice are also discussed. PMID:22530184

  20. Review of the particle scattering theory in rocket technique application

    International Nuclear Information System (INIS)

    Wang Fuheng; Ma Fang

    1990-01-01

    Three calculation methods of scattering cross section have been discussed. Particle scattering theory and its concrete calculation, existing problems and further development have been also studied. The developement of theoretical aspects of particles scattering in rocket exhaust plume was concerned in this paper

  1. Technique for image interpolation using polynomial transforms

    NARCIS (Netherlands)

    Escalante Ramírez, B.; Martens, J.B.; Haskell, G.G.; Hang, H.M.

    1993-01-01

    We present a new technique for image interpolation based on polynomial transforms. This is an image representation model that analyzes an image by locally expanding it into a weighted sum of orthogonal polynomials. In the discrete case, the image segment within every window of analysis is

  2. Scatter kernel estimation with an edge-spread function method for cone-beam computed tomography imaging

    International Nuclear Information System (INIS)

    Li Heng; Mohan, Radhe; Zhu, X Ronald

    2008-01-01

    The clinical applications of kilovoltage x-ray cone-beam computed tomography (CBCT) have been compromised by the limited quality of CBCT images, which typically is due to a substantial scatter component in the projection data. In this paper, we describe an experimental method of deriving the scatter kernel of a CBCT imaging system. The estimated scatter kernel can be used to remove the scatter component from the CBCT projection images, thus improving the quality of the reconstructed image. The scattered radiation was approximated as depth-dependent, pencil-beam kernels, which were derived using an edge-spread function (ESF) method. The ESF geometry was achieved with a half-beam block created by a 3 mm thick lead sheet placed on a stack of slab solid-water phantoms. Measurements for ten water-equivalent thicknesses (WET) ranging from 0 cm to 41 cm were taken with (half-blocked) and without (unblocked) the lead sheet, and corresponding pencil-beam scatter kernels or point-spread functions (PSFs) were then derived without assuming any empirical trial function. The derived scatter kernels were verified with phantom studies. Scatter correction was then incorporated into the reconstruction process to improve image quality. For a 32 cm diameter cylinder phantom, the flatness of the reconstructed image was improved from 22% to 5%. When the method was applied to CBCT images for patients undergoing image-guided therapy of the pelvis and lung, the variation in selected regions of interest (ROIs) was reduced from >300 HU to <100 HU. We conclude that the scatter reduction technique utilizing the scatter kernel effectively suppresses the artifact caused by scatter in CBCT.

  3. Coherent scattering X-ray imaging at the Brazilian National Synchrotron Laboratory: Preliminary breast images

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.R.F. [Nuclear Instrumentation Laboratory-COPPE/UFRJ, P.O. Box 68509, Rio de Janeiro 21945-970 (Brazil); Barroso, R.C. [Physics Institute-University of Rio de Janeiro State, Rio de Janeiro 20559-900 (Brazil)]. E-mail: cely@uerij.br; Oliveira, L.F. de [Physics Institute-University of Rio de Janeiro State, Rio de Janeiro 20559-900 (Brazil); Lopes, R.T. [Nuclear Instrumentation Laboratory-COPPE/UFRJ, P.O. Box 68509, Rio de Janeiro 21945-970 (Brazil)

    2005-08-11

    The angular distribution of coherent scatter (low-momentum transfer) carries information about atomic structures, resulting in a pattern, which can be used to reconstruct a series of images. Coherent-scatter computed tomography is a novel imaging method developed to produce cross-sectional images based on the X-ray diffraction properties of an object. A different approach to coherent X-ray imaging is possible by fixing the detector at a given scatter angle {theta}, which produces an interference peak and then, carried out a tomography in the standard way. The cross-sectional images obtained allow determining the spatial dependence of coherent scatter cross-section of selected volume elements of inhomogeneous, extend objects for a single predetermined value of {theta} of interest, leading to a simplification of the data processing and the complexity of the apparatus. This work presents preliminary coherent scattering images carried out at the X-ray Diffraction beamline of the National Synchrotron Light Laboratory in Campinas, Brazil. The specimens were excised human breast tissues fixed in formaline. No frozen procedure was used in order to minimize preferred orientation during sample preparation. About 1mm thick slices cut from each of the fresh samples were mounted in frames without windows and placed on a translator to allow acquisition of scattering spectra. Cylinders containing healthy and cancerous (infiltrating ductal carcinoma) breast tissues were imagined at the characteristic angle for adipose tissue. Transmission and coherent scatter images are compared.

  4. Scattering calculation and image reconstruction using elevation-focused beams.

    Science.gov (United States)

    Duncan, David P; Astheimer, Jeffrey P; Waag, Robert C

    2009-05-01

    Pressure scattered by cylindrical and spherical objects with elevation-focused illumination and reception has been analytically calculated, and corresponding cross sections have been reconstructed with a two-dimensional algorithm. Elevation focusing was used to elucidate constraints on quantitative imaging of three-dimensional objects with two-dimensional algorithms. Focused illumination and reception are represented by angular spectra of plane waves that were efficiently computed using a Fourier interpolation method to maintain the same angles for all temporal frequencies. Reconstructions were formed using an eigenfunction method with multiple frequencies, phase compensation, and iteration. The results show that the scattered pressure reduces to a two-dimensional expression, and two-dimensional algorithms are applicable when the region of a three-dimensional object within an elevation-focused beam is approximately constant in elevation. The results also show that energy scattered out of the reception aperture by objects contained within the focused beam can result in the reconstructed values of attenuation slope being greater than true values at the boundary of the object. Reconstructed sound speed images, however, appear to be relatively unaffected by the loss in scattered energy. The broad conclusion that can be drawn from these results is that two-dimensional reconstructions require compensation to account for uncaptured three-dimensional scattering.

  5. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J [Rush University Medical Center, Chicago, IL (United States)

    2016-06-15

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated

  6. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    International Nuclear Information System (INIS)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J

    2016-01-01

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated

  7. Microwave imaging for conducting scatterers by hybrid particle swarm optimization with simulated annealing

    International Nuclear Information System (INIS)

    Mhamdi, B.; Grayaa, K.; Aguili, T.

    2011-01-01

    In this paper, a microwave imaging technique for reconstructing the shape of two-dimensional perfectly conducting scatterers by means of a stochastic optimization approach is investigated. Based on the boundary condition and the measured scattered field derived by transverse magnetic illuminations, a set of nonlinear integral equations is obtained and the imaging problem is reformulated in to an optimization problem. A hybrid approximation algorithm, called PSO-SA, is developed in this work to solve the scattering inverse problem. In the hybrid algorithm, particle swarm optimization (PSO) combines global search and local search for finding the optimal results assignment with reasonable time and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The hybrid approach elegantly combines the exploration ability of PSO with the exploitation ability of SA. Reconstruction results are compared with exact shapes of some conducting cylinders; and good agreements with the original shapes are observed.

  8. Proton dose calculation on scatter-corrected CBCT image: Feasibility study for adaptive proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang-Kyun, E-mail: ykpark@mgh.harvard.edu; Sharp, Gregory C.; Phillips, Justin; Winey, Brian A. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2015-08-15

    Purpose: To demonstrate the feasibility of proton dose calculation on scatter-corrected cone-beam computed tomographic (CBCT) images for the purpose of adaptive proton therapy. Methods: CBCT projection images were acquired from anthropomorphic phantoms and a prostate patient using an on-board imaging system of an Elekta infinity linear accelerator. Two previously introduced techniques were used to correct the scattered x-rays in the raw projection images: uniform scatter correction (CBCT{sub us}) and a priori CT-based scatter correction (CBCT{sub ap}). CBCT images were reconstructed using a standard FDK algorithm and GPU-based reconstruction toolkit. Soft tissue ROI-based HU shifting was used to improve HU accuracy of the uncorrected CBCT images and CBCT{sub us}, while no HU change was applied to the CBCT{sub ap}. The degree of equivalence of the corrected CBCT images with respect to the reference CT image (CT{sub ref}) was evaluated by using angular profiles of water equivalent path length (WEPL) and passively scattered proton treatment plans. The CBCT{sub ap} was further evaluated in more realistic scenarios such as rectal filling and weight loss to assess the effect of mismatched prior information on the corrected images. Results: The uncorrected CBCT and CBCT{sub us} images demonstrated substantial WEPL discrepancies (7.3 ± 5.3 mm and 11.1 ± 6.6 mm, respectively) with respect to the CT{sub ref}, while the CBCT{sub ap} images showed substantially reduced WEPL errors (2.4 ± 2.0 mm). Similarly, the CBCT{sub ap}-based treatment plans demonstrated a high pass rate (96.0% ± 2.5% in 2 mm/2% criteria) in a 3D gamma analysis. Conclusions: A priori CT-based scatter correction technique was shown to be promising for adaptive proton therapy, as it achieved equivalent proton dose distributions and water equivalent path lengths compared to those of a reference CT in a selection of anthropomorphic phantoms.

  9. Optimisation of imaging technique used in direct digital radiography

    International Nuclear Information System (INIS)

    Roberts, J A; Evans, S C; Rees, M

    2006-01-01

    The purpose of the study was to optimise the technique employed for AP shoulder and lateral cervical spine examinations following an investigation into image quality, based on clinical assessment, and effective dose, calculated from patient entrance surface dose measurements. A study was therefore conducted in an attempt to determine whether the increased radiation dose to the patient following the introduction of an anti-scatter grid was justified by the level of improvement in image quality. The study, involving 100 patients, was able to demonstrate that the increase in radiation dose to the patient when using an anti-scatter grid for AP shoulder examinations is not justified by the improved image quality. A poor level of inter-rater reliability between the consultants scoring the lateral cervical spine images prevented a firm conclusion from being reached. The fact that all images were of diagnostic quality, however, suggested that the use of the anti-scatter grid was unnecessary. Following completion of the project the hospital involved was informed of all findings

  10. Survey Of Lossless Image Coding Techniques

    Science.gov (United States)

    Melnychuck, Paul W.; Rabbani, Majid

    1989-04-01

    Many image transmission/storage applications requiring some form of data compression additionally require that the decoded image be an exact replica of the original. Lossless image coding algorithms meet this requirement by generating a decoded image that is numerically identical to the original. Several lossless coding techniques are modifications of well-known lossy schemes, whereas others are new. Traditional Markov-based models and newer arithmetic coding techniques are applied to predictive coding, bit plane processing, and lossy plus residual coding. Generally speaking, the compression ratio offered by these techniques are in the area of 1.6:1 to 3:1 for 8-bit pictorial images. Compression ratios for 12-bit radiological images approach 3:1, as these images have less detailed structure, and hence, their higher pel correlation leads to a greater removal of image redundancy.

  11. Fast estimation of first-order scattering in a medical x-ray computed tomography scanner using a ray-tracing technique.

    Science.gov (United States)

    Liu, Xin

    2014-01-01

    This study describes a deterministic method for simulating the first-order scattering in a medical computed tomography scanner. The method was developed based on a physics model of x-ray photon interactions with matter and a ray tracing technique. The results from simulated scattering were compared to the ones from an actual scattering measurement. Two phantoms with homogeneous and heterogeneous material distributions were used in the scattering simulation and measurement. It was found that the simulated scatter profile was in agreement with the measurement result, with an average difference of 25% or less. Finally, tomographic images with artifacts caused by scatter were corrected based on the simulated scatter profiles. The image quality improved significantly.

  12. Small-angle neutron scattering technique in liquid crystal studies

    International Nuclear Information System (INIS)

    Shahidan Radiman

    2005-01-01

    The following topics discussed: general principles of SAS (Small-angle Neutron Scattering), liquid crystals, nanoparticle templating on liquid crystals, examples of SAS results, prospects of this studies

  13. Imaging techniques for medical diagnosis

    International Nuclear Information System (INIS)

    Gudden, F.

    1982-01-01

    In the last few decades, science, engineering and medicine have combinded to improve the quality of our lives to a level previously unimagined. Within the framework of medical engineering - the field of activity of the Medical Engineering Group of Siemens AG - diagnostic image-generating systems have played an important role in effecting these changes and improvements. The importance of these systems to the success of the Group is clearly evident. Diagnostic imaging systems account for 65% of the sales achieved by this Group. In this article an overview is presented of the major innovations and the aims of developments in the field of imaging systems. (orig.)

  14. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Accardo, Angelo [Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163 (Italy); Di Fabrizio, Enzo [KAUST (King Abdullah University of Science and Technology), Jeddah (Saudi Arabia); BIONEM Lab at University Magna Graecia, Campus Salvatore Venuta, Viale Europa 88100, Germaneto-Catanzaro (Italy); Limongi, Tania [KAUST (King Abdullah University of Science and Technology), Jeddah (Saudi Arabia); Marinaro, Giovanni [Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163 (Italy); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France); Riekel, Christian, E-mail: riekel@esrf.fr [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France)

    2014-06-10

    A comprehensive review about the use of micro- and nanostructured superhydrophobic surfaces as a tool for in situ X-ray scattering investigations of soft matter and biological materials. Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data.

  15. Modern integral equation techniques for quantum reactive scattering theory

    International Nuclear Information System (INIS)

    Auerbach, S.M.

    1993-11-01

    Rigorous calculations of cross sections and rate constants for elementary gas phase chemical reactions are performed for comparison with experiment, to ensure that our picture of the chemical reaction is complete. We focus on the H/D+H 2 → H 2 /DH + H reaction, and use the time independent integral equation technique in quantum reactive scattering theory. We examine the sensitivity of H+H 2 state resolved integral cross sections σ v'j',vj (E) for the transitions (v = 0,j = 0) to (v' = 1,j' = 1,3), to the difference between the Liu-Siegbahn-Truhlar-Horowitz (LSTH) and double many body expansion (DMBE) ab initio potential energy surfaces (PES). This sensitivity analysis is performed to determine the origin of a large discrepancy between experimental cross sections with sharply peaked energy dependence and theoretical ones with smooth energy dependence. We find that the LSTH and DMBE PESs give virtually identical cross sections, which lends credence to the theoretical energy dependence

  16. Structural studies using X-ray absorption and scattering techniques

    International Nuclear Information System (INIS)

    Ericson, Agneta.

    1989-01-01

    The thesis presents extended X-ray absorption fine structure, EXAFS, and large angle X-ray scattering, LAXS, techniques; instrumentation, data collection and reduction, and applications. These techniques have been used to determine the structures of magnesium halides and organomagnesium halides in diethyl ether and tetrahydrofuran solution. The iodides were used for the LAXS measurements and Br K edge EXAFS data were collected for the corresponding bromides. Two different complexes are present in the diethyl ether solution of magnesium iodide; a polymeric chain-type structure where magnesium is tetrahedrally coordinated, as well as dimeric complex with octahedrally coordinated magnesium. Solvated MgI + is the dominating species in tetrahydrofuran solution. The organomagnesium halides are present in diethyl ether solution as both solvated monomeric and dimeric complexes. Magnesium coordinates a halide ion, an alkyl or aryl group and four solvent molecules octahedrally in the monomeric complex. In the dimeric complex magnesium is octahedrally coordinated by two bridging halide ions, an alkyl or aryl group and three solvent molecules. The distribution of monomeric and dimeric complexes in various solutions are given by a dimerisation constant, K dl . The results indicate that the Schlenk equilibrium is present in these solutions, however, in an extended form. In diethyl ether solution, where MgX 2 does not dissociate, no MgX 2 complex and thereby no Schlenk equilibrium has been observed. In tetrahydrofuran solution MgI 2 has dissociated into mainly MgI + and I - . This indicates that the concentration of MgI 2 is low and that the Schlenk equilibrium should be expanded even further to include the dissociation equilibrium of the magnesium halide. In the thesis Fe K edge EXAFS data collected for the semireduced form of protein A of methane monooxygenase from Methylococcus capsulatus, are also presented. (139 refs.)

  17. Listening to light scattering in turbid media: quantitative optical scattering imaging using photoacoustic measurements with one-wavelength illumination

    International Nuclear Information System (INIS)

    Yuan, Zhen; Li, Xiaoqi; Xi, Lei

    2014-01-01

    Biomedical photoacoustic tomography (PAT), as a potential imaging modality, can visualize tissue structure and function with high spatial resolution and excellent optical contrast. It is widely recognized that the ability of quantitatively imaging optical absorption and scattering coefficients from photoacoustic measurements is essential before PAT can become a powerful imaging modality. Existing quantitative PAT (qPAT), while successful, has been focused on recovering absorption coefficient only by assuming scattering coefficient a constant. An effective method for photoacoustically recovering optical scattering coefficient is presently not available. Here we propose and experimentally validate such a method for quantitative scattering coefficient imaging using photoacoustic data from one-wavelength illumination. The reconstruction method developed combines conventional PAT with the photon diffusion equation in a novel way to realize the recovery of scattering coefficient. We demonstrate the method using various objects having scattering contrast only or both absorption and scattering contrasts embedded in turbid media. The listening-to-light-scattering method described will be able to provide high resolution scattering imaging for various biomedical applications ranging from breast to brain imaging. (papers)

  18. Robust inverse scattering full waveform seismic tomography for imaging complex structure

    International Nuclear Information System (INIS)

    Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Wibowo, Satryo; Deny, Agus; Kurniadi, Rizal; Widowati, Sri; Mubarok, Syahrul; Susilowati; Kaswandhi

    2012-01-01

    Seismic tomography becomes important tool recently for imaging complex subsurface. It is well known that imaging complex rich fault zone is difficult. In this paper, The application of time domain inverse scattering wave tomography to image the complex fault zone would be shown on this paper, especially an efficient time domain inverse scattering tomography and their run in cluster parallel computer which has been developed. This algorithm is purely based on scattering theory through solving Lippmann Schwienger integral by using Born's approximation. In this paper, it is shown the robustness of this algorithm especially in avoiding the inversion trapped in local minimum to reach global minimum. A large data are solved by windowing and blocking technique of memory as well as computation. Parameter of windowing computation is based on shot gather's aperture. This windowing technique reduces memory as well as computation significantly. This parallel algorithm is done by means cluster system of 120 processors from 20 nodes of AMD Phenom II. Benchmarking of this algorithm is done by means Marmoussi model which can be representative of complex rich fault area. It is shown that the proposed method can image clearly the rich fault and complex zone in Marmoussi model even though the initial model is quite far from the true model. Therefore, this method can be as one of solution to image the very complex mode.

  19. Robust inverse scattering full waveform seismic tomography for imaging complex structure

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Wibowo, Satryo; Deny, Agus; Kurniadi, Rizal; Widowati, Sri; Mubarok, Syahrul; Susilowati; Kaswandhi [Wave Inversion and Subsurface Fluid Imaging Research (WISFIR) Lab., Complex System Research Division, Physics Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung. and Rock Fluid Imaging Lab., Rock Physics and Cluster C (Indonesia); Rock Fluid Imaging Lab., Rock Physics and Cluster Computing Center, Bandung (Indonesia); Physics Department of Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Rock Physics and Cluster Computing Center, Bandung, Indonesia and Institut Teknologi Telkom, Bandung (Indonesia); Rock Fluid Imaging Lab., Rock Physics and Cluster Computing Center, Bandung (Indonesia)

    2012-06-20

    Seismic tomography becomes important tool recently for imaging complex subsurface. It is well known that imaging complex rich fault zone is difficult. In this paper, The application of time domain inverse scattering wave tomography to image the complex fault zone would be shown on this paper, especially an efficient time domain inverse scattering tomography and their run in cluster parallel computer which has been developed. This algorithm is purely based on scattering theory through solving Lippmann Schwienger integral by using Born's approximation. In this paper, it is shown the robustness of this algorithm especially in avoiding the inversion trapped in local minimum to reach global minimum. A large data are solved by windowing and blocking technique of memory as well as computation. Parameter of windowing computation is based on shot gather's aperture. This windowing technique reduces memory as well as computation significantly. This parallel algorithm is done by means cluster system of 120 processors from 20 nodes of AMD Phenom II. Benchmarking of this algorithm is done by means Marmoussi model which can be representative of complex rich fault area. It is shown that the proposed method can image clearly the rich fault and complex zone in Marmoussi model even though the initial model is quite far from the true model. Therefore, this method can be as one of solution to image the very complex mode.

  20. Effect of static scatterers in laser speckle contrast imaging: an experimental study on correlation and contrast

    Science.gov (United States)

    Vaz, Pedro G.; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João

    2018-01-01

    Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.

  1. Dual-energy digital mammography for calcification imaging: Scatter and nonuniformity corrections

    International Nuclear Information System (INIS)

    Kappadath, S. Cheenu; Shaw, Chris C.

    2005-01-01

    Mammographic images of small calcifications, which are often the earliest signs of breast cancer, can be obscured by overlapping fibroglandular tissue. We have developed and implemented a dual-energy digital mammography (DEDM) technique for calcification imaging under full-field imaging conditions using a commercially available aSi:H/CsI:Tl flat-panel based digital mammography system. The low- and high-energy images were combined using a nonlinear mapping function to cancel the tissue structures and generate the dual-energy (DE) calcification images. The total entrance-skin exposure and mean-glandular dose from the low- and high-energy images were constrained so that they were similar to screening-examination levels. To evaluate the DE calcification image, we designed a phantom using calcium carbonate crystals to simulate calcifications of various sizes (212-425 μm) overlaid with breast-tissue-equivalent material 5 cm thick with a continuously varying glandular-tissue ratio from 0% to 100%. We report on the effects of scatter radiation and nonuniformity in x-ray intensity and detector response on the DE calcification images. The nonuniformity was corrected by normalizing the low- and high-energy images with full-field reference images. Correction of scatter in the low- and high-energy images significantly reduced the background signal in the DE calcification image. Under the current implementation of DEDM, utilizing the mammography system and dose level tested, calcifications in the 300-355 μm size range were clearly visible in DE calcification images. Calcification threshold sizes decreased to the 250-280 μm size range when the visibility criteria were lowered to barely visible. Calcifications smaller than ∼250 μm were usually not visible in most cases. The visibility of calcifications with our DEDM imaging technique was limited by quantum noise, not system noise

  2. The Mathematical Foundations of 3D Compton Scatter Emission Imaging

    Directory of Open Access Journals (Sweden)

    T. T. Truong

    2007-01-01

    Full Text Available The mathematical principles of tomographic imaging using detected (unscattered X- or gamma-rays are based on the two-dimensional Radon transform and many of its variants. In this paper, we show that two new generalizations, called conical Radon transforms, are related to three-dimensional imaging processes based on detected Compton scattered radiation. The first class of conical Radon transform has been introduced recently to support imaging principles of collimated detector systems. The second class is new and is closely related to the Compton camera imaging principles and invertible under special conditions. As they are poised to play a major role in future designs of biomedical imaging systems, we present an account of their most important properties which may be relevant for active researchers in the field.

  3. Far-field superresolution by imaging of resonance scattering

    KAUST Repository

    Schuster, Gerard T.

    2014-10-31

    We show that superresolution imaging in the far-field region of the sources and receivers is theoretically and practically possible if migration of resonant multiples is employed. A resonant multiple is one that bounces back and forth between two scattering points; it can also be the multiple between two smoothly varying interfaces as long as the reflection wave paths partially overlap and reflect from the same Fresnel zone. For a source with frequency f, compared to a one-way trip, N round trips in propagating between two scatterers increase the effective frequency by 2N × f and decrease the effective wavelength by λ/(2N). Thus, multiples can, in principle, be used as high-frequency probes to estimate detailed properties of layers. Tests with both synthetic and field data validate this claim. Improved resolution by multiple imaging is not only feasible for crustal reflections, but might be applicable to mantle and core reverberations recorded by earthquake seismologists.

  4. Effects of tube potential and scatter rejection on image quality and effective dose in digital chest X-ray examination: An anthropomorphic phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, D.J., E-mail: daniel.shaw@christie.nhs.uk [Diagnostic Radiology, Department of Medical Physics and Engineering, Leeds Teaching Hospitals, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom); Crawshaw, I. [Diagnostic X-ray Department, York Teaching Hospital NHS Foundation Trust, The York Hospital, Wigginton Road, York YO31 8HE (United Kingdom); Rimmer, S. D. [Diagnostic Radiology, Department of Medical Physics and Engineering, Leeds Teaching Hospitals, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom)

    2013-11-15

    Objectives: The purpose of this study was to investigate the effects of tube potential and scatter rejection techniques on image quality of digital posteroanterior (PA) chest radiographs. Methods: An anthropomorphic phantom was imaged using a range of tube potentials (81–125 kV{sub p}) without scatter rejection, with an anti-scatter grid, and using a 10 cm air gap. Images were anonymised and randomised before being evaluated using a visual graded analysis (VGA) method. Results: The effects of tube potential on image quality were found to be negligible (p > 0.63) for the flat panel detector (FPD). Decreased image quality (p = 0.031) was noted for 125 kV{sub p} relative to 109 kV{sub p}, though no difference was noted for any of the other potentials (p > 0.398) for computed radiography (CR). Both scatter rejection techniques improved image quality (p < 0.01). For FPD imaging the anti-scatter grid offered slightly improved image quality relative to the air gap (p = 0.038) but this was not seen for CR (p = 0.404). Conclusions: For FPD chest imaging of the anthropomorphic phantom there was no dependence of image quality on tube potential. Scatter rejection improved image quality, with the anti-scatter grid giving greater improvements than an air-gap, but at the expense of increased effective dose. CR imaging of the chest phantom demonstrated negligible dependence on tube potential except at 125 kV{sub p}. Scatter rejection improved image quality, but with no difference found between techniques. The air-gap resulted in a smaller increase in effective dose than the anti-scatter grid and would be the preferred scatter rejection technique.

  5. A novel scatter separation method for multi-energy x-ray imaging

    Science.gov (United States)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-06-01

    X-ray imaging coupled with recently emerged energy-resolved photon counting detectors provides the ability to differentiate material components and to estimate their respective thicknesses. However, such techniques require highly accurate images. The presence of scattered radiation leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in computed tomography (CT). The aim of the present study was to introduce and evaluate a partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. This evaluation was carried out with the aid of numerical simulations provided by an internal simulation tool, Sindbad-SFFD. A simplified numerical thorax phantom placed in a CT geometry was used. The attenuation images and CT slices obtained from corrected data showed a remarkable increase in local contrast and internal structure detectability when compared to uncorrected images. Scatter induced bias was also substantially decreased. In terms of quantitative performance, the developed approach proved to be quite accurate as well. The average normalized root-mean-square error between the uncorrected projections and the reference primary projections was around 23%. The application of PASSSA reduced this error to around 5%. Finally, in terms of voxel value accuracy, an increase by a factor  >10 was observed for most inspected volumes-of-interest, when comparing the corrected and uncorrected total volumes.

  6. A novel application of small-angle scattering techniques: Quality assurance testing of virus quantification technology

    International Nuclear Information System (INIS)

    Kuzmanovic, Deborah A.; Elashvili, Ilya; O'Connell, Catherine; Krueger, Susan

    2008-01-01

    Small-angle scattering (SAS) techniques, like small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), were used to measure and thus to validate the accuracy of a novel technology for virus sizing and concentration determination. These studies demonstrate the utility of SAS techniques for use in quality assurance measurements and as novel technology for the physical characterization of viruses

  7. Composite Techniques Based Color Image Compression

    Directory of Open Access Journals (Sweden)

    Zainab Ibrahim Abood

    2017-03-01

    Full Text Available Compression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S, composite wavelet technique (W and composite multi-wavelet technique (M. For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM in M technique which has the highest values of energy (En and compression ratio (CR and least values of bit per pixel (bpp, time (T and rate distortion R(D. Also the values of the compression parameters of the color image are nearly the same as the average values of the compression parameters of the three bands of the same image.

  8. Optical scatter imaging of cellular and mitochondrial swelling in brain tissue models of stroke

    Science.gov (United States)

    Johnson, Lee James

    2001-08-01

    The severity of brain edema resulting from a stroke can determine a patient's survival and the extent of their recovery. Cellular swelling is the microscopic source of a significant part of brain edema. Mitochondrial swelling also appears to be a determining event in the death or survival of the cells that are injured during a stroke. Therapies for reducing brain edema are not effective in many cases and current treatments of stroke do not address mitochondrial swelling at all. This dissertation is motivated by the lack of a complete understanding of cellular swelling resulting from stroke and the lack of a good method to begin to study mitochondrial swelling resulting from stroke in living brain tissue. In this dissertation, a novel method of detecting mitochondrial and cellular swelling in living hippocampal slices is developed and validated. The system is used to obtain spatial and temporal information about cellular and mitochondrial swelling resulting from various models of stroke. The effect of changes in water content on light scatter and absorption are examined in two models of brain edema. The results of this study demonstrate that optical techniques can be used to detect changes in water content. Mie scatter theory, the theoretical basis of the dual- angle scatter ratio imaging system, is presented. Computer simulations based on Mie scatter theory are used to determine the optimal angles for imaging. A detailed account of the early systems is presented to explain the motivations for the system design, especially polarization, wavelength and light path. Mitochondrial sized latex particles are used to determine the system response to changes in scattering particle size and concentration. The dual-angle scatter ratio imaging system is used to distinguish between osmotic and excitotoxic models of stroke injury. Such distinction cannot be achieved using the current techniques to study cellular swelling in hippocampal slices. The change in the scatter ratio is

  9. Influence of X-ray scatter radiation on image quality in Digital Breast Tomosynthesis (DBT)

    Science.gov (United States)

    Rodrigues, M. J.; Di Maria, S.; Baptista, M.; Belchior, A.; Afonso, J.; Venâncio, J.; Vaz, P.

    2017-11-01

    Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging technique that was developed to solve the principal limitation of mammography, namely the overlapping tissue effect. This issue in standard mammography (SM) leads to two main problems: low sensitivity (difficulty to detect lesions) and low specificity (non-negligible percentage of false positives). Although DBT is now being introduced in clinical practice the features of this technique have not yet been fully and accurately assessed. Consequently, optimization studies in terms of choosing the most suitable parameters which maximize image quality according to the known limits of breast dosimetry are currently performing. In DBT, scatter radiation can lead to a loss of contrast and to an increase of image noise by reducing the signal-to-difference-noise ratio (SDNR) of a lesion. Moreover the use of an anti-scatter grid is a concern due to the low exposure of the photon flux available per projection. For this reason the main aim of this study was to analyze the influence of the scatter radiation on image quality and the dose delivered to the breast. In particular a detailed analysis of the scatter radiation on the optimal energy that maximizes the SDNR was performed for different monochromatic energies and voltages. To reach this objective the PenEasy Monte Carlo (MC) simulation tool imbedded in the general-purpose main program PENELOPE, was used. After a successful validation of the MC model with measurements, 2D projection images of primary, coherent and incoherent photons were obtained. For that, a homogeneous breast phantom (2, 4, 6, 8 cm) with 25%, 50% and 75% glandular compositions was used, including a 5 mm thick tumor. The images were generated for each monochromatic X-ray energies in the range from 16 keV to 32 keV. For each angular projection considered (25 angular projections covering an arc of 50°) the scatter-to-primary ratio (SPR), the mean glandular dose (MGD) and the signal

  10. Investigations on image improvement in radiodiagnosis under special consideration of reducing scattered radiation

    International Nuclear Information System (INIS)

    Becker, R.

    1976-10-01

    In the study, image improvement is proposed for scintiscanning, X-ray and neutron diagnosis as well as computer axial tomography. In order to reduce the scattered radiation, mainly two-dimensional radiation transport calculations are carried out, and the imaging properties are studied by simulation on a large computer. It was found, among other things, that in contrast to X-ray techniques, in diagnosis with fast neutrons the image quality can hardly be improved by screens for scattered radiation. Here the problem of scattered radiation can only be solved by using scanners with narrow beams. The new method of neutron diagnosis resulting from this is especially suited for representing structures behind bones or for the localization of bone tumors invisible to X-rays, but not for representing fatty tissue. For large depths of irradiation, the scattered radiation with neutron sources below 1 MeV gets so intensive that diagnosis becomes impossible. When fast neutrons are used are used, the method is applicable for computer axial tomography because of the narrow beams. (ORU) [de

  11. Effect of scatter media on small gamma camera imaging characteristics

    International Nuclear Information System (INIS)

    Ser, H. K.; Choi, Y.; Yim, K. C.

    2001-01-01

    Effect of scatter media materials and thickness, located between radioactivity and small gamma camera, on imaging characteristics was evaluated. The small gamma camera developed for breast imaging was consisted of collimator, NaI(TI) crystal (60x60x6 mm 3 ). PSPMT (position sensitive photomultiplier tube), NIMs and personal computer. Monte Carlo simulation was performed to evaluate the system sensitivity with different scatter media thickness (0∼8 cm) and materials (air and acrylie) with parallel hole collimator and diverging collimator. The sensitivity and spatial resolution was measured using the small gamma camera with the same condition applied to the simulation. Counts was decreased by 10% (air) and 54% (acrylic) with the parallel hole collimator and by 35% (air) and 63% (acrylic) with the diverging collimator. Spatial resolution was decreased as increasing the thickness of scatter media. This study substantiate the importance of a gamma camera positioning and the minimization of the distance between detector and target lesion in the clinical application of a gamma camera

  12. IMAGE ANALYSIS BASED ON EDGE DETECTION TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  13. A model-based radiography restoration method based on simple scatter-degradation scheme for improving image visibility

    Science.gov (United States)

    Kim, K.; Kang, S.; Cho, H.; Kang, W.; Seo, C.; Park, C.; Lee, D.; Lim, H.; Lee, H.; Kim, G.; Park, S.; Park, J.; Kim, W.; Jeon, D.; Woo, T.; Oh, J.

    2018-02-01

    In conventional planar radiography, image visibility is often limited mainly due to the superimposition of the object structure under investigation and the artifacts caused by scattered x-rays and noise. Several methods, including computed tomography (CT) as a multiplanar imaging modality, air-gap and grid techniques for the reduction of scatters, phase-contrast imaging as another image-contrast modality, etc., have extensively been investigated in attempt to overcome these difficulties. However, those methods typically require higher x-ray doses or special equipment. In this work, as another approach, we propose a new model-based radiography restoration method based on simple scatter-degradation scheme where the intensity of scattered x-rays and the transmission function of a given object are estimated from a single x-ray image to restore the original degraded image. We implemented the proposed algorithm and performed an experiment to demonstrate its viability. Our results indicate that the degradation of image characteristics by scattered x-rays and noise was effectively recovered by using the proposed method, which improves the image visibility in radiography considerably.

  14. Image processing techniques for digital orthophotoquad production

    Science.gov (United States)

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  15. Image processing techniques for remote sensing data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    interpretation and for processing of scene data for autonomous machine perception. The technique of digital image processing are used for' automatic character/pattern recognition, industrial robots for product assembly and inspection, military recognizance... and spatial co-ordinates into discrete components. The mathematical concepts involved are the sampling and transform theory. Two dimensional transforms are used for image enhancement, restoration, encoding and description too. The main objective of the image...

  16. Wide-Field Vibrational Phase Contrast Imaging Based on Coherent Anti-Stokes Raman Scattering Holography

    International Nuclear Information System (INIS)

    Lv Yong-Gang; Ji Zi-Heng; Dong Da-Shan; Gong Qi-Huang; Shi Ke-Bin

    2015-01-01

    We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging. (paper)

  17. Kaon-nucleon scattering in three-dimensional technique

    International Nuclear Information System (INIS)

    Salam, Agus; Fachruddin, Imam

    2016-01-01

    Kaon-nucleon (KN) scattering is formulated in the three-dimensional (3D) momentum space, in which the basis state is not expanded into partial waves. Based on this basis the Lippmann-Schwinger equation for the T-matrix is evaluated. We obtain as final equation for the T-matrix elements a set of two coupled integral equations in two variables, which are the momentum’s magnitude and the scattering angle. Calculations for the differential cross section and some spin observables are shown, for which we employ a hadrons exchange model with the second order contributions only.

  18. Kaon-nucleon scattering in three-dimensional technique

    Energy Technology Data Exchange (ETDEWEB)

    Salam, Agus, E-mail: agus.salam@sci.ui.ac.id; Fachruddin, Imam [Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424 (Indonesia)

    2016-03-11

    Kaon-nucleon (KN) scattering is formulated in the three-dimensional (3D) momentum space, in which the basis state is not expanded into partial waves. Based on this basis the Lippmann-Schwinger equation for the T-matrix is evaluated. We obtain as final equation for the T-matrix elements a set of two coupled integral equations in two variables, which are the momentum’s magnitude and the scattering angle. Calculations for the differential cross section and some spin observables are shown, for which we employ a hadrons exchange model with the second order contributions only.

  19. Biometric image enhancement using decision rule based image fusion techniques

    Science.gov (United States)

    Sagayee, G. Mary Amirtha; Arumugam, S.

    2010-02-01

    Introducing biometrics into information systems may result in considerable benefits. Most of the researchers confirmed that the finger print is widely used than the iris or face and more over it is the primary choice for most privacy concerned applications. For finger prints applications, choosing proper sensor is at risk. The proposed work deals about, how the image quality can be improved by introducing image fusion technique at sensor levels. The results of the images after introducing the decision rule based image fusion technique are evaluated and analyzed with its entropy levels and root mean square error.

  20. Imaging techniques and investigation protocols in pediatric emergency imaging

    International Nuclear Information System (INIS)

    Scharitzer, M.; Hoermann, M.; Puig, S.; Prokop, M.

    2002-01-01

    Paediatric emergencies demand a quick and efficient radiological investigation with special attention to specific adjustments related to patient age and radiation protection. Imaging modalities are improving rapidly and enable to diagnose childhood diseases and injuries more quickly, accurately and safely. This article provides an overview of imaging techniques adjusted to the age of the child and an overview of imaging strategies of common paediatric emergencies. Optimising the imaging parameters (digital radiography, different screen-film systems, exposure specifications) allows for substantial reduction of radiation dose. Spiral- and multislice-CT reduce scan time and enable a considerable reduction of radiation exposure if scanning parameters (pitch setting, tube current) are properly adjusted. MRI is still mainly used for neurological or spinal emergencies despite the advent of fast imaging sequences. The radiologist's task is to select an appropriate imaging strategy according to expected differential diagnosis and to adjust the imaging techniques to the individual patient. (orig.) [de

  1. Effects of tube potential and scatter rejection on image quality and effective dose in digital chest X-ray examination: An anthropomorphic phantom study

    International Nuclear Information System (INIS)

    Shaw, D.J.; Crawshaw, I.; Rimmer, S.D.

    2013-01-01

    Objectives: The purpose of this study was to investigate the effects of tube potential and scatter rejection techniques on image quality of digital posteroanterior (PA) chest radiographs. Methods: An anthropomorphic phantom was imaged using a range of tube potentials (81–125 kV p ) without scatter rejection, with an anti-scatter grid, and using a 10 cm air gap. Images were anonymised and randomised before being evaluated using a visual graded analysis (VGA) method. Results: The effects of tube potential on image quality were found to be negligible (p > 0.63) for the flat panel detector (FPD). Decreased image quality (p = 0.031) was noted for 125 kV p relative to 109 kV p , though no difference was noted for any of the other potentials (p > 0.398) for computed radiography (CR). Both scatter rejection techniques improved image quality (p p . Scatter rejection improved image quality, but with no difference found between techniques. The air-gap resulted in a smaller increase in effective dose than the anti-scatter grid and would be the preferred scatter rejection technique

  2. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  3. Evaluation of a new image compression technique

    International Nuclear Information System (INIS)

    Algra, P.R.; Kroon, H.M.; Noordveld, R.B.; DeValk, J.P.J.; Seeley, G.W.; Westerink, P.H.

    1988-01-01

    The authors present the evaluation of a new image compression technique, subband coding using vector quantization, on 44 CT examinations of the upper abdomen. Three independent radiologists reviewed the original images and compressed versions. The compression ratios used were 16:1 and 20:1. Receiver operating characteristic analysis showed no difference in the diagnostic contents between originals and their compressed versions. Subjective visibility of anatomic structures was equal. Except for a few 20:1 compressed images, the observers could not distinguish compressed versions from original images. They conclude that subband coding using vector quantization is a valuable method for data compression in CT scans of the abdomen

  4. Oncologic applications of diagnostic imaging techniques

    International Nuclear Information System (INIS)

    Forrest, L.J.; Thrall, D.E.

    1995-01-01

    Before appropriate therapy can be instituted for a cancer patient, the presence and extent of tumor must be evaluated. Deciding which imaging technique to use depends on tumor location, type, and biologic behavior. Conventional radiography provides important information at a relatively low cost compared with other imaging modalities. Ultrasound is a valuable adjunct to radiography, but does not replace it because both imaging modalities provide unique information. Nuclear medicine procedures contribute additional, unique data by providing physiological information, but specificity is lacking. Both CT and MRI provide images with exquisite anatomic detail, but availability and cost prohibit their general use

  5. Image fusion techniques in permanent seed implantation

    Directory of Open Access Journals (Sweden)

    Alfredo Polo

    2010-10-01

    Full Text Available Over the last twenty years major software and hardware developments in brachytherapy treatment planning, intraoperative navigation and dose delivery have been made. Image-guided brachytherapy has emerged as the ultimate conformal radiation therapy, allowing precise dose deposition on small volumes under direct image visualization. In thisprocess imaging plays a central role and novel imaging techniques are being developed (PET, MRI-MRS and power Doppler US imaging are among them, creating a new paradigm (dose-guided brachytherapy, where imaging is used to map the exact coordinates of the tumour cells, and to guide applicator insertion to the correct position. Each of these modalities has limitations providing all of the physical and geometric information required for the brachytherapy workflow.Therefore, image fusion can be used as a solution in order to take full advantage of the information from each modality in treatment planning, intraoperative navigation, dose delivery, verification and follow-up of interstitial irradiation.Image fusion, understood as the visualization of any morphological volume (i.e. US, CT, MRI together with an additional second morpholo gical volume (i.e. CT, MRI or functional dataset (functional MRI, SPECT, PET, is a well known method for treatment planning, verification and follow-up of interstitial irradiation. The term image fusion is used when multiple patient image datasets are registered and overlaid or merged to provide additional information. Fused images may be created from multiple images from the same imaging modality taken at different moments (multi-temporalapproach, or by combining information from multiple modalities. Quality means that the fused images should provide additional information to the brachythe rapy process (diagnosis and staging, treatment planning, intraoperative imaging, treatment delivery and follow-up that cannot be obtained in other ways. In this review I will focus on the role of

  6. Possibility of single biomolecule imaging with coherent amplification of weak scattering x-ray photons.

    Science.gov (United States)

    Shintake, Tsumoru

    2008-10-01

    The number of photons produced by coherent x-ray scattering from a single biomolecule is very small because of its extremely small elastic-scattering cross section and low damage threshold. Even with a high x-ray flux of 3 x 10;{12} photons per 100-nm -diameter spot and an ultrashort pulse of 10 fs driven by a future x-ray free electron laser (x-ray FEL), it has been predicted that only a few 100 photons will be produced from the scattering of a single lysozyme molecule. In observations of scattered x rays on a detector, the transfer of energy from wave to matter is accompanied by the quantization of the photon energy. Unfortunately, x rays have a high photon energy of 12 keV at wavelengths of 1A , which is required for atomic resolution imaging. Therefore, the number of photoionization events is small, which limits the resolution of imaging of a single biomolecule. In this paper, I propose a method: instead of directly observing the photons scattered from the sample, we amplify the scattered waves by superimposing an intense coherent reference pump wave on it and record the resulting interference pattern on a planar x-ray detector. Using a nanosized gold particle as a reference pump wave source, we can collect 10;{4}-10;{5} photons in single shot imaging where the signal from a single biomolecule is amplified and recorded as two-dimensional diffraction intensity data. An iterative phase retrieval technique can be used to recover the phase information and reconstruct the image of the single biomolecule and the gold particle at the same time. In order to precisely reconstruct a faint image of the single biomolecule in Angstrom resolution, whose intensity is much lower than that of the bright gold particle, I propose a technique that combines iterative phase retrieval on the reference pump wave and the digital Fourier transform holography on the sample. By using a large number of holography data, the three-dimensional electron density map can be assembled.

  7. Relevance vector machine technique for the inverse scattering problem

    International Nuclear Information System (INIS)

    Wang Fang-Fang; Zhang Ye-Rong

    2012-01-01

    A novel method based on the relevance vector machine (RVM) for the inverse scattering problem is presented in this paper. The nonlinearity and the ill-posedness inherent in this problem are simultaneously considered. The nonlinearity is embodied in the relation between the scattered field and the target property, which can be obtained through the RVM training process. Besides, rather than utilizing regularization, the ill-posed nature of the inversion is naturally accounted for because the RVM can produce a probabilistic output. Simulation results reveal that the proposed RVM-based approach can provide comparative performances in terms of accuracy, convergence, robustness, generalization, and improved performance in terms of sparse property in comparison with the support vector machine (SVM) based approach. (general)

  8. Light scattering techniques for the characterization of optical components

    Science.gov (United States)

    Hauptvogel, M.; Schröder, S.; Herffurth, T.; Trost, M.; von Finck, A.; Duparré, A.; Weigel, T.

    2017-11-01

    The rapid developments in optical technologies generate increasingly higher and sometimes completely new demands on the quality of materials, surfaces, components, and systems. Examples for such driving applications are the steadily shrinking feature sizes in semiconductor lithography, nanostructured functional surfaces for consumer optics, and advanced optical systems for astronomy and space applications. The reduction of surface defects as well as the minimization of roughness and other scatter-relevant irregularities are essential factors in all these areas of application. Quality-monitoring for analysing and improving those properties must ensure that even minimal defects and roughness values can be detected reliably. Light scattering methods have a high potential for a non-contact, rapid, efficient, and sensitive determination of roughness, surface structures, and defects.

  9. Positron-atom scattering using a modified Kohn variational technique

    International Nuclear Information System (INIS)

    Page, B.A.P.

    1976-01-01

    An analysis of the zero-energy positron-hydrogen and positron-helium systems using various approximations to the target ground-state wavefunction is presented. A modification of the normal Kohn variational method is used in which a quantity, asub(Q), which becomes the Kohn scattering length if the target wavefunction is exact, is related to the trial wavefunction psisub(t) through an integral expression. By comparing the results obtained with the definitive values for the positron-hydrogen system, it is conjectured that if the values of asub(Q) display a local minimum when all the nonlinear parameters of psisub(t) are varied, then this local minimum of asub(Q) is an upper bound on the exact scattering length. Using this criterion to analyse the positron-helium results, it is concluded that this method may be considered as an alternative to the 'method of models' procedure, since both methods give similar results. (author)

  10. Imaging Internal Structure of Long Bones Using Wave Scattering Theory.

    Science.gov (United States)

    Zheng, Rui; Le, Lawrence H; Sacchi, Mauricio D; Lou, Edmond

    2015-11-01

    An ultrasonic wavefield imaging method is developed to reconstruct the internal geometric properties of long bones using zero-offset data acquired axially on the bone surface. The imaging algorithm based on Born scattering theory is implemented with the conjugate gradient iterative method to reconstruct an optimal image. In the case of a multilayered velocity model, ray tracing through a smooth medium is used to calculate the traveled distance and traveling time. The method has been applied to simulated and real data. The results indicate that the interfaces of the top cortex are accurately imaged and correspond favorably to the original model. The reconstructed bottom cortex below the marrow is less accurate mainly because of the low signal-to-noise ratio. The current imaging method has successfully recovered the top cortical layer, providing a potential tool to investigate the internal structures of long bone cortex for osteoporosis assessment. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Research of the system response of neutron double scatter imaging for MLEM reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M., E-mail: wyj2013@163.com [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); State Key Laboratory of Intense Pulsed Radiation-Simulation and Effect, Xi’an 710024 (China); Peng, B.D.; Sheng, L.; Li, K.N.; Zhang, X.P.; Li, Y.; Li, B.K.; Yuan, Y.; Wang, P.W.; Zhang, X.D.; Li, C.H. [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); State Key Laboratory of Intense Pulsed Radiation-Simulation and Effect, Xi’an 710024 (China)

    2015-03-01

    A Maximum Likelihood image reconstruction technique has been applied to neutron scatter imaging. The response function of the imaging system can be obtained by Monte Carlo simulation, which is very time-consuming if the number of image pixels and particles is large. In this work, to improve time efficiency, an analytical approach based on the probability of neutron interaction and transport in the detector is developed to calculate the system response function. The response function was applied to calculate the relative efficiency of the neutron scatter imaging system as a function of the incident neutron energy. The calculated results agreed with simulations by the MCNP5 software. Then the maximum likelihood expectation maximization (MLEM) reconstruction method with the system response function was used to reconstruct data simulated by Monte Carlo method. The results showed that there was good consistency between the reconstruction position and true position. Compared with back-projection reconstruction, the improvement in image quality was obvious, and the locations could be discerned easily for multiple radiation point sources.

  12. Plasma turbulence imaging using high-power laser Thomson scattering

    Science.gov (United States)

    Zweben, S. J.; Caird, J.; Davis, W.; Johnson, D. W.; Le Blanc, B. P.

    2001-01-01

    The two-dimensional (2D) structure of plasma density turbulence in a magnetically confined plasma can potentially be measured using a Thomson scattering system made from components of the Nova laser of Lawrence Livermore National Laboratory. For a plasma such as the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory, the laser would form an ≈10-cm-wide plane sheet beam passing vertically through the chamber across the magnetic field. The scattered light would be imaged by a charge coupled device camera viewing along the direction of the magnetic field. The laser energy required to make 2D images of density turbulence is in the range 1-3 kJ, which can potentially be obtained from a set of frequency-doubled Nd:glass amplifiers with diameters in the range of 208-315 mm. A laser pulse width of ⩽100 ns would be short enough to capture the highest frequency components of the expected density fluctuations.

  13. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media

    Science.gov (United States)

    Edrei, Eitan; Scarcelli, Giuliano

    2016-09-01

    High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.

  14. Combined application of dynamic light scattering imaging and fluorescence intravital microscopy in vascular biology

    International Nuclear Information System (INIS)

    Kalchenko, V; Harmelin, A; Ziv, K; Addadi, Y; Madar-Balakirski, N; Neeman, M; Meglinski, I

    2010-01-01

    The dynamic light scattering imaging (DLSI) system combined with the conventional fluorescence intravital microscope (FIM) has been applied for the examination of blood and lymph vessels in the mouse ear in vivo. While the CCD camera can be shared by both techniques the combined application of DLSI and FIM allows rapid switching between the modalities. In current study temporal speckles fluctuations are used for rendering blood vessels structure and monitoring blood perfusion with the higher spatial resolution, whereas FIM provides the images of lymphatic vessels. The results clearly demonstrate that combined application of DLSI and FIM approaches provides synchronic in vivo images of blood and lymph vessels with higher contrast and specificity. The use of this new dual-modal diagnostic system is particularly important and has a great potential to significantly expand the capabilities of vascular diagnostics providing synchronic in vivo images of blood and lymph vessels

  15. Diagnosis of scaphoid fracture: optimal imaging techniques

    Directory of Open Access Journals (Sweden)

    Geijer M

    2013-07-01

    Full Text Available Mats Geijer Center for Medical Imaging and Physiology, Skåne University Hospital and Lund University, Lund, Sweden Abstract: This review aims to provide an overview of modern imaging techniques for evaluation of scaphoid fracture, with emphasis on occult fractures and an outlook on the possible evolution of imaging; it also gives an overview of the pathologic and anatomic basis for selection of techniques. Displaced scaphoid fractures detected by wrist radiography, with or without special scaphoid views, pose no diagnostic problems. After wrist trauma with clinically suspected scaphoid fracture and normal scaphoid radiography, most patients will have no clinically important fracture. Between 5% and 19% of patients (on average 16% in meta-analyses will, however, have an occult scaphoid fracture which, untreated, may lead to later, potentially devastating, complications. Follow-up imaging may be done with repeat radiography, tomosynthesis, computed tomography, magnetic resonance imaging (MRI, or bone scintigraphy. However, no method is perfect, and choice of imaging may be based on availability, cost, perceived accuracy, or personal preference. Generally, MRI and bone scintigraphy are regarded as the most sensitive modalities, but both are flawed by false positive results at various rates. Keywords: occult fracture, wrist, radiography, computed tomography, magnetic resonance imaging, radionuclide imaging

  16. Secondary hypertension: Place of imaging techniques

    International Nuclear Information System (INIS)

    Marichez, M.; Jeunemaitre, X.; Despres, E.; Plouin, P.F.; Melki, J.P.; Taleb, A.

    1987-01-01

    To determine and illustrate the place of various imaging techniques in the diagnosis of arterial hypertension, a retrospective study of 4,530 patients examined during the past 2 years at Broussals and Saint Joseph Hospitals in Paris was undertaken. Between 1975 and 1984, only 20% of our patients underwent surgery, but in the past 2 years, 6% of patients with hypertension underwent either surgery or transluminal angioplasty. At our institution, imaging studies performed were Doppler US, excretory urography, CT, MR imaging, scintigraphy, adrenal venography, and arteriography. The authors encountered over 156 cases of renovascular hypertension, 23 Conn adenomas, 13 pheochromocytomas, four adrenal carcinomas, and 46 parenchymatous renal anomalies. This paper presents the modalities and the pitfalls of each imaging technique. The authors also indicate the strategies used in the diagnostic approach and the results the authors obtained

  17. Steganalysis Techniques for Documents and Images

    Science.gov (United States)

    2005-05-01

    steganography . We then illustrated the efficacy of our model using variations of LSB steganography . For binary images , we have made significant progress in...efforts have focused on two areas. The first area is LSB steganalysis for grayscale images . Here, as we had proposed (as a challenging task), we have...generalized our previous steganalysis technique of sample pair analysis to a theoretical framework for the detection of the LSB steganography . The new

  18. X-ray Scatter Imaging of Hepatocellular Carcinoma in a Mouse Model Using Nanoparticle Contrast Agents

    Science.gov (United States)

    Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph

    2015-10-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.

  19. Fostering applications of neutron scattering techniques in developing countries: IAEA's role

    Energy Technology Data Exchange (ETDEWEB)

    Paranjpe, Shriniwas K. [Division of Physical and Chemical Sciences, International Atomic Energy Agency, Wagramer Strasse 5, A-1400 Vienna (Austria)]. E-mail: S.K.Paranjpe@iaea.org; Mank, G. [Division of Physical and Chemical Sciences, International Atomic Energy Agency, Wagramer Strasse 5, A-1400 Vienna (Austria); Ramamoorthy, N. [Division of Physical and Chemical Sciences, International Atomic Energy Agency, Wagramer Strasse 5, A-1400 Vienna (Austria)

    2006-11-15

    Over the last 60 years research reactors have played an important role in technological and socio-economical development of mankind. Neutron scattering has been the workhorse for research and development in materials science. Developing countries with moderate flux research reactors have also been involved in using this technique. The reactors and the facilities around them have a large potential for applications, while their under-utilization has been a concern for many member states. The International Atomic Energy Agency (IAEA) has been supporting its member states in the enhancement of utilization of their research reactors. Technical meetings focussing on the area of current interests with potential applications are organized under the project on 'effective utilization of research reactors,' e.g. on residual stress measurement, neutron reflectometry. Coordinated research projects (CRPs) bring together scientists from developed and developing countries, build collaborations, and exchange expertise and technology. The CRPs on research reactor utilization include topics like development of small-angle neutron scattering applications and development of sources and imaging systems for neutron radiography. New CRPs on the measurement of residual stress and accelerator-driven neutron sources will be initiated soon. The results from these meetings of CRPs are published as technical documents of the IAEA that would act as guidelines for capacity building for research reactor managers. This paper will present some of the salient features of IAEA activities in promoting research reactor utilization.

  20. Cellular imaging electron tomography and related techniques

    CERN Document Server

    2018-01-01

    This book highlights important techniques for cellular imaging and covers the basics and applications of electron tomography and related techniques. In addition, it considers practical aspects and broadens the technological focus by incorporating techniques that are only now becoming accessible (e.g. block face imaging).  The first part of the book describes the electron microscopy 3D technique available to scientists around the world, allowing them to characterize organelles, cells and tissues. The major emphasis is on new technologies like scanning transmission electron microscopy (STEM) tomography, though the book also reviews some of the more proven technologies like electron tomography. In turn, the second part is dedicated to the reconstruction of data sets, signal improvement and interpretation.

  1. Advanced gamma spectrum processing technique applied to the analysis of scattering spectra for determining material thickness

    International Nuclear Information System (INIS)

    Hoang Duc Tam; VNUHCM-University of Science, Ho Chi Minh City; Huynh Dinh Chuong; Tran Thien Thanh; Vo Hoang Nguyen; Hoang Thi Kieu Trang; Chau Van Tao

    2015-01-01

    In this work, an advanced gamma spectrum processing technique is applied to analyze experimental scattering spectra for determining the thickness of C45 heat-resistant steel plates. The single scattering peak of scattering spectra is taken as an advantage to measure the intensity of single scattering photons. Based on these results, the thickness of steel plates is determined with a maximum deviation of real thickness and measured thickness of about 4 %. Monte Carlo simulation using MCNP5 code is also performed to cross check the results, which yields a maximum deviation of 2 %. These results strongly confirm the capability of this technique in analyzing gamma scattering spectra, which is a simple, effective and convenient method for determining material thickness. (author)

  2. Subsurface Scattering-Based Object Rendering Techniques for Real-Time Smartphone Games

    Directory of Open Access Journals (Sweden)

    Won-Sun Lee

    2014-01-01

    Full Text Available Subsurface scattering that simulates the path of a light through the material in a scene is one of the advanced rendering techniques in the field of computer graphics society. Since it takes a number of long operations, it cannot be easily implemented in real-time smartphone games. In this paper, we propose a subsurface scattering-based object rendering technique that is optimized for smartphone games. We employ our subsurface scattering method that is utilized for a real-time smartphone game. And an example game is designed to validate how the proposed method can be operated seamlessly in real time. Finally, we show the comparison results between bidirectional reflectance distribution function, bidirectional scattering distribution function, and our proposed subsurface scattering method on a smartphone game.

  3. Performance evaluation of breast image compression techniques

    Energy Technology Data Exchange (ETDEWEB)

    Anastassopoulos, G; Lymberopoulos, D [Wire Communications Laboratory, Electrical Engineering Department, University of Patras, Greece (Greece); Panayiotakis, G; Bezerianos, A [Medical Physics Department, School of Medicine, University of Patras, Greece (Greece)

    1994-12-31

    Novel diagnosis orienting tele working systems manipulate, store, and process medical data through real time communication - conferencing schemes. One of the most important factors affecting the performance of these systems is image handling. Compression algorithms can be applied to the medical images, in order to minimize : a) the volume of data to be stored in the database, b) the demanded bandwidth from the network, c) the transmission costs, and to minimize the speed of the transmitted data. In this paper an estimation of all the factors of the process that affect the presentation of breast images is made, from the time the images are produced from a modality, till the compressed images are stored, or transmitted in a Broadband network (e.g. B-ISDN). The images used were scanned images of the TOR(MAX) Leeds breast phantom, as well as typical breast images. A comparison of seven compression techniques has been done, based on objective criteria such as Mean Square Error (MSE), resolution, contrast, etc. The user can choose the appropriate compression ratio in order to achieve the desired image quality. (authors). 12 refs, 4 figs.

  4. Performance evaluation of breast image compression techniques

    International Nuclear Information System (INIS)

    Anastassopoulos, G.; Lymberopoulos, D.; Panayiotakis, G.; Bezerianos, A.

    1994-01-01

    Novel diagnosis orienting tele working systems manipulate, store, and process medical data through real time communication - conferencing schemes. One of the most important factors affecting the performance of these systems is image handling. Compression algorithms can be applied to the medical images, in order to minimize : a) the volume of data to be stored in the database, b) the demanded bandwidth from the network, c) the transmission costs, and to minimize the speed of the transmitted data. In this paper an estimation of all the factors of the process that affect the presentation of breast images is made, from the time the images are produced from a modality, till the compressed images are stored, or transmitted in a Broadband network (e.g. B-ISDN). The images used were scanned images of the TOR(MAX) Leeds breast phantom, as well as typical breast images. A comparison of seven compression techniques has been done, based on objective criteria such as Mean Square Error (MSE), resolution, contrast, etc. The user can choose the appropriate compression ratio in order to achieve the desired image quality. (authors)

  5. Retinal Imaging Techniques for Diabetic Retinopathy Screening

    Science.gov (United States)

    Goh, James Kang Hao; Cheung, Carol Y.; Sim, Shaun Sebastian; Tan, Pok Chien; Tan, Gavin Siew Wei; Wong, Tien Yin

    2016-01-01

    Due to the increasing prevalence of diabetes mellitus, demand for diabetic retinopathy (DR) screening platforms is steeply increasing. Early detection and treatment of DR are key public health interventions that can greatly reduce the likelihood of vision loss. Current DR screening programs typically employ retinal fundus photography, which relies on skilled readers for manual DR assessment. However, this is labor-intensive and suffers from inconsistency across sites. Hence, there has been a recent proliferation of automated retinal image analysis software that may potentially alleviate this burden cost-effectively. Furthermore, current screening programs based on 2-dimensional fundus photography do not effectively screen for diabetic macular edema (DME). Optical coherence tomography is becoming increasingly recognized as the reference standard for DME assessment and can potentially provide a cost-effective solution for improving DME detection in large-scale DR screening programs. Current screening techniques are also unable to image the peripheral retina and require pharmacological pupil dilation; ultra-widefield imaging and confocal scanning laser ophthalmoscopy, which address these drawbacks, possess great potential. In this review, we summarize the current DR screening methods using various retinal imaging techniques, and also outline future possibilities. Advances in retinal imaging techniques can potentially transform the management of patients with diabetes, providing savings in health care costs and resources. PMID:26830491

  6. Quantitative Evaluation of 2 Scatter-Correction Techniques for 18F-FDG Brain PET/MRI in Regard to MR-Based Attenuation Correction.

    Science.gov (United States)

    Teuho, Jarmo; Saunavaara, Virva; Tolvanen, Tuula; Tuokkola, Terhi; Karlsson, Antti; Tuisku, Jouni; Teräs, Mika

    2017-10-01

    In PET, corrections for photon scatter and attenuation are essential for visual and quantitative consistency. MR attenuation correction (MRAC) is generally conducted by image segmentation and assignment of discrete attenuation coefficients, which offer limited accuracy compared with CT attenuation correction. Potential inaccuracies in MRAC may affect scatter correction, because the attenuation image (μ-map) is used in single scatter simulation (SSS) to calculate the scatter estimate. We assessed the impact of MRAC to scatter correction using 2 scatter-correction techniques and 3 μ-maps for MRAC. Methods: The tail-fitted SSS (TF-SSS) and a Monte Carlo-based single scatter simulation (MC-SSS) algorithm implementations on the Philips Ingenuity TF PET/MR were used with 1 CT-based and 2 MR-based μ-maps. Data from 7 subjects were used in the clinical evaluation, and a phantom study using an anatomic brain phantom was conducted. Scatter-correction sinograms were evaluated for each scatter correction method and μ-map. Absolute image quantification was investigated with the phantom data. Quantitative assessment of PET images was performed by volume-of-interest and ratio image analysis. Results: MRAC did not result in large differences in scatter algorithm performance, especially with TF-SSS. Scatter sinograms and scatter fractions did not reveal large differences regardless of the μ-map used. TF-SSS showed slightly higher absolute quantification. The differences in volume-of-interest analysis between TF-SSS and MC-SSS were 3% at maximum in the phantom and 4% in the patient study. Both algorithms showed excellent correlation with each other with no visual differences between PET images. MC-SSS showed a slight dependency on the μ-map used, with a difference of 2% on average and 4% at maximum when a μ-map without bone was used. Conclusion: The effect of different MR-based μ-maps on the performance of scatter correction was minimal in non-time-of-flight 18 F-FDG PET

  7. Modern Theory of Gratings Resonant Scattering: Analysis Techniques and Phenomena

    CERN Document Server

    Sirenko, Yuriy K

    2010-01-01

    Diffraction gratings are one of the most popular objects of analysis in electromagnetic theory. The requirements of applied optics and microwave engineering lead to many new problems and challenges for the theory of diffraction gratings, which force us to search for new methods and tools for their resolution. In Modern Theory of Gratings, the authors present results of the electromagnetic theory of diffraction gratings that will constitute the base of further development of this theory, which meet the challenges provided by modern requirements of fundamental and applied science. This volume covers: spectral theory of gratings (Chapter 1) giving reliable grounds for physical analysis of space-frequency and space-time transformations of the electromagnetic field in open periodic resonators and waveguides; authentic analytic regularization procedures (Chapter 2) that, in contradistinction to the traditional frequency-domain approaches, fit perfectly for the analysis of resonant wave scattering processes; paramet...

  8. Photoacoustic imaging in scattering media by combining a correlation matrix filter with a time reversal operator.

    Science.gov (United States)

    Rui, Wei; Tao, Chao; Liu, Xiaojun

    2017-09-18

    Acoustic scattering medium is a fundamental challenge for photoacoustic imaging. In this study, we reveal the different coherent properties of the scattering photoacoustic waves and the direct photoacoustic waves in a matrix form. Direct waves show a particular coherence on the antidiagonals of the matrix, whereas scattering waves do not. Based on this property, a correlation matrix filter combining with a time reversal operator is proposed to preserve the direct waves and recover the image behind a scattering layer. Both numerical simulations and photoacoustic imaging experiments demonstrate that the proposed approach effectively increases the image contrast and decreases the background speckles in a scattering medium. This study might improve the quality of photoacoustic imaging in an acoustic scattering environment and extend its applications.

  9. Label-free and live cell imaging by interferometric scattering microscopy.

    Science.gov (United States)

    Park, Jin-Sung; Lee, Il-Buem; Moon, Hyeon-Min; Joo, Jong-Hyeon; Kim, Kyoung-Hoon; Hong, Seok-Cheol; Cho, Minhaeng

    2018-03-14

    Despite recent remarkable advances in microscopic techniques, it still remains very challenging to directly observe the complex structure of cytoplasmic organelles in live cells without a fluorescent label. Here we report label-free and live-cell imaging of mammalian cell, Escherischia coli , and yeast, using interferometric scattering microscopy, which reveals the underlying structures of a variety of cytoplasmic organelles as well as the underside structure of the cells. The contact areas of the cells attached onto a glass substrate, e.g. , focal adhesions and filopodia, are clearly discernible. We also found a variety of fringe-like features in the cytoplasmic area, which may reflect the folded structures of cytoplasmic organelles. We thus anticipate that the label-free interferometric scattering microscopy can be used as a powerful tool to shed interferometric light on in vivo structures and dynamics of various intracellular phenomena.

  10. X-ray scatter signatures for enhanced breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kidane, Ghirmay; Speller, Robert; Royle, Gary [Medical Physics and Bioengineering Department, University College Landon, 11-20 Capper Street, London WC1E 6JA (United Kingdom)

    1999-12-31

    Conventional mammographic imaging suffers from a low specificity. The main cause is the small difference in the x-ray attenuation properties of healthy and diseased tissue leading to poor contrast in the image. It has been observed that additional information on breast tissue type can be obtained from x-ray diffraction effects. A study of excised normal and neoplastic breast tissue samples using x-ray diffraction apparatus has been observed that significant differences exist in the measured spectra between carcinoma and healthy tissue adjacent to the carcinoma. Such a difference allows tissue type to be characterised according to is diseased state. Furthermore the information can be applied to improve diagnosis. It is proposed that collection and analysis of the scattered x-rays present during a mammographic procedure can supply the additional information and be used to improve the image contrast. The ultimate aim of the project is to improve the specificity of x-ray mammography. (authors) 10 refs., 3 figs.

  11. Image processing methods for noise reduction in the TJ-II Thomson Scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Dormido-Canto, S., E-mail: sebas@dia.uned.es [Departamento de Informatica y Automatica, UNED, Madrid 28040 (Spain); Farias, G. [Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Vega, J.; Pastor, I. [Asociacion EURATOM/CIEMAT para Fusion, Madrid 28040 (Spain)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We describe an approach in order to reduce or mitigate the stray-light on the images and show the exceptional results. Black-Right-Pointing-Pointer We analyze the parameters to take account in the proposed process. Black-Right-Pointing-Pointer We report a simplified exampled in order to explain the proposed process. - Abstract: The Thomsom Scattering diagnostic of the TJ-II stellarator provides temperature and density profiles. The CCD camera acquires images corrupted with noise that, in some cases, can produce unreliable profiles. The main source of noise is the so-called stray-light. In this paper we describe an approach that allows mitigation of the effects that stray-light has on the images: extraction regions with connected-components. In addition, the robustness and effectiveness of the noise reduction technique is validated in two ways: (1) supervised classification and (2) comparison of electron temperature profiles.

  12. Deep and optically resolved imaging through scattering media by space-reversed propagation.

    Science.gov (United States)

    Glastre, W; Jacquin, O; Hugon, O; Guillet de Chatellus, H; Lacot, E

    2012-12-01

    We propose a novel technique of microscopy to overcome the effects of both scattering and limitation of the accessible depth due to the objective working distance. By combining laser optical feedback imaging with acoustic photon tagging and synthetic aperture refocusing we demonstrate an ultimate shot noise sensitivity at low power (required to preserve the tissues) and a high resolution beyond the microscope working distance. More precisely, with a laser power of 10 mW, we obtain images with a micrometric resolution over approximately eight transport mean free paths, corresponding to 1.3 times the microscope working distance. Various applications such as biomedical diagnosis and research and development of new drugs and therapies can benefit from our imaging setup.

  13. A novel technique for determining luminosity in electron-scattering/positron-scattering experiments from multi-interaction events

    Science.gov (United States)

    Schmidt, A.; O'Connor, C.; Bernauer, J. C.; Milner, R.

    2018-01-01

    The OLYMPUS experiment measured the cross-section ratio of positron-proton elastic scattering relative to electron-proton elastic scattering to look for evidence of hard two-photon exchange. To make this measurement, the experiment alternated between electron beam and positron beam running modes, with the relative integrated luminosities of the two running modes providing the crucial normalization. For this reason, OLYMPUS had several redundant luminosity monitoring systems, including a pair of electromagnetic calorimeters positioned downstream from the target to detect symmetric Møller and Bhabha scattering from atomic electrons in the hydrogen gas target. Though this system was designed to monitor the rate of events with single Møller/Bhabha interactions, we found that a more accurate determination of relative luminosity could be made by additionally considering the rate of events with both a Møller/Bhabha interaction and a concurrent elastic ep interaction. This method was improved by small corrections for the variance of the current within bunches in the storage ring and for the probability of three interactions occurring within a bunch. After accounting for systematic effects, we estimate that the method is accurate in determining the relative luminosity to within 0.36%. This precise technique can be employed in future electron-proton and positron-proton scattering experiments to monitor relative luminosity between different running modes.

  14. Development and evaluation of attenuation and scatter correction techniques for SPECT using the Monte Carlo method

    International Nuclear Information System (INIS)

    Ljungberg, M.

    1990-05-01

    Quantitative scintigrafic images, obtained by NaI(Tl) scintillation cameras, are limited by photon attenuation and contribution from scattered photons. A Monte Carlo program was developed in order to evaluate these effects. Simple source-phantom geometries and more complex nonhomogeneous cases can be simulated. Comparisons with experimental data for both homogeneous and nonhomogeneous regions and with published results have shown good agreement. The usefulness for simulation of parameters in scintillation camera systems, stationary as well as in SPECT systems, has also been demonstrated. An attenuation correction method based on density maps and build-up functions has been developed. The maps were obtained from a transmission measurement using an external 57 Co flood source and the build-up was simulated by the Monte Carlo code. Two scatter correction methods, the dual-window method and the convolution-subtraction method, have been compared using the Monte Carlo method. The aim was to compare the estimated scatter with the true scatter in the photo-peak window. It was concluded that accurate depth-dependent scatter functions are essential for a proper scatter correction. A new scatter and attenuation correction method has been developed based on scatter line-spread functions (SLSF) obtained for different depths and lateral positions in the phantom. An emission image is used to determine the source location in order to estimate the scatter in the photo-peak window. Simulation studies of a clinically realistic source in different positions in cylindrical water phantoms were made for three photon energies. The SLSF-correction method was also evaluated by simulation studies for 1. a myocardial source, 2. uniform source in the lungs and 3. a tumour located in the lungs in a realistic, nonhomogeneous computer phantom. The results showed that quantitative images could be obtained in nonhomogeneous regions. (67 refs.)

  15. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix; Xiao, Lei; Kolb, Andreas; Hullin, Matthias B.; Heidrich, Wolfgang

    2014-01-01

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  16. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix

    2014-10-17

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  17. Studying time of flight imaging through scattering media across multiple size scales (Conference Presentation)

    Science.gov (United States)

    Velten, Andreas

    2017-05-01

    Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.

  18. Comparative study of image restoration techniques in forensic image processing

    Science.gov (United States)

    Bijhold, Jurrien; Kuijper, Arjan; Westhuis, Jaap-Harm

    1997-02-01

    In this work we investigated the forensic applicability of some state-of-the-art image restoration techniques for digitized video-images and photographs: classical Wiener filtering, constrained maximum entropy, and some variants of constrained minimum total variation. Basic concepts and experimental results are discussed. Because all methods appeared to produce different results, a discussion is given of which method is the most suitable, depending on the image objects that are questioned, prior knowledge and type of blur and noise. Constrained minimum total variation methods produced the best results for test images with simulated noise and blur. In cases where images are the most substantial part of the evidence, constrained maximum entropy might be more suitable, because its theoretical basis predicts a restoration result that shows the most likely pixel values, given all the prior knowledge used during restoration.

  19. Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casey, D. T., E-mail: casey21@llnl.gov; Munro, D. H.; Grim, G. P.; Landen, O. L.; Spears, B. K.; Fittinghoff, D. N.; Field, J. E.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Volegov, P. L.; Merrill, F. E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

  20. Quantum imaging with incoherently scattered light from a free-electron laser

    Science.gov (United States)

    Schneider, Raimund; Mehringer, Thomas; Mercurio, Giuseppe; Wenthaus, Lukas; Classen, Anton; Brenner, Günter; Gorobtsov, Oleg; Benz, Adrian; Bhatti, Daniel; Bocklage, Lars; Fischer, Birgit; Lazarev, Sergey; Obukhov, Yuri; Schlage, Kai; Skopintsev, Petr; Wagner, Jochen; Waldmann, Felix; Willing, Svenja; Zaluzhnyy, Ivan; Wurth, Wilfried; Vartanyants, Ivan A.; Röhlsberger, Ralf; von Zanthier, Joachim

    2018-02-01

    The advent of accelerator-driven free-electron lasers (FEL) has opened new avenues for high-resolution structure determination via diffraction methods that go far beyond conventional X-ray crystallography methods. These techniques rely on coherent scattering processes that require the maintenance of first-order coherence of the radiation field throughout the imaging procedure. Here we show that higher-order degrees of coherence, displayed in the intensity correlations of incoherently scattered X-rays from an FEL, can be used to image two-dimensional objects with a spatial resolution close to or even below the Abbe limit. This constitutes a new approach towards structure determination based on incoherent processes, including fluorescence emission or wavefront distortions, generally considered detrimental for imaging applications. Our method is an extension of the landmark intensity correlation measurements of Hanbury Brown and Twiss to higher than second order, paving the way towards determination of structure and dynamics of matter in regimes where coherent imaging methods have intrinsic limitations.

  1. Laser bistatic two-dimensional scattering imaging simulation of lambert cone

    Science.gov (United States)

    Gong, Yanjun; Zhu, Chongyue; Wang, Mingjun; Gong, Lei

    2015-11-01

    This paper deals with the laser bistatic two-dimensional scattering imaging simulation of lambert cone. Two-dimensional imaging is called as planar imaging. It can reflect the shape of the target and material properties. Two-dimensional imaging has important significance for target recognition. The expression of bistatic laser scattering intensity of lambert cone is obtained based on laser radar eauqtion. The scattering intensity of a micro-element on the target could be obtained. The intensity is related to local angle of incidence, local angle of scattering and the infinitesimal area on the cone. According to the incident direction of laser, scattering direction and normal of infinitesimal area, the local incidence angle and scattering angle can be calculated. Through surface integration and the introduction of the rectangular function, we can get the intensity of imaging unit on the imaging surface, and then get Lambert cone bistatic laser two-dimensional scattering imaging simulation model. We analyze the effect of distinguishability, incident direction, observed direction and target size on the imaging. From the results, we can see that the scattering imaging simulation results of the lambert cone bistatic laser is correct.

  2. Tablet surface characterisation by various imaging techniques

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Rantanen, Jukka; Yliruusi, Jouko

    2003-01-01

    The aim of this study was to characterise tablet surfaces using different imaging and roughness analytical techniques including optical microscopy, scanning electron microscopy (SEM), laser profilometry and atomic force microscopy (AFM). The test materials compressed were potassium chloride (KCl......) and sodium chloride (NaCl). It was found that all methods used suggested that the KCl tablets were smoother than the NaCl tablets and higher compression pressure made the tablets smoother. Imaging methods like optical microscopy and SEM can give useful information about the roughness of the sample surface...

  3. Applications Of Binary Image Analysis Techniques

    Science.gov (United States)

    Tropf, H.; Enderle, E.; Kammerer, H. P.

    1983-10-01

    After discussing the conditions where binary image analysis techniques can be used, three new applications of the fast binary image analysis system S.A.M. (Sensorsystem for Automation and Measurement) are reported: (1) The human view direction is measured at TV frame rate while the subject's head is free movable. (2) Industrial parts hanging on a moving conveyor are classified prior to spray painting by robot. (3) In automotive wheel assembly, the eccentricity of the wheel is minimized by turning the tyre relative to the rim in order to balance the eccentricity of the components.

  4. THEORY AND SIMULATIONS OF REFRACTIVE SUBSTRUCTURE IN RESOLVED SCATTER-BROADENED IMAGES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gwinn, Carl R., E-mail: mjohnson@cfa.harvard.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2015-06-01

    At radio wavelengths, scattering in the interstellar medium distorts the appearance of astronomical sources. Averaged over a scattering ensemble, the result is a blurred image of the source. However, Narayan and Goodman and Goodman and Narayan showed that for an incomplete average, scattering introduces refractive substructure in the image of a point source that is both persistent and wideband. We show that this substructure is quenched but not smoothed by an extended source. As a result, when the scatter-broadening is comparable to or exceeds the unscattered source size, the scattering can introduce spurious compact features into images. In addition, we derive efficient strategies to numerically compute realistic scattered images, and we present characteristic examples from simulations. Our results show that refractive substructure is an important consideration for ongoing missions at the highest angular resolutions, and we discuss specific implications for RadioAstron and the Event Horizon Telescope.

  5. Radio-analysis of hydrogenous material using neutron back-scattering technique

    International Nuclear Information System (INIS)

    Holly, Wiam Ahmed Alteghany

    2014-10-01

    In this work, we have explored the possibility of using neutron back-scattering technique in performing radio analysis for samples of hydrogenous materials such as explosives, drugs, crude oil and water, looking for different signals that may be used to discriminate these samples. Monte Carlo simulations were carried out to model the detection system and select the optimal geometry as well. The results were determined in terms of the energy spectra of the back-scattered neutrons.(Author)

  6. Pseudo colour visualization of fused multispectral laser scattering images for optical diagnosis of rheumatoid arthritis

    Science.gov (United States)

    Zabarylo, U.; Minet, O.

    2010-01-01

    Investigations on the application of optical procedures for the diagnosis of rheumatism using scattered light images are only at the beginning both in terms of new image-processing methods and subsequent clinical application. For semi-automatic diagnosis using laser light, the multispectral scattered light images are registered and overlapped to pseudo-coloured images, which depict diagnostically essential contents by visually highlighting pathological changes.

  7. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Energy Technology Data Exchange (ETDEWEB)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom.

  8. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    International Nuclear Information System (INIS)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-01-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom

  9. Authenticity techniques for PACS images and records

    Science.gov (United States)

    Wong, Stephen T. C.; Abundo, Marco; Huang, H. K.

    1995-05-01

    Along with the digital radiology environment supported by picture archiving and communication systems (PACS) comes a new problem: How to establish trust in multimedia medical data that exist only in the easily altered memory of a computer. Trust is characterized in terms of integrity and privacy of digital data. Two major self-enforcing techniques can be used to assure the authenticity of electronic images and text -- key-based cryptography and digital time stamping. Key-based cryptography associates the content of an image with the originator using one or two distinct keys and prevents alteration of the document by anyone other than the originator. A digital time stamping algorithm generates a characteristic `digital fingerprint' for the original document using a mathematical hash function, and checks that it has not been modified. This paper discusses these cryptographic algorithms and their appropriateness for a PACS environment. It also presents experimental results of cryptographic algorithms on several imaging modalities.

  10. Advanced imaging techniques in pediatric body MRI

    Energy Technology Data Exchange (ETDEWEB)

    Courtier, Jesse [UCSF Benioff Children' s Hospital, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Rao, Anil G. [Medical University of South Carolina, Department of Radiology, Charleston, SC (United States); Anupindi, Sudha A. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2017-05-15

    While there are many challenges specific to pediatric abdomino-pelvic MRI, many recent advances are addressing these challenges. It is therefore essential for radiologists to be familiar with the latest advances in MR imaging. Laudable efforts have also recently been implemented in many centers to improve the overall experience of pediatric patients, including the use of dedicated radiology child life specialists, MRI video goggles, and improved MR suite environments. These efforts have allowed a larger number of children to be scanned while awake, with fewer studies being done under sedation or anesthesia; this has resulted in additional challenges from patient motion and difficulties with breath-holding and tolerating longer scan times. In this review, we highlight common challenges faced in imaging the pediatric abdomen and pelvis and discuss the application of the newest techniques to address these challenges. Additionally, we highlight the newest advances in quantified imaging techniques, specifically in MR liver iron quantification. The techniques described in this review are all commercially available and can be readily implemented. (orig.)

  11. Application of geometric algebra to electromagnetic scattering the Clifford-Cauchy-Dirac technique

    CERN Document Server

    Seagar, Andrew

    2016-01-01

    This work presents the Clifford-Cauchy-Dirac (CCD) technique for solving problems involving the scattering of electromagnetic radiation from materials of all kinds. It allows anyone who is interested to master techniques that lead to simpler and more efficient solutions to problems of electromagnetic scattering than are currently in use. The technique is formulated in terms of the Cauchy kernel, single integrals, Clifford algebra and a whole-field approach. This is in contrast to many conventional techniques that are formulated in terms of Green's functions, double integrals, vector calculus and the combined field integral equation (CFIE). Whereas these conventional techniques lead to an implementation using the method of moments (MoM), the CCD technique is implemented as alternating projections onto convex sets in a Banach space. The ultimate outcome is an integral formulation that lends itself to a more direct and efficient solution than conventionally is the case, and applies without exception to all types...

  12. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    Science.gov (United States)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and

  13. Upright CBCT: A novel imaging technique

    Directory of Open Access Journals (Sweden)

    Xenia J Fave

    2014-03-01

    Full Text Available Purpose: We present a method for acquiring and correcting upright images using the on board CBCT imager. An upright imaging technique would allow for the introduction of upright radiation therapy treatments, which would benefit a variety of patients including those with thoracic cancers whose lung volumes are increased in an upright position and those who experience substantial discomfort during supine treatment positions.Methods: To acquire upright CBCT images, the linac head was positioned at 0 degrees, the KV imager and detector arms extended to their lateral positions, and the couch placed at 270 degrees. The KV imager was programmed to begin taking continuous fluoroscopic projections as the couch rotated from 270 to 90 degrees. The FOV was extended by performing this procedure twice, once with the detector shifted 14.5 cm towards the gantry and once with it shifted 14.5 cm away from the gantry. The two resulting sets of images were stitched together prior to reconstruction. The imaging parameters were chosen to deliver the some dose as that delivered during a simulation CT. A simulation CT was deformably registered to an upright CBCT reconstruction in order to evaluate the possibility of correcting the HU values via mapping.Results: Both spatial linearity and high contrast resolution were maintained in upright CBCT when compared to a simulation CT. Low contrast resolution and HU linearity decreased. Streaking artifacts were caused by the limited 180 degree arc angle and a sharp point artifact in the center of the axial slices resulted at the site of the stitching. A method for correcting the HUs was shown to be robust against these artifacts.Conclusion: Upright CBCT could be of great benefit to many patients. This study demonstrates its feasibility and presents solutions to some of its first hurdles before clinical implementation.--------------------------Cite this article as:Fave X, Yang J, Balter P, Court L. Upright CBCT: A novel imaging

  14. Optical characterization of bubbly flows with a near-critical-angle scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Onofri, Fabrice R.A.; Krzysiek, Mariusz [IUSTI, UMR, CNRS, University of Provence, Polytech' DME, Technopole Chateau-Gombert, Marseille (France); Mroczka, Janusz [CEPM, Technical University of Wroclaw, Wroclaw (Poland); Ren, Kuan-Fang [CORIA, UMR, CNRS, University of Rouen, Saint-Etienne-du-Rouvray (France); Radev, Stefan [IMECH, Bulgarian Academy of Sciences, Sofia (Bulgaria); Bonnet, Jean-Philippe [M2P2, UMR, CNRS, University Paul Cezanne, Aix-en-Provence (France)

    2009-10-15

    The newly developed critical angle refractometry and sizing technique (CARS) allows simultaneous and instantaneous characterization of the local size distribution and the relative refractive index (i.e. composition) of a cloud of bubbles. The paper presents the recent improvement of this technique by comparison of different light scattering models and inversion procedures. Experimental results carried in various air/water and air/water-ethanol bubbly flows clearly demonstrate the efficiency and the potential of this technique. (orig.)

  15. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    KAUST Repository

    Accardo, Angelo

    2014-06-10

    Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data. 2014 International Union of Crystallography.

  16. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    KAUST Repository

    Accardo, Angelo; Di Fabrizio, Enzo M.; Limongi, Tania; Marinaro, Giovanni; Riekel, Christian

    2014-01-01

    Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data. 2014 International Union of Crystallography.

  17. Application of new synchrotron powder diffraction techniques to anomalous scattering from glasses

    International Nuclear Information System (INIS)

    Beno, M.A.; Knapp, G.S.; Armand, P.; Price, D.L.; Saboungi, M.

    1995-01-01

    We have applied two synchrotron powder diffraction techniques to the measurement of high quality anomalous scattering diffraction data for amorphous materials. One of these methods, which uses a curved perfect crystal analyzer to simultaneously diffract multiple powder lines into a position sensitive detector has been shown to possess high resolution, low background, and very high counting rates. This data measurement technique provides excellent energy resolution while minimizing systematic errors resulting from detector nonlinearity. Anomalous scattering data for a Cesium Germanate glass collected using this technique will be presented. The second powder diffraction technique uses a flat analyzer crystal to deflect multiple diffraction lines out of the equatorial plane. Calculations show that this method possesses sufficient energy resolution for anomalous scattering experiments when a perfect crystal analyzer is used and is experimentally much simpler. Future studies will make use of a rapid sample changer allowing the scattering from the sample and a standard material (a material not containing the anomalous scatterer) to be measured alternately at each angle, reducing systematic errors due to beam instability or sample misalignment

  18. Flame analysis using image processing techniques

    Science.gov (United States)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  19. Special feature on imaging systems and techniques

    Science.gov (United States)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would

  20. Fiber break location technique utilizing stimulated Brillouin scattering effects in optical fiber

    International Nuclear Information System (INIS)

    Bakar, A A A; Al-Mansoori, M H; Mahdi, M A; Mohd Azau, M A; Zainal Abidin, M S

    2009-01-01

    A new technique of fiber break detection system in optical communication networks is proposed and experimentally demonstrated in this paper. This technique is based-on continuous wave light source rather than pulsed source that is commonly deployed in existing techniques. The nonlinear effect of stimulated Brillouin scattering is manipulated to locate the fiber-break position in optical communication networks. This technique enables the utilization of a less-sensitive photodetector to detect the Brillouin Stokes line since its intensity increases with the fiber length in the detectable region. The fiber break location can be determined with accuracy of more than 98% for fiber length less than 50 km using this technique

  1. Imaging optical scattering of butterfly wing scales with a microscope.

    Science.gov (United States)

    Fu, Jinxin; Yoon, Beom-Jin; Park, Jung Ok; Srinivasarao, Mohan

    2017-08-06

    A new optical method is proposed to investigate the reflectance of structurally coloured objects, such as Morpho butterfly wing scales and cholesteric liquid crystals. Using a reflected-light microscope and a digital single-lens reflex (DSLR) camera, we have successfully measured the two-dimensional reflection pattern of individual wing scales of Morpho butterflies. We demonstrate that this method enables us to measure the bidirectional reflectance distribution function (BRDF). The scattering image observed in the back focal plane of the objective is projected onto the camera sensor by inserting a Bertrand lens in the optical path of the microscope. With monochromatic light illumination, we quantify the angle-dependent reflectance spectra from the wing scales of Morpho rhetenor by retrieving the raw signal from the digital camera sensor. We also demonstrate that the polarization-dependent reflection of individual wing scales is readily observed using this method, using the individual wing scales of Morpho cypris . In an effort to show the generality of the method, we used a chiral nematic fluid to illustrate the angle-dependent reflectance as seen by this method.

  2. Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer

    Science.gov (United States)

    Weng, Sheng; Xu, Xiaoyun; Li, Jiasong; Wong, Stephen T. C.

    2017-10-01

    Lung cancer is the most prevalent type of cancer and the leading cause of cancer-related deaths worldwide. Coherent anti-Stokes Raman scattering (CARS) is capable of providing cellular-level images and resolving pathologically related features on human lung tissues. However, conventional means of analyzing CARS images requires extensive image processing, feature engineering, and human intervention. This study demonstrates the feasibility of applying a deep learning algorithm to automatically differentiate normal and cancerous lung tissue images acquired by CARS. We leverage the features learned by pretrained deep neural networks and retrain the model using CARS images as the input. We achieve 89.2% accuracy in classifying normal, small-cell carcinoma, adenocarcinoma, and squamous cell carcinoma lung images. This computational method is a step toward on-the-spot diagnosis of lung cancer and can be further strengthened by the efforts aimed at miniaturizing the CARS technique for fiber-based microendoscopic imaging.

  3. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy

    Science.gov (United States)

    Wei, Lu; Yu, Yong; Shen, Yihui; Wang, Meng C.; Min, Wei

    2013-01-01

    Synthesis of new proteins, a key step in the central dogma of molecular biology, has been a major biological process by which cells respond rapidly to environmental cues in both physiological and pathological conditions. However, the selective visualization of a newly synthesized proteome in living systems with subcellular resolution has proven to be rather challenging, despite the extensive efforts along the lines of fluorescence staining, autoradiography, and mass spectrometry. Herein, we report an imaging technique to visualize nascent proteins by harnessing the emerging stimulated Raman scattering (SRS) microscopy coupled with metabolic incorporation of deuterium-labeled amino acids. As a first demonstration, we imaged newly synthesized proteins in live mammalian cells with high spatial–temporal resolution without fixation or staining. Subcellular compartments with fast protein turnover in HeLa and HEK293T cells, and newly grown neurites in differentiating neuron-like N2A cells, are clearly identified via this imaging technique. Technically, incorporation of deuterium-labeled amino acids is minimally perturbative to live cells, whereas SRS imaging of exogenous carbon–deuterium bonds (C–D) in the cell-silent Raman region is highly sensitive, specific, and compatible with living systems. Moreover, coupled with label-free SRS imaging of the total proteome, our method can readily generate spatial maps of the quantitative ratio between new and total proteomes. Thus, this technique of nonlinear vibrational imaging of stable isotope incorporation will be a valuable tool to advance our understanding of the complex spatial and temporal dynamics of newly synthesized proteome in vivo. PMID:23798434

  4. New method for imaging epicardial motion with scattered radiation

    International Nuclear Information System (INIS)

    Tilley, D.G.

    1976-01-01

    A new method for monitoring cardiac motion is described which employs the secondary radiation emerging from the thorax during fluoroscopic x-ray examination of the heart. The motion of selected points on the heart's epicardial surface can be investigated by detecting the intensity variations of radiation scattered in the local vicinity of the heart-lung border. Also discussed are the radiation detectors and signal processing electronics used to produce a voltage analog depicting the periodic displacements of the heart surface. Digital data processing methods are described which are used to accomplish a transformation from a time scale for representing surface motion, to a frequency scale that is better suited for the quantitative analysis of the heart's myocardial dynamics. The dynamic radiographic technique is compared to other methods such as electrocardiography, phonocardiography, radarkymography, and echocardiography; which are also used to sense the dynamic state of the heart. A three-dimensional Monte Carlo computer code is used to investigate the transport of x-radiation in the canine thorax. The Monte Carlo computer studies are used to explore the capabilities and limitations of the dynamic radiograph as it is used to sense motions of the canine heart. Animal studies were conducted with the dynamic radiograph to determine the reproducibility of the examination procedure. Canine case studies are reported showing the effects of increased myocardial contractility resulting from intervention with these inotropic agents

  5. SCATTER

    International Nuclear Information System (INIS)

    Broome, J.

    1965-11-01

    The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)

  6. A Compton scattering technique to determine wood density and locating defects in it

    International Nuclear Information System (INIS)

    Tondon, Akash; Sandhu, B. S.; Singh, Bhajan; Singh, Mohinder

    2015-01-01

    A Compton scattering technique is presented to determine density and void location in the given wooden samples. The technique uses a well collimated gamma ray beam from 137 Cs along with the NaI(Tl) scintillation detector. First, a linear relationship is established between Compton scattered intensity and known density of chemical compounds, and then density of the wood is determined from this linear relation. In another experiment, the ability of penetration of gamma rays is explored to detect voids in wooden (low Z) sample. The sudden reduction in the Compton scattered intensities agrees well with the position and size of voids in the wooden sample. It is concluded that wood density and the voids of size ∼ 4 mm and more can be detected easily by this method

  7. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    International Nuclear Information System (INIS)

    Thing, Rune S.; Bernchou, Uffe; Brink, Carsten; Mainegra-Hing, Ernesto

    2013-01-01

    Purpose: Cone beam computed tomography (CBCT) image quality is limited by scattered photons. Monte Carlo (MC) simulations provide the ability of predicting the patient-specific scatter contamination in clinical CBCT imaging. Lengthy simulations prevent MC-based scatter correction from being fully implemented in a clinical setting. This study investigates the combination of using fast MC simulations to predict scatter distributions with a ray tracing algorithm to allow calibration between simulated and clinical CBCT images. Material and methods: An EGSnrc-based user code (egs c bct), was used to perform MC simulations of an Elekta XVI CBCT imaging system. A 60keV x-ray source was used, and air kerma scored at the detector plane. Several variance reduction techniques (VRTs) were used to increase the scatter calculation efficiency. Three patient phantoms based on CT scans were simulated, namely a brain, a thorax and a pelvis scan. A ray tracing algorithm was used to calculate the detector signal due to primary photons. A total of 288 projections were simulated, one for each thread on the computer cluster used for the investigation. Results: Scatter distributions for the brain, thorax and pelvis scan were simulated within 2 % statistical uncertainty in two hours per scan. Within the same time, the ray tracing algorithm provided the primary signal for each of the projections. Thus, all the data needed for MC-based scatter correction in clinical CBCT imaging was obtained within two hours per patient, using a full simulation of the clinical CBCT geometry. Conclusions: This study shows that use of MC-based scatter corrections in CBCT imaging has a great potential to improve CBCT image quality. By use of powerful VRTs to predict scatter distributions and a ray tracing algorithm to calculate the primary signal, it is possible to obtain the necessary data for patient specific MC scatter correction within two hours per patient

  8. Computer technique for correction of nonhomogeneous distribution in radiologic images

    International Nuclear Information System (INIS)

    Florian, Rogerio V.; Frere, Annie F.; Schiable, Homero; Marques, Paulo M.A.; Marques, Marcio A.

    1996-01-01

    An image processing technique to provide a 'Heel' effect compensation on medical images is presented. It is reported that the technique can improve the structures detection due to background homogeneity and can be used for any radiologic system

  9. Ultrasonic imaging in LMFBRs using digital techniques

    International Nuclear Information System (INIS)

    Fothergill, J.R.; McKnight, J.A.; Barrett, L.M.

    Ultrasonic technology for providing images of components immersed in the opaque sodium of LMFBRs is being developed at RNL. For many years the application has been restricted by the unavailability of convenient ultrasonic sources and receivers capable of withstanding the reactor environment. Until recently, for example, important ultrasonic instrument design, such as for future sweep arms, had to be based on waveguided ultrasonics. RNL have developed an economic immersible transducer that can be deployed during reactor shut-down, when many demands for ultrasonic imaging are made. The transducer design is not suited at present to the sophisticated techniques of phased arrays; consequently image formation must depend on the physical scanning of a target using one or more transducers in pulse-echo mode. The difficulties of access into a fast reactor impose further restrictions. Some applications may involve easy scanning sequences, thus the sweep arm requires only a rotation to provide a map of the reactor core area. For a more detailed examination of the same area, however, special engineering solutions are needed to provide a more satisfactory scanning sequence. A compromise solution involving the rotating shield movement is being used for a PFR experiment to examine a limited area of the core. (author)

  10. Coherent Raman scattering microscopy for label-free imaging of live amphioxus

    Science.gov (United States)

    Yu, Zhilong; Chen, Tao; Zhang, Xiannian; Shen, Jie; Chen, Junyuan; Huang, Yanyi

    2012-03-01

    The existence of notochord distinguishes chordates from other phyla. Amphioxus is the only animal that keeps notochord during the whole life. Notochord is a unique organ for amphioxus, with its vertically arranged muscular notochordal plates, which is different from notochords in embryos of other chordates. We use stimulated Raman scattering (SRS) microscopy as a non-invasive technique to image the chemical components in amphioxus notochord. SRS provides chemical specificity as spontaneous Raman does and offers a higher sensitivity for fast acquisition. Unlike coherent anti- Stokes Raman scattering (CARS) microscopy, SRS microscopy doesn't have non-resonant background and can better differentiate different components in the specimen. We verify that the notochord is a protein-rich organ, which agrees well with the result of conventional staining methods. Detailed structures in notochordal plates and notochordal sheath are revealed by SRS microscopy with diffraction limited resolution. Our experiment shows that SRS microscopy is an excellent imaging tool for biochemical research with its intrinsic chemical selectivity, high spatiotemporal resolution and native 3D optical sectioning ability.

  11. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Science.gov (United States)

    Raylman, R. R.; Majewski, S.; Wojcik, R.; Weisenberger, A. G.; Kross, B.; Popov, V.

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of /sup 18/F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom. Finally, the effect of object size on image counts and a correction for this effect were explored. The imager used in this study consisted of two PEM detector heads mounted 20 cm apart on a Lorad biopsy apparatus. The results demonstrated that a majority of the accidental coincidence events (/spl sim/80%) detected by this system were produced by radiotracer uptake in the adipose and muscle tissue of the torso. The presence of accidental coincidence events was shown to reduce lesion detectability. Much of this effect was eliminated by correction of the images utilizing estimates of accidental-coincidence contamination acquired with delayed coincidence circuitry built into the PEM system. The Compton scatter fraction for this system was /spl sim/14%. Utilization of a new scatter correction algorithm reduced the scatter fraction to /spl sim/1.5%. Finally, reduction of count recovery due to object size was measured and a correction to the data applied. Application of correction techniques

  12. Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?

    Science.gov (United States)

    Poludniowski, G.; Evans, P. M.; Webb, S.

    2009-11-01

    Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'interference function' model into a custom-written Monte Carlo code. First, we conduct simulations of scatter from isolated voxels of soft tissue, adipose, cortical bone and spongiosa. Then, we simulate scatter profiles from a cylinder of water and from phantoms of a patient's head, thorax and pelvis, constructed from diagnostic-quality CT data sets. Lastly, we reconstruct CT numbers from simulated sets of projection images and investigate the quantitative effects of the approximation. We show that the IAA can produce errors of several per cent of the total scatter, across a projection image, for typical x-ray beams and patients. The errors in reconstructed CT number, however, for the phantoms simulated, were small (typically < 10 HU). The IAA can therefore be considered sufficient for the modelling of scatter correction in CT imaging. Where accurate quantitative estimates of scatter in individual projection images are required, however, the appropriate interference functions should be included.

  13. Improved scatter correction with factor analysis for planar and SPECT imaging

    Science.gov (United States)

    Knoll, Peter; Rahmim, Arman; Gültekin, Selma; Šámal, Martin; Ljungberg, Michael; Mirzaei, Siroos; Segars, Paul; Szczupak, Boguslaw

    2017-09-01

    Quantitative nuclear medicine imaging is an increasingly important frontier. In order to achieve quantitative imaging, various interactions of photons with matter have to be modeled and compensated. Although correction for photon attenuation has been addressed by including x-ray CT scans (accurate), correction for Compton scatter remains an open issue. The inclusion of scattered photons within the energy window used for planar or SPECT data acquisition decreases the contrast of the image. While a number of methods for scatter correction have been proposed in the past, in this work, we propose and assess a novel, user-independent framework applying factor analysis (FA). Extensive Monte Carlo simulations for planar and tomographic imaging were performed using the SIMIND software. Furthermore, planar acquisition of two Petri dishes filled with 99mTc solutions and a Jaszczak phantom study (Data Spectrum Corporation, Durham, NC, USA) using a dual head gamma camera were performed. In order to use FA for scatter correction, we subdivided the applied energy window into a number of sub-windows, serving as input data. FA results in two factor images (photo-peak, scatter) and two corresponding factor curves (energy spectra). Planar and tomographic Jaszczak phantom gamma camera measurements were recorded. The tomographic data (simulations and measurements) were processed for each angular position resulting in a photo-peak and a scatter data set. The reconstructed transaxial slices of the Jaszczak phantom were quantified using an ImageJ plugin. The data obtained by FA showed good agreement with the energy spectra, photo-peak, and scatter images obtained in all Monte Carlo simulated data sets. For comparison, the standard dual-energy window (DEW) approach was additionally applied for scatter correction. FA in comparison with the DEW method results in significant improvements in image accuracy for both planar and tomographic data sets. FA can be used as a user

  14. Mapping local anisotropy axis for scattering media using backscattering Mueller matrix imaging

    Science.gov (United States)

    He, Honghui; Sun, Minghao; Zeng, Nan; Du, E.; Guo, Yihong; He, Yonghong; Ma, Hui

    2014-03-01

    Mueller matrix imaging techniques can be used to detect the micro-structure variations of superficial biological tissues, including the sizes and shapes of cells, the structures in cells, and the densities of the organelles. Many tissues contain anisotropic fibrous micro-structures, such as collagen fibers, elastin fibers, and muscle fibers. Changes of these fibrous structures are potentially good indicators for some pathological variations. In this paper, we propose a quantitative analysis technique based on Mueller matrix for mapping local anisotropy axis of scattering media. By conducting both experiments on silk sample and Monte Carlo simulation based on the sphere-cylinder scattering model (SCSM), we extract anisotropy axis parameters from different backscattering Mueller matrix elements. Moreover, we testify the possible applications of these parameters for biological tissues. The preliminary experimental results of human cancerous samples show that, these parameters are capable to map the local axis of fibers. Since many pathological changes including early stage cancers affect the well aligned structures for tissues, the experimental results indicate that these parameters can be used as potential tools in clinical applications for biomedical diagnosis purposes.

  15. Characterizing the behavior of scattered radiation in multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, Artur, E-mail: artur.sossin@gmail.com [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Rebuffel, V.; Tabary, J. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Univ Lyon, INSA-Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Centre Léon Bérard, CREATIS UMR 5220 U1206, F-69373 Lyon (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)

    2017-04-01

    Scattered radiation results in various undesirable effects in medical diagnostics, non-destructive testing (NDT) and security x-ray imaging. Despite numerous studies characterizing this phenomenon and its effects, the knowledge of its behavior in the energy domain remains limited. The present study aims at summarizing some key insights on scattered radiation originating from the inspected object. In addition, various simulations and experiments with limited collimation on both simplified and realistic phantoms were conducted in order to study scatter behavior in multi-energy x-ray imaging. Results showed that the spectrum shape of the scatter component can be considered preserved in the first approximation across the image plane for various acquisition geometries and phantoms. The variations exhibited by the scatter spectrum were below 10% for most examined cases. Furthermore, the corresponding spectrum shape proved to be also relatively invariant for different experimental angular projections of one of the examined phantoms. The observed property of scattered radiation can potentially lead to the decoupling of spatial and energy scatter components, which can in turn enable speed ups in scatter simulations and reduce the complexity of scatter correction.

  16. Three dimensional image presentation techniques in medical imaging

    International Nuclear Information System (INIS)

    Pizer, S.M.; Fuchs, H.

    1987-01-01

    Medical images can be presented three-dimensionally by techniques that either calculate the effect of reflections from surfaces predefined from slices or project a three-space of luminosities computed from voxel intensities onto the visual receptors. Sliced-based reflective displays are the most common type. Means of producing surface descriptions both via voxel sets and via slice contours are reviewed. Advantages of and means of transparent display to allow the appreciation of the 3D relationships among objects are set forth. Ways to produce additional depth cues by stereoscopy and the kinetic depth effect are discussed, and the importance of interactive modification of viewpoint, clipping plane, displayed objects, etc. are explained. A new device, UNC's Pixel-planes, for accomplishing this in real time are illustrated. Voxel intensity based display methods avoid the need for time-consuming predefinition of object surfaces and thus can allow exploration of 3D image data. Varifocal mirror hardware and fast computation of one or more projections based on object probabilities are two of the more important approaches. While 3D display provides important information about 3D relationships, it cannot provide the kind of appreciation of subtle grey-scale changes that 2D display can. Methods that can combine these two kinds of information by superimposing 2D grey-scale slices on or in the context of 3D displays are discussed. Applications of these techniques for both diagnosis and radiotherapy planning are used as illustrations and guides to the usefulness of these techniques with CT, MRI, and other 3D medical imaging modalities. 24 refs.; 5 figs

  17. A non-destructive scattering technique for investigation of pulmonary edema

    International Nuclear Information System (INIS)

    Sharma, Amandeep; Singh, Bhajan; Sandhu, B.S.

    2012-01-01

    In many biomedical studies, the density of a biological system is of great importance to investigate its structure or functioning. In the present work, for the density measurement of lung phantom, the scattering of 59.54 and 662 keV gamma photons are studied using HPGe and NaI(Tl) detectors, respectively. Phantoms simulating lung density are prepared by mixing appropriate amount of saw dust and distilled water. The regression lines, obtained from experimental data of scattered spectra, provide the amount of excessive water storage in lungs, hence the technique has the potential for a measure of pathological state like pulmonary edema. The technique is quite sensitive for small change (∼23 Kg m −3 ) in the density of lung phantom. Also, Compton scatter profile measurements (in case of 59.54 keV) results that the technique is less sensitive beyond chest wall thickness of ∼26 mm due to overlying scatter components in the measured spectrum. A portable non-invasive system described presently may be used for various industrial applications also. - Highlights: ► Measurements specify the pathological state like pulmonary edema. ► Rayleigh to Compton ratio, Wing ratio and Compton profile authenticate the results. ► The radiation dose available to chest will be lesser in comparison to chest X-ray. ► Portable system can be used for density measurements in industrial applications.

  18. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces.

    Science.gov (United States)

    Schein, Perry; Ashcroft, Colby K; O'Dell, Dakota; Adam, Ian S; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-08-15

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically "pushing" a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques.

  19. A novel phantom design for emission tomography enabling scatter- and attenuation-''free'' single-photon emission tomography imaging

    International Nuclear Information System (INIS)

    Larsson, S.A.; Johansson, L.; Jonsson, C.; Pagani, M.; Jacobsson, H.

    2000-01-01

    A newly designed technique for experimental single-photon emission tomography (SPET) and positron emission tomography (PET) data acquisition with minor disturbing effects from scatter and attenuation has been developed. In principle, the method is based on discrete sampling of the radioactivity distribution in 3D objects by means of equidistant 2D planes. The starting point is a set of digitised 2D sections representing the radioactivity distribution of the 3D object. Having a radioactivity-related grey scale, the 2D images are printed on paper sheets using radioactive ink. The radioactive sheets can be shaped to the outline of the object and stacked into a 3D structure with air or some arbitrary dense material in between. For this work, equidistantly spaced transverse images of a uniform cylindrical phantom and of the digitised Hoffman rCBF phantom were selected and printed out on paper sheets. The uniform radioactivity sheets were imaged on the surface of a low-energy ultra-high-resolution collimator (4 mm full-width at half-maximum) of a three-headed SPET camera. The reproducibility was 0.7% and the uniformity was 1.2%. Each rCBF sheet, containing between 8.3 and 80 MBq of 99m TcO 4 - depending on size, was first imaged on the collimator and then stacked into a 3D structure with constant 12 mm air spacing between the slices. SPET was performed with the sheets perpendicular to the central axis of the camera. The total weight of the stacked rCBF phantom in air was 63 g, giving a scatter contribution comparable to that of a point source in air. The overall attenuation losses were <20%. A second SPET study was performed with 12-mm polystyrene plates in between the radioactive sheets. With polystyrene plates, the total phantom weight was 2300 g, giving a scatter and attenuation magnitude similar to that of a patient study. With the proposed technique, it is possible to obtain ''ideal'' experimental images (essentially built up by primary photons) for comparison with

  20. Small angle X-ray scattering experiments with three-dimensional imaging gas detectors

    International Nuclear Information System (INIS)

    La Monaca, A.; Iannuzzi, M.; Messi, R.

    1985-01-01

    Measurements of small angle X-ray scattering of lupolen - R, dry collagen and dry cornea are presented. The experiments have been performed with synchrotron radiation and a new three-dimensional imaging drif-chamber gas detector

  1. Imaging of Scattered Wavefields in Passive and Controlled-source Seismology

    KAUST Repository

    AlTheyab, Abdullah

    2015-01-01

    complex and our demands for higher resolution increase. This dissertation introduces two new methods that use scattered waves for improving the resolution of subsurface images: natural migration of passive seismic data and convergent full

  2. From experimental imaging techniques to virtual embryology.

    Science.gov (United States)

    Weninger, Wolfgang J; Tassy, Olivier; Darras, Sébastien; Geyer, Stefan H; Thieffry, Denis

    2004-01-01

    Modern embryology increasingly relies on descriptive and functional three dimensional (3D) and four dimensional (4D) analysis of physically, optically, or virtually sectioned specimens. To cope with the technical requirements, new methods for high detailed in vivo imaging, as well as the generation of high resolution digital volume data sets for the accurate visualisation of transgene activity and gene product presence, in the context of embryo morphology, were recently developed and are under construction. These methods profoundly change the scientific applicability, appearance and style of modern embryo representations. In this paper, we present an overview of the emerging techniques to create, visualise and administrate embryo representations (databases, digital data sets, 3-4D embryo reconstructions, models, etc.), and discuss the implications of these new methods on the work of modern embryologists, including, research, teaching, the selection of specific model organisms, and potential collaborators.

  3. Alzheimer's disease imaging biomarkers using small-angle x-ray scattering

    Science.gov (United States)

    Choi, Mina; Alam, Nadia; Dahal, Eshan; Ghammraoui, Bahaa; Badano, Aldo

    2016-03-01

    There is a need for novel imaging techniques for the earlier detection of Alzheimer's disease (AD). Two hallmarks of AD are amyloid beta (Aβ) plaques and tau tangles that are formed in the brain. Well-characterized x-ray cross sections of Aβ and tau proteins in a variety of structural states could potentially be used as AD biomarkers for small-angle x-ray scattering (SAXS) imaging without the need for injectable probes or contrast agents. First, however, the protein structures must be controlled and measured to determine accurate biomarkers for SAXS imaging. Here we report SAXS measurements of Aβ42 and tau352 in a 50% dimethyl sulfoxide (DMSO) solution in which these proteins are believed to remain monomeric because of the stabilizing interaction of DMSO solution. Our SAXS analysis showed the aggregation of both proteins. In particular, we found that the aggregation of Aβ42 slowly progresses with time in comparison to tau352 that aggregates at a faster rate and reaches a steady-state. Furthermore, the measured signals were compared to the theoretical SAXS profiles of Aβ42 monomer, Aβ42 fibril, and tau352 that were computed from their respective protein data bank structures. We have begun the work to systematically control the structural states of these proteins in vitro using various solvent conditions. Our future work is to utilize the distinct SAXS profiles of various structural states of Aβ and tau to build a library of signals of interest for SAXS imaging in brain tissue.

  4. The application of correlation techniques to the angular spectrum of scattered radiation from tokamak plasmas

    International Nuclear Information System (INIS)

    Nazikian, R.

    1990-07-01

    In the limit of the first Born approximation for a partially coherent secondary source, consisting of a spatially random plasma illuminated by a coherent plane wave, it is shown that the spectral coherence of the scattered radiation as measured on an arbitrary plane beyond the scatterer conveys information on the three dimensional intensity distribution of the random source. By defining a new two point statistical measure of the random field, closely related to the cross spectral density, we show that the fluctuation amplitude of the random source along the direction of the incident plane wave may by recovered from the measurement of the scattered radiation. The application of cross spectral techniques to fluctuation studies on tokamaks is considered. 7 refs

  5. Use of imaging techniques in radiation oncology

    International Nuclear Information System (INIS)

    Borras, C.; Rudder, D.; Jimenez, P.

    2002-01-01

    Imaging techniques are used in radiation oncology for: disease diagnosis, tumor localization and staging, treatment simulation, treatment planning, clinical dosimetry displays, treatment verification and patient follow up. In industrialized countries, up to the 1970's, conventional radiology was used for diagnosis, simulation and planning. Gamma cameras helped tumor staging by detecting metastases. In the 1970's, simulators were developed for exclusive use in radiation oncology departments. Clinical dosimetry displays consisted mainly in axial dose distributions. Treatment verification was done placing films in the radiation beam with the patient under treatment. In the 1980's, 2-D imaging was replaced by 3-D displays with the incorporation of computerized tomography (CT) scanners, and in the 1990's of magnetic resonance imagers (MRI). Ultrasound units, briefly used in the 1960's for treatment planning purposes, were found again useful, mainly for brachytherapy dosimetry. Digital portal imagers allowed accurate treatment field verification. Treatment planning systems incorporated the capability of 'inverse planning', i.e. once the desired dose distribution is decided, the field size, gantry, collimator and couch angles, etc, can be automatically selected. At the end of the millennium, image fusion permitted excellent anatomical display of tumors and adjacent sensitive structures. The 2000's are seeing a change from anatomical to functional imaging with the advent of MRI units capable of spectroscopy at 3 Tesla and positron emission tomography (PET) units. In 2001 combined CT/PET units appeared in RT departments. In 2002, fusion of CT, MRI and PET images became available. Molecular imaging is being developed. The situation in developing countries is quite different. To start with, cancer incidence is different in developing and in industrialized countries. In addition, the health services pattern is different: Cancer treatment is mostly done in public institutions

  6. Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?

    OpenAIRE

    Poludniowski, G; Evans, PM; Webb, S

    2009-01-01

    Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'inte...

  7. Detection of early carious lesions using contrast enhancement with coherent light scattering (speckle imaging)

    International Nuclear Information System (INIS)

    Deana, A M; Jesus, S H C; Koshoji, N H; Bussadori, S K; Oliveira, M T

    2013-01-01

    Currently, dental caries still represent one of the chronic diseases with the highest prevalence and present in most countries. The interaction between light and teeth (absorption, scattering and fluorescence) is intrinsically connected to the constitution of the dental tissue. Decay induced mineral loss introduces a shift in the optical properties of the affected tissue; therefore, study of these properties may produce novel techniques aimed at the early diagnosis of carious lesions. Based on the optical properties of the enamel, we demonstrate the application of first-order spatial statistics in laser speckle imaging, allowing the detection of carious lesions in their early stages. A highlight of this noninvasive, non-destructive, real time and cost effective approach is that it allows a dentist to detect a lesion even in the absence of biofilm or moisture. (paper)

  8. Absorption imaging of a quasi-two-dimensional gas: a multiple scattering analysis

    International Nuclear Information System (INIS)

    Chomaz, L; Corman, L; Yefsah, T; Desbuquois, R; Dalibard, J

    2012-01-01

    Absorption imaging with quasi-resonant laser light is a commonly used technique for probing ultra-cold atomic gases in various geometries. In this paper, we investigate some non-trivial aspects of this method when applying the method to in situ diagnosis of a quasi-two-dimensional (2D) gas. Using Monte Carlo simulations we study the modification of the absorption cross-section of a photon when it undergoes multiple scattering in the gas. We determine the variations of the optical density with various parameters, such as the detuning of the light from the atomic resonance and the thickness of the gas. We compare our results to the known 3D result (the Beer-Lambert law) and outline the specific features of the 2D case. (paper)

  9. Theoretical study of the influence of small angle scattering on diffraction enhanced imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: zhupp@ihep.ac.cn; Huang Wanxia; Yuan, Qingxi [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Wang Junyue; Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graduate School of the Chinese Academy of Sciences, 100864 Beijing (China); Chen Bo [Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: wuzy@ihep.ac.cn

    2007-07-15

    Small angle scattering plays an important role in diffraction enhanced imaging (DEI). The DEI equation proposed by Chapman is accepted and widely used by many applications in medical, biological and material researches. However, in this framework the contribution of the small angle scattering determined by the crystal analyzer is neglected and the extinction contrast caused by the rejection of the small angle scattering by the analyzer is not explicitly expressed. In this contribution we introduce two additional terms in the DEI equation that describe the additional background introduced by the small angle scattering collected by the analyzer crystal and the extinction contrast associated to the rejection of the small angle scattering by the analyzer crystal, respectively. Four kinds of images of the DEI method were considered by using these revised equations and results were presented and discussed.

  10. Theoretical study of the influence of small angle scattering on diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Zhu Peiping; Huang Wanxia; Yuan, Qingxi; Wang Junyue; Shu Hang; Chen Bo; Wu Ziyu

    2007-01-01

    Small angle scattering plays an important role in diffraction enhanced imaging (DEI). The DEI equation proposed by Chapman is accepted and widely used by many applications in medical, biological and material researches. However, in this framework the contribution of the small angle scattering determined by the crystal analyzer is neglected and the extinction contrast caused by the rejection of the small angle scattering by the analyzer is not explicitly expressed. In this contribution we introduce two additional terms in the DEI equation that describe the additional background introduced by the small angle scattering collected by the analyzer crystal and the extinction contrast associated to the rejection of the small angle scattering by the analyzer crystal, respectively. Four kinds of images of the DEI method were considered by using these revised equations and results were presented and discussed

  11. A technique of scatter and glare correction for videodensitometric studies in digital subtraction videoangiography

    International Nuclear Information System (INIS)

    Shaw, C.G.; Ergun, D.L.; Myerowitz, P.D.; Van Lysel, M.S.; Mistretta, C.A.; Zarnstorff, W.C.; Crummy, A.B.

    1982-01-01

    The logarithmic amplification of video signals and the availability of data in digital form make digital subtraction videoangiography a suitable tool for videodensitometric estimation of physiological quantities. A system for this purpose was implemented with a digital video image processor. However, it was found that the radiation scattering and veiling glare present in the image-intensified video must be removed to make meaningful quantitations. An algorithm to make such a correction was developed and is presented. With this correction, the videodensitometry system was calibrated with phantoms and used to measure the left ventricular ejection fraction of a canine heart

  12. Development of nonintrusive, scatter-independent techniques for measurement of liquid density inside dense sprays

    Science.gov (United States)

    Hartfield, Roy

    1994-01-01

    A nonintrusive optical technique for measuring the liquid density in sprays used to simulate LOX injector flows is under development. This manuscript is a report on work toward that development which is currently in progress. The technique is a scatter-independent, absorption-based approach which depends on the numerical inversion of a collection of absorption profiles. For the case in which visible radiation passes through liquid-gas interfaces so numerous in sprays, substantial reductions and alterations in the signal result from scattering even in the absence of absorption. To avoid these problems, X-Rays will be used as the absorbed radiation. The experimental process is simulated by integrating the absorption spectrum for a known distribution, adding instrument noise to this 'measurement', creating a projection from the 'measurement', filtering the projection, inverting the projection, and comparing the results with the original prescribed distribution.

  13. Local scattering property scales flow speed estimation in laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Ji, Yuanyuan; Yu, Hang; Thakor, Nitish V; Li, Nan

    2015-01-01

    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia. (letter)

  14. Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip.

    Science.gov (United States)

    Bianco, V; Paturzo, M; Gennari, O; Finizio, A; Ferraro, P

    2013-10-07

    We tackle the problem of information recovery and imaging through scattering microfluidic chips by means of digital holography (DH). In many cases the chip can become opalescent due to residual deposits settling down the inner channel faces, biofilm formation, scattering particle uptake by the channel cladding or its damaging by corrosive substances, or even by condensing effect on the exterior channels walls. In these cases white-light imaging is severely degraded and no information is obtainable at all about the flowing samples. Here we investigate the problem of counting and estimating velocity of cells flowing inside a scattering chip. Moreover we propose and test a method based on the recording of multiple digital holograms to retrieve improved phase-contrast images despite the strong scattering effect. This method helps, thanks to DH, to recover information which, otherwise, would be completely lost.

  15. A critical comparison of electron scattering cross sections measured by single collision and swarm techniques

    International Nuclear Information System (INIS)

    Buckman, S.J.; Brunger, M.J.

    1996-07-01

    Electron scattering cross sections (elastic, rotational and vibrational excitation) for a number of atomic and (relatively) single molecular systems are examined. Particular reference is made to the level of agreement which is obtained from the application of the completely different measurement philosophies embodied in 'beam' and 'swarm' techniques. The range of energies considered is generally restricted to the region below 5 eV. 142 refs., 1 tab., 12 figs

  16. Quasiparticle scattering image in hidden order phases and chiral superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Thalmeier, Peter [Max Planck Institute for Chemical Physics of Solids, 01187 Dresden (Germany); Akbari, Alireza, E-mail: alireza@apctp.org [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Department of Physics, and Max Planck POSTECH Center for Complex Phase Materials, POSTECH, Pohang 790-784 (Korea, Republic of)

    2016-02-15

    The technique of Bogoliubov quasiparticle interference (QPI) has been successfully used to investigate the symmetry of unconventional superconducting gaps, also in heavy fermion compounds. It was demonstrated that QPI can distinguish between the d-wave singlet candidates in CeCoIn{sub 5}. In URu{sub 2}Si{sub 2} presumably a chiral d-wave singlet superconducting (SC) state exists inside a multipolar hidden order (HO) phase. We show that hidden order leaves an imprint on the symmetry of QPI pattern that may be used to determine the essential question whether HO in URu{sub 2}Si{sub 2} breaks the in-plane rotational symmetry or not. We also demonstrate that the chiral d-wave SC gap leads to a crossover to a quasi-2D QPI spectrum below T{sub c} which sharpens the HO features. Furthermore we investigate the QPI image of chiral p-wave multigap superconductor Sr{sub 2}RuO{sub 4}. - Highlights: • The chiral multigap structure of Sr{sub 2}RuO{sub 4} leads to rotation of QPI spectrum with bias voltage. • 5f band reconstruction in hidden order phase of URu{sub 2}Si{sub 2} is obtained from two orbital model. • The chiral superconductivity in URu{sub 2}Si{sub 2} leads to quasi-2D quasiparticle interference (QPI).

  17. Image Mosaic Techniques OptimizationUsing Wavelet

    Institute of Scientific and Technical Information of China (English)

    ZHOUAn-qi; CUILi

    2014-01-01

    This essay concentrates on two key procedures of image mosaic——image registration and imagefusion.Becauseof the character of geometric transformation invariance of edge points, wecalculate the angle difference of the direction vector ofedge points in different images anddraw an angle difference histogramto adjust the rotationproblem. Through this way, algorithm based on gray information is expandedandcan be used in images withdisplacementand rotation. Inthe term of image fusion, wavelet multi-scale analysis is used to fuse spliced images. In order to choose the best method of imagefusion,weevaluate the results of different methods of image fusion by cross entropy.

  18. Image combination enhancement method for X-ray compton back-scattering security inspection body scanner

    International Nuclear Information System (INIS)

    Wang Huaiying; Zhang Yujin; Yang Lirui; Li Dong

    2011-01-01

    As for X-ray Compton Back-Scattering (CBS) body scanner, image clearness is very important for the performance of detecting the contraband hidden on the body. A new image combination enhancement method is provided based on characteristics of CBS body images and points of human vision. After processed by this method, the CBS image will be obviously improved with clear levels, distinct outline and uniform background. (authors)

  19. Fast damage imaging using the time-reversal technique in the frequency–wavenumber domain

    International Nuclear Information System (INIS)

    Zhu, R; Huang, G L; Yuan, F G

    2013-01-01

    The time-reversal technique has been successfully used in structural health monitoring (SHM) for quantitative imaging of damage. However, the technique is very time-consuming when it is implemented in the time domain. In this paper, we study the technique in the frequency–wavenumber (f–k) domain for fast real-time imaging of multiple damage sites in plates using scattered flexural plate waves. Based on Mindlin plate theory, the time reversibility of dispersive flexural waves in an isotropic plate is theoretically investigated in the f–k domain. A fast damage imaging technique is developed by using the cross-correlation between the back-propagated scattered wavefield and the incident wavefield in the frequency domain. Numerical simulations demonstrate that the proposed technique cannot only localize multiple damage sites but also potentially identify their sizes. Moreover, the time-reversal technique in the f–k domain is about two orders of magnitude faster than the method in the time domain. Finally, experimental testing of an on-line SHM system with a sparse piezoelectric sensor array is conducted for fast multiple damage identification using the proposed technique. (paper)

  20. Gas analysis within remote porous targets using LIDAR multi-scatter techniques

    Science.gov (United States)

    Guan, Z. G.; Lewander, M.; Grönlund, R.; Lundberg, H.; Svanberg, S.

    2008-11-01

    Light detection and ranging (LIDAR) experiments are normally pursued for range resolved atmospheric gas measurements or for analysis of solid target surfaces using fluorescence of laser-induced breakdown spectroscopy. In contrast, we now demonstrate the monitoring of free gas enclosed in pores of materials, subject to impinging laser radiation, employing the photons emerging back to the surface laterally of the injection point after penetrating the medium in heavy multiple scattering processes. The directly reflected light is blocked by a beam stop. The technique presented is a remote version of the newly introduced gas in scattering media absorption spectroscopy (GASMAS) technique, which so far was pursued with the injection optics and the detector in close contact with the sample. Feasibility measurements of LIDAR-GASMAS on oxygen in polystyrene foam were performed at a distance of 6 m. Multiple-scattering induced delays of the order of 50 ns, which corresponds to 15 m optical path length, were observed. First extensions to a range of 60 m are discussed. Remote observation of gas composition anomalies in snow using differential absorption LIDAR (DIAL) may find application in avalanche victim localization or for leak detection in snow-covered natural gas pipelines. Further, the techniques may be even more useful for short-range, non-intrusive GASMAS measurements, e.g., on packed food products.

  1. Passive 3D imaging of nuclear waste containers with Muon Scattering Tomography

    Science.gov (United States)

    Thomay, C.; Velthuis, J.; Poffley, T.; Baesso, P.; Cussans, D.; Frazão, L.

    2016-03-01

    The non-invasive imaging of dense objects is of particular interest in the context of nuclear waste management, where it is important to know the contents of waste containers without opening them. Using Muon Scattering Tomography (MST), it is possible to obtain a detailed 3D image of the contents of a waste container on reasonable timescales, showing both the high and low density materials inside. We show the performance of such a method on a Monte Carlo simulation of a dummy waste drum object containing objects of different shapes and materials. The simulation has been tuned with our MST prototype detector performance. In particular, we show that both a tungsten penny of 2 cm radius and 1 cm thickness, and a uranium sheet of 0.5 cm thickness can be clearly identified. We also show the performance of a novel edge finding technique, by which the edges of embedded objects can be identified more precisely than by solely using the imaging method.

  2. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    Science.gov (United States)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  3. Monte Carlo simulation of photon scattering in x-ray absorption imaging of high-intensity discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J, E-mail: jjcurry@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2010-06-16

    Coherent and incoherent scattering of x-rays during x-ray absorption imaging of high-intensity discharge lamps have been studied with Monte Carlo simulations developed specifically for this purpose. The Monte Carlo code is described and some initial results are discussed. Coherent scattering, because of its angular concentration in the forward direction, is found to be the most significant scattering mechanism. Incoherent scattering, although comparably strong, is not as significant because it results primarily in photons being scattered in the rearward direction and therefore out of the detector. Coherent scattering interferes with the detected absorption signal because the path of a scattered photon through the object to be imaged is unknown. Although scattering is usually a small effect, it can be significant in regions of high contrast. At the discharge/wall interface, as many as 50% of the detected photons are scattered photons. The effect of scattering on analysis of Hg distributions has not yet been quantified.

  4. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction

    International Nuclear Information System (INIS)

    Kadrmas, Dan J.; Karimi, Seemeen S.; Frey, Eric C.; Tsui, Benjamin M.W.

    1998-01-01

    Accurate scatter compensation in SPECT can be performed by modelling the scatter response function during the reconstruction process. This method is called reconstruction-based scatter compensation (RBSC). It has been shown that RBSC has a number of advantages over other methods of compensating for scatter, but using RBSC for fully 3D compensation has resulted in prohibitively long reconstruction times. In this work we propose two new methods that can be used in conjunction with existing methods to achieve marked reductions in RBSC reconstruction times. The first method, coarse-grid scatter modelling, significantly accelerates the scatter model by exploiting the fact that scatter is dominated by low-frequency information. The second method, intermittent RBSC, further accelerates the reconstruction process by limiting the number of iterations during which scatter is modelled. The fast implementations were evaluated using a Monte Carlo simulated experiment of the 3D MCAT phantom with 99m Tc tracer, and also using experimentally acquired data with 201 Tl tracer. Results indicated that these fast methods can reconstruct, with fully 3D compensation, images very similar to those obtained using standard RBSC methods, and in reconstruction times that are an order of magnitude shorter. Using these methods, fully 3D iterative reconstruction with RBSC can be performed well within the realm of clinically realistic times (under 10 minutes for 64x64x24 image reconstruction). (author)

  5. A review of equine renal imaging techniques

    International Nuclear Information System (INIS)

    Matthews, H.K.; Toal, R.L.

    1996-01-01

    Radiography has a limited role in the evaluation of the kidneys in foals and adult horses. Ultrasonography is the current method of choice for structural evaluation of the kidneys in horses as it provides additional information to standard serum chemistry and urinalysis evaluation. A variety of structural abnormalities have been identified in diseased equine kidneys with the use of ultrasound. Ultrasound guided renal biopsy is the preferred method for performing renal biopsy in the horse. The use of Duplex Doppler ultrasound may allow for the characterization of regional hemodynamics of the equine kidney, but is currently an untapped method for evaluation of equine renal hemodynamics. Radionuclide methods including scintigraphy and quantitative renal function measurement can be used to provide further information about equine renal function. Scintigraphy can provide structural and possibly functional information. Quantitative methods using radiopharmaceuticals can provide precise measurement of glomerular filtration rate and effective renal blood flow. This method is especially helpful in identifying acute renal failure and in guiding response to treatment. All equine renal imaging techniques should be a supplement to the physical examination and standard laboratory tests. Additional diagnostic aids such as urinary tract endoscopy should also be considered in horses with hematuria, hydroureter, and suspected calculi. Taken together, all these modalities provide a thorough evaluation of the equine renal system and provide a basis for the clinician to select treatment options and provide prognostic information to the owner

  6. New techniques for resolution enhancement of 3D x-ray tomographic imaging from incomplete data

    International Nuclear Information System (INIS)

    Vengrinovich, V.; Zolotarev, S.; Denkevich, Y.; Tillack, G.-R.

    2004-01-01

    Accurate evaluation of dimensions directly from tomographic images, restored from only few x-ray projections, made in a limited observation sector, is considered exploiting pipes wall thickness assessment like a typical example. Both experiments and simulations are used to extract main errors sources. It is taken from as known, that neglecting of the scattered radiation and beam hardening effects results in image blurring, strong artifacts and finally inaccurate sizing. The computerized technique is developed to simulate the contribution of scattered radiation and beam hardening for the purpose of their further extraction from projected data. After those accompanying effects extraction the iterative Bayesian techniques are applied to reconstruct images from the projections, using volumetric and/or shell representation of the objects like pipes. The achieved error of virtual pipe wall thickness assessment from 3D images can be as small as 300μk comparing to 1mm provided by modern techniques. Finally the conclusion was drawn that standard projection techniques using X- or Gamma rays in combination with X-ray film or imaging plates can be applied for the data acquisition to reconstruct finally wall thickness profiles in an in-field environment. (author)

  7. Poster – 02: Positron Emission Tomography (PET) Imaging Reconstruction using higher order Scattered Photon Coincidences

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongwei; Pistorius, Stephen [Department of Physics and Astronomy, University of Manitoba, CancerCare, Manitoba (Canada)

    2016-08-15

    PET images are affected by the presence of scattered photons. Incorrect scatter-correction may cause artifacts, particularly in 3D PET systems. Current scatter reconstruction methods do not distinguish between single and higher order scattered photons. A dual-scattered reconstruction method (GDS-MLEM) that is independent of the number of Compton scattering interactions and less sensitive to the need for high energy resolution detectors, is proposed. To avoid overcorrecting for scattered coincidences, the attenuation coefficient was calculated by integrating the differential Klein-Nishina cross-section over a restricted energy range, accounting only for scattered photons that were not detected. The optimum image can be selected by choosing an energy threshold which is the upper energy limit for the calculation of the cross-section and the lower limit for scattered photons in the reconstruction. Data was simulated using the GATE platform. 500,000 multiple scattered photon coincidences with perfect energy resolution were reconstructed using various methods. The GDS-MLEM algorithm had the highest confidence (98%) in locating the annihilation position and was capable of reconstructing the two largest hot regions. 100,000 photon coincidences, with a scatter fraction of 40%, were used to test the energy resolution dependence of different algorithms. With a 350–650 keV energy window and the restricted attenuation correction model, the GDS-MLEM algorithm was able to improve contrast recovery and reduce the noise by 7.56%–13.24% and 12.4%–24.03%, respectively. This approach is less sensitive to the energy resolution and shows promise if detector energy resolutions of 12% can be achieved.

  8. Characterization of Nanocellulose Using Small-Angle Neutron, X-ray, and Dynamic Light Scattering Techniques.

    Science.gov (United States)

    Mao, Yimin; Liu, Kai; Zhan, Chengbo; Geng, Lihong; Chu, Benjamin; Hsiao, Benjamin S

    2017-02-16

    Nanocellulose extracted from wood pulps using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and sulfuric acid hydrolysis methods was characterized by small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) techniques. The dimensions of this nanocellulose (TEMPO-oxidized cellulose nanofiber (TOCN) and sulfuric acid hydrolyzed cellulose nanocrystal (SACN)) revealed by the different scattering methods were compared with those characterized by transmission electron microscopy (TEM). The SANS and SAXS data were analyzed using a parallelepiped-based form factor. The width and thickness of the nanocellulose cross section were ∼8 and ∼2 nm for TOCN and ∼20 and ∼3 nm for SACN, respectively, where the fitting results from SANS and SAXS profiles were consistent with each other. DLS was carried out under both the V V mode with the polarizer and analyzer parallel to each other and the H V mode having them perpendicular to each other. Using rotational and translational diffusion coefficients obtained under the H V mode yielded a nanocellulose length qualitatively consistent with that observed by TEM, whereas the length derived by the translational diffusion coefficient under the V V mode appeared to be overestimated.

  9. A hybrid approach to simulate multiple photon scattering in X-ray imaging

    International Nuclear Information System (INIS)

    Freud, N.; Letang, J.-M.; Babot, D.

    2005-01-01

    A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or γ-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results

  10. A hybrid approach to simulate multiple photon scattering in X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: nicolas.freud@insa-lyon.fr; Letang, J.-M. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2005-01-01

    A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or {gamma}-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results.

  11. A frequency domain radar interferometric imaging (FII) technique based on high-resolution methods

    Science.gov (United States)

    Luce, H.; Yamamoto, M.; Fukao, S.; Helal, D.; Crochet, M.

    2001-01-01

    In the present work, we propose a frequency-domain interferometric imaging (FII) technique for a better knowledge of the vertical distribution of the atmospheric scatterers detected by MST radars. This is an extension of the dual frequency-domain interferometry (FDI) technique to multiple frequencies. Its objective is to reduce the ambiguity (resulting from the use of only two adjacent frequencies), inherent with the FDI technique. Different methods, commonly used in antenna array processing, are first described within the context of application to the FII technique. These methods are the Fourier-based imaging, the Capon's and the singular value decomposition method used with the MUSIC algorithm. Some preliminary simulations and tests performed on data collected with the middle and upper atmosphere (MU) radar (Shigaraki, Japan) are also presented. This work is a first step in the developments of the FII technique which seems to be very promising.

  12. Beamstop-based low-background ptychography to image weakly scattering objects

    DEFF Research Database (Denmark)

    Reinhardt, Juliane; Hoppe, Robert; Hofmann, Georg

    2017-01-01

    In recent years, X-ray ptychography has been established as a valuable tool for high-resolution imaging. Nevertheless, the spatial resolution and sensitivity in coherent diffraction imaging are limited by the signal that is detected over noise and over background scattering. Especially, coherent ...

  13. Influence of light refraction on the image reconstruction in transmission optical tomography of scattering media

    International Nuclear Information System (INIS)

    Tereshchenko, Sergei A; Potapov, D A; Podgaetskii, Vitalii M; Smirnov, A V

    2002-01-01

    A distorting influence of light refraction at the boundaries of scattering media on the results of tomographic reconstruction of images of radially symmetric objects is investigated. The methods for the correction of such refraction-caused distortions are described. The results of the image reconstruction for two model cylindrical objects are presented.

  14. ASHI: An All Sky Heliospheric Imager for Viewing Thomson-Scattered Light

    Science.gov (United States)

    Buffington, A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Bisi, M. M.

    2017-12-01

    We have developed, and are now making a detailed design for an All-Sky Heliospheric Imager (ASHI), to fly on future deep-space missions. ASHI's principal long-term objective is acquisition of a precision photometric map of the inner heliosphere as viewed from deep space. Photometers on the twin Helios spacecraft, the Solar Mass Ejection Imager (SMEI) upon the Coriolis satellite, and the Heliospheric Imagers (HIs) upon the Solar-TErrestrial RElations Observatory (STEREO) twin spacecraft, all indicate an optimum instrument design for visible-light Thomson-scattering observations. This design views a hemisphere of sky starting a few degrees from the Sun. Two imagers can cover almost all of the whole sky. A key photometric specification for ASHI is 0.1% differential photometry: this enables the three dimensional reconstruction of density starting from near the Sun and extending outward. SMEI analyses have demonstrated the success of this technique: when employed by ASHI, this will provide an order of magnitude better resolution in 3-D density over time. We augment this analysis to include velocity, and these imagers deployed in deep space can thus provide high-resolution comparisons both of direct in-situ density and velocity measurements to remote observations of solar wind structures. In practice we find that the 3-D velocity determinations provide the best tomographic timing depiction of heliospheric structures. We discuss the simple concept behind this, and present recent progress in the instrument design, and its expected performance specifications. A preliminary balloon flight of an ASHI prototype is planned to take place next Summer.

  15. Digital image processing techniques in archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Santanam, K.; Vaithiyanathan, R.; Tripati, S.

    Digital image processing involves the manipulation and interpretation of digital images with the aid of a computer. This form of remote sensing actually began in the 1960's with a limited number of researchers analysing multispectral scanner data...

  16. Simulation of an IXS imaging analyzer with an extended scattering source

    Energy Technology Data Exchange (ETDEWEB)

    Suvorov, Alexey [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II; Cai, Yong Q. [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II

    2016-09-15

    A concept of an inelastic x-ray scattering (IXS) spectrograph with an imaging analyzer was proposed recently and discussed in a number of publications (see e.g. Ref.1). The imaging analyzer as proposed combines x-ray lenses with highly dispersive crystal optics. It allows conversion of the x-ray energy spectrum into a spatial image with very high energy resolution. However, the presented theoretical analysis of the spectrograph did not take into account details of the scattered radiation source, i.e. sample, and its impact on the spectrograph performance. Using numerical simulations we investigated the influence of the finite sample thickness, the scattering angle and the incident energy detuning on the analyzer image and the ultimate resolution.

  17. Transverse Imaging of the Proton in Exclusive Diffractive pp Scattering

    International Nuclear Information System (INIS)

    Christian Weiss; Leonid Frankfurt; Charles Hyde-Wright; Mark Strikman

    2006-01-01

    In a forthcoming paper we describe a new approach to rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, Higgs, etc.) in exclusive double-gap diffractive pp scattering, pp -> p + H + p. It is based on the idea that hard and soft interactions are approximately independent (QCD factorization), and allows us to calculate the RGS probability in a model-independent way in terms of the gluon generalized parton distributions (GPDs) in the colliding protons and the pp elastic scattering amplitude. Here we focus on the transverse momentum dependence of the cross section. By measuring the ''diffraction pattern'', one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton from the data

  18. Technique for producing cardiac radionuclide motion images

    International Nuclear Information System (INIS)

    Reese, I.C.; Mishkin, F.S.

    1975-01-01

    Sequential frames of different portions of the cardiac cycle are gated into a minicomputer by using an EKG signal recorded onto digital tape simultaneously with imaging information. Serial display of these frames on the computer oscilloscope or projection of 35-mm half frames of these images provides a cardiac motion image with information content adequate for qualitatively assessing cardiac motion. (U.S.)

  19. Neutron spectral modulation as a new thermal neutron scattering technique. Pt. 1

    International Nuclear Information System (INIS)

    Ito, Y.; Nishi, M.; Motoya, K.

    1982-01-01

    A thermal neutron scattering technique is presented based on a new idea of labelling each neutron in its spectral position as well as in time through the scattering process. The method makes possible the simultaneous determination of both the accurate dispersion relation and its broadening by utilizing the resolution cancellation property of zero-crossing points in the cross-correlated time spectrum together with the Fourier transform scheme of the neutron spin echo without resorting to the echoing. The channel Fourier transform applied to the present method also makes possible the determination of the accurate direct energy scan profile of the scattering function with a rather broad incident neutron wavelength distribution. Therefore the intensity sacrifice for attaining high accurarcy is minimized. The technique is used with either a polarized or unpolarized beam at the sample position with no precautions against beam depolarization at the sample for the latter case. Relative time accurarcy of the order of 10 -3 to 10 -4 may be obtained for the general dispersion relation and for the quasi-elastic energy transfers using correspondingly the relative incident neutron wavelength spread of 10 to 1% around an incident neutron energy of a few meV. (orig.)

  20. Epp: A C++ EGSnrc user code for x-ray imaging and scattering simulations

    International Nuclear Information System (INIS)

    Lippuner, Jonas; Elbakri, Idris A.; Cui Congwu; Ingleby, Harry R.

    2011-01-01

    Purpose: Easy particle propagation (Epp) is a user code for the EGSnrc code package based on the C++ class library egspp. A main feature of egspp (and Epp) is the ability to use analytical objects to construct simulation geometries. The authors developed Epp to facilitate the simulation of x-ray imaging geometries, especially in the case of scatter studies. While direct use of egspp requires knowledge of C++, Epp requires no programming experience. Methods: Epp's features include calculation of dose deposited in a voxelized phantom and photon propagation to a user-defined imaging plane. Projection images of primary, single Rayleigh scattered, single Compton scattered, and multiple scattered photons may be generated. Epp input files can be nested, allowing for the construction of complex simulation geometries from more basic components. To demonstrate the imaging features of Epp, the authors simulate 38 keV x rays from a point source propagating through a water cylinder 12 cm in diameter, using both analytical and voxelized representations of the cylinder. The simulation generates projection images of primary and scattered photons at a user-defined imaging plane. The authors also simulate dose scoring in the voxelized version of the phantom in both Epp and DOSXYZnrc and examine the accuracy of Epp using the Kawrakow-Fippel test. Results: The results of the imaging simulations with Epp using voxelized and analytical descriptions of the water cylinder agree within 1%. The results of the Kawrakow-Fippel test suggest good agreement between Epp and DOSXYZnrc. Conclusions: Epp provides the user with useful features, including the ability to build complex geometries from simpler ones and the ability to generate images of scattered and primary photons. There is no inherent computational time saving arising from Epp, except for those arising from egspp's ability to use analytical representations of simulation geometries. Epp agrees with DOSXYZnrc in dose calculation, since

  1. Inverse scattering and refraction corrected reflection for breast cancer imaging

    Science.gov (United States)

    Wiskin, J.; Borup, D.; Johnson, S.; Berggren, M.; Robinson, D.; Smith, J.; Chen, J.; Parisky, Y.; Klock, John

    2010-03-01

    Reflection ultrasound (US) has been utilized as an adjunct imaging modality for over 30 years. TechniScan, Inc. has developed unique, transmission and concomitant reflection algorithms which are used to reconstruct images from data gathered during a tomographic breast scanning process called Warm Bath Ultrasound (WBU™). The transmission algorithm yields high resolution, 3D, attenuation and speed of sound (SOS) images. The reflection algorithm is based on canonical ray tracing utilizing refraction correction via the SOS and attenuation reconstructions. The refraction correction reflection algorithm allows 360 degree compounding resulting in the reflection image. The requisite data are collected when scanning the entire breast in a 33° C water bath, on average in 8 minutes. This presentation explains how the data are collected and processed by the 3D transmission and reflection imaging mode algorithms. The processing is carried out using two NVIDIA® Tesla™ GPU processors, accessing data on a 4-TeraByte RAID. The WBU™ images are displayed in a DICOM viewer that allows registration of all three modalities. Several representative cases are presented to demonstrate potential diagnostic capability including: a cyst, fibroadenoma, and a carcinoma. WBU™ images (SOS, attenuation, and reflection modalities) are shown along with their respective mammograms and standard ultrasound images. In addition, anatomical studies are shown comparing WBU™ images and MRI images of a cadaver breast. This innovative technology is designed to provide additional tools in the armamentarium for diagnosis of breast disease.

  2. A Hybrid Technique for Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    Alamgir Nyma

    2012-01-01

    Full Text Available Medical image segmentation is an essential and challenging aspect in computer-aided diagnosis and also in pattern recognition research. This paper proposes a hybrid method for magnetic resonance (MR image segmentation. We first remove impulsive noise inherent in MR images by utilizing a vector median filter. Subsequently, Otsu thresholding is used as an initial coarse segmentation method that finds the homogeneous regions of the input image. Finally, an enhanced suppressed fuzzy c-means is used to partition brain MR images into multiple segments, which employs an optimal suppression factor for the perfect clustering in the given data set. To evaluate the robustness of the proposed approach in noisy environment, we add different types of noise and different amount of noise to T1-weighted brain MR images. Experimental results show that the proposed algorithm outperforms other FCM based algorithms in terms of segmentation accuracy for both noise-free and noise-inserted MR images.

  3. The technique of Cerenkov ring image detection

    International Nuclear Information System (INIS)

    Langerveld, D.

    1990-01-01

    Charged particles with an energy between 2 GeV and 25 GeV can be identified in the DELPHI barrel RICH detector by using the technique of Cerenkov ring image detection. The method of identification is based on a determination of the Cerenkov angle by measuring the positions of the emitted Cerenkov photons to high precision in a photon detector. The resolution in the photon that can be obtained depends mainly on the chromatic dispersion in the radiators and on the resolution in the photon detector is used in the barrel RICH in combination with two radiators. The photon detector consists of 48 drift tubes, constructed from quarz plates, each equipped with a wire chamber at the end. The drift gas with which the tubes are filled contains a small admixture of TMAE vapour from which the Cerenkov photons can liberate photoelectrons. It is shown in this thesis that an efficient photon detection and an accurate localization of the photon conversion points is possible. The spatial resolution of the photon detector is determind by the resolution of the wire chambe, the accuracy of the drift measurement, the distortions in the paths of the drifting electrons. The resolution of the wire chamber has been measured to be 0.8 mm in the x- and 1.7 mm in the y-coordinate. The error in the z-coordinate introduced by the drift time measurement is 0.2 mm. The distortions in the paths of the drifting electrons have been measured both in the x and y-direction. The longitudinal and transverse diffusion coefficients have been measured as a function of the field strength for two different drift gas mixtures. (author). 96 refs.; 61 figs.; 11 tabs

  4. Phase separation temperatures of a liquid mixture: Dynamic light scattering technique

    International Nuclear Information System (INIS)

    Dangudom, K.; Wongtawatnugool, C.; Lacharojana, S.

    2010-01-01

    Light scattering intensity measurements and photon correlation spectroscopy (PCS) techniques were employed in an investigation of liquid-liquid phase separation behaviour of a mixture of cyclohexane and methanol at seven different compositions. It was found that, except for one composition (29% methanol), the temperature at which the scattering intensity was a maximum did not coincide with the one where the diffusion coefficient was a minimum, as would be for the case of a vapour-liquid system. The difference may be explained in terms of the local density fluctuation and the random walk problem responsible for the peak intensity and the minimum in the diffusion coefficient, respectively. The definition of phase separation temperature, as determined from diffusion process, was also proposed in this work.

  5. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.

    Science.gov (United States)

    Lee, Sangyeop; Chon, Hyangah; Lee, Jiyoung; Ko, Juhui; Chung, Bong Hyun; Lim, Dong Woo; Choo, Jaebum

    2014-01-15

    We report a surface-enhanced Raman scattering (SERS)-based cellular imaging technique to detect and quantify breast cancer phenotypic markers expressed on cell surfaces. This technique involves the synthesis of SERS nano tags consisting of silica-encapsulated hollow gold nanospheres (SEHGNs) conjugated with specific antibodies. Hollow gold nanospheres (HGNs) enhance SERS signal intensity of individual particles by localizing surface electromagnetic fields through pinholes in the hollow particle structures. This capacity to enhance imaging at the level of single molecules permits the use of HGNs to detect specific biological markers expressed in living cancer cells. In addition, silica encapsulation greatly enhances the stability of nanoparticles. Here we applied a SERS-based imaging technique using SEHGNs in the multiplex imaging of three breast cancer cell phenotypes. Expression of epidermal growth factor (EGF), ErbB2, and insulin-like growth factor-1 (IGF-1) receptors were assessed in the MDA-MB-468, KPL4 and SK-BR-3 human breast cancer cell lines. SERS imaging technology described here can be used to test the phenotype of a cancer cell and quantify proteins expressed on the cell surface simultaneously. Based on results, this technique may enable an earlier diagnosis of breast cancer than is currently possible and offer guidance in treatment. © 2013 Elsevier B.V. All rights reserved.

  6. Analysis of several ways to minimize the scatter contribution in radiographic digital images of offshore pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edmilson M.; Silva, Ademir X.; Lopes, Ricardo T., E-mail: emonteiro@nuclear.ufrj.b, E-mail: ademir@nuclear.ufrj.b, E-mail: Ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Correa, Samanda C.A., E-mail: scorrea@cnen.gov.b [Comissao Nacional de Energia Nuclear (DIAPI/CGMI/CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Instalacoes Medicas e Industriais. Div. de Aplicacoes Industriais

    2011-07-01

    The aim of this work is to evaluate, through MCNPX simulations, several ways to minimize the scatter contribution in radiographic digital images of offshore pipelines. The influence of liquid inside the pipes and water surrounded the pipelines in the scatter contribution will be analyzed. The use of lead screen behind the detector to reduce the backscattered radiation and filter between the radiation source and the pipes will be discussed. (author)

  7. Analysis of several ways to minimize the scatter contribution in radiographic digital images of offshore pipelines

    International Nuclear Information System (INIS)

    Souza, Edmilson M.; Silva, Ademir X.; Lopes, Ricardo T.; Correa, Samanda C.A.

    2011-01-01

    The aim of this work is to evaluate, through MCNPX simulations, several ways to minimize the scatter contribution in radiographic digital images of offshore pipelines. The influence of liquid inside the pipes and water surrounded the pipelines in the scatter contribution will be analyzed. The use of lead screen behind the detector to reduce the backscattered radiation and filter between the radiation source and the pipes will be discussed. (author)

  8. Scattering from black holes

    International Nuclear Information System (INIS)

    Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.

    1987-01-01

    This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging

  9. Dual-energy chest imaging with the variable compensation technique

    International Nuclear Information System (INIS)

    Dobbins, J.T.; Powell, A.O.

    1988-01-01

    The authors reported on a new imaging algorithm, termed the variable compensation (VC) technique, that combines the signal-to-noise ratio (S/N) advantages of x-ray beam compensation with the ability to adjust retrospectively the amount of displayed image equalization. The VC technique acquires a compensated image of the patient and also an image of the modulated beam profile incident on the patient. A fraction of the beam profile image is then subtracted from the compensated image. A limitation of traditional dual-energy techniques is the significant S/N degradation in poorly penetrated regions. Their new VC technique permits improvement in image S/N before formation of the dual-energy image pair. Specifically, the authors subtract 100% of the beam image from the compensated image for both the high- and low-energy images and produce a pair of images that appear similar to the normal high- and low-energy pair, except for improved S/N in the mediastinum due to the beam compensator. S/N measurements in tissue-canceled chest phantom images show the improved S/N visualization of calcified squares in the mediastinum with our technique

  10. TH-AB-209-10: Breast Cancer Identification Through X-Ray Coherent Scatter Spectral Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kapadia, A; Morris, R; Albanese, K; Spencer, J; McCall, S; Greenberg, J [Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: We have previously described the development and testing of a coherent-scatter spectral imaging system for identification of cancer. Our prior evaluations were performed using either tissue surrogate phantoms or formalin-fixed tissue obtained from pathology. Here we present the first results from a scatter imaging study using fresh breast tumor tissues obtained through surgical excision. Methods: A coherent-scatter imaging system was built using a clinical X-ray tube, photon counting detectors, and custom-designed coded-apertures. System performance was characterized using calibration phantoms of biological materials. Fresh breast tumors were obtained from patients undergoing mastectomy and lumpectomy surgeries for breast cancer. Each specimen was vacuum-sealed, scanned using the scatter imaging system, and then sent to pathology for histological workup. Scatter images were generated separately for each tissue specimen and analyzed to identify voxels containing malignant tissue. The images were compared against histological analysis (H&E + pathologist identification of tumors) to assess the match between scatter-based and histological diagnosis. Results: In all specimens scanned, the scatter images showed the location of cancerous regions within the specimen. The detection and classification was performed through automated spectral matching without the need for manual intervention. The scatter spectra corresponding to cancer tissue were found to be in agreement with those reported in literature. Inter-patient variability was found to be within limits reported in literature. The scatter images showed agreement with pathologist-identified regions of cancer. Spatial resolution for this configuration of the scanner was determined to be 2–3 mm, and the total scan time for each specimen was under 15 minutes. Conclusion: This work demonstrates the utility of coherent scatter imaging in identifying cancer based on the scatter properties of the tissue. It

  11. The analysis and correction of neutron scattering effects in neutron imaging

    International Nuclear Information System (INIS)

    Raine, D.A.; Brenizer, J.S.

    1997-01-01

    A method of correcting for the scattering effects present in neutron radiographic and computed tomographic imaging has been developed. Prior work has shown that beam, object, and imaging system geometry factors, such as the L/D ratio and angular divergence, are the primary sources contributing to the degradation of neutron images. With objects smaller than 20--40 mm in width, a parallel beam approximation can be made where the effects from geometry are negligible. Factors which remain important in the image formation process are the pixel size of the imaging system, neutron scattering, the size of the object, the conversion material, and the beam energy spectrum. The Monte Carlo N-Particle transport code, version 4A (MCNP4A), was used to separate and evaluate the effect that each of these parameters has on neutron image data. The simulations were used to develop a correction algorithm which is easy to implement and requires no a priori knowledge of the object. The correction algorithm is based on the determination of the object scatter function (OSF) using available data outside the object to estimate the shape and magnitude of the OSF based on a Gaussian functional form. For objects smaller than 1 mm (0.04 in.) in width, the correction function can be well approximated by a constant function. Errors in the determination and correction of the MCNP simulated neutron scattering component were under 5% and larger errors were only noted in objects which were at the extreme high end of the range of object sizes simulated. The Monte Carlo data also indicated that scattering does not play a significant role in the blurring of neutron radiographic and tomographic images. The effect of neutron scattering on computed tomography is shown to be minimal at best, with the most serious effect resulting when the basic backprojection method is used

  12. A full-angle Monte-Carlo scattering technique including cumulative and single-event Rutherford scattering in plasmas

    Science.gov (United States)

    Higginson, Drew P.

    2017-11-01

    We describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event. We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10-3 to 0.3-0.7; the upper limit corresponds to Coulomb logarithm of 20-2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.

  13. Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Volkmer, Andreas

    2005-01-01

    For noninvasive characterization of chemical species or biological components within a complex heterogeneous system, their intrinsic molecular vibrational properties can be used in contrast mechanisms in optical microscopy. A series of recent advances have made coherent anti-Stokes Raman scattering (CARS) microscopy a powerful technique that allows vibrational imaging with high sensitivity, high spectral resolution and three-dimensional sectioning capability. In this review, we discuss theoretical and experimental aspects of CARS microscopy in a collinear excitation beam geometry. Particular attention is given to the underlying physical principles behind the new features of CARS signal generation under tight focusing conditions. We provide a brief overview of the instrumentation of CARS microscopy and its experimental characterization by means of imaging of model systems and live unstained cells. CARS microscopy offers the possibility of spatially resolved vibrational spectroscopy, providing chemical and physical structure information of molecular specimens on the sub-micrometre length scale. We review multiplex CARS microspectroscopy allowing fast acquisition of frequency-resolved CARS spectra, time-resolved CARS microspectroscopy recording ultrafast Raman free induction decays and CARS correlation spectroscopy probing dynamical processes with chemical selectivity. (topical review)

  14. Sparse-sampling with time-encoded (TICO) stimulated Raman scattering for fast image acquisition

    Science.gov (United States)

    Hakert, Hubertus; Eibl, Matthias; Karpf, Sebastian; Huber, Robert

    2017-07-01

    Modern biomedical imaging modalities aim to provide researchers a multimodal contrast for a deeper insight into a specimen under investigation. A very promising technique is stimulated Raman scattering (SRS) microscopy, which can unveil the chemical composition of a sample with a very high specificity. Although the signal intensities are enhanced manifold to achieve a faster acquisition of images if compared to standard Raman microscopy, there is a trade-off between specificity and acquisition speed. Commonly used SRS concepts either probe only very few Raman transitions as the tuning of the applied laser sources is complicated or record whole spectra with a spectrometer based setup. While the first approach is fast, it reduces the specificity and the spectrometer approach records whole spectra -with energy differences where no Raman information is present-, which limits the acquisition speed. Therefore, we present a new approach based on the TICO-Raman concept, which we call sparse-sampling. The TICO-sparse-sampling setup is fully electronically controllable and allows probing of only the characteristic peaks of a Raman spectrum instead of always acquiring a whole spectrum. By reducing the spectral points to the relevant peaks, the acquisition time can be greatly reduced compared to a uniformly, equidistantly sampled Raman spectrum while the specificity and the signal to noise ratio (SNR) are maintained. Furthermore, all laser sources are completely fiber based. The synchronized detection enables a full resolution of the Raman signal, whereas the analogue and digital balancing allows shot noise limited detection. First imaging results with polystyrene (PS) and polymethylmethacrylate (PMMA) beads confirm the advantages of TICO sparse-sampling. We achieved a pixel dwell time as low as 35 μs for an image differentiating both species. The mechanical properties of the applied voice coil stage for scanning the sample currently limits even faster acquisition.

  15. High-resolution imaging of the low velocity layer in Alaskan subduction zone with scattered waves and interferometry

    Science.gov (United States)

    Kim, D.; Keranen, K. M.; Abers, G. A.; Kim, Y.; Li, J.; Shillington, D. J.; Brown, L. D.

    2017-12-01

    The physical factors that control the rupture process of great earthquakes at convergent plate boundaries remain incompletely understood. While recent developments in imaging using the teleseismic wavefield have led to marked advances at wavelengths of a couple kilometers to tens of kilometers, higher resolution imaging of the rupture zone would improve the resolution of imaging and thus provide improved parameter estimation, as the teleseismic wavefield is fundamentally limited by its low frequency content. This study compares and evaluates two seismic imaging techniques using the high-frequency signals from teleseismic coda versus earthquake scattered waves to image the subducting Yakutat oceanic plateau in the Alaska subduction zone. We use earthquakes recorded by the MOOS PASSCAL broadband deployment in southern Alaska. In our first method, we select local earthquakes that lie directly beneath and laterally near the recording array for imaging, and extract body wave information via a simple autocorrelation and stacking. Profiles analogous to seismic reflection profile are constructed using the near-vertically travelling waves. In our second method, we compute teleseismic receiver functions within the 0.02-1.0 Hz frequency band. Both results image interfaces that we associate with the subducting oceanic plate in Alaska-Aleutian system, with greater resolution than commonly used methods with teleseismic sources. Structural details from our results can further our understanding of the conditions and materials that characterize the subduction megathrusts, and the techniques can be employed in other regions along the Alaska-Aleutian system and at other convergent margins with suitable seismic arrays.

  16. Compositional images from the Diffraction Enhanced Imaging technique

    International Nuclear Information System (INIS)

    Hasnah, M.O.; Zhong, Z.; Parham, C.; Zhang, H.; Chapman, D.

    2007-01-01

    Diffraction Enhanced Imaging (DEI) derives X-ray contrast from absorption, refraction, and extinction. While the refraction angle image of DEI represents the gradient of the projected mass density of the object, the absorption image measures the projected attenuation (μt)-bar of an object. Using a simple integral method it has been shown that a mass density image (ρt)-bar can be obtained from the refraction angle image. It then is a simple matter to develop a combinational image by dividing these two images to create a μ/ρ image. The μ/ρ is a fundamental property of a material and is therefore useful for identifying the composition of an object. In projection X-ray imaging the μ/ρ image identifies the integrated composition of the elements along the beam path. When applied to DEI computed tomography (CT), the image identifies the composition in each voxel. This method presents a new type of spectroscopy based in radiography. We present the method of obtaining the compositional image, the results of experiments in which we verify the method with known standards and an application of the method to breast cancer imaging

  17. Vesical endometriosis: utility of imaging techniques

    International Nuclear Information System (INIS)

    Parra, M.; Cascon, E.; Robledo, R.; Perez, M.

    1999-01-01

    We present three cases of vesical endometriosis initially studied with ultrasound. One case was also studied with intravenous urography, computed tomography and magnetic resonance imaging. We discuss on the utility of these imaging methods in the diagnosis of vesical endometriosis. (Author) 9 refs

  18. A New Method to Extract CSP Gather of Topography for Scattered Wave Imaging

    Directory of Open Access Journals (Sweden)

    Zhao Pan

    2017-01-01

    Full Text Available The seismic method is one of the major geophysical tools to study the structure of the earth. The extraction of the common scatter point (CSP gather is a critical step to accomplish the seismic imaging with a scattered wave. Conventionally, the CSP gather is obtained with the assumption that the earth surface is horizontal. However, errors are introduced to the final imaging result if the seismic traces obtained at the rugged surface are processed using the conventional method. Hence, we propose the method of the extraction of the CSP gather for the seismic data collected at the rugged surface. The proposed method is validated by two numerical examples and expected to reduce the effect of the topography on the scattered wave imaging.

  19. Development of flow velocity measurement techniques in visible images. Improvement of particle image velocimetry techniques on image process

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Nishimura, Motohiko; Kamide, Hideki; Hishida, Koichi

    1999-10-01

    Noise reduction system was developed to improve applicability of Particle Image Velocimetry (PIV) to complicated configure bounded flows. For fast reactor safety and thermal hydraulic studies, experiments are performed in scale models which usually have rather complicated geometry and structures such as fuel subassemblies, heat exchangers, etc. The structures and stuck dusts on the view window of the models obscure the particle image. Thus the image except the moving particles can be regarded as a noise. In the present study, two noise reduction techniques are proposed. The one is the Time-averaged Light Intensity Subtraction method (TIS) which subtracts the time-averaged light intensity of each pixel in the sequential images from the each corresponding pixel. The other one is the Minimum Light Intensity Subtraction method (MIS) which subtracts the minimum light intensity of each pixel in the sequential images from the each corresponding pixel. Both methods are examined on their capabilities of noise reduction. As for the original 'bench mark' image, the image made from Large Eddy Simulation was used. To the bench mark image, noises are added which are referred as sample images. Both methods reduce the rate of vector with the error of more than one pixel from 90% to less than 5%. Also, more than 50% of the vectors have the error of less than 0.2 pixel. The analysis of uncertainty shows that these methods enhances the accuracy of vector measurement 3 ∼ 12 times if the image with noise were processed, and the MIS method has 1.1 ∼ 2.1 times accuracy compared to the TIS. Thus the present noise reduction methods are quite efficient to enhance the accuracy of flow velocity fields measured with particle images including structures and deposits on the view window. (author)

  20. Noninvasive glucose sensing in scattering media using OCT, PAS, and TOF techniques

    Science.gov (United States)

    Alarousu, Erkki; Hast, Jukka T.; Kinnunen, Matti T.; Kirillin, Mikhail Y.; Myllyla, Risto A.; Plucinski, Jerzy; Popov, Alexey P.; Priezzhev, Alexander V.; Prykari, Tuukka; Saarela, Juha; Zhao, Zuomin

    2004-08-01

    In this paper, optical measurement techniques, which enable non-invasive measurement, are superimposed to glucose sensing in scattering media. Used measurement techniques are Optical Coherence Tomography (OCT), Photoacoustic spectroscopy (PAS) and laser pulse Time-of-Flight (TOF) measurement using a streak camera. In parallel with measurements, a Monte-Carlo (MC) simulation models have been developed. Experimental in vitro measurements were performed using Intralipid fat emulsion as a tissue simulating phantom for OCT and TOF measurements. In PAS measurements, a pork meat was used as a subject but also preliminary in vivo measurements were done. OCT measurement results show that the slope of the OCT signal's envelope changes as a function of glucose content in the scattering media. TOF measurements show that the laser pulse full width of half maximum (FWHM) changes a little as function of glucose content. An agreement with MC-simulations and measurements with Intralipid was also found. Measurement results of PAS technique show that changes in glucose content in the pork meat tissue can be measured. In vivo measurements with a human volunteer show that other factors such as physiological change, blood circulation and body temperature drift may interfere the PA response of glucose.

  1. Beamstop-based low-background ptychography to image weakly scattering objects

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Juliane, E-mail: juliane.reinhardt@desy.de [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Hoppe, Robert [Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden (Germany); Hofmann, Georg [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Damsgaard, Christian D. [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark); Patommel, Jens; Baumbach, Christoph [Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden (Germany); Baier, Sina; Rochet, Amélie; Grunwaldt, Jan-Dierk [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Falkenberg, Gerald [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Schroer, Christian G. [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Department Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2017-02-15

    In recent years, X-ray ptychography has been established as a valuable tool for high-resolution imaging. Nevertheless, the spatial resolution and sensitivity in coherent diffraction imaging are limited by the signal that is detected over noise and over background scattering. Especially, coherent imaging of weakly scattering specimens suffers from incoherent background that is generated by the interaction of the central beam with matter along its propagation path in particular close to and inside of the detector. Common countermeasures entail evacuated flight tubes or detector-side beamstops, which improve the experimental setup in terms of background reduction or better coverage of high dynamic range in the diffraction patterns. Here, we discuss an alternative approach: we combine two ptychographic scans with and without beamstop and reconstruct them simultaneously taking advantage of the complementary information contained in the two scans. We experimentally demonstrate the potential of this scheme for hard X-ray ptychography by imaging a weakly scattering object composed of catalytic nanoparticles and provide the analysis of the signal-to-background ratio in the diffraction patterns. - Highlights: • An opaque beamstop far-upstream of the detector reduces background scattering. • Increased signal-to-background ratio in the diffraction patterns. • Simultaneous ptychographic reconstruction of two data sets with and without beamstop. • Result shows high spatial resolution of 13 nm of a weakly scattering catalyst sample. • High sensitivity to less than 10{sup 5} atoms.

  2. Far-field superresolution by imaging of resonance scattering

    KAUST Repository

    Schuster, Gerard T.; Huang, Y.

    2014-01-01

    We show that superresolution imaging in the far-field region of the sources and receivers is theoretically and practically possible if migration of resonant multiples is employed. A resonant multiple is one that bounces back and forth between two

  3. Proposal for a new Thomson scattering technique for large fusion devices

    International Nuclear Information System (INIS)

    Salzmann, H.; Hirsch, K.

    1982-11-01

    The application of 180 0 scattering using ultrashort laser pulses is proposed. Spatial resolution along the laser beam is achieved by high-speed detection allowing time-of-flight measurements. This LIDAR technique uses a minimum number of window ports, reduces drastically the number of optical components in the vicinity of the discharge vessel and makes remote control unnecessary. As an example the performance of such a system is discussed on the basis of available laser and detection technology for the JET geometry. (orig.)

  4. A Review of Ground Target Detection and Classification Techniques in Forward Scattering Radars

    Directory of Open Access Journals (Sweden)

    M. E. A. Kanona

    2018-06-01

    Full Text Available This paper presents a review of target detection and classification in forward scattering radar (FSR which is a special state of bistatic radars, designed to detect and track moving targets in the narrow region along the transmitter-receiver base line. FSR has advantages and incredible features over other types of radar configurations. All previous studies proved that FSR can be used as an alternative system for ground target detection and classification. The radar and FSR fundamentals were addressed and classification algorithms and techniques were debated. On the other hand, the current and future applications and the limitations of FSR were discussed.

  5. UAV remote sensing atmospheric degradation image restoration based on multiple scattering APSF estimation

    Science.gov (United States)

    Qiu, Xiang; Dai, Ming; Yin, Chuan-li

    2017-09-01

    Unmanned aerial vehicle (UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based on multiple scattering atmosphere point spread function (APSF) estimation to recovery the remote sensing image. According to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the improved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmospheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes.

  6. Color image Segmentation using automatic thresholding techniques

    International Nuclear Information System (INIS)

    Harrabi, R.; Ben Braiek, E.

    2011-01-01

    In this paper, entropy and between-class variance based thresholding methods for color images segmentation are studied. The maximization of the between-class variance (MVI) and the entropy (ME) have been used as a criterion functions to determine an optimal threshold to segment images into nearly homogenous regions. Segmentation results from the two methods are validated and the segmentation sensitivity for the test data available is evaluated, and a comparative study between these methods in different color spaces is presented. The experimental results demonstrate the superiority of the MVI method for color image segmentation.

  7. Bone-composition imaging using coherent-scatter computed tomography: Assessing bone health beyond bone mineral density

    International Nuclear Information System (INIS)

    Batchelar, Deidre L.; Davidson, Melanie T.M.; Dabrowski, Waldemar; Cunningham, Ian A.

    2006-01-01

    Quantitative analysis of bone composition is necessary for the accurate diagnosis and monitoring of metabolic bone diseases. Accurate assessment of the bone mineralization state is the first requirement for a comprehensive analysis. In diagnostic imaging, x-ray coherent scatter depends upon the molecular structure of tissues. Coherent-scatter computed tomography (CSCT) exploits this feature to identify tissue types in composite biological specimens. We have used CSCT to map the distributions of tissues relevant to bone disease (fat, soft tissue, collagen, and mineral) within bone-tissue phantoms and an excised cadaveric bone sample. Using a purpose-built scanner, we have measured hydroxyapatite (bone mineral) concentrations based on coherent-scatter patterns from a series of samples with varying hydroxyapatite content. The measured scatter intensity is proportional to mineral density in true g/cm 3 . Repeated measurements of the hydroxyapatite concentration in each sample were within, at most, 2% of each other, revealing an excellent precision in determining hydroxyapatite concentration. All measurements were also found to be accurate to within 3% of the known values. Phantoms simulating normal, over-, and under-mineralized bone were created by mixing known masses of pure collagen and hydroxyapatite. An analysis of the composite scatter patterns gave the density of each material. For each composite, the densities were within 2% of the known values. Collagen and hydroxyapatite concentrations were also examined in a bone-mimicking phantom, incorporating other bone constituents (fat, soft tissue). Tomographic maps of the coherent-scatter properties of each specimen were reconstructed, from which material-specific images were generated. Each tissue was clearly distinguished and the collagen-mineral ratio determined from this phantom was also within 2% of the known value. Existing bone analysis techniques cannot determine the collagen-mineral ratio in intact specimens

  8. Imaging techniques in transcatheter aortic valve replacement

    Directory of Open Access Journals (Sweden)

    Quaife RA

    2013-11-01

    Full Text Available Robert A Quaife, Jennifer Dorosz, John C Messenger, Ernesto E Salcedo Division of Cardiology, University of Colorado, Aurora, CO, USA Abstract: Calcific aortic stenosis is now understood as a complex valvular degenerative process sharing many risk factors with atherosclerosis. Once patients develop symptomatic calcific aortic stenosis, the only effective treatment is aortic valve replacement. In the past decade, transcatheter aortic valve replacement (TAVR has been developed as an alternative to surgery to treat severe calcific aortic stenosis. Cardiac imaging plays a pivotal role in the contemporary management of patients with calcific aortic stenosis, and particularly in patients being considered for TAVR, who demand detailed imaging of the aortic valve apparatus. In this review, we highlight the role of cardiac imaging for patient selection, procedural guidance, and evaluation of results of TAVR. Keywords: aortic stenosis, cardiovascular imaging, transcutaneous aortic valve replacement

  9. Laser ablation and injection moulding as techniques for producing micro channels compatible with Small Angle X-Ray Scattering

    DEFF Research Database (Denmark)

    Haider, R.; Marmiroli, B.; Gavalas, I.

    2018-01-01

    Microfluidic mixing is an important means for in-situ sample preparation and handling while Small Angle X-Ray Scattering (SAXS) is a proven tool for characterising (macro-)molecular structures. In combination those two techniques enable investigations of fast reactions with high time resolution......, the requirement for low scattering especially limits the techniques suitable for producing the mixer, as the fabrication process can induce molecular orientations and stresses that can adversely influence the scattering signal. Not only is it important to find a production method that results in a device with low...

  10. Merits and limitations of functional imaging techniques

    International Nuclear Information System (INIS)

    Holman, B.L.

    1982-01-01

    The functional image is a powerful tool to look at physiologic information. It is ideally suited to the radiotracer method which measures regional physiology. It is ideal for regional analysis, providing a format which nicely complements the more traditional and anatomically oriented data displays. The functional image must be used intelligently, however, with the user aware of its limitations and of the meaning of indices which it is measuring. (orig.)

  11. Three dimensional imaging technique for laser-plasma diagnostics

    International Nuclear Information System (INIS)

    Jiang Shaoen; Zheng Zhijian; Liu Zhongli

    2001-01-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments

  12. Three dimensional imaging technique for laser-plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Shaoen, Jiang; Zhijian, Zheng; Zhongli, Liu [China Academy of Engineering Physics, Chengdu (China)

    2001-04-01

    A CT technique for laser-plasma diagnostic and a three-dimensional (3D) image reconstruction program (CT3D) have been developed. The 3D images of the laser-plasma are reconstructed by using a multiplication algebraic reconstruction technique (MART) from five pinhole camera images obtained along different sight directions. The technique has been used to measure the three-dimensional distribution of X-ray of laser-plasma experiments in Xingguang II device, and the good results are obtained. This shows that a CT technique can be applied to ICF experiments.

  13. Millimeter-wave Imaging Systems with Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Löffler, Torsten; Krozer, Viktor; Zhurbenko, Vitaliy

    2010-01-01

    The paper describes development of a millimetre-wave imaging system using multi-element aperture filling techniques [1]. Such imaging systems are increasingly demonstrated for security applications and in particular standoff imaging of persons and bonding flaw and defect detection [2]. The major ...

  14. An efficient similarity measure technique for medical image registration

    Indian Academy of Sciences (India)

    In this paper, an efficient similarity measure technique is proposed for medical image registration. The proposed approach is based on the Gerschgorin circles theorem. In this approach, image registration is carried out by considering Gerschgorin bounds of a covariance matrix of two compared images with normalized ...

  15. Enhancement of SAR images using fuzzy shrinkage technique

    Indian Academy of Sciences (India)

    This paper presents speckle noise reduction in SAR images using a combination of curvelet and fuzzy logic technique to restore speckle-affected images. This method overcomes the limitation of discontinuity in hard threshold and permanent deviation in soft threshold. First, it decomposes noise image into different ...

  16. Image processing techniques for quantification and assessment of brain MRI

    NARCIS (Netherlands)

    Kuijf, H.J.

    2013-01-01

    Magnetic resonance imaging (MRI) is a widely used technique to acquire digital images of the human brain. A variety of acquisition protocols is available to generate images in vivo and noninvasively, giving great opportunities to study the anatomy and physiology of the human brain. In my thesis,

  17. Red blood cell image enhancement techniques for cells with ...

    African Journals Online (AJOL)

    quality or challenging conditions of the images such as poor illumination of blood smear and most importantly overlapping RBC. The algorithm comprises of two RBC segmentation that can be selected based on the image quality, circle mask technique and grayscale blood smear image processing. Detail explanations ...

  18. Combined neutron imaging techniques for cultural heritage purpose

    International Nuclear Information System (INIS)

    Materna, T.

    2009-01-01

    This article presents the different new neutron techniques developed by the Ancient Charm collaboration to image objects of cultural heritage importance: Prompt-gamma-ray activation imaging (PGAI) coupled to cold/thermal neutron transmission tomography, Neutron Resonance Capture Imaging (NRCI) and Neutron Resonance Tomography.

  19. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography

    CERN Document Server

    Zaidi, H; Slosman, D O

    2003-01-01

    Reliable attenuation correction represents an essential component of the long chain of modules required for the reconstruction of artifact-free, quantitative brain positron emission tomography (PET) images. In this work we demonstrate the proof of principle of segmented magnetic resonance imaging (MRI)-guided attenuation and scatter corrections in 3D brain PET. We have developed a method for attenuation correction based on registered T1-weighted MRI, eliminating the need of an additional transmission (TX) scan. The MR images were realigned to preliminary reconstructions of PET data using an automatic algorithm and then segmented by means of a fuzzy clustering technique which identifies tissues of significantly different density and composition. The voxels belonging to different regions were classified into air, skull, brain tissue and nasal sinuses. These voxels were then assigned theoretical tissue-dependent attenuation coefficients as reported in the ICRU 44 report followed by Gaussian smoothing and additio...

  20. Photon migration in non-scattering tissue and the effects on image reconstruction

    Science.gov (United States)

    Dehghani, H.; Delpy, D. T.; Arridge, S. R.

    1999-12-01

    Photon propagation in tissue can be calculated using the relationship described by the transport equation. For scattering tissue this relationship is often simplified and expressed in terms of the diffusion approximation. This approximation, however, is not valid for non-scattering regions, for example cerebrospinal fluid (CSF) below the skull. This study looks at the effects of a thin clear layer in a simple model representing the head and examines its effect on image reconstruction. Specifically, boundary photon intensities (total number of photons exiting at a point on the boundary due to a source input at another point on the boundary) are calculated using the transport equation and compared with data calculated using the diffusion approximation for both non-scattering and scattering regions. The effect of non-scattering regions on the calculated boundary photon intensities is presented together with the advantages and restrictions of the transport code used. Reconstructed images are then presented where the forward problem is solved using the transport equation for a simple two-dimensional system containing a non-scattering ring and the inverse problem is solved using the diffusion approximation to the transport equation.

  1. Photon migration in non-scattering tissue and the effects on image reconstruction

    International Nuclear Information System (INIS)

    Dehghani, H.; Delpy, D.T.; Arridge, S.R.

    1999-01-01

    Photon propagation in tissue can be calculated using the relationship described by the transport equation. For scattering tissue this relationship is often simplified and expressed in terms of the diffusion approximation. This approximation, however, is not valid for non-scattering regions, for example cerebrospinal fluid (CSF) below the skull. This study looks at the effects of a thin clear layer in a simple model representing the head and examines its effect on image reconstruction. Specifically, boundary photon intensities (total number of photons exiting at a point on the boundary due to a source input at another point on the boundary) are calculated using the transport equation and compared with data calculated using the diffusion approximation for both non-scattering and scattering regions. The effect of non-scattering regions on the calculated boundary photon intensities is presented together with the advantages and restrictions of the transport code used. Reconstructed images are then presented where the forward problem is solved using the transport equation for a simple two-dimensional system containing a non-scattering ring and the inverse problem is solved using the diffusion approximation to the transport equation. (author)

  2. Window selection for dual photopeak window scatter correction in Tc-99m imaging

    International Nuclear Information System (INIS)

    Vries, D.J. de; King, M.A.

    1994-01-01

    The width and placement of the windows for the dual photopeak window (DPW) scatter subtraction method for Tc-99m imaging is investigated in order to obtain a method that is stable on a multihead detector system for single photon emission computed tomography (SPECT) and is capable of providing a good scatter estimate for extended objects. For various window pairs, stability and noise were examined with experiments using a SPECT system, while Monte Carlo simulations were used to predict the accuracy of scatter estimates for a variety of objects and to guide the development of regression relations for various window pairs. The DPW method that resulted from this study was implemented with a symmetric 20% photopeak window composed of a 15% asymmetric photopeak window and a 5% lower window abutted at 7 keV below the peak. A power function regression was used to relate the scatter-to-total ratio to the lower window-to-total ratio at each pixel, from which an estimated scatter image was calculated. DPW demonstrated good stability, achieved by abutting the two windows away from the peak. Performance was assessed and compared with Compton window subtraction (CWS). For simulated extended objects, DPW generally produced a less biased scatter estimate than the commonly used CWS method with k = 0.5. In acquisitions of a clinical SPECT phantom, contrast recovery was comparable for both DPW and CWS; however, DPW showed greater visual contrast in clinical SPECT bone studies

  3. The Development of a Parameterized Scatter Removal Algorithm for Nuclear Materials Identification System Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Brandon Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2010-03-01

    This dissertation presents a novel method for removing scattering effects from Nuclear Materials Identification System (NMIS) imaging. The NMIS uses fast neutron radiography to generate images of the internal structure of objects non-intrusively. If the correct attenuation through the object is measured, the positions and macroscopic cross-sections of features inside the object can be determined. The cross sections can then be used to identify the materials and a 3D map of the interior of the object can be reconstructed. Unfortunately, the measured attenuation values are always too low because scattered neutrons contribute to the unattenuated neutron signal. Previous efforts to remove the scatter from NMIS imaging have focused on minimizing the fraction of scattered neutrons which are misidentified as directly transmitted by electronically collimating and time tagging the source neutrons. The parameterized scatter removal algorithm (PSRA) approaches the problem from an entirely new direction by using Monte Carlo simulations to estimate the point scatter functions (PScFs) produced by neutrons scattering in the object. PScFs have been used to remove scattering successfully in other applications, but only with simple 2D detector models. This work represents the first time PScFs have ever been applied to an imaging detector geometry as complicated as the NMIS. By fitting the PScFs using a Gaussian function, they can be parameterized and the proper scatter for a given problem can be removed without the need for rerunning the simulations each time. In order to model the PScFs, an entirely new method for simulating NMIS measurements was developed for this work. The development of the new models and the codes required to simulate them are presented in detail. The PSRA was used on several simulated and experimental measurements and chi-squared goodness of fit tests were used to compare the corrected values to the ideal values that would be expected with no scattering. Using

  4. THE DEVELOPMENT OF A PARAMETERIZED SCATTER REMOVAL ALGORITHM FOR NUCLEAR MATERIALS IDENTIFICATION SYSTEM IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Brandon R [ORNL

    2010-05-01

    This report presents a novel method for removing scattering effects from Nuclear Materials Identification System (NMIS) imaging. The NMIS uses fast neutron radiography to generate images of the internal structure of objects nonintrusively. If the correct attenuation through the object is measured, the positions and macroscopic cross sections of features inside the object can be determined. The cross sections can then be used to identify the materials, and a 3D map of the interior of the object can be reconstructed. Unfortunately, the measured attenuation values are always too low because scattered neutrons contribute to the unattenuated neutron signal. Previous efforts to remove the scatter from NMIS imaging have focused on minimizing the fraction of scattered neutrons that are misidentified as directly transmitted by electronically collimating and time tagging the source neutrons. The parameterized scatter removal algorithm (PSRA) approaches the problem from an entirely new direction by using Monte Carlo simulations to estimate the point scatter functions (PScFs) produced by neutrons scattering in the object. PScFs have been used to remove scattering successfully in other applications, but only with simple 2D detector models. This work represents the first time PScFs have ever been applied to an imaging detector geometry as complicated as the NMIS. By fitting the PScFs using a Gaussian function, they can be parameterized, and the proper scatter for a given problem can be removed without the need for rerunning the simulations each time. In order to model the PScFs, an entirely new method for simulating NMIS measurements was developed for this work. The development of the new models and the codes required to simulate them are presented in detail. The PSRA was used on several simulated and experimental measurements, and chi-squared goodness of fit tests were used to compare the corrected values to the ideal values that would be expected with no scattering. Using the

  5. Fast scattering simulation tool for multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, A., E-mail: artur.sossin@cea.fr [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Tabary, J.; Rebuffel, V. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)

    2015-12-01

    A combination of Monte Carlo (MC) and deterministic approaches was employed as a means of creating a simulation tool capable of providing energy resolved x-ray primary and scatter images within a reasonable time interval. Libraries of Sindbad, a previously developed x-ray simulation software, were used in the development. The scatter simulation capabilities of the tool were validated through simulation with the aid of GATE and through experimentation by using a spectrometric CdTe detector. A simple cylindrical phantom with cavities and an aluminum insert was used. Cross-validation with GATE showed good agreement with a global spatial error of 1.5% and a maximum scatter spectrum error of around 6%. Experimental validation also supported the accuracy of the simulations obtained from the developed software with a global spatial error of 1.8% and a maximum error of around 8.5% in the scatter spectra.

  6. Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model.

    Science.gov (United States)

    Al-Asadi, H A; Al-Mansoori, M H; Ajiya, M; Hitam, S; Saripan, M I; Mahdi, M A

    2010-10-11

    We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave.

  7. Study of Compton scattering influence in cardiac SPECT images

    International Nuclear Information System (INIS)

    Munhoz, A.C.L.; Abe, R.; Zanardo, E.L.; Robilotta, C.C.

    1992-01-01

    The reduction effect from Compton fraction in the quality of and image is evaluated, with two ways of acquisition data: one, with the window of energetic analyser dislocated over the photopeak and the other, with two windows, one over the Compton contribution and the other, placed in the center over the photopeak. (C.G.C.)

  8. Full wavefield migration: Seismic imaging using multiple scattering effects

    NARCIS (Netherlands)

    Davydenko, M.

    2016-01-01

    Seismic imaging aims at revealing the structural information of the subsurface using the reflected wavefields captured by sensors usually located at the surface. Wave propagation is a complex phenomenon and the measured data contain a set of backscattered events including not only primary

  9. Advanced techniques in digital mammographic images recognition

    International Nuclear Information System (INIS)

    Aliu, R. Azir

    2011-01-01

    Computer Aided Detection and Diagnosis is used in digital radiography as a second thought in the process of determining diagnoses, which reduces the percentage of wrong diagnoses of the established interpretation of mammographic images. The issues that are discussed in the dissertation are the analyses and improvement of advanced technologies in the field of artificial intelligence, more specifically in the field of machine learning for solving diagnostic problems and automatic detection of speculated lesions in digital mammograms. The developed of SVM-based ICAD system with cascade architecture for analyses and comparison mammographic images in both projections (CC and MLO) gives excellent result for detection and masses and microcalcifications. In order to develop a system with optimal performances of sensitivity, specificity and time complexity, a set of relevant characteristics need to be created which will show all the pathological regions that might be present in the mammographic image. The structure of the mammographic image, size and the large number of pathological structures in this area are the reason why the creation of a set of these features is necessary for the presentation of good indicators. These pathological structures are a real challenge today and the world of science is working in that direction. The doctoral dissertation showed that the system has optimal results, which are confirmed by experts, and institutions, which are dealing with these same issues. Also, the thesis presents a new approach for automatic identification of regions of interest in the mammographic image where regions of interest are automatically selected for further processing mammography in cases when the number of examined patients is higher. Out of 480 mammographic images downloaded from MIAS database and tested with ICAD system the author shows that, after separation and selection of relevant features of ICAD system the accuracy is 89.7% (96.4% for microcalcifications

  10. New imaging technique based on diffraction of a focused x-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Kazimirov, A [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Kohn, V G [Russian Research Center ' Kurchatov Institute, 123182 Moscow (Russian Federation); Cai, Z-H [Advanced Photon Source, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)], E-mail: ayk7@cornell.edu

    2009-01-07

    We present first experimental results from a new diffraction depth-sensitive imaging technique. It is based on the diffraction of a focused x-ray beam from a crystalline sample and recording the intensity pattern on a high-resolution CCD detector positioned at a focal plane. Structural non-uniformity inside the sample results in a region of enhanced intensity in the diffraction pattern. The technique was applied to study silicon-on-insulator thin layers of various thicknesses which revealed a complex strain profile within the layers. A circular Fresnel zone plate was used as a focusing optic. Incoherent diffuse scattering spreads out of the diffraction plane and results in intensity recorded outside of the focal spot providing a new approach to separately register x-rays scattered coherently and incoherently from the sample. (fast track communication)

  11. Innovative Hyperspectral Imaging-Based Techniques for Quality Evaluation of Fruits and Vegetables: A Review

    Directory of Open Access Journals (Sweden)

    Yuzhen Lu

    2017-02-01

    Full Text Available New, non-destructive sensing techniques for fast and more effective quality assessment of fruits and vegetables are needed to meet the ever-increasing consumer demand for better, more consistent and safer food products. Over the past 15 years, hyperspectral imaging has emerged as a new generation of sensing technology for non-destructive food quality and safety evaluation, because it integrates the major features of imaging and spectroscopy, thus enabling the acquisition of both spectral and spatial information from an object simultaneously. This paper first provides a brief overview of hyperspectral imaging configurations and common sensing modes used for food quality and safety evaluation. The paper is, however, focused on the three innovative hyperspectral imaging-based techniques or sensing platforms, i.e., spectral scattering, integrated reflectance and transmittance, and spatially-resolved spectroscopy, which have been developed in our laboratory for property and quality evaluation of fruits, vegetables and other food products. The basic principle and instrumentation of each technique are described, followed by the mathematical methods for processing and extracting critical information from the acquired data. Applications of these techniques for property and quality evaluation of fruits and vegetables are then presented. Finally, concluding remarks are given on future research needs to move forward these hyperspectral imaging techniques.

  12. New calibration technique for KCD-based megavoltage imaging

    Science.gov (United States)

    Samant, Sanjiv S.; Zheng, Wei; DiBianca, Frank A.; Zeman, Herbert D.; Laughter, Joseph S.

    1999-05-01

    In megavoltage imaging, current commercial electronic portal imaging devices (EPIDs), despite having the advantage of immediate digital imaging over film, suffer from poor image contrast and spatial resolution. The feasibility of using a kinestatic charge detector (KCD) as an EPID to provide superior image contrast and spatial resolution for portal imaging has already been demonstrated in a previous paper. The KCD system had the additional advantage of requiring an extremely low dose per acquired image, allowing for superior imaging to be reconstructed form a single linac pulse per image pixel. The KCD based images utilized a dose of two orders of magnitude less that for EPIDs and film. Compared with the current commercial EPIDs and film, the prototype KCD system exhibited promising image qualities, despite being handicapped by the use of a relatively simple image calibration technique, and the performance limits of medical linacs on the maximum linac pulse frequency and energy flux per pulse delivered. This image calibration technique fixed relative image pixel values based on a linear interpolation of extrema provided by an air-water calibration, and accounted only for channel-to-channel variations. The counterpart of this for area detectors is the standard flat fielding method. A comprehensive calibration protocol has been developed. The new technique additionally corrects for geometric distortions due to variations in the scan velocity, and timing artifacts caused by mis-synchronization between the linear accelerator and the data acquisition system (DAS). The role of variations in energy flux (2 - 3%) on imaging is demonstrated to be not significant for the images considered. The methodology is presented, and the results are discussed for simulated images. It also allows for significant improvements in the signal-to- noise ratio (SNR) by increasing the dose using multiple images without having to increase the linac pulse frequency or energy flux per pulse. The

  13. Compton scatter correction in case of multiple crosstalks in SPECT imaging.

    Science.gov (United States)

    Sychra, J J; Blend, M J; Jobe, T H

    1996-02-01

    A strategy for Compton scatter correction in brain SPECT images was proposed recently. It assumes that two radioisotopes are used and that a significant portion of photons of one radioisotope (for example, Tc99m) spills over into the low energy acquisition window of the other radioisotope (for example, Tl201). We are extending this approach to cases of several radioisotopes with mutual, multiple and significant photon spillover. In the example above, one may correct not only the Tl201 image but also the Tc99m image corrupted by the Compton scatter originating from the small component of high energy Tl201 photons. The proposed extension is applicable to other anatomical domains (cardiac imaging).

  14. Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    Science.gov (United States)

    Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  15. Optical replication techniques for image slicers

    Czech Academy of Sciences Publication Activity Database

    Schmoll, J.; Robertson, D.J.; Dubbeldam, C.M.; Bortoletto, F.; Pína, L.; Hudec, René; Prieto, E.; Norrie, C.; Ramsay- Howat, S.

    2006-01-01

    Roč. 50, 4-5 (2006), s. 263-266 ISSN 1387-6473 Institutional research plan: CEZ:AV0Z10030501 Keywords : smart focal planes * image slicers * replication Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.914, year: 2006

  16. Comparing imaging procedures: techniques and examples. Gastroenterology

    International Nuclear Information System (INIS)

    Malmud, L.S.

    1982-01-01

    The distinct advantages of nuclear medicine procedures, in comparison to radiography, contrast studies, computerized tomography and ultrasound, are emphasized. Scintigraphic methods offer quantitative data regarding function which competing imaging modalities are unable to provide, and make them the studies of choice in the evaluation of gastrointestinal physiology and functional abnormalities

  17. Multi-Detector Computed Tomography Imaging Techniques in Arterial Injuries

    Directory of Open Access Journals (Sweden)

    Cameron Adler

    2018-04-01

    Full Text Available Cross-sectional imaging has become a critical aspect in the evaluation of arterial injuries. In particular, angiography using computed tomography (CT is the imaging of choice. A variety of techniques and options are available when evaluating for arterial injuries. Techniques involve contrast bolus, various phases of contrast enhancement, multiplanar reconstruction, volume rendering, and maximum intensity projection. After the images are rendered, a variety of features may be seen that diagnose the injury. This article provides a general overview of the techniques, important findings, and pitfalls in cross sectional imaging of arterial imaging, particularly in relation to computed tomography. In addition, the future directions of computed tomography, including a few techniques in the process of development, is also discussed.

  18. Jet-images: computer vision inspired techniques for jet tagging

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel [SLAC National Accelerator Laboratory,Menlo Park, CA 94028 (United States)

    2015-02-18

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  19. Jet-images: computer vision inspired techniques for jet tagging

    International Nuclear Information System (INIS)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel

    2015-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  20. Acoustical holographic Siamese image technique for imaging radial cracks in reactor piping

    International Nuclear Information System (INIS)

    Collins, H.D.; Gribble, R.P.

    1985-04-01

    This paper describes a unique technique (i.e., ''Siamese imaging'') for imaging quasi-vertical defects in reactor pipe weldments. The Siamese image is a bi-symmetrical view of the inner surface defect. Image construction geometry consists of two probes (i.e., source/receiver) operating either from opposite sides or the same side of the defect to be imaged. As the probes are scanned across a lower surface connected defect, they encounter two images - first the normal upright image and then the inverted image. The final integrated image consists of two images connected along their baselines, thus we call it a ''Siamese image.'' The experimental imaging results on simulated and natural cracks in reactor piping weldments graphically illustrate this unique technique. Excellent images of mechanical fatique and thermal cracks were obtained on ferritic and austenitic piping

  1. Experimental and theoretical contributions to X-ray phase-contrast techniques for medical imaging

    International Nuclear Information System (INIS)

    Diemoz, P.C.

    2011-01-01

    Several X-ray phase-contrast techniques have recently been developed. Unlike conventional X-ray methods, which measure the absorption properties of the tissues, these techniques derive contrast also from the modulation of the phase produced by the sample. Since the phase shift can be significant even for small details characterized by weak or absent absorption, the achievable image contrast can be greatly increased, notably for the soft biological tissues. These methods are therefore very promising for applications in the medical domain. The aim of this work is to contribute to a deeper understanding of these techniques, in particular propagation-based imaging (PBI), analyzer-based imaging (ABI) and grating interferometry (GIFM), and to study their potential and the best practical implementation for medical imaging applications. An important part of this work is dedicated to the use of mathematical algorithms for the extraction, from the acquired images, of quantitative sample information (the absorption, refraction and scattering sample properties). In particular, five among the most known algorithms based on the geometrical optics approximation have been theoretically analysed and experimentally compared, in planar and tomographic modalities, by using geometrical phantoms and human bone-cartilage and breast samples. A semi-quantitative method for the acquisition and reconstruction of tomographic images in the ABI and GIFM techniques has also been proposed. The validity conditions are analyzed in detail and the method, enabling a considerable simplification of the imaging procedure, has been experimentally checked on phantoms and human samples. Finally, a theoretical and experimental comparison of the PBI, ABI and GIFM techniques is presented. The advantages and drawbacks of each of these techniques are discussed. The results obtained from this analysis can be very useful for determining the most adapted technique for a given application. (author)

  2. Resolution revival technique for subwavelength imaging

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Repän, Taavi; Zhukovsky, Sergei

    2017-01-01

    The method to achieve a high resolution of subwavelength features (to improve the contrast function) for a dark-field hyperlens—hyperbolic metamaterial slab possessing metallic properties at the interface — is developed. The technique requires the introduction of the phase difference between the o...

  3. Single photon imaging. New instrumentation and techniques

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.

    1981-01-01

    The performance of Anger scintillation cameras continues to be enhanced through a series of small improvements which result in significantly better imaging characteristics. The most recent changes in camera design consist of: (1) the introduction of photomultipliers with better photocathode and electron collection efficiencies, (2) the use of thinner (3/8 or 1/4 in) crystals giving slightly better intrinsic resolution for low gamma-ray energies, (3) inclusion of a spatially varying energy window to compensate for variations of light collection efficiency, (4) event-by-event, real-time distortion removal for uniformity correction, and (5) introduction of new methods to improve the count-rate capability. Whereas some of these improvements are due to better understanding of the fundamentals of camera design, others are the result of technological advances in electronic components such as analogue-to-digital converters, microprocessors and high-density digital memories. The development of single photon tomography has developed along two parallel paths. Multipinhole and rotating slant-hole collimator attachments provide some degree of longitudinal tomography, and are currently being applied to cardiac imaging. At the same time rotating camera systems capable of transverse as well as longitudinal imaging are being refined technically and evaluated clinically. Longitudinal tomography is of limited use in quantitative studies and is likely to be an interim solution to three-dimensional imaging. Rotating camera systems, on the other hand, not only provide equal resolution in all three dimensions but are also capable of providing quantitative accuracy. This is the result of progress in attenuation correction and the design of special collimators. Single photon tomography provides a small but noticeable improvement in diagnostic accuracy which is likely to result in widespread use of rotating camera systems in the future

  4. Automated thermal mapping techniques using chromatic image analysis

    Science.gov (United States)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  5. A review of imaging techniques for systems biology

    Directory of Open Access Journals (Sweden)

    Po Ming J

    2008-08-01

    Full Text Available Abstract This paper presents a review of imaging techniques and of their utility in system biology. During the last decade systems biology has matured into a distinct field and imaging has been increasingly used to enable the interplay of experimental and theoretical biology. In this review, we describe and compare the roles of microscopy, ultrasound, CT (Computed Tomography, MRI (Magnetic Resonance Imaging, PET (Positron Emission Tomography, and molecular probes such as quantum dots and nanoshells in systems biology. As a unified application area among these different imaging techniques, examples in cancer targeting are highlighted.

  6. Employing image processing techniques for cancer detection using microarray images.

    Science.gov (United States)

    Dehghan Khalilabad, Nastaran; Hassanpour, Hamid

    2017-02-01

    Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The parallel-sequential field subtraction technique for coherent nonlinear ultrasonic imaging

    Science.gov (United States)

    Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.

    2018-06-01

    Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage than was previously possible and have sensitivity to partially closed defects. This study explores a coherent imaging technique based on the subtraction of two modes of focusing: parallel, in which the elements are fired together with a delay law and sequential, in which elements are fired independently. In the parallel focusing a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded and post-processed to form an image. Under linear elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images and use this to characterise the nonlinearity of small closed fatigue cracks. In particular we monitor the change in relative phase and amplitude at the fundamental frequencies for each focal point and use this nonlinear coherent imaging metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g. back wall or large scatters) effectively when instrumentation noise compensation in applied, thereby allowing damage to be detected at an early stage (c. 15% of fatigue life) and reliably quantified in later fatigue life.

  8. Automated synthesis of image processing procedures using AI planning techniques

    Science.gov (United States)

    Chien, Steve; Mortensen, Helen

    1994-01-01

    This paper describes the Multimission VICAR (Video Image Communication and Retrieval) Planner (MVP) (Chien 1994) system, which uses artificial intelligence planning techniques (Iwasaki & Friedland, 1985, Pemberthy & Weld, 1992, Stefik, 1981) to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing subprograms) in response to image processing requests made to the JPL Multimission Image Processing Laboratory (MIPL). The MVP system allows the user to specify the image processing requirements in terms of the various types of correction required. Given this information, MVP derives unspecified required processing steps and determines appropriate image processing programs and parameters to achieve the specified image processing goals. This information is output as an executable image processing program which can then be executed to fill the processing request.

  9. New approaches in intelligent image analysis techniques, methodologies and applications

    CERN Document Server

    Nakamatsu, Kazumi

    2016-01-01

    This book presents an Introduction and 11 independent chapters, which are devoted to various new approaches of intelligent image processing and analysis. The book also presents new methods, algorithms and applied systems for intelligent image processing, on the following basic topics: Methods for Hierarchical Image Decomposition; Intelligent Digital Signal Processing and Feature Extraction; Data Clustering and Visualization via Echo State Networks; Clustering of Natural Images in Automatic Image Annotation Systems; Control System for Remote Sensing Image Processing; Tissue Segmentation of MR Brain Images Sequence; Kidney Cysts Segmentation in CT Images; Audio Visual Attention Models in Mobile Robots Navigation; Local Adaptive Image Processing; Learning Techniques for Intelligent Access Control; Resolution Improvement in Acoustic Maps. Each chapter is self-contained with its own references. Some of the chapters are devoted to the theoretical aspects while the others are presenting the practical aspects and the...

  10. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    International Nuclear Information System (INIS)

    Overbury, Steven H.; Coates, Leighton; Herwig, Kenneth W.; Kidder, Michelle

    2011-01-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  11. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Overbury, Steven {Steve} H [ORNL; Coates, Leighton [ORNL; Herwig, Kenneth W [ORNL; Kidder, Michelle [ORNL

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  12. Imaging of Scattered Wavefields in Passive and Controlled-source Seismology

    KAUST Repository

    AlTheyab, Abdullah

    2015-12-01

    Seismic waves are used to study the Earth, exploit its hydrocarbon resources, and understand its hazards. Extracting information from seismic waves about the Earth’s subsurface, however, is becoming more challenging as our questions become more complex and our demands for higher resolution increase. This dissertation introduces two new methods that use scattered waves for improving the resolution of subsurface images: natural migration of passive seismic data and convergent full-waveform inversion. In the first part of this dissertation, I describe a method where the recorded seismic data are used to image subsurface heterogeneities like fault planes. This method, denoted as natural migration of backscattered surface waves, provides higher resolution images for near-surface faults that is complementary to surface-wave tomography images. Our proposed method differ from contemporary methods in that it does not (1) require a velocity model of the earth, (2) assumes weak scattering, or (3) have a high computational cost. This method is applied to ambient noise recorded by the US-Array to map regional faults across the American continent. Natural migration can be formulated as a least-squares inversion to furtherer enhance the resolution and the quality of the fault images. This inversion is applied to ambient noise recorded in Long Beach, California to reveal a matrix of shallow subsurface faults. The second part of this dissertation describes a convergent full waveform inversion method for controlled source data. A controlled source excites waves that scatter from subsurface reflectors. The scattered waves are recorded by a large array of geophones. These recorded waves can be inverted for a high-resolution image of the subsurface by FWI, which is typically convergent for transmitted arrivals but often does not converge for deep reflected events. I propose a preconditioning approach that extends the ability of FWI to image deep parts of the velocity model, which

  13. An energy-subtraction Compton scatter camera design for in vivo medical imaging of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rohe, R.C.; Valentine, J.D.

    1996-01-01

    A Compton scatter camera (CSC) design is proposed for imaging radioisotopes used as biotracers. A clinical version may increase sensitivity by a factor of over 100, while maintaining or improving spatial resolution, as compared with existing Anger cameras that use lead collimators. This novel approach is based on using energy subtraction (ΔE = E 0 - E SC , where E 0 , ΔE, and E SC are the energy of the emitted gamma ray, the energy deposited by the initial Compton scatter, and the energy of the Compton scattered photon) to determine the amount of energy deposited in the primary system. The energy subtraction approach allows the requirement of high energy resolution to be placed on a secondary detector system instead of the primary detector system. Requiring primary system high energy resolution has significantly limited previous CSC designs for medical imaging applications. Furthermore, this approach is dependent on optimizing the camera design for data acquisition of gamma rays that undergo only one Compton scatter in a low-Z primary detector system followed by a total absorption of the Compton scattered photon in a high-Z secondary detector system. The proposed approach allows for a more compact primary detector system, a more simplified pulse processing interface, and a much less complicated detector cooling scheme as compared with previous CSC designs. Analytical calculations and Monte Carlo simulation results for some specific detector materials and geometries are presented

  14. Direct imaging of turbid media using long-time back-scattered photons, a numerical study

    International Nuclear Information System (INIS)

    Boulanger, Joan; Liu, Fengshan; El Akel, Azad; Charette, Andre

    2006-01-01

    Direct imaging is a convenient way to obtain information on the interior of a semi-transparent turbid material by non-invasive probing using laser beams. The major difficulty is linked to scattering which scrambles the directional information coming from the laser beam. It is found in this paper that the long-term multiple-scattered reflected photons may provide structural information on the inside of a material, which offers an interesting alternative to using information only from un-scattered or least-scattered photons as obtained from current direct imaging set-ups for thin media. Based on some observations on a non-homogeneous three layered 1-D slab irradiated by a laser pulse, a direct probing methodology making use of the long-term back-scattered photons is illustrated to recover inclusions positions in a turbid 2-D medium. First, the numerical model is presented. Second, an extended parametrical study is conducted on 1-D homogeneous and non-homogeneous slabs with different laser pulse durations. It is found that the reflected asymptotic logarithmic slope carries information about the presence of the inclusion and that short laser pulses are not necessary since only the decaying parts of the remanent optical signature is important. Longer laser pulses allow a higher level of energy injection and signal to noise ratio. Third, those observations are used for the probing of a 2-D non-homogeneous phantom. (author)

  15. Mapping sediment deposite on tank FB-901 using neutron back scattering technique

    International Nuclear Information System (INIS)

    Wibisono; Sugiharto; Zulkifli Lubis; Phyu Phyu Aung Myint; Thin Moe Hlaing

    2016-01-01

    Tank FB-901 is storage tank for temporary material production with a diameter 11 m and a high 12 m. This tank has been use about 10 years so it is suspected there is sediment in it. Neutron back scattering technique has been used to detected the level of sediment inside so it can be seen the volume of liquid properly and avoid problem in the nozzle outlet. AmBe neutron source with activity one Curie shoot into the tank to enable back scattering intensity from material. Measurement using He-3 detector, radiation counter Ludlum model 2200 scaler ratemeter and mechanical motor controlled by computer. Investigation were taken at around the tank from the bottom to the top on each step 50 mm height 8000 mm. Scan determined the distance between 500 mm and measurement time 3 seconds to each sample point. Investigation found the sediment level average 1000 mm by 1500 mm highest and lowest level 100 mm. Fluctuating liquid level observed maximum of 7800 mm and average of 7000 mm. Cleaning tank advised to avoid blockage of the nozzle and material volume is measured accurately. (author)

  16. The Particle Habit Imaging and Polar Scattering probe PHIPS: First Stereo-Imaging and Polar Scattering Function Measurements of Ice Particles

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Schön, R.; Leisner, T.

    2009-04-01

    Cirrus clouds impact climate by their influence on the water vapour distribution in the upper troposphere. Moreover, they directly affect the radiative balance of the Earth's atmosphere by the scattering of incoming solar radiation and the absorption of outgoing thermal emission. The link between the microphysical properties of ice cloud particles and the radiative forcing of the clouds is not as yet well understood and the influence of the shapes of ice crystals on the radiative budget of cirrus clouds is currently under debate. PHIPS is a new experimental device for the stereo-imaging of individual cloud particles and the simultaneous measurement of the polar scattering function of the same particle. PHIPS uses an automated particle event triggering system that ensures that only those particles are captured which are located in the field of view - depth of field volume of the microscope unit. Efforts were made to improve the resolution power of the microscope unit down to about 3 µm and to facilitate a 3D morphology impression of the ice crystals. This is realised by a stereo-imaging set up composed of two identical microscopes which image the same particle under an angular viewing distance of 30°. The scattering part of PHIPS enables the measurement of the polar light scattering function of cloud particles with an angular resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). For each particle the light scattering pulse per channel is stored either as integrated intensity or as time resolved intensity function which opens a new category of data analysis concerning details of the particle movement. PHIPS is the first step to PHIPS-HALO which is one of the in situ ice particle and water vapour instruments that are currently under development for the new German research aircraft HALO. The instrument was tested in the ice cloud characterisation campaign HALO-02 which was conducted

  17. Calibration of a Microwave Imaging System Using a Known Scatterer

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2010-01-01

    the transmission and receiving channels inside of the transceiver modules has been detected. This is most likely caused by the lessthan- perfect isolation of the switches in the modules as well as leakage through the PCB itself. Since the presence of such a leakage signal in the measurements seriously influence...... that the low-amplitude RF signals, available at the terminals of the antennas, only need to travel a very short distance to get to the low-noise amplifier, while the RF as well as the IF signals running to and from the transceiver modules all have significant amplitudes. However, some leakage between...... the imaging capability of the system, it is of interest to remove it. In this work, a calibration procedure capable of removing a constant offset, i.e., the leakage, from the measured signals is presented. The calibration procedure is based on a comparison between the relative change observed between...

  18. Imaging electrical conductivity, permeability, and/or permittivity contrasts using the Born Scattering Inversion (BSI)

    Science.gov (United States)

    Darrh, A.; Downs, C. M.; Poppeliers, C.

    2017-12-01

    Born Scattering Inversion (BSI) of electromagnetic (EM) data is a geophysical imaging methodology for mapping weak conductivity, permeability, and/or permittivity contrasts in the subsurface. The high computational cost of full waveform inversion is reduced by adopting the First Born Approximation for scattered EM fields. This linearizes the inverse problem in terms of Born scattering amplitudes for a set of effective EM body sources within a 3D imaging volume. Estimation of scatterer amplitudes is subsequently achieved by solving the normal equations. Our present BSI numerical experiments entail Fourier transforming real-valued synthetic EM data to the frequency-domain, and minimizing the L2 residual between complex-valued observed and predicted data. We are testing the ability of BSI to resolve simple scattering models. For our initial experiments, synthetic data are acquired by three-component (3C) electric field receivers distributed on a plane above a single point electric dipole within a homogeneous and isotropic wholespace. To suppress artifacts, candidate Born scatterer locations are confined to a volume beneath the receiver array. Also, we explore two different numerical linear algebra algorithms for solving the normal equations: Damped Least Squares (DLS), and Non-Negative Least Squares (NNLS). Results from NNLS accurately recover the source location only for a large dense 3C receiver array, but fail when the array is decimated, or is restricted to horizontal component data. Using all receiver stations and all components per station, NNLS results are relatively insensitive to a sub-sampled frequency spectrum, suggesting that coarse frequency-domain sampling may be adequate for good target resolution. Results from DLS are insensitive to diminishing array density, but contain spatially oscillatory structure. DLS-generated images are consistently centered at the known point source location, despite an abundance of surrounding structure.

  19. CATEGORICAL IMAGE COMPONENTS IN THE FORMING SYSTEM OF A MARKETING TECHNIQUES MANAGER’S IMAGE CULTURE

    OpenAIRE

    Anna Borisovna Cherednyakova

    2015-01-01

    Based on the understanding of the image culture formation of managers of marketing techniques, as a representative of the social and communication interaction of public structures, categorical apparatus of image culture with an emphasis on the etymology of the image, as an integral component of image culture was analyzed. Categorical components of the image are presented from the standpoint of image culture, as personal new formation, an integral part of the professional activity of the marke...

  20. Segmentation techniques for extracting humans from thermal images

    CSIR Research Space (South Africa)

    Dickens, JS

    2011-11-01

    Full Text Available A pedestrian detection system for underground mine vehicles is being developed that requires the segmentation of people from thermal images in underground mine tunnels. A number of thresholding techniques are outlined and their performance on a...

  1. Three-dimensional imaging of flat natural and cultural heritage objects by a Compton scattering modality

    Science.gov (United States)

    Guerrero Prado, Patricio; Nguyen, Mai K.; Dumas, Laurent; Cohen, Serge X.

    2017-01-01

    Characterization and interpretation of flat ancient material objects, such as those found in archaeology, paleoenvironments, paleontology, and cultural heritage, have remained a challenging task to perform by means of conventional x-ray tomography methods due to their anisotropic morphology and flattened geometry. To overcome the limitations of the mentioned methodologies for such samples, an imaging modality based on Compton scattering is proposed in this work. Classical x-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able, first, to avoid relative rotations between the sample and the imaging setup, and second, to obtain three-dimensional data even when the object is supported by a dense material by exploiting backscattered photons. Mathematically this problem is addressed by means of a conical Radon transform and its inversion. The image formation process and object reconstruction model are presented. The feasibility of this methodology is supported by numerical simulations.

  2. Coded Aperture Nuclear Scintigraphy: A Novel Small Animal Imaging Technique

    Directory of Open Access Journals (Sweden)

    Dawid Schellingerhout

    2002-10-01

    Full Text Available We introduce and demonstrate the utility of coded aperture (CA nuclear scintigraphy for imaging small animals. CA imaging uses multiple pinholes in a carefully designed mask pattern, mounted on a conventional gamma camera. System performance was assessed using point sources and phantoms, while several animal experiments were performed to test the usefulness of the imaging system in vivo, with commonly used radiopharmaceuticals. The sensitivity of the CA system for 99mTc was 4.2 × 103 cps/Bq (9400 cpm/μCi, compared to 4.4 × 104 cps/Bq (990 cpm/μCi for a conventional collimator system. The system resolution was 1.7 mm, as compared to 4–6 mm for the conventional imaging system (using a high-sensitivity low-energy collimator. Animal imaging demonstrated artifact-free imaging with superior resolution and image quality compared to conventional collimator images in several mouse and rat models. We conclude that: (a CA imaging is a useful nuclear imaging technique for small animal imaging. The advantage in signal-to-noise can be traded to achieve higher resolution, decreased dose or reduced imaging time. (b CA imaging works best for images where activity is concentrated in small volumes; a low count outline may be better demonstrated using conventional collimator imaging. Thus, CA imaging should be viewed as a technique to complement rather than replace traditional nuclear imaging methods. (c CA hardware and software can be readily adapted to existing gamma cameras, making their implementation a relatively inexpensive retrofit to most systems.

  3. Deterministic simulation of first-order scattering in virtual X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. E-mail: nicolas.freud@insa-lyon.fr; Duvauchelle, P.; Pistrui-Maximean, S.A.; Letang, J.-M.; Babot, D

    2004-07-01

    A deterministic algorithm is proposed to compute the contribution of first-order Compton- and Rayleigh-scattered radiation in X-ray imaging. This algorithm has been implemented in a simulation code named virtual X-ray imaging. The physical models chosen to account for photon scattering are the well-known form factor and incoherent scattering function approximations, which are recalled in this paper and whose limits of validity are briefly discussed. The proposed algorithm, based on a voxel discretization of the inspected object, is presented in detail, as well as its results in simple configurations, which are shown to converge when the sampling steps are chosen sufficiently small. Simple criteria for choosing correct sampling steps (voxel and pixel size) are established. The order of magnitude of the computation time necessary to simulate first-order scattering images amounts to hours with a PC architecture and can even be decreased down to minutes, if only a profile is computed (along a linear detector). Finally, the results obtained with the proposed algorithm are compared to the ones given by the Monte Carlo code Geant4 and found to be in excellent accordance, which constitutes a validation of our algorithm. The advantages and drawbacks of the proposed deterministic method versus the Monte Carlo method are briefly discussed.

  4. Evaluation of radiographic imaging techniques in lung nodule detection

    International Nuclear Information System (INIS)

    Ho, J.T.; Kruger, R.A.

    1989-01-01

    Dual-energy radiography appears to be the most effective technique to address bone superposition that compromises conventional chest radiography. A dual-energy, single-exposure, film-based technique was compared with a dual-energy, dual-exposure technique and conventional chest radiography in a simulated lung nodule detection study. Observers detected more nodules on images produced by dual-energy techniques than on images produced by conventional chest radiography. The difference between dual-energy and conventional chest radiography is statistically significant and the difference between dual-energy, dual-exposure and single-exposure techniques is statistically insignificant. The single-exposure technique has the potential to replace the dual-exposure technique in future clinical application

  5. Cross plane scattering correction

    International Nuclear Information System (INIS)

    Shao, L.; Karp, J.S.

    1990-01-01

    Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution

  6. An Image Registration Based Technique for Noninvasive Vascular Elastography

    OpenAIRE

    Valizadeh, Sina; Makkiabadi, Bahador; Mirbagheri, Alireza; Soozande, Mehdi; Manwar, Rayyan; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza

    2018-01-01

    Non-invasive vascular elastography is an emerging technique in vascular tissue imaging. During the past decades, several techniques have been suggested to estimate the tissue elasticity by measuring the displacement of the Carotid vessel wall. Cross correlation-based methods are the most prevalent approaches to measure the strain exerted in the wall vessel by the blood pressure. In the case of a low pressure, the displacement is too small to be apparent in ultrasound imaging, especially in th...

  7. Study of morphological changes in scattering and optically anisotropic medium through correlation images

    Science.gov (United States)

    Jain, Neha; Shukla, Prashant; Singh, Jai

    2018-05-01

    Correlation images are very useful in determining the morphological changes. We have investigated the correlation image analysis on depolarization and retardance matrices of polystyrene and gelatine samples respectively. We observed that that correlation images have a potential to show a significant variation with change in the concentration of samples (polystyrene and gelatine). For polystyrene microspheres the correlation value decreases with increasing scattering coefficient. In gelatine samples the correlation also decreases with sample concentration. This variation in correlation for retardance shows the change in a birefringence property of gelatine solution.

  8. Ion-induced nanopatterns on semiconductor surfaces investigated by grazing incidence x-ray scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Carbone, D; Metzger, T H [ID01, ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex (France); Biermanns, A; Pietsch, U [Festkoerperphysik, Universitaet Siegen, D-57068 Siegen (Germany); Ziberi, B; Frost, F [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., D-04318 Leipzig (Germany); Plantevin, O [Universite Paris-Sud, Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, UMR 8609, F-91405 Orsay (France)], E-mail: gcarbone@esrf.fr

    2009-06-03

    In this review we cover and describe the application of grazing incidence x-ray scattering techniques to study and characterize nanopattern formation on semiconductor surfaces by ion beam erosion under various conditions. It is demonstrated that x-rays under grazing incidence are especially well suited to characterize (sub)surface structures on the nanoscale with high spatial and statistical accuracy. The corresponding theory and data evaluation is described in the distorted wave Born approximation. Both ex situ and in situ studies are presented, performed with the use of a specially designed sputtering chamber which allows us to follow the temporal evolution of the nanostructure formation. Corresponding results show a general stabilization of the ordering wavelength and the extension of the ordering as a function of the ion energy and fluence as predicted by theory. The in situ measurements are especially suited to study the early stages of pattern formation, which in some cases reveal a transition from dot to ripple formation. For the case of medium energy ions crystalline ripples are formed buried under a semi-amorphous thick layer with a ripple structure at the surface being conformal with the crystalline/amorphous interface. Here, the x-ray techniques are especially advantageous since they are non-destructive and bulk-sensitive by their very nature. In addition, the GI x-ray techniques described in this review are a unique tool to study the evolving strain, a topic which remains to be explored both experimentally and theoretically.

  9. CATEGORICAL IMAGE COMPONENTS IN THE FORMING SYSTEM OF A MARKETING TECHNIQUES MANAGER’S IMAGE CULTURE

    Directory of Open Access Journals (Sweden)

    Anna Borisovna Cherednyakova

    2015-08-01

    Full Text Available Based on the understanding of the image culture formation of managers of marketing techniques, as a representative of the social and communication interaction of public structures, categorical apparatus of image culture with an emphasis on the etymology of the image, as an integral component of image culture was analyzed. Categorical components of the image are presented from the standpoint of image culture, as personal new formation, an integral part of the professional activity of the marketing techniques manager: object-communicative categorical component, subject-activity categorical component of image, personality-oriented categorical component, value-acmeological categorical component of image.The aim is to identify and justify the image categorical components as a component of image culture of the marketing techniques manager.Method and methodology of work – a general scientific research approach reflecting scientific apparatus of research.Results. Categorical components of the image, as an image culture component of manager of marketing techniques were defined.Practical implication of the results. The theoretical part of «Imageology» course, special course «Image culture of manager of marketing techniques», the theoretical and methodological study and the formation of image culture.

  10. The new techniques of scintigraphic imaging

    International Nuclear Information System (INIS)

    Chatal, J.F.

    1990-01-01

    The purpose of scintigraphic imaging is not to explore the morphology of an organ (or its abnormalities) but rather its functional and metabolic characteristics. It is thus important that a molecular structure (e.g., a hormonal receptor or an antigen) closely linked to the functional activity of an organ or tissue be targeted on its cell surface. Such diagnostic targeting requires the synthesis and labeling of a radiopharmaceutical substance specific for the receptor or antigen in question. It also requires a detection system adapted to count rates and signal-to-background ratios (generally moderate). The synthesis of new radiopharmaceutical agents, a critical stage for the future of nuclear medicine, is a long and often risky process in which success is difficult to foresee. Radiolabeling must be stable in vitro and in vivo, and the radiopharmaceutical must subsequently retain its capability of recognizing the targeted molecule. In endocrinology, the exemplary achievement in this direction has been the synthesis of 131 I-6-iodomethylnorcholesterol and 131 I-metaiodobenzylguanidine for functional scintigraphy of the adrenal cortex and medulla. Progress in detection equipment has been marked by the development of monophotonic tomoscintigraphy, using gamma cameras with a revolving head to obtain slices in different spatial planes showing the distribution in the organism of the injected radiopharmaceutical agent [fr

  11. Measurement of pressure ridges in SAR images of sea ice - Preliminary results on scattering theory

    Science.gov (United States)

    Vesecky, J. F.; Smith, M. P.; Daida, J. M.; Samadani, R.; Camiso, J. C.

    1992-01-01

    Sea ice ridges and keels (hummocks and bummocks) are important in sea ice research for both scientific and practical reasons. A long-term objective is to make quantitative measurements of sea ice ridges using synthetic aperture radar (SAR) images. The preliminary results of a scattering model for sea ice ridge are reported. The approach is through the ridge height variance spectrum Psi(K), where K is the spatial wavenumber, and the two-scale scattering model. The height spectrum model is constructed to mimic height statistics observed with an airborne optical laser. The spectrum model is used to drive a two-scale scattering model. Model results for ridges observed at C- and X-band yield normalized radar cross sections that are 10 to 15 dB larger than the observed cross sections of multiyear ice over the range of angles of incidence from 10 to 70 deg.

  12. Design and calibration of a digital Fourier holographic microscope for particle sizing via goniometry and optical scatter imaging in transmission.

    Science.gov (United States)

    Rossi, Vincent M; Jacques, Steven L

    2016-06-13

    Goniometry and optical scatter imaging have been used for optical determination of particle size based upon optical scattering. Polystyrene microspheres in suspension serve as a standard for system validation purposes. The design and calibration of a digital Fourier holographic microscope (DFHM) are reported. Of crucial importance is the appropriate scaling of scattering angle space in the conjugate Fourier plane. A detailed description of this calibration process is described. Spatial filtering of the acquired digital hologram to use photons scattered within a restricted angular range produces an image. A pair of images, one using photons narrowly scattered within 8 - 15° (LNA), and one using photons broadly scattered within 8 - 39° (HNA), are produced. An image based on the ratio of these two images, OSIR = HNA/LNA, following Boustany et al. (2002), yields a 2D Optical Scatter Image (OSI) whose contrast is based on the angular dependence of photon scattering and is sensitive to the microsphere size, especially in the 0.5-1.0µm range. Goniometric results are also given for polystyrene microspheres in suspension as additional proof of principle for particle sizing via the DFHM.

  13. FIRST SCATTERED-LIGHT IMAGE OF THE DEBRIS DISK AROUND HD 131835 WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Li-Wei; Arriaga, Pauline; Fitzgerald, Michael P.; Esposito, Thomas M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Duchêne, Gaspard; Kalas, Paul G.; De Rosa, Robert J.; Graham, James R. [Astronomy Department, University of California, Berkeley CA 94720-3411 (United States); Maire, Jérôme; Chilcote, Jeffrey K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Marois, Christian [National Research Council of Canada Herzberg, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto ON M5S 3H4 (Canada); Bruzzone, Sebastian [Department of Physics and Astronomy, Centre for Planetary and Space Exploration, University of Western Ontario, London, ON N6A 3K7 (Canada); Rajan, Abhijith [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Pueyo, Laurent; Wolff, Schuyler G.; Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Konopacky, Quinn [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Ammons, S. Mark [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94040 (United States); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); and others

    2015-12-10

    We present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a ∼15 Myr old A2IV star at a distance of ∼120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission,  in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from ∼75 to ∼210 AU in the disk plane with roughly flat surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3σ level.

  14. Techniques and software architectures for medical visualisation and image processing

    NARCIS (Netherlands)

    Botha, C.P.

    2005-01-01

    This thesis presents a flexible software platform for medical visualisation and image processing, a technique for the segmentation of the shoulder skeleton from CT data and three techniques that make contributions to the field of direct volume rendering. Our primary goal was to investigate the use

  15. Muscle perfusion and metabolic heterogeneity: insights from noninvasive imaging techniques

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Scheede-Bergdahl, Celena; Kjaer, Michael

    2006-01-01

    Recent developments in noninvasive imaging techniques have enabled the study of local changes in perfusion and metabolism in skeletal muscle as well as patterns of heterogeneity in these variables in humans. In this review, the principles of these techniques along with some recent findings...... on functional heterogeneity in human skeletal muscle will be presented....

  16. Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara

    Science.gov (United States)

    Schaber, G. G.; Mccauley, J. F.; Breed, C. S.; Olhoeft, G. R.

    1986-01-01

    Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present paper, the near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include (1) favorable distribution of particle sizes, (2) extremely low moisture content and (3) reduced geometric scattering at the SIR-A frequency (1.3 GHz). The depth of signal penetration that results in a recorded backscatter, here called 'radar imaging depth', was documented in the field to be a maximum of 1.5 m, or 0.25 of the calculated 'skin depth', for the sediment blanket. Radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials. Diverse permittivity interfaces and volume scatterers within the shallow subsurface are responsible for most of the observed backscatter not directly attributable to grazing outcrops. Calcium carbonate nodules and rhizoliths concentrated in sandy alluvium of Pleistocene age south of Safsaf oasis in south Egypt provide effective contrast in premittivity and thus act as volume scatterers that enhance SIR-A portrayal of younger inset stream channels.

  17. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    International Nuclear Information System (INIS)

    Kuznetsov, Yu L; Kalchenko, V V; Meglinski, I V

    2011-01-01

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo. (optical technologies in biophysics and medicine)

  18. A Novel Contrast Enhancement Technique on Palm Bone Images

    Directory of Open Access Journals (Sweden)

    Yung-Tsang Chang

    2014-09-01

    Full Text Available Contrast enhancement plays a fundamental role in image processing. Many histogram-based techniques are widely used for contrast enhancement of given images, due to their simple function and effectiveness. However, the conventional histogram equalization (HE methods result in excessive contrast enhancement, which causes natural looking and satisfactory results for a variety of low contrast images. To solve such problems, a novel multi-histogram equalization technique is proposed to enhance the contrast of the palm bone X-ray radiographs in this paper. For images, the mean-variance analysis method is employed to partition the histogram of the original grey scale image into multiple sub-histograms. These histograms are independently equalized. By using this mean-variance partition method, a proposed multi-histogram equalization technique is employed to achieve the contrast enhancement of the palm bone X-ray radiographs. Experimental results show that the multi-histogram equalization technique achieves a lower average absolute mean brightness error (AMBE value. The multi-histogram equalization technique simultaneously preserved the mean brightness and enhanced the local contrast of the original image.

  19. Analysis of high resolution scatter images from laser damage experiments performed on KDP

    International Nuclear Information System (INIS)

    Runkel, M.; Woods, B.; Yan, M.

    1996-01-01

    Interest in producing high damage threshold KH 2 PO 4 (KDP) and (D x H 1-x ) 2 PO 4 (KD*P, DKDP) for optical switching and frequency conversion applications is being driven by the system requirements for the National Ignition Facility (NIF) at Lawrence Livermore National Lab (LLNL). Historically, the path to achieving higher damage thresholds has been to improve the purity of crystal growth solutions. Application of advanced filtration technology has increased the damage threshold, but gives little insight into the actual mechanisms of laser damage. We have developed a laser scatter diagnostic to better study bulk defects and laser damage mechanisms in KDP and KD*P crystals. This diagnostic consists of a cavity doubled, kilohertz class, Nd:YLF laser (527 nm) and high dynamic range CCD camera which allows imaging of bulk scatter signals. With it, we have performed damage tests at 355 nm on four different open-quotes vintagesclose quotes of KDP crystals, concentrating on crystals produced via fast growth methods. We compare the diagnostic's resolution to LLNL's standard damage detection method of 100X darkfield microscopy and discuss its impact on damage threshold determination. We have observed the disappearance of scatter sites upon exposure to subthreshold irradiation. In contrast, we have seen scatterers appear where none previously existed. This includes isolated, large (high signal) sites as well as multiple small scatter sites which appear at fluences above 7 J/cm 2 (fine tracking). However, we have not observed a strong correlation of preexisting scatter sites and laser damage sites. We speculate on the connection between the laser-induced disappearance of scatter sites and the observed increase in damage threshold with laser conditioning

  20. Techniques for combining isotopic images obtained at different energies

    International Nuclear Information System (INIS)

    Soussaline, F.; Di Paola, R.; Bazin, J.P.

    1976-01-01

    The technique described should be considered as a first step towards the classification of scintigraphic data where the energy is included. As in all such studies the interpretation of the resulting images is not necessarily at first evident, and certain experience needs to be established. This applies in particular to the images obtained with the higher factors. It is possible that the use of this technique may resolve, without requiring a priori information, the problem previously encountered using the other 'subtraction' type techniques [fr

  1. A Blind High-Capacity Wavelet-Based Steganography Technique for Hiding Images into other Images

    Directory of Open Access Journals (Sweden)

    HAMAD, S.

    2014-05-01

    Full Text Available The flourishing field of Steganography is providing effective techniques to hide data into different types of digital media. In this paper, a novel technique is proposed to hide large amounts of image data into true colored images. The proposed method employs wavelet transforms to decompose images in a way similar to the Human Visual System (HVS for more secure and effective data hiding. The designed model can blindly extract the embedded message without the need to refer to the original cover image. Experimental results showed that the proposed method outperformed all of the existing techniques not only imperceptibility but also in terms of capacity. In fact, the proposed technique showed an outstanding performance on hiding a secret image whose size equals 100% of the cover image while maintaining excellent visual quality of the resultant stego-images.

  2. DISCOVERY OF SUBSTRUCTURE IN THE SCATTER-BROADENED IMAGE OF SGR A*

    Energy Technology Data Exchange (ETDEWEB)

    Gwinn, C. R. [Physics Department, Broida Hall, University of California, Santa Barbara, CA 93117 (United States); Kovalev, Y. Y.; Soglasnov, V. A. [Astro Space Center, Lebedev Physical Institute, Russian Academy of Sciences, Profsoyuznaya Str. 84/32, Moscow 117997 (Russian Federation); Johnson, M. D., E-mail: cgwinn@physics.ucsb.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-10-10

    We have detected substructure within the smooth scattering disk of the celebrated Galactic center radio source Sagittarius A* (Sgr A*). We observed this structure at 1.3 cm wavelength with the Very Long Baseline Array together with the Green Bank Telescope, on baselines of up to 3000 km, long enough to completely resolve the average scattering disk. Such structure is predicted theoretically as a consequence of refraction by large-scale plasma fluctuations in the interstellar medium. Along with the much-studied θ{sub d}∝λ{sup 2} scaling of angular broadening θ{sub d} with observing wavelength λ, our observations indicate that the spectrum of interstellar turbulence is shallow with an inner scale larger than 300 km. The substructure is consistent with an intrinsic size of about 1 mas at 1.3 cm wavelength, as inferred from deconvolution of the average scattering. Further observations of the substructure can set stronger constraints on the properties of scattering material and on the intrinsic size of Sgr A*. These constraints will guide our understanding of the effects of scatter broadening and the emission physics near the black hole in images with the Event Horizon Telescope at millimeter wavelengths.

  3. Light scattering and transmission measurement using digital imaging for online analysis of constituents in milk

    Science.gov (United States)

    Jain, Pranay; Sarma, Sanjay E.

    2015-05-01

    Milk is an emulsion of fat globules and casein micelles dispersed in an aqueous medium with dissolved lactose, whey proteins and minerals. Quantification of constituents in milk is important in various stages of the dairy supply chain for proper process control and quality assurance. In field-level applications, spectrophotometric analysis is an economical option due to the low-cost of silicon photodetectors, sensitive to UV/Vis radiation with wavelengths between 300 - 1100 nm. Both absorption and scattering are witnessed as incident UV/Vis radiation interacts with dissolved and dispersed constituents in milk. These effects can in turn be used to characterize the chemical and physical composition of a milk sample. However, in order to simplify analysis, most existing instrument require dilution of samples to avoid effects of multiple scattering. The sample preparation steps are usually expensive, prone to human errors and unsuitable for field-level and online analysis. This paper introduces a novel digital imaging based method of online spectrophotometric measurements on raw milk without any sample preparation. Multiple LEDs of different emission spectra are used as discrete light sources and a digital CMOS camera is used as an image sensor. The extinction characteristic of samples is derived from captured images. The dependence of multiple scattering on power of incident radiation is exploited to quantify scattering. The method has been validated with experiments for response with varying fat concentrations and fat globule sizes. Despite of the presence of multiple scattering, the method is able to unequivocally quantify extinction of incident radiation and relate it to the fat concentrations and globule sizes of samples.

  4. Robust imaging of localized scatterers using the singular value decomposition and ℓ1 minimization

    International Nuclear Information System (INIS)

    Chai, A; Moscoso, M; Papanicolaou, G

    2013-01-01

    We consider narrow band, active array imaging of localized scatterers in a homogeneous medium with and without additive noise. We consider both single and multiple illuminations and study ℓ 1 minimization-based imaging methods. We show that for large arrays, with array diameter comparable to range, and when scatterers are sparse and well separated, ℓ 1 minimization using a single illumination and without additive noise can recover the location and reflectivity of the scatterers exactly. For multiple illuminations, we introduce a hybrid method which combines the singular value decomposition and ℓ 1 minimization. This method can be used when the essential singular vectors of the array response matrix are available. We show that with this hybrid method we can recover the location and reflectivity of the scatterers exactly when there is no noise in the data. Numerical simulations indicate that the hybrid method is, in addition, robust to noise in the data. We also compare the ℓ 1 minimization-based methods with others including Kirchhoff migration, ℓ 2 minimization and multiple signal classification. (paper)

  5. Linear image reconstruction for a diffuse optical mammography system in a noncompressed geometry using scattering fluid

    International Nuclear Information System (INIS)

    Nielsen, Tim; Brendel, Bernhard; Ziegler, Ronny; Beek, Michiel van; Uhlemann, Falk; Bontus, Claas; Koehler, Thomas

    2009-01-01

    Diffuse optical tomography (DOT) is a potential new imaging modality to detect or monitor breast lesions. Recently, Philips developed a new DOT system capable of transmission and fluorescence imaging, where the investigated breast is hanging freely into the measurement cup containing scattering fluid. We present a fast and robust image reconstruction algorithm that is used for the transmission measurements. The algorithm is based on the Rytov approximation. We show that this algorithm can be used over a wide range of tissue optical properties if the reconstruction is adapted to each patient. We use estimates of the breast shape and average tissue optical properties to initialize the reconstruction, which improves the image quality significantly. We demonstrate the capability of the measurement system and reconstruction to image breast lesions by clinical examples

  6. Introduction to basic molecular biologic techniques for molecular imaging researches

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2004-01-01

    Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These processes include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as cancer, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. In order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper

  7. Electron temperature measurements by the plasma line technique at the French incoherent scatter radar facilities

    International Nuclear Information System (INIS)

    Kofman, W.; Lejeune, G.; Hagfors, T.; Bauer, P.

    1981-01-01

    The results of experiments aimed at the determination of the electron temperature by a plasma line technique are presented. Using the multistatic capabilities of the French incoherent scatter radar, the plasma line frequencies were simultaneously measured at two receiving stations (Mende and Nancay) at the altitude corresponding to the maximum of the F layer. Different plasma line frequencies are measued because of different effective k vectors that appear in the thermal term of the plasma dispersion relation. We derive and apply two data analysis procedures that enable us to determine this frequency difference. Comparison of this measured frequency difference to that calculated using the ion component electron temperature demonstrates that the plasma lines could indeed be used to determine the electron temperature. A strong dependence of the power in the plasma line as a function of the angle between k vector and magnetic field is observed in agreement with the theory. The future developments of this technique with the EISCAT radar facilities are discussed

  8. Resolution function in deep inelastic neutron scattering using the Foil Cycling Technique

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Andreani, C.; Filabozzi, A.; Pace, E.; Senesi, R.

    2007-01-01

    New perspectives for epithermal neutron spectroscopy are being opened up by the development of the Resonance Detector (RD) and its use on inverse geometry time of flight (TOF) spectrometers at spallation sources. The most recent result is the Foil Cycling Technique (FCT), which has been developed and applied on the VESUVIO spectrometer operating in the RD configuration. This technique has demonstrated its capability to improve the resolution function of the spectrometer and to provide an effective neutron and gamma background subtraction method. This paper reports a detailed analysis of the line shape of the resolution function in Deep Inelastic Neutron Scattering (DINS) measurements on VESUVIO spectrometer, operating in the RD configuration and employing the FCT. The aim is to provide an analytical approximation for the analyzer energy transfer function, an useful tool for data analysis on VESUVIO. Simulated and experimental results of DINS measurements on a lead sample are compared. The line shape analysis shows that the most reliable analytical approximation of the energy transfer function is a sum of a Gaussian and a power of a Lorentzian. A comparison with the Double Difference Method (DDM) is also discussed. It is shown that the energy resolution improvement for the FCT and the DDM is almost the same, while the counting efficiency is a factor of about 1.4 higher for the FCT

  9. Imaging of mass distribution in paper by electrography technique, (2)

    International Nuclear Information System (INIS)

    Tomimasu, Hiroshi; Luner, P.

    1991-01-01

    Four paper imaging techniques (β-radiography, electrography, light transmission, and soft x-radiography) were compared in terms of their process parameters and image characteristics (exposure time, spatial variation, contrast, spatial resolution, correlation with mass, and limitation in basis weight range) with the same newsprint sample and electron microscope film. As far as the imaging conditions chosen here are concerned, electrography gave a higher spatial resolution, shorter exposure time, and the wider basis weight range than β-radiography. Light transmission image could be obtained in a very short time, but gave the poorest spatial resolution and correlation with mass. Soft x-radiography gave the highest spatial resolution, but the poorest spatial variation and contrast. The proper imaging technique and conditions need to be selected depending on the specific paper property in question. (author)

  10. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS probe

    Directory of Open Access Journals (Sweden)

    A. Abdelmonem

    2011-10-01

    Full Text Available Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10° and 8° for side and backscattering directions (from 18° to 170°. The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  11. First correlated measurements of the shape and scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.

    2011-05-01

    Studying the radiative impact of cirrus clouds requires the knowledge of the link between their microphysics and the single scattering properties of the cloud particles. Usually, this link is created by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles, simultaneously. Clouds containing particles ranging in size from a few micrometers to about 800 μm diameter can be systematically characterized with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns which were conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced comparable size distributions and images to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is candidate to be a novel air borne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurements instruments.

  12. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.

    2011-10-01

    Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  13. Impact on dose and image quality of a software-based scatter correction in mammography.

    Science.gov (United States)

    Monserrat, Teresa; Prieto, Elena; Barbés, Benigno; Pina, Luis; Elizalde, Arlette; Fernández, Belén

    2017-01-01

    Background In 2014, Siemens developed a new software-based scatter correction (Progressive Reconstruction Intelligently Minimizing Exposure [PRIME]), enabling grid-less digital mammography. Purpose To compare doses and image quality between PRIME (grid-less) and standard (with anti-scatter grid) modes. Material and Methods Contrast-to-noise ratio (CNR) was measured for various polymethylmethacrylate (PMMA) thicknesses and dose values provided by the mammograph were recorded. CDMAM phantom images were acquired for various PMMA thicknesses and inverse Image Quality Figure (IQF inv ) was calculated. Values of incident entrance surface air kerma (ESAK) and average glandular dose (AGD) were obtained from the DICOM header for a total of 1088 pairs of clinical cases. Two experienced radiologists compared subjectively the image quality of a total of 149 pairs of clinical cases. Results CNR values were higher and doses were lower in PRIME mode for all thicknesses. IQF inv values in PRIME mode were lower for all thicknesses except for 40 mm of PMMA equivalent, in which IQF inv was slightly greater in PRIME mode. A mean reduction of 10% in ESAK and 12% in AGD in PRIME mode with respect to standard mode was obtained. The clinical image quality in PRIME and standard acquisitions resulted to be similar in most of the cases (84% for the first radiologist and 67% for the second one). Conclusion The use of PRIME software reduces, in average, the dose of radiation to the breast without affecting image quality. This reduction is greater for thinner and denser breasts.

  14. An enhanced approach for biomedical image restoration using image fusion techniques

    Science.gov (United States)

    Karam, Ghada Sabah; Abbas, Fatma Ismail; Abood, Ziad M.; Kadhim, Kadhim K.; Karam, Nada S.

    2018-05-01

    Biomedical image is generally noisy and little blur due to the physical mechanisms of the acquisition process, so one of the common degradations in biomedical image is their noise and poor contrast. The idea of biomedical image enhancement is to improve the quality of the image for early diagnosis. In this paper we are using Wavelet Transformation to remove the Gaussian noise from biomedical images: Positron Emission Tomography (PET) image and Radiography (Radio) image, in different color spaces (RGB, HSV, YCbCr), and we perform the fusion of the denoised images resulting from the above denoising techniques using add image method. Then some quantive performance metrics such as signal -to -noise ratio (SNR), peak signal-to-noise ratio (PSNR), and Mean Square Error (MSE), etc. are computed. Since this statistical measurement helps in the assessment of fidelity and image quality. The results showed that our approach can be applied of Image types of color spaces for biomedical images.

  15. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    Science.gov (United States)

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  16. Chest trauma in children: current imaging guidelines and techniques.

    LENUS (Irish Health Repository)

    Moore, Michael A

    2011-09-01

    Given the heterogeneous nature of pediatric chest trauma, the optimal imaging approach is tailored to the specific patient. Chest radiography remains the most important imaging modality for initial triage. The decision to perform a chest computed tomography scan should be based on the nature of the trauma, the child\\'s clinical condition, and the initial radiographic findings, taking the age-related pretest probabilities of serious injury into account. The principles of as low as reasonably achievable and Image Gently should be followed. The epidemiology and pathophysiology, imaging techniques, characteristic findings, and evidence-based algorithms for pediatric chest trauma are discussed.

  17. A Document Imaging Technique for Implementing Electronic Loan Approval Process

    Directory of Open Access Journals (Sweden)

    J. Manikandan

    2015-04-01

    Full Text Available The image processing is one of the leading technologies of computer applications. Image processing is a type of signal processing, the input for image processor is an image or video frame and the output will be an image or subset of image [1]. Computer graphics and computer vision process uses an image processing techniques. Image processing systems are used in various environments like medical fields, computer-aided design (CAD, research fields, crime investigation fields and military fields. In this paper, we proposed a document image processing technique, for establishing electronic loan approval process (E-LAP [2]. Loan approval process has been tedious process, the E-LAP system attempts to reduce the complexity of loan approval process. Customers have to login to fill the loan application form online with all details and submit the form. The loan department then processes the submitted form and then sends an acknowledgement mail via the E-LAP to the requested customer with the details about list of documents required for the loan approval process [3]. The approaching customer can upload the scanned copies of all required documents. All this interaction between customer and bank take place using an E-LAP system.

  18. Segmental dynamics in polymer melts by relaxation techniques and quasielastic neutron scattering

    Science.gov (United States)

    Colmenero, J.

    1993-01-01

    The dynamics of the segmental α-relaxation in three different polymeric systems, poly(vinyl methy ether) (PVME), poly(vinyl chloride) (PVC) and poly(bisphenol A, 2-hydroxypropylether) (PH) has been studied by means of relaxation techniques and quasielastic neutron scattering (backscattering spectrometers IN10 and IN13 at the ILL-Grenoble). By using these techniques we have covered a wide timescale ranging from mesoscopic to macroscopic times (10-10-101s). For analyzing the experimental data we have developed a phenomenological procedure in the frequency domain based on the Havriliak-Negami relaxation function which in fact implies a Kohlrausch-Williams-Watts relaxation function in the time domain. The results obtained indicate that the dynamics of the α-relaxation in a wide timescale shows a clear non-Debye behaviour. The shape of the relaxation function is found to be similar for the different techniques used and independent of temperature and momentum transfer (Q). Moreover the characteristic relaxation times deduced from the fitting of the experimental data can also be described using only one Vogel-Fulcher functional form. Besides we found that the Q-dependence of the relaxation times obtained by QENS is given by a power law, τ(Q) propto Q-n (n > 2) n being dependent on the system, and that the Q-behaviour and the non-Debye behaviour are directly correlated. We discuss this correlation taking into account several data of the dynamics of the α-relaxation previously reported in the literature. We also outline a possible scenario for explaining this empirical correlation.

  19. Fundamentals of functional imaging I: current clinical techniques.

    Science.gov (United States)

    Luna, A; Martín Noguerol, T; Mata, L Alcalá

    2018-05-01

    Imaging techniques can establish a structural, physiological, and molecular phenotype for cancer, which helps enable accurate diagnosis and personalized treatment. In recent years, various imaging techniques that make it possible to study the functional characteristics of tumors quantitatively and reproducibly have been introduced and have become established in routine clinical practice. Perfusion studies enable us to estimate the microcirculation as well as tumor angiogenesis and permeability using ultrafast dynamic acquisitions with ultrasound, computed tomography, or magnetic resonance (MR) imaging. Diffusion-weighted sequences now form part of state-of-the-art MR imaging protocols to evaluate oncologic lesions in any anatomic location. Diffusion-weighted imaging provides information about the occupation of the extracellular and extravascular space and indirectly estimates the cellularity and apoptosis of tumors, having demonstrated its relation with biologic aggressiveness in various tumor lines and its usefulness in the evaluation of the early response to systemic and local targeted therapies. Another tool is hydrogen proton MR spectroscopy, which is used mainly in the study of the metabolic characteristics of brain tumors. However, the complexity of the technique and its lack of reproducibility have limited its clinical use in other anatomic areas, although much experience with the use of this technique in the assessment of prostate and breast cancers as well as liver lesions has also accumulated. This review analyzes the imaging techniques that make it possible to evaluate the physiological and molecular characteristics of cancer that have already been introduced into clinical practice, such as techniques that evaluate angiogenesis through dynamic acquisitions after the administration of contrast material, diffusion-weighted imaging, or hydrogen proton MR spectroscopy, as well as their principal applications in oncology. Copyright © 2018 SERAM. Publicado

  20. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media

    International Nuclear Information System (INIS)

    Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V

    2013-01-01

    Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy. (letter)

  1. IMAGE SEGMENTATION BASED ON MARKOV RANDOM FIELD AND WATERSHED TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K-means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.

  2. Video Multiple Watermarking Technique Based on Image Interlacing Using DWT

    Directory of Open Access Journals (Sweden)

    Mohamed M. Ibrahim

    2014-01-01

    Full Text Available Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  3. Video multiple watermarking technique based on image interlacing using DWT.

    Science.gov (United States)

    Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  4. MICROARRAY IMAGE GRIDDING USING GRID LINE REFINEMENT TECHNIQUE

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-05-01

    Full Text Available An important stage in microarray image analysis is gridding. Microarray image gridding is done to locate sub arrays in a microarray image and find co-ordinates of spots within each sub array. For accurate identification of spots, most of the proposed gridding methods require human intervention. In this paper a fully automatic gridding method which enhances spot intensity in the preprocessing step as per a histogram based threshold method is used. The gridding step finds co-ordinates of spots from horizontal and vertical profile of the image. To correct errors due to the grid line placement, a grid line refinement technique is proposed. The algorithm is applied on different image databases and results are compared based on spot detection accuracy and time. An average spot detection accuracy of 95.06% depicts the proposed method’s flexibility and accuracy in finding the spot co-ordinates for different database images.

  5. Reconstructing flaw image using dataset of full matrix capture technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hun; Kim, Yong Sik; Lee, Jeong Seok [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    A conventional phased array ultrasonic system offers the ability to steer an ultrasonic beam by applying independent time delays of individual elements in the array and produce an ultrasonic image. In contrast, full matrix capture (FMC) is a data acquisition process that collects a complete matrix of A-scans from every possible independent transmit-receive combination in a phased array transducer and makes it possible to reconstruct various images that cannot be produced by conventional phased array with the post processing as well as images equivalent to a conventional phased array image. In this paper, a basic algorithm based on the LLL mode total focusing method (TFM) that can image crack type flaws is described. And this technique was applied to reconstruct flaw images from the FMC dataset obtained from the experiments and ultrasonic simulation.

  6. Dark-field hyperlens: Super-resolution imaging of weakly scattering objects

    DEFF Research Database (Denmark)

    Repän, Taavi; Lavrinenko, Andrei; Zhukovsky, Sergei

    2015-01-01

    : We propose a device for subwavelength optical imaging based on a metal-dielectric multilayer hyperlens designed in such a way that only large-wavevector (evanescent) waves are transmitted while all propagating (small-wavevector) waves from the object area are blocked by the hyperlens. We...... numerically demonstrate that as the result of such filtering, the image plane only contains scattered light from subwavelength features of the objects and is completely free from background illumination. Similar in spirit to conventional dark-field microscopy, the proposed dark-field hyperlens is shown...

  7. SU-F-P-48: The Quantitative Evaluation and Comparison of Image Distortion and Loss of X-Ray Images Between Anti-Scattered Grid and Moire Compensation Processing in Digital Radiography

    International Nuclear Information System (INIS)

    Chung, W; Jung, J; Kang, Y; Chung, W

    2016-01-01

    Purpose: To quantitatively analyze the influence image processing for Moire elimination has in digital radiography by comparing the image acquired from optimized anti-scattered grid only and the image acquired from software processing paired with misaligned low-frequency grid. Methods: Special phantom, which does not create scattered radiation, was used to acquire non-grid reference images and they were acquired without any grids. A set of images was acquired with optimized grid, aligned to pixel of a detector and other set of images was acquired with misaligned low-frequency grid paired with Moire elimination processing algorithm. X-ray technique used was based on consideration to Bucky factor derived from non-grid reference images. For evaluation, we analyze by comparing pixel intensity of acquired images with grids to that of reference images. Results: When compared to image acquired with optimized grid, images acquired with Moire elimination processing algorithm showed 10 to 50% lower mean contrast value of ROI. Severe distortion of images was found with when the object’s thickness was measured at 7 or less pixels. In this case, contrast value measured from images acquired with Moire elimination processing algorithm was under 30% of that taken from reference image. Conclusion: This study shows the potential risk of Moire compensation images in diagnosis. Images acquired with misaligned low-frequency grid results in Moire noise and Moire compensation processing algorithm used to remove this Moire noise actually caused an image distortion. As a result, fractures and/or calcifications which are presented in few pixels only may not be diagnosed properly. In future work, we plan to evaluate the images acquired without grid but based on 100% image processing and the potential risks it possesses.

  8. Synthesis and bioconjugation of gold nanoparticles as potential molecular probes for light-based imaging techniques

    NARCIS (Netherlands)

    Rayavarapu, Raja Gopal; Petersen, Wilma; Ungureanu, Constantin; Post, Janine N.; van Leeuwen, Ton G.; Manohar, Srirang

    2007-01-01

    We have synthesized and characterized gold nanoparticles (spheres and rods) with optical extinction bands within the "optical imaging window." The intense plasmon resonant driven absorption and scattering peaks of these nanoparticles make them suitable as contrast agents for optical imaging

  9. Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy.

    Science.gov (United States)

    Parekh, Sapun H; Lee, Young Jong; Aamer, Khaled A; Cicerone, Marcus T

    2010-10-20

    Raman microspectroscopy can provide the chemical contrast needed to characterize the complex intracellular environment and macromolecular organization in cells without exogenous labels. It has shown a remarkable ability to detect chemical changes underlying cell differentiation and pathology-related chemical changes in tissues but has not been widely adopted for imaging, largely due to low signal levels. Broadband coherent anti-Stokes Raman scattering (B-CARS) offers the same inherent chemical contrast as spontaneous Raman but with increased acquisition rates. To date, however, only spectrally resolved signals from the strong CH-related vibrations have been used for CARS imaging. Here, we obtain Raman spectral images of single cells with a spectral range of 600-3200 cm⁻¹, including signatures from weakly scattering modes as well as CH vibrations. We also show that B-CARS imaging can be used to measure spectral signatures of individual cells at least fivefold faster than spontaneous Raman microspectroscopy and can be used to generate maps of biochemical species in cells. This improved spectral range and signal intensity opens the door for more widespread use of vibrational spectroscopic imaging in biology and clinical diagnostics. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Scattering and absorption measurements of cervical tissues measures using low cost multi-spectral imaging

    Science.gov (United States)

    Bernat, Amir S.; Bar-Am, Kfir; Cataldo, Leigh; Bolton, Frank J.; Kahn, Bruce S.; Levitz, David

    2018-02-01

    Cervical cancer is a leading cause of death for women in low resource settings. In order to better detect cervical dysplasia, a low cost multi-spectral colposcope was developed utilizing low costs LEDs and an area scan camera. The device is capable of both traditional colposcopic imaging and multi-spectral image capture. Following initial bench testing, the device was deployed to a gynecology clinic where it was used to image patients in a colposcopy setting. Both traditional colposcopic images and spectral data from patients were uploaded to a cloud server for remote analysis. Multi-spectral imaging ( 30 second capture) took place before any clinical procedure; the standard of care was followed thereafter. If acetic acid was used in the standard of care, a post-acetowhitening colposcopic image was also captured. In analyzing the data, normal and abnormal regions were identified in the colposcopic images by an expert clinician. Spectral data were fit to a theoretical model based on diffusion theory, yielding information on scattering and absorption parameters. Data were grouped according to clinician labeling of the tissue, as well as any additional clinical test results available (Pap, HPV, biopsy). Altogether, N=20 patients were imaged in this study, with 9 of them abnormal. In comparing normal and abnormal regions of interest from patients, substantial differences were measured in blood content, while differences in oxygen saturation parameters were more subtle. These results suggest that optical measurements made using low cost spectral imaging systems can distinguish between normal and pathological tissues.

  11. Imaging of the hip and bony pelvis. Techniques and applications

    Energy Technology Data Exchange (ETDEWEB)

    Davies, A.M. [Royal Orthopaedic Hospital, Birmingham (United Kingdom). MRI Centre; Johnson, K.J. [Princess of Wales Birmingham Children' s Hospital (United Kingdom); Whitehouse, R.W. (eds.) [Manchester Royal Infirmary (United Kingdom). Dept. of Clinical Radiology

    2006-07-01

    This is a comprehensive textbook on imaging of the bony pelvis and hip joint that provides a detailed description of the techniques and imaging findings relevant to this complex anatomical region. In the first part of the book, the various techniques and procedures employed for imaging the pelvis and hip are discussed in detail. The second part of the book documents the application of these techniques to the diverse clinical problems and diseases encountered. Among the many topics addressed are congenital and developmental disorders including developmental dysplasia of the hip, irritable hip and septic arthritis, Perthes' disease and avascular necrosis, slipped upper femoral epiphysis, bony and soft tissue trauma, arthritis, tumours and hip prostheses. Each chapter is written by an acknowledged expert in the field, and a wealth of illustrative material is included. This book will be of great value to musculoskeletal and general radiologists, orthopaedic surgeons and rheumatologists. (orig.)

  12. Unsupervised color image segmentation using a lattice algebra clustering technique

    Science.gov (United States)

    Urcid, Gonzalo; Ritter, Gerhard X.

    2011-08-01

    In this paper we introduce a lattice algebra clustering technique for segmenting digital images in the Red-Green- Blue (RGB) color space. The proposed technique is a two step procedure. Given an input color image, the first step determines the finite set of its extreme pixel vectors within the color cube by means of the scaled min-W and max-M lattice auto-associative memory matrices, including the minimum and maximum vector bounds. In the second step, maximal rectangular boxes enclosing each extreme color pixel are found using the Chebychev distance between color pixels; afterwards, clustering is performed by assigning each image pixel to its corresponding maximal box. The two steps in our proposed method are completely unsupervised or autonomous. Illustrative examples are provided to demonstrate the color segmentation results including a brief numerical comparison with two other non-maximal variations of the same clustering technique.

  13. Improving face image extraction by using deep learning technique

    Science.gov (United States)

    Xue, Zhiyun; Antani, Sameer; Long, L. R.; Demner-Fushman, Dina; Thoma, George R.

    2016-03-01

    The National Library of Medicine (NLM) has made a collection of over a 1.2 million research articles containing 3.2 million figure images searchable using the Open-iSM multimodal (text+image) search engine. Many images are visible light photographs, some of which are images containing faces ("face images"). Some of these face images are acquired in unconstrained settings, while others are studio photos. To extract the face regions in the images, we first applied one of the most widely-used face detectors, a pre-trained Viola-Jones detector implemented in Matlab and OpenCV. The Viola-Jones detector was trained for unconstrained face image detection, but the results for the NLM database included many false positives, which resulted in a very low precision. To improve this performance, we applied a deep learning technique, which reduced the number of false positives and as a result, the detection precision was improved significantly. (For example, the classification accuracy for identifying whether the face regions output by this Viola- Jones detector are true positives or not in a test set is about 96%.) By combining these two techniques (Viola-Jones and deep learning) we were able to increase the system precision considerably, while avoiding the need to manually construct a large training set by manual delineation of the face regions.

  14. Electromagnetic considerations for RF current density imaging [MRI technique].

    Science.gov (United States)

    Scott, G C; Joy, M G; Armstrong, R L; Henkelman, R M

    1995-01-01

    Radio frequency current density imaging (RF-CDI) is a recent MRI technique that can image a Larmor frequency current density component parallel to B(0). Because the feasibility of the technique was demonstrated only for homogeneous media, the authors' goal here is to clarify the electromagnetic assumptions and field theory to allow imaging RF currents in heterogeneous media. The complete RF field and current density imaging problem is posed. General solutions are given for measuring lab frame magnetic fields from the rotating frame magnetic field measurements. For the general case of elliptically polarized fields, in which current and magnetic field components are not in phase, one can obtain a modified single rotation approximation. Sufficient information exists to image the amplitude and phase of the RF current density parallel to B(0) if the partial derivative in the B(0) direction of the RF magnetic field (amplitude and phase) parallel to B(0) is much smaller than the corresponding current density component. The heterogeneous extension was verified by imaging conduction and displacement currents in a phantom containing saline and pure water compartments. Finally, the issues required to image eddy currents are presented. Eddy currents within a sample will distort both the transmitter coil reference system, and create measurable rotating frame magnetic fields. However, a three-dimensional electro-magnetic analysis will be required to determine how the reference system distortion affects computed eddy current images.

  15. Connecting the dots : shedding light on the self-assembly of semiconductor nanocrystals with synchrotron X-ray scattering techniques

    NARCIS (Netherlands)

    Geuchies, J.J.

    2017-01-01

    We studied the formation of two-dimensional crystals from nanocrystals using X-ray scattering techniques. Inside these nanocrystals, with sizes between 5-10 nm, the atoms are ordered in an atomic lattice. We use the nanocrystals as building blocks to create larger lattices in two dimensions. By

  16. Real-time scatter measurement and correction in film radiography

    International Nuclear Information System (INIS)

    Shaw, C.G.

    1987-01-01

    A technique for real-time scatter measurement and correction in scanning film radiography is described. With this technique, collimated x-ray fan beams are used to partially reject scattered radiation. Photodiodes are attached to the aft-collimator for sampled scatter measurement. Such measurement allows the scatter distribution to be reconstructed and subtracted from digitized film image data for accurate transmission measurement. In this presentation the authors discuss the physical and technical considerations of this scatter correction technique. Examples are shown that demonstrate the feasibility of the technique. Improved x-ray transmission measurement and dual-energy subtraction imaging are demonstrated with phantoms

  17. Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography.

    Science.gov (United States)

    Lee, Jonghwan; Radhakrishnan, Harsha; Wu, Weicheng; Daneshmand, Ali; Climov, Mihail; Ayata, Cenk; Boas, David A

    2013-06-01

    This paper describes a novel optical method for label-free quantitative imaging of cerebral blood flow (CBF) and intracellular motility (IM) in the rodent cerebral cortex. This method is based on a technique that integrates dynamic light scattering (DLS) and optical coherence tomography (OCT), named DLS-OCT. The technique measures both the axial and transverse velocities of CBF, whereas conventional Doppler OCT measures only the axial one. In addition, the technique produces a three-dimensional map of the diffusion coefficient quantifying nontranslational motions. In the DLS-OCT diffusion map, we observed high-diffusion spots, whose locations highly correspond to neuronal cell bodies and whose diffusion coefficient agreed with that of the motion of intracellular organelles reported in vitro in the literature. Therefore, the present method has enabled, for the first time to our knowledge, label-free imaging of the diffusion-like motion of intracellular organelles in vivo. As an example application, we used the method to monitor CBF and IM during a brief ischemic stroke, where we observed an induced persistent reduction in IM despite the recovery of CBF after stroke. This result supports that the IM measured in this study represent the cellular energy metabolism-related active motion of intracellular organelles rather than free diffusion of intracellular macromolecules.

  18. Scattering cross-sections of common calibration gases measured by IBBCEAS technique

    Directory of Open Access Journals (Sweden)

    S.I. Issac

    Full Text Available In this study, incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS was used to measure scattering cross-sections of a few common gases in the 650–670 nm spectral range relative to that of dry air. Precise measurements of scattering cross-sections of these calibration gases in the visible spectral range are important. The IBBCEAS system developed in the laboratory was calibrated with a low-loss optical window. The measurements made at 660 nm were compared with previously measured cross-section values and found to be in good agreement with the existing measurements. Keywords: IBBCEAS, Rayleigh scattering, Scattering cross section

  19. Osteonecrosis of the sesamoid bone: contribution of modern imaging techniques

    International Nuclear Information System (INIS)

    Leleu, J.P.; Heno, P.; Rispal, P.; Joullie, M.; Laurent, F.

    1990-01-01

    We report a case of osteonecrosis of the sesamoid bone or Renander disease in a young male serviceman. Modern imaging techniques proved useful for identifying the lesion. CT scan and above all magnetic resonance imaging established the accurate diagnosis. The combination of a hypointense signal from the sesamoid bone with an effusion in the first metatarsophalangeal joint should be considered as characteristic of osteonecrosis of the sesamoid bone [fr

  20. Detection of Glaucoma Using Image Processing Techniques: A Critique.

    Science.gov (United States)

    Kumar, B Naveen; Chauhan, R P; Dahiya, Nidhi

    2018-01-01

    The primary objective of this article is to present a summary of different types of image processing methods employed for the detection of glaucoma, a serious eye disease. Glaucoma affects the optic nerve in which retinal ganglion cells become dead, and this leads to loss of vision. The principal cause is the increase in intraocular pressure, which occurs in open-angle and angle-closure glaucoma, the two major types affecting the optic nerve. In the early stages of glaucoma, no perceptible symptoms appear. As the disease progresses, vision starts to become hazy, leading to blindness. Therefore, early detection of glaucoma is needed for prevention. Manual analysis of ophthalmic images is fairly time-consuming and accuracy depends on the expertise of the professionals. Automatic analysis of retinal images is an important tool. Automation aids in the detection, diagnosis, and prevention of risks associated with the disease. Fundus images obtained from a fundus camera have been used for the analysis. Requisite pre-processing techniques have been applied to the image and, depending upon the technique, various classifiers have been used to detect glaucoma. The techniques mentioned in the present review have certain advantages and disadvantages. Based on this study, one can determine which technique provides an optimum result.

  1. Correction of motion artefacts and pseudo colour visualization of multispectral light scattering images for optical diagnosis of rheumatoid arthritis

    Science.gov (United States)

    Minet, Olaf; Scheibe, Patrick; Beuthan, Jürgen; Zabarylo, Urszula

    2010-02-01

    State-of-the-art image processing methods offer new possibilities for diagnosing diseases using scattered light. The optical diagnosis of rheumatism is taken as an example to show that the diagnostic sensitivity can be improved using overlapped pseudo-coloured images of different wavelengths, provided that multispectral images are recorded to compensate for any motion related artefacts which occur during examination.

  2. Prognostic aspects on the development of imaging techniques

    International Nuclear Information System (INIS)

    Biehl, H.

    1985-01-01

    The development of imaging techniques designed for medical diagnostics and their application within the health service system are forecast up to the year 2000. The changes in the structure of the imaging methods that are to be expected in the GDR are outlined. Considering the users' needs and demands to be met by the manufacturers, in the long-term forecast it is dealt with more specifically with X-ray techniques, computer tomography, ultrasonic diagnostics, video endoscopy and the use of expert systems. (author)

  3. Numerical evaluation of droplet sizing based on the ratio of fluorescent and scattered light intensities (LIF/Mie technique)

    International Nuclear Information System (INIS)

    Charalampous, Georgios; Hardalupas, Yannis

    2011-01-01

    The dependence of fluorescent and scattered light intensities from spherical droplets on droplet diameter was evaluated using Mie theory. The emphasis is on the evaluation of droplet sizing, based on the ratio of laser-induced fluorescence and scattered light intensities (LIF/Mie technique). A parametric study is presented, which includes the effects of scattering angle, the real part of the refractive index and the dye concentration in the liquid (determining the imaginary part of the refractive index). The assumption that the fluorescent and scattered light intensities are proportional to the volume and surface area of the droplets for accurate sizing measurements is not generally valid. More accurate sizing measurements can be performed with minimal dye concentration in the liquid and by collecting light at a scattering angle of 60 deg. rather than the commonly used angle of 90 deg. Unfavorable to the sizing accuracy are oscillations of the scattered light intensity with droplet diameter that are profound at the sidescatter direction (90 deg.) and for droplets with refractive indices around 1.4.

  4. Amorphous Calcium Phosphate Formation and Aggregation Process Revealed by Light Scattering Techniques

    Directory of Open Access Journals (Sweden)

    Vida Čadež

    2018-06-01

    Full Text Available Amorphous calcium phosphate (ACP attracts attention as a precursor of crystalline calcium phosphates (CaPs formation in vitro and in vivo as well as due to its excellent biological properties. Its formation can be considered to be an aggregation process. Although aggregation of ACP is of interest for both gaining a fundamental understanding of biominerals formation and in the synthesis of novel materials, it has still not been investigated in detail. In this work, the ACP aggregation was followed by two widely applied techniques suitable for following nanoparticles aggregation in general: dynamic light scattering (DLS and laser diffraction (LD. In addition, the ACP formation was followed by potentiometric measurements and formed precipitates were characterized by Fourier transform infrared spectroscopy (FTIR, powder X-ray diffraction (PXRD, transmission electron microscopy (TEM, and atomic force microscopy (AFM. The results showed that aggregation of ACP particles is a process which from the earliest stages simultaneously takes place at wide length scales, from nanometers to micrometers, leading to a highly polydisperse precipitation system, with polydispersity and vol. % of larger aggregates increasing with concentration. Obtained results provide insight into developing a way of regulating ACP and consequently CaP formation by controlling aggregation on the scale of interest.

  5. Transport Imaging for the Study of Quantum Scattering Phenomena in Next Generation Semiconductor Devices

    National Research Council Canada - National Science Library

    Bradley, Frank M

    2005-01-01

    ...) and highly efficient solar cells. A novel technique has been developed utilizing direct imaging of electron/hole recombination via an optical microscope and a high sensitivity charge coupled device coupled to a scanning electron...

  6. Evaluation of attenuation and scatter correction requirements in small animal PET and SPECT imaging

    Science.gov (United States)

    Konik, Arda Bekir

    Positron emission tomography (PET) and single photon emission tomography (SPECT) are two nuclear emission-imaging modalities that rely on the detection of high-energy photons emitted from radiotracers administered to the subject. The majority of these photons are attenuated (absorbed or scattered) in the body, resulting in count losses or deviations from true detection, which in turn degrades the accuracy of images. In clinical emission tomography, sophisticated correction methods are often required employing additional x-ray CT or radionuclide transmission scans. Having proven their potential in both clinical and research areas, both PET and SPECT are being adapted for small animal imaging. However, despite the growing interest in small animal emission tomography, little scientific information exists about the accuracy of these correction methods on smaller size objects, and what level of correction is required. The purpose of this work is to determine the role of attenuation and scatter corrections as a function of object size through simulations. The simulations were performed using Interactive Data Language (IDL) and a Monte Carlo based package, Geant4 application for emission tomography (GATE). In IDL simulations, PET and SPECT data acquisition were modeled in the presence of attenuation. A mathematical emission and attenuation phantom approximating a thorax slice and slices from real PET/CT data were scaled to 5 different sizes (i.e., human, dog, rabbit, rat and mouse). The simulated emission data collected from these objects were reconstructed. The reconstructed images, with and without attenuation correction, were compared to the ideal (i.e., non-attenuated) reconstruction. Next, using GATE, scatter fraction values (the ratio of the scatter counts to the total counts) of PET and SPECT scanners were measured for various sizes of NEMA (cylindrical phantoms representing small animals and human), MOBY (realistic mouse/rat model) and XCAT (realistic human model

  7. A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan

    Science.gov (United States)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-10-01

    A two-dimensional (2D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric wafer mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region in the vicinity of the PZT to capture the scattered wavefield. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, a reflectivity coefficients of the delamination is calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2D areal scans and 1D line scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  8. Detection of Biomass in New York City Aerosols: Light Scattering and Optical Fluorescence Techniques

    Science.gov (United States)

    Niebauer, M.; Alimova, A.; Katz, A.; Xu, M.; Rudolph, E.; Steiner, J.; Alfano, R. R.

    2005-12-01

    Optical spectroscopy is an ideal method for detecting bacteria and spores in real time. Optical fluorescence spectroscopy examination of New York City aerosols is used to quantify the mass of bacteria spores present in air masses collected at 14 liters/minute onto silica fiber filters, and on silica fiber ribbons using an Environmental Beta Attenuation Monitor manufactured by MetOne Instruments configured for the PM2.5 fraction. Dipicolinic acid (DPA), a molecule found primarily in bacterial spores, is the most characteristic component of spores in trial experiments on over 200 collected aerosol samples. DPA is extracted from the spores using a heat bath and chelated with Terbium. The DPA:Tb is detected by measuring its characteristic fluorescence with emission bands at 490, 545 and 585 nm for 270 nm excitation. Light scattering also measures the size distribution for a number of a variety of bacteria - Bacillus subtilis (rod shaped), Staphylococcus aureus (spherical) and Pseudomonas aeruginosa (short rods) establishing that optical techniques satisfactorily distinguish populations based on their variable morphology. Size and morphology are obtained by applying a variation of the Gaussian Ray Approximation theory of anomalous diffraction theory to an analysis of the transmission spectra in the range of 0.4 to 1.0 microns. In test experiments, the refractive index of the inner spore core of Bacillus subtilis decreases from 1.51 to 1.39 while the spore radius enlarges from 0.38 to 0.6 micrometers. Optical determinations are verified by oil-immersion techniques and by scanning electron microscope measurements. Characterization of spores, germinating spore materials, and bacteria is considered vital to tracing bacteria in the environment, for the development of life-detection systems for planetary exploration, monitoring pathogens in environmental systems, and for the preparation of anti-terrorism strategies.

  9. Comparison of the performance of different radar pulse compression techniques in an incoherent scatter radar measurement

    Directory of Open Access Journals (Sweden)

    B. Damtie

    2009-02-01

    Full Text Available Improving an estimate of an incoherent scatter radar signal is vital to provide reliable and unbiased information about the Earth's ionosphere. Thus optimizing the measurement spatial and temporal resolutions has attracted considerable attention. The optimization usually relies on employing different kinds of pulse compression filters in the analysis and a matched filter is perhaps the most widely used one. A mismatched filter has also been used in order to suppress the undesirable sidelobes that appear in the case of matched filtering. Moreover, recently an adaptive pulse compression method, which can be derived based on the minimum mean-square error estimate, has been proposed. In this paper we have investigated the performance of matched, mismatched and adaptive pulse compression methods in terms of the output signal-to-noise ratio (SNR and the variance and bias of the estimator. This is done by using different types of optimal radar waveforms. It is shown that for the case of low SNR the signal degradation associated to an adaptive filtering is less than that of the mismatched filtering. The SNR loss of both matched and adaptive pulse compression techniques was found to be nearly the same for most of the investigated codes for the case of high SNR. We have shown that the adaptive filtering technique is a compromise between matched and mismatched filtering method when one evaluates its performance in terms of the variance and the bias of the estimator. All the three analysis methods were found to have the same performance when a sidelobe-free matched filter code is employed.

  10. Comparison of the performance of different radar pulse compression techniques in an incoherent scatter radar measurement

    Directory of Open Access Journals (Sweden)

    B. Damtie

    2009-02-01

    Full Text Available Improving an estimate of an incoherent scatter radar signal is vital to provide reliable and unbiased information about the Earth's ionosphere. Thus optimizing the measurement spatial and temporal resolutions has attracted considerable attention. The optimization usually relies on employing different kinds of pulse compression filters in the analysis and a matched filter is perhaps the most widely used one. A mismatched filter has also been used in order to suppress the undesirable sidelobes that appear in the case of matched filtering. Moreover, recently an adaptive pulse compression method, which can be derived based on the minimum mean-square error estimate, has been proposed. In this paper we have investigated the performance of matched, mismatched and adaptive pulse compression methods in terms of the output signal-to-noise ratio (SNR and the variance and bias of the estimator. This is done by using different types of optimal radar waveforms. It is shown that for the case of low SNR the signal degradation associated to an adaptive filtering is less than that of the mismatched filtering. The SNR loss of both matched and adaptive pulse compression techniques was found to be nearly the same for most of the investigated codes for the case of high SNR. We have shown that the adaptive filtering technique is a compromise between matched and mismatched filtering method when one evaluates its performance in terms of the variance and the bias of the estimator. All the three analysis methods were found to have the same performance when a sidelobe-free matched filter code is employed.

  11. New partially parallel acquisition technique in cerebral imaging: preliminary findings

    International Nuclear Information System (INIS)

    Tintera, Jaroslav; Gawehn, Joachim; Bauermann, Thomas; Vucurevic, Goran; Stoeter, Peter

    2004-01-01

    In MRI applications where short acquisition time is necessary, the increase of acquisition speed is often at the expense of image resolution and SNR. In such cases, the newly developed parallel acquisition techniques could provide images without mentioned limitations and in reasonably shortened measurement time. A newly designed eight-channel head coil array (i-PAT coil) allowing for parallel acquisition of independently reconstructed images (GRAPPA mode) has been tested for its applicability in neuroradiology. Image homogeneity was tested in standard phantom and healthy volunteers. BOLD signal changes were studied in a group of six volunteers using finger tapping stimulation. Phantom studies revealed an important drop of signal even after the use of a normalization filter in the center of the image and an important increase of artifact power with reduction of measurement time strongly depending on the combination of acceleration parameters. The additional application of a parallel acquisition technique such as GRAPPA decreases measurement time in the range of about 30%, but further reduction is often possible only at the expense of SNR. This technique performs best in conditions in which imaging speed is important, such as CE MRA, but time resolution still does not allow the acquisition of angiograms separating the arterial and venous phase. Significantly larger areas of BOLD activation were found using the i-PAT coil compared to the standard head coil. Being an eight-channel surface coil array, peripheral cortical structures profit from high SNR as high-resolution imaging of small cortical dysplasias and functional activation of cortical areas imaged by BOLD contrast. In BOLD contrast imaging, susceptibility artifacts are reduced, but only if an appropriate combination of acceleration parameters is used. (orig.)

  12. New partially parallel acquisition technique in cerebral imaging: preliminary findings

    Energy Technology Data Exchange (ETDEWEB)

    Tintera, Jaroslav [Institute for Clinical and Experimental Medicine, Prague (Czech Republic); Gawehn, Joachim; Bauermann, Thomas; Vucurevic, Goran; Stoeter, Peter [University Clinic Mainz, Institute of Neuroradiology, Mainz (Germany)

    2004-12-01

    In MRI applications where short acquisition time is necessary, the increase of acquisition speed is often at the expense of image resolution and SNR. In such cases, the newly developed parallel acquisition techniques could provide images without mentioned limitations and in reasonably shortened measurement time. A newly designed eight-channel head coil array (i-PAT coil) allowing for parallel acquisition of independently reconstructed images (GRAPPA mode) has been tested for its applicability in neuroradiology. Image homogeneity was tested in standard phantom and healthy volunteers. BOLD signal changes were studied in a group of six volunteers using finger tapping stimulation. Phantom studies revealed an important drop of signal even after the use of a normalization filter in the center of the image and an important increase of artifact power with reduction of measurement time strongly depending on the combination of acceleration parameters. The additional application of a parallel acquisition technique such as GRAPPA decreases measurement time in the range of about 30%, but further reduction is often possible only at the expense of SNR. This technique performs best in conditions in which imaging speed is important, such as CE MRA, but time resolution still does not allow the acquisition of angiograms separating the arterial and venous phase. Significantly larger areas of BOLD activation were found using the i-PAT coil compared to the standard head coil. Being an eight-channel surface coil array, peripheral cortical structures profit from high SNR as high-resolution imaging of small cortical dysplasias and functional activation of cortical areas imaged by BOLD contrast. In BOLD contrast imaging, susceptibility artifacts are reduced, but only if an appropriate combination of acceleration parameters is used. (orig.)

  13. improvement of digital image watermarking techniques based on FPGA implementation

    International Nuclear Information System (INIS)

    EL-Hadedy, M.E

    2006-01-01

    digital watermarking provides the ownership of a piece of digital data by marking the considered data invisibly or visibly. this can be used to protect several types of multimedia objects such as audio, text, image and video. this thesis demonstrates the different types of watermarking techniques such as (discrete cosine transform (DCT) and discrete wavelet transform (DWT) and their characteristics. then, it classifies these techniques declaring their advantages and disadvantages. an improved technique with distinguished features, such as peak signal to noise ratio ( PSNR) and similarity ratio (SR) has been introduced. the modified technique has been compared with the other techniques by measuring heir robustness against differ attacks. finally, field programmable gate arrays (FPGA) based implementation and comparison, for the proposed watermarking technique have been presented and discussed

  14. Magnetic resonance imaging of the elbow. Part I: Normal anatomy, imaging technique, and osseous abnormalities

    International Nuclear Information System (INIS)

    Kijowski, Richard; Tuite, Michael; Sanford, Matthew

    2004-01-01

    Part I of this comprehensive review on magnetic resonance imaging of the elbow discusses normal elbow anatomy and the technical factors involved in obtaining high-quality magnetic resonance images of the elbow. Part I also discusses the role of magnetic resonance imaging in evaluating patients with osseous abnormalities of the elbow. With proper patient positioning and imaging technique, magnetic resonance imaging can yield high-quality multiplanar images which are useful in evaluating the osseous structures of the elbow. Magnetic resonance imaging can detect early osteochondritis dissecans of the capitellum and can be used to evaluate the size, location, stability, and viability of the osteochondritis dissecans fragment. Magnetic resonance imaging can detect early stress injury to the proximal ulna in athletes. Magnetic resonance imaging can detect radiographically occult fractures of the elbow in both children and adults. Magnetic resonance imaging is also useful in children to further evaluate elbow fractures which are detected on plain-film radiographs. (orig.)

  15. Characterization of conductive nanobiomaterials derived from viral assemblies by low-voltage STEM imaging and Raman scattering

    International Nuclear Information System (INIS)

    Plascencia-Villa, Germán; Bahena, Daniel; José-Yacamán, Miguel; Carreño-Fuentes, Liliana; Palomares, Laura A; Ramírez, Octavio T

    2014-01-01

    New technologies require the development of novel nanomaterials that need to be fully characterized to achieve their potential. High-resolution low-voltage scanning transmission electron microscopy (STEM) has proven to be a very powerful technique in nanotechnology, but its use for the characterization of nanobiomaterials has been limited. Rotavirus VP6 self-assembles into nanotubular assemblies that possess an intrinsic affinity for Au ions. This property was exploited to produce hybrid nanobiomaterials by the in situ functionalization of recombinant VP6 nanotubes with gold nanoparticles. In this work, Raman spectroscopy and advanced analytical electron microscopy imaging with spherical aberration-corrected (Cs) STEM and nanodiffraction at low-voltage doses were employed to characterize nanobiomaterials. STEM imaging revealed the precise structure and arrangement of the protein templates, as well as the nanostructure and atomic arrangement of gold nanoparticles with high spatial sub-Angstrom resolution and avoided radiation damage. The imaging was coupled with backscattered electron imaging, ultra-high resolution scanning electron microscopy and x-ray spectroscopy. The hybrid nanobiomaterials that were obtained showed unique properties as bioelectronic conductive devices and showed enhanced Raman scattering by their precise arrangement into superlattices, displaying the utility of viral assemblies as functional integrative self-assembled nanomaterials for novel applications. (paper)

  16. Indications and technique of fetal magnetic resonance imaging

    International Nuclear Information System (INIS)

    Asenbaum, U.; Woitek, R.; Furtner, J.; Prayer, D.; Brugger, P.C.

    2013-01-01

    Evaluation and confirmation of fetal pathologies previously suspected or diagnosed with ultrasound. Ultrasound and magnetic resonance imaging (MRI). Technique for prenatal fetal examination. Fetal MRI is an established supplementary technique to prenatal ultrasound. Fetal MRI should only be used as an additional method in prenatal diagnostics and not for routine screening. Fetal MRI should only be performed in perinatal medicine centers after a previous level III ultrasound examination. (orig.) [de

  17. Hyperspectral imaging using the single-pixel Fourier transform technique

    Science.gov (United States)

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-03-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.

  18. Image acquisition system using on sensor compressed sampling technique

    Science.gov (United States)

    Gupta, Pravir Singh; Choi, Gwan Seong

    2018-01-01

    Advances in CMOS technology have made high-resolution image sensors possible. These image sensors pose significant challenges in terms of the amount of raw data generated, energy efficiency, and frame rate. This paper presents a design methodology for an imaging system and a simplified image sensor pixel design to be used in the system so that the compressed sensing (CS) technique can be implemented easily at the sensor level. This results in significant energy savings as it not only cuts the raw data rate but also reduces transistor count per pixel; decreases pixel size; increases fill factor; simplifies analog-to-digital converter, JPEG encoder, and JPEG decoder design; decreases wiring; and reduces the decoder size by half. Thus, CS has the potential to increase the resolution of image sensors for a given technology and die size while significantly decreasing the power consumption and design complexity. We show that it has potential to reduce power consumption by about 23% to 65%.

  19. Microvascular imaging: techniques and opportunities for clinical physiological measurements

    International Nuclear Information System (INIS)

    Allen, John; Howell, Kevin

    2014-01-01

    The microvasculature presents a particular challenge in physiological measurement because the vessel structure is spatially inhomogeneous and perfusion can exhibit high variability over time. This review describes, with a clinical focus, the wide variety of methods now available for imaging of the microvasculature and their key applications. Laser Doppler perfusion imaging and laser speckle contrast imaging are established, commercially-available techniques for determining microvascular perfusion, with proven clinical utility for applications such as burn-depth assessment. Nailfold capillaroscopy is also commercially available, with significant published literature that supports its use for detecting microangiopathy secondary to specific connective tissue diseases in patients with Raynaud's phenomenon. Infrared thermography measures skin temperature and not perfusion directly, and it has only gained acceptance for some surgical and peripheral microvascular applications. Other emerging technologies including imaging photoplethysmography, optical coherence tomography, photoacoustic tomography, hyperspectral imaging, and tissue viability imaging are also described to show their potential as techniques that could become established tools for clinical microvascular assessment. Growing interest in the microcirculation has helped drive the rapid development in perfusion imaging of the microvessels, bringing exciting opportunities in microvascular research. (topical review)

  20. Acquisition and visualization techniques for narrow spectral color imaging.

    Science.gov (United States)

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  1. Determination of the spectral dependence of reduced scattering and quantitative second-harmonic generation imaging for detection of fibrillary changes in ovarian cancer

    Science.gov (United States)

    Campbell, Kirby R.; Tilbury, Karissa B.; Campagnola, Paul J.

    2015-03-01

    Here, we examine ovarian cancer extracellular matrix (ECM) modification by measuring the wavelength dependence of optical scattering measurements and quantitative second-harmonic generation (SHG) imaging metrics in the range of 800-1100 nm in order to determine fibrillary changes in ex vivo normal ovary, type I, and type II ovarian cancer. Mass fractals of the collagen fiber structure is analyzed based on a power law correlation function using spectral dependence measurements of the reduced scattering coefficient μs' where the mass fractal dimension is related to the power. Values of μs' are measured using independent methods of determining the values of μs and g by on-axis attenuation measurements using the Beer-Lambert Law and by fitting the angular distribution of scattering to the Henyey-Greenstein phase function, respectively. Quantitativespectral SHG imaging on the same tissues determines FSHG/BSHG creation ratios related to size and harmonophore distributions. Both techniques probe fibril packing order, but the optical scattering probes structures of sizes from about 50-2000 nm where SHG imaging - although only able to resolve individual fibers - builds contrast from the assembly of fibrils. Our findings suggest that type I ovarian tumor structure has the most ordered collagen fibers followed by normal ovary then type II tumors showing the least order.

  2. Source distribution dependent scatter correction for PVI

    International Nuclear Information System (INIS)

    Barney, J.S.; Harrop, R.; Dykstra, C.J.

    1993-01-01

    Source distribution dependent scatter correction methods which incorporate different amounts of information about the source position and material distribution have been developed and tested. The techniques use image to projection integral transformation incorporating varying degrees of information on the distribution of scattering material, or convolution subtraction methods, with some information about the scattering material included in one of the convolution methods. To test the techniques, the authors apply them to data generated by Monte Carlo simulations which use geometric shapes or a voxelized density map to model the scattering material. Source position and material distribution have been found to have some effect on scatter correction. An image to projection method which incorporates a density map produces accurate scatter correction but is computationally expensive. Simpler methods, both image to projection and convolution, can also provide effective scatter correction

  3. An inter-crystal scatter correction method for DOI PET image reconstruction

    International Nuclear Information System (INIS)

    Lam, Chih Fung; Hagiwara, Naoki; Obi, Takashi; Yamaguchi, Masahiro; Yamaya, Taiga; Murayama, Hideo

    2006-01-01

    New positron emission tomography (PET) scanners utilize depth-of-interaction (DOI) information to improve image resolution, particularly at the edge of field-of-view while maintaining high detector sensitivity. However, the inter-crystal scatter (ICS) effect cannot be neglected in DOI scanners due to the use of smaller crystals. ICS is the phenomenon wherein there are multiple scintillations for irradiation of a gamma photon due to Compton scatter in detecting crystals. In the case of ICS, only one scintillation position is approximated for detectors with Anger-type logic calculation. This causes an error in position detection and ICS worsens the image contrast, particularly for smaller hotspots. In this study, we propose to model an ICS probability by using a Monte Carlo simulator. The probability is given as a statistical relationship between the gamma photon first interaction crystal pair and the detected crystal pair. It is then used to improve the system matrix of a statistical image reconstruction algorithm, such as maximum likehood expectation maximization (ML-EM) in order to correct for the position error caused by ICS. We apply the proposed method to simulated data of the jPET-D4, which is a four-layer DOI PET being developed at the National Institute of Radiological Sciences. Our computer simulations show that image contrast is recovered successfully by the proposed method. (author)

  4. A Kalman filter technique applied for medical image reconstruction

    International Nuclear Information System (INIS)

    Goliaei, S.; Ghorshi, S.; Manzuri, M. T.; Mortazavi, M.

    2011-01-01

    Medical images contain information about vital organic tissues inside of human body and are widely used for diagnoses of disease or for surgical purposes. Image reconstruction is essential for medical images for some applications such as suppression of noise or de-blurring the image in order to provide images with better quality and contrast. Due to vital rule of image reconstruction in medical sciences the corresponding algorithms with better efficiency and higher speed is desirable. Most algorithms in image reconstruction are operated on frequency domain such as the most popular one known as filtered back projection. In this paper we introduce a Kalman filter technique which is operated in time domain for medical image reconstruction. Results indicated that as the number of projection increases in both normal collected ray sum and the collected ray sum corrupted by noise the quality of reconstructed image becomes better in terms of contract and transparency. It is also seen that as the number of projection increases the error index decreases.

  5. Study of CT image texture using deep learning techniques

    Science.gov (United States)

    Dutta, Sandeep; Fan, Jiahua; Chevalier, David

    2018-03-01

    For CT imaging, reduction of radiation dose while improving or maintaining image quality (IQ) is currently a very active research and development topic. Iterative Reconstruction (IR) approaches have been suggested to be able to offer better IQ to dose ratio compared to the conventional Filtered Back Projection (FBP) reconstruction. However, it has been widely reported that often CT image texture from IR is different compared to that from FBP. Researchers have proposed different figure of metrics to quantitate the texture from different reconstruction methods. But there is still a lack of practical and robust method in the field for texture description. This work applied deep learning method for CT image texture study. Multiple dose scans of a 20cm diameter cylindrical water phantom was performed on Revolution CT scanner (GE Healthcare, Waukesha) and the images were reconstructed with FBP and four different IR reconstruction settings. The training images generated were randomly allotted (80:20) to a training and validation set. An independent test set of 256-512 images/class were collected with the same scan and reconstruction settings. Multiple deep learning (DL) networks with Convolution, RELU activation, max-pooling, fully-connected, global average pooling and softmax activation layers were investigated. Impact of different image patch size for training was investigated. Original pixel data as well as normalized image data were evaluated. DL models were reliably able to classify CT image texture with accuracy up to 99%. Results show that the deep learning techniques suggest that CT IR techniques may help lower the radiation dose compared to FBP.

  6. The simple analytical method for scattered radiation calculation in contrast X-ray diagnostic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, S; Pavlovic, R [Inst. of Nuclear Science Vinca, Belgrade (Yugoslavia). Radiation and Environmental Protection Lab.; Boreli, F [Fac. of Electrical Engineering, Belgrade (Yugoslavia)

    1996-12-31

    In realization of radiation protection measures for medical staff present during diagnostic procedures, the necessary condition is knowledge of the space - energy distributions of the scattered radiation from the patient. In this paper, the simple calculation procedure for the scattered radiation field of the actual diagnostic energies is presented. Starting from the single Compton scattering model and using the justified transformations the final equations in elementary form are derived. For numerical calculations the computer code ANGIO was created. The calculated results were confirmed by detailed dosimetric measurements of the scattered field around patient (the water phantom) in SSDL in the Institute of nuclear sciences `Vinca`, Belgrade. These results are good base for assessment of irradiation. The main irradiation source for the physician and the other members of the medical team is the back scattered radiation from patient - albedo. (author). 3 figs., 3 refs.

  7. Neutron radiography activity in the european program cost 524: Neutron imaging techniques

    International Nuclear Information System (INIS)

    Chirco, P.; Bach, P.; Lehmann, E.; Balasko, M.

    2001-01-01

    COST is a framework for scientific and technical cooperation, allowing the coordination of national research on a European level, including 32 member countries. Participation of institutes from non-COST countries is possible. From an initial 7 Actions in 1971, COST has grown to 200 Actions at the beginning of 2000. COST Action 524 is under materials domain, the title of which being 'Neutron Imaging Techniques for the Detection of Defects in Materials', under the Chairmanship of Dr. P. Chirco (I.N.F.N.). The following countries are represented in the Management Committee of Action 524: Italy, France, Austria, Germany, United Kingdom, Hungary, Switzerland, Spain, Czech Republic, Slovenia, and Russia. The six working groups of this Action are working respectively on standardization of neutron radiography techniques, on aerospace application, on civil engineering applications, on comparison and integration of neutron imaging techniques with other NDT, on neutron tomography, and on non radiographic techniques such as neutron scattering techniques. A specific effort is devoted to standardization issues, with respect to other non European standards. Results of work performed in the COST frame are published or will be published in the review INSIGHT, edited by the British Institute of Non Destructive Testing

  8. First Scattered-Light Images of the Gas-Rich Debris Disk Around 49 Ceti

    Science.gov (United States)

    Choquet, Elodie; Milli, Julien; Wahhaj, Zahed; Soummer, Remi; Roberge, Aki; Augereau, Jean-Charles; Booth, Mark; Absil, Olivier; Boccaletti, Anthony; Chen, Christine H.; hide

    2017-01-01

    We present the first scattered-light images of the debris disk around 49 Ceti, a approximately 40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1."1 (65 au) to 4." 6 (250 au) and is seen at an inclination of 73 deg, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 MJup at projected separations beyond 20 au from the star (0." 34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti's dust, indicating grains larger than approximately greater than 2 micrometers. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2-0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.

  9. First Scattered-light Images of the Gas-rich Debris Disk around 49 Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Choquet, Élodie [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Milli, Julien; Wahhaj, Zahed [European Southern Observatory, Alonso de Còrdova 3107, Vitacura, Casilla 19001, Santiago (Chile); Soummer, Rémi; Chen, Christine H.; Debes, John H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Augereau, Jean-Charles [Univ. Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France); Booth, Mark [Astrophysikalisches Institut und Universitätssternwarte, Friedrich-Schiller-Universität Jena, Schillergäßchen 2-3, D-07745 Jena (Germany); Absil, Olivier [Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, 19 Allée du Six Août, B-4000 Liège (Belgium); Boccaletti, Anthony [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); Burgo, Carlos del, E-mail: echoquet@jpl.nasa.gov [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); and others

    2017-01-10

    We present the first scattered-light images of the debris disk around 49 Ceti, a ∼40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.″1 (65 au) to 4.″6 (250 au) and is seen at an inclination of 73°, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 M {sub Jup} at projected separations beyond 20 au from the star (0.″34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti’s dust, indicating grains larger than ≳2 μ m. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2–0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.

  10. Study of Six Energy-Window Settings for Scatter Correction in Quantitative 111In Imaging: Comparative analysis Using SIMIND

    International Nuclear Information System (INIS)

    Gomez Facenda, A.; Castillo Lopez, J. P.; Torres Aroche, L. A.; Coca Perez, M. A.

    2013-01-01

    Activity quantification in nuclear medicine imaging is highly desirable, particularly for dosimetry and biodistribution studies of radiopharmaceuticals. Quantitative 111 In imaging is increasingly important with the current interest in therapy using 90 Y-radiolabeled compounds. Photons scattered in the patient are one of the major problems in quantification, which leads to degradation of image quality. The aim of this work was to assess the configuration of energy windows and the best weight factor for the scatter correction in 111 In images. All images were obtained using the Monte Carlo simulation code, Simind, configured to emulate the gamma camera Nucline SPIRIT DH-V. Simulations were validated by a positive agreement between experimental and simulated line-spread functions (LSF) of 99 mTc. It was examined the sensitivity, the scatter-to-total ratio, the contrast and the spatial resolution for scatter-compensated images obtained from six different multi-windows scatter corrections. Taking into consideration the results, the best energy-window setting was two 20% windows centered at 171 and 245keV, together with a 10% scatter window located between the photo peaks at 209keV. (Author)

  11. Electromagnetic imaging of multiple-scattering small objects: non-iterative analytical approach

    International Nuclear Information System (INIS)

    Chen, X; Zhong, Y

    2008-01-01

    Multiple signal classification (MUSIC) imaging method and the least squares method are applied to solve the electromagnetic inverse scattering problem of determining the locations and polarization tensors of a collection of small objects embedded in a known background medium. Based on the analysis of induced electric and magnetic dipoles, the proposed MUSIC method is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC doesn't apply. After the locations of objects are obtained, the nonlinear inverse problem of determining the polarization tensors of objects accounting for multiple scattering between objects is solved by a non-iterative analytical approach based on the least squares method

  12. Performance evaluation of cardiac MRI image denoising techniques

    NARCIS (Netherlands)

    AlAttar, M.A.; Mohamed, A.G.A.; Osman, N.F.; Fahmy, A.S.

    2008-01-01

    Black-blood cardiac magnetic resonance imaging (MRI) plays an important role in diagnosing a number of heart diseases. The technique suffers inherently from low contrast-to-noise ratio between the myocardium and the blood. In this work, we examined the performance of different classification

  13. Wavelet techniques for reversible data embedding into images

    NARCIS (Netherlands)

    L. Kamstra; H.J.A.M. Heijmans (Henk)

    2004-01-01

    textabstractThe proliferation of digital information in our society has enticed a lot of research into data embedding techniques that add information to digital content like images, audio and video. This additional information can be used for various purposes and different applications place

  14. An improved technique for the prediction of optimal image resolution ...

    African Journals Online (AJOL)

    user

    2010-10-04

    Oct 4, 2010 ... Available online at http://www.academicjournals.org/AJEST ... robust technique for predicting optimal image resolution for the mapping of savannah ecosystems was developed. .... whether to purchase multi-spectral imagery acquired by GeoEye-2 ..... Analysis of the spectral behaviour of the pasture class in.

  15. Feminist Pedagogy, Body Image, and the Dance Technique Class

    Science.gov (United States)

    Barr, Sherrie; Oliver, Wendy

    2016-01-01

    This paper investigates the evolution of feminist consciousness in dance technique class as related to body image, the myth of the perfect body, and the development of feminist pedagogy. Western concert dance forms have often been taught in a manner where imitating the teacher is primary in the learning process. In this traditional scenario,…

  16. Comparing Generative Adversarial Network Techniques for Image Creation and Modification

    NARCIS (Netherlands)

    Pieters, Mathijs; Wiering, Marco

    2018-01-01

    Generative adversarial networks (GANs) have demonstrated to be successful at generating realistic real-world images. In this paper we compare various GAN techniques, both supervised and unsupervised. The effects on training stability of different objective functions are compared. We add an encoder

  17. Recent Advances in Techniques for Hyperspectral Image Processing

    Science.gov (United States)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; hide

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  18. Coronary imaging techniques with emphasis on CT and MRI

    International Nuclear Information System (INIS)

    Lederlin, Mathieu; Latrabe, Valerie; Corneloup, Olivier; Cochet, Hubert; Montaudon, Michel; Laurent, Francois; Thambo, Jean-Benoit

    2011-01-01

    Coronary artery imaging in children is challenging, with high demands both on temporal and spatial resolution due to high heart rates and smaller anatomy. Although invasive conventional coronary angiography remains the benchmark technique, over the past 10 years, CT and MRI have emerged in the field of coronary imaging. The choice of hardware is important. For CT, the minimum requirement is a 64-channel scanner. The temporal resolution of the scanner is most important for optimising image quality and minimising radiation dose. Manufacturers have developed several modes of electrocardiographic (ECG) triggering to facilitate dose reduction. Recent technical advances have opened new possibilities in MRI coronary imaging. As a non-ionising radiation technique, MRI is of great interest in paediatric imaging. It is currently recommended in centres with appropriate expertise for the screening of patients with suspected congenital coronary anomalies. However, MRI is still not feasible in infants. This review describes and discusses the technical requirements and the pros and cons of all three techniques. (orig.)

  19. Reducing the absorbed dose in analogue radiography of infant chest images by improving the image quality, using image processing techniques

    International Nuclear Information System (INIS)

    Karimian, A.; Yazdani, S.; Askari, M. A.

    2011-01-01

    Radiographic inspection is one of the most widely employed techniques for medical testing methods. Because of poor contrast and high un-sharpness of radiographic image quality in films, converting radiographs to a digital format and using further digital image processing is the best method of enhancing the image quality and assisting the interpreter in their evaluation. In this research work, radiographic films of 70 infant chest images with different sizes of defects were selected. To digitise the chest images and employ image processing the two algorithms (i) spatial domain and (ii) frequency domain techniques were used. The MATLAB environment was selected for processing in the digital format. Our results showed that by using these two techniques, the defects with small dimensions are detectable. Therefore, these suggested techniques may help medical specialists to diagnose the defects in the primary stages and help to prevent more repeat X-ray examination of paediatric patients. (authors)

  20. FDTD parallel computational analysis of grid-type scattering filter characteristics for medical X-ray image diagnosis

    International Nuclear Information System (INIS)

    Takahashi, Koichi; Miyazaki, Yasumitsu; Goto, Nobuo

    2007-01-01

    X-ray diagnosis depends on the intensity of transmitted and scattered waves in X-ray propagation in biomedical media. X-ray is scattered and absorbed by tissues, such as fat, bone and internal organs. However, image processing for medical diagnosis, based on the scattering and absorption characteristics of these tissues in X-ray spectrum is not so much studied. To obtain precise information of tissues in a living body, the accurate characteristics of scattering and absorption are required. In this paper, X-ray scattering and absorption in biomedical media are studied using 2-dimensional finite difference time domain (FDTD) method. In FDTD method, the size of analysis space is very limited by the performance of available computers. To overcome this limitation, parallel and successive FDTD method is introduced. As a result of computer simulation, the amplitude of transmitted and scattered waves are presented numerically. The fundamental filtering characteristics of grid-type filter are also shown numerically. (author)

  1. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    International Nuclear Information System (INIS)

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary

  2. The practical implementation of a scatter model for portal imaging at 10

    International Nuclear Information System (INIS)

    Partridge, Mike; Evans, Philip M.

    1998-01-01

    A detailed validation of a physical model for scattered radiation in portal images at 10 MV is presented. The ratio of the signal due to scattered radiation to the signal due to primary radiation (SPR) in an electronic portal image is defined. A simple physical model for SPR on the central axis (SPR*) was presented by Swindell and Evans for 6 MV and validated for field sizes up to 320 cm 2 . In this paper, the model is extended to 10 MV and validated for field sizes up to 625 cm 2 . The model is first compared with Monte Carlo modelled data for field areas A from 40 to 320 cm 2 , scatterer thicknesses d of 5 to 35 cm water and scatterer to detector distances L 2 of 40 to 100 cm. The physical model has one free parameter, which is fitted empirically using these data. Second, experimental measurements are performed with A from 40 to 625 cm 2 , d from 4.6 to 27.4 cm and L 2 fixed at 100 cm. The root mean square (rms) difference between the physical model and the Monte Carlo calculations was less than 0.001 for all L 2 greater than 60 cm. Agreement between experimentally measured and physically modelled data amounts to a radiological thickness error of at best 0.7 mm in 273.6 mm and at worst 0.4 in 45.6 mm. The model performs equally well at all field sizes tested. This study shows that the Swindell and Evans SPR* model is accurate at 10 MV for L 2 greater than 60 cm for all A up to 625 cm 2 . (author)

  3. Adaptive differential correspondence imaging based on sorting technique

    Directory of Open Access Journals (Sweden)

    Heng Wu

    2017-04-01

    Full Text Available We develop an adaptive differential correspondence imaging (CI method using a sorting technique. Different from the conventional CI schemes, the bucket detector signals (BDS are first processed by a differential technique, and then sorted in a descending (or ascending order. Subsequently, according to the front and last several frames of the sorted BDS, the positive and negative subsets (PNS are created by selecting the relative frames from the reference detector signals. Finally, the object image is recovered from the PNS. Besides, an adaptive method based on two-step iteration is designed to select the optimum number of frames. To verify the proposed method, a single-detector computational ghost imaging (GI setup is constructed. We experimentally and numerically compare the performance of the proposed method with different GI algorithms. The results show that our method can improve the reconstruction quality and reduce the computation cost by using fewer measurement data.

  4. Wear Detection of Drill Bit by Image-based Technique

    Science.gov (United States)

    Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul

    2018-03-01

    Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.

  5. Image reconstruction technique using projection data from neutron tomography system

    Directory of Open Access Journals (Sweden)

    Waleed Abd el Bar

    2015-12-01

    Full Text Available Neutron tomography is a very powerful technique for nondestructive evaluation of heavy industrial components as well as for soft hydrogenous materials enclosed in heavy metals which are usually difficult to image using X-rays. Due to the properties of the image acquisition system, the projection images are distorted by several artifacts, and these reduce the quality of the reconstruction. In order to eliminate these harmful effects the projection images should be corrected before reconstruction. This paper gives a description of a filter back projection (FBP technique, which is used for reconstruction of projected data obtained from transmission measurements by neutron tomography system We demonstrated the use of spatial Discrete Fourier Transform (DFT and the 2D Inverse DFT in the formulation of the method, and outlined the theory of reconstruction of a 2D neutron image from a sequence of 1D projections taken at different angles between 0 and π in MATLAB environment. Projections are generated by applying the Radon transform to the original image at different angles.

  6. High speed color imaging through scattering media with a large field of view

    Science.gov (United States)

    Zhuang, Huichang; He, Hexiang; Xie, Xiangsheng; Zhou, Jianying

    2016-09-01

    Optical imaging through complex media has many important applications. Although research progresses have been made to recover optical image through various turbid media, the widespread application of the technology is hampered by the recovery speed, requirement on specific illumination, poor image quality and limited field of view. Here we demonstrate that above-mentioned drawbacks can be essentially overcome. The realization of high speed color imaging through turbid media is successfully carried out by taking into account the media memory effect, the point spread function, the exit pupil of the optical system, and the optimized signal to noise ratio. By retrieving selected speckles with enlarged field of view, high quality image is recovered with a responding speed only determined by the frame rates of the image capturing devices. The immediate application of the technique is expected to register static and dynamic imaging under human skin to recover information with a wearable device.

  7. Appropriate electromagnetic techniques for imaging geothermal fracture zones

    Energy Technology Data Exchange (ETDEWEB)

    Groom, R; Walker, P [PetRos EiKon Incorporated, Ontario (Canada)

    1996-05-01

    Electromagnetic surface detection of fracture zones has often been approached by using the magnetotelluric method. This technique suffers greatly from the quantity and scale of the conductive inhomogeneities lying above the fracture zones. Additionally, it suffers from the inherent inability to focus the source on the target. There are no such source focusing capabilities in magnetotellurics. Accordingly, the quantity of magnetotelluric data required to resolve targets in such complex conditions can make the technique inefficient and insufficient from a cost perspective. When attempting to reveal a subsurface structure and image it, the basic physical responses at hand must be kept in mind, and the appropriate source must be utilized, which most effectively illuminates the target. A further advantage to controlled sources is that imaging techniques may be used to accentuate the response due to knowledge and control of the source.

  8. UV Digital Imaging of Sulfur Dioxide Emissions: Enhancing the Technique With Empirical Corrections

    Science.gov (United States)

    Dalton, M. P.; Bluth, G. J.; Shannon, J. M.; Watson, I. M.

    2006-12-01

    SO2 emission measurements are an important component of monitoring volcanic processes, providing insight into the driving forces behind eruptions. Current spectrometric methods (COSPEC, DOAS) typically measure only a cross-section of the plume, which may not be representative of the actual emission flux, and coupled with the difficulty in determining wind speeds affecting the air mass, often leads to erratic SO2 flux values. In order to address these problems, we have developed a ground-based ultraviolet digital camera for the imaging and measurement of SO2 volcanic plumes. This camera improves on the spectrometric methods of SO2 observation by capturing a large portion of the plume in one measurement- a single image. The UV digital camera can also record multiple images every minute, producing a data set that is more comparable with other monitoring techniques. The UV digital camera has proven capable of imaging volcanic plumes under fairly demanding conditions, and determining SO2 fluxes that have roughly agreed with other SO2 measurement techniques. Initial field tests suggest that the data produced by the UV camera are significantly affected by atmospheric scattering. To better evaluate the errors and limitations associated with this new instrument, field experiments have been conducted to assess the effects that background sky brightness, meteorological conditions, and distance to the target have on the calculated SO2 concentrations and flux measurements. Our results will allow us to more accurately model and correct for changing atmospheric conditions and quantify the error associated with atmospheric background scattering. These corrections will make this remarkable new instrument a more accurate and valuable tool for monitoring volcanic emissions.

  9. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    DEFF Research Database (Denmark)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto

    2013-01-01

    Abstract Purpose. Cone beam computed tomography (CBCT) image quality is limited by scattered photons. Monte Carlo (MC) simulations provide the ability of predicting the patient-specific scatter contamination in clinical CBCT imaging. Lengthy simulations prevent MC-based scatter correction from...

  10. Imaging Molecular Motion: Femtosecond X-Ray Scattering of an Electrocyclic Chemical Reaction

    Science.gov (United States)

    Minitti, M. P.; Budarz, J. M.; Kirrander, A.; Robinson, J. S.; Ratner, D.; Lane, T. J.; Zhu, D.; Glownia, J. M.; Kozina, M.; Lemke, H. T.; Sikorski, M.; Feng, Y.; Nelson, S.; Saita, K.; Stankus, B.; Northey, T.; Hastings, J. B.; Weber, P. M.

    2015-06-01

    Structural rearrangements within single molecules occur on ultrafast time scales. Many aspects of molecular dynamics, such as the energy flow through excited states, have been studied using spectroscopic techniques, yet the goal to watch molecules evolve their geometrical structure in real time remains challenging. By mapping nuclear motions using femtosecond x-ray pulses, we have created real-space representations of the evolving dynamics during a well-known chemical reaction and show a series of time-sorted structural snapshots produced by ultrafast time-resolved hard x-ray scattering. A computational analysis optimally matches the series of scattering patterns produced by the x rays to a multitude of potential reaction paths. In so doing, we have made a critical step toward the goal of viewing chemical reactions on femtosecond time scales, opening a new direction in studies of ultrafast chemical reactions in the gas phase.

  11. Imaging, scattering, and spectroscopic systems for biomedical optics: Tools for bench top and clinical applications

    Science.gov (United States)

    Cottrell, William J.

    Optical advances have had a profound impact on biology and medicine. The capabilities range from sensing biological analytes to whole animal and subcellular imaging and clinical therapies. The work presented in this thesis describes three independent and multifunctional optical systems, which explore clinical therapy at the tissue level, biological structure at the cell/organelle level, and the function of underlying fundamental cellular processes. First, we present a portable clinical instrument for delivering delta-aminolevulinic acid photodynamic therapy (ALA-PDT) while performing noninvasive spectroscopic monitoring in vivo. Using an off-surface probe, the instrument delivered the treatment beam to a user-defined field on the skin and performed reflectance and fluorescence spectroscopies at two regions within this field. The instrument was used to monitor photosensitizer fluorescence photobleaching, fluorescent photoproduct kinetics, and blood oxygen saturation during a clinical ALA-PDT trial on superficial basal cell carcinoma (sBCC). Protoporphyrin IX and photoproduct fluorescence excited by the 632.8 nm PDT treatment laser was collected between 665 and 775 nm. During a series of brief treatment interruptions at programmable time points, white-light reflectance spectra between 475 and 775 nm were acquired. Fluorescence spectra were corrected for the effects of absorption and scattering, informed by the reflectance measurements, and then decomposed into known fluorophore contributions in real time using a robust singular-value decomposition fitting routine. Reflectance spectra additionally provided information on hemoglobin oxygen saturation. We next describe the incorporation of this instrument into clinical trials at Roswell Park Cancer Institute (Buffalo, NY). In this trial we examined the effects of light irradiance on photodynamic efficiency and pain. The rate of singlet-oxygen production depends on the product of irradiance and photosensitizer and oxygen

  12. Observation of pressure ridges in SAR images of sea ice: Scattering theory and comparison with observations

    Science.gov (United States)

    Vesecky, J. F.; Daida, J. M.; Shuchman, R. A.; Onstott, R. H.; Camiso, J. C.

    1993-01-01

    Ridges and keels (hummocks and bummocks) in sea ice flows are important in sea ice research for both scientific and practical reasons. Sea ice movement and deformation is driven by internal and external stresses on the ice. Ridges and keels play important roles in both cases because they determine the external wind and current stresses via drag coefficients. For example, the drag coefficient over sea ice can vary by a factor of several depending on the fluid mechanical roughness length of the surface. This roughness length is thought to be strongly dependent on the ridge structures present. Thus, variations in ridge and keel structure can cause gradients in external stresses which must be balanced by internal stresses and possibly fracture of the ice. Ridging in sea ice is also a sign of fracture. In a practical sense, large ridges form the biggest impediment to surface travel over the ice or penetration through sea ice by ice-strengthened ships. Ridges also play an important role in the damage caused by sea ice to off-shore structures. Hence, observation and measurement of sea ice ridges is an important component of sea ice remote sensing. The research reported here builds on previous work, estimating the characteristics of ridges and leads in sea ice from SAR images. Our objective is to develop methods for quantitative measurement of sea ice ridges from SAR images. To make further progress, in particular, to estimate ridge height, a scattering model for ridges is needed. Our research approach for a ridge scattering model begins with a survey of the geometrical properties of ridges and a comparison with the characteristics of the surrounding ice. For this purpose we have used airborne optical laser (AOL) data collected during the 1987 Greenland Sea Experiment. These data were used to generate a spatial wavenumber spectrum for height variance for a typical ridge - the typical ridge is the average over 10 large ridges. Our first-order model radar scattering includes

  13. A dual-view digital tomosynthesis imaging technique for improved chest imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C., E-mail: cshaw@mdanderson.org [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054 (United States)

    2015-09-15

    Purpose: Digital tomosynthesis (DTS) has been shown to be useful for reducing the overlapping of abnormalities with anatomical structures at various depth levels along the posterior–anterior (PA) direction in chest radiography. However, DTS provides crude three-dimensional (3D) images that have poor resolution in the lateral view and can only be displayed with reasonable quality in the PA view. Furthermore, the spillover of high-contrast objects from off-fulcrum planes generates artifacts that may impede the diagnostic use of the DTS images. In this paper, the authors describe and demonstrate the use of a dual-view DTS technique to improve the accuracy of the reconstructed volume image data for more accurate rendition of the anatomy and slice images with improved resolution and reduced artifacts, thus allowing the 3D image data to be viewed in views other than the PA view. Methods: With the dual-view DTS technique, limited angle scans are performed and projection images are acquired in two orthogonal views: PA and lateral. The dual-view projection data are used together to reconstruct 3D images using the maximum likelihood expectation maximization iterative algorithm. In this study, projection images were simulated or experimentally acquired over 360° using the scanning geometry for cone beam computed tomography (CBCT). While all projections were used to reconstruct CBCT images, selected projections were extracted and used to reconstruct single- and dual-view DTS images for comparison with the CBCT images. For realistic demonstration and comparison, a digital chest phantom derived from clinical CT images was used for the simulation study. An anthropomorphic chest phantom was imaged for the experimental study. The resultant dual-view DTS images were visually compared with the single-view DTS images and CBCT images for the presence of image artifacts and accuracy of CT numbers and anatomy and quantitatively compared with root-mean-square-deviation (RMSD) values

  14. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    Science.gov (United States)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/ Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  15. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques

    NARCIS (Netherlands)

    Signore, Alberto; Glaudemans, Andor W. J. M.

    2011-01-01

    Inflammatory and infectious diseases are a heterogeneous class of diseases that may be divided into infections, acute inflammation and chronic inflammation. Radiological imaging techniques have, with the exception of functional MRI, high sensitivity but lack in specificity. Nuclear medicine

  16. Quantitation of structural distortion with gradient-echo imaging techniques

    International Nuclear Information System (INIS)

    Tien, R.D.; Schwaighofer, B.W.; Hesselink, J.R.; Chu, P.K.

    1990-01-01

    This paper determines the structural distortion and measurement error associated with fast MR imaging of the spinal neural foramina. Dry skeletal specimens and a thin cadaveric sagittal section through the neural foramina were placed in a water bath. MR images were obtained with a 1.5-T unit in different planes and with various pulse sequences. The size and shape of each neural foramen were carefully measured on the images and on the skeletal specimens. Gradient-echo (GRE) techniques (gradient recalled acquisition in a steady state, MPGR, three-dimensional volume acquisition) resulted in structural distortion in up to 10% on the fresh skeleton and 30% of the dry skeleton specimens when a small TE was used (the foramina appear narrower on the images)

  17. Blood group typing based on recording the elastic scattering of laser radiation using the method of digital imaging

    International Nuclear Information System (INIS)

    Dolmashkin, A A; Dubrovskii, V A; Zabenkov, I V

    2012-01-01

    The possibility is demonstrated to determine the human blood group by recording the scattering of laser radiation with the help of the digital imaging method. It is experimentally shown that the action of a standing ultrasound wave leads to acceleration of the agglutination reaction of red blood cells, to formation of larger immune complexes of red blood cells, and, as a consequence, to acceleration of their sedimentation. In the absence of agglutination of red blood cells the ultrasound does not enhance the relevant processes. This difference in the results of ultrasound action on the mixture of blood and serum allows a method of blood typing to be offered. Theoretical modelling of the technique of the practical blood typing, carried out on the basis of the elastic light scattering theory, agrees well with the experimental results, which made it possible to plan further improvement of the proposed method. The studies of specific features of sedimentation of red blood cells and their immune complexes were aimed at the optimisation of the sample preparation, i.e., at the search for such experimental conditions that provide the maximal resolution of the method and the device for registering the reaction of red blood cells agglutination. The results of the study may be used in designing the instrumentation for blood group assessment in humans.

  18. Blood group typing based on recording the elastic scattering of laser radiation using the method of digital imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dolmashkin, A A; Dubrovskii, V A; Zabenkov, I V [V.I.Razumovsky Saratov State Medical University, Saratov (Russian Federation)

    2012-05-31

    The possibility is demonstrated to determine the human blood group by recording the scattering of laser radiation with the help of the digital imaging method. It is experimentally shown that the action of a standing ultrasound wave leads to acceleration of the agglutination reaction of red blood cells, to formation of larger immune complexes of red blood cells, and, as a consequence, to acceleration of their sedimentation. In the absence of agglutination of red blood cells the ultrasound does not enhance the relevant processes. This difference in the results of ultrasound action on the mixture of blood and serum allows a method of blood typing to be offered. Theoretical modelling of the technique of the practical blood typing, carried out on the basis of the elastic light scattering theory, agrees well with the experimental results, which made it possible to plan further improvement of the proposed method. The studies of specific features of sedimentation of red blood cells and their immune complexes were aimed at the optimisation of the sample preparation, i.e., at the search for such experimental conditions that provide the maximal resolution of the method and the device for registering the reaction of red blood cells agglutination. The results of the study may be used in designing the instrumentation for blood group assessment in humans.

  19. In-situ, real-time, studies of film growth processes using ion scattering and direct recoil spectroscopy techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Smentkowski, V. S.

    1999-04-22

    Time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1-2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is 3 variant of DRS capable of isotopic resolution for all surface species--including H and He. The advantages and limitations of each of these techniques will be discussed. The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dwd functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.

  20. Dose distribution in lungs and thyroid from scatter photons of x-ray mammography imaging

    International Nuclear Information System (INIS)

    Faghihi, R.; Mehdizadeh, S.

    2006-01-01

    The contribution of scatter photons in dose of mammography image in thyroid and lungs are studied. Thyroid and in the form of distribution function and total delivered dose studied by direct measurement with Thermoluminescence dosimeter. The results of measurements compared to other published measurements and the total dose compared to our modelling with Monte Carlo method.. Our phantoms for direct measurement of Dose are a compressed breast phantom placed on a female RANDO phantom. The results of modelling and measurement are in agreement for the total delivered dose to thyroid and lungs and comparable to doses reported by the other researcher

  1. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    International Nuclear Information System (INIS)

    Bahl, C.R.H.; Lefmann, K.; Abrahamsen, A.B.; Ronnow, H.M.; Saxild, F.; Jensen, T.B.S.; Udby, L.; Andersen, N.H.; Christensen, N.B.; Jakobsen, H.S.; Larsen, T.; Haefliger, P.S.; Streule, S.; Niedermayer, Ch.

    2006-01-01

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode

  2. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, C.R.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark) and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)]. E-mail: christian.bahl@risoe.dk; Lefmann, K. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)]. E-mail: kim.lefmann@risoe.dk; Abrahamsen, A.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Ronnow, H.M. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Saxild, F. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Jensen, T.B.S. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Udby, L. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Andersen, N.H. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Christensen, N.B. [Department of Materials Research, Riso National Laboratory, Building 227, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Jakobsen, H.S. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Larsen, T. [Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen, DK-2100 Copenhagen (Denmark); Haefliger, P.S. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Streule, S.; Niedermayer, Ch. [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2006-05-15

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode.

  3. Development of fuel number reader by ultrasonic imaging techniques

    International Nuclear Information System (INIS)

    Omote, T.; Yoshida, T.

    1991-01-01

    This paper reports on a spent fuel ID number reader using ultrasonic imaging techniques that has been developed to realize efficient and automatic verification of fuel numbers, thereby to reduce mental load and radiation exposure for operators engaged in the verification task. The ultrasonic imaging techniques for automatic fuel number recognition are described. High-speed and high reliability imaging of the spent fuel ID number are obtained by using linear array type ultrasonic probe. The ultrasonic wave is scanned by switching array probe in vertical direction, and scanned mechanically in horizontal direction. Time for imaging of spent fuel ID number on assembly was confirmed less than three seconds by these techniques. And it can recognize spent fuel ID number even if spent fuel ID number can not be visualized by an optical method because of depositing fuel number regions by soft card. In order to recognize spent fuel ID number more rapidly and more reliably, coded fuel number expressed by plural separate recesses form is developed. Every coded fuel number consists of six small holes (about 1 mm dia.) and can be marked adjacent to the existing fuel number expressed by letters and numbers

  4. Statistical methods of evaluating and comparing imaging techniques

    International Nuclear Information System (INIS)

    Freedman, L.S.

    1987-01-01

    Over the past 20 years several new methods of generating images of internal organs and the anatomy of the body have been developed and used to enhance the accuracy of diagnosis and treatment. These include ultrasonic scanning, radioisotope scanning, computerised X-ray tomography (CT) and magnetic resonance imaging (MRI). The new techniques have made a considerable impact on radiological practice in hospital departments, not least on the investigational process for patients suspected or known to have malignant disease. As a consequence of the increased range of imaging techniques now available, there has developed a need to evaluate and compare their usefulness. Over the past 10 years formal studies of the application of imaging technology have been conducted and many reports have appeared in the literature. These studies cover a range of clinical situations. Likewise, the methodologies employed for evaluating and comparing the techniques in question have differed widely. While not attempting an exhaustive review of the clinical studies which have been reported, this paper aims to examine the statistical designs and analyses which have been used. First a brief review of the different types of study is given. Examples of each type are then chosen to illustrate statistical issues related to their design and analysis. In the final sections it is argued that a form of classification for these different types of study might be helpful in clarifying relationships between them and bringing a perspective to the field. A classification based upon a limited analogy with clinical trials is suggested

  5. Astronomical Image Compression Techniques Based on ACC and KLT Coder

    Directory of Open Access Journals (Sweden)

    J. Schindler

    2011-01-01

    Full Text Available This paper deals with a compression of image data in applications in astronomy. Astronomical images have typical specific properties — high grayscale bit depth, size, noise occurrence and special processing algorithms. They belong to the class of scientific images. Their processing and compression is quite different from the classical approach of multimedia image processing. The database of images from BOOTES (Burst Observer and Optical Transient Exploring System has been chosen as a source of the testing signal. BOOTES is a Czech-Spanish robotic telescope for observing AGN (active galactic nuclei and the optical transient of GRB (gamma ray bursts searching. This paper discusses an approach based on an analysis of statistical properties of image data. A comparison of two irrelevancy reduction methods is presented from a scientific (astrometric and photometric point of view. The first method is based on a statistical approach, using the Karhunen-Loeve transform (KLT with uniform quantization in the spectral domain. The second technique is derived from wavelet decomposition with adaptive selection of used prediction coefficients. Finally, the comparison of three redundancy reduction methods is discussed. Multimedia format JPEG2000 and HCOMPRESS, designed especially for astronomical images, are compared with the new Astronomical Context Coder (ACC coder based on adaptive median regression.

  6. Applicability of three-dimensional imaging techniques in fetal medicine

    Energy Technology Data Exchange (ETDEWEB)

    Werner Junior, Heron; Daltro, Pedro; Gasparetto, Emerson Leandro, E-mail: heronwerner@hotmail.com [Clinica de Diagnostico Por Imagem (CDPI), Rio de Janeiro, RJ (Brazil); Santos, Jorge Lopes dos; Belmonte, Simone; Ribeiro, Gerson [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil); Marchiori, Edson [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2016-09-15

    Objective: To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods: We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results: Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion: The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models. (author)

  7. Applicability of three-dimensional imaging techniques in fetal medicine*

    Science.gov (United States)

    Werner Júnior, Heron; dos Santos, Jorge Lopes; Belmonte, Simone; Ribeiro, Gerson; Daltro, Pedro; Gasparetto, Emerson Leandro; Marchiori, Edson

    2016-01-01

    Objective To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models. PMID:27818540

  8. Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE

    Science.gov (United States)

    Swift, Alicia; Schirato, Richard; McKigney, Edward; Hunter, James; Temple, Brian

    2015-09-01

    The Los Alamos Neutron Science Center (LANSCE)