WorldWideScience

Sample records for scattering enhanced cascade

  1. Cascaded Bragg scattering in fiber optics.

    Science.gov (United States)

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  2. Cascaded forward Brillouin scattering to all Stokes orders

    CERN Document Server

    Wolff, Christian; Eggleton, Benjamin J; Steel, Michael J; Poulton, Christopher G

    2016-01-01

    Inelastic scattering processes such as Brillouin scattering can often function in cascaded regimes and this is likely to occur in certain integrated opto-acoustic devices. We develop a Hamiltonian formalism for cascaded Brillouin scattering valid for both quantum and classical regimes. By regarding Brillouin scattering as the interaction of a single acoustic envelope and a single optical envelope that covers all Stokes and anti-Stokes orders, we obtain a compact model that is well suited for numerical implementation, extension to include other optical nonlinearities or short pulses, and application in the quantum-optics domain. We then theoretically analyze intra-mode forward Brillouin scattering (FBS) for arbitrary waveguides with and without optical dispersion. In the absence of optical dispersion, we find an exact analytical solution. With a perturbative approach, we furthermore solve the case of weak optical dispersion. Our work leads to several key results on intra-mode FBS. For negligible dispersion, we...

  3. A new SERS: scattering enhanced Raman scattering

    Science.gov (United States)

    Bixler, Joel N.; Yakovlev, Vladislav V.

    2014-03-01

    Raman spectroscopy is a powerful technique that can be used to obtain detailed chemical information about a system without the need for chemical markers. It has been widely used for a variety of applications such as cancer diagnosis and material characterization. However, Raman scattering is a highly inefficient process, where only one in 1011 scattered photons carry the needed information. Several methods have been developed to enhance this inherently weak effect, including surface enhanced Raman scattering and coherent anti-Stokes Raman scattering. These techniques suffer from drawbacks limiting their commercial use, such as the need for spatial localization of target molecules to a `hot spot', or the need for complex laser systems. Here, we present a simple instrument to enhance spontaneous Raman scattering using elastic light scattering. Elastic scattering is used to substantially increase the interaction volume. Provided that the scattering medium exhibits very low absorption in the spectral range of interest, a large enhancement factor can be attained in a simple and inexpensive setting. In our experiments, we demonstrate an enhancement of 107 in Raman signal intensity. The proposed novel device is equally applicable for analyzing solids, liquids, and gases.

  4. Enhanced performance of quantum cascade Raman laser

    Science.gov (United States)

    Yousefvand, Hossein Reza; Aahmadi, Vahid

    2015-05-01

    We present a self-consistent numerical approach for quantum cascade Raman laser (QC-RL) with a modified design to improve the device performance. Our modeling approach is based on monolithic integration of stimulated Raman scattering (SRS) and electrically pumped QC laser. The laser band structure utilizing techniques with both material-dependent effective mass and band nonparabolicity is calculated by solving the Schrodinger-Poisson equations self-consistently. A detailed analysis of output characteristics of the obtained structure is carried out within a simplified 4-level rate equations model taking into account the SRS process. The model accurately explains the operating characteristics found in QCLs, such as damping transient response and non-resonant behavior of modulation frequency response. Furthermore, modification of the structure is focused on improving the SRS in the QC-RL. This leads to an enhancement of the device performance such as threshold current, external quantum efficiency, conversion efficiency, turn-on delay and modulation response. The excellent agreement of the experimental data with the simulated light output-current characteristics confirms the validity of the model.

  5. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  6. Phase-locking in cascaded stimulated Brillouin scattering

    CERN Document Server

    Büttner, Thomas F S; Steel, M J; Hudson, Darren D; Eggleton, Benjamin J

    2015-01-01

    Cascaded stimulated Brillouin scattering (SBS) is a complex nonlinear optical process that results in the generation of several optical waves that are frequency shifted by an acoustic resonance frequency. Four-wave mixing (FWM) between these Brillouin shifted optical waves can create an equally spaced optical frequency comb with a stable spectral phase, i.e. a Brillouin frequency comb (BFC). Here, we investigate phase-locking of the spectral components of BFCs, considering FWM interactions arising from the Kerr-nonlinearity as well as from coupling by the acoustic field. Deriving for the first time the coupled-mode equations that include all relevant nonlinear interactions, we examine the contribution of the various nonlinear processes to phase-locking, and show that different regimes can be obtained that depend on the length scale on which the field amplitudes vary.

  7. Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser-plasmas interaction

    Science.gov (United States)

    Feng, Qingsong; Zheng, Chunyang; Liu, Zhanjun; Xiao, Chengzhuo; Wang, Qing; Cao, Lihua; He, Xiantu

    2017-10-01

    The anti-Stokes scattering and Stokes scattering in stimulated Brillouin scattering (SBS) cascade have been researched by the Vlasov-Maxwell simulation. In the high-intensity laser-plasmas interaction, the stimulated anti-Stokes Brillouin scattering (SABS) will occur after the second stage SBS rescattering. The mechanism of SABS has been put forward to explain this phenomenon. In the early time of SBS evolution, only the first stage SBS appears, and the total SBS reflectivity comes from the first stage SBS. However, when the high-stage SBS and SABS occur, the SBS reflectivity will appear a burst behavior, and the total reflectivity comes from the SBS cascade and SABS superimposition. The SABS will compete with the SBS rescattering to determine the total SBS reflectivity. Thus, the SBS rescattering including the SABS is an important saturation mechanism of SBS, and should be taken into account in the high-intensity laser-plasmas interaction. This research was supported by the National Natural Science Foundation of China (Grant Nos. 11375032, 11575035, 11475030 and 11435011), National Basic Research Program of China (Grant No. 2013CB834101) and Science Challenge Project, No. TZ2016005.

  8. Enhanced incoherent scatter plasma lines

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    Full Text Available Detailed model calculations of auroral secondary and photoelectron distributions for varying conditions have been used to calculate the theoretical enhancement of incoherent scatter plasma lines. These calculations are compared with EISCAT UHF radar measurements of enhanced plasma lines from both the E and F regions, and published EISCAT VHF radar measurements. The agreement between the calculated and observed plasma line enhancements is good. The enhancement from the superthermal distribution can explain even the very strong enhancements observed in the auroral E region during aurora, as previously shown by Kirkwood et al. The model calculations are used to predict the range of conditions when enhanced plasma lines will be seen with the existing high-latitude incoherent scatter radars, including the new EISCAT Svalbard radar. It is found that the detailed structure, i.e. the gradients in the suprathermal distribution, are most important for the plasma line enhancement. The level of superthermal flux affects the enhancement only in the region of low phase energy where the number of thermal electrons is comparable to the number of suprathermal electrons and in the region of high phase energy where the suprathermal fluxes fall to such low levels that their effect becomes small compared to the collision term. To facilitate the use of the predictions for the different radars, the expected signal- to-noise ratios (SNRs for typical plasma line enhancements have been calculated. It is found that the high-frequency radars (Søndre Strømfjord, EISCAT UHF should observe the highest SNR, but only for rather high plasma frequencies. The VHF radars (EISCAT VHF and Svalbard will detect enhanced plasma lines over a wider range of frequencies, but with lower SNR.

  9. Power quality enhancement using cascaded multilevel inverter ...

    African Journals Online (AJOL)

    This paper investigates mitigation of current harmonics using different configuration of cascaded multilevel inverter based shunt hybrid active power filter (SHAPF) and to improve power quality of the system. The main objective of this paper is to develop and analyze the compensation characteristics of cascaded multilevel ...

  10. Narrowband Compton Scattering Yield Enhancement

    Science.gov (United States)

    Rykovanov, Sergey; Seipt, Daniel; Kharin, Vasily

    2017-10-01

    Compton Scattering (CS) of laser light off high-energy electrons is a well-established source of X- and gamma-rays for applications in medicine, biology, nuclear and material sciences. Main advantage of CS photon sources is the possibility to generate narrow spectra as opposed to a broad continuum obtained when utilizing Bremsstrahlung. However, due to the low cross-section of the linear process, the total photon yield is quite low. The most straightforward way to increase the number of photon-electron beam scattering events is to increase the laser pulse intensity at the interaction point by harder focusing. This leads to an unfortunate consequence. Increase in the laser pulse normalized amplitude a0, leads to additional ponderomotive spectrum broadening of the scattered radiation. The ponderomotive broadening is caused by the v × B force, which slows the electron down near the peak of the laser pulse where the intensity is high, and can be neglected near the wings of the pulse, where the intensity is low. We show that laser pulse chirping, both nonlinear (laser pulse frequency ''following'' the envelope of the pulse) and linear, leads to compensation of the ponderomotive broadening and considerably enhances the yield of the nonlinear Compton sources. Work supported by the Helmholtz Association via Helmholtz Young Investigators Grant (VH-NG-1037).

  11. PULSE MODULATION POWER AMPLIFIER WITH ENHANCED CASCADE CONTROL METHOD

    DEFF Research Database (Denmark)

    1998-01-01

    A digital switching power amplifier with Multivariable Enhanced Cascade Controlled (MECC) includes a modulator, a switching power stage and a low pass filter. In the first preferred embodiment an enhanced cascade control structure local to the switching power stage is added, characterised by havi...... and feedback path A to determine stable self-oscillating conditions. An implemented 250W example MECC digital power amplifier has proven superior performance in terms of audio performance (0.005 % distortion, 115 dB dynamic range) and efficiency (92 %).......A digital switching power amplifier with Multivariable Enhanced Cascade Controlled (MECC) includes a modulator, a switching power stage and a low pass filter. In the first preferred embodiment an enhanced cascade control structure local to the switching power stage is added, characterised by having...

  12. Space-time aspects of hadronic cascading in lepton nucleus scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gyulassy, M.; Pluemer, M.

    1989-05-01

    A Monte Carlo model of hadronic cascading in inelastic lepton nucleus scattering is constructed to investigate space-time scenarios consistent with the momentum space description of string models of multiparticle production. The prospects for resolving the ambiguity inherent in the definition of a formation length for composite hadrons are emphasized. 15 refs., 13 figs.

  13. Role of interface roughness scattering, temperature, and structural parameters on the performance characteristics of III-nitride quantum cascade detectors

    Science.gov (United States)

    Saha, S.; Kumar, J.

    2017-02-01

    A III-nitride quantum cascade detector (QCD) for the fiber optic communication wavelength (˜1.5 μm) has been designed, and the effect of intersubband scattering processes such as longitudinal-optical phonon scattering, ionized impurity scattering, and more importantly interface roughness scattering on responsivity performance has been analyzed. Carrier transport in the detector is modeled using a simplified rate equation approach. It is observed that inclusion of interface roughness scattering in the carrier transport model significantly enhances the responsivity performance of the detector. The effects of roughness conditions for instance mean roughness height and correlation length on responsivity have been examined. The responsivity of the designed detector drops by 2.16 mA/W at 400 K compared to its low temperature value at 50 K and the detection wavelength change with temperature is insignificant, which are very helpful for the stable detection of the radiation for a wide range of operating temperatures and show the thermal stability of III-nitride QCDs. The effects of active well widths, extractor barrier widths, and extractor well widths have been further investigated. A higher responsivity performance is observed for narrower barrier widths. It is noticed that change in the active well width significantly modifies the responsivity of the detector and the wavelength gets red shifted for larger active well widths.

  14. Enhanced Raman Scattering by Molecular Nanoaggregates

    Directory of Open Access Journals (Sweden)

    Daniel L. Akins

    2014-02-01

    Full Text Available The formation of a molecular aggregate in a confined, nanodimensioned region of space leads to what might be termed a ‘molecular nanoaggregate’. The present review deals with a theoretical formulation termed ‘aggregation-enhanced Raman scattering’ (AERS, and its use in discussion of relative Raman band intensities and selection rules for nanoaggregates. AERs represents a concept for discussion of nanoaggregates that is different from those provided by resonance Raman scattering, surface-enhanced Raman scattering and Mie scattering, all of which ignore the impact of aggregation of molecules on Raman scattering. Beyond the theoretical formulation behind the AERS phenomenon, also outlined in this review are representative samples of the publications of other authors and researchers using AERS to provide explanations for experimental findings. In addition to clarifying issues regarding the use of nanocomposites involving aggregated molecules, it is found that increasing use of AERS concepts is being made to rationalize Raman spectral observations in a range of other disciplines that fall in both the physical sciences and the medical fields.

  15. Backscatter enhancement in scattering from rough surfaces

    Science.gov (United States)

    Papa, Robert J.; Woodworth, Margaret B.

    1989-06-01

    Stealth technology has advanced to the point where radar target cross sections are so small there is a great need to determine mean clutter cross sections and clutter variability with great accuracy. Established clutter prediction techniques result in forward scatter values that exceed backscatter. There is some new experimental data on light scattering from rough metallic surfaces which shows there is an enhancement of backscattering in the antispecular direction under some conditions. This unusual result has been addressed by several theoretical analyses with varying success at confirmation. In this report an integral form of a physical optics representation is used to simulate the experimental conditions. For a one-dimensional surface height variation this model predicts enhanced backscatter at optical frequencies. Additional calculations for the more significant radar case of microwave frequencies and a dielectric surface again predict an increase in backscatter for large or intermediate surface slope conditions.

  16. Modeling and theoretical study of electronic anti-Stokes Raman scattering in quantum cascade lasers

    Science.gov (United States)

    Yousefvand, Hossein Reza

    2017-04-01

    This paper presents a self-consistent model for studying the electronic anti-Stokes (AS) Raman scattering in quantum cascade lasers (QCLs). The model is developed by employing a five-level rate-equation for the carrier dynamics in whole of the device and a two-level energy balance equations to adopt the electron-temperature in the pump and AS active regions. Using the presented model, the effect of temperature on the steady and transient characteristics of the device is investigated. Because of considering the parametric interaction between the incident and the scattered lights in the stimulated Raman process, the model accurately predicts the existence of Raman gain's saturation in both the steady and transient regimes. Additionally, using a steady-state analysis of the rate equations in the nonlinear region, an expression for the threshold current of the AS Raman laser is derived and the effects of pump power and temperature are examined. It is found that the electronic AS Raman scattering is affected by interplay between the various temperature-dependent parameters such as the pump intensity, the intrinsic gain of the nonlinear optical medium, and the longitudinal optical (LO) phonon scattering times between the states involved in the stimulated Raman process.

  17. Nanorough gold for enhanced Raman scattering.

    Science.gov (United States)

    Kim, Jeonghwan; Kang, Kyung-Nam; Sarkar, Anirban; Malempati, Pallavi; Hah, Dooyoung; Daniels-Race, Theda; Feldman, Martin

    2013-11-01

    Conventional Raman scattering is a workhorse technique for detecting and identifying complex molecular samples. In surface enhanced Raman scattering, a nanorough metallic surface close to the sample enhances the Raman signal enormously. In this work, the surface is on a clear epoxy substrate. The epoxy is cast on a silicon wafer, using 20 nm of gold as a mold release. This single step process already produces useful enhanced Raman signals. However, the Raman signal is further enhanced by (1) depositing additional gold on the epoxy substrate and (2) by using a combination of wet and dry etches to roughen the silicon substrate before casting the epoxy. The advantage of a clear substrate is that the Raman signal may be obtained by passing light through the substrate, with opaque samples simply placed against the surface. Results were obtained with solutions of Rhodamine 6G in deionized water over a range of concentrations from 1 nM to 1 mM. In all cases, the signal to noise ratio was greater than 10:1.

  18. Nanopillars array for surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    S.P. Chang, A; Bora, M; Nguyen, H T; Behymer, E M; Larson, C C; Britten, J A; Carter, J C; Bond, T C

    2011-04-14

    The authors present a new class of surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. Two types of nanopillars within this class are discussed: vertical pillars and tapered pillars. For the vertical pillars, the gap between each pair of nanopillars is small enough (< 50 nm) such that highly confined plasmonic cavity resonances are supported between the pillars when light is incident upon them, and the anti-nodes of these resonances act as three-dimensional hotspots for SERS. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of 1,2 bis-(4-pyridyl)-ethylene (BPE), benzenethiol (BT) monolayer and toluene vapor. The results show that SERS enhancement factor of over 0.5 x 10{sup 9} can be achieved, and BPE can be detected down to femto-molar concentration level. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors such as volatile organic compounds.

  19. Resolution-Enhanced All-Optical Analog-to-Digital Converter Employing Cascade Optical Quantization Operation

    OpenAIRE

    Kang, Zhe; Zhang, Xianting; Yuan, Jinhui; Sang, Xinzhu; Wu, Qiang

    2014-01-01

    In this paper, a cascade optical quantization scheme is proposed to realize all-optical analog-to-digital converter with efficiently enhanced quantization resolution and achievable high analog bandwidth of larger than 20 GHz. Employing the cascade structure of an unbalanced Mach-zehnder modulator and a specially designed optical directional coupler, we predict the enhancement of number-of-bits can be up to 1.59-bit. Simulation results show that a 25 GHz RF signal is efficiently digitalized wi...

  20. Scattering Suppression and Absorption Enhancement in Contour Nanoantennas

    CERN Document Server

    Onal, E Doruk

    2015-01-01

    The expanding application spectrum of plasmonic nanoantennas demand versatile design approaches to tailor the antenna properties for specific requirements. The design efforts primarily concentrate on shifting the operation wavelength or enhancing the local fields by manipulating the size and shape of the nanoantenna. Here, we propose a design path to control the absorption and scattering characteristics of a dipole nanoantenna by introducing a hollow region inside the nanostructure. The resulting contour geometry can significantly suppress the scattering of the dipole nanoantenna and enhance its absorption simultaneously. Both the dipole and the contour dipole nanoantenna couple to equivalent amount of the incident radiation. The dipole nanoantenna scatters 84% of the coupled power (absorbs the remaining 16%) whereas the contour dipole structure scatters only 28% of the coupled power (absorbs the remaining 72%). This constitutes the transformation from scatter to absorber nanoantenna. The scattering of a cont...

  1. Acid tolerance response (ATR) of microbial communities during the enhanced biohydrogen process via cascade acid stress.

    Science.gov (United States)

    Lin, Xiaoqin; Xia, Yan; Yan, Qun; Shen, Wei; Zhao, Mingxing

    2014-03-01

    Enhanced biohydrogen production via cascade acid stress on microbial communities, structure patterns of the microbial communities revealed by PLFAs, and the succession of biohydrogen related species against cascade acid stress were all investigated. It was found that hydrogen production could be improved from 48.7 to 79.4mL/gVS after cascade acid stress. In addition, the Gram negative (G(-)) bacteria were found to be more tolerant to organic acids than those of the Gram positive (G(+)) bacteria, regardless of the dominance of G(+) bacteria within the microbial communities. Moreover, Clostridium butyricum, Clostridium aciditolerans and Azospira oryzae, were proved to be enriched, and then might play indispensable roles for the enhanced biohydrogen production after cascade acid stress, as which were responsible for the biohydrogen accumulation, acid tolerance and nitrogen removal, respectively. Copyright © 2014. Published by Elsevier Ltd.

  2. Linearly enhanced response of thermopower in cascaded array of dual-stripe single-metal thermocouples

    Science.gov (United States)

    Li, Gang; Han, Danhong; Yang, Fan; Wang, Zhenhai; Pi, Yudan; Wang, Wei; Xu, Shengyong

    2017-05-01

    Based on the width dependence of thermopower, cascaded single-metal thermocouples were demonstrated in this report. The cascaded thermocouples were made from 100 nm thick Ni films with a 100 μm wide stripe and a 5 μm narrow stripe. The experiment results showed a linearly enhanced response of thermopower. The 64-cascaded thermocouple achieved an equivalent Seebeck coefficient of up to 55.69 μV/K, which is higher than that of a commercial type-K thermocouple (39.6 μV/K). The single-metal thermocouples were also fabricated on flexible substrates. With the simple fabrication process and remarkable temperature sensing ability, the cascaded single-metal thermocouples may find promising applications in temperature measurement of modern flexible electronic products and wearable devices.

  3. Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation.

    Science.gov (United States)

    Kang, Zhe; Zhang, Xianting; Yuan, Jinhui; Sang, Xinzhu; Wu, Qiang; Farrell, Gerald; Yu, Chongxiu

    2014-09-08

    In this paper, a cascade optical quantization scheme is proposed to realize all-optical analog-to-digital converter with efficiently enhanced quantization resolution and achievable high analog bandwidth of larger than 20 GHz. Employing the cascade structure of an unbalanced Mach-zehnder modulator and a specially designed optical directional coupler, we predict the enhancement of number-of-bits can be up to 1.59-bit. Simulation results show that a 25 GHz RF signal is efficiently digitalized with the signal-to-noise ratio of 33.58 dB and effective-number-of-bits of 5.28-bit.

  4. Nanostructured surface enhanced Raman scattering substrates for explosives detection

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbaek; Olsen, Jesper Kenneth; Boisen, Anja

    2010-01-01

    Here we present a method for trace detection of explosives in the gas phase using novel surface enhanced Raman scattering (SERS) spectroscopy substrates. Novel substrates that produce an exceptionally large enhancement of the Raman effect were used to amplify the Raman signal of explosives molecu...

  5. Proximity does not contribute to activity enhancement in the glucose oxidase-horseradish peroxidase cascade

    Science.gov (United States)

    Zhang, Yifei; Tsitkov, Stanislav; Hess, Henry

    2016-12-01

    A proximity effect has been invoked to explain the enhanced activity of enzyme cascades on DNA scaffolds. Using the cascade reaction carried out by glucose oxidase and horseradish peroxidase as a model system, here we study the kinetics of the cascade reaction when the enzymes are free in solution, when they are conjugated to each other and when a competing enzyme is present. No proximity effect is found, which is in agreement with models predicting that the rapidly diffusing hydrogen peroxide intermediate is well mixed. We suggest that the reason for the activity enhancement of enzymes localized by DNA scaffolds is that the pH near the surface of the negatively charged DNA nanostructures is lower than that in the bulk solution, creating a more optimal pH environment for the anchored enzymes. Our findings challenge the notion of a proximity effect and provide new insights into the role of DNA scaffolds.

  6. Enhanced optical coupling and Raman scattering via microscopic interface engineering

    Science.gov (United States)

    Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier A.; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.

    2017-11-01

    Spontaneous Raman scattering is an extremely powerful tool for the remote detection and identification of various chemical materials. However, when those materials are contained within strongly scattering or turbid media, as is the case in many biological and security related systems, the sensitivity and range of Raman signal generation and detection is severely limited. Here, we demonstrate that through microscopic engineering of the optical interface, the optical coupling of light into a turbid material can be substantially enhanced. This improved coupling facilitates the enhancement of the Raman scattering signal generated by molecules within the medium. In particular, we detect at least two-orders of magnitude more spontaneous Raman scattering from a sample when the pump laser light is focused into a microscopic hole in the surface of the sample. Because this approach enhances both the interaction time and interaction region of the laser light within the material, its use will greatly improve the range and sensitivity of many spectroscopic techniques, including Raman scattering and fluorescence emission detection, inside highly scattering environments.

  7. Signal enhancement of surface enhanced Raman scattering and surface enhanced resonance Raman scattering using in situ colloidal synthesis in microfluidics.

    Science.gov (United States)

    Wilson, Rab; Bowden, Stephen A; Parnell, John; Cooper, Jonathan M

    2010-03-01

    We demonstrate the enhanced analytical sensitivity of both surface enhanced Raman scattering (SERS) and surface enhanced resonance Raman scattering (SERRS) responses, resulting from the in situ synthesis of silver colloid in a microfluidic flow structure, where both mixing and optical interrogation were integrated on-chip. The chip-based sensor was characterized with a model Raman active label, rhodamine-6G (R6G), and had a limit of detection (LOD) of ca. 50 fM (equivalent to single molecule detection). The device was also used for the determination of the natural pigment, scytonemin, from cyanobacteria (as an analogue for extraterrestrial life existing in extreme environments). The observed LOD of approximately 10 pM (ca. <400 molecules) demonstrated the analytical advantages of working with freshly synthesized colloid in such a flow system. In both cases, sensitivities were between 1 and 2 orders of magnitude greater in the microfluidic system than those measured using the same experimental parameters, with colloid synthesized off-chip, under quiescent conditions.

  8. UV Irradiance Enhancements by Scattering of Solar Radiation from Clouds

    Directory of Open Access Journals (Sweden)

    Uwe Feister

    2015-08-01

    Full Text Available Scattering of solar radiation by clouds can reduce or enhance solar global irradiance compared to cloudless-sky irradiance at the Earth’s surface. Cloud effects to global irradiance can be described by Cloud Modification Factors (CMF. Depending on strength and duration, irradiance enhancements affect the energy balance of the surface and gain of solar power for electric energy generation. In the ultraviolet region, they increase the risk for damage to living organisms. Wavelength-dependent CMFs have been shown to reach 1.5 even in the UV-B region at low altitudes. Ground-based solar radiation measurements in the high Andes region at altitudes up to 5917 m a.s.l showed cloud-induced irradiance enhancements. While UV-A enhancements were explained by cloud scattering, both radiation scattering from clouds and Negative Ozone Anomalies (NOA have been discussed to have caused short-time enhancement of UV-B irradiance. Based on scenarios using published CMF and additional spectroradiometric measurements at a low-altitude site, the contribution of cloud scattering to the UV-B irradiance enhancement in the Andes region has been estimated. The range of UV index estimates converted from measured UV-B and UV-A irradiance and modeled cloudless-sky ratios UV-B/erythemal UV is compatible with an earlier estimate of an extreme UV index value of 43 derived for the high Andes.

  9. Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes.

    Science.gov (United States)

    Steenbergen, Laura; Sellaro, Roberta; Stock, Ann-Kathrin; Verkuil, Bart; Beste, Christian; Colzato, Lorenza S

    2015-06-01

    The ever-changing environment we are living in requires us to apply different action control strategies in order to fulfill a task goal. Indeed, when confronted with multiple response options it is fundamental to prioritize and cascade different actions. So far, very little is known about the neuromodulation of action cascading. In this study we assessed the causal role of the gamma-aminobutyric acid (GABA)-ergic and noradrenergic system in modulating the efficiency of action cascading by applying transcutaneous vagus nerve stimulation (tVNS), a new non-invasive and safe method to stimulate the vagus nerve and to increase GABA and norepinephrine concentrations in the brain. A single-blind, sham-controlled, between-group design was used to assess the effect of on-line (i.e., stimulation overlapping with the critical task) tVNS in healthy young volunteers (n=30)-on a stop-change paradigm. Results showed that active, as compared to sham stimulation, enhanced response selection functions during action cascading and led to faster responses when two actions were executed in succession. These findings provide evidence for the important role of the GABA-ergic and noradrenergic system in modulating performance in action cascading. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  10. Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect

    Science.gov (United States)

    Shao, Li-Yang; Luo, Yuan; Zhang, Zhiyong; Zou, Xihua; Luo, Bin; Pan, Wei; Yan, Lianshan

    2015-02-01

    A novel fiber optic temperature sensor has been proposed and experimentally demonstrated with ~9 times sensitivity enhancement by using two cascaded Sagnac interferometers. These two Sagnac interferometers consist of the same type of polarization maintaining fibers with slightly different lengths. The working principle is analogous to a Vernier scale. One interferometer acts as filter, while the other is for temperature sensing. The envelope of the cascaded sensor shifts much more than single one with a certain enhancement factor, which related to the free space range difference between the filter and sensor interferometers. Experimental results show that the temperature sensitivity is enhanced from -1.46 nm/°C based on single Sagnac configuration to -13.36 nm/°C.

  11. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

    Science.gov (United States)

    Kneipp, Katrin; Wang, Yang; Kneipp, Harald; Perelman, Lev T.; Itzkan, Irving; Dasari, Ramachandra R.; Feld, Michael S.

    1997-03-01

    By exploiting the extremely large effective cross sections ( 10-17-10-16 cm2/molecule) available from surface-enhanced Raman scattering (SERS), we achieved the first observation of single molecule Raman scattering. Measured spectra of a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about 2×105 W/cm2 nonresonant near-infrared excitation show a clear ``fingerprint'' of its Raman features between 700 and 1700 cm-1. Spectra observed in a time sequence for an average of 0.6 dye molecule in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1, 2, or 3 molecules.

  12. Surface-Enhanced Raman Scattering Physics and Applications

    CERN Document Server

    Kneipp, Katrin; Kneipp, Harald

    2006-01-01

    Almost 30 years after the first reports on surface-enhanced Raman signals, the phenomenon of surface-enhanced Raman scattering (SERS) is now well established. Yet, explaining the enhancement of a spectroscopic signal by fouteen orders of magnitude continues to attract the attention of physicists and chemists alike. And, at the same time and rapidly growing, SERS is becoming a very useful spectroscopic tool with exciting applications in many fields. SERS gained particular interest after single-molecule Raman spectroscopy had been demonstrated. This bookl summarizes and discusses present theoretical approaches that explain the phenomenon of SERS and reports on new and exciting experiments and applications of the fascinating spectroscopic effect.

  13. Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Long; Sun, Fuhe [Key Laboratory of Nanodevices and Applications-CAS and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Chen, Qin, E-mail: qchen2012@sinano.ac.cn [Key Laboratory of Nanodevices and Applications-CAS and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Peking University Shenzhen SOC Key Laboratory, PKU-HKUST Shenzhen-Hong Kong Institute, Hi-Tech Industrial Park South, Shenzhen 518057 (China)

    2014-04-14

    The incorporation of plasmonic nanostructures in the thin-film solar cells (TFSCs) is a promising route to harvest light into the nanoscale active layer. However, the light trapping scheme based on the plasmonic effects intrinsically presents narrow-band resonant enhancement of light absorption. Here we demonstrate that by cascading metal nanogratings with different sizes atop the TFSCs, broadband absorption enhancement can be realized by simultaneously exciting multiple localized surface plasmon resonances and inducing strong coupling between the plasmonic modes and photonic modes. As a proof of concept, we demonstrate of 66.5% in the photocurrent in an ultrathin amorphous silicon TFSC with two-dimensional cascaded gratings over the reference cell without gratings.

  14. Phenomenological scattering-rate model for the simulation of the current density and emission power in mid-infrared quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kurlov, S. S. [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev-03028 (Ukraine); Flores, Y. V.; Elagin, M.; Semtsiv, M. P.; Masselink, W. T. [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Schrottke, L.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin (Germany); Tarasov, G. G. [Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev-03028 (Ukraine)

    2016-04-07

    A phenomenological scattering-rate model introduced for terahertz quantum cascade lasers (QCLs) [Schrottke et al., Semicond. Sci. Technol. 25, 045025 (2010)] is extended to mid-infrared (MIR) QCLs by including the energy dependence of the intersubband scattering rates for energies higher than the longitudinal optical phonon energy. This energy dependence is obtained from a phenomenological fit of the intersubband scattering rates based on published lifetimes of a number of MIR QCLs. In our approach, the total intersubband scattering rate is written as the product of the exchange integral for the squared moduli of the envelope functions and a phenomenological factor that depends only on the transition energy. Using the model to calculate scattering rates and imposing periodical boundary conditions on the current density, we find a good agreement with low-temperature data for current-voltage, power-current, and energy-photon flux characteristics for a QCL emitting at 5.2 μm.

  15. Surface-enhanced Raman scattering on gold nanotrenches and nanoholes

    KAUST Repository

    Yue, Weisheng

    2012-04-01

    Dependent effects on edge-to-edge distance and incidence polarization in surface-enhanced Raman Scattering (SERS) were studied in detection of 4-mercaptopyridine (4-MPy) molecules absorbed on gold nanotrenches and nanoholes. The gold nanostructures with controllable size and period were fabricated using electron-beam lithography. Large SERS enhancement in detection of 4-MPy molecules on both nanostructred substrates was observed. The SERS enhancement increased exponentially with decrease of edge to-edge distance for both the nanotrenches and nanoholes while keeping the sizes of the nanotrenches and nanoholes unchanged. Investigation of polarization dependence showed that the SERS enhancement of nanotrenches was much more sensitive to the incidence polarizations than that of nanoholes. © 2012 American Scientific Publishers.

  16. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.

    Science.gov (United States)

    Nam, Jwa-Min; Oh, Jeong-Wook; Lee, Haemi; Suh, Yung Doug

    2016-12-20

    Plasmonic coupling-based electromagnetic field localization and enhancement are becoming increasingly important in chemistry, nanoscience, materials science, physics, and engineering over the past decade, generating a number of new concepts and applications. Among the plasmonically coupled nanostructures, metal nanostructures with nanogaps have been of special interest due to their ultrastrong electromagnetic fields and controllable optical properties that can be useful for a variety of signal enhancements such as surface-enhanced Raman scattering (SERS). The Raman scattering process is highly inefficient, with a very small cross-section, and Raman signals are often poorly reproducible, meaning that very strong, controllable SERS is needed to obtain reliable Raman signals with metallic nanostructures and thus open up new avenues for a variety of Raman-based applications. More specifically, plasmonically coupled metallic nanostructures with ultrasmall (∼1 nm or smaller) nanogaps can generate very strong and tunable electromagnetic fields that can generate strong SERS signals from Raman dyes in the gap, and plasmonic nanogap-enhanced Raman scattering can be defined as Raman signal enhancement from plasmonic nanogap particles with ∼1 nm gaps. However, these promising nanostructures with extraordinarily strong optical signals have shown limited use for practical applications, largely due to the lack of design principles, high-yield synthetic strategies with nanometer-level structural control and reproducibility, and systematic, reliable single-molecule/single-particle-level studies on their optical properties. All these are extremely important challenges because even small changes (plasmonic nanogaps can significantly affect the plasmon mode and signal intensity. In this Account, we examine and summarize recent breakthroughs and advances in plasmonic nanogap-enhanced Raman scattering with metal nanogap particles with respect to the design and synthesis of plasmonic

  17. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

    Energy Technology Data Exchange (ETDEWEB)

    Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. [George R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)]|[Department of Physics, Technical University of Berlin, D 10623 Berlin (Germany)

    1997-03-01

    By exploiting the extremely large effective cross sections (10{sup -17}{endash}10{sup -16}cm{sup 2}/molecule) available from surface-enhanced Raman scattering (SERS), we achieved the first observation of single molecule Raman scattering. Measured spectra of a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about 2{times}10{sup 5}W/cm{sup 2} nonresonant near-infrared excitation show a clear {open_quotes}fingerprint{close_quotes} of its Raman features between 700 and 1700cm{sup -1}. Spectra observed in a time sequence for an average of 0.6 dye molecule in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1, 2, or 3 molecules. {copyright} {ital 1997} {ital The American Physical Society}

  18. Stimulated Brillouin scattering enhancement in silicon inverse opal waveguides

    CERN Document Server

    Smith, M J A; de Sterke, C Martijn; Lapine, M; Kuhlmey, B T; Poulton, C G

    2016-01-01

    Silicon is an ideal material for on-chip applications, however its poor acoustic properties limit its performance for important optoacoustic applications, particularly for Stimulated Brillouin Scattering (SBS). We theoretically show that silicon inverse opals exhibit a strongly improved acoustic performance that enhances the bulk SBS gain coefficient by more than two orders of magnitude. We also design a waveguide that incorporates silicon inverse opals and which has SBS gain values that are comparable with chalcogenide glass waveguides. This research opens new directions for opto-acoustic applications in on-chip material systems.

  19. Enhanced light output power of quantum cascade lasers from a tilted front facet.

    Science.gov (United States)

    Ahn, Sangil; Schwarzer, Clemens; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron M; Schrenk, Werner; Strasser, Gottfried

    2013-07-01

    We present a technique for enhancing the light output power of quantum cascade lasers (QCLs) by tilting of the front facet, which leads to a change of the modal reflectivity, resulting in an asymmetric light intensity distribution along the laser cavity. This asymmetry provides most of the light being emitted through one facet of the laser. An experimental study of threshold current, slope efficiency and light output power as a function of the front facet angles were performed and compared to conventional QCLs. The lasers with a front facet angle of 8° shows a 20% improved power output from the front facet.

  20. Detection of volatile organic compounds using surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

    2012-03-22

    The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  1. Surface-enhanced Raman scattering of suspended monolayer graphene

    Science.gov (United States)

    Huang, Cheng-Wen; Lin, Bing-Jie; Lin, Hsing-Ying; Huang, Chen-Han; Shih, Fu-Yu; Wang, Wei-Hua; Liu, Chih-Yi; Chui, Hsiang-Chen

    2013-11-01

    The interactions between phonons and electrons induced by the dopants or the substrate of graphene in spectroscopic investigation reveal a rich source of interesting physics. Raman spectra and surface-enhanced Raman spectra of supported and suspended monolayer graphenes were measured and analyzed systemically with different approaches. The weak Raman signals are greatly enhanced by the ability of surface-enhanced Raman spectroscopy which has attracted considerable interests. The technique is regarded as wonderful and useful tool, but the dopants that are produced by depositing metallic nanoparticles may affect the electron scattering processes of graphene. Therefore, the doping and substrate influences on graphene are also important issues to be investigated. In this work, the peak positions of G peak and 2D peak, the I 2D/ I G ratios, and enhancements of G and 2D bands with suspended and supported graphene flakes were measured and analyzed. The peak shifts of G and 2D bands between the Raman and SERS signals demonstrate the doping effect induced by silver nanoparticles by n-doping. The I 2D/ I G ratio can provide a more sensitive method to carry out the doping effect on the graphene surface than the peak shifts of G and 2D bands. The enhancements of 2D band of suspended and supported graphenes reached 138, and those of G band reached at least 169. Their good enhancements are helpful to measure the optical properties of graphene. The different substrates that covered the graphene surface with doping effect are more sensitive to the enhancements of G band with respect to 2D band. It provides us a new method to distinguish the substrate and doping effect on graphene.

  2. Plasmonic nanopillar structures for surface-enhanced raman scattering applications

    DEFF Research Database (Denmark)

    Rindzevicius, Tomas; Schmidt, Michael Stenbæk; Wu, Kaiyu

    2016-01-01

    experimentally and theoretically. Simulations show that that a single Agcoated NP supports two LSPR modes, i.e. the particle mode and the Ag cap resonant cavity mode. The Ag cap resonant cavity mode contributes most to the enhancement of the Raman scattering signal. The electric field distribution calculations...... have been utilized in surfaceenhanced Raman spectroscopy (SERS) for biological and chemical sensing. We present Au nanopillar (NP) SERS structures that are excellent for molecular detection. The NP structures can be fabricated using a simple two-step process. We analyze NP optical properties...... show that the EM hot spots are located at the bottom of the Ag cap which is important observation for practical SERS sensing. Reproducible and repeatable SERS signal intensities can be obtained across large surface areas (>mm2). Application examples include detection of TAMRA-labeled vasopressin...

  3. Surface-Enhanced Raman Scattering in Molecular Junctions.

    Science.gov (United States)

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-08-18

    Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics.

  4. Enhancement of existing geothermal resource utilization by cascading to intensive aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Zachritz, W.H. II; Polka, R.; Schoenmackers, R.

    1995-12-04

    Aquaculture, the farming and husbandry of freshwater and marine organisms, is the newest and fastest growing US agricultural sector. In New Mexico, low winter temperatures and limited freshwater sources narrow culture production possibilities; however, it has long been recognized that the state has abundant supplies of both saline and geothermal ground waters. The purpose of this project was to demonstrate the achievable energy savings and value enhancement of the byproduct geothermal energy by cascading fluids for the production of commercial aquaculture species. Specifically the project involved evaluating the heating systems performance in terms of heating budget for the geothermal assist, determine the total quantity of water used for culture and heating, amount of geothermal byproduct heat extracted, and ability of the system to maintain culture water temperatures during critical heating periods of the year. In addition, an analysis was conducted to determine the compatibility of this new system with existing greenhouse heating requirements.

  5. THz quartz-enhanced photoacoustic sensor employing a quantum cascade laser source

    Science.gov (United States)

    Spagnolo, V.; Patimisco, P.; Borri, S.; Sampaolo, A.; Scamarcio, G.; Vitiello, M. S.; Beere, H. E.; Ritchie, D. A.

    2013-12-01

    We report on an innovative quartz enhanced photoacoustic (QEPAS) gas sensor operating in the THz spectral range, employing a custom quartz tuning fork (QTF) with the two prongs spaced by ~800 μm. To test our sensor we employed a quantum cascade laser light source and selected a methanol rotational absorption line falling at 131.054 cm-1 (~3.93 THz), with line-strength S = 4.28•10-21 cm. The sensor operated at 10 Torr pressure on the QTF first flexion resonance frequency at 4245 Hz. We achieved a QEPAS normalized noise-equivalent absorption of 2•10-10 W·cm-1•Hz-1/2 comparable with the best result of mid-IR QEPAS systems.

  6. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles.

    Science.gov (United States)

    Harmsen, Stefan; Wall, Matthew A; Huang, Ruimin; Kircher, Moritz F

    2017-07-01

    The unique spectral signatures and biologically inert compositions of surface-enhanced resonance Raman scattering (SERRS) nanoparticles make them promising contrast agents for in vivo cancer imaging. Our SERRS nanoparticles consist of a 60-nm gold nanoparticle core that is encapsulated in a 15-nm-thick silica shell wherein the resonant Raman reporter is embedded. Subtle aspects of their preparation can shift their limit of detection by orders of magnitude. In this protocol, we present the optimized, step-by-step procedure for generating reproducible SERRS nanoparticles with femtomolar (10-15 M) limits of detection. We provide ways of characterizing the optical properties of SERRS nanoparticles using UV/VIS and Raman spectroscopy, and their physicochemical properties using transmission electron microscopy and nanoparticle tracking analysis. We introduce several applications of these nanoprobes for biomedical research, with a focus on intraoperative cancer imaging via Raman imaging. A detailed account is provided for successful i.v. administration of SERRS nanoparticles such that delineation of cancerous lesions can be achieved in vivo and ex vivo on resected tissues without the need for specific biomarker targeting. This straightforward, yet comprehensive, protocol-from initial de novo gold nanoparticle synthesis to SERRS nanoparticle contrast-enhanced preclinical Raman imaging in animal models-takes ∼96 h.

  7. Silicon nanohybrid-based surface-enhanced Raman scattering sensors.

    Science.gov (United States)

    Wang, Houyu; Jiang, Xiangxu; Lee, Shuit-Tong; He, Yao

    2014-11-01

    Nanomaterial-based surface-enhanced Raman scattering (SERS) sensors are highly promising analytical tools, capable of ultrasensitive, multiplex, and nondestructive detection of chemical and biological species. Extensive efforts have been made to design various silicon nanohybrid-based SERS substrates such as gold/silver nanoparticle (NP)-decorated silicon nanowires, Au/Ag NP-decorated silicon wafers (AuNP@Si), and so forth. In comparison to free AuNP- and AgNP-based SERS sensors, the silicon nanohybrid-based SERS sensors feature higher enhancement factors (EFs) and excellent reproducibility, since SERS hot spots are efficiently coupled and stabilized through interconnection to the semiconducting silicon substrates. Consequently, in the past decade, giant advancements in the development of silicon nanohybrid-based SERS sensors have been witnessed for myriad sensing applications. In this review, the representative achievements related to the design of high-performance silicon nanohybrid-based SERS sensors and their use for chemical and biological analysis are reviewed in a detailed way. Furthermore, the major opportunities and challenges in this field are discussed from a broad perspective and possible future directions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Zhou, Ji [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Tang, Bin, E-mail: bin.tang@deakin.edu.au [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Zeng, Tian; Li, Yaling [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Li, Jingliang [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Ye, Yong, E-mail: yeyong@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang, Xungai [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia)

    2016-11-15

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  9. Enhanced-Boost Z-Source Inverters With Alternate-Cascaded Switched- and Tapped-Inductor Cells

    DEFF Research Database (Denmark)

    Li, Ding; Loh, Poh Chiang; Zhu, Miao

    2013-01-01

    In this paper, a number of alternate-cascaded switched-inductor and tapped-inductor networks have been proposed for Z-source inverters. The resulting topologies have enhanced voltage-boost capability while retaining the usual voltage-buck flexibility of a conventional voltage-source inverter...

  10. High Sensitivity Surface Enhanced Raman Scattering Detection of Tryptophan

    Science.gov (United States)

    Kandakkathara, Archana

    Raman spectroscopy has the capability of providing detailed information about molecular structure, but the extremely small cross section of Raman scattering prevents this technique from applications requiring high sensitivity. Surface enhanced Raman scattering (SERS) on the other hand provides strongly increased Raman signal from molecules attached to metallic nanostructures. SERS is thus a promising technique for high sensitivity analytical applications. One particular area of interest is the application of such techniques for the analysis of the composition of biological cells. However, there are issues which have to be addressed in order to make SERS a reliable technique such as the optimization of conditions for any given analyte, understanding the kinetic processes of binding of the target molecules to the nanostructures and understanding the evolution and coagulation of the nanostructures, in the case of colloidal solutions. The latter processes introduce a delay time for the observation of maximum enhancement factors which must be taken into account for any given implementation of SERS. In the present thesis the goal was to develop very sensitive SERS techniques for the measurement of biomolecules of interest for analysis of the contents of cells. The techniques explored could be eventually be applicable to microfluidic systems with the ultimate goal of analyzing the molecular constituents of single cells. SERS study of different amino acids and organic dyes were performed during the course of this thesis. A high sensitivity detection system based on SERS has been developed and spectrum from tryptophan (Trp) amino acid at very low concentration (10-8 M) has been detected. The concentration at which good quality SERS spectra could be detected from Trp is 4 orders of magnitude smaller than that previously reported in literature. It has shown that at such low concentrations the SERS spectra of Trp are qualitatively distinct from the spectra commonly reported in

  11. Novel routes to electromagnetic enhancement and its characterisation in surface- and tip-enhanced Raman scattering.

    Science.gov (United States)

    Dawson, P; Frey, D; Kalathingal, V; Mehfuz, R; Mitra, J

    2017-09-08

    Quantitative understanding of the electromagnetic component in enhanced Raman spectroscopy is often difficult to achieve on account of the complex substrate structures utilised. We therefore turn to two structurally simple systems amenable to detailed modelling. The first is tip-enhanced Raman scattering under electron scanning tunnelling microscopy control (STM-TERS) where, appealing to understanding developed in the context of photon emission from STM, it is argued that the localised surface plasmon modes driving the Raman enhancement exist in the visible and near-infrared regime only by virtue of significant modification to the optical properties of the tip and sample metals (gold here). This is due to the strong dc field-induced (∼10(9) V m(-1)) non-linear corrections to the dielectric function of gold via the third order susceptibility term in the polarisation. Also, sub-5 nm spatial resolution is shown in the modelling. Secondly, we suggest a novel deployment of hybrid plasmonic waveguide modes in surface enhanced Raman scattering (HPWG-SERS). This delivers strong confinement of electromagnetic energy in a ∼10 nm oxide 'gap' between a high-index dielectric material of nanoscale width (a GaAs nanorod and a 100 nm Si slab are considered here) and a metal, yielding a monotonic variation in the Raman enhancement factor as a function of wavelength with no long-wavelength cut-off, both features that contrast with STM-TERS.

  12. Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.

  13. Enhancement of conductance fluctuations in a mesoscopic system of strong scatterers

    Science.gov (United States)

    Marinyuk, V. V.; Rogozkin, D. B.

    2017-10-01

    We study how the conductance fluctuations change in a disordered ensemble of strongly scattering (non-Born) centers. Diagrammatic calculations of the conductance variance are carried out beyond the standard Born definition for the Hikami vertex. For a system of strong pointlike scatterers, the enhancement of the conductance fluctuations is found in the crossover between ballistic and diffusive regimes. The incoherent contribution arising from random spatial variations in the scatterer concentration is primarily responsible for the enhancement of fluctuations. In the limit of resonant scatterers, the coherent contribution to the conductance variance also peaks in the crossover regime and its maximum exceeds the UCF value.

  14. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  15. The Cascaded Enhanced k-Means and Fuzzy c-Means Clustering Algorithms for Automated Segmentation of Malaria Parasites

    Directory of Open Access Journals (Sweden)

    Abdul Nasir Aimi Salihah

    2018-01-01

    Full Text Available Malaria continues to be one of the leading causes of death in the world, despite the massive efforts put forth by World Health Organization (WHO in eradicating it, worldwide. Efficient control and proper treatment of this disease requires early detection and accurate diagnosis due to the large number of cases reported yearly. To achieve this aim, this paper proposes a malaria parasite segmentation approach via cascaded clustering algorithms to automate the malaria diagnosis process. The comparisons among the cascaded clustering algorithms have been made by considering the accuracy, sensitivity and specificity of the segmented malaria images. Based on the qualitative and quantitative findings, the results show that by using the final centres that have been generated by enhanced k-means (EKM clustering as the initial centres for fuzzy c-means (FCM clustering, has led to the production of good segmented malaria image. The proposed cascaded EKM and FCM clustering has successfully segmented 100 malaria images of Plasmodium Vivax species with average segmentation accuracy, sensitivity and specificity values of 99.22%, 88.84% and 99.56%, respectively. Therefore, the EKM algorithm has given the best performance compared to k-means (KM and moving k-means (MKM algorithms when all the three clustering algorithms are cascaded with FCM algorithm.

  16. Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach

    Science.gov (United States)

    Yong, WANG; Cong, LI; Jielin, SHI; Xingwei, WU; Hongbin, DING

    2017-11-01

    As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5 × 1019 m-3 to 7.1 × 1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (configuration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.

  17. Molecular sensitivity on graphene decorated with noble metal nanoparticles: Graphene-mediated surface-enhanced Raman scattering (G-SERS) substrates

    Science.gov (United States)

    Gupta, Sanju; Banaszak, Alexander; Smith, Tyler

    Raman scattering signal enhancement that uses graphene as support, graphene-enhanced Raman scattering (G-SERS), is a recent phenomenon. While SERS enhancement arises due to electromagnetic mechanism, G-SERS also relies on chemical mechanism and therefore it shows unique molecular sensitivity. In this work, we developed graphene materials decorated with silver and gold nanoparticles for detecting methylene blue (MB) and rhodamine 6G (Rh6G) in view of optical and biological importance. The results illustrate that silver and gold nanoparticles immobilized on multilayer graphene graphene oxide and reduced graphene oxide significantly enhance the signal, and as cascaded amplification of SERS signal on multilayer architecture, larger than those only on metal nanoparticles. The sensitivity can be tuned by controlling the size of nanoparticles and the highest SERS enhancement factor (four orders) is achieved at optimal 30 nm silver and 40 nm gold nanoparticles on reduced graphene oxide and multilayer graphene. They serve as `smart' SERS platforms capable of detecting MB and Rh6G below 10 pM concentration. The enhancement is discussed in 1. molecular structures (molecular symmetry; face-down and edge-on) 2. charge-transfer interaction between molecules and graphene and 3. graphene-metal nanoparticle interfacial hybridization. The signal enhancement is supported by change in UV-vis absorption spectra of molecules in contact with graphene guiding molecular detection and biotechnology. KY NSF EPSCoR.

  18. A workshop on enhanced national capability for neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01

    This two-day workshop will engage the international neutron scattering community to vet and improve the Lujan Center Strategic Plan 2007-2013 (SP07). Sponsored by the LANL SC Program Office and the University of California, the workshop will be hosted by LANSCE Professor Sunny Sinha (UCSD). Endorsement by the Spallation Neutron Source will be requested. The discussion will focus on the role that the Lujan Center will play in the national neutron scattering landscape assuming full utilization of beamlines, a refurbished LANSCE, and a 1.4-MW SNS. Because the Lujan Strategic Plan is intended to set the stage for the Signature Facility era at LANSCE, there will be some discussion of the long-pulse spallation source at Los Alamos. Breakout groups will cover several new instrument concepts, upgrades to present instruments, expanded sample environment capabilities, and a look to the future. The workshop is in keeping with a request by BES to update the Lujan strategic plan in coordination with the SNS and the broader neutron community. Workshop invitees will be drawn from the LANSCE User Group and a broad cross section of the US, European, and Pacific Rim neutron scattering research communities.

  19. Symmetry-derived selection rules for plasmon-enhanced Raman scattering

    Science.gov (United States)

    Jorio, Ado; Mueller, Niclas S.; Reich, Stephanie

    2017-04-01

    We show how to obtain the symmetry-imposed selection rules for plasmonic enhancement in surface- (SERS) and tip-enhanced Raman scattering (TERS). Plasmon-enhanced light scattering is described as a higher-order Raman process, which introduces a series of Hamiltonians representing the interaction between light, plasmons, electrons, and phonons. Using group theory, we derive the active representations for point group symmetries of exemplary plasmonic nanostructures. The phonon representations that are enhanced by SERS and TERS are then found as induced representations for the symmetry group of the molecule or another Raman probe. The selection rules are discussed for graphene that is coupled to a nanodisk dimer as an example for SERS and coupled to a tip as a TERS example. The phonon eigenmodes that are enhanced depend on the symmetry breaking when combining the plasmonic structures with graphene. We show that the most prominent optical phonon modes (E2 g and A1 g) are allowed in all scattering configurations when using a nanodimer as a plasmonic hotspot. We predict the activation of the silent B2 g as well as infrared-active A2 u and E1 u modes in SERS for crossed configurations of the incoming and scattered light. There is a systematic difference between spatially coherent and incoherent plasmon-enhanced Raman scattering, which is responsible for a dependence of TERS on the phonon coherence length.

  20. Acoustic Coherent Backscatter Enhancement from Aggregations of Point Scatterers

    Science.gov (United States)

    2014-09-30

    one computational element assigned to each scatterer. The computational burden of this approach is set by the inversion of the fully-populated N-by-N...B(φ) is the beamformed output of the receiving array, and [B]excluding peak is the array’s average beamformed output in directions near backscatter...but excluding the ACBE peak. The independent parameters of these investigations are A, k0, σs, s, R, L, φ or ϕ, X, Y, and Z, but the current problem

  1. Imaging Localized Electric Fields with Nanometer Precision through Tip-Enhanced Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bhattarai, Ashish; El-Khoury, Patrick Z.

    2017-07-07

    Tip-enhanced Raman scattering (TERS) can be used to image plasmon-enhanced local electric field variations with extremely high spatial resolution under ambient conditions. This is illustrated through TERS images recorded using a silver atomic force microscope tip coated with strategically selected molecular reporters and used to image a sputtered silver film.

  2. The Surface Enhanced Raman Scattering of the Protonated Forms of DABCO at a Silver Electrode

    Science.gov (United States)

    1988-08-08

    Scattering; electrnagnetic and chEmical mechanisms of enhancEment; protonated forms of DABcO, selective adsorbtion ; application of factor analysis 19...DABCO molecule. The SER spectra of DABCO observed on all substrates studied (silver and gold as both electrodes and colloids) exhibit a strik- ing

  3. The Nanofabrication and Application of Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    2012-01-01

    Full Text Available Surface-enhanced Raman scattering (SERS was discovered in 1974 and impacted Raman spectroscopy and surface science. Although SERS has not been developed to be an applicable detection tool so far, nanotechnology has promoted its development in recent decades. The traditional SERS substrates, such as silver electrode, metal island film, and silver colloid, cannot be applied because of their enhancement factor or stability, but newly developed substrates, such as electrochemical deposition surface, Ag porous film, and surface-confined colloids, have better sensitivity and stability. Surface enhanced Raman scattering is applied in other fields such as detection of chemical pollutant, biomolecules, DNA, bacteria, and so forth. In this paper, the development of nanofabrication and application of surface-enhanced Ramans scattering substrate are discussed.

  4. Surface-enhanced Raman scattering from finite arrays of gold nano-patches

    Energy Technology Data Exchange (ETDEWEB)

    Vincenti, M. A.; Ceglia, D. de [AEgis Technologies Inc., 410 Jan Davis Dr, 35806 Huntsville, Alabama (United States); US Army-Charles M. Bowden Research Laboratory, 35898 Redstone Arsenal, Huntsville, Alabama (United States); Grande, M.; Petruzzelli, V.; D' Orazio, A. [Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Via Re David 200, 70125 Bari (Italy); Bianco, G. V.; Bruno, G. [Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Stomeo, T. [Center for Bio-Molecular Nanotechnology, Istituto Italiano di Technologia (IIT), Via Barsanti, 73010 Arnesano (Lecce) (Italy); De Vittorio, M. [Center for Bio-Molecular Nanotechnology, Istituto Italiano di Technologia (IIT), Via Barsanti, 73010 Arnesano (Lecce) (Italy); National Nanotechnology Laboratory (NNL), CNR-Istituto di Nanoscienze, Dip. Ingegneria dell' Innovazione, Universita Del Salento, Via Arnesano, 73100 Lecce (Italy); Scalora, M. [US Army-Charles M. Bowden Research Laboratory, 35898 Redstone Arsenal, Huntsville, Alabama (United States)

    2013-01-07

    We experimentally investigate the surface-enhanced Raman scattering (SERS) response of a 2D-periodic array of square gold nano-patches, functionalized by means of a conjugated, rigid thiol. We measure a Raman signal enhancement up to 200 times more intense compared to other plasmon-based nanostructures functionalized with the same molecule, and show that the enhancement is not strictly correlated to the presence of plasmonic resonances. The agreement between experimental and theoretical results reveals the importance of a full-wave analysis based on the inclusion of the actual scattering cross section of the molecule. The proposed numerical approach may serve not only as a tool to predict the enhancement of Raman signal scattered from strongly resonant nanostructure but also as an effective instrument to engineer SERS platforms that target specific molecules.

  5. Surface-enhanced Raman scattering using bismuth nanoparticles: a study with amino acids

    Science.gov (United States)

    Bezerra, A. G.; Cavassin, P.; Machado, T. N.; Woiski, T. D.; Caetano, R.; Schreiner, W. H.

    2017-11-01

    Bismuth nanoparticles produced by laser ablation synthesis in solution (LASiS) show localized surface plasmon resonances (LSPRs). The nanoparticles show surface-enhanced Raman scattering (SERS) activity for several tested amino acids. Optical absorption, dynamic light scattering (DLS), and transmission electron microscopy (TEM) as well as Raman scattering were used to characterize the samples. The search for new biocompatible nanoparticles for diagnostic purposes is important, and the demonstration that a semimetal is capable to act as a SERS active system opens new possibilities for molecular detection.

  6. Enhancement of Fast Face Detection Algorithm Based on a Cascade of Decision Trees

    Science.gov (United States)

    Khryashchev, V. V.; Lebedev, A. A.; Priorov, A. L.

    2017-05-01

    Face detection algorithm based on a cascade of ensembles of decision trees (CEDT) is presented. The new approach allows detecting faces other than the front position through the use of multiple classifiers. Each classifier is trained for a specific range of angles of the rotation head. The results showed a high rate of productivity for CEDT on images with standard size. The algorithm increases the area under the ROC-curve of 13% compared to a standard Viola-Jones face detection algorithm. Final realization of given algorithm consist of 5 different cascades for frontal/non-frontal faces. One more thing which we take from the simulation results is a low computational complexity of CEDT algorithm in comparison with standard Viola-Jones approach. This could prove important in the embedded system and mobile device industries because it can reduce the cost of hardware and make battery life longer.

  7. Surface potential and morphology mapping to investigate analyte adsorption effects on surface enhanced Raman scattering (SERS).

    Science.gov (United States)

    Chatterjee, Abhijit; Gale, David J G; Grebennikov, Dmytro; Whelan, Liam D; Merschrod S, Erika F

    2017-11-02

    We demonstrate the power of Kelvin probe force microscopy (KPFM) in enabling a comprehensive study of enhancement mechanisms of surface enhanced Raman scattering (SERS) through the correlation of surface electrical and topographical effects. Local electric fields generated on Au/ZnO nanohybrid films impact analyte adsorption, while roughness is linked to hotspot generation. Optimizing the interplay between these two effects yields SERS enhancement factors (EFs) of 106, enabling ppb detection of polycyclic aromatic hydrocarbons (PAHs) in water.

  8. Self-referenced directional enhanced Raman scattering using plasmon waveguide resonance for surface and bulk sensing

    Science.gov (United States)

    Wan, Xiu-mei; Gao, Ran; Lu, Dan-feng; Qi, Zhi-mei

    2018-01-01

    Surface plasmon-coupled emission has been widely used in fluorescence imaging, biochemical sensing, and enhanced Raman spectroscopy. A self-referenced directional enhanced Raman scattering for simultaneous detection of surface and bulk effects by using plasmon waveguide resonance (PWR) based surface plasmon-coupled emission has been proposed and experimentally demonstrated. Raman scattering was captured on the prism side in Kretschmann-surface plasmon-coupled emission. The distinct penetration depths (δ) of the evanescent field for the transverse electric (TE) and transverse magnetic (TM) modes result in different detected distances of the Raman signal. The experimental results demonstrate that the self-referenced directional enhanced Raman scattering of the TE and TM modes based on the PWR can detect and distinguish the surface and bulk effects simultaneously, which appears to have potential applications in researches of chemistry, medicine, and biology.

  9. Optimization of contrast-enhanced breast imaging: Analysis using a cascaded linear system model.

    Science.gov (United States)

    Hu, Yue-Houng; Scaduto, David A; Zhao, Wei

    2017-01-01

    Contrast-enhanced (CE) breast imaging involves the injection contrast agents (i.e., iodine) to increase conspicuity of malignant lesions. CE imaging may be used in conjunction with digital mammography (DM) or digital breast tomosynthesis (DBT) and has shown promise in improving diagnostic specificity. Both CE-DM and CE-DBT techniques require optimization as clinical diagnostic tools. Physical factors including x-ray spectra, subtraction technique, and the signal from iodine contrast, must be considered to provide the greatest object detectability and image quality. We developed a cascaded linear system model (CLSM) for the optimization of CE-DM and CE-DBT employing dual energy (DE) subtraction or temporal (TE) subtraction. We have previously developed a CLSM for DBT implemented with an a-Se flat panel imager (FPI) and filtered backprojection (FBP) reconstruction algorithm. The model is used to track image quality metrics - modulation transfer function (MTF) and noise power spectrum (NPS) - at each stage of the imaging chain. In this study, the CLSM is extended for CE breast imaging. The effect of x-ray spectrum (varied by changing tube potential and the filter) and DE and TE subtraction techniques on breast structural noise was measured was studied and included as a deterministic source of noise in the CLSM. From the two-dimensional (2D) and three-dimensional (3D) MTF and NPS, the ideal observer signal-to-noise ratio (SNR), also known as the detectability index (d'), may be calculated. Using d' as a FOM, we discuss the optimization of CE imaging for the task of iodinated contrast object detection within structured backgrounds. Increasing x-ray energy was determined to decrease the magnitude of structural noise and not its correlation. By performing DE subtraction, the magnitude of the structural noise was further reduced at the expense of increased stochastic (quantum and electronic) noise. TE subtraction exhibited essentially no residual structural noise at the

  10. Surface Plasmon-Coupled Directional Enhanced Raman Scattering by Means of the Reverse Kretschmann Configuration.

    Science.gov (United States)

    Huo, Si-Xin; Liu, Qian; Cao, Shuo-Hui; Cai, Wei-Peng; Meng, Ling-Yan; Xie, Kai-Xin; Zhai, Yan-Yun; Zong, Cheng; Yang, Zhi-Lin; Ren, Bin; Li, Yao-Qun

    2015-06-04

    Surface-enhanced Raman scattering (SERS) is a unique analytical technique that provides fingerprint spectra, yet facing the obstacle of low collection efficiency. In this study, we demonstrated a simple approach to measure surface plasmon-coupled directional enhanced Raman scattering by means of the reverse Kretschmann configuration (RK-SPCR). Highly directional and p-polarized Raman scattering of 4-aminothiophenol (4-ATP) was observed on a nanoparticle-on-film substrate at 46° through the prism coupler with a sharp angle distribution (full width at half-maximum of ∼3.3°). Because of the improved collection efficiency, the Raman scattering signal was enhanced 30-fold over the conventional SERS mode; this was consistent with finite-difference time-domain simulations. The effect of nanoparticles on the coupling efficiency of propagated surface plasmons was investigated. Possessing straightforward implementation and directional enhancement of Raman scattering, RK-SPCR is anticipated to simplify SERS instruments and to be broadly applicable to biochemical assays.

  11. Feasibility of Single Molecule DNA Sequencing using Surface-Enhanced Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Talley, C E; Reboredo, F; Chan, J; Lane, S M

    2006-02-03

    We have used a combined theoretical and experimental approach in order to assess the feasibility of using surface-enhanced Raman scattering (SERS) for DNA sequencing at the single molecule level. We have developed a numerical tool capable of calculating the E-field and resulting SERS enhancement factors for metallic structures of arbitrary size and shape. Measurements of the additional SERS enhancement by combining SERS with coherent antistokes Raman scattering (CARS) show that only modest increases in the signal are achievable due to thermal damage at higher laser powers. Finally, measurements of the SERS enhancement from nanoparticles coated with an insulating layer show that the SERS enhancement is decreased by as much as two orders of magnitude when the molecule is not in contact with the metal surface.

  12. Surface-enhanced Raman scattering from AgNP-graphene-AgNP sandwiched nanostructures

    Science.gov (United States)

    Wu, Jian; Xu, Yijun; Xu, Pengyu; Pan, Zhenghui; Chen, Sheng; Shen, Qishen; Zhan, Li; Zhang, Yuegang; Ni, Weihai

    2015-10-01

    We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a ``hot surface'' for enhancing the Raman response of two-dimensional materials.We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a ``hot surface'' for enhancing the Raman response of two-dimensional materials. Electronic supplementary information (ESI) available: Additional SEM images, electric field enhancement profiles, Raman scattering spectra, and structure-dependent peak ratios. See DOI: 10.1039/c5nr04500b

  13. Multiobjective evolutionary optimisation for surface-enhanced Raman scattering.

    Science.gov (United States)

    Jarvis, Roger M; Rowe, William; Yaffe, Nicola R; O'Connor, Richard; Knowles, Joshua D; Blanch, Ewan W; Goodacre, Royston

    2010-07-01

    In most optimisation experiments, a single parameter is first optimised before a second and then third one are subsequently modified to give the best result. By contrast, we believe that simultaneous multiobjective optimisation is more powerful; therefore, an optimisation of the experimental conditions for the colloidal SERS detection of L-cysteine was carried out. Six aggregating agents and three different colloids (citrate, borohydride and hydroxylamine reduced silver) were tested over a wide range of concentrations for the enhancement and the reproducibility of the spectra produced. The optimisation was carried out using two methods, a full factorial design (FF, a standard method from the experimental design literature) and, for the first time, a multiobjective evolutionary algorithm (MOEA), a method more usually applied to optimisation problems in computer science. Simulation results suggest that the evolutionary approach significantly out-performs random sampling. Real experiments applying the evolutionary method to the SERS optimisation problem led to a 32% improvement in enhancement and reproducibility compared with the FF method, using far fewer evaluations.

  14. Dendritic optical antennas: scattering properties and fluorescence enhancement.

    Science.gov (United States)

    Guo, Ke; Antoncecchi, Alessandro; Zheng, Xuezhi; Sallam, Mai; Soliman, Ezzeldin A; Vandenbosch, Guy A E; Moshchalkov, Victor V; Koenderink, A Femius

    2017-07-24

    With the development of nanotechnologies, researchers have brought the concept of antenna to the optical regime for manipulation of nano-scaled light matter interactions. Most optical nanoantennas optimize optical function, but are not electrically connected. In order to realize functions that require electrical addressing, optical nanoantennas that are electrically continuous are desirable. In this article, we study the optical response of a type of electrically connected nanoantennas, which we propose to call "dendritic" antennas. While they are connected, they follow similar antenna hybridization trends to unconnected plasmon phased array antennas. The optical resonances supported by this type of nanoantennas are mapped both experimentally and theoretically to unravel their optical response. Photoluminescence measurements indicate a potential Purcell enhancement of more than a factor of 58.

  15. Surface enhanced raman scattering on tardigrada - Towards monitoring and imaging molecular structures in live cryptobiotic organisms

    DEFF Research Database (Denmark)

    Kneipp, Harald; Møbjerg, Nadja; Jørgensen, Aslak

    2013-01-01

    Tardigrades are microscopic metazoans which are able to survive extreme physical and chemical conditions by entering a stress tolerant state called cryptobiosis. At present, the molecular mechanisms behind cryptobiosis are still poorly understood. We show that surface enhanced Raman scattering su...

  16. Surface-Enhanced Raman Scattering of the Complexes of Silver with Adenine and dAMP

    NARCIS (Netherlands)

    Otto, Cornelis; Hoeben, F.P.; Hoeben, F.P.; Greve, Jan

    1991-01-01

    The behaviour of adenine and 2'-deoxyadenosine-5'-monophosphate (dAMP) at positive surface potentials of a silver working electrode was investigated using surface-enhanced Raman scattering (SERS). The use of positive potentials in the presence of adenine or dAMP leads to a rapid accumulation of an

  17. Stable silver/biopolymer hybrid plasmonic nanostructures for high performance surface enhanced raman scattering (SERS)

    Science.gov (United States)

    Silver/biopolymer nanoparticles were prepared by adding 100 mg silver nitrate to 2% polyvinyl alcohol solution and reduced the silver nitrate into silver ion using 2 % trisodium citrate for high performance Surface Enhanced Raman Scattering (SERS) substrates. Optical properties of nanoparticle were ...

  18. Surface-enhanced Raman scattering (SERS) study of anthocyanidins

    Science.gov (United States)

    Zaffino, Chiara; Russo, Bianca; Bruni, Silvia

    2015-10-01

    Anthocyanins are an important class of natural compounds responsible for the red, purple and blue colors in a large number of flowers, fruits and cereal grains. They are polyhydroxy- and polymethoxy-derivatives of 2-phenylbenzopyrylium (flavylium) salts, which are present in nature as glycosylated molecules. The aim of the present study is to assess the identification of anthocyanidins, i.e. anthocyanins without the glycosidic moiety, by means of surface-enhanced Raman spectroscopy (SERS), a very chemically-specific technique which is moreover sensitive to subtle changes in molecular structures. These features can lead to elect SERS, among the spectroscopic tools currently at disposal of scientists, as a technique of choice for the identification of anthocyanidins, since: (1) anthocyanidins structurally present the same benzopyrylium moiety and differentiate only for the substitution pattern on their phenyl ring, (2) different species are present in aqueous solution depending on the pH. It will be demonstrated that, while resonance Raman spectra of anthocyanidins are very similar to one another, SER spectra show greater differences, leading to a further step in the identification of such important compounds in diluted solutions by means of vibrational spectroscopy. Moreover, the dependence on the pH of the six most common anthocyanidins, i.e. cyanidin, delphinidin, pelargonidin, peonidin, malvidin and petunidin, is studied. To the best of the authors' knowledge, a complete SERS study of such important molecules is reported in the present work for the first time.

  19. Enhanced Thermoelectric Power in Graphene: Violation of the Mott Relation by Inelastic Scattering

    Science.gov (United States)

    Ghahari, Fereshte; Xie, Hong-Yi; Taniguchi, Takashi; Watanabe, Kenji; Foster, Matthew S.; Kim, Philip

    2016-04-01

    We report the enhancement of the thermoelectric power (TEP) in graphene with extremely low disorder. At high temperature we observe that the TEP is substantially larger than the prediction of the Mott relation, approaching to the hydrodynamic limit due to strong inelastic scattering among the charge carriers. However, closer to room temperature the inelastic carrier-optical-phonon scattering becomes more significant and limits the TEP below the hydrodynamic prediction. We support our observation by employing a Boltzmann theory incorporating disorder, electron interactions, and optical phonons.

  20. A Unique Probe for Tip Enhanced Raman Scattering and Shadow NSOM

    Science.gov (United States)

    Lewis, Aaron; Taha, Hesham; Dekhter, Rimma; Zinoviev, Galia; Fish, Galina

    2008-03-01

    We present a unique atomic force microscope [AFM] probe for tip enhanced Raman scattering [TERS] and a new form of near-field microscopy, ``Shadow Near-field Scanning Optical Microscopy''. The probe consists of a single gold nanoparticle grown at the tip of a cantilevered nanopipette, exposed to the optical axis of an upright or inverted optical microscope. When these probes are used in combination with a Nanonics MV 2000 AFM/NSOM system, we show that a protocol for independent motion of the probe and the sample can produce enhancement or a shadow effect. Both of these effects are enhanced by the ability to affect different Raman spectra with the tip in & out of contact while independently scanning the sample. We analyzed Raman signals of a thin nanometric strained Si layer deposited on bulk Si and developed an understanding of optical mechanisms of enhancement, scattering and shadowing. Our results show different optical mechanisms occur as a result of tip & sample interactions, including TERS effect obtained by near-field interaction of the probe with the top layer of strained Si. Large enhancements of at least 4 orders of magnitude are seen and analyses of relative intensities of bulk and strained Si Raman peaks show an increase in light scattered by bulk or effective shadowing of the surface.

  1. Momentum angular mapping of enhanced Raman scattering of single-walled carbon nanotube

    Science.gov (United States)

    Rai, Padmnabh; Singh, Tapender; Brulé, Thibault; Bouhelier, Alexandre; Finot, Eric

    2017-07-01

    We perform momentum mapping of the Raman scattering of individual single-walled carbon nanotubes (SWNTs) or thin ropes of SWNTs enhanced by surface plasmons sustained by either a linear chain of nanoantennas or flower-shaped nanoparticles. The momentum spectroscopy of Raman scattering of the carbon nanotube (CNT) demonstrates the direct verification of momentum selection rules and identifies the characteristic bands of the molecules or the nanomaterials under scrutiny. The characteristic vibrational signatures of the D, G-, and G bands provide an isotropic response in k-space irrespective of the arrangement of the enhancing platform. However, other dispersive or double resonance bands, such as D-, D+, D', M, and iTOLA bands appear as a dipolar emission oriented towards the long axis of the CNT regardless of the CNT orientation but strongly depend on the patterning of enhancement of the electromagnetic field.

  2. Aggregation-Enhanced Raman Scattering by a Water-Soluble Porphyrin

    Science.gov (United States)

    Akins, Daniel L.

    1995-01-01

    Much interest in our laboratory has focused on aggregation of organic compounds, particularly cyanine dyes and porphyrins. For this discussion we have applied absorption and Raman scattering spectroscopies to characterize aggregated TSPP (tetrakis-(p-sulfonatophynyl) porphyrin) in aqueous solution. Based on concentration, pH and ionic strength dependence of TSPP absorption, we deduce that aggregation evolves through the formation of TSPP diacid and that the diacid is the repeating unit in the aggregate. The Raman bands of TSPP in strongly acidic solution lead us further to conclude that vibrations of adjacent molecules are perturbed in a fashion that is consistent with the pyrrolic ring in the porphinato macrocycle being ruffled, and that two aggregate arrangements occur: specifically J- and H-type aggregates. Furthermore, aggregation enhancement is advanced as a viable mechanism to explain enhanced Raman Scattering for homogeneous aqueous phase TSPP, where the surface-enhancement mechanism is not applicable.

  3. Quartz-enhanced photoacoustic detection of ethylene using a 10.5 μm quantum cascade laser.

    Science.gov (United States)

    Wang, Zhen; Li, Zhili; Ren, Wei

    2016-02-22

    A quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor has been developed for the sensitive detection of ethylene (C2H4) at 10.5 µm using a continuous-wave distributed-feedback quantum cascade laser. At this long-wavelength infrared, the key acoustic elements of quartz tuning fork and micro-resonators were optimized to improve the detection signal-to-noise ratio by a factor of >4. The sensor calibration demonstrated an excellent linear response (R2>0.999) to C2H4 concentration at the selected operating pressure of 500 and 760 Torr. With a minimum detection limit of 50 parts per billion (ppb) achieved at an averaging time of 70 s, the sensor has been deployed for measuring the C2H4 efflux during the respiration of biological samples in an agronomic environment.

  4. Compact quantum cascade laser based quartz-enhanced photoacoustic spectroscopy sensor system for detection of carbon disulfide.

    Science.gov (United States)

    Waclawek, Johannes P; Moser, Harald; Lendl, Bernhard

    2016-03-21

    A compact gas sensor system based on quartz-enhanced photoacoustic spectroscopy (QEPAS) employing a continuous wave (CW) distributed feedback quantum cascade laser (DFB-QCL) operating at 4.59 µm was developed for detection of carbon disulfide (CS2) in air at trace concentration. The influence of water vapor on monitored QEPAS signal was investigated to enable compensation of this dependence by independent moisture sensing. A 1 σ limit of detection of 28 parts per billion by volume (ppbv) for a 1 s lock-in amplifier time constant was obtained for the CS2 line centered at 2178.69 cm-1 when the gas sample was moisturized with 2.3 vol% H2O. The work reports the suitability of the system for monitoring CS2 with high selectivity and sensitivity, as well as low sample gas volume requirements and fast sensor response for applications such as workplace air and process monitoring at industry.

  5. Measurement of nitrous acid (HONO) by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy

    Science.gov (United States)

    Yi, Hongming; Maamary, Rabih; Gao, Xiaoming; Sigrist, Markus W.; Fertein, Eric; Chen, Weidong

    2016-04-01

    Spectroscopic detection of short-lived gaseous nitrous acid (HONO) at 1254.85 cm-1 was realized by off-beam coupled quartz-enhanced photoacoustic spectroscopy (QEPAS) in conjunction with an external cavity quantum cascade lasers (EC-QCL). High sensitivity monitoring of HONO was performed within a very small gas-sample volume (of ~40 mm3) allowing a significant reduction (of about 4 orders of magnitude) of air sampling residence time which is highly desired for accurate quantification of chemically reactive short-lived species. Calibration of the developed QEPAS-based HONO sensor was carried out by means of lab-generated HONO samples whose concentrations were determined by simultaneous measurements of direct HONO absorption spectra in a 109.5 m multipass cell using a distributed feedback (DBF) QCL. A minimum detection limit (MDL @ SNR=1) of 66 ppbv HONO was achieved at 70 mbar using a laser output power of 50 mW and 1 s integration time, which corresponded to a normalized noise equivalent absorption coefficient of 3.6×10-8 cm-1.W/Hz1/2. This MDL was down to 7 ppbv at the optimal integration time of 150 s. The corresponding minimum detected absorption coefficient (SNR=1) is ~1.1×10-7 cm-1 (MDL: ~3 ppbv) in 1 s and ~1.1×10-8 cm-1 (MDL~330 pptv) in 150 s, respectively, with 1 W laser power. Acknowledgements The authors acknowledge financial supports from the CaPPA project (ANR-10-LABX-005) and the CPER CLIMIBIO program. References H. Yi, R. Maamary, X. Gao, M. W. Sigrist, E. Fertein, W. Chen, "Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy", Appl. Phys. Lett. 106 (2015) 101109

  6. Development of a Multi-Objective Evolutionary Algorithm for Strain-Enhanced Quantum Cascade Lasers

    Directory of Open Access Journals (Sweden)

    David Mueller

    2016-07-01

    Full Text Available An automated design approach using an evolutionary algorithm for the development of quantum cascade lasers (QCLs is presented. Our algorithmic approach merges computational intelligence techniques with the physics of device structures, representing a design methodology that reduces experimental effort and costs. The algorithm was developed to produce QCLs with a three-well, diagonal-transition active region and a five-well injector region. Specifically, we applied this technique to Al x Ga 1 - x As/In y Ga 1 - y As strained active region designs. The algorithmic approach is a non-dominated sorting method using four aggregate objectives: target wavelength, population inversion via longitudinal-optical (LO phonon extraction, injector level coupling, and an optical gain metric. Analysis indicates that the most plausible device candidates are a result of the optical gain metric and a total aggregate of all objectives. However, design limitations exist in many of the resulting candidates, indicating need for additional objective criteria and parameter limits to improve the application of this and other evolutionary algorithm methods.

  7. Enhancement of existing geothermal resource utilization by cascading to intensive aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Zachritz, W.H., II; Polka, R.; Schoenmackers

    1996-04-01

    A demonstration high rate aquaculture production system utilizing a cascaded geothermal resource was designed, constructed and operated to fulfill the objectives of this project. Analysis of the energy and water balances for the system indicated that the addition of an Aquaculture Facility expanded the use of the existing resource. This expanded use in no way affected the up- stream processes. Analysis of the system`s energy and water requirements indicated that the present resource was under-utilized and could be expanded. Energy requirements appeared more limiting than water use, but the existing system could be expanded to a culture volume of 72,000 gal. This system would have a potential production capacity of 93,600 lb/yr with a potential market value of $280,00/yr. Based on the results of this study, the heat remaining in the geothermal fluid from one square foot of operating greenhouse is sufficient to support six gallons of culture water for a high density aquaculture facility. Thus, the over 1.5M ft{sup 2} of existing greenhouse space in New Mexico, has the potential to create an aquaculture industry of nearly 9M gal. This translates to an annual production potential of 11.7M lb with a market value of $35.lM.

  8. Broadband Enhancement of Optical Frequency Comb Using Cascaded Four-Wave Mixing in Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Tawfig Eltaif

    2017-01-01

    Full Text Available A cascaded intensity modulator (IM and phase modulator (PM are used to modulate a continuous-wave (CW laser and generate an optical frequency comb (OFC. Thus, the generated comb is utilized as an initial seed and combined with another CW-laser to generate four-wave mixing (FWM in photonic crystal fiber (PCF. Results show that an initial flat 30 GHz OFC of 29, 55 lines within power fluctuation of 0.8 dB and 2 dB, respectively, can be achieved by setting the ratio of the DC bias to amplitude of sinusoidal signal at 0.1 and setting the modulation indices of both IM and PM at 10. Moreover, the 1st order of FWM created through 14 m of PCF has over 68 and 94 lines with fluctuation of 0.8 dB and 2 dB, respectively. Hence, the generated wavelengths of 1st left and right order of FWM can be tuned in a range from ~1500 nm to ~1525 nm and ~1590 nm to ~1604 nm, respectively.

  9. Contrast enhancement for portal images by combination of subtraction and reprojection processes for Compton scattering.

    Science.gov (United States)

    Hariu, Masatsugu; Suda, Yuhi; Chang, Weishan; Myojoyama, Atsushi; Saitoh, Hidetoshi

    2017-11-01

    For patient setup of the IGRT technique, various imaging systems are currently available. MV portal imaging is performed in identical geometry with the treatment beam so that the portal image provides accurate geometric information. However, MV imaging suffers from poor image contrast due to larger Compton scatter photons. In this work, an original image processing algorithm is proposed to improve and enhance the image contrast without increasing the imaging dose. Scatter estimation was performed in detail by MC simulation based on patient CT data. In the image processing, scatter photons were eliminated and then they were reprojected as primary photons on the assumption that Compton interaction did not take place. To improve the processing efficiency, the dose spread function within the EPID was investigated and implemented on the developed code. Portal images with and without the proposed image processing were evaluated by the image contrast profile. By the subtraction process, the image contrast was improved but the EPID signal was weakened because 15.2% of the signal was eliminated due to the contribution of scatter photons. Hence, these scatter photons were reprojected in the reprojection process. As a result, the tumor, bronchi, mediastinal space and ribs were observed more clearly than in the original image. It was clarified that image processing with the dose spread functions provides stronger contrast enhancement while maintaining a sufficient signal-to-noise ratio. This work shows the feasibility of improving and enhancing the contrast of portal images. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  10. Resonance surface enhanced Raman optical activity of myoglobin as a result of optimized resonance surface enhanced Raman scattering conditions

    DEFF Research Database (Denmark)

    Abdali, Salim; Johannessen, Christian; Nygaard, Jesper

    2007-01-01

    Using Surface enhanced ROA (SEROA), novel results are achieved by combining Raman Optical Activity (ROA) and resonance Surface Enhanced Raman Scattering (SERRS), applied on myoglobin. The novelty of this work is ascribed the first time reporting on chiral results of a study performed on a protein...... has shown that the SERS effect behaves consequently, depending on the concentration ratio of each component, i.e., myoglobin, Ag colloids and NaCl. Accordingly, it is shown here that SERS intensity has its maximum at certain concentration of these components, whereas below or above this value...

  11. Surface-enhanced Raman scattering on gold nanorod pairs with interconnection bars of different widths

    KAUST Repository

    Yue, Weisheng

    2012-08-01

    We demonstrate that surface-enhanced Raman scattering (SERS) enhancement could be tuned by adjusting the width of a connection bar at the bottom of a gold nanorod pair. Arrays of gold nanorod pairs with interconnection bars of different widths at the bottom of the interspace were fabricated by electron-beam lithography and used for the SERS study. Rhodamine 6G (R6G) was used as the probe molecule for the SERS. In addition to the large SERS enhancement observed in the nanostructured substrates, the SERS enhancement increases as the width of the connection bar increases. This result provides an important method for tuning SERS enhancement. Numerical simulations of electromagnetic properties on the nanostructures were performed with CST Microwave Studio, and the results correspond well with the experimental observations. © 2012 Elsevier B.V. All rights reserved.

  12. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, P. [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Becker, H.-W. [RUBION, Ruhr-University Bochum (Germany); Williams, G.V.M. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Hübner, R.; Heinig, K.-H. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Markwitz, A., E-mail: a.markwitz@gns.cri.nz [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand)

    2017-03-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C{sub 3}H{sub 6} deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  13. Direct observation of single DNA structural alterations at low forces with surface-enhanced Raman scattering.

    Science.gov (United States)

    Rao, Satish; Raj, Saurabh; Cossins, Benjamin; Marro, Monica; Guallar, Victor; Petrov, Dmitri

    2013-01-08

    DNA experiences numerous mechanical events, necessitating single-molecule force spectroscopy techniques to provide insight into DNA mechanics as a whole system. Inherent Brownian motion limits current force spectroscopy methods from observing possible bond level structural changes. We combine optical trapping and surface-enhanced Raman scattering to establish a direct relationship between DNA's extension and structure in the low force, entropic regime. A DNA molecule is trapped close to a surface-enhanced Raman scattering substrate to facilitate a detectable Raman signal. DNA Raman modes shift in response to applied force, indicating phosphodiester mechanical alterations. Molecular dynamic simulations confirm the local structural alterations and the Raman sensitive band identified experimentally. The combined Raman and force spectroscopy technique, to our knowledge, is a novel methodology that can be generalized to all single-molecule studies. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Coexistence of Scattering Enhancement and Suppression by Plasmonic Cavity Modes in Loaded Dimer Gap-Antennas

    CERN Document Server

    Zhang, Qiang; Li, Meili; Han, Dezhuan; Gao, Lei

    2015-01-01

    Plasmonic nanoantenna is of promising applications in optical sensing, single-molecular detection, and enhancement of optical nonlinear effect, surface optical spectroscopy, photochemistry, photoemission, photovoltaics, etc. Here we show that in a carefully-designed dimer gap-antenna made by two metallic nanorods, the longitudinal plasmon antenna mode (AM) of bonding dipoles can compete with the transverse plasmonic cavity modes (CMs), yielding dramatically enhanced or suppressed scattering efficiency, depending on the CMs symmetry characteristics (e.g., the radial order n and the azimuthal quantum number m ). More specifically, it is demonstrated that an appropriately loaded gap layer enables substantial excitation of toroidal moment and its strong interaction with the AM dipole moment, resulting in Fano- or electromagnetically induced transparency (EIT)-like profile in the scattering spectrum. However, for CMs with nonzero azimuthal number, the spectrum features a cumulative signature of the respective AM a...

  15. Frontiers of surface-enhanced Raman scattering single nanoparticles and single cells

    CERN Document Server

    Ozaki, Yukihiro; Aroca, Ricardo

    2014-01-01

    A comprehensive presentation of Surface-Enhanced Raman Scattering (SERS) theory, substrate fabrication, applications of SERS to biosystems, chemical analysis, sensing and fundamental innovation through experimentation. Written by internationally recognized editors and contributors. Relevant to all those within the scientific community dealing with Raman Spectroscopy, i.e. physicists, chemists, biologists, material scientists, physicians and biomedical scientists. SERS applications are widely expanding and the technology is now used in the field of nanotechnologies, applications to biosystems, nonosensors, nanoimaging and nanoscience.

  16. Enhanced Simultaneous Distributed Strain and Temperature Fiber Sensor Employing Spontaneous Brillouin Scattering and Optical Pulse Coding

    OpenAIRE

    Soto, M A; Bolognini, G.; Di Pasquale, F.

    2009-01-01

    In this work, we propose the use of optical pulse coding techniques for simultaneous strain and temperature sensing based on spontaneous Brillouin scattering. Optical pulse coding provides a significant receiver signal-to-noise ratio enhancement, allowing for accurate Brillouin intensity and frequency shift measurements at low peak power levels. Due to the cross-sensitivity of these two parameters on both temperature and strain, optical pulse coding improves the temperature and strain resolut...

  17. Surface-Enhanced Raman Scattering of the Complexes of Silver with Adenine and dAMP

    OpenAIRE

    Otto, Cornelis; Hoeben, F.P.; Hoeben, F.P.; Greve, Jan

    1991-01-01

    The behaviour of adenine and 2'-deoxyadenosine-5'-monophosphate (dAMP) at positive surface potentials of a silver working electrode was investigated using surface-enhanced Raman scattering (SERS). The use of positive potentials in the presence of adenine or dAMP leads to a rapid accumulation of an intense spectrum. It is proposed that complexes of adenine (dAMP) with silver generate the observed spectra. Adenine and dAMP can be distinguished spectroscopically due to various different complexe...

  18. Three-Dimensional Nanoporous Graphene Substrate for Surface-Enhanced Raman Scattering

    OpenAIRE

    Tu, Zhiqiang; Wu, Shangfei; Yang, Fan; Li, Yongfeng; Zhang, Liqiang; Liu, Hongwen; Ding, Hong; Richard, Pierre

    2014-01-01

    We synthesized three-dimensional nanoporous graphene films by a chemical vapor deposition method with nanoporous copper as a catalytic substrate. The resulting nanoporous graphene has the same average pore size as the underlying copper substrate. Our surface-enhanced Raman scattering (SERS) investigation indicates that the nanoporosity of graphene significantly improves the SERS efficiency of graphene as a substrate as compared to planar graphene substrates.

  19. Waste Fiber Powder Functionalized with Silver Nanoprism for Enhanced Raman Scattering Analysis

    OpenAIRE

    Tang, Bin; Zeng, Tian; Liu, Jun; Zhou, Ji; Ye, Yong; Wang, Xungai

    2017-01-01

    Biomass disks based on fine powder produced from disposed wool fibers were prepared for surface-enhanced Raman scattering (SERS). The wool powders (WPs) were modified by silver nanoprisms via an assembly method and then pressed into disks using a hydraulic laboratory pellet press. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the WPs and disks before and after treatment with silver nanoparticles (AgNPs). The W...

  20. First results from light scattering enhancement factor over central Indian Himalayas during GVAX campaign.

    Science.gov (United States)

    Dumka, U C; Kaskaoutis, D G; Sagar, Ram; Chen, Jianmin; Singh, Narendra; Tiwari, Suresh

    2017-12-15

    The present work examines the influence of relative humidity (RH), physical and optical aerosol properties on the light-scattering enhancement factor [f(RH=85%)] over central Indian Himalayas during the Ganges Valley Aerosol Experiment (GVAX). The aerosol hygroscopic properties were measured by means of DoE/ARM (US Department of Energy, Atmospheric Radiation Measurement) mobile facility focusing on periods with the regular instrumental operation (November-December 2011). The measured optical properties include aerosol light-scattering (σsp) and absorption (σap) coefficients and the intensive parameters i.e., single scattering albedo (SSA), scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and light scattering enhancement factor (f(RH)=σsp(RH, λ)/σsp(RHdry, λ)). The measurements were separated for sub-micron (affects the aerosol hygroscopicity since mean f(RH=85%) of 1.27±0.12 and 1.32±0.14 are found for D10μm and D1μm, respectively. These f(RH) values are relatively low suggesting the enhanced presence of soot and carbonaceous particles from biomass burning activities, which is verified via backward air-mass trajectories. Similarly, the light-scattering enhancement rates are ~0.20 and 0.17 for the D1μm and D10μm particles, respectively. However, a general tendency for increasing f(RH) and γ is shown for higher σsp and σap values indicating the presence of rather aged smoke plumes, coated with industrial aerosols over northern India, with mean SSA, SAE and AAE values of 0.92, 1.00 and 1.15 respectively. On the other hand, a moderate-to-small dependence of f(RH) and γ on SAE, AAE, and SSA was observed for both particle sizes. Furthermore, f(RH) exhibits an increasing tendency with the number of cloud condensation nuclei (NCCN) indicating larger particle hygroscopicity but without significant dependence on the activation ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit

    Science.gov (United States)

    Gorrotxategi-Carbajo, P.; Fasci, E.; Ventrillard, I.; Carras, M.; Maisons, G.; Romanini, D.

    2013-03-01

    We report on the first application of Optical Feedback-Cavity Enhanced Absorption Spectroscopy to formaldehyde trace gas analysis at mid-infrared wavelengths. A continuous-wave room-temperature, distributed-feedback quantum cascade laser emitting around 1,769 cm-1 has been successfully coupled to an optical cavity with finesse 10,000 in an OF-CEAS spectrometer operating on the ν2 fundamental absorption band of formaldehyde. This compact setup (easily transportable) is able to monitor H2CO at ambient concentrations within few seconds, presently limited by the sample exchange rate. The minimum detectable absorption is 1.6 × 10-9 cm-1 for a single laser scan (100 ms, 100 data points), with a detectable H2CO mixing ratio of 60 pptv at 10 Hz. The corresponding detection limit at 1 Hz is 5 × 10-10 cm-1, with a normalized figure of merit of 5 × 10-11cm^{-1}/sqrtHz (100 data points recorded in each spectrum taken at 10 Hz rate). A preliminary Allan variance analysis shows white noise averaging down to a minimum detection limit of 5 pptv at an optimal integration time of 10 s, which is significantly better than previous results based on multi-pass or cavity-enhanced tunable QCL absorption spectroscopy.

  2. Efficiency Enhancement of Gallium Arsenide Photovoltaics Using Solution-Processed Zinc Oxide Nanoparticle Light Scattering Layers

    Directory of Open Access Journals (Sweden)

    Yangsen Kang

    2015-01-01

    Full Text Available We demonstrate a high-throughput, solution-based process for subwavelength surface texturing of a III-V compound solar cell. A zinc oxide (ZnO nanoparticle ink is spray-coated directly on top of a gallium arsenide (GaAs solar cell. The nanostructured ZnO films have demonstrated antireflection and light scattering properties over the visible/near-infrared (NIR spectrum. The results show a broadband spectral enhancement of the solar cell external quantum efficiency (EQE, a 16% enhancement of short circuit current, and a 10% increase in photovoltaic efficiency.

  3. Surface-enhanced Raman scattering in femtosecond laser-nanostructured Ag substrate

    Energy Technology Data Exchange (ETDEWEB)

    Dai Ye; He Min; Yan Xiaona; Ma Guohong [Department of Physics, Shanghai University, Shanghai 200444 (China); Lu Bo, E-mail: yedai@shu.edu.cn [Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444 (China)

    2011-02-01

    We demonstrate that a surface-enhanced Raman scattering (SERS) substrate could be directly fabricated on the surface of Ag film by femtosecond laser micromachining. According to the morphology observation by SEM, an amount of nanoparticles, nanoprotrusions, and nanospikes were found to form in the ablation region and the density and size distribution of these Ag nanoparticles depended possibly on the incident laser intensity. Additionally, a large area of nanostructured region was produced by fast line scanning, and an enhancement factor of {approx}10{sup 5} was obtained in this region after the sample was soaked in the rhodamine 6G solution for 30 min.

  4. Efficient Surface Enhanced Raman Scattering substrates from femtosecond laser based fabrication

    Science.gov (United States)

    Parmar, Vinod; Kanaujia, Pawan K.; Bommali, Ravi Kumar; Vijaya Prakash, G.

    2017-10-01

    A fast and simple femtosecond laser based methodology for efficient Surface Enhanced Raman Scattering (SERS) substrate fabrication has been proposed. Both nano scaffold silicon (black silicon) and gold nanoparticles (Au-NP) are fabricated by femtosecond laser based technique for mass production. Nano rough silicon scaffold enables large electromagnetic fields for the localized surface plasmons from decorated metallic nanoparticles. Thus giant enhancement (approximately in the order of 104) of Raman signal arises from the mixed effects of electron-photon-phonon coupling, even at nanomolar concentrations of test organic species (Rhodamine 6G). Proposed process demonstrates the low-cost and label-less application ability from these large-area SERS substrates.

  5. Electrochemical immunoassay for thyroxine detection using cascade catalysis as signal amplified enhancer and multi-functionalized magnetic graphene sphere as signal tag

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jing; Zhuo, Ying, E-mail: yingzhuo@swu.edu.cn; Chai, Yaqin; Yu, Yanqing; Liao, Ni; Yuan, Ruo, E-mail: yuanruo@swu.edu.cn

    2013-08-06

    Graphical abstract: -- Highlights: •A reusable electrochemical immunosensor is developed for thyroxine detection. •Cascade catalysis as signal amplified enhancer. •Multi-functionalized magnetic graphene sphere as signal tag. •The novel strategy has the advantages of high sensitivity, good selectivity and reproducibility. -- Abstract: This paper constructed a reusable electrochemical immunosensor for the detection of thyroxine at an ultralow concentration using cascade catalysis of cytochrome c (Cyt c) and glucose oxidase (GOx) as signal amplified enhancer. It is worth pointing out that numerous Cyt c and GOx were firstly carried onto the double-stranded DNA polymers based on hybridization chain reaction (HCR), and then the amplified responses could be achieved by cascade catalysis of Cyt c and GOx recycling with the help of glucose. Moreover, multi-functionalized magnetic graphene sphere was synthesized and used as signal tag, which not only exhibited good mechanical properties, large surface area and an excellent electron transfer rate of graphene, but also possessed excellent redox activity and desirable magnetic property. With a sandwich-type immunoreaction, the proposed cascade catalysis amplification strategy could greatly enhance the sensitivity for the detection of thyroxine. Under the optimal conditions, the immunosensor showed a wide linear ranged from 0.05 pg mL{sup −1} to 5 ng mL{sup −1} and a low detection limit down to 15 fg mL{sup −1}. Importantly, the proposed method offers promise for reproducible and cost-effective analysis of biological samples.

  6. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering

    Science.gov (United States)

    Lin, Kai-Qiang; Yi, Jun; Zhong, Jin-Hui; Hu, Shu; Liu, Bi-Ju; Liu, Jun-Yang; Zong, Cheng; Lei, Zhi-Chao; Wang, Xiang; Aizpurua, Javier; Esteban, Rubén; Ren, Bin

    2017-03-01

    Surface-enhanced Raman scattering (SERS) spectroscopy has attracted tremendous interests as a highly sensitive label-free tool. The local field produced by the excitation of localized surface plasmon resonances (LSPRs) dominates the overall enhancement of SERS. Such an electromagnetic enhancement is unfortunately accompanied by a strong modification in the relative intensity of the original Raman spectra, which highly distorts spectral features providing chemical information. Here we propose a robust method to retrieve the fingerprint of intrinsic chemical information from the SERS spectra. The method is established based on the finding that the SERS background originates from the LSPR-modulated photoluminescence, which contains the local field information shared also by SERS. We validate this concept of retrieval of intrinsic fingerprint information in well controlled single metallic nanoantennas of varying aspect ratios. We further demonstrate its unambiguity and generality in more complicated systems of tip-enhanced Raman spectroscopy (TERS) and SERS of silver nanoaggregates.

  7. Enhanced Raman Scattering of Elliptical Laser Beam in a Collisionless Plasma

    Science.gov (United States)

    Singh, Arvinder; Walia, Keshav

    2012-02-01

    This paper presents the Enhanced Raman scattering of a elliptical laser beam in a collisionless plasma. The transverse intensity gradient of a pump beam generates a Ponderomotive force, which modifies the background plasma density profile in a direction transverse to pump beam axis. This modification in density effects the incident laser beam, plasma wave and back-scattered beam. Non-linear differential equations for the beam width parameters of pump laser beam, plasma wave and back-scattered beam are set up and solved numerically. The interplay between the self-focusing of the main beam and SRS has been studied in detail. The analysis clearly shows a coupling between the main beam and the plasma wave, therefore an increase in the self-focusing of the pump beam at lower intensities increases the self-focusing of the plasma wave which inturn leads to an increase in the back-reflectivity of the scattered wave. Further, it is also predicted that strong self-focusing of the pump beam at higher plasma density leads to strong self-focusing of the plasma wave and results in an increase in SRS reflectivity.

  8. A surface enhanced Raman scattering spectroscopic study of UO{sub 2}{sup 2+} at trace concentration

    Energy Technology Data Exchange (ETDEWEB)

    Franzen, Carola [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Carstensen, Lale [Technische Univ. Dresden (Germany); Firkala, T. [Helmholtz Institute Freiberg for Resource Technology, Freiberg (Germany); Steudtner, Robin [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2017-06-01

    Techniques for rapid screening of uranium in environmental samples are needed. This study entails the development of Surface-Enhanced Raman scattering (SERS) spectroscopy for analyzing uranium(VI) in aqueous media with improved sensitivity.

  9. Chiral optical fields: A unified formulation of helicity scattered from particles and dichroism enhancement

    CERN Document Server

    Nieto-Vesperinas, Manuel

    2016-01-01

    We establish a general unified formulation which, using the optical theorem of electromagnetic helicity, shows that dichorism is a phenomenon arising in any scattering -or diffraction- process, elastic or not, of chiral electromagnetic fields by objects either chiral or achiral. It is shown how this approach paves the way to overcoming well-known limitations of standard circular dichroism, like its weak signal or the difficulties of using it with magnetodielectric particles. Based on the angular spectrum representation of optical fields with only right circular or left circular plane waves, we introduce beams with transverse elliptic polarization and posessing a longitudinal component. Then our formulation for general optical fields shows how to enhance the helicity, (and therefore the dichroism signal), versus the energy of the light scattered or emitted by a particle, or viceversa.

  10. Chiral optical fields: a unified formulation of helicity scattered from particles and dichroism enhancement.

    Science.gov (United States)

    Nieto-Vesperinas, Manuel

    2017-03-28

    We establish a general unified formulation which, using the optical theorem of electromagnetic helicity, shows that dichorism is a phenomenon arising in any scattering-or diffraction-process, elastic or not, of chiral electromagnetic fields by objects either chiral or achiral. It is shown how this approach paves the way to overcoming well-known limitations of standard circular dichroism, like its weak signal or the difficulties of using it with magnetodielectric particles. Based on the angular spectrum, representation of optical fields with only right circular or left circular plane waves, we introduce beams with transverse elliptic polarization and possessing a longitudinal component. Then, our formulation for general optical fields shows how to enhance the extinction rate of incident helicity (and therefore the dichroism signal) versus that of energy of the light scattered or emitted by a particle, or vice versa.This article is part of the themed issue 'New horizons for nanophotonics'. © 2017 The Author(s).

  11. Polarization dependence of tip-enhanced Raman and plasmon-resonance Rayleigh scattering spectra

    Science.gov (United States)

    Kitahama, Yasutaka; Uemura, Shohei; Katayama, Ryota; Suzuki, Toshiaki; Itoh, Tamitake; Ozaki, Yukihiro

    2017-06-01

    Tip-enhanced Raman scattering (TERS) spectroscopy has high sensitivity and high spatial resolution, although it shows low reproducibility due to the variable optical properties of the tips. In the present study, polarized scattering spectra of localized surface plasmon resonance (LSPR) at the apex of the tip induced by conventional dark field illumination were compared with the corresponding TERS spectra, generated by excitation using polarization not only parallel and perpendicular to the tip, but also vertical to the sample plane (z-polarization). The polarization-dependence of LSPR was consistent with that of the TERS. Thus, the optical properties of the tip can be easily optimized before TERS measurement by excitation polarization that induces the largest LSPR signal.

  12. Silver nanocluster films for glucose sensing by Surface Enhanced Raman Scattering (SERS

    Directory of Open Access Journals (Sweden)

    Raju Botta

    2016-07-01

    Full Text Available The detection of glucose by Surface Enhanced Raman Scattering (SERS is a challenging problem because glucose molecules have a small Raman scattering cross-section and they have a low affinity for adsorption on metal nanoparticle surfaces. In this study we used 2-Thienylboronic acid (2-TBA as a bridge or linker molecule between the metal surface and the glucose molecule and observed an intense Raman line at 986 cm−1 that was used to quantify the glucose concentration in the molar concentration range 1 μM–500 μM. A good correlation was observed between the intensity of this line and molar concentration of glucose. These results would find applications in the development of a non-invasive glucose sensor for diabetic patients using saliva as the body fluid instead of blood serum.

  13. A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser.

    Science.gov (United States)

    Patimisco, Pietro; Borri, Simone; Sampaolo, Angelo; Beere, Harvey E; Ritchie, David A; Vitiello, Miriam S; Scamarcio, Gaetano; Spagnolo, Vincenzo

    2014-05-07

    An innovative quartz enhanced photoacoustic (QEPAS) gas sensing system operating in the THz spectral range and employing a custom quartz tuning fork (QTF) is described. The QTF dimensions are 3.3 cm × 0.4 cm × 0.8 cm, with the two prongs spaced by ∼800 μm. To test our sensor we used a quantum cascade laser as the light source and selected a methanol rotational absorption line at 131.054 cm(-1) (∼3.93 THz), with line-strength S = 4.28 × 10(-21) cm mol(-1). The sensor was operated at 10 Torr pressure on the first flexion QTF resonance frequency of 4245 Hz. The corresponding Q-factor was 74 760. Stepwise concentration measurements were performed to verify the linearity of the QEPAS signal as a function of the methanol concentration. The achieved sensitivity of the system is 7 parts per million in 4 seconds, corresponding to a QEPAS normalized noise-equivalent absorption of 2 × 10(-10) W cm(-1) Hz(-1/2), comparable with the best result of mid-IR QEPAS systems.

  14. Suspended graphene with periodic dimer nanostructure on Si cavities for surface-enhanced Raman scattering applications

    Science.gov (United States)

    Ho, Hsin-Chia; Nien, Li-Wei; Li, Jia-Han; Hsueh, Chun-Hway

    2017-04-01

    Periodic gold dimer nanoantennas on a one-atomic-layer graphene sheet elevated above Si cavities were fabricated to systematically study the effects of the cavity depth on surface-enhanced Raman scattering (SERS). The periodic trend of Raman intensity as a function of the cavity depth resulting from the interference effect between the plasmonic resonance of the gold dimer and the cavity resonance of the underlying Si cavity was observed, and the electric field was greatly enhanced compared with the non-suspended system. The finite-difference time-domain method was used to simulate the interaction between the electromagnetic wave and the suspended system and to verify the observed SERS response in experiments. Our work has the advantages of combining the superior properties of graphene with suspended metallic nanostructures to result in the enhanced electric field for SERS applications.

  15. Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes

    KAUST Repository

    Yue, Weisheng

    2012-10-04

    Arrays of gold quasi-3D nanoholes were proposed and fabricated as substrates for surface-enhanced Raman scattering (SERS). By detecting rhodamine 6G (R6G) molecules, the gold quasi-3D nanoholes demonstrated an SERS intensity that was 25-62 times higher than that of two-dimensional nanoholes with the same geometrical shapes and periodicities. The larger SERS enhancement of the quasi-3D nanoholes is attributed to the enhanced electromagnetic field on the top-layer nanohole, the bottom nanodiscs and the field coupling between the two layers. In addition, the investigation of the shape dependence of the SERS on the quasi-3D nanoholes demonstrated that the quadratic, circular, triangular and rhombic holes exhibited different SERS properties. Numerical simulations of the electromagnetic properties on the nanostructures were performed with CST Microwave Studio, and the results agree with the experimental observations. © 2012 IOP Publishing Ltd.

  16. Enhanced photoluminescence of Si nanocrystals-doped cellulose nanofibers by plasmonic light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Hiroshi [Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary Street, Boston, Massachusetts 02215 (United States); Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Zhang, Ran [Division of Materials Science and Engineering, Boston University, 15 Saint Mary' s Street, Brookline, Massachusetts 02446 (United States); Reinhard, Björn M. [Department of Chemistry and Photonics Center, Boston University, Boston, Massachusetts 02215 (United States); Fujii, Minoru [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Perotto, Giovanni; Marelli, Benedetto; Omenetto, Fiorenzo G. [Department of Biomedical Engineering and Department of Physics, Tufts University, 4 Colby Street, Medford, Massachusetts 02155 (United States); Dal Negro, Luca, E-mail: dalnegro@bu.edu [Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary Street, Boston, Massachusetts 02215 (United States); Division of Materials Science and Engineering, Boston University, 15 Saint Mary' s Street, Brookline, Massachusetts 02446 (United States)

    2015-07-27

    We report the development of bio-compatible cellulose nanofibers doped with light emitting silicon nanocrystals and Au nanoparticles via facile electrospinning. By performing photoluminescence (PL) spectroscopy as a function of excitation wavelength, we demonstrate plasmon-enhanced PL by a factor of 2.2 with negligible non-radiative quenching due to plasmon-enhanced scattering of excitation light from Au nanoparticles to silicon nanocrystals inside the nanofibers. These findings provide an alternative approach for the development of plasmon-enhanced active systems integrated within the compact nanofiber geometry. Furthermore, bio-compatible light-emitting nanofibers prepared by a cost-effective solution-based processing are very promising platforms for biophotonic applications such as fluorescence sensing and imaging.

  17. Visualizing Electric Fields at Au(111) Step Edges via Tip-Enhanced Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-05

    Tip-enhanced Raman scattering (TERS) can be used to image plasmon-enhanced local electric fields on the nanoscale. This is illustrated through ambient TERS measurements recorded using silver atomic force microscope tips coated with 4-mercaptobenzonitrile molecules and used to image step edges on an Au(111) surface. The observed 2D TERS images uniquely map electric fields localized at Au(111) step edges following 671-nm excitation. We establish that our measurements are not only sensitive to spatial variations in the enhanced electric fields but also to their vector components. We also experimentally demonstrate that (i) few nanometer precision is attainable in TERS nanoscopy using corrugated tips with nominally radii on the order of 100-200 nm, and (ii) TERS signals do not necessarily exhibit the expected E4 dependence. Overall, we illustrate the concept of electric field imaging via TERS and establish the connections between our observations and conventional TERS chemical imaging measurements.

  18. Nanoparticle Properties and Synthesis Effects on Surface-Enhanced Raman Scattering Enhancement Factor: An Introduction

    Directory of Open Access Journals (Sweden)

    Nathan D. Israelsen

    2015-01-01

    Full Text Available Raman spectroscopy has enabled researchers to map the specific chemical makeup of surfaces, solutions, and even cells. However, the inherent insensitivity of the technique makes it difficult to use and statistically complicated. When Raman active molecules are near gold or silver nanoparticles, the Raman intensity is significantly amplified. This phenomenon is referred to as surface-enhanced Raman spectroscopy (SERS. The extent of SERS enhancement is due to a variety of factors such as nanoparticle size, shape, material, and configuration. The choice of Raman reporters and protective coatings will also influence SERS enhancement. This review provides an introduction to how these factors influence signal enhancement and how to optimize them during synthesis of SERS nanoparticles.

  19. Acute cold exposure and rewarming enhanced spatial memory and activated the MAPK cascades in the rat brain.

    Science.gov (United States)

    Zheng, Gang; Chen, Yaoming; Zhang, Xueping; Cai, Tongjian; Liu, Mingchao; Zhao, Fang; Luo, Wenjing; Chen, Jingyuan

    2008-11-06

    Cold is a common stressor that is likely to occur in everyday occupational or leisure time activities. Although there is substantial literature on the effects of stress on memory from behavioral and pharmacologic perspectives, the effects of cold stress on learning and memory were little addressed. The aims of the present work were to investigate the effects of acute cold exposure on Y-maze learning and the activation of cerebral MAPK cascades of rats. We found that the 2-hour cold exposure (-15 degrees C) and a subsequent 30-min rewarming significantly increased the performance of the rats in the Y-maze test. Serum corticosterone (CORT) level was increased after the cold exposure. After a transient reduction following the cold exposure, the P-ERK levels in the hippocampus and PFC drastically increased 30 min later. The levels of P-JNK increased gradually after the cold exposure in all the three brain regions we investigated, but the level of P-p38 only increased in the PFC. The levels of GABAA receptor alpha1 subunit remained unchanged after the cold exposure. Furthermore, the performance of rats treated with cold plus muscimol or bicuculline in the Y-maze test was similar to that of the rats treated with those GABAergic agents alone. These results demonstrated that acute cold exposure and the subsequent rewarming could result in enhanced performance of spatial learning and memory, and the activation of MAPKs in the brain. However, GABAA receptor may not be involved in the acute cold exposure-induced enhancement of memory.

  20. Rapid thyroid dysfunction screening based on serum surface-enhanced Raman scattering and multivariate statistical analysis

    Science.gov (United States)

    Tian, Dayong; Lü, Guodong; Zhai, Zhengang; Du, Guoli; Mo, Jiaqing; Lü, Xiaoyi

    2018-01-01

    In this paper, serum surface-enhanced Raman scattering and multivariate statistical analysis are used to investigate a rapid screening technique for thyroid function diseases. At present, the detection of thyroid function has become increasingly important, and it is urgently necessary to develop a rapid and portable method for the detection of thyroid function. Our experimental results show that, by using the Silmeco-based enhanced Raman signal, the signal strength greatly increases and the characteristic peak appears obviously. It is also observed that the Raman spectra of normal and anomalous thyroid function human serum are significantly different. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was used to diagnose thyroid dysfunction, and the diagnostic accuracy was 87.4%. The use of serum surface-enhanced Raman scattering technology combined with PCA–LDA shows good diagnostic performance for the rapid detection of thyroid function. By means of Raman technology, it is expected that a portable device for the rapid detection of thyroid function will be developed.

  1. Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna-Reactor Plasmonic Photocatalysis.

    Science.gov (United States)

    Li, Kun; Hogan, Nathaniel J; Kale, Matthew J; Halas, Naomi J; Nordlander, Peter; Christopher, Phillip

    2017-06-14

    Efficient photocatalysis requires multifunctional materials that absorb photons and generate energetic charge carriers at catalytic active sites to facilitate a desired chemical reaction. Antenna-reactor complexes are an emerging multifunctional photocatalytic structure where the strong, localized near field of the plasmonic metal nanoparticle (e.g., Ag) is coupled to the catalytic properties of the nonplasmonic metal nanoparticle (e.g., Pt) to enable chemical transformations. With an eye toward sustainable solar driven photocatalysis, we investigate how the structure of antenna-reactor complexes governs their photocatalytic activity in the light-limited regime, where all photons need to be effectively utilized. By synthesizing core@shell/satellite (Ag@SiO 2 /Pt) antenna-reactor complexes with varying Ag nanoparticle diameters and performing photocatalytic CO oxidation, we observed plasmon-enhanced photocatalysis only for antenna-reactor complexes with antenna components of intermediate sizes (25 and 50 nm). Optimal photocatalytic performance was shown to be determined by a balance between maximized local field enhancements at the catalytically active Pt surface, minimized collective scattering of photons out of the catalyst bed by the complexes, and minimal light absorption in the Ag nanoparticle antenna. These results elucidate the critical aspects of local field enhancement, light scattering, and absorption in plasmonic photocatalyst design, especially under light-limited illumination conditions.

  2. Enhancement of Raman scattering signal of a few molecules using photonic nanojet mediated SERS technique

    Energy Technology Data Exchange (ETDEWEB)

    Das, G. M.; Parit, M. K.; Laha, R.; Dantham, V. R., E-mail: dantham@iitp.ac.in [Department of Physics, Indian Institute of Technology Patna, Bihta, Bihar, India 801103 (India)

    2016-05-06

    Now a days, single molecule surface enhanced Raman spectroscopy (SMSERS) has become a fascinating tool for studying the structural properties, static and dynamic events of single molecules (instead of ensemble average), with the help of efficient plasmonic nanostructures. This is extremely useful in the field of proteomics because the structural properties of protein molecules are heterogeneous. Even though, SMSERS provides wealthy information about single molecules, it demands high quality surface enhanced Raman scattering (SERS) substrates. So far, a very few researchers succeeded in demonstrating the single molecule Raman scattering using conventional SERS technique. However, the experimental S/N of the Raman signal has been found to be very poor. Recently, with the help of photonic nanojet of an optical microsphere, we were able to enhance the SERS signal of a few molecules adsorbed on the SERS substrates (gold symmetric and asymmetric nanodimers and trimers dispersed on a glass slide). Herein, we report a few details about photonic nanojet mediated SERS technique, a few experimental results and a detailed theoretical study on symmetric and asymmetric nanosphere dimers to understand the dependence of localised surface plasmon resonance (LSPR) wavelength of a nanodimer on the nanogap size and polarization of the excitation light.

  3. Surface enhanced Raman scattering technique for simultaneous detection of four trace polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    FU Shuyue

    2016-12-01

    Full Text Available Phytic acid modified Au (IP6@Au nanoparticles with high surface enhanced Raman scattering (SERS activity as well as hydrophobicity were synthesized.Based on IP6@Au and the molecular fingerprint information,we developed a SERS-based method for simultaneous detection of four polycyclic aromatic hydrocarbon species in river water by using a portable Raman system.The limit of detection for anthracene,fluoranthene,pyrene and benzopyrene were 100,100,10 and 1 μg/L,respectively.

  4. Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering

    Science.gov (United States)

    Duan, Guotao; Cai, Weiping; Luo, Yuanyuan; Li, Yue; Lei, Yong

    2006-10-01

    A simple, effective, and low-cost method is presented to fabricate an ordered Au particle array with hierarchical surface roughness on an indium tin oxide substrate based on an ordered alumina through-pore template, induced by solution dipping on colloidal monolayer, using an electrochemical deposition strategy. The array consists of periodically arranged and isolated Au microparticles, which show nanoscaled surface roughness. Importantly, this hierarchically rough particle array exhibits strong surface-enhanced Raman scattering effect using rhodamine 6G as probe molecules, associated with its surface geometry. Such structure could be useful, e.g., in sensors, biotechnology, and nanodevices.

  5. Surface enhanced Raman scattering study of the antioxidant alkaloid boldine using prismatic silver nanoparticles

    Science.gov (United States)

    Herrera, M. A.; Jara, G. P.; Villarroel, R.; Aliaga, A. E.; Gómez-Jeria, J. S.; Clavijo, E.; Garrido, C.; Aguayo, T.; Campos Vallette, M. M.

    2014-12-01

    Prismatic silver nanoparticles (PNps) were used in the surface enhanced Raman scattering (SERS) study of the antioxidant alkaloid boldine (5,6,6a,7-tetrahydro-1,10-dimethoxy-6-methyl-4H-dibenzo[de,g]quinoline-2,9-diol). Prismatic and quasi-spherical (QsNps) silver nanoparticles were synthesized and characterized by UV-Vis spectra, topographic profile (AFM) and zeta potential measurements. Raman and infrared (IR) spectra of the boldine were registered. Theoretical model calculations of the boldine onto the Ag surface predict a nearly coplanar orientation of the benzo[de]quinoline moiety and non-bonded interactions (electrostatic).

  6. Surface Enhanced Raman Scattering for Quantification of p-Coumaric Acid Produced by Escherichia coli

    DEFF Research Database (Denmark)

    Morelli, Lidia; Zor, Kinga; Jendresen, Christian Bille

    2017-01-01

    The number of newly developed genetic variants of microbial cell factories for production of biochemicals has been rapidly growing in recent years, leading to an increased need for new screening techniques. We developed a method based on surface-enhanced Raman scattering (SERS) coupled with liquid-liquid...... extraction (LLE) for quantification of p-coumaric acid (pHCA) in the supernatant of genetically engineered Escherichia coli (E. coli) cultures. pHCA was measured in a dynamic range from 1 μM up to 50 μM on highly uniform SERS substrates based on leaning gold-capped nanopillars, which showed an in...

  7. Gold cluster coatings enhancing Raman scattering from surfaces: Ink analysis and document identification

    Science.gov (United States)

    Luo, Zhixun; Smith, Jordan C.; Goff, Trevor M.; Adair, James H.; Castleman, A. W.

    2013-09-01

    Based on the method of laser-ablation in liquids (LAL) with a strategy of bubbling nitrogen through a custom-made chamber, we prepared chemically-pure gold clusters which were found to be metastable for an extensive period of time beyond months. A practical use of discrimination among different surfaces is demonstrated here by applying the gold clusters as surface coatings which result in surface-enhanced Raman scattering (SERS) due to the surface plasmon resonance (SPR). This technique identifies various documents from different printers/copiers and written with different pen-inks. The stable and additive-free gold clusters enable repetitive examinations without impurity interference.

  8. In situ monitoring of biomolecular processes in living systems using surface-enhanced Raman scattering

    Science.gov (United States)

    Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa

    2015-12-01

    Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.

  9. Nanostructures with the Hilbert curve geometry as surface enhanced Raman scattering substrates

    Science.gov (United States)

    Grigorenko, Ilya

    2013-07-01

    In this work, we consider fractal substrates for Surface Enhanced Raman Scattering measurements. The shape of the substrates is based on self-similar space filling Hilbert curves, which possess properties of both one dimensional and two dimensional geometries. The dielectric response of a doped semiconductor nanostructure, where conducting electrons are trapped in an effective potential having the geometry of the Hilbert curve is calculated and analysed. It is found that the system may exhibit electronic collective excitations specific for either a two dimensional or one dimensional system, depending on the excitation frequency.

  10. Raman scattering enhanced by plasmonic clusters and its application to single-molecule imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yasuike, Tomokazu [The Open University of Japan, Wakaba 2-11, Mihama-ku, Chiba 261-8586 (Japan); ESICB, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan); Nobusada, Katsuyuki [Institute for Molecular Science and SOKENDAI, Nishigonaka 38, Okazaki, 444-8585 (Japan); ESICB, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan)

    2015-12-31

    The optical response of the linear Au{sub 8} cluster is investigated by the linear response theory based on the density functional theory. It is revealed that the observed many peaks in the visible region originate from the interaction of the ideal plasmonic excitation along the molecular axis with the background d-electron excitations, i.e., the Landau damping. In spite of the existence of the damping, the Raman scattering is shown to be enhanced remarkably by the incident light resonant to the visible excitations. The novel imaging experiment with the atomic resolution is proposed by utilizing a plasmonic cluster as the probing tip.

  11. Surface-enhanced Raman scattering activity of niobium surface after irradiation with femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Victor G. [Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia (Bulgaria); Georgi Nadjakov Institute of Solid State Physics, BAS, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Vlakhov, Emil S. [Georgi Nadjakov Institute of Solid State Physics, BAS, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Stan, George E.; Socol, Marcela [National Institute of Material Physics, 105 bis Atomistilor Street, 077125 Magurele-Ilfov (Romania); Zamfirescu, Marian; Albu, Catalina; Mihailescu, Natalia; Negut, Irina; Luculescu, Catalin; Ristoscu, Carmen; Mihailescu, Ion N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele-Ilfov (Romania)

    2015-11-28

    The chemical modification of the niobium (Nb) surface after irradiation with femtosecond laser pulses was investigated by scanning electron microscopy coupled with energy dispersive spectroscopy, atomic force microscopy, grazing incidence X-ray diffraction, and micro-Raman spectroscopy. The physical-chemical analyses indicated that the laser treatment results in oxidation of the Nb surface, as well as in the formation of Nb hydrides. Remarkably, after the samples' washing in ethanol, a strong Surface-Enhanced Raman Scattering (SERS) signal originating from the toluene residual traces was evidenced. Further, it was observed that the laser irradiated Nb surface is able to provide a SERS enhancement of ∼1.3 × 10{sup 3} times for rhodamine 6G solutions. Thus, for the first time it was shown that Nb/Nb oxide surfaces could exhibit SERS functionality, and so one can expect applications in biological/biochemical screening or for sensing of dangerous environmental substances.

  12. Surface-enhanced Raman scattering activity of niobium surface after irradiation with femtosecond laser pulses

    Science.gov (United States)

    Ivanov, Victor G.; Vlakhov, Emil S.; Stan, George E.; Zamfirescu, Marian; Albu, Catalina; Mihailescu, Natalia; Negut, Irina; Luculescu, Catalin; Socol, Marcela; Ristoscu, Carmen; Mihailescu, Ion N.

    2015-11-01

    The chemical modification of the niobium (Nb) surface after irradiation with femtosecond laser pulses was investigated by scanning electron microscopy coupled with energy dispersive spectroscopy, atomic force microscopy, grazing incidence X-ray diffraction, and micro-Raman spectroscopy. The physical-chemical analyses indicated that the laser treatment results in oxidation of the Nb surface, as well as in the formation of Nb hydrides. Remarkably, after the samples' washing in ethanol, a strong Surface-Enhanced Raman Scattering (SERS) signal originating from the toluene residual traces was evidenced. Further, it was observed that the laser irradiated Nb surface is able to provide a SERS enhancement of ˜1.3 × 103 times for rhodamine 6G solutions. Thus, for the first time it was shown that Nb/Nb oxide surfaces could exhibit SERS functionality, and so one can expect applications in biological/biochemical screening or for sensing of dangerous environmental substances.

  13. Development of batch producible hot embossing 3D nanostructured surface-enhanced Raman scattering chip technology

    Science.gov (United States)

    Huang, Chu-Yu; Tsai, Ming-Shiuan

    2017-09-01

    The main purpose of this study is to develop a batch producible hot embossing 3D nanostructured surface-enhanced Raman chip technology for high sensitivity label-free plasticizer detection. This study utilizing the AAO self-assembled uniform nano-hemispherical array barrier layer as a template to create a durable nanostructured nickel mold. With the hot embossing technique and the durable nanostructured nickel mold, we are able to batch produce the 3D Nanostructured Surface-enhanced Raman Scattering Chip with consistent quality. In addition, because of our SERS chip can be fabricated by batch processing, the fabrication cost is low. Therefore, the developed method is very promising to be widespread and extensively used in rapid chemical and biomolecular detection applications.

  14. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering

    KAUST Repository

    Yue, Weisheng

    2012-10-26

    The fabrication of nanostructured substrates with precisely controlled geometries and arrangements plays an important role in studies of surface-enhanced Raman scattering (SERS). Here, we present two processes based on electron-beam lithography to fabricate gold nanostructures for SERS. One process involves making use of metal lift-off and the other involves the use of the plasma etching. These two processes allow the successful fabrication of gold nanostructures with various kinds of geometrical shapes and different periodic arrangements. 4-mercaptopyridine (4-MPy) and Rhodamine 6G (R6G) molecules are used to probe SERS signals on the nanostructures. The SERS investigations on the nanostructured substrates demonstrate that the gold nanostructured substrates have resulted in large SERS enhancement, which is highly dependent on the geometrical shapes and arrangements of the gold nanostructures. © 2012 IOP Publishing Ltd.

  15. Polarization Dependence of Surface Enhanced Raman Scattering on a Single Dielectric Nanowire

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Our measurements of surface enhanced Raman scattering (SERS on Ga2O3 dielectric nanowires (NWs core/silver composites indicate that the SERS enhancement is highly dependent on the polarization direction of the incident laser light. The polarization dependence of the SERS signal with respect to the direction of a single NW was studied by changing the incident light angle. Further investigations demonstrate that the SERS intensity is not only dependent on the direction and wavelength of the incident light, but also on the species of the SERS active molecule. The largest signals were observed on an NW when the incident 514.5 nm light was polarized perpendicular to the length of the NW, while the opposite phenomenon was observed at the wavelength of 785 nm. Our theoretical simulations of the polarization dependence at 514.5 nm and 785 nm are in good agreement with the experimental results.

  16. Cancer imaging using Surface-Enhanced Resonance Raman Scattering (SERRS) nanoparticles

    Science.gov (United States)

    Harmsen, Stefan; Wall, Matthew A.; Huang, Ruimin

    2017-01-01

    The unique spectral signatures and biologically inert compositions of surface-enhanced (resonance) Raman scattering (SE(R)RS) nanoparticles make them promising contrast agents for in vivo cancer imaging. Subtle aspects of their preparation can shift their limit of detection by orders of magnitude. In this protocol, we present the optimized, step-by-step procedure for generating reproducible SERRS nanoparticles with femtomolar (10−15 M) limits of detection. We introduce several applications of these nanoprobes for biomedical research, with a focus on intraoperative cancer imaging via Raman imaging. A detailed account is provided for successful intravenous administration of SERRS nanoparticles such that delineation of cancerous lesions may be achieved without the need for specific biomarker targeting. The time estimate for this straightforward, yet comprehensive protocol from initial de novo gold nanoparticle synthesis to SE(R)RS nanoparticle contrast-enhanced preclinical Raman imaging in animal models is ~96 h. PMID:28686581

  17. Fabrication of rice-like gold nanoparticles and application in surface-enhanced Raman scattering.

    Science.gov (United States)

    Liu, Bing; Ma, Zhanfang; Li, Kai

    2011-04-01

    A simple method for the synthesis of rice-like gold nanoparticles using gold nanorods (GNRs) as precursors in the aqueous phase was exploited. The method used in this work involves eroding GNRs with potassium ferricyanide in the aqueous phase. Surface plasmon resonance (SPR) bands of the resulting nanoparticles present a notable blue-shift from 670 to 570 nm with increasing amounts of potassium ferricyanide, and subsequently the shape of the resulting nanoparticles can be readily controlled. Most importantly, the SPR response is an almost linear function of the quantity of potassium ferricyanide added. The synthesis of the resulting nanoparticles with various aspect ratios has been extensively studied and is well established. The surface-enhanced Raman scattering (SERS) intensity enhancement of the adsorbate on the surface of these gold nanoparticles was also studied.

  18. Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters

    Energy Technology Data Exchange (ETDEWEB)

    Fasolato, C. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); Domenici, F., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it; De Angelis, L.; Luongo, F.; Postorino, P., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Sennato, S. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Mura, F. [Dip. Scienze di Base Applicate all' Ingegneria, Università Sapienza, Via A. Scarpa, 16, 00185 Rome (Italy); Costantini, F. [Dip. Ingegneria Astronautica Elettrica ed Energetica, Università Sapienza, Via Eudossiana, 18, 00184 Rome (Italy); Bordi, F. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy)

    2014-08-18

    A study of the Surface Enhanced Raman Scattering (SERS) from micrometric metallic nanoparticle aggregates is presented. The sample is obtained from the self-assembly on glass slides of micro-clusters of silver nanoparticles (60 and 100 nm diameter), functionalized with the organic molecule 4-aminothiophenol in water solution. For nanoparticle clusters at the micron scale, a maximum enhancement factor of 10{sup 9} is estimated from the SERS over the Raman intensity ratio normalized to the single molecule contribution. Atomic force microscopy, correlated to spatially resolved Raman measurements, allows highlighting the connection between morphology and efficiency of the plasmonic system. The correlation between geometric features and SERS response of the metallic structures reveals a linear trend of the cluster maximum scattered intensity as a function of the surface area of the aggregate. On given clusters, the intensity turns out to be also influenced by the number of stacking planes of the aggregate, thus suggesting a plasmonic waveguide effect. The linear dependence results weakened for the largest area clusters, suggesting 30 μm{sup 2} as the upper limit for exploiting the coherence over large scale of the plasmonic response.

  19. The relationship between extraordinary optical transmission and surface-enhanced Raman scattering in subwavelength metallic nanohole arrays.

    Science.gov (United States)

    Li, Qianhong; Yang, Zhilin; Ren, Bin; Xu, Hongxing; Tian, Zhongqun

    2010-11-01

    Nanohole arrays in an Ag film were used as a substrate for surface-enhanced Raman scattering in the optical range. Extraordinary optical transmission and local field enhancement in Ag nanohole arrays were theoretically simulated using three-dimensional finite difference time domain method. The periodicity of the holes was adjusted to control the transmission intensity and electric field intensity. The calculation results show that the peak position of transmission red-shifts as the periodicity increases, while the peak intensity decreases linearly. The electric field is localized in a very small region at the edges of the holes, which means the surface-enhanced Raman scattering originates only from a small number of molecules located in the edge regions. The electric field intensity changes with the excitation wavelength in a similar trend to the transmission intensity. Both the electric field intensity and transmission intensity reach their maximum value at the frequency of surface plasmon resonance. The structure that gives resonant transmission provides the maximum surface-enhanced Raman scattering signal. Controllable and predictable surface-enhanced Raman scattering can be produced by using this novel nanostructure. The structure can be optimized to get the maximum surface-enhanced Raman scattering signal at a certain excitation wavelength through numerical simulations.

  20. Electrochemical immunoassay for thyroxine detection using cascade catalysis as signal amplified enhancer and multi-functionalized magnetic graphene sphere as signal tag.

    Science.gov (United States)

    Han, Jing; Zhuo, Ying; Chai, Yaqin; Yu, Yanqing; Liao, Ni; Yuan, Ruo

    2013-08-06

    This paper constructed a reusable electrochemical immunosensor for the detection of thyroxine at an ultralow concentration using cascade catalysis of cytochrome c (Cyt c) and glucose oxidase (GOx) as signal amplified enhancer. It is worth pointing out that numerous Cyt c and GOx were firstly carried onto the double-stranded DNA polymers based on hybridization chain reaction (HCR), and then the amplified responses could be achieved by cascade catalysis of Cyt c and GOx recycling with the help of glucose. Moreover, multi-functionalized magnetic graphene sphere was synthesized and used as signal tag, which not only exhibited good mechanical properties, large surface area and an excellent electron transfer rate of graphene, but also possessed excellent redox activity and desirable magnetic property. With a sandwich-type immunoreaction, the proposed cascade catalysis amplification strategy could greatly enhance the sensitivity for the detection of thyroxine. Under the optimal conditions, the immunosensor showed a wide linear ranged from 0.05pg mL(-1) to 5ng mL(-1) and a low detection limit down to 15fg mL(-1). Importantly, the proposed method offers promise for reproducible and cost-effective analysis of biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Gold Nanoplate-Based 3D Hierarchical Microparticles: A Single Particle with High Surface-Enhanced Raman Scattering Enhancement.

    Science.gov (United States)

    Ma, Ying; Yung, Lin-Yue Lanry

    2016-08-09

    Formation of intended nano- and microstructures with regular building blocks has attracted much attention because of their potential applications in the fields of optics, electronics, and catalysis. Herein, we report a novel strategy to spontaneously grow three-dimensional (3D) hierarchical cabbagelike microparticles (CLMPs) constructed by individual Au nanoplates. By reducing gold precursor to gold atoms, N-(3-amidino)-aniline (NAAN) itself was oxidized to form poly(N-(3-amidino)-aniline) (PNAAN), which specifically binds on Au(111) facet as a capping agent and which leads to the formation of gold nanoplates. Because of the incomplete coverage of Au(111) facet, new gold nanoplate growth sites were spontaneously generated from the crystal plane of existing Au nanoplates for the growth of other nanoplates. This process continued until the nanoplate density reached its maximum range, eventually resulting in CLMPs with well-controlled structures. This opens a new avenue to utilize the imperfection during nanoparticle (NP) growth for the construction of microstructures. The individual CLMP shows excellent surface-enhanced Raman scattering (SERS) performance with high enhancement factor (EF) and good reproducibility as it integrates the SERS enhancement effects of individual Au nanoplate and the nanogaps formed by the uniform and hierarchical structures.

  2. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng

    2013-10-24

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  3. Surface Enhanced Raman Scattering Substrates Made by Oblique Angle Deposition: Methods and Applications

    Directory of Open Access Journals (Sweden)

    Hin On Chu

    2017-02-01

    Full Text Available Surface Enhanced Raman Spectroscopy presents a rapid, non-destructive method to identify chemical and biological samples with up to single molecule sensitivity. Since its discovery in 1974, the technique has become an intense field of interdisciplinary research, typically generating >2000 publications per year since 2011. The technique relies on the localised surface plasmon resonance phenomenon, where incident light can couple with plasmons at the interface that result in the generation of an intense electric field. This field can propagate from the surface from the metal-dielectric interface, so molecules within proximity will experience more intense Raman scattering. Localised surface plasmon resonance wavelength is determined by a number of factors, such as size, geometry and material. Due to the requirements of the surface optical response, Ag and Au are typical metals used for surface enhanced Raman applications. These metals then need to have nano features that improve the localised surface plasmon resonance, several variants of these substrates exist; surfaces can range from nanoparticles in a suspension, electrochemically roughened electrodes to metal nanostructures on a substrate. The latter will be the focus of this review, particularly reviewing substrates made by oblique angle deposition. Oblique angle deposition is the technique of growing thin films so that the material flux is not normal to the surface. Films grown in this fashion will possess nanostructures, due to the atomic self-shadowing effect, that are dependent mainly on the deposition angle. Recent developments, applications and highlights of surface enhanced Raman scattering substrates made by oblique angle deposition will be reviewed.

  4. Evidence of enhanced three α radius in α + 12C inelastic scattering

    Science.gov (United States)

    Ito, Makoto; Nakao, Makoto

    2017-11-01

    The microscopic coupled-channels calculations (MCC), which is based on precise internal wave functions and a realistic nucleon-nucleon interaction, is performed for the α + 12C inelastic scattering in the energy range of Eα = 80 to 400 MeV. The MCC calculations nicely reproduce the observed differential cross sections for the elastic and inelastic scattering, which goes to the , , states. The partial wave analysis for the differential cross sections has also performed. From the partial wave analysis, the nuclear radius of three α rotational state in 12C with a life time of 10-21 second, which has been expected to have much more extended radius than the ground 12C nucleus, is speculated. Present analysis predicts about 1.0 fm enhancement in the matter radius of the three α rotational state in comparison to the normal radius of the ground state, which is known to be proportional to the mass number to the one third. The spatial extension of the three α rotational state is comparable to the extended radius observed in the neutron halo phenomena. Constraint on the recent ab-initio calculation for the 3α states in 12C is also discussed.

  5. Evans blue dye-enhanced imaging of the brain microvessels using spectral focusing coherent anti-Stokes Raman scattering microscopy.

    Directory of Open Access Journals (Sweden)

    Bo-Ram Lee

    Full Text Available We performed dye-enhanced imaging of mouse brain microvessels using spectral focusing coherent anti-Stokes Raman scattering (SF-CARS microscopy. The resonant signals from C-H stretching in forward CARS usually show high background intensity in tissues, which makes CARS imaging of microvessels difficult. In this study, epi-detection of back-scattered SF-CARS signals showed a negligible background, but the overall intensity of resonant CARS signals was too low to observe the network of brain microvessels. Therefore, Evans blue (EB dye was used as contrasting agent to enhance the back-scattered SF-CARS signals. Breakdown of brain microvessels by inducing hemorrhage in a mouse was clearly visualized using backward SF-CARS signals, following intravenous injection of EB. The improved visualization of brain microvessels with EB enhanced the sensitivity of SF-CARS, detecting not only the blood vessels themselves but their integrity as well in the brain vasculature.

  6. Nanoparticle-Functionalized Porous Polymer Monolith Detection Elements for Surface-Enhanced Raman Scattering

    Science.gov (United States)

    Liu, Jikun; White, Ian; DeVoe, Don L.

    2011-01-01

    The use of porous polymer monoliths functionalized with silver nanoparticles is introduced in this work for high-sensitivity surface-enhanced Raman scattering (SERS) detection. Preparation of the SERS detection elements is a simple process comprising the synthesis of a discrete polymer monolith section within a silica capillary, followed by physically trapping silver nanoparticle aggregates within the monolith matrix. A SERS detection limit of 220 fmol for Rhodamine 6G (R6G) is demonstrated, with excellent signal stability over a 24 h period. The capability of the SERS-active monolith for label-free detection of biomolecules was demonstrated by measurements of bradykinin and cyctochrome c. The SERS-active monoliths can be readily integrated into miniaturized micro-total-analysis systems for on-line and label-free detection for a variety of biosensing, bioanalytical, and biomedical applications. PMID:21322579

  7. A modified transmission tip-enhanced Raman scattering (TERS) setup provides access to opaque samples.

    Science.gov (United States)

    Deckert-Gaudig, Tanja; Richter, Marc; Knebel, Detlef; Jähnke, Torsten; Jankowski, Tilo; Stock, Erik; Deckert, Volker

    2014-01-01

    The combination of scanning probe microscopy and Raman spectroscopy enables chemical characterization of surfaces at highest spatial resolution. This so-called tip-enhanced Raman scattering (TERS) can be employed for a variety of samples where a label-free characterization or identification of constituents on the nanometer scale is pursued. Present TERS setup geometries are always a compromise for specific dedicated applications and show different advantages and disadvantages: Transmission back-reflection setups, when using immersion objectives with a high numerical aperture, intrinsically provide the highest collection efficiency but cannot be applied for opaque samples. Those samples demand upright setups, at the cost of lower collection efficiency, even though very efficient systems using a parabolic mirror for illumination and collection have been demonstrated. In this contribution it is demonstrated that the incorporation of a dichroic mirror to a transmission TERS setup provides easy access to opaque samples without further modification of the setup.

  8. Surface-enhanced Raman Scattering from Virus-like Particle Crystals

    Science.gov (United States)

    Dufort, Christopher; Dragnea, Bogdan

    2008-03-01

    Recently, a method for the encapsidation of gold nanoparticules by an icosahedral virus protein coat, termed a virus-like particle (VLP), has been developed. Of particular interest is in observing their spectroscopic properties upon arrangement into a three-dimensional crystal lattice. Here we present the surface-enhanced Raman scattering spectrum of such an assembly. This is made possible by the plasmonic coupling of adjacent gold nanoparticules when excited near their plasmon resonant frequency. To determine whether the SERS effect is arising from isolated hot spots or a large number of junctions acting in unison we employed scanning confocal Raman spectroscopy. This seems to indicate the latter, as a uniform Raman intensity is observed across entire crystals.

  9. Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles

    Science.gov (United States)

    Smitha, S. L.; Gopchandran, K. G.

    2013-02-01

    Shape controlled syntheses of gold nanoparticles have attracted a great deal of attention as their optical, electronic, magnetic and biological properties are strongly dependent on the size and shape of the particles. Here is a report on the surface enhanced Raman scattering (SERS) activity of Cinnamomum zeylanicum leaf broth reduced gold nanoparticles consisting of triangular and spherical like particles, using 2-aminothiophenol (2-ATP) and crystal violet (CV) as probe molecules. Nanoparticles prepared with a minimum leaf broth concentration, having a greater number of triangular like particles exhibit a SERS activity of the order of 107. The synthesized nanoparticles exhibit efficient antibacterial activity against the tested gram negative bacterium Escherichia coli and gram positive bacterium Staphylococcus aureus. Investigations on the antifungal activity of the synthesized nanoparticles against Aspergillus niger and Fusarium oxysporum positive is also discussed.

  10. Quantitative Determination of Total Amino Acids Based on Surface-Enhanced Raman Scattering and Ninhydrin Derivatization.

    Science.gov (United States)

    Sui, Huimin; Chen, Lei; Han, Xiao Xia; Zhang, Xiaolei; Wang, Xiaolei; Zhao, Bing

    2017-01-01

    In the present study, we propose a simple and sensitive method for the determination of total amino acids without any separation steps. The procedure described here is based on the ninhydrin derivatization reaction with amino acids, followed by surface-enhanced Raman scattering (SERS) measurements of the producing mixtures. A good linear correlation of excess ninhydrin SERS signals and the log values of the total amino acids concentrations is obtained; the detection limit of the method is 4.3 × 10-9 mol L-1. The derivatization reaction is reliable and the whole experimental procedure is very simple. The sensitivity of the proposed protocol allows quantitative analysis of total amino acids at picomole levels without any separation procedures. On the basis of the conventional ninhydrin reaction, we put forward a simple SERS method for determining the total amino acids concentrations with high sensitivity, which is a promising way for routine detection.

  11. Rational design of a bisphenol A aptamer selective surface-enhanced Raman scattering nanoprobe.

    Science.gov (United States)

    Marks, Haley L; Pishko, Michael V; Jackson, George W; Coté, Gerard L

    2014-12-02

    Surface-enhanced Raman scattering (SERS) optical nanoprobes offer a number of advantages for ultrasensitive analyte detection. These functionalized colloidal nanoparticles are a multifunctional assay component. providing a platform for conjugation to spectral tags, stabilizing polymers, and biorecognition elements such as aptamers or antibodies. We demonstrate the design and characterization of a SERS-active nanoprobe and investigate the nanoparticles' biorecognition capabilities for use in a competitive binding assay. Specifically, the nanoprobe is designed for the quantification of bisphenol A (BPA) levels in the blood after human exposure to the toxin in food and beverage plastic packaging. The nanoprobes demonstrated specific affinity to a BPA aptamer with a dissociation constant Kd of 54 nM, and provided a dose-dependent SERS spectra with a limit of detection of 3 nM. Our conjugation approach shows the versatility of colloidal nanoparticles in assay development, acting as detectable spectral tagging elements and biologically active ligands concurrently.

  12. Hollow-Core Photonic Crystal Fibers for Surface-Enhanced Raman Scattering Probes

    Directory of Open Access Journals (Sweden)

    Xuan Yang

    2011-01-01

    Full Text Available Photonic crystal fiber (PCF sensors based on surface-enhanced Raman scattering (SERS have become increasingly attractive in chemical and biological detections due to the molecular specificity, high sensitivity, and flexibility. In this paper, we review the development of PCF SERS sensors with emphasis on our recent work on SERS sensors utilizing hollow-core photonic crystal fibers (HCPCFs. Specifically, we discuss and compare various HCPCF SERS sensors, including the liquid-filled HCPCF and liquid-core photonic crystal fibers (LCPCFs. We experimentally demonstrate and theoretically analyze the high sensitivity of the HCPCF SERS sensors. Various molecules including Rhodamine B, Rhodamine 6G, human insulin, and tryptophan have been tested to show the excellent performance of these fiber sensors.

  13. Silicon nanowire arrays coated with electroless Ag for increased surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Fan Bai

    2015-05-01

    Full Text Available The ordered Ag nanorod (AgNR arrays are fabricated through a simple electroless deposition technique using the isolated Si nanowire (SiNW arrays as the Ag-grown scaffold. The AgNR arrays have the single-crystallized structure and the plasmonic crystal feature. It is found that the formation of the AgNR arrays is strongly dependent on the filling ratio of SiNWs. A mechanism is proposed based on the selective nucleation and the synergistic growth of Ag nanoparticles on the top of the SiNWs. Moreover, the special AgNR arrays grown on the substrate of SiNWs exhibit a detection sensitivity of 10−15M for rhodamine 6G molecules, which have the potential application to the highly sensitive surface-enhanced Raman scattering sensors.

  14. Darkfield microspectroscopy of nanostructures on silver tip-enhanced Raman scattering probes

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Tamitake, E-mail: tamitake-itou@aist.go.jp [Nano-Bioanalysis Team, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395 (Japan); Yamamoto, Yuko S., E-mail: yamayulab@gmail.com [Research Fellow of the Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-8472 (Japan); Department of Chemistry, School of Science and Technology, Kagawa University, Takamatsu, Kagawa 761-0396 (Japan); Suzuki, Toshiaki [UNISOKU Co. Ltd., 2-4-3 Kasugano, Hirakata, Osaka 573-0131 (Japan); Kitahama, Yasutaka; Ozaki, Yukihiro [Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337 (Japan)

    2016-01-11

    We report an evaluation method employing darkfield microspectroscopy for silver probes used in tip-enhanced Raman scattering (TERS). By adjusting the darkfield illumination, the diffracted light from the probe outlines disappears and the diffracted light from the surface nanostructures and tips of the probes appears as colorful spots. Scanning electron microscopy reveals that the spectral variations in these spots reflect the shapes of the surface nanostructures. The tip curvatures correlate to the spectral maxima of their spots. Temporal color changes in the spots indicate the deterioration due to the oxidation of the silver surfaces. These results show that the proposed method is useful for in situ evaluation of plasmonic properties of TERS probes.

  15. Quantitative surface-enhanced Raman scattering ultradetection of atomic inorganic ions: the case of chloride.

    Science.gov (United States)

    Tsoutsi, Dionysia; Montenegro, Jose Maria; Dommershausen, Fabian; Koert, Ulrich; Liz-Marzán, Luis M; Parak, Wolfgang J; Alvarez-Puebla, Ramon A

    2011-09-27

    Surface-enhanced Raman scattering (SERS) spectroscopy can be used for the determination and quantification of biologically representative atomic ions. In this work, the detection and quantification of chloride is demonstrated by monitoring the vibrational changes occurring at a specific interface (a Cl-sensitive dye) supported on a silver-coated silica microbead. The engineered particles play a key role in the detection, as they offer a stable substrate to support the dye, with a dense collection of SERS hot spots. These results open a new avenue toward the generation of microsensors for fast ultradetection and quantification of relevant ions inside living organisms such as cells. Additionally, the use of discrete particles rather than rough films, or other conventional SERS supports, will also enable a safe remote interrogation of highly toxic sources in environmental problems or biological fluids. © 2011 American Chemical Society

  16. Surface Enhanced Raman Scattering (SERS Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation

    Directory of Open Access Journals (Sweden)

    Samuel P. Hernandez-Rivera

    2013-03-01

    Full Text Available Gold and silver nanoparticles (NPs were prepared in water, acetonitrile and isopropanol by laser ablation methodologies. The average characteristic (longer size of the NPs obtained ranged from 3 to 70 nm. 4-Aminobenzebethiol (4-ABT was chosen as the surface enhanced Raman scattering (SERS probe molecule to determine the optimum irradiation time and the pH of aqueous synthesis of the laser ablation-based synthesis of metallic NPs. The synthesized NPs were used to evaluate their capacity as substrates for developing more analytical applications based on SERS measurements. A highly energetic material, TNT, was used as the target compound in the SERS experiments. The Raman spectra were measured with a Raman microspectrometer. The results demonstrate that gold and silver NP substrates fabricated by the methods developed show promising results for SERS-based studies and could lead to the development of micro sensors.

  17. Green preparation of gold nanoparticles with Tremella fuciformis for surface enhanced Raman scattering sensing

    Science.gov (United States)

    Tang, Bin; Liu, Jun; Fan, Linpeng; Li, Daili; Chen, Xinzhu; Zhou, Ji; Li, Jingliang

    2018-01-01

    A simple in-situ synthesis method was developed to fabricate complex of Tremella fuciformis (TF) and gold nanoparticles (Au NPs). TF, one of the most popular fungi in the cuisine and medicine, acted as a biomass reducing agent and scaffold in the preparation of Au NPs. The intensities of the localized surface plasmon resonance (LSPR) of the complex of TF and Au NPs (Au@TFs) increased as the complex shrunk due to drying. The textures of TF prevent the aggregation of Au NPs during the drying process. The TFs show strong adsorption capacity for cationic dyes. It is suggested that the adsorption of the dyes onto TFs are achieved through electrostatic interactions between the TF and the dyes. Kinetics studies indicated that adsorption process could be well described by a pseudo-second-order model. Furthermore, the as-prepared Au@TFs were used as surface enhanced Raman scattering (SERS) substrates for analyzing trace dye molecules. The shrinkage of the TFs caused by drying concentrated dyes on their fruiting bodies, which led to the enhancement of Raman signals of dyes. The Au NPs on TF further enhanced the Raman signals. In-situ synthesis of Au NPs on TF may promote the applications of fungus materials in optical sensing of targets.

  18. Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering

    Science.gov (United States)

    Yang, Min; Zhang, Ling; Chen, Bin; Wang, Zheng; Chen, Chao; Zeng, Heping

    2017-02-01

    Raman spectra are considered as signatures of matter and have been widely used to identify several classes of materials. The development of mobile spectrometers further extends applications of Raman spectroscopy, and both indoor/outdoor and in vivo/in vitro measurements have been evaluated on site. However, the finite detection level restricts its application in high density matters. Here we report a facile silver nanoparticle decorated nanoporous gold (NanoAg@NPG) substrate, which can provide high enhancement of the Raman signal from nearby molecules by 785 nm photoexcitation. This enhancement is attributed to the abundant Raman-active nanogaps constructed by adjacent nanoparticles and also by the NPG ligaments and adhered nanoparticles. This NanoAg@NPG substrate shows great potential as a reproducible and quantifiable near infrared surface-enhanced Raman scattering probe for various targets, since it performs well in the so-called biological window which can avoid autofluorescence and absorption either from targets or surroundings in the visible optical region.

  19. Surface-enhanced Raman scattering for quantitative detection of ethyl carbamate in alcoholic beverages.

    Science.gov (United States)

    Yang, Danting; Zhou, Haibo; Ying, Yibin; Niessner, Reinhard; Haisch, Christoph

    2013-11-01

    Ethyl carbamate, a by-product of fermentation and storage with widespread occurrence in fermented food and alcoholic beverages, is a compound potentially toxic to humans. In this work, a new approach for quantitative detection of ethyl carbamate in alcoholic beverages, based on surface-enhanced Raman scattering (SERS), is reported. Individual silver-coated gold nanoparticle colloids are used as SERS amplifiers, yielding high Raman enhancement of ethyl carbamate in three kinds of alcoholic beverages (vodka, Obstler, and white rum). The characteristic band at 1,003 cm(-1), which is the strongest and best reproducible peak in the SERS spectra, was used for quantitative evaluation of ethyl carbamate. The limit of detection, which corresponds to a signal-to-noise ratio of 3, was 9.0 × 10(-9) M (0.8 μg · L(-1)), 1.3 × 10(-7) M (11.6 μg · L(-1)), and 7.8 × 10(-8) M (6.9 μg · L(-1)), respectively. Surface-enhanced Raman spectroscopy offers great practical potential for the in situ assessment and identification of ethyl carbamate in the alcoholic beverage industry.

  20. A Biomedical Surface Enhanced Raman Scattering Substrate: Functionalized Three-Dimensional Porous Membrane Decorated with Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Li Yuan

    2015-01-01

    Full Text Available We fabricated a simple, cheap, and functional surface enhanced Raman scattering substrate for biomedical application. Hot spots between two close silver nanoparticles distributed in the skeleton of a three-dimensional porous membrane, especially in the pores, were formed. The dual poles of micropores in the membrane were discussed. The pores could protect the silver nanoparticles in the pores from being oxidized, which makes the membrane effective for a longer period of time. In addition, Staphylococcus aureus cells could be trapped by the micropores and then the Raman signal became stronger, indicating that the functional surface enhanced Raman scattering substrate is reliable.

  1. DNA-guided assembly of a five-component enzyme cascade for enhanced conversion of cellulose to gluconic acid and H2O2.

    Science.gov (United States)

    Chen, Qi; Yu, Sooyoun; Myung, Nosang; Chen, Wilfred

    2017-12-10

    Enzymatic fuel cells have received considerable attention because of their potential for direct conversion of abundant raw materials such as cellulose to electricity. The use of multi-enzyme cascades is particularly attractive as they offer the possibility of achieving a series of complex reactions at higher efficiencies. Here we reported the use of a DNA-guided approach to assemble a five-component enzyme cascade for direct conversion of cellulose to gluconic acid and H 2 O 2 . Site-specific co-localization of β-glucosidase and glucose oxidase resulted in over 11-fold improvement in H 2 O 2 production from cellobiose, highlighting the benefit of substrate channeling. Although a more modest 1.5-fold improvement in H 2 O 2 production was observed using a five-enzyme cascade, due to H 2 O 2 inhibition on enzyme activity, these results demonstrated the possibility to enhance the production of gluconic acid and H 2 O 2 directly from cellulose by DNA-guided enzyme assembly. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering.

    Science.gov (United States)

    Xu, Shuping; Ji, Xiaohui; Xu, Weiqing; Li, Xiaoling; Wang, Lianying; Bai, Yubai; Zhao, Bing; Ozaki, Yukihiro

    2004-01-01

    This paper reports a novel immunoassay based on surface-enhanced Raman scattering (SERS) and immunogold labelling with silver staining enhancement. Immunoreactions between immunogold colloids modified by a Raman-active probe molecule (e.g., 4-mercaptobenzoic acid) and antigens, which were captured by antibody-assembled chips such as silicon or quartz, were detected via SERS signals of Raman-active probe molecule. All the self-assembled steps were subjected to the measurements of ultraviolet-visible (UV-vis) spectra to monitor the formation of a sandwich structure onto a substrate. The immunoassay was performed by a sandwich structure consisting of three layers. The first layer was composed of immobilized antibody molecules of mouse polyclonal antibody against Hepatitis B virus surface antigen (PAb) on a silicon or quartz substrate. The second layer was the complementary Hepatitis B virus surface antigen (Antigen) molecules captured by PAb on the substrate. The third layer was composed of the probe-labelling immunogold nanoparticles, which were modified by mouse monoclonal antibody against Hepatitis B virus surface antigen (MAb) and 4-mercaptobenzoic acid (MBA) as the Raman-active probe on the surface of gold colloids. After silver staining enhancement, the antigen is identified by a SERS spectrum of MBA. A working curve of the intensity of a SERS signal at 1585 cm(-1) due to the [small nu](8a) aromatic ring vibration of MBA versus the concentration of analyte (Antigen) was obtained and the non-optimized detection limit for the Hepatitis B virus surface antigen was found to be as low as 0.5 [micro sign]g mL(-1).

  3. Identification of metalloporphyrins with high sensitivity using graphene-enhanced resonance Raman scattering.

    Science.gov (United States)

    Kim, Bo-Hyun; Kim, Daechul; Song, Sungho; Park, DongHyuk; Kang, Il-Suk; Jeong, Dae Hong; Jeon, Seokwoo

    2014-03-18

    Graphene-enhanced resonance Raman scattering (GERRS) was performed for the detection of three different metallo-octaethylporphyrins (M-OEPs; M = 2H, FeCl, and Pt) homogeneously thermal vapor deposited on a graphene surface. GERRS of M-OEPs were measured using three different excitation wavelengths, λ(ex) = 405, 532, and 633 nm, and characterized detail vibrational bands for the identification of M-OEPs. The GERRS spectra of Pt-OEP at λ(ex) = 532 nm showed ~29 and ~162 times signal enhancement ratio on graphene and on graphene with Ag nanoclusters, respectively, compared to the spectra from bare SiO2 substrate. This enhancement ratio, however, was varied with M-OEPs and excitation wavelengths. The characteristic peaks and band shapes of GERRS for each M-OEP were measured with high sensitivity (100 pmol of thermal vapor deposited Pt-OEP), and these facilitate the selectively recognition of molecules. Also, the peaks shift and broadening provide the evidence of the interaction between graphene and M-OEPs through the charge transfer and π-orbital interaction. The increase of graphene layer induced the decrease of signal intensity and GERRS effect was almost not observed on the thick graphite flakes. Further experiments with various substrates demonstrated that the interaction of single layer of graphene with molecule is the origin of the Raman signal enhancement of M-OEPs. In this experiment, we proved the graphene is a good alternative substrate of Raman spectroscopy for the selective detection of various metalloporphyrins with high sensitivity.

  4. Nanotextured thin films for detection of chemicals by surface enhanced Raman scattering

    Science.gov (United States)

    Korivi, Naga; Jiang, Li; Ahmed, Syed; Nujhat, Nabila; Idrees, Mohanad; Rangari, Vijaya

    2017-11-01

    We report on the development of large area, nanostructured films that function as substrates for surface enhanced Raman scattering (SERS) detection of chemicals. The films are made of polyethylene terephthalate layers partially embedded with multi-walled carbon nanotubes and coated with a thin layer of gold. The films are fabricated by a facile method involving spin-coating, acid dip, and magnetron sputtering. The films perform effectively as SERS substrates when used in the detection of dye pollutants such as Congo red dye, with an enhancement factor of 1.1  ×  106 and a detection limit of 10‑7 M which is the lowest reported for CR detection by freestanding SERS film substrates. The films have a long shelf life, and cost US0.20 per cm2 of active area, far less than commercially available SERS substrates. This is the first such work on the use of a polymer layer modified with carbon nanotubes to create a nano-scale texture and arbitrary ‘hot-spots’, contributing to the SERS effect.

  5. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    CERN Document Server

    McAnally, G D

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm sup - sup 1) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are ...

  6. Iron layer-dependent surface-enhanced raman scattering of hierarchical nanocap arrays

    Science.gov (United States)

    Chen, Lei; Sun, Huanhuan; Zhao, Yue; Gao, Renxian; Wang, Yaxin; Liu, Yang; Zhang, Yongjun; Hua, Zhong; Yang, Jinghai

    2017-11-01

    In this report, we fabricated the multi-layer Ag/Fe/Ag sandwich cap-shaped films on monolayer non-closed packed (ncp) polystyrene colloidal particle (PSCP) templates through a layer-by-layer (LBL) depositing method. This research focused on the surface-enhanced Raman scattering (SERS) effect of the thickness of the deposited Fe film which was controlled by the sputtering time. The SERS intensities were increased firstly, and then decreased as the thickness of Fe layer grows gradually, which is attributed to the charge transition from the Fermi level of the Ag NPs to Fe layer. The use of multi-layer Ag/Fe/Ag sandwich cap-shaped films enables us to evaluate the contribution of surface plasmon resonance and charge distribution between Ag and Fe to SERS enhancement. Our work introduced a novel system (Ag/Fe/Ag) for high performance SERS and extended the SERS application of Fe. Furthermore, we have designed the Ag/Fe/Ag SERS-active substrate as the immunoassay chip for quantitative determination of AFP-L3 which is the biomarker of hepatocellular carcinoma (HCC). The proposed research demonstrates that the SERS substrates with Ag/Fe/Ag sandwich cap-shaped arrays have a high sensitivity for bioassay.

  7. Capillary-driven surface-enhanced Raman scattering (SERS)-based microfluidic chip for abrin detection

    Science.gov (United States)

    Yang, Hao; Deng, Min; Ga, Shan; Chen, Shouhui; Kang, Lin; Wang, Junhong; Xin, Wenwen; Zhang, Tao; You, Zherong; An, Yuan; Wang, Jinglin; Cui, Daxiang

    2014-03-01

    Herein, we firstly demonstrate the design and the proof-of-concept use of a capillary-driven surface-enhanced Raman scattering (SERS)-based microfluidic chip for abrin detection. The micropillar array substrate was etched and coated with a gold film by microelectromechanical systems (MEMS) process to integrate into a lateral flow test strip. The detection of abrin solutions of various concentrations was performed by the as-prepared microfluidic chip. It was shown that the correlation between the abrin concentration and SERS signal was found to be linear within the range of 0.1 ng/mL to 1 μg/mL with a limit of detection of 0.1 ng/mL. Our microfluidic chip design enhanced the operability of SERS-based immunodiagnostic techniques, significantly reducing the complication and cost of preparation as compared to previous SERS-based works. Meanwhile, this design proved the superiority to conventional lateral flow test strips in respect of both sensitivity and quantitation and showed great potential in the diagnosis and treatment for abrin poisoning as well as on-site screening of abrin-spiked materials.

  8. Single-Molecule Surface-Enhanced Raman Scattering: Can STEM/EELS Image Electromagnetic Hot Spots?

    Science.gov (United States)

    Mirsaleh-Kohan, Nasrin; Iberi, Vighter; Simmons, Philip D; Bigelow, Nicholas W; Vaschillo, Alex; Rowland, Meng M; Best, Michael D; Pennycook, Stephen J; Masiello, David J; Guiton, Beth S; Camden, Jon P

    2012-08-16

    Since the observation of single-molecule surface-enhanced Raman scattering (SMSERS) in 1997, questions regarding the nature of the electromagnetic hot spots responsible for such observations still persist. For the first time, we employ electron-energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) to obtain maps of the localized surface plasmon modes of SMSERS-active nanostructures, which are resolved in both space and energy. Single-molecule character is confirmed by the bianalyte approach using two isotopologues of Rhodamine 6G. Surprisingly, the STEM/EELS plasmon maps do not show any direct signature of an electromagnetic hot spot in the gaps between the nanoparticles. The origins of this observation are explored using a fully three-dimensional electrodynamics simulation of both the electron-energy-loss probability and the near-electric field enhancements. The calculations suggest that electron beam excitation of the hot spot is possible, but only when the electron beam is located outside of the junction region.

  9. Single-step, high yield synthesis of gold nanoworms and their surface enhanced Raman scattering properties

    Science.gov (United States)

    Ahmed, Waqqar; van Ruitenbeek, Jan M.

    Rod-shaped gold nanoparticles have attracted enormous attention owing to their interesting optical properties arising from the surface plasmon resonances. Slight deviation from the rod morphology can markedly change the optical properties. For-example, worm-shaped gold nanoparticles can have more than two plasmon peaks. Furthermore, they show much higher local field enhancements as compared to their rod-shaped counterparts. We have devised a simple seedless, high-yield protocol for the synthesis of gold nanoworms (NWs). NWs were grown simply by reducing HAuCl4 with ascorbic acid in a high pH reaction medium, and in the presence of growth directional agents, cetyltrimethylammonium bromide and AgNO3. In contrast to the seed-mediated growth of gold nanorods where a seed grows into a rod, NWs grow by oriental attachment of nanoparticles. By varying different reaction parameters we were able to control the length of NWs from a few nanometers to micrometers. Furthermore, the aspect ratio can also be tuned over a wide range. Gold NWs show excellent surface enhanced Raman scattering (SERS) properties. Ultra-low concentrations of various target molecules were detected using NWs based SERS substrates.

  10. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    Science.gov (United States)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  11. Surfactant size effect on surface-enhanced Raman scattering intensity from silver nanoparticles.

    Science.gov (United States)

    Bae, Doo Ri; Chang, Sung-Jin; Huh, Yun Suk; Han, Young-Kyu; Lee, You-Jin; Yi, Gi-Ra; Kim, Soohyun; Lee, Gaehang

    2013-08-01

    We report on the synthesis of two types of Ag nanoparticles (NPs) and the influence of adsorbed surfactant size on the NP surface for surface-enhanced Raman scattering (SERS) signals. Both particles were of similar size and morphology but were covered by surfactants of different sizes; one surfactant was sodium citrate (molecular weight: 258) and the other was sodium polyacrylate (molecular weight: 2100). For SERS measurement, 4-mecapobenzoic acid and 4-naphthalene thiol as Raman-active dyes were immobilized on the surface of each AgNP. The signals from Raman-active dyes on AgNPs covered with citrate displayed 10 times higher intensity than those from polyacrylate-stabilized AgNPs. Elemental analysis (EA) revealed that the average weight percentage of sulfur is 0.94 wt% and 0.12 wt% for citrate-stabilized and polyacrylate-stabilized AgNPs, respectively. The sulfur content difference was attributed to the size of the existing surfactant influencing the ligand exchange by steric hindrance and subsequently the amount of sulfur content of the particles. These experimental results suggest that the size of initial surfactant should be taken into account when synthesizing a metal particle for enhancing SERS signal.

  12. Surface enhanced Raman scattering activity of dual-functional Fe3O4/Au composites

    Science.gov (United States)

    Wang, Li-Ping; Huang, Yu-Bin; Lai, Ying-Huang

    2018-03-01

    There is a high demand for multifunctional materials that can integrate sample collection and sensing. In this study, magnetic Fe3O4 clusters were fabricated using a simple solvent-thermal method. The effect of the reductant (sodium citrate, SC) on the structure and morphology of Fe3O4 was examined by the variation in the reagent amount. The resulting Fe3O4 clusters were functionalized with 3-aminopropyltriethoxysilane (APTES) to anchor Au nanoparticles to its surface. The fabricated composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and a superconducting quantum interference device (SQUID) magnetometer. Dual-functional Fe3O4/Au clusters were obtained, effectively combining magnetic and plasmonic optical properties. The magnetic Fe3O4 cluster cores permitted the adsorption of the probe molecules, while sample concentration and collection were carried out under an external magnetic field. In addition, 4-nitrothiophenol (4-NTP) was chosen as the probe molecule to examine the analyte concentration ability and surface-enhanced Raman scattering (SERS) activity of the Fe3O4/Au composites. The results indicated that the Fe3O4/Au clusters exhibit a prominent SERS effect. The best 4-NTP detection limit obtained was 1 × 10-8 M, with a corresponding SERS analytical enhancement factor (AEF) exceeding 2 × 105.

  13. Waste Fiber Powder Functionalized with Silver Nanoprism for Enhanced Raman Scattering Analysis

    Science.gov (United States)

    Tang, Bin; Zeng, Tian; Liu, Jun; Zhou, Ji; Ye, Yong; Wang, Xungai

    2017-05-01

    Biomass disks based on fine powder produced from disposed wool fibers were prepared for surface-enhanced Raman scattering (SERS). The wool powders (WPs) were modified by silver nanoprisms via an assembly method and then pressed into disks using a hydraulic laboratory pellet press. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the WPs and disks before and after treatment with silver nanoparticles (AgNPs). The WPs retained porous structures after treatment with AgNPs. The silver nanoprisms on WPs were observed clearly and the localized surface plasmon resonance (LSPR) properties of silver nanoprisms led to blue color of wool powder (WP). The obtained WP disks with AgNPs were confirmed to enhance greatly the Raman signal of thiram. The SERS disks are low-cost and convenient to use, with high sensitivity. The characteristic SERS bands of 10-8 M thiram can be identified from WP disks containing silver nanoparticles.

  14. Design and measurement technique of surface-enhanced Raman scattering for detection of bisphenol A

    Science.gov (United States)

    Abu Bakar, Norhayati; Mat Salleh, Muhamad; Umar, Akrajas Ali; Shapter, Joseph George

    2017-06-01

    Surface-enhanced Raman scattering (SERS) is a highly sensitive measurement technique that provides Raman peaks at different Raman shift for different molecule structures. The SERS sensor is potentially used to detect food contamination and monitor environmental pollutants. A self-developed SERS system for specific analysis with low development cost is a challenging issue. This study attempts to develop a simple SERS sensor system for detection of bisphenol A (BPA) molecule using SERS substrate of silver nanoplate film. A SERS sensor system was developed, consisting of a light source to excite analyte molecules, Inphotonic Raman probe, sensor chamber and spectrophotometer as an analyser system. A duplex fibre optic is used to transmit light from the source to the probe and from the probe to the spectrophotometer. For SERS measurement, BPA detection was done by comparing the Raman signal spectra of the BPA on the quartz substrate and BPA on the silver nanoplate film. This SERS sensor successfully sensed BPA with SERS enhancement factor (EF) 5.55  ×  103 and a detection limit of BPA concentration at 1 mM.

  15. A tick mannose-binding lectin inhibits the vertebrate complement cascade to enhance transmission of the Lyme disease agent

    Science.gov (United States)

    Schuijt, Tim J.; Coumou, Jeroen; Narasimhan, Sukanya; Dai, Jianfeng; DePonte, Kathleen; Wouters, Diana; Brouwer, Mieke; Oei, Anneke; Roelofs, Joris J.T.H.; van Dam, Alje P.; van der Poll, Tom; van ’t Veer, Cornelis; Hovius, Joppe W.; Fikrig, Erol

    2011-01-01

    Summary The Lyme disease agent, Borrelia burgdorferi, is primarily transmitted to vertebrates by Ixodes ticks. The classical and alternative complement pathways are important in Borrelia eradication by the vertebrate host. We recently identified a tick salivary protein, designated P8 that reduced complement-mediated killing of Borrelia. We now discover that P8 interferes with the human lectin complement cascade resulting in impaired neutrophil phagocytosis and chemotaxis, and diminished Borrelia lysis. Therefore, P8 was renamed the lectin complement pathway inhibitor (TSLPI). TSLPI-silenced ticks, or ticks exposed to TSLPI-immune mice, were hampered in Borrelia transmission. Moreover, Borrelia acquisition and persistence in tick midguts was impaired in ticks feeding on TSLPI-immunized B. burgdorferi-infected mice. Together, our findings suggest an essential role for the lectin complement cascade in Borrelia eradication and demonstrate how a vector-borne pathogen co-opts a vector protein to facilitate early mammalian infection and vector colonization. PMID:21843870

  16. A tick mannose-binding lectin inhibits the vertebrate complement cascade to enhance transmission of the Lyme disease agent

    OpenAIRE

    Schuijt, Tim J.; Coumou, Jeroen; Narasimhan, Sukanya; Dai, Jianfeng; DePonte, Kathleen; Wouters, Diana; Brouwer, Mieke; Oei, Anneke; Roelofs, Joris J. T. H.; van Dam, Alje P.; van der Poll, Tom; van ’t Veer, Cornelis; Hovius, Joppe W.; Fikrig, Erol

    2011-01-01

    The Lyme disease agent, Borrelia burgdorferi, is primarily transmitted to vertebrates by Ixodes ticks. The classical and alternative complement pathways are important in Borrelia eradication by the vertebrate host. We recently identified a tick salivary protein, designated P8 that reduced complement-mediated killing of Borrelia. We now discover that P8 interferes with the human lectin complement cascade resulting in impaired neutrophil phagocytosis and chemotaxis, and diminished Borrelia lysi...

  17. Applications of Raman and Surface-Enhanced Raman Scattering to the Analysis of Eukaryotic Samples

    Science.gov (United States)

    Schulte, Franziska; Joseph, Virginia; Panne, Ulrich; Kneipp, Janina

    In this chapter, we discuss Raman scattering and surface-enhanced Raman scattering (SERS) for the analysis of cellular samples of plant and animal origin which are several tens to hundreds of microns in size. As was shown in the past several years, the favorable properties of noble metal nanostructures can be used to generate SERS signals in very complex biological samples such as cells, and result in an improved sensitivity and spatial resolution. Pollen grains, the physiological containers that produce the male gametes of seed plants, consist of a few vegetative cells and one generative cell, surrounded by a biopolymer shell. Their chemical composition has been a subject of research of plant physiologists, biochemists [1, 2], and lately even materials scientists [3, 4] for various reasons. In spite of a multitude of applied analytical approaches it could not be elucidated in its entirety yet. Animal cells from cell cultures have been a subject of intense studies due to their application in virtually all fields of biomedical research, ranging from studies of basic biological mechanisms to models for pharmaceutical and diagnostic research. Many aspects of all kinds of cellular processes including signalling, transport, and gene regulation have been elucidated, but many more facts about cell biology will need to be understood in order to efficiently address issues such as cancer, viral infection or genetic disorder. Using the information from spectroscopic methods, in particular combining normal Raman spectroscopy and SERS may open up new perspectives on cellular biochemistry. New sensitive Raman-based tools are being developed for the biochemical analysis of cellular processes [5-8].

  18. Conductance and Surface-Enhanced Raman Scattering of Single Molecules Utilizing Dimers of Nanoparticles

    Science.gov (United States)

    Dadosh, Tali

    conductance at certain voltage values. The position of peaks in the spectrum was affected by the electrostatic environment, resulting in random gating. In view of the above developments, my thesis focuses on surface-enhanced Raman scattering (SERS) measurement of single molecules. Single-molecule spectroscopy is an emerging field that provides detailed information on molecular response, which is unavailable in measurements performed on an assembly of molecules. The obvious problem, however, in implementing most spectroscopic techniques, such as Raman scattering, is the very weak signal obtained from a single molecule. Interestingly, the Raman signal from a molecule has been shown to increase dramatically when the molecule is adsorbed to metal particles of certain types having sub-wavelength dimensions [1, 2]. This enhancement technique, known as surface-enhanced Raman scattering, can increase the Raman signal by as much as 14--15 orders of magnitude, which has been shown to be sufficient for performing single-molecule spectroscopy successfully. Dimer structures are not only attractive for conductance measurements on single-molecule devices; they could also serve as an efficient antenna system that greatly enhances the electromagnetic field at the center of the dimer, where the molecule resides. Dimers provide a basic experimental model for studying the fundamentals of the SERS enhancement, which are not well understood. Dimers have the advantage of possessing a small gap (on the order of a nanometer) that is beyond the limit of today's sophisticated lithography techniques. By utilizing the dimer structures that contain a Rhodamine 123 molecule, we were able to resolve some fundamental questions regarding the SERS enhancement mechanism. The issue of how the nanoparticles' surface plasmon properties affects the SERS enhancement was addressed both experimentally and by calculations. Moreover, it was predicted by our calculations that when the dimers consist of large

  19. Poly-l-lysine-Coated Silver Nanoparticles as Positively Charged Substrates for Surface-Enhanced Raman Scattering

    NARCIS (Netherlands)

    Marsich, L.; Bonifacio, A.; Mandal, S.; Krol, S.; Beleites, C.; Sergo, V.

    2012-01-01

    Positively charged nanoparticles to be used as substrates for surface-enhanced Raman scattering (SERS) were prepared by coating citrate-reduced silver nanoparticles with the cationic polymer poly-l-lysine. The average diameter of the coated nanoparticles is 75 nm, and their zeta potential is +62.3

  20. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    Science.gov (United States)

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  1. Enhancement of Raman light scattering in dye-labeled cell membrane on metal-containing conducting polymer film

    Science.gov (United States)

    Grushevskaya, H. V.; Krylova, N. G.; Lipnevich, I. V.; Orekhovskaja, T. I.; Egorova, V. P.; Shulitski, B. G.

    2016-03-01

    An enhanced Raman spectroscopy method based on a plasmon resonance in ultrathin metal-containing LB-film deposited on nanoporous anodic alumina supports has been proposed. This material has been utilized to enhance Raman scattering of light in fluorescent-labeled subcellular membrane structures. It has been shown that the plasmon resonance between vibrational modes of the organometallic complexes monolayers and dye-labeled subcellular structures happens. It makes possible to detect interactions between living cell monolayers and an extracellular matrix.

  2. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.

    2011-09-27

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  3. Synthetic CO2-fixation enzyme cascades immobilized on self-assembled nanostructures that enhance CO2/O2 selectivity of RubisCO.

    Science.gov (United States)

    Satagopan, Sriram; Sun, Yuan; Parquette, Jon R; Tabita, F Robert

    2017-01-01

    With increasing concerns over global warming and depletion of fossil-fuel reserves, it is attractive to develop innovative strategies to assimilate CO2, a greenhouse gas, into usable organic carbon. Cell-free systems can be designed to operate as catalytic platforms with enzymes that offer exceptional selectivity and efficiency, without the need to support ancillary reactions of metabolic pathways operating in intact cells. Such systems are yet to be exploited for applications involving CO2 utilization and subsequent conversion to valuable products, including biofuels. The Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) play a pivotal role in global CO2 fixation. We hereby demonstrate the co-assembly of two RubisCO-associated multienzyme cascades with self-assembled synthetic amphiphilic peptide nanostructures. The immobilized enzyme cascades sequentially convert either ribose-5-phosphate (R-5-P) or glucose, a simpler substrate, to ribulose 1,5-bisphosphate (RuBP), the acceptor for incoming CO2 in the carboxylation reaction catalyzed by RubisCO. Protection from proteolytic degradation was observed in nanostructures associated with the small dimeric form of RubisCO and ancillary enzymes. Furthermore, nanostructures associated with a larger variant of RubisCO resulted in a significant enhancement of the enzyme's selectivity towards CO2, without adversely affecting the catalytic activity. The ability to assemble a cascade of enzymes for CO2 capture using self-assembling nanostructure scaffolds with functional enhancements show promise for potentially engineering entire pathways (with RubisCO or other CO2-fixing enzymes) to redirect carbon from industrial effluents into useful bioproducts.

  4. Enhancement of pig embryonic implants in factor VIII KO mice: a novel role for the coagulation cascade in organ size control.

    Directory of Open Access Journals (Sweden)

    Anna Aronovich

    Full Text Available Very little is known about the mechanisms that contribute to organ size differences between species. In the present study, we used a mouse model of embryonic pig tissue implantation to define the role of host Factor VIII in controlling the final size attained by the implant. We show here that pig embryonic spleen, pancreas, and liver all grow to an increased size in mice that are deficient in the Factor VIII clotting cascade. Similar results were obtained using the transplantation model after treatment with the low molecular weight heparin derivative Clexane which markedly enhanced transplant size. Likewise, enhanced size was found upon treatment with the direct thrombin inhibitor Dabigatran, suggesting that organ size regulation might be mediated by thrombin, downstream of Factor VIII. Considering that thrombin was shown to mediate various functions unrelated to blood clotting, either directly by cleavage of protease-activated receptors (PARs or indirectly by cleaving osteopontin (OPN on stroma cells, the role of PAR1 and PAR4 antagonists as well as treatment with cleaved form of OPN (tcOPN were tested. While the former was not found to have an impact on overgrowth of embryonic pig spleen implants, marked reduction of size was noted upon treatment with the (tcOPN. Collectively, our surprising set of observations suggests that factors of the coagulation cascade have a novel role in organ size control.

  5. Learning Cascading

    CERN Document Server

    Covert, Michael

    2015-01-01

    This book is intended for software developers, system architects and analysts, big data project managers, and data scientists who wish to deploy big data solutions using the Cascading framework. You must have a basic understanding of the big data paradigm and should be familiar with Java development techniques.

  6. Enhanced creation of dispersive monolayer phonons in Xe/Pt(111) by inelastic helium atom scattering at low energies

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    2007-01-01

    Conditions likely to lead to enhanced inelastic atomic scattering that creates shear horizontal (SH) and longitudinal acoustic (LA) monolayer phonons are identified, specifically examining the inelastic scattering of He-4 atoms by a monolayer solid of Xe/Pt(111) at incident energies of 2-25 me...... an absorbing potential at large distance. The times now extend to beyond 100 ps and enable a clarification of processes involving transient trapping of the He atoms. The wave packet is made more monochromatic by significantly increasing the spatial width of the initial Gaussian shape. The narrower energy...

  7. Surface-enhanced Raman scattering of dipolar molecules by the graphene Fermi surface modulation with different dipole moments

    Science.gov (United States)

    Zhang, Mingjia; Leng, Yandan; Huang, Jing; Yu, JiaoJiao; Lan, Zhenggang; Huang, Changshui

    2017-12-01

    We report the modulation of Raman scattering spectrum of chromophore/graphene hybrids by tunning the molecular polarization with different terminal groups (methyl, methoxy, nitrile, and two nitros). Based on the density functional theory, the specific dipole moment values of the chromophore molecules are calculated. An obvious surface-enhanced Raman scattering (SERS) was observed and the scattering intensity of molecule increases with enlarged dipole moment. According to the analysis of G band Raman shifts of graphene, the enhancement of the Raman signal can be attributed to strong electronic coupling between graphene and chromophore, which is closely related with the modulation of graphene Fermi surface by changing the dipole moment of the molecule. Besides, the optimization of the ground state geometry and the binding energy of the hybrids were also calculated with the Density Functional Based Tight Bonding (DFTB) method, which confirms that the enhanced Raman scattering of molecules on graphene arises from the improved energy level matching between graphene Fermi surface and molecular band, further providing a new way to design novel SERS devices.

  8. Experimental and modeling study of off-beam quartz-enhanced photoacoustic detection of nitrogen monoxide (NO) using a quantum cascade laser

    Science.gov (United States)

    Shi, Chao; Li, Zhili; Ren, Wei

    2016-11-01

    This article presents the experimental and modeling study of quartz-enhanced photoacoustic detection of nitrogen monoxide (NO) using the off-beam configuration and a distributed-feedback (DFB) quantum cascade laser (QCL) at 5.26 μm as the excitation source. Trace gas monitoring of NO is one of the important subjects for both environmental protection and human health monitoring. Quartz-enhanced photoacoustic spectroscopy (QEPAS) with on-beam configuration is mostly adopted for gas detection. In comparison, the off-beam approach has not only comparative detection sensitivity but also significant advantage of simpler installation and optical alignment. We optimized the sensor performance by adjusting the horizontal and vertical distances between the micro-resonator (mR) and the QTF prongs. Pressure and humidity are two important factors affecting the photoacoustic signal. The effects of both parameters on the NO concentration determination were investigated.

  9. Surface-Enhanced Raman Scattering (SERS) for Detection in Immunoassays. Applications, fundamentals, and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Driskell, Jeremy Daniel [Iowa State Univ., Ames, IA (United States)

    2006-08-09

    Immunoassays have been utilized for the detection of biological analytes for several decades. Many formats and detection strategies have been explored, each having unique advantages and disadvantages. More recently, surface-enhanced Raman scattering (SERS) has been introduced as a readout method for immunoassays, and has shown great potential to meet many key analytical figures of merit. This technology is in its infancy and this dissertation explores the diversity of this method as well as the mechanism responsible for surface enhancement. Approaches to reduce assay times are also investigated. Implementing the knowledge gained from these studies will lead to a more sensitive immunoassay requiring less time than its predecessors. This dissertation is organized into six sections. The first section includes a literature review of the previous work that led to this dissertation. A general overview of the different approaches to immunoassays is given, outlining the strengths and weaknesses of each. Included is a detailed review of binding kinetics, which is central for decreasing assay times. Next, the theoretical underpinnings of SERS is reviewed at its current level of understanding. Past work has argued that surface plasmon resonance (SPR) of the enhancing substrate influences the SERS signal; therefore, the SPR of the extrinsic Raman labels (ERLs) utilized in our SERS-based immunoassay is discussed. Four original research chapters follow the Introduction, each presented as separate manuscripts. Chapter 2 modifies a SERS-based immunoassay previously developed in our group, extending it to the low-level detection of viral pathogens and demonstrating its versatility in terms of analyte type, Chapter 3 investigates the influence of ERL size, material composition, and separation distance between the ERLs and capture substrate on the SERS signal. This chapter links SPR with SERS enhancement factors and is consistent with many of the results from theoretical treatments

  10. Theoretical calculation (DFT), Raman and surface-enhanced Raman scattering (SERS) study of ponceau 4R

    Science.gov (United States)

    Xie, Yunfei; Li, Yan; Sun, Yingying; Wang, Heya; Qian, He; Yao, Weirong

    2012-10-01

    Ponceau 4R is used as a coloring agent in many different products, such as food, drinks, medicines, cosmetics and tobacco. However, ponceau 4R also shows carcinogenic, teratogenic and mutagenic behavior in high doses. In this work, standard Raman, theoretical Raman and surface-enhanced Raman scattering (SERS) spectra have been used to investigate ponceau 4R. More specifically, density functional theory (DFT) calculations have been used to calculate the optimized Raman spectrum of ponceau 4R at the B3LYP/6-31G(d) level. This has provided a better understanding of the optimized geometry and vibrational frequencies of this dye. In addition, the experimental spectrum of ponceau 4R has been compared with the theoretical spectrum; good agreement was obtained. Finally, it has shown that using SERS the detection limit of the ponceau 4R solution can be as low as 5 μg/mL. This has been achieved by SERS measurements of ponceau 4R on a substrate of gold nanoparticles. The SERS peaks at 1030, 1236, 1356 and 1502 cm-1 were chosen as index for semi-quantitative analysis, showing that the SERS technique provided a useful ultrasensitive method for the detection of ponceau 4R.

  11. Enhanced Control of Transient Raman Scattering Using Buffered Hydrogen in Hollow-Core Photonic Crystal Fibers

    Science.gov (United States)

    Hosseini, P.; Novoa, D.; Abdolvand, A.; Russell, P. St. J.

    2017-12-01

    Many reports on stimulated Raman scattering in mixtures of Raman-active and noble gases indicate that the addition of a dispersive buffer gas increases the phase mismatch to higher-order Stokes and anti-Stokes sidebands, resulting in a preferential conversion to the first few Stokes lines, accompanied by a significant reduction in the Raman gain due to collisions with gas molecules. Here we report that, provided the dispersion can be precisely controlled, the effective Raman gain in a gas-filled hollow-core photonic crystal fiber can actually be significantly enhanced when a buffer gas is added. This counterintuitive behavior occurs when the nonlinear coupling between the interacting fields is strong and can result in a performance similar to that of a pure Raman-active gas, but at a much lower total gas pressure, allowing competing effects such as Raman backscattering to be suppressed. We report high modal purity in all the emitted sidebands, along with anti-Stokes conversion efficiencies as high as 5% in the visible and 2% in the ultraviolet. This new class of gas-based waveguide device, which allows the nonlinear optical response to be beneficially pressure-tuned by the addition of buffer gases, may find important applications in laser science and spectroscopy.

  12. Development of surface enhanced Raman scattering (SERS) spectroscopy monitoring of fuel markers to prevent fraud

    Science.gov (United States)

    Wilkinson, Timothy; Clarkson, John; White, Peter C.; Meakin, Nicholas; McDonald, Ken

    2013-05-01

    Governments often tax fuel products to generate revenues to support and stimulate their economies. They also subsidize the cost of essential fuel products. Fuel taxation and subsidization practices are both subject to fraud. Oil marketing companies also suffer from fuel fraud with loss of legitimate sales and additional quality and liability issues. The use of an advanced marking system to identify and control fraud has been shown to be effective in controlling illegal activity. DeCipher has developed surface enhanced Raman scattering (SERS) spectroscopy as its lead technology for measuring markers in fuel to identify and control malpractice. SERS has many advantages that make it highly suitable for this purpose. The SERS instruments are portable and can be used to monitor fuel at any point in the supply chain. SERS shows high specificity for the marker, with no false positives. Multiple markers can also be detected in a single SERS analysis allowing, for example, specific regional monitoring of fuel. The SERS analysis from fuel is also quick, clear and decisive, with a measurement time of less than 5 minutes. We will present results highlighting our development of the use of a highly stable silver colloid as a SERS substrate to measure the markers at ppb levels. Preliminary results from the use of a solid state SERS substrate to measure fuel markers will also be presented.

  13. Synthesis of gold nanostars with fractal structure: application in surface-enhanced Raman scattering

    Science.gov (United States)

    Zhu, Jian; Liu, Mei-Jin; Li, Jian-Jun; Zhao, Jun-Wu

    2017-11-01

    Multi-branched gold nanostars with fractal feature were synthesized using the Triton X-100 participant seed-growth method. By increasing the amount of ascorbic acid, the branch length of gold nanostars could be greatly increased. It has been interesting to find that the secondary growth of new branches takes place from the elementary structure when the aspect ratio of the branches is greater than 8.0 and the corresponding plasmon absorption wavelength is greater than 900 nm. Raman activity of the gold nanostar films has been investigated by using the 4-mercaptobenzoic acid (4-MBA) as Raman active probe. Experimental results show that the surface-enhanced Raman scattering (SERS) ability of the gold nanostars could be efficiently improved when the fractal structure appears. The physical mechanism has been attributed to the intense increased secondary branch number and the increased "hot spots". These unique multi-branched gold nanostars with fractal feature and great SERS activity should have great potential in sensing applications.

  14. Solving very large scattering problems using a parallel PWTD-enhanced surface integral equation solver

    KAUST Repository

    Liu, Yang

    2013-07-01

    The computational complexity and memory requirements of multilevel plane wave time domain (PWTD)-accelerated marching-on-in-time (MOT)-based surface integral equation (SIE) solvers scale as O(NtNs(log 2)Ns) and O(Ns 1.5); here N t and Ns denote numbers of temporal and spatial basis functions discretizing the current [Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003]. In the past, serial versions of these solvers have been successfully applied to the analysis of scattering from perfect electrically conducting as well as homogeneous penetrable targets involving up to Ns ≈ 0.5 × 106 and Nt ≈ 10 3. To solve larger problems, parallel PWTD-enhanced MOT solvers are called for. Even though a simple parallelization strategy was demonstrated in the context of electromagnetic compatibility analysis [M. Lu et al., in Proc. IEEE Int. Symp. AP-S, 4, 4212-4215, 2004], by and large, progress in this area has been slow. The lack of progress can be attributed wholesale to difficulties associated with the construction of a scalable PWTD kernel. © 2013 IEEE.

  15. A rapid method to authenticate vegetable oils through surface-enhanced Raman scattering

    Science.gov (United States)

    Lv, Ming Yang; Zhang, Xin; Ren, Hai Rui; Liu, Luo; Zhao, Yong Mei; Wang, Zheng; Wu, Zheng Long; Liu, Li Min; Xu, Hai Jun

    2016-03-01

    Vegetable oils are essential in our daily diet. Among various vegetable oils, the major difference lies in the composition of fatty acids, including unsaturated fatty acids (USFA) and saturated fatty acids (SFA). USFA include oleic acid (OA), linoleic acid (LA), and α-linolenic acid (ALA), while SFA are mainly palmitic acid (PA). In this study, the most typical and abundant USFA present with PA in vegetable oils were quantified. More importantly, certain proportional relationships between the integrated intensities of peaks centered at 1656 cm-1 (S1656) in the surface-enhanced Raman scattering spectra of different USFA were confirmed. Therefore, the LA or ALA content could be converted into an equivalent virtual OA content enabling the characterization of the USFA content in vegetable oils using the equivalent total OA content. In combination with the S1656 of pure OA and using peanut, sesame, and soybean oils as examples, the ranges of S1656 corresponding to the National Standards of China were established to allow the rapid authentication of vegetable oils. Gas chromatograph-mass spectrometer analyses verified the accuracy of the method, with relative errors of less than 5%. Moreover, this method can be extended to other detection fields, such as diseases.

  16. Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles

    Science.gov (United States)

    Zhang, Duan; Wu, Ye-Cun; Yang, Mei; Liu, Xiao; Coileáin, Cormac Ó.; Abid, Mourad; Abid, Mohamed; Wang, Jing-Jing; Shvets, Igor; Xu, Hongjun; Chun, Byong Sun; Liu, Huajun; Wu, Han-Chun

    2016-07-01

    Monolayer transition metal dichalcogenides MX2 (M = Mo, W; X = S) exhibit remarkable electronic and optical properties, making them candidates for application within flexible nano-optoelectronics. The ability to achieve a high optical signal, while quantitatively monitoring strain in real-time is the key requirement for applications in flexible sensing and photonics devices. Surface-enhanced Raman scattering (SERS) allows us to achieve both simultaneously. However, the SERS depends crucially on the size and shape of the metallic nanoparticles (NPs), which have a large impact on its detection sensitivity. Here, we investigated the SERS of monolayer MX2, with particular attention paid to the effect of the distribution of the metallic NPs. We show that the SERS depends crucially on the distribution of the metallic NPs and also the phonon mode of the MX2. Moreover, strong coupling between MX2 and metallic NPs, through surface plasmon excitation, results in splitting of the and modes and an additional peak becomes apparent. For a WS2-Ag system the intensity of the additional peak increases exponentially with local strain, which opens another interesting window to quantitatively measure the local strain using SERS. Our experimental study may be useful for the application of monolayer MX2 in flexible nano-optoelectronics.

  17. A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering

    Science.gov (United States)

    Holthoff, Ellen L.; Stratis-Cullum, Dimitra N.; Hankus, Mikella E.

    2011-01-01

    We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs) with surface enhanced Raman scattering (SERS). The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT). Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactions with the polymer matrix. Binding of the TNT within the polymer matrix results in unique SERS bands, which allow for detection and identification of the molecule in the MIP. This MIP-SERS sensor exhibits an apparent dissociation constant of (2.3 ± 0.3) × 10−5 M for TNT and a 3 μM detection limit. The response to TNT is reversible and the sensor is stable for at least 6 months. Key challenges, including developing a MIP formulation that is stable and integrated with the SERS substrate, and ensuring the MIP does not mask the spectral features of the target analyte through SERS polymer background, were successfully met. The results also suggest the MIP-SERS protocol can be extended to other target analytes of interest. PMID:22163761

  18. A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Mikella E. Hankus

    2011-03-01

    Full Text Available We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs with surface enhanced Raman scattering (SERS. The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT. Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactions with the polymer matrix. Binding of the TNT within the polymer matrix results in unique SERS bands, which allow for detection and identification of the molecule in the MIP. This MIP-SERS sensor exhibits an apparent dissociation constant of (2.3 ± 0.3 × 10−5 M for TNT and a 3 µM detection limit. The response to TNT is reversible and the sensor is stable for at least 6 months. Key challenges, including developing a MIP formulation that is stable and integrated with the SERS substrate, and ensuring the MIP does not mask the spectral features of the target analyte through SERS polymer background, were successfully met. The results also suggest the MIP-SERS protocol can be extended to other target analytes of interest.

  19. Monitoring cell culture media degradation using surface enhanced Raman scattering (SERS) spectroscopy.

    Science.gov (United States)

    Calvet, Amandine; Ryder, Alan G

    2014-08-20

    The quality of the cell culture media used in biopharmaceutical manufacturing is a crucial factor affecting bioprocess performance and the quality of the final product. Due to their complex composition these media are inherently unstable, and significant compositional variations can occur particularly when in the prepared liquid state. For example photo-degradation of cell culture media can have adverse effects on cell viability and thus process performance. There is therefore, from quality control, quality assurance and process management view points, an urgent demand for the development of rapid and inexpensive tools for the stability monitoring of these complex mixtures. Spectroscopic methods, based on fluorescence or Raman measurements, have now become viable alternatives to more time-consuming and expensive (on a unit analysis cost) chromatographic and/or mass spectrometry based methods for routine analysis of media. Here we demonstrate the application of surface enhanced Raman scattering (SERS) spectroscopy for the simple, fast, analysis of cell culture media degradation. Once stringent reproducibility controls are implemented, chemometric data analysis methods can then be used to rapidly monitor the compositional changes in chemically defined media. SERS shows clearly that even when media are stored at low temperature (2-8°C) and in the dark, significant chemical changes occur, particularly with regard to cysteine/cystine concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    Science.gov (United States)

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers

    Directory of Open Access Journals (Sweden)

    Joseph Smolsky

    2017-01-01

    Full Text Available Detection of biomarkers is of vital importance in disease detection, management, and monitoring of therapeutic efficacy. Extensive efforts have been devoted to the development of novel diagnostic methods that detect and quantify biomarkers with higher sensitivity and reliability, contributing to better disease diagnosis and prognosis. When it comes to such devastating diseases as cancer, these novel powerful methods allow for disease staging as well as detection of cancer at very early stages. Over the past decade, there have been some advances in the development of platforms for biomarker detection of diseases. The main focus has recently shifted to the development of simple and reliable diagnostic tests that are inexpensive, accurate, and can follow a patient’s disease progression and therapy response. The individualized approach in biomarker detection has been also emphasized with detection of multiple biomarkers in body fluids such as blood and urine. This review article covers the developments in Surface-Enhanced Raman Scattering (SERS and related technologies with the primary focus on immunoassays. Limitations and advantages of the SERS-based immunoassay platform are discussed. The article thoroughly describes all components of the SERS immunoassay and highlights the superior capabilities of SERS readout strategy such as high sensitivity and simultaneous detection of a multitude of biomarkers. Finally, it introduces recently developed strategies for in vivo biomarker detection using SERS.

  2. Microwave-assisted synthesis of sensitive silver substrate for surface-enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Xia, Lixin; Wang, Haibo; Wang, Jian; Gong, Ke; Jia, Yi; Zhang, Huili; Sun, Mengtao

    2008-10-01

    A sensitive silver substrate for surface-enhanced Raman scattering (SERS) spectroscopy is synthesized under multimode microwave irradiation. The microwave-assisted synthesis of the SERS-active substrate was carried out in a modified domestic microwave oven of 2450MHz, and the reductive reaction was conducted in a polypropylene container under microwave irradiation with a power of 100W for 5min. Formaldehyde was employed as both the reductant and microwave absorber in the reductive process. The effects of different heating methods (microwave dielectric and conventional) on the properties of the SERS-active substrates were investigated. Samples obtained with 5min of microwave irradiation at a power of 100W have more well-defined edges, corners, and sharper surface features, while the samples synthesized with 1h of conventional heating at 40°C consist primarily of spheroidal nanoparticles. The SERS peak intensity of the ˜1593cm-1 band of 4-mercaptobenzoic acid adsorbed on silver nanoparticles synthesized with 5min of microwave irradiation at a power of 100W is about 30 times greater than when it is adsorbed on samples synthesized with 1h of conventional heating at 40°C. The results of quantum chemical calculations are in good agreement with our experimental data. This method is expected to be utilized for the synthesis of other metal nanostructural materials.

  3. Self-assembled plasmonic templates produced by microwave annealing: applications to surface-enhanced Raman scattering

    Science.gov (United States)

    Panagiotopoulos, N. T.; Kalfagiannis, N.; Vasilopoulos, K. C.; Pliatsikas, N.; Kassavetis, S.; Vourlias, G.; Karakassides, M. A.; Patsalas, P.

    2015-05-01

    Perhaps the simplest method for creating metal nanoparticles on a substrate is by driving their self-assembly with the thermal annealing of a thin metal film. By properly tuning the annealing parameters one hopes to discover a recipe that allows the pre-determined design of the NP arrangement. However, thermal treatment is known for detrimental effects and is not really the manufacturer’s route of choice when it comes to large-scale applications. An alternative method is the use of microwave annealing, a method that has never been applied for metal processing, due to the high reflectance of microwave radiation at the surface of a metal. However, in this work we challenge the widely used nanostructuring methods by proving the microwave’s annealing ability to produce plasmonic templates, out of extremely thin metal films, by simply using a domestic microwave oven apparatus. We show that this process is generic and independent of the deposition method used for the metal and we further quantify the suitability of these plasmonic templates for use in surface-enhanced Raman scattering applications.

  4. Fast quantitative detection of thiram using surface-enhanced Raman scattering and support vector machine regression

    Science.gov (United States)

    Weng, Shizhuang; Yuan, Baohong; Zhu, Zede; Huang, Linsheng; Zhang, Dongyan; Zheng, Ling

    2016-03-01

    As a novel and ultrasensitive detection technology that had advantages of fingerprint effect, high speed and low cost, surface-enhanced Raman scattering (SERS) was used to develop the regression models for the fast quantitative detection of thiram by support vector machine regression (SVR) in the paper. Meanwhile, three parameter optimization methods, which were grid search (GS), genetic algorithm (GA) and particle swarm optimization (PSO), were employed to optimize the internal parameters of SVR. Furthermore, the influence of the spectral number, spectral wavenumber range and principal component analysis (PCA) on the quantitative detection was also discussed. Firstly, the experiments demonstrate the proposed method can realize the fast and quantitative detection of thiram, and the best result is obtained by GS-SVR with the spectra of the range of characteristic peak which are processed by PCA. And the effect of GS, GA, PSO on the parameter optimization is similar, but the analysis time has a great difference in which GS is the fastest. Considering the analysis accuracy and time simultaneously, the spectral number of samples over each concentration should be set to 50. Then, developing the quantitative model with the spectra of range of characteristic peak can reduce analysis time on the promise of ensuring the detection accuracy. Additionally, PCA can further reduce the detection error through reserving the main information of the spectra data and eliminating the noise.

  5. Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy.

    Science.gov (United States)

    Xu, Meng-Lei; Gao, Yu; Li, Yali; Li, Xueliang; Zhang, Huanjie; Han, Xiao Xia; Zhao, Bing; Su, Liang

    2018-01-05

    Glyphosate is one of the most commonly-used and non-selective herbicides in agriculture, which may directly pollute the environment and threaten human health. A simple and effective approach to assessment of its damage to the natural environment is thus quite necessary. However, traditional chromatography-based detection methods usually suffer from complex pretreatment procedures. Herein, we propose a simple and sensitive method for the determination of glyphosate by combining ninhydrin reaction and surface-enhanced Raman scattering (SERS) spectroscopy. The product (purple color dye, PD) of the ninhydrin reaction is found to SERS-active and directly correlate with the glyphosate concentration. The limit of detection of the proposed method for glyphosate is as low as 1.43×10 -8 mol·L -1 with a relatively wider linear concentration range (1.0×10 -7 -1.0×10 -4 mol·L -1 ), which demonstrates its great potential in rapid, highly sensitive concentration determination of glyphosate in practical applications for safety assessment of food and environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Bromide-Assisted Anisotropic Growth of Gold Nanoparticles as Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Melissa A. Kerr

    2016-01-01

    Full Text Available We report herein a one-step synthesis of gold nanoparticles (Au NPs of various shapes such as triangles, hexagons, and semispheres, using 5-hydroxyindoleacetic acid (5-HIAA as the reducing agent in the presence of potassium bromide (KBr. Anisotropic Au NPs have received ever-increasing attention in various areas of research due to their unique physical and chemical properties. Numerous synthetic methods involving either top-down or bottom-up approaches have been developed to synthesize Au NPs with deliberately varied shapes, sizes, and configurations; however, the production of templateless, seedless, and surfactant-free singular-shaped anisotropic Au NPs remains a significant challenge. The concentrations of hydrogen tetrachloroaurate (HAuCl4, 5-HIAA, and KBr, as well as the reaction temperature, were found to influence the resulting product morphology. A detailed characterization of the resulting Au NPs was performed using ultraviolet-visible (UV-Vis spectroscopy, scanning electron microscopy (SEM, and Raman spectroscopy. The as-prepared Au NPs exhibited excellent surface-enhanced Raman scattering (SERS properties, which make them very attractive for the development of SERS-based chemical and biological sensors.

  7. Surface-Enhanced Raman Scattering of Bacteria in Microwells Constructed from Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mustafa Çulha

    2012-01-01

    Full Text Available Whole bacterial cell characterization is critically important for fast bacterial identification. Surface-enhanced Raman scattering (SERS is proven to be powerful technique to serve such a goal. In this study, the characterization of whole bacterial cells in the microwells constructed from colloidal silver nanoparticles (AgNPs with “convective-assembly” method is reported. The proper size of the microwells for the model bacteria, Escherichia coli and Staphylococcus cohnii, is determined to be 1.2 μm from their electron microscopy images. A minimum dilution factor of 20 is necessary for the bacterial samples collected from growth media to diminish the bacterial aggregation to place the bacterial cells into the microwells. The constructed microwell structures are tested for their bacterial SERS performance and compared to the SERS spectra obtained from the samples prepared with a simple mixing of bacteria and AgNPs for the same bacteria. The results indicate that microwell structures not only improve the spectral quality but also increase the reproducibility of the SERS spectra.

  8. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.

    Science.gov (United States)

    Shen, Yanting; Liang, Lijia; Zhang, Shuqin; Huang, Dianshuai; Zhang, Jing; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-25

    The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.

  9. Design of Ag nanorods for sensitivity and thermal stability of surface-enhanced Raman scattering

    Science.gov (United States)

    Ma, Lingwei; Zhang, Zhengjun; Huang, Hanchen

    2017-10-01

    The technology of surface-enhanced Raman scattering (SERS) has found many applications and may find more if it can possess both sensitivity and thermal stability. This paper reports a rational design of Ag nanorods to simultaneously achieve two competing goals: the sensitivity and the thermal stability of SERS substrates. The Ag nanorods are designed and synthesized using physical vapor deposition under the condition of glancing angle incidence. The working pressure of the vacuum chamber is controlled so the mean free path of depositing atoms is comparable to the dimension of the chamber, so as to grow Ag nanorods with small diameter, and small but clear separation for optimal SERS sensitivity. Such Ag nanorods are further capped with Al2O3 on their top surfaces to reduce the diffusion-induced coarsening at high temperatures, and thereby to improve the thermal stability for SERS detections. Meanwhile, since the side surfaces of Ag nanorods are not coated with oxides in this approach, the SERS sensitivity is largely preserved while good thermal stability is achieved.

  10. Construction and surface enhanced Raman scattering activity of gold nanoparticles array on boron doped diamond film

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Y.S., E-mail: yshzou75@gmail.com; He, L.L.; Zhang, Y.C.; Li, Z.X.; Wang, H.P.; Gu, L.; Tu, C.J.; Zeng, H.B.

    2013-09-16

    Surface functionalization of diamond with amine groups and immobilization of gold nanoparticles (AuNPs) on boron doped nanocrystalline diamond (BDND) films deposited by microwave plasma chemical vapor deposition were investigated. Hydrogen-terminated BDND film surfaces were activated through bonding with allylamine molecules under UV light irradiation. The resulting diamond surfaces were characterized by using X-ray photoelectron spectroscopy and water contact angle measurement. The amine groups were successfully bonded covalently on the BDND diamond surface via a direct photochemical reaction with allylamine. Gold nanoparticles with the average size of 15 nm were then further self-assembled on the amine-terminated diamond surface by immersing the film surface into the gold colloidal solution, and a dense and well distributed AuNPs array in two dimensions with controlled density was obtained. Standard Rhodamine 6G probe molecules were used to access the surface enhanced Raman scattering (SERS) activity of the prepared new SERS substrate based on AuNPs modified BDND film. The results indicated that such AuNPs modified BDND film showed an excellent and stable SERS activity in the low concentration detection of R6G due to the electromagnetic enhancement mechanism. - Highlights: • A homogeneous layer of amine groups was bonded covalently on BDND surface via a photochemical reaction with allylamine. • A dense and well distributed AuNPs array with controlled density was self-assembled on the amine-terminated BDND film surface. • A new and highly efficient SERS active substrate based on AuNPs modified BDND film was constructed. • The AuNPs modified BDND film exhibited good SERS performance with stable and reproducible SERS activity for detection of R6G.

  11. Amplification of Surface-Enhanced Raman Scattering Due to Substrate-Mediated Localized Surface Plasmons in Gold Nanodimers

    KAUST Repository

    Yue, Weisheng

    2017-03-28

    Surface-enhanced Raman scattering (SERS) is ubiquitous in chemical and biochemical sensing, imaging and identification. Maximizing SERS enhancement is a continuous effort focused on the design of appropriate SERS substrates. Here we show that significant improvement in a SERS signal can be achieved with substrates combining localized surface plasmon resonances and a nonresonant plasmonic substrate. By introducing a continuous gold (Au) film underneath Au nanodimers antenna arrays, an over 10-fold increase in SERS enhancement is demonstrated. Triangular, rectangle and disc dimers were studied, with bowtie antenna providing highest SERS enhancement. Simulations of electromagnetic field distributions of the Au nanodimers on the Au film support the observed enhancement dependences. The hybridization of localized plasmonic modes with the image modes in a metal film provides a straightforward way to improve SERS enhancement in designer SERS substrate.

  12. Investigations of scattering and field enhancement effects in retardation-based plasmonic nanoantennas

    DEFF Research Database (Denmark)

    Nielsen, M. G.; Pors, A.; Nielsen, Rasmus Bundgaard

    2010-01-01

    interfering short-range surface plasmon polaritons (SR-SPP) and that the transformation of straight nanorods into split-rings by bending significantly influences the scattering strength. Importantly, strong suppression of scattering for the fundamental SR-SPP mode is observed when the bend radius is decreased...

  13. The double-resonance enhancement of stimulated low-frequency Raman scattering in silver-capped nanodiamonds

    Science.gov (United States)

    Baranov, A. N.; Butsen, A. V.; Ionin, A. A.; Ivanova, A. K.; Kuchmizhak, A. A.; Kudryashov, S. I.; Kudryavtseva, A. D.; Levchenko, A. O.; Rudenko, A. A.; Saraeva, I. N.; Strokov, M. A.; Tcherniega, N. V.; Zayarny, D. A.

    2017-09-01

    Hybrid plasmonic-dielectric nano- and (sub)microparticles exhibit magnetic and electrical dipolar Mie-resonances, which makes them useful as efficient basic elements in surface-enhanced spectroscopy, non-linear light conversion and nanoscale light control. We report the stimulated low-frequency Raman scattering (SLFRS) of a nanosecond ruby laser radiation (central wavelength λ = 694.3 nm (full-width at half-maximum ≈ 0.015 cm-1), gaussian 1/e-intensity pulsewidth τ ≈ 20 ns, TEM00-mode pulse energy Emax ≈ 0.3 J) in nanodiamond (R ≈ 120 nm) hydrosols, induced via optomechanical coherent excitation of fundamental breathing eigen-modes, and the two-fold enhancement of SLFRS in Ag-decorated nanodiamonds, characterized by hybrid dipolar resonances of electrical (silver) and magnetic (diamond) nature. Hybrid metal-dielectric particles were prepared by means of nanosecond IR-laser ablation of solid silver target in diamond hydrosols with consecutive Ag-capping of diamonds, and were characterized by scanning electron microscopy, UV-vis, photoluminescence and energy-dispersive X-ray spectroscopy. Intensities of the SLFR-scattered components and their size-dependent spectral shifts were measured in the highly sensitive stimulated scattering regime, indicating the high (≈ 30%) SLFRS conversion efficiency and the resonant character of the scattering species.

  14. Expenditure Cascades

    OpenAIRE

    Frank, R; Levine, A.; Dijk, O.

    2014-01-01

    Prevailing economic models of consumer behavior completely ignore the well-documented link between context and evaluation. We propose and test a theory that explicitly incorporates this link. Changes in one group's spending shift the frame of reference that defines consumption standards for others just below them on the income scale, giving rise to expenditure cascades. Our model, a descendant of James Duesenberry's relative income hypothesis, predicts the observed ways in which individual sa...

  15. A Au nanoparticle-incorporated sponge as a versatile transmission surface-enhanced Raman scattering substrate.

    Science.gov (United States)

    Shin, Kayeong; Chung, Hoeil

    2015-08-07

    We report a sponge-based transmission surface-enhanced Raman scattering (TSERS) substrate that combines the bulk sampling capabilities of a transmission measurement to improve the quantitative representation of sample concentration with several sponge properties useful for analysis such as fast sample uptake, easy sample enrichment, and a stable polymeric structure. Among nine commercially available sponges made of different materials, a melamine sponge was ultimately selected for this study because it provided the fastest sample uptake and a low background Raman signal. Simultaneously, the amino groups and three-nitrogen hybrid rings in its structure could easily hold Au nanoparticles (AuNPs) inside the sponge. AuNP-incorporated sponges (AuNP sponges) were prepared by simply soaking a melamine sponge in a AuNP solution; these sponges were initially used to measure 4-nitrobenzenethiol (4-NBT) samples with different concentrations in order to evaluate their ability as TSERS substrates. The intensities of the 4-NBT peaks clearly varied according to changes in the concentration, and the relative standard deviation (RSD) of the peak intensity estimated by the measurements of five independently prepared AuNP sponges was 10.0%. Sample enrichment was easily completed by repeated suctioning of the sample into the AuNP sponges followed by depletion of the solvent, so three-time enrichment doubled the intensity. Furthermore, paraquat samples were prepared in diverse matrices (de-ionized water, tap water, river water, and orange juice) and measured using the AuNP sponges. The paraquat peaks were clearly observed from these samples and their peak intensities became smaller with the increased compositional complexity of the matrices. Our overall results demonstrate that the TSERS sponge substrates are easy to prepare and practically versatile for SERS analysis of diverse samples.

  16. Rapid detection of Pseudomonas aeruginosa biomarkers in biological fluids using surface-enhanced Raman scattering

    Science.gov (United States)

    Wu, Xiaomeng; Chen, Jing; Zhao, Yiping; Zughaier, Susu M.

    2014-05-01

    Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes major infection not only in Cystic Fibrosis patients but also in chronic obstructive pulmonary disease and in critically ill patients in intensive care units. Successful antibiotic treatment of the infection relies on accurate and rapid identification of the infectious agents. Conventional microbiological detection methods usually take more than 3 days to obtain accurate results. We have developed a rapid diagnostic technique based on surface-enhanced Raman scattering to directly identify PA from biological fluids. P. aeruginosa strains, PAO1 and PA14, are cultured in lysogeny broth, and the SERS spectra of the broth show the signature Raman peaks from pyocyanin and pyoverdine, two major biomarkers that P. aeruginosa secretes during its growth, as well as lipopolysaccharides. This provides the evidence that the presence of these biomarkers can be used to indicate P. aeruginosa infection. A total of 22 clinical exhaled breath condensates (EBC) samples were obtained from subjects with CF disease and from non-CF healthy donors. SERS spectra of these EBC samples were obtained and further analyzed by both principle component analysis and partial least square-discriminant analysis (PLS-DA). PLS-DA can discriminate the samples with P. aeruginosa infection and the ones without P. aeruginosa infection at 99.3% sensitivity and 99.6% specificity. In addition, this technique can also discriminate samples from subject with CF disease and healthy donor with 97.5% sensitivity and 100% specificity. These results demonstrate the potential of using SERS of EBC samples as a rapid diagnostic tool to detect PA infection.

  17. Chip-Scale Bioassays Based on Surface-Enhanced Raman Scattering: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Young [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    This work explores the development and application of chip-scale bioassays based on surface-enhanced Raman scattering (SERS) for high throughput and high sensitivity analysis of biomolecules. The size effect of gold nanoparticles on the intensity of SERS is first presented. A sandwich immunoassay was performed using Raman-labeled immunogold nanoparticles with various sizes. The SERS responses were correlated to particle densities, which were obtained by atomic force microscopy (AFM). The response of individual particles was also investigated using Raman-microscope and an array of gold islands on a silicon substrate. The location and the size of individual particles were mapped using AFM. The next study describes a low-level detection of Escherichia coli 0157:H7 and simulants of biological warfare agents in a sandwich immunoassay format using SERS labels, which have been termed Extrinsic Raman labels (ERLs). A new ERL scheme based on a mixed monolayer is also introduced. The mixed monolayer ERLs were created by covering the gold nanoparticles with a mixture of two thiolates, one thiolate for covalently binding antibody to the particle and the other thiolate for producing a strong Raman signal. An assay platform based on mixed self-assembled monolayers (SAMs) on gold is then presented. The mixed SAMs were prepared from dithiobis(succinimidyl undecanoate) (DSU) to covalently bind antibodies on gold substrate and oligo(ethylene glycol)-terminated thiol to prevent nonspecific adsorption of antibodies. After the mixed SAMs surfaces, formed from various mole fraction of DSU were incubated with antibodies, AFM was used to image individual antibodies on the surface. The final study presents a collaborative work on the single molecule adsorption of YOYO-I labeled {lambda}-DNA at compositionally patterned SAMs using total internal reflection fluorescence microscopy. The role of solution pH, {lambda}-DNA concentration, and domain size was investigated. This work also revealed

  18. A simple approach for ultrasensitive detection of bisphenols by multiplexed surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    De Bleye, C., E-mail: cdebleye@ulg.ac.be; Dumont, E.; Hubert, C.; Sacré, P.-Y.; Netchacovitch, L.; Chavez, P.-F.; Hubert, Ph.; Ziemons, E.

    2015-08-12

    Bisphenol A (BPA) is well known for its use in plastic manufacture and thermal paper production despite its risk of health toxicity as an endocrine disruptor in humans. Since the publication of new legislation regarding the use of BPA, manufacturers have begun to replace BPA with other phenolic molecules such as bisphenol F (BPF) and bisphenol B (BPB), but there are no guarantees regarding the health safety of these compounds at this time. In this context, a very simple, cheap and fast surface-enhanced Raman scattering (SERS) method was developed for the sensitive detection of these molecules in spiked tap water solutions. Silver nanoparticles were used as SERS substrates. An original strategy was employed to circumvent the issue of the affinity of bisphenols for metallic surfaces and the silver nanoparticles surface was functionalized using pyridine in order to improve again the sensitivity of the detection. Semi-quantitative detections were performed in tap water solutions at a concentrations range from 0.25 to 20 μg L{sup −1} for BPA and BPB and from 5 to 100 μg L{sup −1} for BPF. Moreover, a feasibility study for performing a multiplex-SERS detection of these molecules was also performed before successfully implementing the developed SERS method on real samples. - Highlights: • Development of a simple, fast and ultrasensitive SERS method to detect bisphenols. • Multiplexed-SERS detection of bisphenol A, bisphenol B and bisphenol F. • Implementation of the SERS developed method on real samples to detect bisphenols.

  19. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review.

    Science.gov (United States)

    Hakonen, Aron; Andersson, Per Ola; Stenbæk Schmidt, Michael; Rindzevicius, Tomas; Käll, Mikael

    2015-09-17

    Acts of terror and warfare threats are challenging tasks for defense agencies around the world and of growing importance to security conscious policy makers and the general public. Explosives and chemical warfare agents are two of the major concerns in this context, as illustrated by the recent Boston Marathon bombing and nerve gas attacks on civilians in the Middle East. To prevent such tragic disasters, security personnel must be able to find, identify and deactivate the threats at multiple locations and levels. This involves major technical and practical challenges, such as detection of ultra-low quantities of hazardous compounds at remote locations for anti-terror purposes and monitoring of environmental sanitation of dumped or left behind toxic substances and explosives. Surface-enhanced Raman scattering (SERS) is one of todays most interesting and rapidly developing methods for label-free ultrasensitive vibrational "fingerprinting" of a variety of molecular compounds. Performance highlights include attomolar detection of TNT and DNT explosives, a sensitivity that few, if any, other technique can compete with. Moreover, instrumentation needed for SERS analysis are becoming progressively better, smaller and cheaper, and can today be acquired for a retail price close to 10,000 US$. This contribution aims to give a comprehensive overview of SERS as a technique for detection of explosives and chemical threats. We discuss the prospects of SERS becoming a major tool for convenient in-situ threat identification and we summarize existing SERS detection methods and substrates with particular focus on ultra-sensitive real-time detection. General concepts, detection capabilities and perspectives are discussed in order to guide potential users of the technique for homeland security and anti-warfare purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Morphology modification of gold nanoparticles from nanoshell to C-shape: Improved surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Ting-Yang; Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu, E-mail: nanoptzhao@163.com [The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-06-28

    Morphology modification of nanostructures is of great interest, because it can be used to fabricate nanostructures which are hard to be done using other methods. Different from traditional lithographic technique which is slow and expensive, morphology modification is easy, cheap, and reproducible. In this paper, modification of the optical and morphological properties of a hollow gold nanoshell (HGNS) is achieved by using H{sub 2}O{sub 2} as an oxidizer. The reshaping of these nanostructures has been demonstrated as a consequence of an oxidation process in which HGNSs are dissolved by H{sub 2}O{sub 2} under the acidic conditions provided by HCl. We investigate the oxidation process by a transmission electron microscope and propose a reshaping model involving four different shapes (HGNS, HGNS with hole, gold nanoring, and C-shaped gold nanoparticle) which are corresponding to the oxidation products of HGNSs at different pH values. Besides, the surface enhanced Raman scattering (SERS) activity of each oxidation product has been evaluated by using rhodamine 6G as the Raman active probe. It has been observed that the C-shaped gold nanoparticles which are corresponding to the oxidation products at the minimum pH value have the highest SERS activity and this result can also be interpreted by discrete-dipole approximation simulations. We demonstrate that the morphology modification of HGNSs becomes possible in a controlled manner using wet chemistry and can be used in preparation of gold nanoparticles such as HGNS with hole, gold nanoring, and C-shaped gold nanoparticle with large SERS activity. These nanostructures must have potential use in many plasmonic areas, including sensing, catalysis, and biomedicine.

  1. Rapid detection of polychlorinated biphenyls at trace levels in real environmental samples by surface-enhanced Raman scattering.

    Science.gov (United States)

    Zhou, Qin; Zhang, Xian; Huang, Yu; Li, Zhengcao; Zhang, Zhengjun

    2011-01-01

    Detection of trace levels of persistent pollutants in the environment is difficult but significant. Organic pollutant homologues, due to their similar physical and chemical properties, are even more difficult to distinguish, especially in trace amounts. We report here a simple method to detect polychlorinated biphenyls (PCBs) in soil and distilled spirit samples by the surface-enhanced Raman scattering technique using Ag nanorod arrays as substrates. By this method, polychlorinated biphenyls can be detected to a concentration of 5 μg/g in dry soil samples within 1 minute. Furthermore, based on simulation and understanding of the Raman characteristics of PCBs, we recognized homologues of tetrachlorobiphenyl by using the surface-enhance Raman scattering method even in trace amounts in acetone solutions, and their characteristic Raman peaks still can be distinguished at a concentration of 10(-6) mol/L. This study provides a fast, simple and sensitive method for the detection and recognition of organic pollutants such as polychlorinated biphenyls.

  2. Ultra-sensitive molecular detection using surface-enhanced Raman scattering on periodic metal-dielectric nanostructures

    Science.gov (United States)

    Nien, Chun; Li, Yi-Hsuan; Su, Vin-Cent; Kuan, Chieh-Hsiung

    2017-02-01

    Surface-enhanced Raman scattering (SERS) is a powerful technique for trace chemical analysis and single molecule detection in the application of biochemical monitoring and food safety due to its ability to enhance the Raman scattering of molecules near the metallic surface or nanostructures. Here, we present a comprehensive study of the SERS enhancement by the periodically nanostructured surface, where the thin film of silver is deposited onto the surface, except the sidewall of posts, of 1-D lamellar gratings with varying pitch to forming metal-dielectric composite nanostructures. By enhancing the localized and surface-propagating mode in the vicinity of the concaves, the SERS signal can be improved by amplifying the intensity of electric field and increasing the optical path length of the incident light. Experimental investigations show that the enhancement factor can be manipulated by varying the polarization of incident light and the pitch size of gratings. To demonstrate the SERS effects of the proposed structures, thin layers of benzoic acid, which is commonly used as a food preservative, are deposited on the SERS substrates by spin-coating a solution of benzoic acid and dried at room temperature. A Confocal Raman microscope with a 532 nm laser source is used to illuminate light and measure the Raman spectrum of benzoic acid. We demonstrate the Raman signal of benzoic acid can be enhanced on the order of 102 on the SERS substrates.

  3. Time-Resolved Study of the Surface-Enhanced Raman Scattering Effect of Silver Nanoparticles Generated in Voltammetry Experiments

    OpenAIRE

    Ibáñez, David; Fernández Blanco, Ana Cristina; Heras, Aránzazu; Colina, Álvaro

    2014-01-01

    UV–vis absorption and Raman spectroelectrochemistry have been used to study silver nanoparticle (AgNP) electrodeposition, allowing a better understanding about the metal nanoparticle (NP) formation process and its influence on the surface-enhanced Raman scattering (SERS) effect. These techniques have provided in situ information related to the synthesis of AgNPs by cyclic voltammetry. With a marker, such as cyanide anion (CN–), Raman spectroscopy has allowed us to study all changes that take ...

  4. Part-Per-Trillion Level SF6 Detection Using a Quartz Enhanced Photoacoustic Spectroscopy-Based Sensor with Single-Mode Fiber-Coupled Quantum Cascade Laser Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, V.; Patimisco, P.; Borri, Simone; Scamarcio, G.; Bernacki, Bruce E.; Kriesel, J.M.

    2012-10-23

    A sensitive spectroscopic sensor based on a hollow-core fiber-coupled quantum cascade laser (QCL) emitting at 10.54 µm and quartz enhanced photoacoustic spectroscopy (QEPAS) technique is reported. The design and realization of mid-infrared fiber and coupler optics has ensured single-mode QCL beam delivery to the QEPAS sensor . The collimation optics was designed to produce a laser beam of significantly reduced beam size and waist so as to prevent illumination of the quartz tuning fork and micro-resonator tubes. SF6 was selected as the target gas. A minimum detection sensitivity of 50 parts per trillion in 1 s was achieved with a QCL power of 18 mW, corresponding to a normalized noise-equivalent absorption of 2.7x10-10 W•cm-1/Hz1/2.

  5. Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation.

    Science.gov (United States)

    Spagnolo, Vincenzo; Patimisco, Pietro; Borri, Simone; Scamarcio, Gaetano; Bernacki, Bruce E; Kriesel, Jason

    2012-11-01

    A sensitive spectroscopic sensor based on a hollow-core fiber-coupled quantum cascade laser (QCL) emitting at 10.54 μm and quartz enhanced photoacoustic spectroscopy (QEPAS) technique is reported. The design and realization of mid-IR fiber and coupler optics has ensured single-mode QCL beam delivery to the QEPAS sensor. The collimation optics was designed to produce a laser beam of significantly reduced beam size and waist so as to prevent illumination of the quartz tuning fork and microresonator tubes. SF(6) was selected as the target gas. A minimum detection sensitivity of 50 parts per trillion in 1 s was achieved with a QCL power of 18 mW, corresponding to a normalized noise-equivalent absorption of 2.7×10(-10) W·cm(-1)/Hz(1/2).

  6. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine

    DEFF Research Database (Denmark)

    Kneipp, J.; Wittig, B.; Bohr, Henrik

    2010-01-01

    Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical...

  7. Plasmon Mapping in Metallic Nanostructures and its Application to Single Molecule Surface Enhanced Raman Scattering: Imaging Electromagnetic Hot-Spots and Analyte Location

    Energy Technology Data Exchange (ETDEWEB)

    Camden, Jon P. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry

    2013-07-12

    A major component of this proposal is to elucidate the connection between optical and electron excitation of plasmon modes in metallic nanostructures. These accomplishments are reported: developed a routine protocol for obtaining spatially resolved, low energy EELS spectra, and resonance Rayleigh scattering spectra from the same nanostructures; correlated optical scattering spectra and plasmon maps obtained using STEM/EELS; and imaged electromagnetic hot spots responsible for single-molecule surface-enhanced Raman scattering (SMSERS).

  8. Surface-enhanced Raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles.

    Science.gov (United States)

    Lee, Jisook; Shim, Sangdeok; Kim, Bongsoo; Shin, Hyeon Suk

    2011-02-18

    Surface-enhanced Raman scattering (SERS) of graphene on a SiO(2)(300 nm)/Si substrate was investigated by depositing Au nanoparticles using thermal evaporation. This provided a maximum enhancement of 120 times for single-layer graphene at 633 nm excitation. SERS spectra and scan images of single-layer and few-layer graphene were acquired. Single-layer graphene provides much larger SERS enhancement compared to few-layer graphene, while in single-layer graphene the enhancement of the G band was larger than that of the 2D band. Furthermore, the D bands were identified in the SERS spectra; these bands were not observed in a normal Raman spectrum without Au deposition. Appearance of the D band is ascribed to the considerable SERS enhancement and not to an Au deposition-induced defect. Lastly, SERS enhancement of graphene on a transparent glass substrate was compared with that on the SiO(2)(300 nm)/Si substrate to exclude enhancement by multiple reflections between the Si substrate and deposited Au nanoparticles. The contribution of multiple reflections to total enhancement on the SiO(2)(300 nm)/Si substrate was 1.6 times out of average SERS enhancement factor, 71 times. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages

    Science.gov (United States)

    Kitamura, Takanori; Qian, Bin-Zhi; Soong, Daniel; Cassetta, Luca; Noy, Roy; Sugano, Gaël; Kato, Yu; Li, Jiufeng

    2015-01-01

    Pulmonary metastasis of breast cancer cells is promoted by a distinct population of macrophages, metastasis-associated macrophages (MAMs), which originate from inflammatory monocytes (IMs) recruited by the CC-chemokine ligand 2 (CCL2). We demonstrate here that, through activation of the CCL2 receptor CCR2, the recruited MAMs secrete another chemokine ligand CCL3. Genetic deletion of CCL3 or its receptor CCR1 in macrophages reduces the number of lung metastasis foci, as well as the number of MAMs accumulated in tumor-challenged lung in mice. Adoptive transfer of WT IMs increases the reduced number of lung metastasis foci in Ccl3 deficient mice. Mechanistically, Ccr1 deficiency prevents MAM retention in the lung by reducing MAM–cancer cell interactions. These findings collectively indicate that the CCL2-triggered chemokine cascade in macrophages promotes metastatic seeding of breast cancer cells thereby amplifying the pathology already extant in the system. These data suggest that inhibition of CCR1, the distal part of this signaling relay, may have a therapeutic impact in metastatic disease with lower toxicity than blocking upstream targets. PMID:26056232

  10. Probing the plasmonic near-field by one- and two-photon excited surface enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Katrin Kneipp

    2013-12-01

    Full Text Available Strongly enhanced and spatially confined near-fields in the vicinity of plasmonic nanostructures open up exciting new capabilities for photon-driven processes and particularly also for optical spectroscopy. Surface enhanced Raman signatures of single molecules can provide us with important information about the optical near-field. We discuss one- and two-photon excited surface enhanced Raman scattering at the level of single molecules as a tool for probing the plasmonic near-field of silver nanoaggregates. The experiments reveal enhancement factors of local fields in the hottest hot spots of the near-field and their dependence on the photon energy. Also, the number of the hottest spots and their approximate geometrical size are found. Near-field amplitudes in the hottest spots can be enhanced by three orders of magnitudes. Nanoaggregates of 100 nm dimensions provide one hot spot on this highest enhancement level where the enhancement is confined within less than 1nm dimension. The near-field enhancement in the hottest spots increases with decreasing photon energy.

  11. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

    Science.gov (United States)

    Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

    2014-11-11

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

  12. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.

    Science.gov (United States)

    Lu, Lu; Xing, Defeng; Liu, Bingfeng; Ren, Nanqi

    2012-03-15

    Fermentative hydrogen production from waste activated sludge (WAS) has low H2 yield because WAS contains limited amounts of carbohydrate suitable for use by hydrogen-producing bacteria. Here, augmentation of hydrogen production from WAS by microbial electrolysis cells (MECs) was implemented. H2 yields of 3.89±0.39 mg-H2/g-DS (5.67±0.61 mg-H2/g-VSS) from raw WAS and 6.78±0.94 mg-H2/g-DS (15.08±1.41 mg-H2/g-VSS) from alkaline-pretreated WAS were obtained in the two-chamber MECs (TMECs). This was several times higher than yields obtained previously by fermentation. Single-chamber MECs (SMECs) with low internal resistance showed a H2 production rate that 13 times that of TMECs with similar H2 yield when alkaline-pretreated WAS was used. However, methanogenesis was detected after several batch cycles. A yield balance calculation revealed that carbohydrates were not the only substrates for electrohydrogenesis. Protein and its acidification products, such as volatile fatty acids are also responsible for a portion of H2 generation in MEC. Characterization of WAS in TMECs by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis indicated that electrohydrogenesis reacted on the extracellular polymeric substances and intracellular substances of WAS. Cascade utilization of organic matter in MECs increased hydrogen production from WAS. MECs showed high hydrogen yield from WAS, fewer H2 sinks, and insensitivity to temperature. Optimizing MEC configurations and operation conditions and improving the pretreatment processes of WAS are necessary before practical application can take place on a large scale. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Enhancement of photoluminescence and raman scattering in one-dimensional photonic crystals based on porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gonchar, K. A., E-mail: k.a.gonchar@gmail.com [Moscow State University, Physics Faculty (Russian Federation); Musabek, G. K.; Taurbayev, T. I. [Al Farabi Kazakh National University, Physics Department (Kazakhstan); Timoshenko, V. Yu. [Moscow State University, Physics Faculty (Russian Federation)

    2011-05-15

    In porous-silicon-based multilayered structures that exhibit the properties of one-dimensional photonic crystals, an increase in the photoluminescence and Raman scattering intensities is observed upon optical excitation at the wavelength 1.064 {mu}m. When the excitation wavelength falls within the edge of the photonic band gap of the structures, a multiple increase (by a factor larger than 400) in the efficiency of Raman scattering is detected. The effect is attributed to partial localization of excitation light and, correspondingly, to the much longer time of interaction of light with the material in the structures.

  14. The use of surface-enhanced Raman scattering for detecting molecular evidence of life in rocks, sediments, and sedimentary deposits.

    Science.gov (United States)

    Bowden, Stephen A; Wilson, Rab; Cooper, Jonathan M; Parnell, John

    2010-01-01

    Raman spectroscopy is a versatile analytical technique capable of characterizing the composition of both inorganic and organic materials. Consequently, it is frequently suggested as a payload on many planetary landers. Only approximately 1 in every 10(6) photons are Raman scattered; therefore, the detection of trace quantities of an analyte dispersed in a sample matrix can be much harder to achieve. To overcome this, surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) both provide greatly enhanced signals (enhancements between 10(5) and 10(9)) through the analyte's interaction with the locally generated surface plasmons, which occur at a "roughened" or nanostructured metallic surface (e.g., Cu, Au, and Ag). Both SERS and SERRS may therefore provide a viable technique for trace analysis of samples. In this paper, we describe the development of SERS assays for analyzing trace amounts of compounds present in the solvent extracts of sedimentary deposits. These assays were used to detect biological pigments present in an Arctic microoasis (a small locale of elevated biological productivity) and its detrital regolith, characterize the pigmentation of microbial mats around hydrothermal springs, and detect fossil organic matter in hydrothermal deposits. These field study examples demonstrate that SERS technology is sufficiently mature to be applied to many astrobiological analog studies on Earth. Many current and proposed imaging systems intended for remote deployment already posses the instrumental components needed for SERS. The addition of wet chemistry sample processing facilities to these instruments could yield field-deployable analytical instruments with a broadened analytical window for detecting organic compounds with a biological or geological origin.

  15. Seed mass and mast seeding enhance dispersal by a neotropical scatter-hoarding rodent

    NARCIS (Netherlands)

    Jansen, P.A.; Bongers, F.J.J.M.; Hemerik, L.

    2004-01-01

    Many tree species that depend on scatter-hoarding animals for seed dispersal produce massive crops of large seeds at irregular intervals. Mast seeding and large seed size in these species have been explained as adaptations to increase animal dispersal and reduce predation. We studied how seed size

  16. Enhancement of the stimulated Raman scattering of benzene, acetonitrile and pyridine

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, L; Contreras, W A; Cabanzo, R; Aya-RamIrez, O; Mejia-Ospino, E, E-mail: emejia@uis.edu.co [Laboratorio de Espectroscopia Atomica y Molecular (LEAM) Universidad Industrial de Santander, Escuela de Fisica, Facultad de Ciencias, Universidad Industrial de Santander (UIS). AA. 678 Bucaramanga (Colombia)

    2011-01-01

    In this work we used the second harmonic of Nd:YAG laser to observe stimulated Raman scattering (SRS). SRS was observed on benzene, acetonitrile and pyridine using a single shot laser. The SRS radiation is very intense due their laser characteristics, and it is possible to observe several harmonics of different vibrational modes to each molecule studied here.

  17. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    Science.gov (United States)

    Wang, Alan X.; Kong, Xianming

    2015-01-01

    Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene. PMID:26900428

  18. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Wang, Alan X; Kong, Xianming

    2015-06-01

    Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  19. Robustness of surface-enhanced Raman scattering substrate with a mercaptosilane adhesive layer for in vivo sensing applications

    Science.gov (United States)

    Okumura, Yasuaki; Jans, Hilde; van Dorpe, Pol; Li, Jiaqi; Minamiguchi, Masaru; Shioi, Masahiko; Vlaminck, Lieven; Lagae, Liesbet; Kawamura, Tatsuro

    2015-06-01

    A highly robust surface-enhanced Raman scattering (SERS) substrate for in vivo sensing applications is reported. In vivo sensing demands structurally robust substrates with good optical performance. SERS substrates containing gold nanostructures on SiO2 supports often suffer from a low adhesion strength of gold on SiO2. The proposed SERS substrate contains a mercaptosilane adhesive layer, which provides a high robustness without deteriorating the plasmon performance, in contrast to traditional titanium adhesive layers. The mercaptosilane-modified SERS substrate is sufficiently robust for in vivo sensing, as evidenced by its implantation in the animal skin for 2 months.

  20. Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength

    Directory of Open Access Journals (Sweden)

    N. Guillot

    2011-09-01

    Full Text Available We here emphasize that the Surface Enhanced Raman Scattering (SERS intensity has to be optimized by choosing the appropriate gold nanoparticles size for two excitation wavelengths: 632.8 and 785 nm. We discuss the role of the position and of the order of the Localized Surface Plasmon Resonance (LSPR in such optimization for both wavelengths. At 632.8 nm, the best SERS intensity is reached for a LSPR located between the excitation and Raman wavelengths whereas at 785 nm, the LSPR should be placed outside this range. The third order of LSPR is shown to have no influence on the SERS intensity.

  1. 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering

    KAUST Repository

    Chirumamilla, Manohar

    2014-01-22

    Plasmonic nanostar-dimers, decoupled from the substrate, have been fabricated by combining electron-beam lithography and reactive-ion etching techniques. The 3D architecture, the sharp tips of the nanostars and the sub-10 nm gap size promote the formation of giant electric-field in highly localized hot-spots. The single/few molecule detection capability of the 3D nanostar-dimers has been demonstrated by Surface-Enhanced Raman Scattering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Solution-based characterization of surface-enhanced Raman response of single scattering centers

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, T A; Talley, C; Schwartzberg, A; Braun, G; Moskovits, M; Reich, N; Huser, T

    2008-03-06

    We demonstrate the rapid optical characterization of large numbers of individual metal nanoparticles freely diffusing in colloidal solution by confocal laser spectroscopy. We find that hollow gold nanospheres and solid silver nanoparticles linked with a bifunctional ligand, both designed nanostructures, exhibit significantly higher monodispersity in their Rayleigh and Raman scattering response than randomly aggregated gold and silver nanoparticles. We show that measurements of rotational diffusion timescales allow sizing of particles significantly more reliably than can be obtained using translational diffusion timescales.

  3. Enhanced Raman Scattering from NCM523 Cathodes Coated with Electrochemically Deposited Gold

    Energy Technology Data Exchange (ETDEWEB)

    Tornheim, Adam; Maroni, Victor A.; He, Meinan; Gosztola, David J.; Zhang, Zhengcheng

    2017-01-01

    Materials with the general composition LiMO2, where M is a mix of nickel, cobalt, and manganese, have been studied extensively as cathodes for lithium-based electrochemical cells. Some compositions, like LiNi0.5Co0.2Mn0.3O2 (NCM523), have already found application in commercial lithium-ion batteries. Pre-test and post-test analyses of these types of cathodes have benefited greatly from the use of Raman spectroscopy. Specifically, Raman spectroscopy can be used to investigate the phonons of the LiMO2 lattice. This is particularly useful for studies of the LiMO2 after it has been formed into the type of polymer-bonded laminate from which typical battery cathodes are cut. One of the problems that occurs in such studies is that the scattering from the LiMO2 phase gets progressively weaker as the nickel content increases. NCM523 poses one example of this behavior owing to the fact that half of the transition metal content is nickel. In this study we show that the intensity of the Raman scattering from the NCM523 phonons can be significantly increased by electroplating clusters of sub-micron gold particles on NCM523-containing laminate structures. The gold appears to plate somewhat selectively on the NCM523 particles in randomly sized clusters. These clusters stimulate the Raman scattering from the NCM523 to varying extents that can reach nearly 100 times the scattering intensity from uncoated pristine laminates.

  4. Spot Scanning and Passive Scattering Proton Therapy: Relative Biological Effectiveness and Oxygen Enhancement Ratio in Cultured Cells

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Hiromitsu, E-mail: h-iwa-ncu@nifty.com [Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya (Japan); Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Ogino, Hiroyuki [Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya (Japan); Hashimoto, Shingo [Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya (Japan); Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Yamada, Maho [Department of Radiation Oncology, Nagoya City West Medical Center, Nagoya (Japan); Shibata, Hiroki; Yasui, Keisuke [Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya (Japan); Toshito, Toshiyuki; Omachi, Chihiro [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya (Japan); Tatekawa, Kotoha [Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Manabe, Yoshihiko [Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Mizoe, Jun-etsu [Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya (Japan); Shibamoto, Yuta [Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan)

    2016-05-01

    Purpose: To determine the relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and contribution of the indirect effect of spot scanning proton beams, passive scattering proton beams, or both in cultured cells in comparison with clinically used photons. Methods and Materials: The RBE of passive scattering proton beams at the center of the spread-out Bragg peak (SOBP) was determined from dose-survival curves in 4 cell lines using 6-MV X rays as controls. Survival of 2 cell lines after spot scanning and passive scattering proton irradiation was then compared. Biological effects at the distal end region of the SOBP were also investigated. The OER of passive scattering proton beams and 6 MX X rays were investigated in 2 cell lines. The RBE and OER values were estimated at a 10% cell survival level. The maximum degree of protection of radiation effects by dimethyl sulfoxide was determined to estimate the contribution of the indirect effect against DNA damage. All experiments comparing protons and X rays were made under the same biological conditions. Results: The RBE values of passive scattering proton beams in the 4 cell lines examined were 1.01 to 1.22 (average, 1.14) and were almost identical to those of spot scanning beams. Biological effects increased at the distal end of the SOBP. In the 2 cell lines examined, the OER was 2.74 (95% confidence interval, 2.56-2.80) and 3.08 (2.84-3.11), respectively, for X rays, and 2.39 (2.38-2.43) and 2.72 (2.69-2.75), respectively, for protons (P<.05 for both cells between X rays and protons). The maximum degree of protection was significantly higher for X rays than for proton beams (P<.05). Conclusions: The RBE values of spot scanning and passive scattering proton beams were almost identical. The OER was lower for protons than for X rays. The lower contribution of the indirect effect may partly account for the lower OER of protons.

  5. Light absorption enhancement in thin-film GaAs solar cells with flattened light scattering substrates

    Science.gov (United States)

    Sai, Hitoshi; Mizuno, Hidenori; Makita, Kikuo; Matsubara, Koji

    2017-09-01

    A flattened light scattering substrate (FLiSS) was investigated for enhancing the light absorption in thin-film GaAs solar cells. The FLiSS investigated in this work was limited to those composed of periodic refractive index distribution, although its concept is not necessarily limited to such a structure. The following guidelines were found via optical simulation: (i) the morphological distribution of refractive indices in a FLiSS plays a key role, and an inverted pyramid-like shape is very efficient in light scattering. (ii) There are an optimum period and a depth in a FLiSS, although efficient light scattering is achievable in a wide parameter space. However, periods less than 0.4 μm result in poor light scattering effect. (iii) The contrast in the refractive indices of the two materials in the FLiSS should be large enough, typically Δn > 1.5. At the same time, parasitic absorption loss in the FLiSS must be minimized. An optimized FLiSS, which satisfies the requirements mentioned above, can increase the absorption in thin GaAs cells more efficiently than a flat reflector, and a high current density of approximately 30 mA/cm2 is potentially achievable with a 1-μm-thick absorber. For experimental verification, a 2D grating FLiSS with InZnO and amorphous Si was developed and applied to thin film GaAs solar cells. As a result, a significant increase in the current density as well as in the spectral response in a long wavelength region was demonstrated, as expected from the optical simulation.

  6. Fabrication of metal half-shells using colloidal particle monolayer and their application in surface-enhanced Raman scattering.

    Science.gov (United States)

    Taniguchi, Yuichi; Endo, Hiroshi; Kawai, Takeshi

    2012-01-01

    Three types of Au shells, an isolated half-shell, one-dimensional strings of shells, and two-dimensional films, were fabricated by using a monolayer of polystyrene (PS) particles with diameters of 213, 560, and 1360 nm. The three types of Au shells that were removed from the PS particle monolayer and the as-deposited Au shells that adhered to PS particles were modified with 4-mercaptopyridine for use as platforms for surface-enhanced Raman scattering (SERS). We examined the effects of the shapes and sizes of Au shells on their SERS efficiency and found that the Au shells exhibited strong SERS signals and that Au shells prepared by using 560-nm PS particles were the most suitable platform for SERS at both 632.8- and 785-nm excitations. Further, we found that SERS enhancements depended on the shape of Au shells and on whether Au shells adhered to PS particles or not.

  7. Gold Nanoparticles With Special Shapes: Controlled Synthesis, Surface-enhanced Raman Scattering, and The Application in Biodetection

    Directory of Open Access Journals (Sweden)

    Jinghong Li

    2007-12-01

    Full Text Available Specially shaped gold nanoparticles have intrigued considerable attention becausethey usually possess high-sensitivity surface-enhanced Raman scattering (SERS and thusresult in large advantages in trace biodetermination. In this article, starch-capped goldnanoparticles with hexagon and boot shapes were prepared through using a nontoxic andbiologically benign aqueous-phase synthetic route. Shape effects of gold nanoparticles onSERS properties were mainly investigated, and found that different-shaped goldnanoparticles possess different SERS properties. Especially, the boot-shaped nanoparticlescould induce more 100-fold SERS enhancements in sensitivity as compared with those fromgold nanospheres. The extremely strong SERS properties of gold nanoboots have beensuccessfully applied to the detection of avidin. The unique nanoboots with high-sensitivitySERS properties are also expected to find use in many other fields such as biolabel,bioassay, biodiagnosis, and even clinical diagnosis and therapy.

  8. Determination of proteins at nanogram levels with Bordeaux red based on the enhancement of resonance light scattering

    Science.gov (United States)

    Feng, Suling; Pan, Zihong; Fan, Jing

    2006-06-01

    A simple, sensitive and selective method was proposed for the determination of proteins by using a resonance light scattering technique. The weak resonance light scattering (RLS) of Bordeaux red (BR) can be enhanced greatly in the pH range 3.87-3.96 by the addition of micro amounts of proteins, resulting in four characteristic peaks in the wavelength range 250-600 nm. At the maximal wavelength of 363 nm, the enhanced RLS is proportional to the concentration of proteins in the range 0.12-10.8 μg ml -1 for bovine serum albumin (BSA) and 0.24-18.0 μg ml -1 for human serum albumin (HSA). The detection limits were 40.0 and 52.9 ng ml -1 for BSA and HSA, respectively. The present method has been applied to the determination of total proteins in human serum, urine and saliva samples. The obtained results are in good agreement with those obtained by the Bradford method with relative standard deviations (R.S.D.) of 0.9-2.3%.

  9. Silver nanoparticle enhanced Raman scattering-based lateral flow immunoassays for ultra-sensitive detection of the heavy metal chromium

    Science.gov (United States)

    Liang, Jiajie; Liu, Hongwu; Lan, Caifeng; Fu, Qiangqiang; Huang, Caihong; Luo, Zhi; Jiang, Tianjiu; Tang, Yong

    2014-12-01

    We report a simple and ultra-sensitive surface enhanced Raman scattering (SERS) strip sensor based on silver nanoparticles (AgNPs) and lateral flow immunoassays (LFIAs). LFIAs are inexpensive, simple, portable and robust, thus making them commonplace in medicine, agriculture and food safety. However, their applications are limited due to the low signal intensity of the color-formation reaction based on the label accumulation. SERS is a powerful molecular spectroscopy technique for ultra-detection, which is based on the enhancement of the inelastic scattering from molecules located near nanostructured metallic surfaces when the molecules are illuminated and the surface plasmons are excited. Because of the rapidity and robustness of LFIAs and the high sensitivity of SERS, we introduce SERS into LFIAs (SERS-LFIA). Our SERS-LFIA demonstrates fast, excellent performance and is suitable for the semiquantitative examination of ultratrace analytes (Cr3+), with the limit of the detection (LOD) as low as 10-5 ng mL-1, which is 105-fold more highly sensitive than those previously used to detect Cr3+ within 15 min.

  10. Detection of polycyclic aromatic hydrocarbon (PAH) compounds in artificial sea-water using surface-enhanced Raman scattering (SERS).

    Science.gov (United States)

    Péron, Olivier; Rinnert, Emmanuel; Lehaitre, Michel; Crassous, Philippe; Compère, Chantal

    2009-07-15

    This paper reports an accurate synthesis of surface-enhanced Raman scattering (SERS) active substrates, based on gold colloidal monolayer, suitable for in situ environmental analysis. Quartz substrates were functionalized by silanization with (3-mercaptopropyl)trimethoxysilane (MPMS) or (3-aminopropyl)trimethoxysilane (APTMS) and they subsequently reacted with colloidal suspension of gold metal nanoparticles: respectively, the functional groups SH and NH(2) bound gold nanoparticles. Gold nanoparticles were prepared by the chemical reduction of HAuCl(4) using sodium tricitrate and immobilized onto silanized quartz substrates. Active substrate surface morphology was characterized with scanning electron microscopy (SEM) measurements and gold nanoparticles presented a diameter in the range 40-100 nm. Colloidal hydrophobic films, allowing nonpolar molecule pre-concentration, were obtained. The surfaces exhibit strong enhancement of Raman scattering from molecules adsorbed on the films. Spectra were recorded for two PAHs, naphthalene and pyrene, in artificial sea-water (ASW) with limits of detection (LODs) of 10 ppb for both on MPMS silanized substrates.

  11. Rapid Detection of Polychlorinated Biphenyls at Trace Levels in Real Environmental Samples by Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Zhengjun Zhang

    2011-11-01

    Full Text Available Detection of trace levels of persistent pollutants in the environment is difficult but significant. Organic pollutant homologues, due to their similar physical and chemical properties, are even more difficult to distinguish, especially in trace amounts. We report here a simple method to detect polychlorinated biphenyls (PCBs in soil and distilled spirit samples by the surface-enhanced Raman scattering technique using Ag nanorod arrays as substrates. By this method, polychlorinated biphenyls can be detected to a concentration of 5 μg/g in dry soil samples within 1 minute. Furthermore, based on simulation and understanding of the Raman characteristics of PCBs, we recognized homologues of tetrachlorobiphenyl by using the surface-enhance Raman scattering method even in trace amounts in acetone solutions, and their characteristic Raman peaks still can be distinguished at a concentration of 10-6 mol/L. This study provides a fast, simple and sensitive method for the detection and recognition of organic pollutants such as polychlorinated biphenyls.

  12. Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy

    Science.gov (United States)

    Yi, Hongming; Maamary, Rabih; Gao, Xiaoming; Sigrist, Markus W.; Fertein, Eric; Chen, Weidong

    2015-03-01

    Spectroscopic detection of short-lived gaseous nitrous acid (HONO) at 1254.85 cm-1 was realized by off-beam coupled quartz-enhanced photoacoustic spectroscopy (QEPAS) in conjunction with an external cavity quantum cascade lasers (EC-QCL). High sensitivity monitoring of HONO was performed within a very small gas-sample volume (of ˜40 mm3) allowing a significant reduction (of about 4 orders of magnitude) of air sampling residence time which is highly desired for accurate quantification of chemically reactive short-lived species. Calibration of the developed QEPAS-based HONO sensor was carried out by means of lab-generated HONO samples whose concentrations were determined by direct absorption spectroscopy involving a ˜109.5 m multipass cell and a distributed feedback QCL. A minimum detection limit (MDL) of 66 ppbv (1 σ) HONO was achieved at 70 mbar using a laser output power of 50 mW and 1 s integration time, which corresponded to a normalized noise equivalent absorption coefficient of 3.6 × 10-8 cm-1 W/Hz1/2. This MDL was down to 7 ppbv at the optimal integration time of 150 s. The corresponding 1σ minimum detected absorption coefficient is ˜1.1 × 10-7 cm-1 (MDL ˜ 3 ppbv) in 1 s and ˜1.1 × 10-8 cm-1 (MDL ˜ 330 pptv) in 150 s, respectively, with 1 W laser power.

  13. Theory of hyperbolic stratified nanostructures for surface-enhanced Raman scattering

    Science.gov (United States)

    Wong, Herman M. K.; Dezfouli, Mohsen Kamandar; Axelrod, Simon; Hughes, Stephen; Helmy, Amr S.

    2017-11-01

    We theoretically investigate the enhancement of surface enhanced Raman spectroscopy (SERS) using hyperbolic stratified nanostructures and compare to metal nanoresonators. The photon Green function of each nanostructure within its environment is first obtained from a semianalytical modal theory, which is used in a quantum optics formalism of the molecule-nanostructure interaction to model the SERS spectrum. An intuitive methodology is presented for calculating the single-molecule enhancement factor (SMEF), which is also able to predict known experimental SERS enhancement factors of a gold nanodimer. We elucidate the important figures-of-merit of the enhancement and explore these for different designs. We find that the use of hyperbolic stratified materials can enhance the photonic local density of states (LDOS) by close to two times in comparison to pure metal nanostructures, when both designed to work at the same operating wavelengths. However, the increased LDOS is accompanied by higher electric field concentration within the lossy hyperbolic material, which leads to increased quenching that serves to reduce the overall detected SERS enhancement in the far field. For nanoresonators with resonant localized surface plasmon wavelengths in the near-infrared, the SMEF for the hyperbolic stratified nanostructure is approximately one order of magnitude lower than the pure metal counterpart. Conversely, we show that by detecting the Raman signal using a near-field probe, hyperbolic materials can provide an improvement in SERS enhancement compared to using pure metal nanostructures when the probe is sufficiently close (<50 nm ) to the Raman active molecule at the plasmonic hotspot.

  14. The ACE-2/Ang1-7/Mas cascade enhances bone structure and metabolism following angiotensin-II type 1 receptor blockade.

    Science.gov (United States)

    Abuohashish, Hatem M; Ahmed, Mohammed M; Sabry, Dina; Khattab, Mahmoud M; Al-Rejaie, Salim S

    2017-07-15

    The renin angiotensin system (RAS) regulates numerous systemic functions and is expressed locally in skeletal tissues. Angiotensin1-7 (Ang1-7) is a beneficial member of the RAS, and the therapeutic effects of a large number of angiotensin receptors blockers (ARBs) are mediated by an Ang1-7-dependent cascade. This study examines whether the reported osteo-preservative effects of losartan are mediated through the angiotensin converting enzyme2 (ACE-2)/Ang1-7/Mas pathway in ovariectomized (OVX) rats. Sham and OVX animals received losartan (10mg/kg/d p.o.) for 6 weeks. A specific Mas receptor blocker (A-779) was delivered via mini-osmotic pumps during the losartan treatment period. Serum and urine bone metabolism biomarker levels were measured. Bone trabecular and cortical morphometry were quantified in distal femurs, whereas mineral contents were estimated in ashed bones, serum and urine. Finally, the expression of RAS components, the receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) was determined. Losartan significantly improved the elevated bone metabolism marker levels and altered trabecular and cortical structures in OVX animals, and restored normal urinary and skeletal mineral levels. Mas receptor inhibition significantly abolished all osteo-protective effects of losartan and enhanced the deleterious effects of OVX. Losartan enhanced OVX-induced up-regulation of ACE-1, AngII, angiotensin type 1 (AT1) receptor and RANKL expression, and increased ACE-2, Ang1-7, Mas and OPG expression in OVX animals. However, A-779 significantly eradicated the effects of losartan on RAS components and RANKL/OPG expression. Thus, Ang1-7 are involved in the osteo-preservative effects of losartan via Mas receptor, which may add therapeutic value to this well-known antihypertensive agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.

    Science.gov (United States)

    Ertsgaard, Christopher T; McKoskey, Rachel M; Rich, Isabel S; Lindquist, Nathan C

    2014-10-28

    In this paper, we demonstrate dynamic placement of locally enhanced plasmonic fields using holographic laser illumination of a silver nanohole array. To visualize these focused "hotspots", the silver surface was coated with various biological samples for surface-enhanced Raman spectroscopy (SERS) imaging. Due to the large field enhancements, blinking behavior of the SERS hotspots was observed and processed using a stochastic optical reconstruction microscopy algorithm enabling super-resolution localization of the hotspots to within 10 nm. These hotspots were then shifted across the surface in subwavelength (super-resolution chemical imaging.

  16. Tailoring nanorod alignment in a polymer matrix by elongational flow under confinement: simulation, experiments, and surface enhanced Raman scattering application.

    Science.gov (United States)

    Park, Jay Hoon; Joo, Yong Lak

    2014-05-21

    Mesoscale simulation, electrospinning and Raman scattering experiments have been carried out to demonstrate that examination and control of nanorod configuration in a polymer matrix under elongational flow and confinement can lead to enhanced sensing. First, coarse-grained molecular dynamics (CGMD) was employed to probe the diffusivity, orientation, and dispersion of nanorods in a model polymer melt under planar elongational flow. Compared to shear flow, elongational flow gives rise to enhanced dispersion and orientation of nanorods, which are predicted to be improved with increasing the aspect ratio of nanorods and polymer chain length. As comparative experiments, we have electrospun gold (Au) nanorods with polyvinyl alcohol (PVA), and the resulting Au nanorod configuration in PVA nanofibers is in good agreement with the predicted simulation. Furthermore, coaxial electrospinning of Au nanorod/PVA-PVA (shell-core) was applied to selectively place Au nanorods in the cylindrical sheath layer, and the alignment of Au nanorods near the fiber surface was confirmed by TEM analysis and CGMD simulation under uniaxial elongation. Finally, the Au nanorod-PVA fibers were tested for surface-enhanced Raman spectroscopy for sensing applications. The coaxially electrospun fibers have demonstrated much greater signal peak strength when compared with monoaxially electrospun fibers with the same Au nanorod loading. This comprehensive study demonstrates how extensional flow and multi-layered fluids can direct the orientation and dispersion of nanorod in a polymer matrix, leading to enhanced sensing performance.

  17. Inkjet-printed polymer-based scattering layers for enhanced light outcoupling from top-emitting organic light-emitting diodes

    Science.gov (United States)

    Heinrichsdobler, Armin; Engelmayer, Manuel; Riedel, Daniel; Brabec, Christoph J.; Wehlus, Thomas

    2017-08-01

    High refractive index polymer-based scattering layers used as internal light extraction layers are a promising low-cost approach to enhance the luminous efficacy of organic light-emitting diodes (OLEDs). In order to avoid damaging of the OLED layers a structured and contactless deposition method for the polymer-based scattering layers is required. For enhanced lifetime of the devices the water diffusion through the scattering layer has to be eliminated by a structured patterning technique. Inkjet printing offers both a contactless and structured deposition. In this study we evaluate inkjet printing of nanocomposite polymer-based scattering layers for OLEDs. A detailed view on the material and process development is given. This involves an optimization of ink formulation, printing parameters as well as layer formation. The resulting haze values of the scattering layers at 550 nm vary between 40% and 90% for different layer thicknesses. The gain in external quantum efficacy of top-emitting OLEDs induced by light scattering compared to reference devices peaks at a factor of 2.3. The obtained results are discussed and verified by an optical volume scattering simulation model which will be presented in full detail. Also a parameter variation study and its impact on extraction efficiency will be shown.

  18. Shrinkage-thresholding enhanced born iterative method for solving 2D inverse electromagnetic scattering problem

    KAUST Repository

    Desmal, Abdulla

    2014-07-01

    A numerical framework that incorporates recently developed iterative shrinkage thresholding (IST) algorithms within the Born iterative method (BIM) is proposed for solving the two-dimensional inverse electromagnetic scattering problem. IST algorithms minimize a cost function weighted between measurement-data misfit and a zeroth/first-norm penalty term and therefore promote "sharpness" in the solution. Consequently, when applied to domains with sharp variations, discontinuities, or sparse content, the proposed framework is more efficient and accurate than the "classical" BIM that minimizes a cost function with a second-norm penalty term. Indeed, numerical results demonstrate the superiority of the IST-BIM over the classical BIM when they are applied to sparse domains: Permittivity and conductivity profiles recovered using the IST-BIM are sharper and more accurate and converge faster. © 1963-2012 IEEE.

  19. Detection of early carious lesions using contrast enhancement with coherent light scattering (speckle imaging)

    Science.gov (United States)

    Deana, A. M.; Jesus, S. H. C.; Koshoji, N. H.; Bussadori, S. K.; Oliveira, M. T.

    2013-07-01

    Currently, dental caries still represent one of the chronic diseases with the highest prevalence and present in most countries. The interaction between light and teeth (absorption, scattering and fluorescence) is intrinsically connected to the constitution of the dental tissue. Decay induced mineral loss introduces a shift in the optical properties of the affected tissue; therefore, study of these properties may produce novel techniques aimed at the early diagnosis of carious lesions. Based on the optical properties of the enamel, we demonstrate the application of first-order spatial statistics in laser speckle imaging, allowing the detection of carious lesions in their early stages. A highlight of this noninvasive, non-destructive, real time and cost effective approach is that it allows a dentist to detect a lesion even in the absence of biofilm or moisture.

  20. Light Scattering and Current Enhancement for Microcrystalline Silicon Thin-Film Solar Cells on Aluminium-Induced Texture Glass Superstrates with Double Texture

    Directory of Open Access Journals (Sweden)

    Yunfeng Yin

    2015-01-01

    Full Text Available Microcrystalline silicon (μc-Si:H thin-film solar cells are processed on glass superstrates having both micro- and nanoscale surface textures. The microscale texture is realised at the glass surface, using the aluminium-induced texturing (AIT method, which is an industrially feasible process enabling a wide range of surface feature sizes (i.e., 700 nm–3 μm of the textured glass. The nanoscale texture is made by conventional acid etching of the sputter-deposited transparent conductive oxide (TCO. The influence of the resulting “double texture” on the optical scattering is investigated by means of atomic force microscopy (AFM (studying the surface topology, haze measurements (studying scattering into air, and short-circuit current enhancement measurements (studying scattering into silicon. A predicted enhanced optical scattering efficiency is experimentally proven by a short-circuit current enhancement ΔIsc of up to 1.6 mA/cm2 (7.7% relative increase compared to solar cells fabricated on a standard superstrate, that is, planar glass covered with nanotextured TCO. Enhancing the autocorrelation length (or feature size of the AIT superstrates might have the large potential to improve the μc-Si:H thin-film solar cell efficiency, by reducing the shunting probability of the device while maintaining a high optical scattering performance.

  1. Surface-enhanced resonance Raman scattering spectroscopy applied to phytochrome and its model compounds. 1. Biliverdin photoisomers

    Energy Technology Data Exchange (ETDEWEB)

    Holt, R.E.; Farrens, D.L.; Song, Pillsoon; Cotton, T.M. (Univ. of Nebraska, Lincoln (USA))

    1989-12-20

    The application of surface-enhanced resonance Raman scattering (SERRS) spectroscopy to the analysis of the configuration of biliverdin dimethyl ester (BVDE) is reported. SERRS spectra obtained by adsorption of the compounds onto an electrochemically roughened silver electrode and recorded at 7 K were intense and free of significant photodegradation. The similarity of the SERRS and resonance Raman (RR) spectra obtained under identical conditions suggests that no perturbation of the electronic structure of the BVDE occurs upon interaction with the silver surface, and that the distribution of conformers comprising the BVDE solution is not changed. SERRS spectra of the deuterated and monoprotonated Z,Z,Z isomer are also presented. To investigate the influence of configuration upon the Raman spectrum we have synthesized and purified the E,Z,A, and Z,Z,E isomers of BVDE. Excellent SERRS spectra were obtained from the solutions of the compounds eluted directly from the TLC plates.

  2. Mesoporous gold sponges: electric charge-assisted seed mediated synthesis and application as surface-enhanced Raman scattering substrates

    Science.gov (United States)

    Yi, Zao; Luo, Jiangshan; Tan, Xiulan; Yi, Yong; Yao, Weitang; Kang, Xiaoli; Ye, Xin; Zhu, Wenkun; Duan, Tao; Yi, Yougen; Tang, Yongjian

    2015-11-01

    Mesoporous gold sponges were prepared using 4-dimethylaminopyridine (DMAP)-stabilized Au seeds. This is a general process, which involves a simple template-free method, room temperature reduction of HAuCl4·4H2O with hydroxylamine. The formation process of mesoporous gold sponges could be accounted for the electrostatic interaction (the small Au nanoparticles (~3 nm) and the positively charged DMAP-stabilized Au seeds) and Ostwald ripening process. The mesoporous gold sponges had appeared to undergo electrostatic adsorption initially, sequentially linear aggregation, welding and Ostwald ripening, then, they randomly cross link into self-supporting, three-dimensional networks with time. The mesoporous gold sponges exhibit higher surface area than the literature. In addition, application of the spongelike networks as an active material for surface-enhanced Raman scattering has been investigated by employing 4-aminothiophenol (4-ATP) molecules as a probe.

  3. Facile fabrication of truncated octahedral Au nanoparticles and its application for ultrasensitive surface enhanced Raman scattering immunosensing

    Science.gov (United States)

    Li, Yanxiao; Ma, Zhanfang

    2013-07-01

    Monodispersed truncated octahedral (TOH) Au nanoparticles (NPs) with an average edge-length of about 16 nm were synthesized using poly(diallyldimethylammonium chloride) (PDDA) both as a stabilizing and reducing agent via a one-step reaction. Remarkably, no seeds, surfactants or additional reductant were used in this reaction. In addition, the PDDA molecules on the surface of the TOH AuNPs make them convenient for use in layer-by-layer assembly by electrostatic interactions. Importantly, the TOH AuNPs show a significant surface enhanced Raman scattering (SERS) activity, and can be directly used for building SERS-active substrates and tags. Based on these promising properties, an ultrasensitive SERS-based immunosensing platform was developed. Using human immunoglobulin (h-IgG) as a model target analyte, a detection limit of 36.56 fg ml-1 was reached.

  4. Experimental Analysis of Steel Beams Subjected to Fire Enhanced by Brillouin Scattering-Based Fiber Optic Sensor Data.

    Science.gov (United States)

    Bao, Yi; Chen, Yizheng; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda

    2017-01-01

    This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C.

  5. Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables.

    Science.gov (United States)

    Chen, Jiaming; Huang, Youju; Kannan, Palanisamy; Zhang, Lei; Lin, Zhenyu; Zhang, Jiawei; Chen, Tao; Guo, Longhua

    2016-02-16

    The efficient extraction of targets from complex surfaces is vital for technological applications ranging from environmental pollutant monitoring to analysis of explosive traces and pesticide residues. In our present study, we proposed a proof-of-concept surface enhance Raman scattering (SERS) active substrate serving directly to the rapid extraction and detection of target molecules. The novel substrate was constructed by decorating the commercial tape with colloidal gold nanoparticles (Au NPs), which simultaneously provides SERS activity and "sticky" of adhesive. The utility of SERS tape was demonstrated by directly extracting pesticide residues in fruits and vegetables via a simple and viable "paste and peel off" approach. The obtained strong and easily distinguishable SERS signals allow us to detect various pesticide residues such as parathion-methyl, thiram, and chlorpyrifos in the real samples with complex surfaces including green vegetable, cucumber, orange, and apple.

  6. Large enhancement of the spin Hall effect in Au by side-jump scattering on Ta impurities

    Science.gov (United States)

    Laczkowski, P.; Fu, Y.; Yang, H.; Rojas-Sánchez, J.-C.; Noel, P.; Pham, V. T.; Zahnd, G.; Deranlot, C.; Collin, S.; Bouard, C.; Warin, P.; Maurel, V.; Chshiev, M.; Marty, A.; Attané, J.-P.; Fert, A.; Jaffrès, H.; Vila, L.; George, J.-M.

    2017-10-01

    We present measurements of the spin Hall effect (SHE) in AuW and AuTa alloys for a large range of W or Ta concentrations by combining experiments on lateral spin valves and ferromagnetic-resonance/spin-pumping techniques. The main result is the identification of a large enhancement of the spin Hall angle (SHA) by the side-jump mechanism on Ta impurities, with a SHA as high as +0.5 (i.e., 50 % ) for about 10% of Ta. In contrast, the SHA in AuW does not exceed +0.15 and can be explained by intrinsic SHE of the alloy without significant extrinsic contribution from skew or side-jump scattering by W impurities. The AuTa alloys, as they combine a very large SHA with a moderate resistivity (smaller than 85 μ Ω cm ), are promising for spintronic devices exploiting the SHE.

  7. New insight of squaraine-based biocompatible surface-enhanced Raman scattering nanotag for cancer-cell imaging.

    Science.gov (United States)

    Ramya, An; Samanta, Animesh; Nisha, N; Chang, Young-Tae; Maiti, Kaustabh Kumar

    2015-03-01

    Development of highly sensitive diagnostic nanoprobe for cancer imaging based on surface-enhanced Raman scattering (SERS) platform. Synthesis of novel squaraine dyes as a Raman signature molecule denoted as lipoic-squaraine-lipoic (LSL), propyl-squaraine-lipoic (PSL) and propyl-squaraine-propyl (PSP). The SERS-nanotag constructed with a Raman signature molecule which is attached on gold nanoparticle and further encapsulated with heterofunctionalized PEG. Antibody conjugation with best SERS-nanotag for target specific recognition. SERS nanotag Au-LSL-PEG showed significant signal intensity and remarkable stability. Anti-EGF receptor and Her2-conjugated Au-LSL-PEG-nanotag were successfully applied for selective recognition of cancer cells like A549, OSCC and MCF7. The newly developed SERS-nanotag Au-LSL-PEG serves as a valuable tool for diagnostic detection of cancer cells, and may find potential applications for cancer screening in real patient samples.

  8. Adsorption and Vibrational Study of Folic Acid on Gold Nanopillar Structures Using Surface-enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Rozo, Ciro E.

    2015-01-01

    on the nanopillars within the high electromagnetic field areas. The adsorption behaviour of folic acid and the band assignment of the main vibrations together with the optimized geometry of folic acid and folic acid in the presence of a cluster of 10 gold atoms were assessed using the density functional theory (B3......This paper presents a study of adsorption and vibrational features of folic acid, using surface-enhanced Raman scattering (SERS). A gold-capped silicon nanopillar (Au NP) with a height of 600 nm and a width of 120 nm was utilized to study the vibrational features of FA molecules adsorbed......LYP(6-31G(d))) and the scalar relativistic effective core potential with a double-zeta basis set (LANL2DZ). The vibrations obtained from the solid-state folic acid and the folic acid on a gold cluster were in accordance with those observed experimentally. The analysis of the main vibrations indicated...

  9. A New Smart Surface-Enhanced Raman Scattering Sensor Based on pH-Responsive Polyacryloyl Hydrazine Capped Ag Nanoparticles

    Science.gov (United States)

    Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi

    2017-08-01

    A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10-12 M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.

  10. Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique

    Directory of Open Access Journals (Sweden)

    Alexander G. Milekhin

    2015-12-01

    Full Text Available We present the results of an investigation of surface-enhanced Raman scattering (SERS by optical phonons in colloidal CdSe nanocrystals (NCs homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir–Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR energy. The deposition of CdSe nanocrystals on the Au dimer nanocluster arrays enabled us to study the polarization dependence of SERS. The maximal SERS signal was observed for light polarization parallel to the dimer axis. The polarization ratio of the SERS signal parallel and perpendicular to the dimer axis was 20. The SERS signal intensity was also investigated as a function of the distance between nanoclusters in a dimer. Here the maximal SERS enhancement was observed for the minimal distance studied (about 10 nm, confirming the formation of SERS “hot spots”.

  11. A surface-enhanced Raman scattering (SERS-active optical fiber sensor based on a three-dimensional sensing layer

    Directory of Open Access Journals (Sweden)

    Chunyu Liu

    2014-08-01

    Full Text Available To fabricate a new surface-enhanced Raman scattering (SERS-active optical fiber sensor, the design and preparation of SERS-active sensing layer is one of important topics. In this study, we fabricated a highly sensitive three-dimensional (3D SERS-active sensing layer on the optical fiber terminal via in situ polymerizing a porous polymer material on a flat optical fiber terminal through thermal-induced process, following with the photochemical silver nanoparticles growth. The polymerized polymer formed a 3D porous structure with the pore size of 0.29–0.81 μm, which were afterward decorated with abundant silver nanoparticles with the size of about 100 nm, allowing for higher SERS enhancement. This SERS-active optical fiber sensor was applied for the determination of 4-mercaptopyridine, crystal violet and maleic acid The enhancement factor of this SERS sensing layer can be reached as about 108. The optical fiber sensor with high sensitive SERS-active porous polymer is expected for online analysis and environment detection.

  12. Formation and Self-assembly of Gold Nanoplates through an Interfacial Reaction for Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Ma, Ying; Yung, Lin-Yue Lanry

    2016-06-22

    3D hierarchical architectures assembled from individual particles have attracted great interest because they displayed novel properties from the individual building blocks as well as their complex structures. Here we present a new strategy to form 3D hierarchical gold (Au) nanostructures via an interfacial reduction reaction. An aniline (ANI) derivative, N-(3-amidino)-aniline (NAAN), and HAuCl4 were separately dissolved in toluene and water to form an organic/water interface. Au nanoplates formed at the interface and subsequently moved to the aqueous phase. As a capping agent for the nanoplate formation, the oxidized NAAN, i.e., poly(N-(3-amidino)-aniline) (PNAAN), also facilitated the self-assembly of Au nanoplates into 3D hierarchical Au nanoflowers (AuNFs) through π-π stacking. The individual AuNF exhibited good surface-enhanced Raman scattering (SERS) response both in enhancement factor and reproducibility because it integrates the SERS enhancement effects of individual Au nanoplates and their hierarchical structures. This is the first report depicting the one-pot formation and self-assembly of Au nanoplates into 3D organized hierarchical nanostructures through the molecular interaction of conducting polymer.

  13. Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering

    Science.gov (United States)

    Nie, Yonghui; Teng, Yuanjie; Li, Pan; Liu, Wenhan; Shi, Qianwei; Zhang, Yuchao

    2018-02-01

    A novel label-free aptamer surface-enhanced Raman scattering (SERS) sensor for trace malathion residue detection was proposed. In this process, the binding of malathion molecule with aptamer is identified directly. The silver nanoparticles modified with positively charged spermine served as enhancing and capture reagents for the negatively charged aptamer. Then, the silver nanoparticles modified by aptamer were used to specifically capture the malathion. The SERS background spectra of spermine, aptamer, and malathion were recorded and distinguished with the spectrum of malathion-aptamer. To enhance the characteristic peak signal of malathion captured by the aptamer, the aggregate reagents (NaCl, KCl, MgCl2) were compared and selected. The selectivity of this method was verified in the mixed-pesticide standard solution, which included malathion, phosmet, chlorpyrifos-methyl, and fethion. Results show that malathion can be specifically identified when the mixed-pesticide interferences existed. The standard curve was established, presenting a good linear range of 5 × 10- 7 to 1 × 10- 5 mol·L- 1. The spiked experiments for tap water show good recoveries from 87.4% to 110.5% with a relative standard deviation of less than 4.22%. Therefore, the proposed label-free aptamer SERS sensor is convenient, specifically detects trace malathion residues, and can be applied for qualitative and quantitative analysis of other pesticides.

  14. Surface-enhanced Raman scattering of amorphous silica gel adsorbed on gold substrates for optical fiber sensors

    Science.gov (United States)

    Degioanni, S.; Jurdyc, A. M.; Cheap, A.; Champagnon, B.; Bessueille, F.; Coulm, J.; Bois, L.; Vouagner, D.

    2015-10-01

    Two kinds of gold substrates are used to produce surface-enhanced Raman scattering (SERS) of amorphous silica obtained via the sol-gel route using tetraethoxysilane Si(OC2H5)4 (TEOS) solution. The first substrate consists of a gold nanometric film elaborated on a glass slide by sputter deposition, controlling the desired gold thickness and sputtering current intensity. The second substrate consists of an array of micrometer-sized gold inverted pyramidal pits able to confine surface plasmon (SP) enhancing electric field, which results in a distribution of electromagnetic energy inside the cavities. These substrates are optically characterized to observe SPR with, respectively, extinction and reflectance spectrometries. Once coated with thin layers of amorphous silica (SiO2) gel, these samples show Raman amplification of amorphous SiO2 bands. This enhancement can occur in SERS sensors using amorphous SiO2 gel as shells, spacers, protective coatings, or waveguides, and represents particularly a potential interest in the field of Raman distributed sensors, which use the amorphous SiO2 core of optical fibers as a transducer to make temperature measurements.

  15. Gain-assisted U-shaped Au nanostructure for ultrahigh sensitivity single molecule detection by surface-enhanced Raman scattering

    Science.gov (United States)

    Zhang, Li; Zhou, Jun; Jiang, Tao

    2015-12-01

    We report an efficient gain-assisted U-shaped Au nanostructure for ultrahigh sensitivity single-molecule detection by surface-enhanced Raman scattering (SERS). The localized surface plasmon resonance (LSPR) amplification property and SERS characteristics of the proposed nanosystem are numerically analyzed by the finite-element method (FEM). The calculations show that the LSPR strength and the local electric field intensity of the active nanosystem can be greatly amplified when the nanosystem reaches its spaser threshold (k thre). Furthermore, the maximum SERS enhancement factor of the nanosystem is as high as 4.7 × 1017 on the Au surface areas and 5.8 × 1018 in volume, respectively. Moreover, there is a high SERS enhancement factor of 1014-1017 on the entire surface of the active nanosystem, which is sufficient for single-molecule detection. Finally, the plasmon hybridization theory and effective LC circuit are used to qualitatively illustrate the red-shift of the resonance wavelength by increasing the geometric parameter W 2.

  16. Enhancement of DFIG-Wind Turbine’s LVRT capability using novel DVR based Odd-nary Cascaded Asymmetric Multi-Level Inverter

    Directory of Open Access Journals (Sweden)

    A.D. Falehi

    2017-06-01

    Full Text Available One of the most prominent issues relevant to Doubly Fed Induction Generator (DFIG is augmentation of its Low Voltage Ride Through (LVRT capability. Dynamic Voltage Restorer (DVR is a series kind of Distributed-Flexible AC Transmission Systems (D-FACTS that is here occupied to preserve the DFIG from the voltage sag whenever a fault to be occurred in the power system. Multi-Level Inverter (MLI is the beating-heart of DVR with unique responsibility of synthesizing a staircase sinusoidal voltage from the DC voltage sources. In this regard, it is immensely important a high performance and cost-effective MLI to be embedded into the DVR. In this paper, a novel MLI is introduced to provide a staircase sinusoidal voltage with high level numbers against less switch numbers as compared to the other kinds of MLIs. By adding the bi-directional switches and capacitors of sub-MLI as well as amount of DC sources, the held forth MLI can also operate as so-called “Odd-nary” Cascaded Asymmetric Multi-Level Inverter (OCAMLI. The performance of proposed DVR based on OCAMLI i.e., DVR-OCAMLI has been thoroughly evaluated under deep and shallow balanced and unbalanced voltage sags so that its LVRT capability to be cleared up. To more scrutinize the performance of DVR-OCAMLI, it has been withal dealt with under severe and slight voltage swells as well as harmonic voltage. The accuracy and performance of DVR-OCAMLI has been furthermore compared with conventional DVR. To sum up, the relevant analytical study along with the simulation results has transparently corroborated the performance of OCAMLI as compared to other MLIs. Meanwhile, the DVR-OCAMLI has significantly compensated deep and shallow symmetric and asymmetric voltage sags to enhance the LVRT capability of DFIG; correspondingly, the severe and slight symmetric and asymmetric voltage swells as well as voltage harmonic have been exceptionally compensated as compared to conventional DVR.

  17. Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Hongming [Laboratoire de Physicochimie de l' Atmosphère, Université du Littoral Côte d' Opale, 189A, Av. Maurice Schumann, 59140 Dunkerque (France); Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 1125, 350 Shushanhu Road, Hefei, Anhui 230031 (China); Maamary, Rabih; Fertein, Eric; Chen, Weidong, E-mail: chen@univ-littoral.fr [Laboratoire de Physicochimie de l' Atmosphère, Université du Littoral Côte d' Opale, 189A, Av. Maurice Schumann, 59140 Dunkerque (France); Gao, Xiaoming [Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 1125, 350 Shushanhu Road, Hefei, Anhui 230031 (China); Sigrist, Markus W. [ETH Zurich, Institute for Quantum Electronics, HPT H4.1, Auguste-Piccard-Hof 1, CH-8093 Zürich (Switzerland)

    2015-03-09

    Spectroscopic detection of short-lived gaseous nitrous acid (HONO) at 1254.85 cm{sup −1} was realized by off-beam coupled quartz-enhanced photoacoustic spectroscopy (QEPAS) in conjunction with an external cavity quantum cascade lasers (EC-QCL). High sensitivity monitoring of HONO was performed within a very small gas-sample volume (of ∼40 mm{sup 3}) allowing a significant reduction (of about 4 orders of magnitude) of air sampling residence time which is highly desired for accurate quantification of chemically reactive short-lived species. Calibration of the developed QEPAS-based HONO sensor was carried out by means of lab-generated HONO samples whose concentrations were determined by direct absorption spectroscopy involving a ∼109.5 m multipass cell and a distributed feedback QCL. A minimum detection limit (MDL) of 66 ppbv (1 σ) HONO was achieved at 70 mbar using a laser output power of 50 mW and 1 s integration time, which corresponded to a normalized noise equivalent absorption coefficient of 3.6 × 10{sup −8 }cm{sup −1} W/Hz{sup 1/2}. This MDL was down to 7 ppbv at the optimal integration time of 150 s. The corresponding 1σ minimum detected absorption coefficient is ∼1.1 × 10{sup −7 }cm{sup −1} (MDL ∼ 3 ppbv) in 1 s and ∼1.1 × 10{sup −8 }cm{sup −1} (MDL ∼ 330 pptv) in 150 s, respectively, with 1 W laser power.

  18. Applicability of surface-enhanced resonance Raman scattering for the direct discrimination of ballpoint pen inks

    NARCIS (Netherlands)

    Seifar, R.M.; Verheul, J.M.; Ariese, F.; Brinkman, U.A.T.; Gooijer, C.

    2001-01-01

    In situ surface-enhanced resonance Raman spectroscopy (SERRS) with excitation at 685 nm is suitable for the direct discrimination of blue and black ballpoint pen inks on paper. For black inks, shorter excitation wavelengths can also be used. For blue inks, SERRS at 514.5 and 457.9 nm does not

  19. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing.

    Science.gov (United States)

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M

    2015-09-29

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications.

  20. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing

    Directory of Open Access Journals (Sweden)

    Elizaveta Klantsataya

    2015-09-01

    Full Text Available Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR configuration realized in an Exposed Core Microstructured Optical Fiber (ECF capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber. Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33–1.37 suitable for biosensing applications.

  1. Residual pesticide detection on food with particle-enhanced Raman scattering

    Science.gov (United States)

    Ranjan, Bikas; Huang, LiChuan; Masui, Kyoko; Saito, Yuika; Verma, Prabhat

    2014-08-01

    Modern farming relies highly on pesticides to protect agricultural food items from insects for high yield and better quality. Increasing use of pesticide has raised concern about its harmful effects on human health and hence it has become very important to detect even small amount of pesticide residues. Raman spectroscopy is a suitable nondestructive method for pesticide detection, however, it is not very effective for low concentration of pesticide molecules. Here, we report an approach based on plasmonic enhancement, namely, particle enhanced Raman spectroscopy (PERS), which is rapid, nondestructive and sensitive. In this technique, Raman signals are enhanced via the resonance excitation of localized plasmons in metallic nanoparticles. Gold nanostructures are promising materials that have ability to tune surface plasmon resonance frequency in visible to near-IR, which depends on shape and size of nanostructures. We synthesized gold nanorods (GNRs) with desired shape and size by seed mediated growth method, and successfully detected very tiny amount of pesticide present on food items. We also conformed that the detection of pesticide was not possible by usual Raman spectroscopy.

  2. Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion

    DEFF Research Database (Denmark)

    Hakonen, Aron; Rindzevicius, Tomas; Schmidt, Michael Stenbæk

    2016-01-01

    Threats from chemical warfare agents, commonly known as nerve gases, constitute a serious security issue of increasing global concern because of surging terrorist activity worldwide. However, nerve gases are difficult to detect using current analytical tools and outside dedicated laboratories. Here...... adhesion and nanopillar clustering due to elasto-capillary forces, resulting in enrichment of target molecules in plasmonic hot-spots with high Raman enhancement. The results may pave the way for strategic life-saving SERS detection of chemical warfare agents in the field....

  3. Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells.

    Science.gov (United States)

    Lee, Jung-Hoon; Nam, Jwa-Min; Jeon, Ki-Seok; Lim, Dong-Kwon; Kim, Hyoki; Kwon, Sunghoon; Lee, Haemi; Suh, Yung Doug

    2012-11-27

    We extensively study the relationships between single-molecule surface-enhanced Raman scattering (SMSERS) intensity, enhancement factor (EF) distribution over many particles, interparticle distance, particle size/shape/composition and excitation laser wavelength using the single-particle AFM-correlated Raman measurement method and theoretical calculations. Two different single-DNA-tethered Au-Ag core-shell nanodumbbell (GSND) designs with an engineerable nanogap were used in this study: the GSND-I with various interparticle nanogaps from ∼4.8 nm to particle size from a 23-30 nm pair to a 50-60 nm pair. From the GSND-I, we learned that synthesizing a particles were narrowly distributed between 1.9 × 10(12) and 5.9 × 10(13). In the case of the GSND-II probes, a combination of >50 nm Au cores and 514.5 nm laser wavelength that matches well with Ag shell generated stronger SMSERS signals with a more narrow EF distribution than quantitative detection capability when optimally designed.

  4. Early diagnosis of influenza virus a using surface-enhanced Raman scattering-based lateral flow assay

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Ji; Choo, Jae Bum [Dept. of Bionano Technology, Hanyang University, Ansan (Korea, Republic of); Yang, Sung Chul [School of Architectural Engineering, Hongik University, Sejong (Korea, Republic of)

    2016-12-15

    We report a surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) kit for the rapid diagnosis of influenza virus A. Influenza virus A is highly infectious and causes acute respiratory diseases. Therefore, it is important to diagnose the virus early to prevent a pandemic and to provide appropriate treatment to the patient and vaccination of high-risk individuals. Conventional diagnostic tests, including virus cell culture and real-time polymerase chain reaction, take longer than 1 day to confirm the disease. In contrast, a commercially available rapid influenza diagnostic test can detect the infection within 30 min, but it is hard to confirm viral infection using only this test because of its low sensitivity. Therefore, the development of a rapid and simple test for the early diagnosis of influenza infection is urgently needed. To resolve these problems, we developed a SERS-based LFA kit in which the gold nanoparticles in the commercial rapid kit were replaced with SERS-active nano tags. It is possible to quantitatively detect the influenza virus A with high sensitivity by measuring the enhanced Raman signal of these SERS nano tags on the LFA strip. The limit of detection (LOD) using our proposed SERS-based LFA kit was estimated to be 1.9 × 10{sup 4} PFU/mL, which is approximately one order of magnitude more sensitive than the LOD determined from the colorimetric LFA kit.

  5. Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures.

    Science.gov (United States)

    Rong, Zhen; Wang, Chongwen; Wang, Junfeng; Wang, Donggen; Xiao, Rui; Wang, Shengqi

    2016-10-15

    A surface-enhanced resonance Raman scattering (SERRS) sensor was developed for the ultrasensitive detection of cancer biomarkers. Capture antibody-coated silver shell magnetic nanoparticles (Fe3O4@Ag MNPs) were utilized as the CEA enrichment platform and the SERRS signal amplification substrate. Gold nanorods (AuNRs) were coated with a thin silver shell to be in resonance with the resonant Raman dye diethylthiatricarbocyanine iodide (DTTC) and the excitation wavelength at 785nm. The silver-coated AuNRs (Au@Ag NRs) were then modified with detection antibody as the SERRS tags. Sandwich immune complexes formed in the presence of the target biomarker carcinoembryonic antigen (CEA), and this formation induced the plasmonic coupling between the Au@Ag NRs and Fe3O4@Ag MNPs. The SERRS signal of DTTC molecules located in the coupled plasmonic nanostructures was significantly enhanced. As a result, the proposed SERRS sensor was able to detect CEA with a low limit of detection of 4.75fg/mL and a wide dynamic linear range from 10fg/mL to 100ng/mL. The sensor provides a novel SERRS strategy for trace analyte detection and has a potential for clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Facile Synthesis of Micron-Sized Hollow Silver Spheres as Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Lixin Xia

    2014-01-01

    Full Text Available A well-designed type of micron-sized hollow silver sphere was successfully synthesized by a simple hard-template method to be used as substrates for surface-enhanced Raman scattering. 4 Å molecular sieves were employed as a removable solid template. [Ag(NH32]+ was absorbed as the precursor on the surface of the molecular sieve. Formaldehyde was selected as a reducing agent to reduce [Ag(NH32]+, resulting in the formation of a micron-sized silver shell on the surface of the 4 Å molecular sieves. The micron-sized hollow silver spheres were obtained by removing the molecular sieve template. SEM and XRD were used to characterize the structure of the micron-sized hollow silver spheres. The as-prepared micro-silver spheres exhibited robust SERS activity in the presence of adsorbed 4-mercaptobenzoic acid (4-MBA with excitation at 632.8 nm, and the enhancement factor reached ~1.5 × 106. This synthetic process represents a promising method for preparing various hollow metal nanoparticles.

  7. Surface-Enhanced Raman Scattering Based on Controllable-Layer Graphene Shells Directly Synthesized on Cu Nanoparticles for Molecular Detection.

    Science.gov (United States)

    Qiu, Hengwei; Huo, Yanyan; Li, Zhen; Zhang, Chao; Chen, Peixi; Jiang, Shouzhen; Xu, Shicai; Ma, Yong; Wang, Shuyun; Li, Hongsheng

    2015-10-05

    Graphene shells with a controllable number of layers were directly synthesized on Cu nanoparticles (CuNPs) by chemical vapor deposition (CVD) to fabricate a graphene-encapsulated CuNPs (G/CuNPs) hybrid system for surface-enhanced Raman scattering (SERS). The enhanced Raman spectra of adenosine and rhodamine 6G (R6G) showed that the G/CuNPs hybrid system can strongly suppress background fluorescence and increase signal-to-noise ratio. In four different types of SERS systems, the G/CuNPs hybrid system exhibits more efficient SERS than a transferred graphene/CuNPs hybrid system and pure CuNPs and graphene substrates. The minimum detectable concentrations of adenosine and R6G by the G/CuNPs hybrid system can be as low as 10(-8) and 10(-10)  M, respectively. The excellent linear relationship between Raman intensity and analyte concentration can be used for molecular detection. The graphene shell can also effectively prevent surface oxidation of Cu nanoparticles after exposure to ambient air and thus endow the hybrid system with a long lifetime. This work provides a basis for the fabrication of novel SERS substrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Detection of explosives by surface enhanced Raman scattering using substrate with a monolayer of ordered Au nanoparticles

    Science.gov (United States)

    Chen, T. F.; Lu, S. H.; Wang, A. J.; Zheng, D.; Wu, Z. L.; Wang, Y. S.

    2014-10-01

    Monolayers with different structures arranged by 5 nm Au nanoparticles were grown using a self-assembly method on Si substrates. Raman spectra of ammonium nitrate (NH4NO3) and cyclotrimethylenetrinitramine (RDX) explosives adsorbed on bare and Au nanoparticle covered Si substrates were measured. Effects of Au monolayers and their structures on surface enhanced Raman scattering (SERS) of NH4NO3 and RDX were investigated. The monolayer arranged by Au nanoparticles into linear arrays is more sensitive to the explosives than that arranged into hexagonal close-packed structure. The detection limit using the substrate covered by a monolayer of Au nanoparticle linear arrays is about 7.7 ppm for NH4NO3 and 0.19 ppm for RDX. The integrated intensity of the vibration peak increases linearly with an increase in explosive concentration in log-log scales for both NH4NO3 and RDX. The enhancement factor is 7.0 × 104 for RDX. Monolayers of Au nanoparticles arranged into linear arrays have potential applications in detecting or identifying explosives at very low levels of concentration.

  9. Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Chia-Wei eWang

    2013-10-01

    Full Text Available In this paper we unveil a new sensing strategy for sensitive and selective detection of Hg2+ through surface-enhanced Raman scattering (SERS using Ag2Te nanoparticles (NPs as a substrate and recognition element and rhodamine 6G (R6G as a reporter. Ag2Te NPs prepared from tellurium dioxide and silver nitrate and hydrazine in aqueous solution containing sodium dodecyl sulfate at 90ºC with an average size of 26.8 ± 4.1 nm (100 counts have strong SERS activity. The Ag2Te substrate provides strong SERS signals of R6G with an enhancement factor of 3.6 × 105 at 1360 cm-1, which is comparable to Ag NPs. After interaction of Ag2Te NPs with Hg2+, some HgTe NPs are formed, leading to decreases in the SERS signal of R6G, mainly because HgTe NPs relative to Ag2Te NPs have weaker SERS activity. Under optimum conditions, this SERS approach using Ag2Te as substrates is selective for the detection of Hg2+, with a limit of detection of 3 nM and linearity over 10-150 nM. The practicality of this approach has been validated for the determination of the concentrations of spiked Hg2+ in a pond water sample.

  10. Discovery of Enhanced Magnetoelectric Coupling through Electric Field Control of Two-Magnon Scattering within Distorted Nanostructures.

    Science.gov (United States)

    Xue, Xu; Zhou, Ziyao; Dong, Guohua; Feng, Mengmeng; Zhang, Yijun; Zhao, Shishun; Hu, Zhongqiang; Ren, Wei; Ye, Zuo-Guang; Liu, Yaohua; Liu, Ming

    2017-09-26

    Electric field control of dynamic spin interactions is promising to break through the limitation of the magnetostatic interaction based magnetoelectric (ME) effect. In this work, electric field control of the two-magnon scattering (TMS) effect excited by in-plane lattice rotation has been demonstrated in a La 0.7 Sr 0.3 MnO 3 (LSMO)/Pb(Mn 2/3 Nb 1/3 )-PbTiO 3 (PMN-PT) (011) multiferroic heterostructure. Compared with the conventional strain-mediated ME effect, a giant enhancement of ME effect up to 950% at the TMS critical angle is precisely determined by angular resolution of the ferromagnetic resonance (FMR) measurement. Particularly, a large electric field modulation of magnetic anisotropy (464 Oe) and FMR line width (401 Oe) is achieved at 173 K. The electric-field-controllable TMS effect and its correlated ME effect have been explained by electric field modulation of the planar spin interactions triggered by spin-lattice coupling. The enhancement of the ME effect at various temperatures and spin dynamics control are promising paradigms for next-generation voltage-tunable spintronic devices.

  11. Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment

    Science.gov (United States)

    Saleh, Tawfik A.; Al-Shalalfeh, Mutasem M.; Al-Saadi, Abdulaziz A.

    2016-08-01

    Graphene functionalized with polyamidoamine dendrimer, decorated with silver nanoparticles (G-D-Ag), was synthesized and evaluated as a substrate with surface-enhanced Raman scattering (SERS) for methimazole (MTZ) detection. Sodium borohydride was used as a reducing agent to cultivate silver nanoparticles on the dendrimer. The obtained G-D-Ag was characterized by using UV-vis spectroscopy, scanning electron microscope (SEM), high-resolution transmission electron microscope (TEM), Fourier-transformed infrared (FT-IR) and Raman spectroscopy. The SEM image indicated the successful formation of the G-D-Ag. The behavior of MTZ on the G-D-Ag as a reliable and robust substrate was investigated by SERS, which indicated mostly a chemical interaction between G-D-Ag and MTZ. The bands of the MTZ normal spectra at 1538, 1463, 1342, 1278, 1156, 1092, 1016, 600, 525 and 410 cm-1 were enhanced due to the SERS effect. Correlations between the logarithmical scale of MTZ concentrations and SERS signal intensities were established, and a low detection limit of 1.43 × 10-12 M was successfully obtained. The density functional theory (DFT) approach was utilized to provide reliable assignment of the key Raman bands.

  12. Analysis of defects in low-temperature polycrystalline silicon thin films related to surface-enhanced Raman scattering

    Science.gov (United States)

    Kitahara, Kuninori; Yeh, Wenchang; Hara, Akito

    2018-01-01

    The analysis of Raman scattering (RS) spectroscopy is presented for low-temperature polycrystalline silicon (poly-Si) thin films on glass substrates fabricated by excimer laser crystallization. In this material, RS is enhanced by specific protrusions at the grain boundary (GB). As a result, the Si lattice mode predominantly reflects the characteristics of GB and its neighborhood. A combination of low-damage hydrogenation and RS analysis enables the detection of lattice defects as Si–hydrogen (H) local vibration modes (LVMs). The characteristics of LVMs peculiar to this material are examined by chemical etching and postannealing. One of the dominant LVMs centered at ∼2000 cm‑1 is assigned to H-terminated dangling bonds in the amorphous structures at GB, which is also enhanced by protrusions. The other dominant band centered at ∼2100 cm‑1 is attributed to the strained Si–Si lattice near the Si/underlayer interface in grains that is broken and stabilized by extrinsic H atoms.

  13. Chemically stable Au nanorods as probes for sensitive surface enhanced scattering (SERS) analysis of blue BIC ballpoint pens

    Science.gov (United States)

    Alyami, Abeer; Saviello, Daniela; McAuliffe, Micheal A. P.; Cucciniello, Raffaele; Mirabile, Antonio; Proto, Antonio; Lewis, Liam; Iacopino, Daniela

    2017-08-01

    Au nanorods were used as an alternative to commonly used Ag nanoparticles as Surface Enhanced Raman Scattering (SERS) probes for identification of dye composition of blue BIC ballpoint pens. When used in combination with Thin Layer Chromatography (TLC), Au nanorod colloids allowed identification of the major dye components of the BIC pen ink, otherwise not identifiable by normal Raman spectroscopy. Thanks to their enhanced chemical stability compared to Ag colloids, Au nanorods provided stable and reproducible SERS signals and allowed easy identification of phthalocyanine and triarylene dyes in the pen ink mixture. These findings were supported by FTIR and MALDI analyses, also performed on the pen ink. Furthermore, the self-assembly of Au nanorods into large area ordered superstructures allowed identification of BIC pen traces. SERS spectra of good intensity and high reproducibility were obtained using Au nanorod vertical arrays, due to the high density of hot spots and morphological reproducibility of these superstructures. These results open the way to the employment of SERS for fast screening analysis and for quantitative analysis of pens and faded pens which are relevant for the fields of forensic and art conservation sciences.

  14. Microanalysis of Organic Pigments in Ancient Textiles by Surface-Enhanced Raman Scattering on Agar Gel Matrices

    Directory of Open Access Journals (Sweden)

    Marilena Ricci

    2016-01-01

    Full Text Available We review some new methods based on surface-enhanced Raman scattering (SERS for the nondestructive/minimally invasive identification of organic colorants in objects whose value or function precludes sampling, such as historic and archeological textiles, paintings, and drawing. We discuss in detail the methodology we developed for the selective extraction and identification of anthraquinones and indigoids in the typical concentration used in textiles by means of an ecocompatible homogeneous nanostructured agar matrix. The extraction system was modulated according to the chemical properties of the target analyte by choosing appropriate reagents for the extraction and optimizing the extraction time. The system has been found to be extremely stable, easy to use and produce, easy to store, and at the same time able to be analyzed even after long time intervals, maintaining its enhancement properties unaltered, without the detriment of the extracted compound. Highly structured SERS band intensities have been obtained from the extracted dyes adopting laser light excitations at 514.5 and 785 nm of a micro-Raman setup. This analytical method has been found to be extremely safe for the analyzed substrates, thus being a promising procedure for the selective analysis and detection of molecules at low concentration in the field of artworks conservation.

  15. Colloidal europium nanoparticles via a solvated metal atom dispersion approach and their surface enhanced Raman scattering studies.

    Science.gov (United States)

    Urumese, Ancila; Jenjeti, Ramesh Naidu; Sampath, S; Jagirdar, Balaji R

    2016-08-15

    Chemistry of lanthanide metals in their zerovalent state at the nanoscale remains unexplored due to the high chemical reactivity and difficulty in synthesizing nanoparticles by conventional reduction methods. In the present study, europium(0) nanoparticles, the most reactive of all the rare earth metals have been synthesized by solvated metal atom dispersion (SMAD) method using hexadecyl amine as the capping agent. The as-prepared europium nanoparticles show surface Plasmon resonance (SPR) band in the visible region of the electromagnetic spectrum. This lead to the investigation of its surface enhanced Raman scattering (SERS) using visible light excitation source. The SERS activity of europium nanoparticles has been followed using 4-aminothiophenol and biologically important molecules such as hemoglobin and Cyt-c as the analytes. This is the first example of lanthanide metal nanoparticles as SERS substrate which can possibly be extended to other rare-earth metals. Since hemoglobin absorbs in the visible region, the use of visible light excitation source leads to surface enhanced resonance Raman spectroscopy (SERRS). The interaction of biomolecules with Eu(0) has been followed using FT-IR and UV-visible spectroscopy techniques. The results indicate that there is no major irreversible change in the structure of biomolecules upon interaction with europium nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays.

    Science.gov (United States)

    Huh, Yun Suk; Erickson, David

    2010-01-15

    Here we present an optofluidic surface enhanced Raman spectroscopy (SERS) device for on-chip detection of vasopressin using an aptamer based binding assay. To create the SERS-active substrate, densely packed, 200 nm diameter, metal nanotube arrays were fabricated using an anodized alumina nanoporous membrane as a template for shadow evaporation. We explore the use of both single layer Au structures and multilayer Au/Ag/Au structures and also demonstrate a facile technique for integrating the membranes with all polydimethylsiloxane (PDMS) microfluidic devices. Using the integrated device, we demonstrate a linear response in the main detection peak intensity to solution phase concentration and a limit of detection on the order of 5.2 microU/mL. This low limit of detection is obtained with device containing the multilayer SERS substrate which we show exhibits a stronger Raman enhancement while maintaining biocompatibility and ease or surface reactivity with the capture probe. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Chemical Stability of Graphene Coated Silver Substrates for Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Suzuki, Seiya; Yoshimura, Masamichi

    2017-11-01

    Surface enhanced Raman spectroscopy (SERS) is a novel method to sense molecular and lattice vibrations at a high sensitivity. Although nanostructured silver surface provides intense SERS signals, the silver surface is unstable under acidic environment and heated environment. Graphene, a single atomic carbon layer, has a prominent stability for chemical agents, and its honeycomb lattice completely prevents the penetration of small molecules. Here, we fabricated a SERS substrate by combining nanostructured silver surface and single-crystal monolayer graphene (G-SERS), and focused on its chemical stability. The G-SERS substrate showed SERS even in concentrated hydrochloric acid (35-37%) and heated air up to 400 °C, which is hardly obtainable by normal silver SERS substrates. The chemically stable G-SERS substrate posesses a practical and feasible application, and its high chemical stability provides a new type of SERS technique such as molecular detections at high temperatures or in extreme acidic conditions.

  18. Multifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation

    Science.gov (United States)

    Jin, Xiulong; Li, Haiyan; Wang, Shanshan; Kong, Ni; Xu, Hong; Fu, Qihua; Gu, Hongchen; Ye, Jian

    2014-11-01

    With the increasing need for multi-purpose analysis in the biomedical field, traditional single diagnosis methods cannot meet the requirements. Therefore new multifunctional technologies and materials for the integration of sample collection, sensing and imaging are in great demand. Core-shell nanoparticles offer a unique platform to combine multifunctions in a single particle. In this work, we have constructed a novel type of core-shell superparamagnetic nanoshell (Fe3O4@SiO2@Au), composed of a Fe3O4 cluster core, a thin Au shell and a SiO2 layer in between. The obtained multifunctional nanoparticles combine the magnetic properties and plasmonic optical properties effectively, which were well investigated by a number of experimental characterization methods and theoretical simulations. We have demonstrated that Fe3O4@SiO2@Au nanoparticles can be utilized for two-photon luminescence (TPL) imaging, near-infrared surface-enhanced Raman scattering (NIR SERS) and cell collection by magnetic separation. The TPL intensity could be further greatly enhanced through the plasmon coupling effect in the self-assembled nanoparticle chains, which were triggered by an external magnetic field. In addition, Fe3O4@SiO2@Au nanoparticles may have great potential applications such as enhanced magnetic resonance imaging (MRI) and photo-thermotherapy. Successful combination of multifunctions including magnetic response, biosensing and bioimaging in single nanoparticles allows further manipulation, real-time tracking, and intracellular molecule analysis of live cells at a single-cell level.With the increasing need for multi-purpose analysis in the biomedical field, traditional single diagnosis methods cannot meet the requirements. Therefore new multifunctional technologies and materials for the integration of sample collection, sensing and imaging are in great demand. Core-shell nanoparticles offer a unique platform to combine multifunctions in a single particle. In this work, we have

  19. Surface-enhanced Raman scattering detection of DNA derived from the West Nile virus genome using magnetic capture of Raman-active gold nanoparticles

    Science.gov (United States)

    A model paramagnetic nanoparticle (MNP) assay is demonstrated for surface-enhanced Raman scattering (SERS) detection of DNA oligonucleotides derived from the West Nile virus (WNV) genome. Detection is based on the capture of WNV target sequences by hybridization with complementary oligonucleotide pr...

  20. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  1. Microfluidic chip based micro RNA detection through the combination of fluorescence and surface enhanced Raman scattering techniques

    Science.gov (United States)

    Wang, Zhile; Zong, Shenfei; Wang, Zhuyuan; Wu, Lei; Chen, Peng; Yun, Binfeng; Cui, Yiping

    2017-03-01

    We present a novel microfluidic chip based method for the detection of micro RNA (miRNA) via the combination of fluorescence and surface enhanced Raman scattering (SERS) spectroscopies. First, silver nanoparticles (Ag NPs) are immobilized onto a glass slide, forming a SERS enhancing substrate. Then a specificially designed molecular beacon (MB) is attached to the SERS substrate. The 3‧ end of the MB is decorated with a thiol group to facilitate the attachment of the MB, while the 5‧ end of the MB is labeled with an organic dye 6-FAM, which is used both as the fluorophore and SERS reporter. In the absence of target miRNA, the MB will form a hairpin structure, making 6-FAM close to the Ag NPs. Hence, the fluorescence of 6-FAM will be quenched and the Raman signal of 6-FAM will be enhanced. On the contrary, with target miRNA present, hybridization between the miRNA and MB will unfold the MB and increase the distance between 6-FAM and the Ag NPs. Thus the fluorescence of 6-FAM will recover and the SERS signal of 6-FAM will decrease. So the target miRNA will simultaneously introduce opposite changing trends in the intensities of the fluorescence and SERS signals. By combining the opposite changes in the two optical spectra, an improved sensitivity and linearity toward the target miRNA is achieved as compared with using solely fluorescence or SERS. Moreover, introducing the microfluidic chip can reduce the reaction time, reagent dosage and complexity of detection. With the improved sensitivity and simplicity, we anticipate that the presented method can have great potential in the investigation of miRNA related diseases.

  2. 3D ZnO/Ag Surface-Enhanced Raman Scattering on Disposable and Flexible Cardboard Platforms

    Directory of Open Access Journals (Sweden)

    Ana Pimentel

    2017-11-01

    Full Text Available In the present study, zinc oxide (ZnO nanorods (NRs with a hexagonal structure have been synthesized via a hydrothermal method assisted by microwave radiation, using specialized cardboard materials as substrates. Cardboard-type substrates are cost-efficient and robust paper-based platforms that can be integrated into several opto-electronic applications for medical diagnostics, analysis and/or quality control devices. This class of substrates also enables highly-sensitive Raman molecular detection, amiable to several different operational environments and target surfaces. The structural characterization of the ZnO NR arrays has been carried out by X-ray diffraction (XRD, scanning electron microscopy (SEM and optical measurements. The effects of the synthesis time (5–30 min and temperature (70–130 °C of the ZnO NR arrays decorated with silver nanoparticles (AgNPs have been investigated in view of their application for surface-enhanced Raman scattering (SERS molecular detection. The size and density of the ZnO NRs, as well as those of the AgNPs, are shown to play a central role in the final SERS response. A Raman enhancement factor of 7 × 105 was obtained using rhodamine 6 G (R6G as the test analyte; a ZnO NR array was produced for only 5 min at 70 °C. This condition presents higher ZnO NR and AgNP densities, thereby increasing the total number of plasmonic “hot-spots”, their volume coverage and the number of analyte molecules that are subject to enhanced sensing.

  3. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform

    Science.gov (United States)

    Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2017-07-01

    The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.

  4. Au Nanoparticles Immobilized on Honeycomb-Like Polymeric Films for Surface-Enhanced Raman Scattering (SERS Detection

    Directory of Open Access Journals (Sweden)

    Chia-Yen Chiang

    2017-03-01

    Full Text Available We have successfully developed novel surface-enhanced Raman scattering (SERS substrates with three-dimensional (3D porous structures for effectively improving the sensitivity and reproducibility of SERS, which can rapidly detect small molecules (rhodamine 6G as an example. Periodical arrays of the honeycomb-like substrates were fabricated by self-assembling polyurethane-co-azetidine-2,4-dione (PU-PAZ polymers. PU-PAZ comprising amphiphilic dendrons could stabilize the phase separation between the water droplets and polymer solution, and then organize into regular porous structures during the breath figure method. Subsequently, SERS substrates were fabricated by immobilizing gold nanoparticles (AuNPs onto the honeycomb-like films with various 3D porous structures, controlled by the different PU-PAZ concentrations and relative humidities. Results show that surface enhancement factors of honeycomb-like substrates were 20 times higher than that of flat-film substrates (control group due to enormous hot-spots resonance effects by the 3D porous structure, verified through Raman mapping at various positions of the z-axis. Furthermore, the particle size effects were evaluated by immobilized 12 and 67 nm of AuNPs on the honeycomb-like substrates, indicating larger AuNPs could induce more pronounced hot-spots effects. The generation of hot-spots resonance to enhance Raman intensity is strongly dependent on the diameter of AuNPs and the pore size of the honeycomb-like and 3D porous substrates for label-free and rapid SERS detection.

  5. Gold particle interaction in regular arrays probed by surface enhanced Raman scattering.

    Science.gov (United States)

    Félidj, N; Truong, S Lau; Aubard, J; Lévi, G; Krenn, J R; Hohenau, A; Leitner, A; Aussenegg, F R

    2004-04-15

    Lithographically designed two-dimensional arrays consisting of gold nanoparticles deposited on a smooth gold film are used as substrate to examine the SERS effect of the trans-1,2-bis (4-pyridyl) ethylene molecule. These arrays display two plasmon bands instead of the single one observed for the same arrays of particles but deposited on indium tin oxide coated glass. Laser excitation within the short wavelength band does not bring about any SERS spectrum, while excitation within the long wavelength band yields SERS spectra with a gain per molecule rising up to 10(8). The simultaneous investigation of extinction and Raman spectra of arrays exhibiting various topography parameters enables us to suggest an interpretation for both the occurrence of the two plasmon resonances and for the high Raman enhancement. We suggest to assign the short wavelength band to a plasmon wave propagating at the gold glass interface and the long wavelength one to an air/gold surface plasmon mode modified by particle-particle interaction. (c) 2004 American Institute of Physics.

  6. Ultrafast surface enhanced resonance Raman scattering detection in droplet-based microfluidic systems.

    Science.gov (United States)

    Cecchini, Michael P; Hong, Jongin; Lim, Chaesung; Choo, Jaebum; Albrecht, Tim; Demello, Andrew J; Edel, Joshua B

    2011-04-15

    The development of ultrafast Raman-based detection is one of the most interesting challenges underpinning the application of droplet-based microfluidics. Herein, we describe the use of surface-enhanced resonance Raman spectroscopy (SERRS) with submillisecond time resolution as a powerful detection tool in microdroplet reactors. Individual droplets containing silver nanoparticle aggregates functionalized with Raman reporters are interrogated and characterized by full spectra acquisitions with high spatial resolution in real time. Whereas previous works coupling SERRS with droplet-based microfluidics acquire a single spectrum over single or multiple droplets, we build upon these results by increasing our temporal resolution by 2 orders of magnitude. This allows us to interrogate multiple points within one individual droplet. The SERRS signals emitted from the aggregates are utilized to access the influence of flow rate on droplet size and throughput. Accordingly, our approach allows for high-throughput analysis that facilitates the study of other biological assays or molecular interactions. © 2011 American Chemical Society

  7. Facing Challenges in Real-Life Application of Surface-Enhanced Raman Scattering: Design and Nanofabrication of Surface-Enhanced Raman Scattering Substrates for Rapid Field Test of Food Contaminants.

    Science.gov (United States)

    Shi, Ruyi; Liu, Xiangjiang; Ying, Yibin

    2017-11-16

    Surface-enhanced Raman scattering (SERS) is capable of detecting a single molecule with high specificity and has become a promising technique for rapid chemical analysis of agricultural products and foods. With a deeper understanding of the SERS effect and advances in nanofabrication technology, SERS is now on the edge of going out of the laboratory and becoming a sophisticated analytical tool to fulfill various real-world tasks. This review focuses on the challenges that SERS has met in this progress, such as how to obtain a reliable SERS signal, improve the sensitivity and specificity in a complex sample matrix, develop simple and user-friendly practical sensing approach, reduce the running cost, etc. This review highlights the new thoughts on design and nanofabrication of SERS-active substrates for solving these challenges and introduces the recent advances of SERS applications in this area. We hope that our discussion will encourage more researches to address these challenges and eventually help to bring SERS technology out of the laboratory.

  8. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon

    Directory of Open Access Journals (Sweden)

    D. A. Lack

    2010-05-01

    Full Text Available The presence of clear coatings on atmospheric black carbon (BC particles is known to enhance the magnitude of light absorption by the BC cores. Based on calculations using core/shell Mie theory, we demonstrate that the enhancement of light absorption (EAbs by atmospheric black carbon (BC when it is coated in mildly absorbing material (CBrown is reduced relative to the enhancement induced by non-absorbing coatings (CClear. This reduction, sensitive to both the CBrown coating thickness and imaginary refractive index (RI, can be up to 50% for 400 nm radiation and 25% averaged across the visible radiation spectrum for reasonable core/shell diameters. The enhanced direct radiative forcing possible due to the enhancement effect of CClear is therefore reduced if the coating is absorbing. Additionally, the need to explicitly treat BC as an internal, as opposed to external, mixture with CBrown is shown to be important to the calculated single scatter albedo only when models treat BC as large spherical cores (>50 nm. For smaller BC cores (or fractal agglomerates consideration of the BC and CBrown as an external mixture leads to relatively small errors in the particle single scatter albedo of <0.03. It has often been assumed that observation of an absorption Angström exponent (AAE>1 indicates absorption by a non-BC aerosol. Here, it is shown that BC cores coated in CClear can reasonably have an AAE of up to 1.6, a result that complicates the attribution of observed light absorption to CBrown within ambient particles. However, an AAE<1.6 does not exclude the possibility of CBrown; rather CBrown cannot be confidently assigned unless AAE>1.6. Comparison of these model

  9. Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study

    Science.gov (United States)

    Sung, Kung-Bin; Chen, Hsi-Hsun

    2012-10-01

    Diffuse reflectance spectroscopy has been applied to detect tissue absorption and scattering properties associated with dysplasia, which is a potential precursor of epithelial cancers. The ability of DRS techniques to detect dysplasia could be improved by enhancing the detection of optical properties of the thin epithelial layer where dysplasia occurs. We propose a beveled fiber bundle probe consisting of a source fiber and multiple detection fibers parallel to each other and oriented obliquely to the tissue surface and investigate the sensitivity of reflectance measured with the probe to optical properties of a two-layered normal oral mucosa model. A scalable Monte Carlo method is employed to speed up analyzing spatially resolved reflectance spectra. Results reveal that the oblique probe is more sensitive to epithelial scattering and less sensitive to both stromal absorption and scattering than conventional perpendicular fiber configuration. The clinical relevance of the enhanced sensitivity to epithelial scattering by the proposed probe is demonstrated by quantifying optical properties of the two-layered tissue model from simulated data. The average error of extracted epithelial scattering coefficient is 1.5% and 32% using the oblique and perpendicular probe, respectively. The errors in other optical properties are all below 10% using the oblique probe.

  10. Lens Coupled Quantum Cascade Laser

    Science.gov (United States)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)

    2013-01-01

    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  11. Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Huiyuan [Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States); Xing, Baoshan, E-mail: bx@umass.edu [Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States); Hamlet, Leigh C.; Chica, Andrea [Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 (United States); He, Lili, E-mail: lilihe@foodsci.umass.edu [Department of Food Science, University of Massachusetts, Amherst, MA 01003 (United States)

    2016-06-01

    Growing concerns over the potential release and threat of silver nanoparticles (AgNPs) to environmental and biological systems urge researchers to investigate their fate and behavior. However, current analytical techniques cannot meet the requirements for rapidly, sensitively and reliably probing AgNPs in complex matrices. Surface-enhanced Raman spectroscopy (SERS) has shown great capability for rapid detection of AgNPs based on an indicator molecule that can bind on the AgNP surface. The objective of this study was to exploit SERS to detect AgNPs in environmental and biological samples through optimizing the Raman indicator for SERS. Seven indicator molecules were selected and determined to obtain their SERS signals at optimal concentrations. Among them, 1,2-di(4-pyridyl)ethylene (BPE), crystal violet and ferric dimethyl-dithiocarbamate (ferbam) produced the highest SERS intensities. Further experiments on binding competition between each two of the three candidates showed that ferbam had the highest AgNPs-binding ability. The underlying mechanism lies in the strong binding affinity of ferbam with AgNPs via multiple sulfur atoms. We further validated ferbam to be an effective indicator for SERS detection of as low as 0.1 mg/L AgNPs in genuine surface water and 0.57 mg/L in spinach juice. Moreover, limited interference on SERS detection of AgNPs was found from environmentally relevant inorganic ions, organic matter, inorganic particles, as well as biologically relevant components, demonstrating the ferbam-assisted SERS is an effective and sensitive method to detect AgNPs in complex environmental and biological samples. - Graphical abstract: SERS signal intensity of ferbam indicates the concentration of AgNPs. - Highlights: • Ferbam was found to be the best indicator for SERS detection of AgNPs. • SERS was able to detect AgNPs in both environmental and biological samples. • Major components in the two matrices had limited effect on AgNP detection.

  12. Enhanced Efficiency in Dye-Sensitized Solar Cells by Electron Transport and Light Scattering on Freestanding TiO2 Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Won-Yeop Rho

    2017-10-01

    Full Text Available Dye-sensitized solar cells (DSSCs were fabricated with closed- or open-ended freestanding TiO2 nanotube arrays as photoelectrodes that were decorated with carbon materials and large TiO2 nanoparticles (NPs to enhance energy conversion efficiency. The energy conversion efficiency of DSSCs based on open-ended freestanding TiO2 nanotube arrays increased from 4.47% to 5.39%, compared to the DSSCs based on closed-ended freestanding TiO2 nanotube arrays. In DSSCs based on the open-ended freestanding TiO2 nanotube arrays, the energy conversion efficiency with carbon materials increased from 5.39% to 6.19% due to better electron transport, and that with a scattering layer from 5.39% to 6.24% due to more light harvesting compared to the DSSCs without carbon materials or scattering layer. Moreover, the energy conversion efficiency of DSSCs based on the open-ended freestanding TiO2 nanotube arrays with both carbon materials and scattering layer increased from 5.39% to 6.98%, which is an enhancement of 29.50%. In DSSCs based on the TiO2 nanotube arrays, the carbon materials can improve electron transport by π-π conjugation, and the large TiO2 NPs can enhance the capacity to light-harvest by scattering.

  13. Surface-Enhanced Raman Scattering from Self-Assembled Film of Thiolated Peg-Modified Gold Nanoparticles

    Science.gov (United States)

    Chen, Q.; Wu, Q.; Zhang, Q.; Hu, J.

    2017-07-01

    Self-assembly of thiolated polyethylene glycol (PEG)-modifi ed Au nanoparticles (NPs) into a closely packed particle film at a water-air interface for the production of reproducible, highly active surface-enhanced Raman scattering (SERS) was developed. Upon modifi cation with thiolated PEG, the Au NPs can sustain severe conditions (e.g., 3 M NaCl solution), and after separation from colloids and drying, they can be redispersed into water, forming colloids again. We found that the thiolated PEG-modifi ed Au NPs, from their concentrated colloids, can spontaneously selfassemble into a two-dimensional (2D) closely packed particle film at the water-air interface. With abundant hot spots created and exposed, the 2D particle film produces large, reproducible SERS signal for 4-mercaptobenzoic acid (probe molecule), reaching a detection limit of 1 × 10-11 M. These results offer a useful way for the storage of Au NPs and the fabrication of highly reproducible and active SERS substrate.

  14. Highly sensitive immunoassay of anti-cyclic citrullinated peptide marker using surface-enhanced Raman scattering detection

    Science.gov (United States)

    Chon, H.; Lee, S.; Wang, R.; Bang, S.-Y.; Lee, H.-S.; Bae, S.-C.; Hong, S. H.; Yoon, Y. H.; Lim, D.; Choo, J.

    2015-07-01

    We report a highly sensitive anti-cyclic citrullinated peptide (anti-CCP) detection method for early diagnosis of rheumatoid arthritis (RA) using surface-enhanced Raman scattering (SERS)-based immunoassay. Herein, cyclic citrullinated peptide (CCP)-conjugated magnetic beads and anti-human IgG-conjugated hollow gold nanospheres (HGNs) were used as substrates and SERS nano-tags, respectively. First, its detection sensitivity was evaluated using anti-CCP standard solutions. Then quantitative anti-CCP levels, determined by the SERS-based assay, were compared with those obtained from three commercially available anti-CCP assay kits (Immunoscan CCPlus, ImmunnLisa™ CCP and BioPlex™ 2200) to assess its potential utility as a clinical tool. Finally, clinical samples from 20 RA patients were investigated using them. In the SERS-based assay, the anti-CCP level in human serum was successfully determined by monitoring the characteristic Raman peak intensity of SERS nano-tags. The diagnostic performance of our SERS-based immunoassay for clinical samples shows a good agreement with those measured by three commercial anti-CCP kits. In addition, our SERS-based assay results are more consistent in the low concentration range (0-25 U/mL) than those achieved by the commercial kits. Accordingly, it is estimated that the SERS-based assay is a potentially useful diagnostic tool for early diagnosis of RA.

  15. Gold nanostar @ iron oxide core-shell nanostructures: synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties

    Science.gov (United States)

    Esenturk, Emren Nalbant; Hight Walker, Angela R.

    2013-01-01

    Iron oxide-coated gold nanostars are produced by first synthesizing gold nanostars (ca 150 nm), then introducing a polyvinylpyrollidone coating followed by reducing iron(II) and iron(III) salts on the nanoparticle (NP) surface. Morphological and chemical composition characterizations of these composite nanomaterials were performed via field-emission transmission electron microscopy/energy dispersive spectroscopy studies. The analysis revealed that the majority of the NPs had coating of approximately 1-5 nm thicknesses. The crystal structure of the coating on gold nanostars was determined to be α-Fe2O3 with X-ray diffraction analysis. X-ray photoelectron spectroscopy confirmed that the coating is Fe2O3. The magnetic property studies via superconducting quantum interference device magnetometer revealed an antiferromagnetic behavior of the magnetic coating, verifying the existence of antiferromagnetic α-Fe2O3 layer on gold nanostars. Surface-enhanced Raman scattering (SERS) spectroscopy performed with crystal violet as the probe molecule confirms continued strong SERS activity for gold nanostars after the iron oxide coating. Having both magnetic and plasmonic properties in one NP system makes these particles suitable for various bio-analytical applications such as biomolecule separation, sensing and magnetic imaging.

  16. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review.

    Science.gov (United States)

    Liu, Yu; Zhou, Haibo; Hu, Ziwei; Yu, Guangxia; Yang, Danting; Zhao, Jinshun

    2017-08-15

    Rapid, accurate detection of pathogen bacteria is a highly topical research area for the sake of food safety and public health. Surface-enhanced Raman scattering (SERS) is being considered as a powerful and attractive technique for pathogen bacteria detection, due to its sensitivity, high speed, comparatively low cost, multiplexing ability and portability. This contribution aims to give a comprehensive overview of SERS as a technique for rapid detection of pathogen bacteria based on label and label-free strategies. A brief tutorial on SERS is given first of all. Then we summarize the recent trends and developments of label and label-free based SERS applied to detection of pathogen bacteria, including the relatively complete interpretation of SERS spectra. In addition, multifunctional SERS platforms for pathogen bacteria in matrix are discussed as well. Furthermore, an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for real-time pathogen bacteria detection are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Graphene-Gold Nanoparticles Hybrid-Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor.

    Science.gov (United States)

    Khalil, Ibrahim; Julkapli, Nurhidayatullaili Muhd; Yehye, Wageeh A; Basirun, Wan Jefrey; Bhargava, Suresh K

    2016-05-24

    Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS) with graphene produces the graphene-AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene-Au nanocomposites. The paper highlights the graphene-gold nanoparticle (AuNP) as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS)-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer.

  18. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.

    Science.gov (United States)

    Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren

    2015-12-01

    Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.

  19. Identification of illicit drugs by a combination of liquid chromatography and surface-enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Sägmüller, Bernd; Schwarze, Bernd; Brehm, Georg; Trachta, Gerd; Schneider, Siegfried

    2003-12-01

    We have developed a new analysis procedure based upon High-Performance Liquid Chromatography (HPLC) in combination with surface-enhanced Raman scattering (SERS) spectroscopy as detection technique to meet todays need for an additional unique and reliable identification method of the ingredients of illicitly sold drugs or other pharmaceutical compounds. Separation of the individual components of a sample was preferentially achieved by employing an acetonitrile free eluent. The fractions of interest were collected as microliter volumes in the wells of a microtiter plate, which contained a home-made, matrix-stabilized silver halide dispersion. The latter functions as the precursor for the SERS-active surface generated by the probing laser beam. The limits of detection can be as low as 1 μg of analyte per one well of the microtiter plate. The recorded SERS spectra of the drugs Cocaine, Heroine and Amphetamine or the pharmaceuticals (Nor-) Papaverine and Procaine promise the possibility of a unique identification, especially if compared with the spectra of reference samples, and, therefore, can support the conclusions drawn by other identification techniques, if requested for example during a law suit.

  20. Electrospun Nanofibers Made of Silver Nanoparticles, Cellulose Nanocrystals, and Polyacrylonitrile as Substrates for Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Ren, Suxia; Dong, Lili; Zhang, Xiuqiang; Lei, Tingzhou; Ehrenhauser, Franz; Song, Kunlin; Li, Meichun; Sun, Xiuxuan; Wu, Qinglin

    2017-01-14

    Nanofibers with excellent activities in surface-enhanced Raman scattering (SERS) were developed through electrospinning precursor suspensions consisting of polyacrylonitrile (PAN), silver nanoparticles (AgNPs), silicon nanoparticles (SiNPs), and cellulose nanocrystals (CNCs). Rheology of the precursor suspensions, and morphology, thermal properties, chemical structures, and SERS sensitivity of the nanofibers were investigated. The electrospun nanofibers showed uniform diameters with a smooth surface. Hydrofluoric (HF) acid treatment of the PAN/CNC/Ag composite nanofibers (defined as p-PAN/CNC/Ag) led to rougher fiber surfaces with certain pores and increased mean fiber diameters. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results confirmed the existence of AgNPs that were formed during heat and HF acid treatment processes. In addition, thermal stability of the electrospun nanofibers increased due to the incorporation of CNCs and AgNPs. The p-PAN/CNC/Ag nanofibers were used as a SERS substrate to detect p-aminothiophenol (p-ATP) probe molecule. The results show that this substrate exhibited high sensitivity for the p-ATP probe detection.

  1. Graphene–Gold Nanoparticles Hybrid—Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor

    Science.gov (United States)

    Khalil, Ibrahim; Julkapli, Nurhidayatullaili Muhd; Yehye, Wageeh A.; Basirun, Wan Jefrey; Bhargava, Suresh K.

    2016-01-01

    Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS) with graphene produces the graphene–AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene–Au nanocomposites. The paper highlights the graphene–gold nanoparticle (AuNP) as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS)-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer. PMID:28773528

  2. Ag Nanorods-Oxide Hybrid Array Substrates: Synthesis, Characterization, and Applications in Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Lingwei Ma

    2017-08-01

    Full Text Available Over the last few decades, benefitting from the sufficient sensitivity, high specificity, nondestructive, and rapid detection capability of the surface-enhanced Raman scattering (SERS technique, numerous nanostructures have been elaborately designed and successfully synthesized as high-performance SERS substrates, which have been extensively exploited for the identification of chemical and biological analytes. Among these, Ag nanorods coated with thin metal oxide layers (AgNRs-oxide hybrid array substrates featuring many outstanding advantages have been proposed as fascinating SERS substrates, and are of particular research interest. The present review provides a systematic overview towards the representative achievements of AgNRs-oxide hybrid array substrates for SERS applications from diverse perspectives, so as to promote the realization of real-world SERS sensors. First, various fabrication approaches of AgNRs-oxide nanostructures are introduced, which are followed by a discussion on the novel merits of AgNRs-oxide arrays, such as superior SERS sensitivity and reproducibility, high thermal stability, long-term activity in air, corrosion resistivity, and intense chemisorption of target molecules. Next, we present recent advances of AgNRs-oxide substrates in terms of practical applications. Intriguingly, the recyclability, qualitative and quantitative analyses, as well as vapor-phase molecule sensing have been achieved on these nanocomposites. We further discuss the major challenges and prospects of AgNRs-oxide substrates for future SERS developments, aiming to expand the versatility of SERS technique.

  3. Rapid qualitative and quantitative determination of food colorants by both Raman spectra and Surface-enhanced Raman Scattering (SERS).

    Science.gov (United States)

    Ai, Yu-Jie; Liang, Pei; Wu, Yan-Xiong; Dong, Qian-Min; Li, Jing-Bin; Bai, Yang; Xu, Bi-Jie; Yu, Zhi; Ni, Dejiang

    2018-02-15

    Surface Enhanced Raman Scattering (SERS) spectroscopy technology is widely used in materials analysis, environmental monitoring, biomedical, food security and other fields. Flower-shaped silver nanoparticles have been successfully synthesized by a simple aqueous phase silver nitrate reduction by ascorbic acid in the presence of polyvinylpyrrolidone (PVP) surfactant. The nanoparticles diameters were adjusted from 450 to 1000nm with surface protrusions up to 10-25nm. The flower-shaped silver nanostructures obtained were used as stable SERS substrates with high SERS activity for detecting Rhodamine 6G (R6G), at a concentration of only 10(-9)mol/L, where the SERS signal is still clear. SERS spectroscopy of four different food colorants (e.g. food blue, tartrazine, sunset yellow, acid red) were analysed and the characteristic bands were identified. An improved principle component analysis (PCA) was used for four different food colorants detection, at concentrations down to about 10(-8)mol/L. Thus, the LOD of food blue, tartrazine, sunset yellow and acid red are 79.285μg/L, 5.3436μg/L, 45.238μg/L and 50.244μg/L, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Graphene–Gold Nanoparticles Hybrid—Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor

    Directory of Open Access Journals (Sweden)

    Ibrahim Khalil

    2016-05-01

    Full Text Available Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS with graphene produces the graphene–AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene–Au nanocomposites. The paper highlights the graphene–gold nanoparticle (AuNP as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer.

  5. Surface-enhanced Raman scattering from living cells: from differentiating healthy and cancerous cell to cytotoxicity assessment

    Science.gov (United States)

    Kuku, Gamze; Sarıçam, Melike; Mert, Sevda; ćulha, Mustafa

    2015-05-01

    There is an ongoing effort to obtain molecular level information from living cells using surface-enhanced Raman scattering (SERS) not only to understand changes of cellular processes upon exposure to external stimuli but also to decide the status of cells; whether they are healthy or abnormal. In our research effort, we investigate how much information can be obtained from living cells to use for decision making about the cellular processes using SERS. The undertaken studies include cytotoxicity assessment of the nanomaterials and differentiation of the healthy and cancer cells. In the first case, A549 (lung cancer) and HDF (human dermal fibroblast) cells were incubated with 50 nm gold nanoparticles (AuNP) and exposed to three different nanoparticles (Zinc oxide nanoparticles (ZnO NPs), titanium dioxide nanoparticles (TiO2) and single walled carbon nanotubes (SWCNTs)) to perform SERS analysis and track the cellular response to these nanomaterials (NMs). After the principal component analysis on the spectral data, it was shown that the NPs exposed samples could be differentiated through SERS. In the second case, SERS spectra obtained from human kidney adenocarcinoma (ACHN), human kidney carcinoma (A-498) and non-cancerous human kidney embryonic cells (HEK 293) were used to diagnose metastatic, primary and non-cancerous cell lines. Linear discriminant analysis (LDA) based on principal component analysis (PCA) was applied to collected multidimensional SERS spectral data set to differentiate three different cell lines.

  6. Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner

    Science.gov (United States)

    2015-01-01

    The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imaging device and a mobile, hand-held Raman scanner. We show that SERS image-guided resection is more accurate than resection using white light visualization alone. Both methods complemented each other, and correlation with histology showed that SERS nanoparticles accurately outlined the extent of the tumors. Importantly, the hand-held Raman probe not only allowed near real-time scanning, but also detected additional microscopic foci of cancer in the resection bed that were not seen on static SERS images and would otherwise have been missed. This technology has a strong potential for clinical translation because it uses inert gold–silica SERS nanoparticles and a hand-held Raman scanner that can guide brain tumor resection in the operating room. PMID:25093240

  7. Electrospun Nanofibers Made of Silver Nanoparticles, Cellulose Nanocrystals, and Polyacrylonitrile as Substrates for Surface-Enhanced Raman Scattering

    Science.gov (United States)

    Ren, Suxia; Dong, Lili; Zhang, Xiuqiang; Lei, Tingzhou; Ehrenhauser, Franz; Song, Kunlin; Li, Meichun; Sun, Xiuxuan; Wu, Qinglin

    2017-01-01

    Nanofibers with excellent activities in surface-enhanced Raman scattering (SERS) were developed through electrospinning precursor suspensions consisting of polyacrylonitrile (PAN), silver nanoparticles (AgNPs), silicon nanoparticles (SiNPs), and cellulose nanocrystals (CNCs). Rheology of the precursor suspensions, and morphology, thermal properties, chemical structures, and SERS sensitivity of the nanofibers were investigated. The electrospun nanofibers showed uniform diameters with a smooth surface. Hydrofluoric (HF) acid treatment of the PAN/CNC/Ag composite nanofibers (defined as p-PAN/CNC/Ag) led to rougher fiber surfaces with certain pores and increased mean fiber diameters. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results confirmed the existence of AgNPs that were formed during heat and HF acid treatment processes. In addition, thermal stability of the electrospun nanofibers increased due to the incorporation of CNCs and AgNPs. The p-PAN/CNC/Ag nanofibers were used as a SERS substrate to detect p-aminothiophenol (p-ATP) probe molecule. The results show that this substrate exhibited high sensitivity for the p-ATP probe detection. PMID:28772428

  8. Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells.

    Science.gov (United States)

    Qu, Lu-Lu; Liu, Ying-Ya; He, Sai-Huan; Chen, Jia-Qing; Liang, Yuan; Li, Hai-Tao

    2016-03-15

    Determination of hydrogen peroxide (H2O2) with high sensitivity and selectivity in living cells is a challenge for evaluating the diverse roles of H2O2 in the physiological and pathological processes. In this work, we present novel surface enhanced Raman scattering (SERS) nanosensors, 4-carboxyphenylboronic acid (4-CA) modified gold nanoparticles (Au NPs/4-CA), for sensing H2O2 in living cells. The nanosensors are based on that the H2O2-triggered oxidation reaction with the arylboronate on Au NPs would liberate the phenol, thus causing changes of the SERS spectra of the nanosensors. The results show the nanosensors feature higher selectivity for H2O2 over other reactive oxygen species, abundant competing cellular thiols and biologically relevant species, as well as excellent sensitivity with a low detection limit of 80 nM, which fulfills the requirements for detection of H2O2 in a biological system. In addition, the SERS nanosensors exhibit long term stability against time and pH, and high biocompatibility. More importantly, the presented nanosensors can be successfully used for monitoring changes of H2O2 levels within living biological samples upon oxidative stress, which opens up new opportunities to study its cellular biochemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Rapid and Quantitative Determination of S-Adenosyl-L-Methionine in the Fermentation Process by Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Hairui Ren

    2016-01-01

    Full Text Available Concentrations of S-Adenosyl-L-Methionine (SAM in aqueous solution and fermentation liquids were quantitatively determined by surface-enhanced Raman scattering (SERS and verified by high-pressure liquid chromatography (HPLC. The Ag nanoparticle/silicon nanowire array substrate was fabricated and employed as an active SERS substrate to indirectly measure the SAM concentration. The linear relationship between the integrated intensity of peak centered at ~2920 cm−1 in SERS spectra and the SAM concentration was established, and the limit of detections of SAM concentrations was analyzed to be ~0.1 g/L. The concentration of SAM in real solution could be predicted by the linear relationship and verified by the HPLC detection method. The relative deviations (δ of the predicted SAM concentration are less than 13% and the correlation coefficient is 0.9998. Rolling-Circle Filter was utilized to subtract fluorescence background and the optimal results were obtained when the radius of the analyzing circle is 650 cm−1.

  10. New pathway to prepare gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering.

    Science.gov (United States)

    Chang, Chun-Chao; Yang, Kuang-Hsuan; Liu, Yu-Chuan; Hsu, Ting-Chu

    2012-05-01

    As shown in the literature, additional energies are necessary for the reduction of positively charged noble metal ions to prepare metal nanoparticles (NPs). In this work, we report a new green pathway to prepare Au NPs in neutral 0.1M NaCl aqueous solutions from bulk Au substrates without addition of any stabilizer and reductant just via aid of natural chitosan (Ch) at room temperature. Au- and Ch-containing complexes in aqueous solution were electrochemically prepared. The role of Ch is just an intermediate to perform electron transfer with Au NPs. The stability of these prepared Au NPs is well maintained by Au NPs themselves with slightly positively charged Au remained on the surface of Au NPs. The particle size of prepared spherical Au (111) NPs is ca. 15 nm in diameter. Moreover, increasing the pH of preparation solutions can be contributive to preparing concentrated Au NPs in solutions. The prepared Au NPs are surface-enhanced Raman scattering (SERS)-active for probe molecules of Rhodamine 6G. They also demonstrate significantly catalytic activity for decomposition of acetaldehyde in rice wine. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Simultaneous multiplexed quantification of caffeine and its major metabolites theobromine and paraxanthine using surface-enhanced Raman scattering.

    Science.gov (United States)

    Alharbi, Omar; Xu, Yun; Goodacre, Royston

    2015-11-01

    Accurate quantitative measurement of drugs and their metabolites is important as this can be used to establish long-term abuse of illicit materials as well as establish accurate drug dosing for legal therapeutics. However, the levels of drugs and xenometabolites found in human body fluids necessitate methods that are highly sensitive as well as reproducible with the potential for portability. Raman spectroscopy does offer excellent reproducibility, portability and chemical specificity, but unfortunately, the Raman effect is generally too weak unless it is enhanced. We therefore developed surface-enhanced Raman scattering (SERS) and combined it with the powerful machine learning technique of artificial neural networks to enable rapid quantification of caffeine and its two major metabolites theobromine and paraxanthine. We established a three-way mixture analysis from 10(-5) to 10(-7) mol/dm(3), and excellent predictions were generated for all three analytes in tertiary mixtures. The range we selected reflects the levels found in human body fluids, and the typical errors for our portable SERS analysis were 1.7 × 10(-6) mol/dm(3) for caffeine, 8.8 × 10(-7) mol/dm(3) for theobromine and 9.6 × 10(-7) mol/dm(3) for paraxanthine. We believe this demonstrates the exciting prospect of using SERS for the quantitative analysis of multiple analytes simultaneously without recourse to lengthy and time-consuming chromatography, a method that often has to be combined with mass spectrometry.

  12. A Poly Adenine-Mediated Assembly Strategy for Designing Surface-Enhanced Resonance Raman Scattering Substrates in Controllable Manners.

    Science.gov (United States)

    Zhu, Ying; Jiang, Xiangxu; Wang, Houyu; Wang, Siyi; Wang, Hui; Sun, Bin; Su, Yuanyuan; He, Yao

    2015-07-07

    In this article, we introduce a Poly adenine (Poly A)-assisted fabrication method for rationally designing surface-enhanced resonance Raman scattering (SERRS) substrates in controllable and reliable manners, enabling construction of core-satellite SERRS assemblies in both aqueous and solid phase (e.g., symmetric core (Au)-satellite (Au) nanoassemblies (Au-Au NPs), and asymmetric Ag-Au NPs-decorated silicon wafers (Ag-Au NPs@Si)). Of particular significance, assembly density is able to be controlled by varying the length of the Poly A block (e.g., 10, 30, and 50 consecutive adenines at the 5' end of DNA sequence, Poly A10/A30/A50), producing the asymmetric core-satellite nanoassemblies with adjustable surface density of Au NPs assembly on core NPs surface. Based on quantitative interrogation of the relationship between SERRS performance and assemble density, the Ag-Au NPs@Si featuring the strongest SERRS enhancement factor (EF ≈ 10(7)) and excellent reproducibility can be achieved under optimal conditions. We further employ the resultant Ag-Au NPs@Si as a high-performance SERRS sensing platform for the selective and sensitive detection of mercury ions (Hg(2+)) in a real system, with a low detection limit of 100 fM, which is ∼5 orders of magnitude lower than the United States Environmental Protection Agency (USEPA)-defined limit (10 nM) in drinkable water. These results suggest the Poly A-mediated assembly method as new and powerful tools for designing high-performance SERRS substrates with controllable structures, facilitating improvement of sensitivity, reliability, and reproducibility of SERRS signals.

  13. All passive architecture for high efficiency cascaded Raman conversion

    Science.gov (United States)

    Balaswamy, V.; Arun, S.; Chayran, G.; Supradeepa, V. R.

    2018-02-01

    Cascaded Raman fiber lasers have offered a convenient method to obtain scalable, high-power sources at various wavelength regions inaccessible with rare-earth doped fiber lasers. A limitation previously was the reduced efficiency of these lasers. Recently, new architectures have been proposed to enhance efficiency, but this came at the cost of enhanced complexity, requiring an additional low-power, cascaded Raman laser. In this work, we overcome this with a new, all-passive architecture for high-efficiency cascaded Raman conversion. We demonstrate our architecture with a fifth-order cascaded Raman converter from 1117nm to 1480nm with output power of ~64W and efficiency of 60%.

  14. Detection of the tuberculosis antigenic marker mannose-capped lipoarabinomannan in pretreated serum by surface-enhanced Raman scattering.

    Science.gov (United States)

    Crawford, Alexis C; Laurentius, Lars B; Mulvihill, Timothy S; Granger, Jennifer H; Spencer, John S; Chatterjee, Delphi; Hanson, Kimberly E; Porter, Marc D

    2016-12-19

    The ability to detect tuberculosis (TB) continues to be a global health care priority. This paper describes the development and preliminary assessment of the clinical accuracy of a heterogeneous immunoassay that integrates a serum pretreatment process with readout by surface-enhanced Raman scattering (SERS) for the low-level detection of mannose-capped lipoarabinomannan (ManLAM). ManLAM is a major virulence factor in the infectious pathology of Mycobacterium tuberculosis (Mtb) that has been found in the serum and other body fluids of infected patients. The effectiveness of ManLAM as a TB diagnostic marker, however, remains unproven for reasons not yet well understood. As reported herein, we have found that (1) ManLAM complexes with proteins and possibly other components in serum; (2) these complexes have a strongly detrimental impact on the ability to detect ManLAM using an immunoassay; (3) a simple pretreatment step can disrupt this complexation; and (4) disruption by pretreatment improves detection by 250×. We also describe the results from a preliminary assessment on the utility of serum pretreatment by running immunoassays on archived specimens from 24 TB-positive patients and 10 healthy controls. ManLAM was measurable in 21 of the 24 TB-positive specimens, but not in any of the 10 control specimens. These findings, albeit for a very small specimen set, translate to a clinical sensitivity of 87.5% and a clinical specificity of 100%. Together, these results both provide much needed evidence for the clinical utility of ManLAM as a TB marker, and demonstrate the potential utility of our overall approach to serve as a new strategy for the development of diagnostic tests for this disease.

  15. Quantitative Online Liquid Chromatography-Surface-Enhanced Raman Scattering (LC-SERS) of Methotrexate and its Major Metabolites.

    Science.gov (United States)

    Subaihi, Abdu; Trivedi, Drupad K; Hollywood, Katherine A; Bluett, James; Xu, Yun; Muhamadali, Howbeer; Ellis, David I; Goodacre, Royston

    2017-06-20

    The application of Raman spectroscopy as a detection method coupled with liquid chromatography (LC) has recently attracted considerable interest, although this has currently been limited to isocratic elution. The combination of LC with rapidly advancing Raman techniques, such as surface-enhanced Raman scattering (SERS), allows for rapid separation, identification and quantification, leading to quantitative discrimination of closely eluting analytes. This study has demonstrated the utility of SERS in conjunction with reversed-phase liquid chromatography (RP-LC), for the detection and quantification of the therapeutically relevant drug molecule methotrexate (MTX) and its metabolites 7-hydroxy methotrexate (7-OH MTX) and 2,4-diamino-N(10)-methylpteroic acid (DAMPA) in pure solutions and mixtures, including spikes into human urine from a healthy individual and patients under medication. While the RP-LC analysis developed employed gradient elution, where the chemical constituents of the mobile phase were modified stepwise during analysis, this did not overtly interfere with the SERS signals. In addition, the practicability and clinical utility of this approach has also been demonstrated using authentic patients' urine samples. Here, the identification of MTX, 7-OH MTX and DAMPA are based on their unique SERS spectra, providing limits of detection of 2.36, 1.84, and 3.26 μM respectively. Although these analytes are amenable to LC and LC-MS detection an additional major benefit of the SERS approach is its applicability toward the detection of analytes that do not show UV absorption or are not ionised for mass spectrometry (MS)-based detection. The results of this study clearly demonstrate the potential application of online LC-SERS analysis for real-time high-throughput detection of drugs and their related metabolites in human biofluids.

  16. Fabrication of chitosan-gold nanoshells for γ-aminobutyric acid detection as a surface-enhanced Raman scattering substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ik Joong; Lim, Jae Wook [Dept. of Chemical and BioEngineering, Gachon University, Seongnam (Korea, Republic of)

    2015-02-15

    A surface-enhanced Raman scattering (SERS) principle-based brain-probing optical fiber was produced to analyze changes in the concentration of γ-aminobutyric acid (GABA). The procedure was carried out within the GABA administration concentration range of 5–30 mM for the patients who should take cranial medicines for GABA components of less than a normal range. The optical fiber, of which the surface had been reformed, was prepared by treatment with chitosan-gold nanoshell particles, which were synthesized by using an ionic interaction. The treated fiber was subsequently combined with GABA, for the purpose of analyzing its GABA concentration. The calibration curve of the SERS sensitivity (counts) as determined by the concentration levels of GABA adsorbed onto the chitosan-gold nanoshell without attachment to the optical fiber was as follows: y = 0.2x{sup 2} − 0.6743x + 419.8 ( R{sup 2}  = 0.9874), while the corresponding calibration curve of the SERS sensitivity (counts) with attachment to optical fiber was as follows: y = 7.4057x{sup 2} + 93.68x + 1851.4 ( R{sup 2}  = 0.9472). Based on the aforementioned two sets of data, it was confirmed that the analysis of GABA using optical fiber had a higher level of sensitivity compared to its analysis in the absence of optical fiber.

  17. Gd2O3-doped silica @ Au nanoparticles for in vitro imaging cancer biomarkers using surface-enhanced Raman scattering

    Science.gov (United States)

    Xiao, Lifu; Tian, Xiumei; Harihar, Sitaram; Li, Qifei; Li, Li; Welch, Danny R.; Zhou, Anhong

    2017-06-01

    There has been an interest in developing multimodal approaches to combine the advantages of individual imaging modalities, as well as to compensate for respective weaknesses. We previously reported a composite nano-system composed of gadolinium-doped mesoporous silica nanoparticle and gold nanoparticle (Gd-Au NPs) as an efficient MRI contrast agent for in vivo cancer imaging. However, MRI lacks sensitivity and is unsuitable for in vitro cancer detection. Thus, here we performed a study to use the Gd-Au NPs for detection and imaging of a widely recognized human cancer biomarker, epidermal growth factor receptor (EGFR), in individual human cancer cells with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 4-meraptobenzoic acid (MBA), to generate a characteristic SERS signal at 1075 cm- 1. By spatially mapping the SERS intensity at 1075 cm- 1, cellular distribution of EGFR and its relocalization on the plasma membrane were measured in situ. In addition, the EGFR expression levels in three human cancer cell lines (S18, A431 and A549) were measured using this SERS probe, which were consistent with the comparable measurements using immunoblotting and immunofluorescence. Our SERS results show that functionalized Gd-Au NPs successfully targeted EGFR molecules in three human cancer cell lines and monitored changes in single cell EGFR distribution in situ, demonstrating its potential to study cell activity under physiological conditions. This SERS study, combined with our previous MRI study, suggests the Gd-Au nanocomposite is a promising candidate contrast agent for multimodal cancer imaging.

  18. Coupling and scattering power exchange between phonon modes observed in surface-enhanced Raman spectra of single-wall carbon nanotubes on silver colloidal clusters

    Science.gov (United States)

    Kneipp, K.; Perelman, L. T.; Kneipp, H.; Backman, V.; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S.

    2001-05-01

    In the surface-enhanced Raman spectra of single-wall carbon nanotubes on silver colloidal clusters, at high excitation laser intensities, we observed with increasing laser excitation intensity, an exchange in the scattering power between two phonon modes that constitute the 1590 cm-1 feature of the G band. We explain this effect in terms of phonon-phonon coupling, which occurs for the extremely strong Raman effect in intense optical fields in the ``hot'' areas of silver clusters.

  19. Raman excitation profiles of hybrid systems constituted by single-layer graphene and free base phthalocyanine: Manifestations of two mechanisms of graphene-enhanced Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Uhlířová, T.; Mojzeš, P.; Melníková Komínková, Zuzana; Kalbáč, Martin; Sutrová, Veronika; Šloufová, I.; Vlčková, B.

    2017-01-01

    Roč. 48, č. 10 (2017), s. 1270-1281 ISSN 0377-0486 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:61388955 ; RVO:61389013 Keywords : graphene-enhanced Raman scattering * single-layer graphene * free base phthalocyanine * Raman excitation profiles * photoinduced charge transfer Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.969, year: 2016

  20. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(i) and mercury(ii) in human saliva

    Science.gov (United States)

    Zheng, Peng; Li, Ming; Jurevic, Richard; Cushing, Scott K.; Liu, Yuxin; Wu, Nianqiang

    2015-06-01

    A surface-enhanced Raman scattering (SERS) biosensor has been developed by incorporating a gold nanohole array with a SERS probe (a gold nanostar@Raman-reporter@silica sandwich structure) into a single detection platform via DNA hybridization, which circumvents the nanoparticle aggregation and the inefficient Raman scattering issues. Strong plasmonic coupling between the Au nanostar and the Au nanohole array results in a large enhancement of the electromagnetic field, leading to amplification of the SERS signal. The SERS sensor has been used to detect Ag(i) and Hg(ii) ions in human saliva because both the metal ions could be released from dental amalgam fillings. The developed SERS sensor can be adapted as a general detection platform for non-invasive measurements of a wide range of analytes such as metal ions, small molecules, DNA and proteins in body fluids.A surface-enhanced Raman scattering (SERS) biosensor has been developed by incorporating a gold nanohole array with a SERS probe (a gold nanostar@Raman-reporter@silica sandwich structure) into a single detection platform via DNA hybridization, which circumvents the nanoparticle aggregation and the inefficient Raman scattering issues. Strong plasmonic coupling between the Au nanostar and the Au nanohole array results in a large enhancement of the electromagnetic field, leading to amplification of the SERS signal. The SERS sensor has been used to detect Ag(i) and Hg(ii) ions in human saliva because both the metal ions could be released from dental amalgam fillings. The developed SERS sensor can be adapted as a general detection platform for non-invasive measurements of a wide range of analytes such as metal ions, small molecules, DNA and proteins in body fluids. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02142a

  1. Parton-hadron cascade approach at SPS and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-07-01

    A parton-hadron cascade model which is the extension of hadronic cascade model incorporating hard partonic scattering based on HIJING is presented to describe the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with HIJING and VNI. Baryon density, energy density and temperature for RHIC are calculated within this model. (author)

  2. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags.

    Science.gov (United States)

    Chen, Meng; Zhang, Ling; Yang, Bo; Gao, Mingxia; Zhang, Xiangmin

    2018-02-03

    Alkyne is unique, specific and biocompatible in the Raman-silent region of the cell, but there still remains a challenge to achieve ultrasensitive detection in living systems due to its weak Raman scattering. Herein, a terminal alkyne ((E)-2-[4-(ethynylbenzylidene)amino]ethane-1-thiol (EBAE)) with surface-enhanced Raman scattering is synthesized. The EBAE molecule possesses S- and C-termini, which can be directly bonded to gold nanoparticles and dopamine/silver by forming the Au-S chemical bond and the carbon-metal bond, respectively. The distance between Raman reporter and AuNPs/AgNPs can be reduced, contributing to forming hot-spot-based SERS substrate. The alkyne functionalized nanoparticles are based on Au core and encapsulating polydopamine shell, defined as Au-core and dopamine/Ag-shell (ACDS). The bimetallic ACDS induce strong SERS signals for molecular imaging that arise from the strong electromagnetic field. Furthermore, the EBAE provides a distinct peak in the cellular Raman-silent region with nearly zero background interference. The EBAE Raman signals could be tremendously enhanced when the Raman reporter is located at the middle of the Au-core and dopamine/Ag-shell. Therefore, this work could have huge potential benefits for the highly sensitive detection of intercellular information delivery by connecting the recognition molecules in biomedical diagnostics. Graphical abstract Terminal-alkyne-functionalized Au-core and silver/dopamine-shell nanotags for live-cell surface-enhanced Raman scattering imaging.

  3. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Irmtraud; Hesse, Bernd-Michael; Nill, Simeon; Tuecking, Thomas; Oelfke, Uwe [DKFZ, Heidelberg (Germany)

    2009-07-01

    The problem of the enormous amount of scattered radiation in kV CBCT (kilo voltage cone beam computer tomography) is addressed. Scatter causes undesirable streak- and cup-artifacts and results in a quantitative inaccuracy of reconstructed CT numbers, so that an accurate dose calculation might be impossible. Image contrast is also significantly reduced. Therefore we checked whether an appropriate implementation of the fast iterative scatter correction algorithm we have developed for MV (mega voltage) CBCT reduces the scatter contribution in a kV CBCT as well. This scatter correction method is based on a superposition of pre-calculated Monte Carlo generated pencil beam scatter kernels. The algorithm requires only a system calibration by measuring homogeneous slab phantoms with known water-equivalent thicknesses. In this study we compare scatter corrected CBCT images of several phantoms to the fan beam CT images acquired with a reduced cone angle (a slice-thickness of 14 mm in the isocenter) at the same system. Additional measurements at a different CBCT system were made (different energy spectrum and phantom-to-detector distance) and a first order approach of a fast beam hardening correction will be introduced. The observed, image quality of the scatter corrected CBCT images is comparable concerning resolution, noise and contrast-to-noise ratio to the images acquired in fan beam geometry. Compared to the CBCT without any corrections the contrast of the contrast-and-resolution phantom with scatter correction and additional beam hardening correction is improved by a factor of about 1.5. The reconstructed attenuation coefficients and the CT numbers of the scatter corrected CBCT images are close to the values of the images acquired in fan beam geometry for the most pronounced tissue types. Only for extreme dense tissue types like cortical bone we see a difference in CT numbers of 5.2%, which can be improved to 4.4% with the additional beam hardening correction. Cupping

  4. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT.

    Science.gov (United States)

    Reitz, Irmtraud; Hesse, Bernd-Michael; Nill, Simeon; Tücking, Thomas; Oelfke, Uwe

    2009-01-01

    The problem of the enormous amount of scattered radiation in kV CBCT (kilo voltage cone beam computer tomography) is addressed. Scatter causes undesirable streak- and cup-artifacts and results in a quantitative inaccuracy of reconstructed CT numbers, so that an accurate dose calculation might be impossible. Image contrast is also significantly reduced. Therefore we checked whether an appropriate implementation of the fast iterative scatter correction algorithm we have developed for MV (mega voltage) CBCT reduces the scatter contribution in a kV CBCT as well. This scatter correction method is based on a superposition of pre-calculated Monte Carlo generated pencil beam scatter kernels. The algorithm requires only a system calibration by measuring homogeneous slab phantoms with known water-equivalent thicknesses. In this study we compare scatter corrected CBCT images of several phantoms to the fan beam CT images acquired with a reduced cone angle (a slice-thickness of 14 mm in the isocenter) at the same system. Additional measurements at a different CBCT system were made (different energy spectrum and phantom-to-detector distance) and a first order approach of a fast beam hardening correction will be introduced. The observed image quality of the scatter corrected CBCT images is comparable concerning resolution, noise and contrast-to-noise ratio to the images acquired in fan beam geometry. Compared to the CBCT without any corrections the contrast of the contrast-and-resolution phantom with scatter correction and additional beam hardening correction is improved by a factor of about 1.5. The reconstructed attenuation coefficients and the CT numbers of the scatter corrected CBCT images are close to the values of the images acquired in fan beam geometry for the most pronounced tissue types. Only for extreme dense tissue types like cortical bone we see a difference in CT numbers of 5.2%, which can be improved to 4.4% with the additional beam hardening correction. Cupping is

  5. “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhigao; Liao, Lei; Wu, Wei; Guo, Shishang; Zhao, Xinyue; Li, Wei; Ren, Feng; Jiang, Changzhong, E-mail: xxh@whu.edu.cn, E-mail: czjiang@whu.edu.cn [Department of Physics, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, Wuhan University, Wuhan 430072 (China); Mei, Fei [Department of Physics, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, Wuhan University, Wuhan 430072 (China); School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068 (China); Xiao, Xiangheng, E-mail: xxh@whu.edu.cn, E-mail: czjiang@whu.edu.cn [Department of Physics, Hubei Nuclear Solid Physics Key Laboratory and Center for Ion Beam Application, Wuhan University, Wuhan 430072 (China); Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States); Fu, Lei; Wang, Jiao [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China)

    2014-07-21

    The Ag nanoparticles (NPs) surrounding triangular nanoarrays (TNAs) with high number density of surface-enhanced Raman scattering (SERS) hot spots (SERS hot spots ring) are prepared by a combination of NPs deposition and subsequent colloid lithography processing. Owing to the SERS hot spots ring, the Ag NPs surrounding TNAs have been proved an excellent candidate for ultrasensitive molecular sensing for their high SERS signal enhancing capacity in experiments and theories. The Ag NPs surrounding TNAs can be readily used for the quick detection of low concentrations of molecules related to food safety; herein, detection of melamine is discussed.

  6. Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Shioi, Masahiko, E-mail: shioi.masahiko@jp.panasonic.com [Device Solutions Center, Panasonic Corporation, 3-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Department of Electric and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Jans, Hilde [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Lodewijks, Kristof [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Van Dorpe, Pol; Lagae, Liesbet [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Kawamura, Tatsuro [Device Solutions Center, Panasonic Corporation, 3-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan)

    2014-06-16

    With a view to biomedical and environmental applications, we investigate the plasmonic properties of a rectangular gold nanodisk array in water to boost surface enhanced Raman scattering (SERS) effects. To control the resonance wavelengths of the surface plasmon polariton and the localized surface plasmon, their dependence on the array period and diameter in water is studied in detail using a finite difference time domain method. A good agreement is obtained between calculated resonant wavelengths and those of gold nanodisk arrays fabricated using electron beam lithography. For the optimized structure, a SERS enhancement factor of 7.8 × 10{sup 7} is achieved in water experimentally.

  7. Controlled preparation of Ag nanoparticle films by a modified photocatalytic method on TiO{sub 2} films with Ag seeds for surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xin; Pan, Lujun, E-mail: lpan@dlut.edu.cn; Li, Shuai; Wang, Qiao; Qin, Jun; Huang, Yingying

    2016-02-15

    Graphical abstract: - Highlights: • Uniform Ag nanoparticle films were synthesized by a modified photocatalytic method on TiO{sub 2} films with Ag seeds for surface-enhanced Raman scattering. • This modified photocatalytic method combine the advantages of the spurting method (high nucleation density) and the traditional photocatalytic method (suitable particle size). • The Raman enhancement of as-prepared Ag NP films was calculated by finite-difference time-domain to validate the experiment data. - Abstract: Uniform Ag nanoparticle (NP) films were synthesized by a modified photocatalytic method on TiO{sub 2} films with Ag seeds for surface-enhanced Raman scattering, which combine the advantages of the spurting method (high nucleation density) and the traditional photocatalytic method (suitable particle size). The Ag seeds were prepared by magnetron sputtering with different time, which would adjust the distribution and transfer of electrons on the surface of TiO{sub 2} film in the process of photocatalytic reduction. The distribution and morphology of Ag NP films can be adjusted by the sputtering time and the UV irradiation time. The Raman enhancement of as-prepared Ag NP films was calculated by finite-difference time-domain to validate the experiment data. It is found that the Ag NP films synthesized on TiO{sub 2} films with suitable pre-deposited Ag seeds exhibit a much higher Raman enhancement activity than the optimum Ag NP film synthesized directly on the TiO{sub 2} film without Ag seeds.

  8. Sensitive Detection of Rhodamine B in Condiments Using Surface-Enhanced Resonance Raman Scattering (SERRS) Silver Nanowires as Substrate.

    Science.gov (United States)

    Zhang, Lixia; Li, Peng; Luo, Lan; Bu, Xiangfeng; Wang, Xiaolei; Zhao, Bing; Tian, Yuan

    2017-10-01

    In this paper, a facile large-scale preparation of surface-enhanced resonance Raman scattering (SERRS) substrates for the determination of Rhodamine B (RhB) based on silver nanowires (Ag NWs) has been developed. The morphology, structure, and properties of as-prepared Ag NWs are characterized using ultraviolet-visible (UV-Vis) spectroscopy, field emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD), respectively. Ag NWs were assembled onto glass slides through a self-assembly method. Moreover, in our experiment, as-prepared Ag NWs@glass were used as a SERRS substrate to detect RhB at the excitation wavelength of 532 nm. Experimental conditions such as pH value and soaking time on SERRS performance were studied and optimized. Under the optimized conditions, the SERRS intensity at 1648 cm(-1) exhibited a linear relationship with the concentration of RhB in the range of 1.0 × 10(-9)-1.0 × 10(-5 )mol L(-1) and detection limit (signal-to-noise ratio [S/N] = 3) is as low as 0.3 nmol L(-1). The corresponding correlation coefficient of the linear equation was 0.996. This method based on Ag NWs@glass for the detection of RhB in three kinds of condiment was investigated. The limits of detection (LODs) for RhB were 0.35 µg/g in chili powder, 0.14 µg/g in chili sauce, and 0.02 µg/g in Chinese prickly ash. The relative standard deviations (RSD) were between 2.18% and 4.56% (n = 3) and recoveries at three levels were in the range of 80.0-98.7% for different spiked food products. Moreover, the results showed that the proposed method was sensitive, convenient, and feasible for the determination of RhB in condiments.

  9. Quantitative detection of codeine in human plasma using surface-enhanced Raman scattering via adaptation of the isotopic labelling principle.

    Science.gov (United States)

    Subaihi, Abdu; Muhamadali, Howbeer; Mutter, Shaun T; Blanch, Ewan; Ellis, David I; Goodacre, Royston

    2017-03-27

    In this study surface enhanced Raman scattering (SERS) combined with the isotopic labelling (IL) principle has been used for the quantification of codeine spiked into both water and human plasma. Multivariate statistical approaches were employed for the analysis of these SERS spectral data, particularly partial least squares regression (PLSR) which was used to generate models using the full SERS spectral data for quantification of codeine with, and without, an internal isotopic labelled standard. The PLSR models provided accurate codeine quantification in water and human plasma with high prediction accuracy (Q(2)). In addition, the employment of codeine-d6 as the internal standard further improved the accuracy of the model, by increasing the Q(2) from 0.89 to 0.94 and decreasing the low root-mean-square error of predictions (RMSEP) from 11.36 to 8.44. Using the peak area at 1281 cm(-1) assigned to C-N stretching, C-H wagging and ring breathing, the limit of detection was calculated in both water and human plasma to be 0.7 μM (209.55 ng mL(-1)) and 1.39 μM (416.12 ng mL(-1)), respectively. Due to a lack of definitive codeine vibrational assignments, density functional theory (DFT) calculations have also been used to assign the spectral bands with their corresponding vibrational modes, which were in excellent agreement with our experimental Raman and SERS findings. Thus, we have successfully demonstrated the application of SERS with isotope labelling for the absolute quantification of codeine in human plasma for the first time with a high degree of accuracy and reproducibility. The use of the IL principle which employs an isotopolog (that is to say, a molecule which is only different by the substitution of atoms by isotopes) improves quantification and reproducibility because the competition of the codeine and codeine-d6 for the metal surface used for SERS is equal and this will offset any difference in the number of particles under analysis or any fluctuations in

  10. Helicobacter pylori VacA enhances prostaglandin E2 production through induction of cyclooxygenase 2 expression via a p38 mitogen-activated protein kinase/activating transcription factor 2 cascade in AZ-521 cells

    DEFF Research Database (Denmark)

    Hisatsune, Junzo; Yamasaki, Eiki; Nakayama, Masaaki

    2007-01-01

    Treatment of AZ-521 cells with Helicobacter pylori VacA increased cyclooxygenase 2 (COX-2) mRNA in a time- and dose-dependent manner. A p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, blocked elevation of COX-2 mRNA levels, whereas PD98059, which blocks the Erk1/2 cascade......A-induced COX-2 expression. In parallel with COX-2 expression, VacA increased prostaglandin E(2) (PGE(2)) production, which was inhibited by SB203580 and NS-398, a COX-2 inhibitor. VacA-induced PGE(2) production was markedly attenuated in AZ-521 cells stably expressing DN-p38. VacA increased transcription...... promoter activation. The reduction of ATF-2 expression in AZ-521 cells transformed with ATF-2-small interfering RNA duplexes resulted in suppression of COX-2 expression. Thus, VacA enhances PGE(2) production by AZ-521 cells through induction of COX-2 expression via the p38 MAPK/ATF-2 cascade, leading...

  11. Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

    Directory of Open Access Journals (Sweden)

    Marta Espina Palanco

    2016-06-01

    Full Text Available We report fast and simple green synthesis of plasmonic silver nanoparticles in the epidermal cells of onions after incubation with AgNO3 solution. The biological environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial formation of small silver clusters and their following conversion to plasmonic particles. Additionally, the natural morphological structures of the onion layers, in particular the extracellular matrix provides a biological template for the growth of plasmonic nanostructures. This is indicated by red glowing images of extracellular spaces in dark field microscopy of onion layers a few hours after AgNO3 exposure due to the formation of silver nanoparticles. Silver nanostructures generated in the extracellular space of onion layers and within the epidermal cell walls can serve as enhancing plasmonic structures for one- and two-photon-excited spectroscopy such as surface enhanced Raman scattering (SERS and surface enhanced hyper-Raman scattering (SEHRS. Our studies demonstrate a templated green preparation of enhancing plasmonic nanoparticles and suggest a new route to deliver silver nanoparticles as basic building blocks of plasmonic nanosensors to plants by the uptake of solutions of metal salts.

  12. Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering.

    Science.gov (United States)

    Espina Palanco, Marta; Bo Mogensen, Klaus; Gühlke, Marina; Heiner, Zsuzsanna; Kneipp, Janina; Kneipp, Katrin

    2016-01-01

    We report fast and simple green synthesis of plasmonic silver nanoparticles in the epidermal cells of onions after incubation with AgNO3 solution. The biological environment supports the generation of silver nanostructures in two ways. The plant tissue delivers reducing chemicals for the initial formation of small silver clusters and their following conversion to plasmonic particles. Additionally, the natural morphological structures of the onion layers, in particular the extracellular matrix provides a biological template for the growth of plasmonic nanostructures. This is indicated by red glowing images of extracellular spaces in dark field microscopy of onion layers a few hours after AgNO3 exposure due to the formation of silver nanoparticles. Silver nanostructures generated in the extracellular space of onion layers and within the epidermal cell walls can serve as enhancing plasmonic structures for one- and two-photon-excited spectroscopy such as surface enhanced Raman scattering (SERS) and surface enhanced hyper-Raman scattering (SEHRS). Our studies demonstrate a templated green preparation of enhancing plasmonic nanoparticles and suggest a new route to deliver silver nanoparticles as basic building blocks of plasmonic nanosensors to plants by the uptake of solutions of metal salts.

  13. Scattering and plasmonic synergetic enhancement of the performance of dye-sensitized solar cells by double-shell SiO2@Au@TiO2 microspheres

    Science.gov (United States)

    Li, Mingyue; Li, Meiya; Zhu, Yongdan; Tang, Yiwen; Bai, Lihua; Lei, Wen; Wang, Zhen; Zhao, Xingzhong

    2017-06-01

    The Au nanoparticle sandwich double spheric-shells of SiO2@Au@TiO2 (SAT) microspheres are synthesized. The significant influence of the SAT microspheres on the properties of dye-sensitized solar cells (DSSCs) is investigated. Studies indicate that the introduction of SAT markedly enhanced the light scattering and capture ability of DSSCs and thus photogenerated electrons. DSSCs doped with 2.25 wt% SAT exhibit a maximum short circuit current density of 17.0 mA cm-2 and photoelectric conversion efficiency of 7.14%, which are remarkably higher than those of conventional DSSCs at 15.7% and 21.2%, respectively. The marked enhancement in the performance of the optimal DSSCs can be attributed to the synergetic complementary effect of the enhanced light scattering of the microspheres and to the localized surface plasmon resonance of the Au nanoparticles in the SAT, and is a novel promising way of enhancing the performance of DSSCs.

  14. Surface enhanced Raman scattering properties using Au-coated ZnO nanorods grown by two-step, off-axis pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sakano, Tatsunori; Tanaka, Yuto; Nishimura, Ryo; Nedyalkov, Nikolay N; Saiki, Toshiharu; Obara, Minoru [Department of Electronics and Electrical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8522 (Japan); Atanasov, Petar A [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko Shousse 72, Sofia 1784 (Bulgaria)], E-mail: obara@obara.elec.keio.ac.jp

    2008-12-07

    ZnO nanorod arrays on Si (1 0 0) substrate were grown by the pulsed laser deposition (PLD) method, and then coated with Au. Two samples of Au-coated nanorod arrays with different average diameters of 150 and 400 nm were prepared to investigate the size dependence of the surface enhanced Raman scattering (SERS). The diameter of the nanorods was controllable by the substrate position during PLD. High SERS enhancement was observed from both Au-coated ZnO nanorod arrays. The Raman spectra of rhodamine 6G (R6G) as low as 1 nM were measured with an average diameter of 400 nm at an excitation wavelength of 532 nm. The SERS was explained by the field enhancement effect induced by surface plasmon polaritons of Au-coated nanorods (nanoshells)

  15. FDTD scattered field formulation for scatterers in stratified dispersive media.

    Science.gov (United States)

    Olkkonen, Juuso

    2010-03-01

    We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.

  16. Robustness of localized DNA strand displacement cascades.

    Science.gov (United States)

    Teichmann, Mario; Kopperger, Enzo; Simmel, Friedrich C

    2014-08-26

    Colocalization can strongly alter the kinetics and efficiency of chemical processes. For instance, in DNA-templated synthesis unfavorable reactions are sped up by placing reactants into close proximity onto a DNA scaffold. In biochemistry, clustering of enzymes has been demonstrated to enhance the reaction flux through some enzymatic cascades. Here we investigate the effect of colocalization on the performance of DNA strand displacement (DSD) reactions, an important class of reactions utilized in dynamic DNA nanotechnology. We study colocalization by immobilizing a two-stage DSD reaction cascade comprised of a “sender” and a “receiver” gate onto a DNA origami platform. The addition of a DNA (or RNA) input strand displaces a signal strand from the sender gate, which can then transfer to the receiver gate. The performance of the cascade is found to vary strongly with the distance between the gates. A cascade with an intermediate gate distance of ≈20 nm exhibits faster kinetics than those with larger distances, whereas a cascade with smaller distance is corrupted by excessive intraorigami leak reactions. The 20 nm cascade is found to be considerably more robust with respect to a competing reaction, and implementation of multiple receiver gates further increases this robustness. Our results indicate that for the 20 nm distance a fraction of signal strands is transferred locally to a receiver gate on the same platform, probably involving direct physical contact between the gates. The performance of the cascade is consistent with a simple model that takes “local” and “global” transfer processes into account.

  17. Fluctuating single sp2 carbon clusters at single hotspots of silver nanoparticle dimers investigated by surface-enhanced resonance Raman scattering

    Directory of Open Access Journals (Sweden)

    Tamitake Itoh

    2015-12-01

    Full Text Available We evaluate spectral changes in surface enhanced resonance Raman scattering (SERRS of near-single dye molecules in hotspots of single Ag nanoparticle (NP dimers. During the laser excitation, surface enhance florescence (SEF of dye disappeared and the number of SERRS lines decreased until finally ca. two lines remained around 1600 and 1350 cm−1, those are evidence of G and D lines of single sp2 carbon clusters. Analysis of the G and D line intensity ratios reveals the temporal fluctuation in the crystallite size of the clusters within several angstroms; whereas, broadening and splitting in the lines enable us for identifying directly the dynamics of various defects in the clusters. This analysis reveals that the detailed fluctuations of single sp2 carbon clusters, which would be impossible to gain with other microscopic methods.

  18. Fabrication and characterization of homogeneous surface-enhanced Raman scattering substrates by single pulse UV-laser treatment of gold and silver films.

    Science.gov (United States)

    Christou, Konstantin; Knorr, Inga; Ihlemann, Jürgen; Wackerbarth, Hainer; Beushausen, Volker

    2010-12-07

    The fabrication of SERS-active substrates, which offer high enhancement factors as well as spatially homogeneous distribution of the enhancement, plays an important role in the expansion of surface-enhanced Raman scattering (SERS) spectroscopy to a powerful, quantitative, and noninvasive measurement technique for analytical applications. In this paper, a novel method for the fabrication of SERS-active substrates by laser treatment of 20, 40, and 60 nm thick gold and of 40 nm thick silver films supported on quartz glass is presented. Single 308 nm UV-laser pulses were applied to melt the thin gold and silver films. During the cooling process of the noble metal, particles were formed. The particle size and density were imaged by atomic force microscopy. By varying the fluence, the size of the particles can be controlled. The enhancement factors of the nanostructures were determined by recording self-assembled monolayers of benzenethiol. The intensity of the SERS signal from benzenethiol is correlated to the mean particle size and thus to the fluence. Enhancement factors up to 10(6) with a high reproducibility were reached. Finally we have analyzed the temperature dependence of the SERS effect by recording the intensity of benzenethiol vibrations from 300 to 120 K. The temperature dependence of the SERS effect is discussed with regard to the metal properties.

  19. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing.

    Science.gov (United States)

    Fan, Wei; Lee, Yih Hong; Pedireddy, Srikanth; Zhang, Qi; Liu, Tianxi; Ling, Xing Yi

    2014-05-07

    Graphene oxide (GO) is an emerging material for surface-enhanced Raman scattering (SERS) due to its strong chemical enhancement. Studying the SERS performance of plasmonic nanoparticle/GO hybrid materials at the single particle level is crucial for direct probing of the chemical effect of GO on plasmonic nanoparticles. In this work, we integrate GO and shape-controlled Ag nanoparticles to create hybrid nanomaterials, and the chemical enhancement arising from GO is investigated using single-particle SERS measurements. Ag nanoparticle@GO hybrid nanostructures are prepared by assembling Ag nanoparticles, including spheres, cubes and octahedra with GO sheets. The SERS behaviors of the hybrid nanostructures are characterized, and 2-3 times enhanced SERS intensities are detected from the Ag nanoparticle@GO hybrid nanostructures as compared to pure Ag nanoparticles. Furthermore, we probe the mechanism of SERS enhancement in the hybrid nanostructures by changing the surface coverage of GO on Ag octahedra, by using reduced GO in place of GO as well as by using probe molecules of different electronegativities. This hybrid system is an excellent candidate for single-particle SERS sensors. Sub-nanomolar levels of aromatic molecules are detected using a single Ag/GO hybrid nanomaterial. This as-prepared GO and shape-controlled Ag nanoparticle hybrid is capable of serving as a high performance SERS platform, providing new opportunities for efficient chemical and biological sensing applications.

  20. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers.

    Science.gov (United States)

    van Dam, Dick; van Hoof, Niels J J; Cui, Yingchao; van Veldhoven, Peter J; Bakkers, Erik P A M; Gómez Rivas, Jaime; Haverkort, Jos E M

    2016-12-27

    Photovoltaic cells based on arrays of semiconductor nanowires promise efficiencies comparable or even better than their planar counterparts with much less material. One reason for the high efficiencies is their large absorption cross section, but until recently the photocurrent has been limited to less than 70% of the theoretical maximum. Here we enhance the absorption in indium phosphide (InP) nanowire solar cells by employing broadband forward scattering of self-aligned nanoparticles on top of the transparent top contact layer. This results in a nanowire solar cell with a photovoltaic conversion efficiency of 17.8% and a short-circuit current of 29.3 mA/cm(2) under 1 sun illumination, which is the highest reported so far for nanowire solar cells and among the highest reported for III-V solar cells. We also measure the angle-dependent photocurrent, using time-reversed Fourier microscopy, and demonstrate a broadband and omnidirectional absorption enhancement for unpolarized light up to 60° with a wavelength average of 12% due to Mie scattering. These results unambiguously demonstrate the potential of semiconductor nanowires as nanostructures for the next generation of photovoltaic devices.

  1. Leucine zipper-mediated targeting of multi-enzyme cascade reactions to inclusion bodies in Escherichia coli for enhanced production of 1-butanol.

    Science.gov (United States)

    Han, Gui Hwan; Seong, Wonjae; Fu, Yaoyao; Yoon, Paul K; Kim, Seong Keun; Yeom, Soo-Jin; Lee, Dae-Hee; Lee, Seung-Goo

    2017-03-01

    Metabolons in nature have evolved to facilitate more efficient catalysis of multistep reactions through the co-localization of functionally related enzymes to cellular organelles or membrane structures. To mimic the natural metabolon architecture, we present a novel artificial metabolon that was created by targeting multi-enzyme cascade reactions onto inclusion body (IB) in Escherichia coli. The utility of this system was examined by co-localizing four heterologous enzymes of the 1-butanol pathway onto an IB that was formed in E. coli through overexpression of the cellulose binding domain (CBD) of Cellulomonas fimi exoglucanase. To target the 1-butanol pathway enzymes to the CBD IB, we utilized a peptide-peptide interaction between leucine zipper (LZ) peptides. We genetically fused the LZ peptide to the N-termini of four heterologous genes involved in the synthetic 1-butanol pathway, whereas an antiparallel LZ peptide was fused to the CBD gene. The in vivo activity of the CBD IB-based metabolon was examined through the determination of 1-butanol synthesis using E. coli transformed with two plasmids containing the LZ-fused CBD and LZ-fused 1-butanol pathway genes, respectively. In vivo synthesis of 1-butanol using the engineered E. coli yielded 1.98g/L of 1-butanol from glucose, representing a 1.5-fold increase over that obtained from E. coli expressing the LZ-fused 1-butanol pathway genes alone. In an attempt to examine the in vitro 1-butanol productivity, we reconstituted CBD IB-based metabolon using CBD IB and individual enzymes of 1-butanol pathway. The 1-butanol productivity of in vitro reconstituted CBD IB-based metabolon using acetoacetyl-CoA as the starting material was 2.29mg/L/h, 7.9-fold higher than that obtained from metabolon-free enzymes of 1-butanol pathway. Therefore, this novel CBD-based artificial metabolon may prove useful in metabolic engineering both in vivo and in vitro for the efficient production of desired products. Copyright © 2017

  2. A parallel wavelet-enhanced PWTD algorithm for analyzing transient scattering from electrically very large PEC targets

    KAUST Repository

    Liu, Yang

    2014-07-01

    The computational complexity and memory requirements of classically formulated marching-on-in-time (MOT)-based surface integral equation (SIE) solvers scale as O(Nt Ns 2) and O(Ns 2), respectively; here Nt and Ns denote the number of temporal and spatial degrees of freedom of the current density. The multilevel plane wave time domain (PWTD) algorithm, viz., the time domain counterpart of the multilevel fast multipole method, reduces these costs to O(Nt Nslog2 Ns) and O(Ns 1.5) (Ergin et al., IEEE Trans. Antennas Mag., 41, 39-52, 1999). Previously, PWTD-accelerated MOT-SIE solvers have been used to analyze transient scattering from perfect electrically conducting (PEC) and homogeneous dielectric objects discretized in terms of a million spatial unknowns (Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003). More recently, an efficient parallelized solver that employs an advanced hierarchical and provably scalable spatial, angular, and temporal load partitioning strategy has been developed to analyze transient scattering problems that involve ten million spatial unknowns (Liu et. al., in URSI Digest, 2013).

  3. Howling about Trophic Cascades

    Science.gov (United States)

    Kowalewski, David

    2012-01-01

    Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…

  4. The use of surface enhanced absorption, scattering and catalytic properties of gold nanoparticles in some bio- and biomedical applications

    Science.gov (United States)

    Huang, Xiaohua; El-Sayed, Ivan H.; El-Sayed, Mostafa A.

    2005-08-01

    Gold nanoparticles with unique optical properties offer useful applications in biotechnology. In this article two applications that we have developed are summarized, in one they are used in cancer cell diagnostics and in the other they are found to have catalytic property for the NADH oxidation reaction which is important in ATP formations. By conjugation with anti-EGFR antibodies which specifically target EGFR that are usually overexpressed on most cancer cells, gold nanoparticles are used as a molecular contrast agent for cancer cell diagnostics using their both strong surface plasmon absorption and efficient Mie scattering properties. Au nanoparticles are also good catalysts for many reactions due to their high surface to volume ratio. Au nanoparticles are found to be the catalyst for the NADH oxidation reaction. This was studied by monitoring the effect of the nanoparticles on NADH fluorescence intensity and lifetime as well as the change of the surface plasmon absorption band during the reaction.

  5. Diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)

    1996-12-31

    While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.

  6. “RaMassays”: Synergistic Enhancement of Plasmon-Free Raman Scattering and Mass Spectrometry for Multimodal Analysis of Small Molecules

    Science.gov (United States)

    Alessandri, Ivano; Vassalini, Irene; Bertuzzi, Michela; Bontempi, Nicolò; Memo, Maurizio; Gianoncelli, Alessandra

    2016-10-01

    SiO2/TiO2 core/shell (T-rex) beads were exploited as “all-in-one” building-block materials to create analytical assays that combine plasmon-free surface enhanced Raman scattering (SERS) and surface assisted laser desorption/ionization (SALDI) mass spectrometry (RaMassays). Such a multi-modal approach relies on the unique optical properties of T-rex beads, which are able to harvest and manage light in both UV and Vis range, making ionization and Raman scattering more efficient. RaMassays were successfully applied to the detection of small (molecular weight, M.W. theobromine couples demonstrated the synergistic reciprocal reinforcement of SERS and SALDI. Finally, the conversion of L-tyrosine in L-DOPA was utilized to probe RaMassays as analytical tools for characterizing reaction intermediates without introducing any spurious effects. RaMassays exhibit important advantages over plasmonic nanoparticles in terms of reproducibility, absence of interference and potential integration in multiplexed devices.

  7. Cascades in helical turbulence

    CERN Document Server

    Ditlevsen, P D

    2001-01-01

    The existence of a second quadratic inviscid invariant, the helicity, in a turbulent flow leads to coexisting cascades of energy and helicity. An equivalent of the four-fifth law for the longitudinal third order structure function, which is derived from energy conservation, is easily derived from helicity conservation cite{Procaccia,russian}. The ratio of dissipation of helicity to dissipation of energy is proportional to the wave-number leading to a different Kolmogorov scale for helicity than for energy. The Kolmogorov scale for helicity is always larger than the Kolmogorov scale for energy so in the high Reynolds number limit the flow will always be helicity free in the small scales, much in the same way as the flow will be isotropic and homogeneous in the small scales. A consequence is that a pure helicity cascade is not possible. The idea is illustrated in a shell model of turbulence.

  8. Dye-free near-infrared surface-enhanced Raman scattering nanoprobes for bioimaging and high-performance photothermal cancer therapy.

    Science.gov (United States)

    Liu, Zhiming; Ye, Binggang; Jin, Mei; Chen, Haolin; Zhong, Huiqing; Wang, Xinpeng; Guo, Zhouyi

    2015-04-21

    Near-infrared surface-enhanced Raman scattering (NIR SERS) imaging is now a promising molecular imaging technology due to its narrow spectral bandwidth, low background interference and deep imaging depth. In this work, we report a novel strategy for fabrication of NIR SERS nanoprobes without using any expensive and highly toxic organic dyes. Multifunctional conducting polymer (CP) materials, serving as both biocompatible surface coatings and NIR-active reporters, are directly fabricated on the surface of gold nanorods (GNRs) via facile oxidative polymerization. The dye-free NIR SERS nanoprobes (GNR-CPs) exhibit good structural stability, good biocompatibility and intriguing NIR SERS activity. GNR-CPs also show an extraordinary NIR photothermal transduction efficiency, indicating the potential for cancer therapy. The applications of GNR-CPs as new types of theranostic agents for NIR SERS imaging and high-performance photothermal therapy are accomplished in vitro and in vivo.

  9. The preparation of silver nanoparticle decorated silica nanowires on fused quartz as reusable versatile nanostructured surface-enhanced Raman scattering substrates.

    Science.gov (United States)

    Hwang, Jih-Shang; Chen, Kuan-Yu; Hong, Shih-Jay; Chen, Shih-Wei; Syu, Wun-Shing; Kuo, Chi-Wen; Syu, Wei-Yi; Lin, Tai Yuan; Chiang, Hai-Pang; Chattopadhyay, Surojit; Chen, Kuei-Hsien; Chen, Li-Chyong

    2010-01-15

    We introduce a platform, comprised of silver nanoparticle decorated silica nanowires (SiONWs) dispersed on fused quartz substrates, for high sensitivity surface-enhanced Raman scattering (SERS) measurements using both frontal (through the analytes) and back-face (through the transparent substrate) excitation. Quasi-quantitative SERS performances on the specialized substrate, vis-à-vis a silver deposited bare fused quartz plate, showed: (i) the suitability of the Ag modified SiONW substrate for frontal as well as back-face excitation; (ii) a wider detection range with high sensitivity to Rhodamine 6G; and (iii) good underwater metal-oxide adhesion of the specialized substrates. Capable of surviving ultrasonic cleaning, the substrate introduced is one of the few reusable low-cost Ag-based nanostructured SERS substrates, requiring only a simple silver reload process (the silver mirror reaction).

  10. A sensitive surface-enhanced Raman scattering method for chondroitin sulfate with Victoria blue 4R molecular probes in nanogold sol substrate.

    Science.gov (United States)

    Luo, Yanghe; Wang, Xiaoliang; Liu, Qingye; Liang, Aihui; He, Xingcun; Jiang, Zhiliang

    2017-08-11

    Using silver nanoparticles (AgNPs) as the nanocatalyst, l-cysteine rapidly reduced HAuCl4 to make a stable gold nanoparticle sol (Ag/AuNP) that had a high surface-enhanced Raman scattering (SERS) activity in the presence of Victoria blue 4R (VB4r) molecular probes. Under the selected conditions, chondroitin sulfate (Chs) reacted with the VB4r probes to form associated complexes that caused the SERS effect to decrease to 1618 cm(-1) . The decreased SERS intensity was linear to the Chs concentration in the range 3.1-500 ng/ml, with a detection limit of 1.0 ng/ml Chs. Accordingly, we established a simple and sensitive SERS quantitative analysis method to determine Chs in real samples, with a relative standard deviation of 1.47-3.16% and a recovery rate of 97.6-104.2%. Copyright © 2017 John Wiley & Sons, Ltd.

  11. A facile and green method for synthesis of reduced graphene oxide/Ag hybrids as efficient surface enhanced Raman scattering platforms.

    Science.gov (United States)

    Huang, Qingli; Wang, Jiaming; Wei, Wenxian; Yan, Qiuxiang; Wu, Changle; Zhu, Xiashi

    2015-01-01

    Reduced graphene oxide/Ag nanoparticles hybrids (rGO/AgNPs) were fabricated via a green and facile hydrothermal method. The as-synthesized materials were characterized in detail using various spectroscopic and microscopic techniques. Under a suitable dosage of silver ions, well-dispersed AgNPs on the reduced graphene oxide sheets were obtained. The surface plasmon resonance properties of AgNPs on graphene show that there is an interaction between AgNPs and graphene. Trace detection of organic dyes is studied based on rGO/AgNPs hybrids as efficient surface enhanced Raman scattering platforms. It has been found that the suitable experiment parameter is crucial to trace detection of organic dyes molecules. This work is of importance in the practical application in device-design based on the SERS effect of noble metal/reduced oxide graphene (or oxide graphene) hybrids. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Fabrication of dense two-dimensional assemblies over vast areas comprising gold(core)-silver(shell) nanoparticles and their surface-enhanced Raman scattering properties.

    Science.gov (United States)

    Sugawa, Kosuke; Tanoue, Yoshimasa; Ube, Takuji; Yanagida, Sayaka; Yamamuro, Takahiro; Kusaka, Yasuyuki; Ushijima, Hirobumi; Akiyama, Tsuyoshi

    2014-01-01

    Fabrication of dense two-dimensional assemblies consisting of gold(core)-silver(shell) nanoparticles and the resulting peculiar surface-enhanced Raman scattering (SERS) activity are reported. The assemblies were prepared via assembly at air-toluene interfaces by drop-casting toluene solutions containing the nanoparticles protected with octadecylamine molecules onto glass plates. This simple process, which does not require special apparatus or significant fabrication time, leads to uniform assemblies over vast areas (~34 cm(2)). In the SERS measurements, the high spatial reproducibility of the SERS signals from p-aminothiophenol adsorbed on the assemblies over vast areas demonstrates that this method is useful for the quantitative investigation of SERS mechanisms. Under 532 nm laser excitation, the difference in the enhancement factors of the SERS signals at the a1 mode between assemblies consisting of gold, silver, and core-shell nanoparticles can be explained by the degree of overlap of the excitation wavelength with their plasmon coupling modes. In contrast, under 785 nm excitation, even though the plasmon band of the core-shell nanoparticle assemblies does not significantly overlap with the excitation wavelength as compared with that of gold nanoparticle assemblies, the enhancement factor from the core-shell nanoparticle assemblies was stronger than those from the gold nanoparticle assemblies. Therefore, we have demonstrated that the gold(core)-silver(shell) nanoparticle assemblies are excellent SERS active materials, which have strong electromagnetic mechanism (EM) as well as chemical mechanism (CM) effects due to the silver shells.

  13. Arrays of ZnO nanorods decorated with Au nanoparticles as surface-enhanced Raman scattering substrates for rapid detection of trace melamine

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Zao [College of Physics and Electronics, Central South University, Changsha 410083 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Yi, Yong [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Luo, Jiangshan; Li, Xibo [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, Mianyang, 621900 (China); Xu, Xibin [College of Physics and Electronics, Central South University, Changsha 410083 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Jiang, Xiaodong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, Mianyang, 621900 (China); Yi, Yougen, E-mail: yougenyi@mail.csu.edu.cn [College of Physics and Electronics, Central South University, Changsha 410083 (China); Tang, Yongjian [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, Mianyang, 621900 (China)

    2014-10-15

    In this paper, as a new, highly sensitive and uniform hybrid surface-enhanced Raman scattering (SERS) substrate, arrays of ZnO nanorods (ZnO-NRs) decorated with Au nanoparticles (Au-NPs) have been prepared. This hybrid substrate manifests high SERS sensitivity to melamine and a detection limit as low as 1.0×10{sup −10} M (1.26 µg L{sup −1}). A maximum enhancement factor of 1.0×10{sup 9} can be obtained with the ZnO NF–Au (sample 2) film. Au-NPs gaps in the array can create lots of SERS “hot spots” that mainly contribute to the high SERS sensitivity. Moreover, the supporting chemical enhancement effect of ZnO-NRs and the better enrichment effect ascribed to the large surface area of the substrate also help to achieve a lower detection limit. The promising advantages of easy sample pretreatment, short detection time and low cost makes the arrays of ZnO-NRs decorated with Au-NPs substrate a potential detection tool in the field of food safety.

  14. Transmission Enhancement of High-$k$ Waves through Metal-InGaAsP Multilayers Calculated via Scattering Matrix Method with Semi-Classical Optical Gain

    CERN Document Server

    Smalley, Joseph S T; Shahin, Shiva; Kanté, Boubacar; Fainman, Yeshaiahu

    2015-01-01

    We analyze the steady-state transmission of high-momentum (high-$k$) electromagnetic waves through metal-semiconductor multilayer systems with loss and gain in the near-infrared (NIR). Using a semi-classical optical gain model in conjunction with the scattering matrix method (SMM), we study indium gallium arsenide phosphide (InGaAsP) quantum wells as the active semiconductor, in combination with the metals, aluminum-doped zinc oxide (AZO) and silver (Ag). Under moderate external pumping levels, we find that NIR transmission through Ag/InGaAsP systems may be enhanced by several orders of magnitude relative to the unpumped case, over a large angular and frequency bandwidth. Conversely, transmission enhancement through AZO/InGaAsP systems is orders of magnitude smaller, and has a strong frequency dependence. We discuss the relative importance of Purcell enhancement on our results and validate analytical calculations based on the SMM with numerical finite-difference time domain simulations.

  15. A Nanosensor for Explosives Detection Based on Molecularly Imprinted Polymers (MIPs) and Surfaced-enhanced Raman Scattering (SERS)

    Science.gov (United States)

    2010-03-01

    Controlling Film Thickness The xerogels were spun cast as thin films onto purchased Klarite SERS substrates using a spin coater . SERS enhancement is known to...different (a) volumes and (b) spinning speeds. ..........................................................................5 Figure 3. SERS spectra of...controlled. In order to determine the optimal thickness, the volume and spin deposition rate of the sol solutions was optimized. Figure 2a presents

  16. Halo-induced large enhancement of soft dipole excitation of 11Li observed via proton inelastic scattering

    Directory of Open Access Journals (Sweden)

    J. Tanaka

    2017-11-01

    Full Text Available Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex=0.80±0.02 MeV with a width of Γ=1.15±0.06 MeV. A DWBA (distorted-wave Born approximation analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1 transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30∼296 Weisskopf units, exhausting 2.2%∼21% of the isoscalar E1 energy-weighted sum rule (EWSR value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.

  17. Enhanced Light Scattering by Preferred Orientation Control of Ga Doped ZnO Films Prepared through MOCVD

    Directory of Open Access Journals (Sweden)

    Long Giang Bach

    2016-01-01

    Full Text Available We have explored the effective approach to fabricate GZO/ZnO films that can make the pyramidal surface structures of GZO films for effective light scattering by employing a low temperature ZnO buffer layer prior to high temperature GZO film growth. The GZO thin films exhibit the typical preferred growth orientations along the (002 crystallographic direction at deposition temperature of 400°C and SEM showed that column-like granule structure with planar surface was formed. In contrast, GZO films with a pyramidal texture surface were successfully developed by the control of (110 preferred orientation. We found that the light diffuse transmittance of the film with a GZO (800 nm/ZnO (766 nm exhibited 13% increase at 420 nm wavelength due to the formed large grain size of the pyramidal texture surface. Thus, the obtained GZO films deposited over ZnO buffer layer have high potential for use as front TCO layers in Si-based thin film solar cells. These results could develop the potential way to fabricate TCO based ZnO thin film using MOCVD or sputtering techniques by depositing a low temperature ZnO layer to serve as a template for high temperature GZO film growth. The GZO films exhibited satisfactory optoelectric properties.

  18. Halo-induced large enhancement of soft dipole excitation of 11Li observed via proton inelastic scattering

    Science.gov (United States)

    Tanaka, J.; Kanungo, R.; Alcorta, M.; Aoi, N.; Bidaman, H.; Burbadge, C.; Christian, G.; Cruz, S.; Davids, B.; Diaz Varela, A.; Even, J.; Hackman, G.; Harakeh, M. N.; Henderson, J.; Ishimoto, S.; Kaur, S.; Keefe, M.; Krücken, R.; Leach, K. G.; Lighthall, J.; Padilla Rodal, E.; Randhawa, J. S.; Ruotsalainen, P.; Sanetullaev, A.; Smith, J. K.; Workman, O.; Tanihata, I.

    2017-11-01

    Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex = 0.80 ± 0.02 MeV with a width of Γ = 1.15 ± 0.06 MeV. A DWBA (distorted-wave Born approximation) analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1) transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30 ∼ 296 Weisskopf units, exhausting 2.2% ∼ 21% of the isoscalar E1 energy-weighted sum rule (EWSR) value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.

  19. Complement-Mediated Enhancement of Monocyte Adhesion to Endothelial Cells by HLA Antibodies, and Blockade by a Specific Inhibitor of the Classical Complement Cascade, TNT003

    Science.gov (United States)

    Valenzuela, Nicole M.; Thomas, Kimberly A.; Mulder, Arend; Parry, Graham C.; Panicker, Sandip; Reed, Elaine F.

    2017-01-01

    Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. PMID:28640789

  20. Direct Base-to-Base Transitions in ssDNA Revealed by Tip-Enhanced Raman Scattering

    CERN Document Server

    Lin, Xiu-Mei; Singh, Prabha; Siegmann, Michael; Kupfer, Stephan; Zhang, Zhenglong; Gräfe, Stefanie; Deckert, Volker

    2016-01-01

    In the present contribution, specifically designed single-stranded DNA (ssDNA) sequences composed of adenine and cytosine were used as nanometric rulers to target the maximum achievable spatial resolution of tip-enhanced Raman spectroscopy (TERS) under ambient conditions. By stepping along a strand with a TERS tip, the obtained spectra allowed for a clear spectral discrimination including conformational information of the nucleobases, and even sharp adenine-cytosine transitions were detected repeatedly with a spatial resolution below 1 nm.

  1. Optimization of surface enhanced Raman scattering (SERS) assay for the transition from benchtop to handheld Raman systems

    Science.gov (United States)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Coté, Gerard

    2017-02-01

    Human biomarkers are indicative of the body's relative state prior to the onset of disease, and sometimes before symptoms present. While blood biomarker detection has achieved considerable success in laboratory settings, its clinical application is lagging and commercial point-of-care devices are rare. A physician's ability to detect biomarkers such as microRNA-17, a potential epigenetic indicator of preeclampsia in pregnant woman, could enable early diagnosis and preventive intervention as early as the 1st trimester. One detection approach employing DNA-functionalized nanoparticles to detect microRNA-17, in conjunction with surface-enhanced Raman spectroscopy (SERS), has shown promise but is hindered, in part, by the use of large and expensive benchtop Raman microscopes. However, recent strides have been made in developing portable Raman systems for field applications. Characteristics of the SERS assay responsible for strengthening the assay's plasmonic response were explored, whilst comparing the results from both benchtop and portable Raman systems. The Raman spectra and intensity of three different types of photoactive molecules were compared as potential Raman reporter molecules: chromophores, fluorophores, and highly polarizable small molecules. Furthermore, the plasmonic characteristics governing the formation of SERS colloidal nanoparticle assemblies in response to DNA/miRNA hybridization were investigated. There were significant variations in the SERS enhancement in response to microRNA-17 using our assay depending on the excitation lasers at wavelengths of 532 nm and 785 nm, depending on which of the three different Raman systems were used (benchtop, portable, and handheld), and depending on which of the three different Raman reporters (chromophore, fluorophore, or Raman active molecule) were used. Analysis of data obtained did indicate that signal enhancement was better for the chromophore (MGITC) and Raman active molecule (DTNB) than it was for the

  2. Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity.

    Science.gov (United States)

    Hsu, Kai-Chih; Chen, Dong-Hwang

    2014-01-01

    A nanocomposite of silver nanoparticles/reduced graphene oxide (Ag/rGO) has been fabricated as a surface-enhanced Raman scattering (SERS) substrate owing to the large surface area and two-dimensional nanosheet structure of rGO. A facile and rapid microwave-assisted green route has been used for the formation of Ag nanoparticles and the reduction of graphene oxide simultaneously with L-arginine as the reducing agent. By increasing the cycle number of microwave irradiation from 1 and 4 to 8, the mean diameters of Ag nanoparticles deposited on the surface of rGO increased from 10.3 ± 4.6 and 21.4 ± 10.5 to 41.1 ± 12.6 nm. The SERS performance of Ag/rGO nanocomposite was examined using the common Raman reporter molecule 4-aminothiophenol (4-ATP). It was found that the Raman intensity of 4-ATP could be significantly enhanced by increasing the size and content of silver nanoparticles deposited on rGO. Although the Raman intensities of D-band and G-band of rGO were also enhanced simultaneously by the deposited Ag nanoparticles which limited the further improvement of SERS detection sensitivity, the detectable concentration of 4-ATP with Ag/rGO nanocomposite as the SERS substrate still could be lowered to be 10(-10) M and the enhancement factor could be increased to 1.27 × 10(10). Furthermore, it was also achievable to lower the relative standard deviation (RSD) values of the Raman intensities to below 5%. This revealed that the Ag/rGO nanocomposite obtained in this work could be used as a SERS substrate with high sensitivity and homogeneity.

  3. An electrical analogy to Mie scattering.

    Science.gov (United States)

    Caridad, José M; Connaughton, Stephen; Ott, Christian; Weber, Heiko B; Krstić, Vojislav

    2016-09-27

    Mie scattering is an optical phenomenon that appears when electromagnetic waves, in particular light, are elastically scattered at a spherical or cylindrical object. A transfer of this phenomenon onto electron states in ballistic graphene has been proposed theoretically, assuming a well-defined incident wave scattered by a perfectly cylindrical nanometer scaled potential, but experimental fingerprints are lacking. We present an experimental demonstration of an electrical analogue to Mie scattering by using graphene as a conductor, and circular potentials arranged in a square two-dimensional array. The tabletop experiment is carried out under seemingly unfavourable conditions of diffusive transport at room-temperature. Nonetheless, when a canted arrangement of the array with respect to the incident current is chosen, cascaded Mie scattering results robustly in a transverse voltage. Its response on electrostatic gating and variation of potentials convincingly underscores Mie scattering as underlying mechanism. The findings presented here encourage the design of functional electronic metamaterials.

  4. Synthesis of silver/silver chloride/graphene oxide composite and its surface-enhanced Raman scattering activity and self-cleaning property

    Science.gov (United States)

    Zhao, Nan; Fei, Xiao; Cheng, Xiaonong; Yang, Juan

    2017-09-01

    Recently, silver nanoparticles decorated with graphene and graphene oxide (GO) sheets can be employed as surface-enhanced Raman scattering (SERS) substrates. However, their SERS activity on macromolecular compound detection is all one-time process. In order to solve this issue and decrease the cost of routine SERS detection, silver/silver chloride (Ag/AgCl) with photocatalytic activity under visible light was introduced. In this study, a novel, simple and clean approach is carried out for synthesis of the Ag/AgCl/GO composite. The Ag/AgCl colloidal solution is obtained by hydrothermal method and then mixed with GO solution to obtain the Ag/AgCl/GO composite using a facile electrostatic self-assembly method. Results showed that the Ag/AgCl/GO composite has the optimized SERS activity to Rhodamine 6G molecules with the maximum enhancement factor value of 3.8×107. Furthermore, the Ag/AgCl particles with high efficient and stable photocatalytic activity under visible light lead to an outstanding self-cleaning property of the Ag/AgCl/GO composite.

  5. Accumulation and interparticle connections of triangular Ag-coated Au nanoprisms by oil-coating method for surface-enhanced Raman scattering applications

    Science.gov (United States)

    Noda, Yuta; Asaka, Toru; Fudouzi, Hiroshi; Hayakawa, Tomokatsu

    2018-03-01

    To examine the optical responses of surface-enhanced Raman scattering (SERS) for tuned plasmonic nanoparticles, triangular Ag-coated Au (Au@Ag) nanoprisms with different sizes were separately synthesized, which were well controlled in their size (edge-length) and localized surface plasmon resonance (LSPR) wavelength (69.0 ± 8.4 to 173.8 ± 25.6 nm in size and 662-943 nm in LSPR wavelength). The mechanism of Ag shell formation on the Au nanoprisms was also studied with scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS). The Au@Ag nanoprisms were immobilized by covering a colloidal solution containing the nanoprisms with silicone oil and evaporating the solvent in the oil (oil-coating method) so as to form a layer of accumulated plasmonic Au@Ag nanoprisms that had LSPR peak wavelengths tuned from 839 to 1182 nm. The accumulation conditions were analyzed by field-emission scanning electron microscopy (FE-SEM) and a Raman mapping technique. The Au@Ag nanoprisms under excitation at 632.8 nm exhibited higher SERS signals of rhodamine 6G, and SERS-mapped images of the novel immobilized films were obtained at different magnifications. It was concluded that accumulated Au@Ag nanoprisms undergoing tip-planar interconnections could produce enhanced local fields, resulting in higher SERS signals.

  6. Surface-enhanced Raman scattering (SERS) imaging-guided real-time photothermal ablation of target cancer cells using polydopamine-encapsulated gold nanorods as multifunctional agents.

    Science.gov (United States)

    Sun, Changlong; Gao, Mingxia; Zhang, Xiangmin

    2017-08-01

    In this study, we developed a novel "see-and-treat" theranostic system named "surface-enhanced Raman scattering (SERS) imaging-guided real-time photothermal therapy" for accurate cancer detection and real-time cancer cell ablation using the same Raman laser. Facilely synthesized polydopamine-encapsulated gold nanorods (AuNRs), which possess excellent biocompatibility and enhanced stability, were used as multifunctional agents. Under near-infrared (NIR) laser irradiation, polydopamine-encapsulated AuNRs show strong SERS effect and high photothermal conversion efficiency simultaneously. After immobilization of antibodies (anti-EpCAM), polydopamine-encapsulated gold nanorods show high specificity to target cancer cells. Tumor margins could be distinguished facilely by a quick SERS imaging process, which was confirmed by H&E staining results. By focusing the exciting light on detected cancer cells for a prolonged time, cancer cells could be ablated immediately without the need of other procedure. This "see-and-treat" theranostic strategy combining SERS imaging and real-time photothermal therapy using the same Raman laser is proposed for the first time. Experimental results confirmed the feasibility of our "SERS imaging-guided real-time photothermal therapy system." This novel theranostic strategy can significantly improve the efficiency of cancer therapy in clinical application, allowing the effective ablation of cancer cells with no effects on surrounding healthy tissues. Graphical abstract ᅟ.

  7. Self-assembly of silver nanoparticles as high active surface-enhanced Raman scattering substrate for rapid and trace analysis of uranyl(VI) ions

    Science.gov (United States)

    Wang, Shaofei; Jiang, Jiaolai; Wu, Haoxi; Jia, Jianping; Shao, Lang; Tang, Hao; Ren, Yiming; Chu, Mingfu; Wang, Xiaolin

    2017-06-01

    A facile surface-enhanced Raman scattering (SERS) substrate based on the self-assembly of silver nanoparticles on the modified silicon wafer was obtained, and for the first time, an advanced SERS analysis method basing on this as-prepared substrate was established for high sensitive and rapid detection of uranyl ions. Due to the weakened bond strength of Odbnd Udbnd O resulting from two kinds of adsorption of uranyl species (;strong; and ;weak; adsorption) on the substrate, the ν1 symmetric stretch vibration frequency of Odbnd Udbnd O shifted from 871 cm- 1 (normal Raman) to 720 cm- 1 and 826 cm- 1 (SERS) along with significant Raman enhancement. Effects of the hydrolysis of uranyl ions on SERS were also investigated, and the SERS band at 826 cm- 1 was first used to approximately define the constitution of uranyl species at trace quantity level. Besides, the SERS intensity was proportional to the variable concentrations of uranyl nitrate ranging from 10- 7 to 10- 3 mol L- 1 with an excellent linear relation (R2 = 0.998), and the detection limit was 10- 7 mol L- 1. Furthermore, the related SERS approach involves low-cost substrate fabrication, rapid and trace analysis simultaneously, and shows great potential applications for the field assays of uranyl ions in the nuclear fuel cycle and environmental monitoring.

  8. Three-Dimensional Morphology Control Yielding Enhanced Hole Mobility in Air-Processed Organic Photovoltaics: Demonstration with Grazing-Incidence Wide-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Levi M. J. [School of Polymers; Bhattacharya, Mithun [School of Polymers; Wu, Qi [School of Polymers; Youm, Sang Gil [Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, United States; Nesterov, Evgueni E. [Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, United States; Morgan, Sarah E. [School of Polymers

    2017-06-28

    Polymer organic photovoltaic (OPV) device performance is defined by the three-dimensional morphology of the phase-separated domains in the active layer. Here, we determine the evolution of morphology through different stages of tailored solvent vapor and thermal annealing techniques in air-processed poly(3-hexylthiophene-2,5-diyl)/phenyl-C61-butyric acid methyl ester-based OPV blends. A comparative evaluation of the effect of solvent type used for vapor annealing was performed using grazing-incidence wide-angle X-ray scattering, atomic force microscopy, and UV–vis spectroscopy to probe the active-layer morphology. A nonhalogenated orthogonal solvent was found to impart controlled morphological features within the exciton diffusion length scales, enhanced absorbance, greater crystallinity, increased paracrystalline disorder, and improved charge-carrier mobility. Low-boiling, fast-diffusing isopropanol allowed the greatest control over the nanoscale structure of the solvents evaluated and yielded a cocontinuous morphology with narrowed domains and enhanced paths for the charge carrier to reach the anode.

  9. The synthesis of four-layer gold-silver-polymer-silver core-shell nanomushroom with inbuilt Raman molecule for surface-enhanced Raman scattering

    Science.gov (United States)

    Jiang, Tao; Wang, Xiaolong; Zhou, Jun

    2017-12-01

    A facial two-step reduction method was proposed to synthesize four-layer gold-silver-polymer-silver (Au@Ag@PSPAA@Ag) core-shell nanomushrooms (NMs) with inbuilt Raman molecule. The surface-enhanced Raman scattering (SERS) intensity of 4MBA adhered on the surface of Au core gradually increased with the modification of middle Ag shell and then Ag mushroom cap due to the formation of two kinds of ultra-small interior nanogap. Compared with the initial Au nanoparticles, the SERS enhancement ratio of the Au@Ag@PSPAA@Ag NMs approached to nearly 40. The novel core-shell NMs also exhibited homogeneous SERS signals for only one sample and reproducible signals for 10 different samples, certified by the low relative standard deviation values of less than 10% and 15% for the character peaks of 4-mercaptobenzoic acid, respectively. Such a novel four-layer core-shell nanostructure with reliable SERS performance has great potential application in quantitative SERS-based immunoassay.

  10. Rapid label-free identification of Klebsiella pneumoniae antibiotic resistant strains by the drop-coating deposition surface-enhanced Raman scattering method

    Science.gov (United States)

    Cheong, Youjin; Kim, Young Jin; Kang, Heeyoon; Choi, Samjin; Lee, Hee Joo

    2017-08-01

    Although many methodologies have been developed to identify unknown bacteria, bacterial identification in clinical microbiology remains a complex and time-consuming procedure. To address this problem, we developed a label-free method for rapidly identifying clinically relevant multilocus sequencing typing-verified quinolone-resistant Klebsiella pneumoniae strains. We also applied the method to identify three strains from colony samples, ATCC70063 (control), ST11 and ST15; these are the prevalent quinolone-resistant K. pneumoniae strains in East Asia. The colonies were identified using a drop-coating deposition surface-enhanced Raman scattering (DCD-SERS) procedure coupled with a multivariate statistical method. Our workflow exhibited an enhancement factor of 11.3 × 106 to Raman intensities, high reproducibility (relative standard deviation of 7.4%), and a sensitive limit of detection (100 pM rhodamine 6G), with a correlation coefficient of 0.98. All quinolone-resistant K. pneumoniae strains showed similar spectral Raman shifts (high correlations) regardless of bacterial type, as well as different Raman vibrational modes compared to Escherichia coli strains. Our proposed DCD-SERS procedure coupled with the multivariate statistics-based identification method achieved excellent performance in discriminating similar microbes from one another and also in subtyping of K. pneumoniae strains. Therefore, our label-free DCD-SERS procedure coupled with the computational decision supporting method is a potentially useful method for the rapid identification of clinically relevant K. pneumoniae strains.

  11. Ultrastrong Freestanding Graphene Oxide Nanomembranes with Surface-Enhanced Raman Scattering Functionality by Solvent-Assisted Single-Component Layer-by-Layer Assembly.

    Science.gov (United States)

    Xiong, Rui; Hu, Kesong; Zhang, Shuaidi; Lu, Canhui; Tsukruk, Vladimir V

    2016-07-26

    We report single-component ultrathin reduced graphene oxide (rGO) nanomembranes fabricated via nonconventional layer-by-layer assembly (LbL) of graphene oxide flakes, using organic solvent instead of water to provide strong complementary interactions and to ensure the uniform layered growth. This unique approach does not require regular polymeric from the assembly process or intermediate surface chemical modification. The resulting ultrastrong freestanding graphene oxide (rGO) LbL nanomembranes with a very low thickness of 3 nm (three GO monolayers) can be transferred over a large surface area across tens of square centimeters by using a facile surface-tension-assisted release technique. These uniform and ultrasmooth nanomembranes with high transparency (up to 93% at 550 nm) and high electrical conductivity (up to 3000 S/m) also exhibit outstanding mechanical strength of 0.5 GPa and a Young's modulus of 120 GPa, which are several times higher than that of other reported regular rGO films. Furthermore, up to 94 wt % of silver nanoplates can be sandwiched between 5 nm GO layers to construct a flexible freestanding protected noble metal monolayer with surface-enhanced Raman scattering properties. These flexible rGO/Ag/rGO nanomembranes can be transferred and conformally coat complex surfaces and show a cleaner Raman signature, enhanced wet stability, and lower oxidation compared to bare Ag nanostructures.

  12. Interlaced silver nanosheets grown on polyaniline coated carbon foam as efficient three dimensional surface enhanced Raman scattering substrate for molecule sensing

    Science.gov (United States)

    Xu, Fugang; Xie, Shi; Xu, Hui; Chen, Xing; Yu, Han; Wang, Li

    2017-07-01

    In this study, a new plasmonic hybrid AgNSs@PANI/3D-CF composed of interlaced silver nanosheets (AgNSs) grown on polyaniline (PANI) nanobars decorated three dimensional macroporous carbon foam (3D-CF) was prepared for molecule sensing by surface enhanced Raman scattering (SERS). The morphology, component, adsorption ability and SERS activity of the hybrid were characterized by SEM, EDS, FTIR, XRD, UV-vis absorption spectrum, and Raman spectroscopy. Controlling the silver growth time and introduction of succinic acid are vital to obtain the interlaced silver nanosheets fully covered 3D scaffold. The porous structure and large surface area of the hybrid bring it a high adsorption ability to dye molecules. And interlaced AgNSs endow the hybrid with dense hot-spots for highly efficient SERS detection. The lowest SERS detectable concentration of 4-mercaptobenzoic acid (4-MBA), Nile blue (NB) and Methylene blue (MB) on AgNSs@PANI/3D-CF was 0.1 nM, 0.1 nM and 10 nM, respectively. A good result was also achieved for NB detection in real water sample. The proposed hybrid with unique structure, high Raman enhancement ability and good reproducibility may find promising applications in environment monitoring, optical sensing and so on.

  13. Separation of time-resolved phenomena in surface-enhanced Raman scattering of the photocatalytic reduction of p-nitrothiophenol.

    Science.gov (United States)

    van Schrojenstein Lantman, E M; de Peinder, P; Mank, A J G; Weckhuysen, B M

    2015-02-23

    Straightforward analysis of chemical processes on the nanoscale is difficult, as the measurement volume is linked to a discrete number of molecules, ruling out any ensemble averaging over rotation and diffusion processes. Raman spectroscopy is sufficiently selective for monitoring chemical changes, but is not sufficiently sensitive to be applied directly. Surface-enhanced Raman spectroscopy (SERS) can be applied for studying reaction kinetics, but adds additional variability in the signal as the enhancement factor is not the same for every location. A novel chemometric method described here separates reaction kinetics from short-term variability, based on the lack of fit in a principal-component analysis. We show that it is possible to study effects that occur on different time scales independently without data reduction using the photocatalytic reduction of p-nitrothiophenol as a showcase system. Using this approach a better description of the nanoscale reaction kinetics becomes available, while the short-term variations can be examined separately to examine reorientation and/or diffusion effects. It may even be possible to identify reaction intermediates through this approach. With only a limited number of reactive molecules in the studied volume, an intermediate on a SERS hot spot may temporarily dominate the spectrum. Now such events can be easily separated from the bulk conversion process by making use of this chemometric method. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. One-step polypyrrole coating of self-assembled silver nanoprisms for enhanced stability and Raman scattering

    Science.gov (United States)

    Jeong, Dong-Won; Jeong, Sugyeong; Jang, Du-Jeon

    2017-07-01

    Self-assemblies of silver nanoprisms (AgPRs) having enhanced structural stability and optical properties have been facilely coated with polypyrrole (PPy) via the in situ polymerization of pyrrole monomers that also act as an assembling agent. The assemblies of AgPRs, whose edge lengths and thicknesses are typically 78 and 4 nm, respectively, have been surrounded by a PPy coating of 6 nm. AgPRs are assembled in a side-to-side orientation, and the degree of assembly has been controlled by varying the concentration of trisodium citrate dihydrate, which attaches selectively to the {111} facets of AgPRs. The morphology deformation time of PPy-coated AgPRs in 0.6 mM H2O2(aq) is seven times longer than that of PPy-free AgPRs, suggesting that PPy coating prevents the sharp tips of AgPRs from being truncated by oxidizing agents. The SERS effect of highly self-assembled and PPy-coated AgPRs becomes as high as 6.3 due to numerous hot spots generated between nanoprisms. Overall, our fabricated AgPRs assemblies with PPy coating have not only improved structural stability but also enhanced optical properties, extending the practical use of noble-metal nanoprisms for various optical applications.

  15. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems

    Science.gov (United States)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies.

  16. Gold nanoparticles assisted surface enhanced Raman scattering and luminescence of Er{sup 3+} doped zinc–sodium tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, S.K.; Awang, Asmahani, E-mail: asmahani_awang@yahoo.com; Sahar, M.R.; Arifin, R.

    2015-03-15

    Significant enhancements in Er{sup 3+} luminescence and Raman intensity mediated via surface plasmon resonance (SPR) of gold (Au) nanoparticles (NPs) embedded zinc–sodium tellurite glass are reported. The observed modifications in the physical and spectroscopic properties are ascribed to the alterations in the glass network. XRD pattern confirms the amorphous nature of prepared glass sample. UV–vis-NIR spectra reveal seven absorption bands. Surface plasmon band is evidenced around 626–630 nm. TEM images manifest the growth of non-spherical Au NPs with average diameter between ∼7.2 nm and 8.6 nm. The visible up-conversion (UC) emission for all samples under 779 nm excitation exhibits three bands centered at 503 nm (green), 546 (green) and 637 nm (red) ascribed to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} transitions. Glass sample with 0.4 mol% Au displaying the highest luminescence intensity with enhancement factor of 3.85 and 3.56 for green bands, and 7.61 for the red band is ascribed to the NPs local field enhancement and energy transfer between rare earth (RE) ions and NPs. FTIR spectra show the vibration of ZnO{sub 4} bonds, Te-O bond in TeO{sub 3} (tp) and TeO{sub 4} (tbp) units and the hydroxyl groups. Raman spectra demonstrate the presence of Er-O and Zn-O bond, anti-symmetric vibrations of Te-O-Te bonds and stretching modes of non-bonded oxygen exists in TeO{sub 3} and TeO{sub 3+1} unit. The amplifications in Raman signals by a factor of 1.62, 1.58, 1.64, 1.68 and 1.69 corresponding to the peak centered at 262 cm{sup −1}, 382 cm{sup −1}, 521 cm{sup −1}, 670 cm{sup −1} and 725 cm{sup −1} are attributed to the contribution of a surface plasmon generating a strong, localized and secondary field. We assert that our glass compositions offer favorable potential to develop solid state lasers and other versatile nanophotonic devices. - Highlights: • Gold

  17. Fractal Levy correlation cascades

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo [Department of Technology Management, Holon Institute of Technology, Holon 58102 (Israel); Klafter, Joseph [School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2007-04-20

    The correlation structure of a wide class of random processes, driven by stable non-Gaussian Levy noise sources, is explored. Since these noises are of infinite variance, correlations cannot be measured via auto-covariance functions. Exploiting the underlying Poissonian structure of Levy noises, we present a cascade of 'Poissonian correlation functions' which characterize the correlation structure and the process distribution of the processes under consideration. The theory developed is applied to various examples including motions, Ornstein-Uhlenbeck and moving-average processes, and fractional motions and noises-all driven by stable non-Gaussian Levy noises. (fast track communication)

  18. Cascading Corruption News

    DEFF Research Database (Denmark)

    Damgaard, Mads

    2018-01-01

    Through a content analysis of 8,800 news items and six months of front pages in three Brazilian newspapers, all dealing with corruption and political transgression, this article documents the remarkable skew of media attention to corruption scandals. The bias is examined as an information...... phenomenon, arising from systemic and commercial factors of Brazil’s news media: An information cascade of news on corruption formed, destabilizing the governing coalition and legitimizing the impeachment process of Dilma Rousseff. As this process gained momentum, questions of accountability were disregarded...

  19. Analysis and synthesis of cascaded metasurfaces using wave matrices

    Science.gov (United States)

    Ranjbar, Amin; Grbic, Anthony

    2017-05-01

    Various matrix representations are used to analyze the propagation of electromagnetic waves through stratified (layered) media or cascaded circuit networks. These include ABCD matrices, scattering matrices, impedance matrices, and hybrid matrices. A less known network representation is the wave matrix. In this paper, a brief review of wave matrices is presented and their relation to other network representations derived. Wave matrices are found for common interfaces such as boundaries between dielectric media, dielectric slabs, as well as electric, magnetic, and magneto-electric sheet boundaries (generalized sheet transition conditions). These results are then used to develop an analytical synthesis approach for cascaded metasurfaces: metasurfaces consisting of a cascade of sheets separated by dielectric spacers. This is in contrast to earlier works which relied on numerical solvers or optimization methods to design such structures. A few design examples are presented to demonstrate the utility of the synthesis approach.

  20. Silver nanocrystal-modified silicon nanowires as substrates for surface-enhanced Raman and hyper-Raman scattering.

    Science.gov (United States)

    Leng, Weinan; Yasseri, Amir A; Sharma, Shashank; Li, Zhiyong; Woo, Han Young; Vak, Doojin; Bazan, Guillermo C; Kelley, Anne Myers

    2006-09-01

    Metal catalyzed, CVD-grown silicon nanowires decorated by chemical assembly of closely spaced Ag nanocrystals were modified with the well-known "silver mirror" reaction and investigated as substrates for surface-enhanced Raman (SERS) and hyper-Raman (SEHRS) spectroscopy. Four chromophores were examined: Rhodamine 6G, crystal violet, a cyanine dye, and a cationic donor-acceptor substituted stilbene. After soaking the substrates overnight in 10(-4) M aqueous chromophore solutions, all four chromophores gave good-quality SERS spectra in < or =60 s using <1 microW of 458-nm cw laser power, and SEHRS spectra are obtained in < or =120 s using <1 mW of mode-locked 916-nm laser power. Results from this substrate are compared with those on colloidal silver nanoparticles deposited as a film, as well as surfaces grown by the silver mirror reaction.

  1. Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

    Directory of Open Access Journals (Sweden)

    Marco Salerno

    2017-01-01

    Full Text Available Thin anodic porous alumina (tAPA was fabricated from a 500 nm thick aluminum (Al layer coated on silicon wafers, through single-step anodization performed in a Teflon electrochemical cell in 0.4 M aqueous phosphoric acid at 110 V. Post-fabrication etching in the same acid allowed obtaining tAPA surfaces with ≈160 nm pore diameter and ≈80 nm corresponding wall thickness to be prepared. The tAPA surfaces were made SERS-active by coating with a thin (≈25 nm gold (Au layer. The as obtained tAPA–Au substrates were incubated first with different thiols, namely mercaptobenzoic acid (MbA and aminothiol (AT, and then with phospholipid vesicles of different composition to form a supported lipid bilayer (SLB. At each step, the SERS substrate functionality was assessed, demonstrating acceptable enhancement (≥100×. The chemisorption of thiols during the first step and the formation of SLB from the vesicles during the second step, were independently monitored by using a quartz crystal microbalance with dissipation monitoring (QCM-D technique. The SLB membranes represent a simplified model system of the living cells membranes, which makes the successful observation of SERS on these films promising in view of the use of tAPA–Au substrates as a platform for the development of surface-enhanced Raman spectroscopy (SERS biosensors on living cells. In the future, these tAPA–Au-SLB substrates will be investigated also for drug delivery of bioactive agents from the APA pores.

  2. Thomson Scattering

    NARCIS (Netherlands)

    Donne, A. J. H.

    1994-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is

  3. Highly active surface-enhanced Raman scattering (SERS) substrates based on gold nanoparticles infiltrated into SiO{sub 2} inverse opals

    Energy Technology Data Exchange (ETDEWEB)

    Ankudze, Bright; Philip, Anish [Department of Chemistry, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland); Pakkanen, Tuula T., E-mail: Tuula.Pakkanen@uef.fi [Department of Chemistry, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland); Matikainen, Antti; Vahimaa, Pasi [Institute of Photonics, University of Eastern Finland, P.O. Box 111, F1-80101, Joensuu (Finland)

    2016-11-30

    Highlights: • SERS substrates prepared by infiltration of nanoparticles into SiO{sub 2} inverse opal. • The SERS substrate gives an enhancement factor of 10{sup 7} for 4-aminothiophenol. • The sensitivity of the substrate is mainly attributed to gold nanoparticle clusters. - Abstract: SiO{sub 2} inverse opal (IO) films with embedded gold nanoparticles (AuNPs) for surface-enhanced Raman scattering (SERS) application are reported. SiO{sub 2} IO films were loaded with AuNPs by a simple infiltration in a single cycle to form Au-SiO{sub 2} IOs. The optical property and the morphology of the Au-SiO{sub 2} IO substrates were characterized; it was observed that they retained the Bragg diffraction of SiO{sub 2} IO and the localized surface plasmon resonance (LSPR) of AuNPs. The SERS property of the Au-SiO{sub 2} IO substrates were studied with methylene blue (MB) and 4-aminothiophenol (4-ATP). The SERS enhancement factors were 10{sup 7} and 10{sup 6} for 4-ATP and MB, respectively. A low detection limit of 10{sup −10} M for 4-ATP was also obtained with the Au-SiO{sub 2} IO substrate. A relative standard deviation of 18.5% for the Raman signals intensity at 1077 cm{sup −1} for 4-ATP shows that the Au-SiO{sub 2} IO substrates have good signal reproducibility. The results of this study indicate that the Au-SiO{sub 2} IO substrates can be used in sensing and SERS applications.

  4. Rapid Detection and Identification of Overdose Drugs in Saliva by Surface-Enhanced Raman Scattering Using Fused Gold Colloids

    Directory of Open Access Journals (Sweden)

    Frank Inscore

    2011-07-01

    Full Text Available The number of drug-related emergency room visits in the United States doubled from 2004 to 2009 to 4.6 million. Consequently there is a critical need to rapidly identify the offending drug(s, so that the appropriate medical care can be administered. In an effort to meet this need we have been investigating the ability of surface-enhanced Raman spectroscopy (SERS to detect and identify numerous drugs in saliva at ng/mL concentrations within 10 minutes. Identification is provided by matching measured spectra to a SERS library comprised of over 150 different drugs, each of which possess a unique spectrum. Trace detection is provided by fused gold colloids trapped within a porous glass matrix that generate SERS. Speed is provided by a syringe-driven sample system that uses a solid-phase extraction capillary combined with a SERS-active capillary in series. Spectral collection is provided by a portable Raman analyzer. Here we describe successful measurement of representative illicit, prescribed, and over-the-counter drugs by SERS, and 50 ng/mL cocaine in saliva as part of a focused study.

  5. Cascaded trans-z-source inverters

    DEFF Research Database (Denmark)

    Li, Ding; Loh, Poh Chiang; Zhu, Miao

    2011-01-01

    Z-source inverter is a recently proposed single-stage inverter with added voltage-boost capability for complementing the usual voltage-buck operation of a traditional voltage-source inverter. As long as the transformer element added in to the z-source concept, a trans-z-source inverter with one...... transformer and one capacitor is reported recently. This paper has adapted the cascaded concept into the trans-z-source and trans-quasi-z-source inverters to extend each to the cascaded topologies before combination is made with allowing more sources embedded which reduces the capacitor voltage and enhanced...... the compatibility for distributed sources. Unlike existing techniques, voltage stresses within the proposed inverters are better distributed among the passive components. Theoretical analysis for explaining these operating features has already been discussed before simulation were performed and an experimental...

  6. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering

    Science.gov (United States)

    Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun; Zhao, Naiqin; He, Chunnian

    2015-10-01

    In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen-doped graphene walls with a large surface area facilitated molecule adsorption and the doped nitrogen atoms embedded in the graphene lattice can reduce the surface energy of the system. With these merits, a good surface enhanced Raman spectroscopy (SERS) activity of the 3D Cu@G-NGN painting film on glass was demonstrated using rhodamine 6G and crystal violet as model analytes, exhibiting a satisfactory sensitivity, reproducibility and stability. As far as we know, this is the first report on the in situ synthesis of nitrogen-doped graphene/copper nanocomposites and this facile and low-cost Cu-based strategy tends to be a good supplement to Ag and Au based substrates for SERS applications.In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen

  7. Mitigate Cascading Failures on Networks using a Memetic Algorithm.

    Science.gov (United States)

    Tang, Xianglong; Liu, Jing; Hao, Xingxing

    2016-12-09

    Research concerning cascading failures in complex networks has become a hot topic. However, most of the existing studies have focused on modelling the cascading phenomenon on networks and analysing network robustness from a theoretical point of view, which considers only the damage incurred by the failure of one or several nodes. However, such a theoretical approach may not be useful in practical situation. Thus, we first design a much more practical measure to evaluate the robustness of networks against cascading failures, termed Rcf. Then, adopting Rcf as the objective function, we propose a new memetic algorithm (MA) named MA-Rcf to enhance network the robustness against cascading failures. Moreover, we design a new local search operator that considers the characteristics of cascading failures and operates by connecting nodes with a high probability of having similar loads. In experiments, both synthetic scale-free networks and real-world networks are used to test the efficiency and effectiveness of the MA-Rcf. We systematically investigate the effects of parameters on the performance of the MA-Rcf and validate the performance of the newly designed local search operator. The results show that the local search operator is effective, that MA-Rcf can enhance network robustness against cascading failures efficiently, and that it outperforms existing algorithms.

  8. Cascade Distillation System Development

    Science.gov (United States)

    Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah

    2014-01-01

    NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.

  9. Unsteady turbulence cascades.

    Science.gov (United States)

    Goto, Susumu; Vassilicos, J C

    2016-11-01

    We have run a total of 311 direct numerical simulations (DNSs) of decaying three-dimensional Navier-Stokes turbulence in a periodic box with values of the Taylor length-based Reynolds number up to about 300 and an energy spectrum with a wide wave-number range of close to -5/3 power-law dependence at the higher Reynolds numbers. On the basis of these runs, we have found a critical time when (i) the rate of change of the square of the integral length scale turns from increasing to decreasing, (ii) the ratio of interscale energy flux to high-pass filtered turbulence dissipation changes from decreasing to very slowly increasing in the inertial range, (iii) the signature of large-scale coherent structures disappears in the energy spectrum, and (iv) the scaling of the turbulence dissipation changes from the one recently discovered in DNSs of forced unsteady turbulence and in wind tunnel experiments of turbulent wakes and grid-generated turbulence to the classical scaling proposed by G. I. Taylor [Proc. R. Soc. London, Ser. A 151, 421 (1935)1364-502110.1098/rspa.1935.0158] and A. N. Kolmogorov [Dokl. Akad. Nauk SSSR 31, 538 (1941)]. Even though the customary theoretical basis for this Taylor-Kolmogorov scaling is a statistically stationary cascade where large-scale energy flux balances dissipation, this is not the case throughout the entire time range of integration in all our DNS runs. The recently discovered dissipation scaling can be reformulated physically as a situation in which the dissipation rates of the small and large scales evolve together. We advance two hypotheses that may form the basis of a theoretical approach to unsteady turbulence cascades in the presence of large-scale coherent structures.

  10. Disperse magnetic solid phase microextraction and surface enhanced Raman scattering (Dis-MSPME-SERS) for the rapid detection of trace illegally chemicals.

    Science.gov (United States)

    Yu, Shihua; Liu, Zhigang; Wang, Weixian; Jin, Li; Xu, Weiqing; Wu, Yuqing

    2018-02-01

    The technique of solid phase micro-extraction (SPME) is an important method for sample pretreatment in analytical chemistry, especially for the analysis in micro-systems. Surface enhanced Raman scattering (SERS) is an ultra-sensitive and fast detection technique. Both are particularly important in qualitative analysis of trace amount of substance. In this study, combining the magnetic nanoparticles with magnetic SPME device, we develop a high efficient new pretreatment method named as disperse magnetic solid phase micro-extraction (Dis-MSPME). In comparison to the traditional SPME, the proposed Dis-MSPME realizes solid phase micro-extraction from dispersive system, which improved the extraction efficiency largely. Conjunction the advantages both of Dis-MSPME and SERS is proposed as Dis-MSPME-SERS as a new detection method, which realize enrichment, magnetic separation and detection all-in-one. Making it a simpler, more efficient and sensitive approach in identifying the illegal additives. Sildenafil citrate (SC) in 500μL health wine as an example of illegal additive was successfully detected in a LOD of 1.0 × 10-8M. Moreover, comparative study on the extract efficient of Dis-MSPME-SERS with SPME-SERS shows it takes only 10min to detect sildenafil citrate in the health wine, from enrichment to detection by Dis-MSPME-SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Manipulation of silver nanoparticles in a droplet for label-free detection of biological molecules using surface-enhanced Raman scattering

    Science.gov (United States)

    Çulha, Mustafa; Altunbek, Mine; Keskin, Sercan; Saatçi, Deniz

    2011-03-01

    Detection and identification of biomacromolecules is of critical importance in many fields ranging from biotechnology to medicine. Surface-enhanced Raman scattering (SERS) is an emerging technique for the label-free detection and identification of biological molecules and structures with its fingerprinting properties and high sensitivity. However, there are a number of obstacles for its applications for biological macromolecules due to their complexity. In this report, manipulation of microscopic processes in play during the drying of a sessile droplet as a tool to influence the nanoparticle-macromolecule packing, which has dramatic effect on SERS performance, before the SERS acquisition is demonstrated. A process known as the coffee ring phenomenon jams all particles and molecular species to the edges of the droplet during drying. This uncontrolled process has dramatic effects on a SERS experiment, using colloidal metal nanoparticles as substrates, by sweeping everything to the edges and influencing the packing of nanoparticles in the droplet area. A plastic tip was dipped into a drying sample droplet to influence the uncontrolled piling up. A negatively-charged protein, BSA, a positively-charged protein, cytochrom c, and a 20-base long oligonucleotide, were used as model biomacromolecules in this study. While a minimum of one order of magnitude lower concentration improvement in detection limit was observed with negatively-charged biomacromolecules, no significant improvement was observed with positively-charged ones compared to a sample droplet left on the surface without any interference. With the demonstrated approach, picomolar-level biomolecular detection using SERS is possible.

  12. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.

    Science.gov (United States)

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1 ± 2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6 ± 8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  13. Surface-enhanced Raman scattering spectra revealing the inter-cultivar differences for Chinese ornamental Flos Chrysanthemum: a new promising method for plant taxonomy

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2017-10-01

    Full Text Available Abstract Background Flos Chrysanthemi, as a part of Chinese culture for a long history, is valuable for not only environmental decoration but also the medicine and food additive. Due to their voluminously various breeds and extensive distributions worldwide, it is burdensome to make recognition and classification among numerous cultivars with conventional methods which still rest on the level of morphologic observation and description. As a fingerprint spectrum for parsing molecular information, surface-enhanced Raman scattering (SERS could be a suitable candidate technique to characterize and distinguish the inter-cultivar differences at molecular level. Results SERS spectra were used to analyze the inter-cultivar differences among 26 cultivars of Chinese ornamental Flos Chrysanthemum. The characteristic peaks distribution patterns were abstracted from SERS spectra and varied from cultivars to cultivars. For the bands distributed in the pattern map, the similarities in general showed their commonality while in the finer scales, the deviations and especially the particular bands owned by few cultivars revealed their individualities. Since the Raman peaks could characterize specific chemical components, those diversity of patterns could indicate the inter-cultivar differences at the chemical level in fact. Conclusion In this paper, SERS technique is feasible for distinguishing the inter-cultivar differences among Flos Chrysanthemum. The Raman spectral library was built with SERS characteristic peak distribution patterns. A new method was proposed for Flos Chrysanthemum recognition and taxonomy.

  14. A simple fabrication of plasmonic surface-enhanced Raman scattering (SERS) substrate for pesticide analysis via the immobilization of gold nanoparticles on UF membrane

    Science.gov (United States)

    Hong, Jangho; Kawashima, Ayato; Hamada, Noriaki

    2017-06-01

    In this study, we developed a facile fabrication method to access a highly reproducible plasmonic surface enhanced Raman scattering substrate via the immobilization of gold nanoparticles on an Ultrafiltration (UF) membrane using a suction technique. This was combined with a simple and rapid analyte concentration and detection method utilizing portable Raman spectroscopy. The minimum detectable concentrations for aqueous thiabendazole standard solution and thiabendazole in orange extract are 0.01 μg/mL and 0.125 μg/g, respectively. The partial least squares (PLS) regression plot shows a good linear relationship between 0.001 and 100 μg/mL of analyte, with a root mean square error of prediction (RMSEP) of 0.294 and a correlation coefficient (R2) of 0.976 for the thiabendazole standard solution. Meanwhile, the PLS plot also shows a good linear relationship between 0.0 and 2.5 μg/g of analyte, with an RMSEP value of 0.298 and an R2 value of 0.993 for the orange peel extract. In addition to the detection of other types of pesticides in agricultural products, this highly uniform plasmonic substrate has great potential for application in various environmentally-related areas.

  15. Surface-enhanced Raman scattering and theoretical studies of the C-terminal peptide of the β-subunit human chorionic gonadotropin without linked carbohydrates.

    Science.gov (United States)

    Aliaga, A E; Aguayo, T; Garrido, C; Clavijo, E; Hevia, E; Gómez-Jeria, J S; Leyton, P; Campos-Vallette, M M; Sanchez-Cortes, S

    2011-02-01

    Raman and surface-enhanced Raman scattering (SERS) spectra of the synthetic carboxy terminal peptide of human chorionic gonadatropin β-subunit free of carbohydrate moieties(P37) are reported. The spectral analysis is performed on the basis of our reported Raman spectrum and SERS data of oligopeptides displaying selected amino acids sequences MRKDV, ADEDRDA, and LGRGISL. SERS samples of P37 were prepared by coating the solid peptide with metal colloids on a quartz slide. This treatment makes possible to obtain high spectral batch to batch reproducibility. Amino acids components of P37 display net charges and hydrophobic characteristics, which are related to particular structural aspects of the adsorbate-substrate interaction. The spectroscopic results are supported by quantum chemical calculations performed by using extended Hückel theory method for a model of P37 interacting with an Ag surface. The P37-metal interaction is drove by positively charged fragments of selected amino acids,mainly threonine 109, lysine 122, and arginine in positions 114 and 133. Data here reported intend to contribute to the knowledge about the antigen-antibody interaction and to the drugs delivery research area © 2010 Wiley Periodicals, Inc.

  16. A durable surface-enhanced Raman scattering substrate: ultrathin carbon layer encapsulated Ag nanoparticle arrays on indium-tin-oxide glass.

    Science.gov (United States)

    Bian, Juncao; Li, Qian; Huang, Chao; Guo, Yao; Zaw, Myowin; Zhang, Rui-Qin

    2015-06-14

    The application of Ag nanostructures to surface-enhanced Raman scattering (SERS) is hindered by their chemical instability. Fabrication of durable Ag-based SERS substrates is therefore of great significance in practical applications. In this work, ultrathin C-layer-encapsulated Ag nanoparticle arrays (UCL-Ag-NAs) are successfully fabricated on the surface of indium-tin-oxide (ITO) glass, using a hydrothermal method, for use as durable SERS substrates. The problem of Ag nanoparticles dissolving during the hydrothermal process is solved by using ZnO powder as a pH-buffering reagent. The SERS signal intensity of UCL-Ag-NAs decreases, accompanied by an improvement in Raman signal stability, as the C-layer thickness increases. Raman spectra show that the SERS signal intensities obtained from UCL-Ag-NAs with C-layers of 4.5 nm and 7.3 nm stored for 180 days are 64.9% and 77.8% of those obtained from as-prepared counterparts. The SERS intensity of the UCL-Ag-NA (C-layer of 4.5 nm) is 152.7% that of the bare Ag NA after 180 days of storage. XPS spectra confirm that the C-layer effectively suppresses the oxidation of the Ag NA. This methodology can be generalized to improve the durability of other dimensional Ag nanostructures for SERS applications.

  17. Facile synthesis of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies for single-particle surface-enhanced Raman scattering.

    Science.gov (United States)

    Song, C Y; Zhou, N; Yang, B Y; Yang, Y J; Wang, L H

    2015-10-28

    The physicochemical properties of noble metal nanocrystals depend strongly on their size and shape, and it is becoming clear that the design and facile synthesis of particular nanostructures with tailored shape and size is especially important. Herein a novel class of hydrangea flower-like hierarchical gold nanostructures with tunable surface topographies and optical properties are prepared for the first time by a facile, one-pot, seedless synthesis using ascorbic acid (AA) to reduce hydrogen tetrachloroaurate (HAuCl4) in the presence of (1-hexadecyl)trimethylammonium chloride (CTAC). The morphologies of the synthesized gold nanoflowers are controlled and fine-tuned by varying the synthetic conditions such as the concentration of reagents and the growth temperature. Due to their unique hierarchical three-dimensional (3D) structures with rich hot spots, these gold nanoflowers exhibit an efficient performance in single-particle surface-enhanced Raman scattering (SERS). The work stands out as an interesting approach for anisotropic particle synthesis and morphological control, and the proposed novel, hierarchical gold nanoflowers have a number of exciting potential applications in SERS-based sensors.

  18. Interactions between the antifungal drug myclobutanil and gold and silver nanoparticles in Penicillium digitatum investigated by surface-enhanced Raman scattering.

    Science.gov (United States)

    Cho, Eun-Min; Singh, Dheeraj K; Ganbold, Erdene-Ochir; Dembereldorj, Uuriintuya; Jang, Seok-Won; Kim, Doseok; Choo, Jaebum; Kim, Sehun; Lee, Cheol Min; Yang, Sung Ik; Joo, Sang-Woo

    2014-01-01

    Surface-enhanced Raman scattering (SERS) of an antifungal reagent, myclobutanil (MCB), was performed on Au and Ag nanoparticles (NPs) to estimate the drug-release behaviors in fungal cells. A density functional theory (DFT) calculation was introduced to predict a favorable binding site of MCB to either the Ag or Au atom. Myclobutanil was presumed to bind more strongly to Au than to Ag in their most stable, optimized geometries of the N4 atom in its 1,2,4-triazole unit binding to the metal atom. Strong intensities were observed in the Ag SERS spectra only at acidic pH values, whereas the most prominent peaks in the Au SERS spectra of MCB matched quite well with those of 1,2,4-triazole regardless of pH conditions. The Raman spectral intensities of the MCB-assembled Ag and Au NPs decreased after treatment with either potato dextrose agar (PDA) or glutathione (GSH). Darkfield microscopy and confocal SERS were performed to analyze the MCB-assembled metal NPs inside Penicillium digitatum fungal cells. The results suggested that MCB was released from the metal NPs in the intracellular GSH in the fungi because we observed only fungal cell peaks.

  19. Rapid Surface Enhanced Raman Scattering (SERS) Detection of Sibutramine Hydrochloride in Pharmaceutical Capsules with a β-Cyclodextrin- Ag/Polyvivnyl Alcohol Hydrogel Substrate

    Science.gov (United States)

    Ouyang, Lei; Jiang, Zuyan; Wang, Nan; Zhu, Lihua; Tang, Heqing

    2017-01-01

    Sibutramine hydrochloride (SH) is a banned weight-loss drug, but its illegal addition to health products is still rampant. This suggests a very urgent need for a fast and precise detection method for SH. Surface Enhanced Raman Scattering (SERS) is a promising candidate for this purpose, but the weak affinity between SH and bare metal limits its direct SERS detection. In the present work, β-cyclodextrin was capped in situ onto the surface of Ag nanoparticles to function as a scaffold to capture SH. The obtained Ag nanoparticles were encapsulated into polyvinyl alcohol (PVA) to fabricate a SERS active hydrogel with excellent reproducibility. A facile SERS strategy based on such substrate was proposed for trace SH quantification with a linear range of 7.0–150.0 µg·mL–1, and a detection limit low to 3.0 µg·mL−1. It was applied to analyze seven types of commercial slimming capsules with satisfactory results, showing good prospect for real applications. PMID:28698502

  20. A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Liu

    Full Text Available Rapid and accurate diagnosis for pathogens and their antibiotic susceptibility is critical for controlling bacterial infections. Conventional methods for determining bacterium's sensitivity to antibiotic depend mostly on measuring the change of microbial proliferation in response to the drug. Such "biological assay" inevitably takes time, ranging from days for fast-growing bacteria to weeks for slow-growers. Here, a novel tool has been developed to detect the "chemical features" of bacterial cell wall that enables rapid identification of drug resistant bacteria within hours. The surface-enhanced Raman scattering (SERS technique based on our newly developed SERS-active substrate was applied to assess the fine structures of the bacterial cell wall. The SERS profiles recorded by such a platform are sensitive and stable, that could readily reflect different bacterial cell walls found in Gram-positive, Gram-negative, or mycobacteria groups. Moreover, characteristic changes in SERS profile were noticed in the drug-sensitive bacteria at the early period (i.e., approximately 1 hr of antibiotic exposure, which could be used to differentiate them from the drug-resistant ones. The SERS-based diagnosis could be applied to a single bacterium. The high-speed SERS detection represents a novel approach for microbial diagnostics. The single-bacterium detection capability of SERS makes possible analyses directly on clinical specimen instead of pure cultured bacteria.

  1. Tuning the EDTA-induced self-assembly and plasmonic spectral properties of gold nanorods: application in surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-jun [Xi’an Jiaotong University, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology (China); Zhang, Ning; Wang, Jingyuan [The First Affiliated Hospital of Xi’an Jiaotong University, Department of Clinical Laboratory (China); Yang, Chun-yu; Zhu, Jian, E-mail: nanoptzj@163.com; Zhao, Jun-wu, E-mail: nanoptzhao@163.com [Xi’an Jiaotong University, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology (China)

    2016-02-15

    Self-assembly of cetyl trimethyl ammonium bromide-protected colloidal gold nanorods with different aspect ratios has been studied by adding the ethylene diamine tetraacetic acid (EDTA). Both the assembly strength and assembly configuration fashion of the gold nanorods could be tuned by changing the aspect ratio. For gold nanorods with small aspect ratio, side-by-side assembly takes the major role in the aggregation. In this case, the blue shift of the longitudinal absorption and the increase of the transverse absorption lead to the great uplift of the middle spectrum dip as the EDTA is increased. For gold nanorods with large aspect ratio, end-to-end assembly takes the major role in the aggregation. In this case, the longitudinal absorption peak fades down rapidly and a tailing absorption peak at longer wavelength uplifts greatly as the EDTA is increased. The surface-enhanced Raman scattering (SERS) activity of the assembled gold nanorods has been studied using alpha-fetoprotein (AFP) as the Raman active probe. It has been found that both the side-by-side assembly and end-to-end assembly of the gold nanorods could effectively improve the Raman signal of the AFP. And the gold nanorod substrate with side-by-side assembly has higher SERS activity. Graphical Abstract: Side-by-side assembly of gold nanorods leads to the middle spectrum dip of LSPR uplift greatly as the EDTA is increased, which also effectively improves the SERS activity.

  2. Hydrogen treatment-improved uniform deposition of Ag nanoparticles on ZnO nanorod arrays and their visible-light photocatalytic and surface-enhanced Raman scattering properties.

    Science.gov (United States)

    Lin, Sio-Le; Hsu, Kai-Chih; Hsu, Chih-Hsiung; Chen, Dong-Hwang

    2013-07-16

    ZnO nanorod arrays were synthesized by chemical bath deposition. After heat treatment in hydrogen or air, Ag nanoparticles were deposited on ZnO nanorod arrays by photo-reduction method. The size of Ag nanoparticles as well as the surface morphology, structure, composition, and optical property of ZnO nanorod arrays before and after the deposition of Ag nanoparticles were characterized by SEM, XRD, EDS, and UV/VIS/NIR spectrophotometer. As compared to the samples with heat treatment in air or without heat treatment, the ZnO nanorod arrays after heat treatment in hydrogen allowed Ag nanoparticles to be deposited more uniformly, densely, and numerously. Also, they exhibited higher efficiency for the visible light-driven photocatalytic degradation of Rhodamine 6G (R6G) dye. The effects of the amount of Ag nanoparticles, initial dye concentration, and temperature on the photocatalytic degradation efficiency were investigated. Furthermore, they also exhibited better surface-enhanced Raman scattering property for the detection of R6G dyes.

  3. Rapid Surface Enhanced Raman Scattering (SERS Detection of Sibutramine Hydrochloride in Pharmaceutical Capsules with a β-Cyclodextrin- Ag/Polyvivnyl Alcohol Hydrogel Substrate

    Directory of Open Access Journals (Sweden)

    Lei Ouyang

    2017-07-01

    Full Text Available Sibutramine hydrochloride (SH is a banned weight-loss drug, but its illegal addition to health products is still rampant. This suggests a very urgent need for a fast and precise detection method for SH. Surface Enhanced Raman Scattering (SERS is a promising candidate for this purpose, but the weak affinity between SH and bare metal limits its direct SERS detection. In the present work, β-cyclodextrin was capped in situ onto the surface of Ag nanoparticles to function as a scaffold to capture SH. The obtained Ag nanoparticles were encapsulated into polyvinyl alcohol (PVA to fabricate a SERS active hydrogel with excellent reproducibility. A facile SERS strategy based on such substrate was proposed for trace SH quantification with a linear range of 7.0–150.0 µg·mL–1, and a detection limit low to 3.0 µg·mL−1. It was applied to analyze seven types of commercial slimming capsules with satisfactory results, showing good prospect for real applications.

  4. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS using composite organic-inorganic nanoparticles (COINs.

    Directory of Open Access Journals (Sweden)

    Catherine M Shachaf

    Full Text Available BACKGROUND: Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. METHODOLOGY/PRINCIPAL FINDINGS: To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer. Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701 and Stat6 (Y641, with results comparable to flow cytometry. CONCLUSIONS/SIGNIFICANCE: Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  5. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy

    Science.gov (United States)

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C.; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E.

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1±2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6±8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  6. Headspace thin-film microextraction coupled with surface-enhanced Raman scattering as a facile method for reproducible and specific detection of sulfur dioxide in wine.

    Science.gov (United States)

    Deng, Zhuo; Chen, Xuexu; Wang, Yiru; Fang, Enhua; Zhang, Zhigang; Chen, Xi

    2015-01-06

    By coupling thin-film microextraction (TFME) with surface-enhanced Raman scattering (SERS), a facile method was developed for the determination of sulfur dioxide (SO2), the most effective food additive in winemaking technology. The TFME substrate was made by free settling of sea urchin-like ZnO nanomaterials on a glass sheet. The headspace sampling (HS) procedure for SO2 was performed in a simple homemade device, and then the SO2 was determined using SERS after uniformly dropping or spraying a SERS-active substrate (gold nanoparticles, AuNPs) onto the surface of the TFME substrate. A reproducible and strong SERS response of the SO2 absorbed onto the ZnO substrate was obtained. After condition optimization, the SERS signal intensity at a shift of 600 cm(-1) and the SO2 concentration showed a good linearity in the range of 1-200 μg/mL, and the linear correlation coefficient was 0.992. The detection limit for SO2 was found to be 0.1 μg/mL. The HS-TFME-SERS method was applied for the determination of SO2 in wine, and the results obtained agreed very well with those obtained using the traditional distillation and titration method. Analysis of variance and Student t test show that there is no significant difference between the two methods, indicating that the newly developed method is fast, convenient, sensitive and has selective characteristics in the determination of SO2 in wine.

  7. THE DISCOVERY OF RAMAN SCATTERING IN H II REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dopita, Michael A.; Nicholls, David C.; Sutherland, Ralph S.; Kewley, Lisa J.; Groves, Brent A., E-mail: Michael.Dopita@anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2016-06-10

    We report here on the discovery of faint extended wings of H α observed out to an apparent velocity of ∼7600 km s{sup −1} in the Orion Nebula (M42) and in five H ii regions in the Large and the Small Magellanic Clouds. We show that these wings are caused by Raman scattering of both the O i and Si ii resonance lines and stellar continuum UV photons with H i followed by radiative decay to the H i n = 2 level. The broad wings also seen in H β and in H γ result from Raman scattering of the UV continuum in the H i n = 4 and n = 5 levels, respectively. The Raman scattering fluorescence is correlated with the intensity of the narrow permitted lines of O i and Si ii. In the case of Si ii, this is explained by radiative pumping of the same 1023.7 Å resonance line involved in the Raman scattering by the Ly β radiation field. The subsequent radiative cascade produces enhanced Si ii λλ 5978.9, 6347.1, and 6371.4 Å permitted transitions. Finally, we show that in O i, radiative pumping of the 1025.76 Å resonance line by the Lyman series radiation field is also the cause of the enhancement in the permitted lines of this species lying near H α in wavelength, but here the process is a little more complex. We argue that all these processes are active in the zone of the H ii region near the ionization front.

  8. Critical scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stirling, W.G. [Liverpool Univ., Dep. of Physics, Liverpool (United Kingdom); Perry, S.C. [Keele Univ. (United Kingdom). Dept. of Physics

    1996-12-31

    We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO{sub 3} is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs.

  9. Manipulation of quadratic cascading processes in a locally quasi-periodic χ(²) medium.

    Science.gov (United States)

    Wang, Wenjie; Sheng, Yan; Liu, Shaoding; Niu, Xiaoying; Krolikowski, Wieslaw

    2014-03-24

    We theoretically and numerically investigate the quadratic cascading effect of third-harmonic (TH) generation in a locally quasi-periodic nonlinear photonic structure. We study the effect of structure parameters on the acceptance bandwidth and conversion efficiency of the cascading process. We demonstrate that the conversion efficiency of the cascading process can be enhanced by using a longer locally quasi-periodic nonlinear photonic crystal, without adversely affecting the acceptance bandwidth of the emitted radiation.

  10. A competitive immunoassay for ultrasensitive detection of Hg{sup 2+} in water, human serum and urine samples using immunochromatographic test based on surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    She, Pei; Chu, Yanxin [The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai Road 199, Suzhou 215123 (China); Liu, Chunwei; Guo, Xun [OptoTrace (Suzhou) Technologies, Inc., STE 316, Building 4, No. 218, Xinghu Street, bioBAY, Suzhou Industrial Park, Suzhou 215123 (China); Zhao, Kang [The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai Road 199, Suzhou 215123 (China); Li, Jianguo, E-mail: lijgsd@suda.edu.cn [The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai Road 199, Suzhou 215123 (China); Du, Haijing; Zhang, Xiang [The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai Road 199, Suzhou 215123 (China); Wang, Hong [OptoTrace (Suzhou) Technologies, Inc., STE 316, Building 4, No. 218, Xinghu Street, bioBAY, Suzhou Industrial Park, Suzhou 215123 (China); Deng, Anping, E-mail: denganping@suda.edu.cn [The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Renai Road 199, Suzhou 215123 (China)

    2016-02-04

    An immunochromatographic test (ICT) strip was developed for ultrasensitive competitive immunoassay of Hg{sup 2+}. This strategy was achieved by combining the easy-operation and rapidity of ICT with the high sensitivity of surface-enhanced Raman scattering (SERS). Monoclonal antibody (mAb) against Hg{sup 2+} and Raman active substance 4-mercaptobenzoic acid (MBA) dual labelled gold nanoparticles (GNPs) were prepared as an immunoprobe. The Raman scattering intensity of MBA on the test line of the ICT strip was measured for quantitative determination of Hg{sup 2+}. The ICT was able to directly detect Hg{sup 2+} without complexing due to the specific recognition of the mAb with Hg{sup 2+}. The IC{sub 50} and limit of detection (LOD) of the assay for Hg{sup 2+} detection were 0.12 ng mL{sup −1} and 0.45 pg mL{sup −1}, respectively. There was no cross-reactivity (CR) of the assay with other nineteen ions and the ICT strips could be kept for 5 weeks without loss of activity. The recoveries of the assay for water, human serum and urine samples spiked with Hg{sup 2+} were in range of 88.3–107.3% with the relative standard deviations (RSD) of 1.5–9.5% (n = 3). The proposed ICT was used for the detection of Hg{sup 2+} in urine samples collected from Occupational Disease Hospital and the results were confirmed by cold-vapor atomic fluorescence spectroscopy (CV-AFS). The assay exhibited high sensitivity, selectivity, stability, precision and accuracy, demonstrating a promising method for the detection of trace amount of Hg{sup 2+} in environmental water samples and biological serum and urine samples. - Highlights: • The proposed ICT was able to directly detect Hg{sup 2+} without formation of Hg{sup 2+}-ligand complex. • The proposed ICT exhibited high sensitivity, specificity, stability, precision and accuracy for Hg{sup 2+} detection. • The proposed ICT was applicable for the detection of trace amount of Hg{sup 2+} in water, human serum and urine samples.

  11. Surface-enhanced Raman scattering studies on the interaction of phosphonate derivatives of imidazole, thiazole, and pyridine with a silver electrode in aqueous solution.

    Science.gov (United States)

    Podstawka, Edyta; Kudelski, Andrzej; Olszewski, Tomasz K; Boduszek, Bogdan

    2009-07-23

    Surface-enhanced Raman scattering (SERS) spectra from phosphonate derivatives of N-heterocyclic aromatic compounds immobilized on an electrochemically roughened silver electrode surface are reported and compared to Raman spectra of the corresponding solid species. The tested compounds contain imidazole [ImMeP ([hydroxy-(1H-imidazol-5-yl)-methyl]-phosphonic acid) and (ImMe)2P (bis[hydroxy-(1H-imidazol-4-yl)-methyl]-phosphinic acid)]; thiazole [BAThMeP ((butylamino-thiazol-2-yl-methyl)-phosphonic acid) and BzAThMeP ((benzylamino-thiazol-2-yl-methyl)-phosphonic acid)]; and pyridine ((PyMe)2P (bis[(hydroxy-pyridin-3-yl-methyl)]-phosphinic acid) aromatic rings. Changes in wavenumber, broadness, and the enhancement of N-heterocyclic aromatic ring bands upon adsorption are consistent with the adsorption primarily occurring through the N lone pair of electrons with the ring arranged in a largely edge-on manner for ImMeP and BzAThMeP or in a slightly inclined orientation to the silver electrode surface at an intermediate angle from the surface normal for (ImMe)2P, BAThMeP, and (PyMe)2P. A strong enhancement of a roughly 1500 cm(-1) SERS signal for ImMeP and (PyMe)2P is also observed. This phenomenon is attributed to the formation of a localized C=C bond, which is accompanied by a decrease in the ring-surface pi-electrons' overlap. In addition, more intense SERS bands due to the benzene ring in BzAThMeP are observed than those observed for the thiazole ring, which suggests a preferential adsorption of benzene. Some interaction of a phosphonate unit is also suggested but with moderate strength between biomolecules. The strength of the P=O coordination to the silver electrode is highest for ImMeP but lowest for BzAThMeP. For all studied biomolecules, the contribution of the structural components to their ability to interact with their receptors was correlated with the SERS patterns.

  12. Inferring network structure from cascades

    Science.gov (United States)

    Ghonge, Sushrut; Vural, Dervis Can

    2017-07-01

    Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.

  13. Cascade Mountain Range in Oregon

    Science.gov (United States)

    Sherrod, David R.

    2016-01-01

    The Cascade mountain system extends from northern California to central British Columbia. In Oregon, it comprises the Cascade Range, which is 260 miles long and, at greatest breadth, 90 miles wide (fig. 1). Oregon’s Cascade Range covers roughly 17,000 square miles, or about 17 percent of the state, an area larger than each of the smallest nine of the fifty United States. The range is bounded on the east by U.S. Highways 97 and 197. On the west it reaches nearly to Interstate 5, forming the eastern margin of the Willamette Valley and, farther south, abutting the Coast Ranges. 

  14. Λ scattering equations

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Humberto [Instituto de Fisica - Universidade de São Paulo,Caixa Postal 66318, 05315-970 São Paulo, SP (Brazil); Facultad de Ciencias Basicas, Universidad Santiago de Cali,Calle 5 62-00 Barrio Pampalinda, Cali, Valle (Colombia)

    2016-06-17

    The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm.

  15. Cascading effects following intervention.

    Science.gov (United States)

    Patterson, Gerald R; Forgatch, Marion S; Degarmo, David S

    2010-11-01

    Four different sources for cascade effects were examined using 9-year process and outcome data from a randomized controlled trial of a preventive intervention using the Parent Management Training-Oregon Model (PMTO™). The social interaction learning model of child antisocial behavior serves as one basis for predicting change. A second source addresses the issue of comorbid relationships among clinical diagnoses. The third source, collateral changes, describes events in which changes in one family member correlate with changes in another. The fourth component is based on the long-term effects of reducing coercion and increasing positive interpersonal processes within the family. New findings from the 9-year follow-up show that mothers experienced benefits as measured by standard of living (i.e., income, occupation, education, and financial stress) and frequency of police arrests. It is assumed that PMTO reduces the level of coercion, which sets the stage for a massive increase in positive social interaction. In effect, PMTO alters the family environment and thereby opens doors to healthy new social environments.

  16. Injectorless quantum cascade lasers

    Science.gov (United States)

    Katz, Simeon; Vizbaras, Augustinas; Meyer, Ralf; Amann, Markus-Christian

    2011-04-01

    This review focuses on recent progress on injectorless quantum cascade lasers, an increasingly attractive approach in comparison to the "classical" injectorbased concepts. This particularly holds for the wavelength range between 7 and 12 μm, where fundamental vibrational modes of many important molecules exist, so that sensor systems for medical, industrial and military applications highly benefit from these laser sources. The atmospheric transmission window between 8 and 12 μm, with very low damping, also enables free space applications like communication, military countermeasures, and environmental sensors. Injectorless devices operate closer to the original design principle for intersubband lasers as suggested by Suris and Kazarinov [Sov. Phys. Semicond. 5, 707 (1971)]. Therefore, a short description of their features is given in comparison to injectorbased devices. Within recent years, injectorless devices have seen rapid improvement in performance. Best injectorless devices reach threshold current densities of 450 A/cm2 at 300 K, a factor of 1.6 smaller than that for the best injectorbased devices. Their output efficiency has also increased from 2% to more than 7% within the last 2 years, reaching comparable levels and making the injectorless device concept competitive and very attractive for applications.

  17. Raman and surface-enhanced Raman scattering (SERS) investigation of the quercetin interaction with metals: Evidence of structural changing processes in aqueous solution and on metal nanoparticles

    Science.gov (United States)

    Jurasekova, Z.; Torreggiani, A.; Tamba, M.; Sanchez-Cortes, S.; Garcia-Ramos, J. V.

    2009-01-01

    The structural modifications of quercetin (QUC), one of the most common dietary flavonols also used as dye, were investigated in this work at alkaline pH and in the presence of metal ions. The parallel analysis of the Raman and surface-enhanced Raman scattering (SERS) and the UV-vis spectra allowed to demonstrate that the interaction of QUC with Zn(II), Cu(II), or Ag(I) ions can result in the formation of complexes and/or the oxidation of the molecule. The catechol group in the B-ring resulted to be important both for metal chelation and in oxidation processes. In fact, the conversion of this reactive group to o-quinone is the first step of the QUC oxidizing processes which are strongly affected by pH both in the absence and in the presence of metal ions. In alkaline solutions (pH > 9.5) the autoxidation processes of QUC initially lead to the formation of a benzofuranone derivative and, successively, to oligomeric/polymeric species. The QUC oxidation takes place also at lower pH in the presence of metal ions such as silver. In this case, QUC acts only as a reductant and not as a metal-chelating agent. The existence of several condensation pathways was clearly evidenced by the SERS spectra. In fact, depending on pH the interaction of QUC with metal nanoparticles favors one or more polymerization reactions. In particular, the "head to tail" condensations (A-ring of one unit and the B-ring of another) seem to be favored under alkaline conditions.

  18. Growth temperature dependent surface plasmon resonances of densely packed gold nanoparticles’ films and their role in surface enhanced Raman scattering of Rhodamine6G

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Shweta, E-mail: shwetaverma@rrcat.gov.in [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Rao, B. Tirumala [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Bhartiya, S. [Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Sathe, V. [UGC-DAE Consortium for Scientific Research, Indore 452 001 (India); Kukreja, L.M. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2015-08-15

    Highlights: • Growth temperature produces and tunes the surface plasmon resonance (SPR) of gold films. • Optimum thickness and growth temperature combination results narrow SPR band. • Alumina capping red-shifted the SPR band and showed marginal re-sputtering of films. • Densely packed gold nanoparticles of varying sizes can be realized by pulsed laser deposition. • High SERS intensity of dye from gold films of large SPR strength at excitation wavelength. - Abstract: Localized surface plasmon resonance (LSPR) characteristics of gold nanoparticles films grown at different substrate temperatures and mass thicknesses with and without alumina capping were studied. At different film mass thicknesses, the LSPR response was observed mainly in the films grown at high substrate temperatures. About 300 °C substrate temperature was found to be optimum for producing narrow and strong LSPR band in both uncapped and alumina capped gold nanoparticles films. The LSPR wavelength could be tuned in the range of 600–750 nm by changing either number of ablation pulses or decreasing target to substrate distance (TSD) and alumina layer capping. Though the alumina capping re-sputtered the gold films still these films exhibited stronger LSPR response compared to the uncapped films. Atomic force microscopic analysis revealed formation of densely packed nanoparticles films exhibiting strong LSPR response which is consistent with the package density of the nanoparticles predicted by the theoretical calculations. The average size of nanoparticles increased with substrate temperature, number of ablation pulses and decreasing the TSD. For the same mass thickness of gold films grown at different substrate temperatures the surface enhanced Raman scattering (SERS) intensity of Rhodamine6G dye was found to be significantly different which had direct correlation with the LSPR strength of the films at the excitation wavelength.

  19. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Krasnoslobodtsev, Alexey V., E-mail: akrasnos@unomaha.edu [Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198 (United States); Department of Physics, University of Nebraska Omaha, Omaha, NE 68182 (United States); Deckert-Gaudig, Tanja [IPHT-Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Zhang, Yuliang [Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198 (United States); Deckert, Volker [IPHT-Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Institute for Physical Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena (Germany); Lyubchenko, Yuri L., E-mail: ylyubchenko@unmc.edu [Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198 (United States)

    2016-06-15

    Aggregation of prion proteins is the cause of various prion related diseases. The infectious form of prions, amyloid aggregates, exist as multiple strains. The strains are thought to represent structurally different prion protein molecules packed into amyloid aggregates, but the knowledge on the structure of different types of aggregates is limited. Here we report on the use of AFM (Atomic Force Microscopy) and TERS (Tip-Enhanced Raman Scattering) to study morphological heterogeneity and access underlying conformational features of individual amyloid aggregates. Using AFM we identified the morphology of amyloid fibrils formed by the peptide (CGNNQQNY) from the yeast prion protein Sup35 that is critically involved in the aggregation of the full protein. TERS results demonstrate that morphologically different amyloid fibrils are composed of a distinct set of conformations. Fibrils formed at pH 5.6 are composed of a mixture of peptide conformations (β-sheets, random coil and α-helix) while fibrils formed in pH~2 solution primarily have β-sheets. Additionally, peak positions in the amide III region of the TERS spectra suggested that peptides have parallel arrangement of β-sheets for pH~2 fibrils and antiparallel arrangement for fibrils formed at pH 5.6. We also developed a methodology for detailed analysis of the peptide secondary structure by correlating intensity changes of Raman bands in different regions of TERS spectra. Such correlation established that structural composition of peptides is highly localized with large contribution of unordered secondary structures on a fibrillar surface. - Highlights: • Amyloid polymorphs were characterized by AFM and TERS. • A mixture of peptide secondary structures in fibrils were identified using TERS. • TERS recognizes packing arrangement (parallel versus antiparallel) of peptides. • TERS is a powerful tool for high resolution structural analysis of fibrils.

  20. Multiplex Immunochips for High-Accuracy Detection of AFP-L3% Based on Surface-Enhanced Raman Scattering: Implications for Early Liver Cancer Diagnosis.

    Science.gov (United States)

    Ma, Hao; Sun, Xiaoying; Chen, Lei; Cheng, Weina; Han, Xiao Xia; Zhao, Bing; He, Chengyan

    2017-09-05

    α-Fetoprotein (AFP) is an important tumor biomarker. In particular, the overexpression of AFP-L3 is associated with hepatocellular carcinoma (HCC). Accordingly, several hospitals have begun to employ the ratio of AFP-L3 to the total AFP level (AFP-L3%) as new diagnostic evidence for HCC owing to its high diagnostic accuracy. However, current methods of detection for AFP and AFP-L3 are time-consuming, require multiple samples, and lack in sensitivity and specificity. Herein, we present a novel concept for the early diagnosis of HCC based on the combination of Raman frequency shift and intensity change, and developed surface-enhanced Raman scattering (SERS)-based immunochips via AFP-L3%. In the first step of the study, the frequency shift of 4-mercaptobenzoic acid (MBA) was applied for the quantitative determination of total AFP based on the AFP and anti-AFP interaction on MBA-modified silver chips. 5,5-Dithiobis(succinimidyl-2-nitrobenzoate) (DSNB)-modified immunogold was then incorporated with AFP-L3 antibodies for sandwich immunoreaction on the chips. As a result, we found that a typical Raman band intensity of DSNB presented an exponential linear relationship with the concentration of AFP-L3. Thus, the AFP-L3% can be calculated according to the concentrations of AFP-L3 and total AFP. The most important advantage of the proposed method is the combination of AFP-L3% and frequency shifts of SERS, which exhibits excellent reproducibility and high accuracy, and significantly simplifies the conventional detection procedure of AFP-L3%. Application of the proposed method with the serum of patients with HCC demonstrated its great potential in early liver cancer diagnosis.

  1. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.

    Science.gov (United States)

    Adarsh, Nagappanpillai; Ramya, Adukkadan N; Maiti, Kaustabh Kumar; Ramaiah, Danaboyina

    2017-10-12

    The development of new Raman reporters has attracted immense attention in diagnostic research based on surface enhanced Raman scattering (SERS) techniques, which is a well established method for ultrasensitive detection through molecular fingerprinting and imaging. Herein, for the first time, we report the unique and efficient Raman active features of the selected aza-BODIPY dyes 1-6. These distinctive attributes could be extended at the molecular level to allow detection through SERS upon adsorption onto nano-roughened gold surface. Among the newly revealed Raman reporters, the amino substituted derivative 4 showed high signal intensity at very low concentrations (ca. 0.4 μm for 4-Au). Interestingly, an efficient nanoprobe has been constructed by using gold nanoparticles as SERS substrate, and 4 as the Raman reporter (4-Au@PEG), which unexpectedly showed efficient recognition of three human cancer cells (lung: A549, cervical: HeLa, Fibrosarcoma: HT-1080) without any specific surface marker. We observed well reflected and resolved Raman mapping and characteristic signature peaks whereas, such recognition was not observed in normal fibroblast (3T3L1) cells. To confirm these findings, a SERS nanoprobe was conjugated with a specific tumour targeting marker, EGFR (Epidermal Growth Factor Receptor), a well known targeted agent for Human Fibrosarcoma (HT1080). This nanoprobe efficiently targeted the surface marker of HT1080 cells, threreby demonstrating its use as an ultrasensitive Raman probe for detection and targeted imaging, leaving normal cells unaffected. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Botto, D.J.; Pratt, R.H.

    1979-05-01

    The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A/sup -2/ based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required.

  3. Cascade dynamics on complex networks.

    OpenAIRE

    Hackett, Adam W.

    2011-01-01

    peer-reviewed The network topologies on which many natural and synthetic systems are built provide ideal settings for the emergence of complex phenomena. One well-studied manifestation of this, called a cascade or avalanche, is observed when interactions between the components of a system allow an initially localized effect to propagate globally. For example, the malfunction of technological systems like email networks or electrical power grids is often attributable to a cascade o...

  4. Sea-urchin-like Au nanocluster with surface-enhanced raman scattering in detecting epidermal growth factor receptor (EGFR) mutation status of malignant pleural effusion.

    Science.gov (United States)

    Wang, Lei; Guo, Ting; Lu, Qiang; Yan, Xiaolong; Zhong, Daixing; Zhang, Zhipei; Ni, Yunfeng; Han, Yong; Cui, Daxiang; Li, Xiaofei; Huang, Lijun

    2015-01-14

    Somatic mutations in the epidermal growth factor receptor (EGFR) gene are common in patients with lung adenocarcinomas and are associated with sensitivity to the small-molecule tyrosine kinase inhibitors (TKIs). For 10%-50% of the patients who experienced malignant pleural effusion (MPE), pathological diagnosis might rely exclusively on finding lung cancer cells in the MPE. Current methods based on polymerase chain reaction were utilized to test EGFR mutation status of MPE samples, but the accuracy of the test data was very low, resulting in many patients losing the chance of TKIs treatment. Herein, we synthesized the sea-urchin-like Au nanocluster (AuNC) with an average diameter of 92.4 nm, composed of 15-nm nanopricks. By introducing abundant sharp nanopricks, the enhancement factor of AuNC reached at 1.97 × 10(7). After capped with crystal violet (CV), polyethylene glycol, and EGFR mutation specific antibody, the AuNC-EGFR had excellent surface-enhanced Raman scattering (SERS) activity and EGFR mutation targeted recognition capability in lung cancer cells. Characteristic SERS signal at 1617 cm(-1) of CV was linear correlation with the number of H1650 cells, demonstrating the minimum detection limit as 25 cells in a 1-mL suspension. The gold mass in single H1650 cells exposed to AuNC-E746_750 for 2 h ranged from 208.6 pg to 231.4 pg, which approximately corresponded to 56-62 AuNCs per cell. Furthermore, SERS was preclinically utilized to test EGFR mutation status in MPE samples from 35 patients with lung adenocarcinoma. Principal component analysis (PCA) and the support vector machine (SVM) algorithm were constructed for EGFR mutation diagnostic analysis, yielding an overall accuracy of 90.7%. SERS measurement based on sea-urchin-like AuNC was an efficient method for EGFR mutation detection in MPE, and it might show great potential in applications such as predicting gene typing of clinical lung cancer in the near future.

  5. Interband Cascade Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui Q. [Univ. of Oklahoma, Norman, OK (United States); Santos, Michael B. [Univ. of Oklahoma, Norman, OK (United States); Johnson, Matthew B. [Univ. of Oklahoma, Norman, OK (United States)

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  6. Controlling cross pumping between C-N and C-H vibration in nitromethane by selective fluorescence-enhanced stimulated Raman scattering

    National Research Council Canada - National Science Library

    Wang, Shenghan; Fang, Wenhui; Li, Tianyu; Li, Fangfang; Sun, Chenglin; Li, Zuowei; Men, Zhiwei

    2016-01-01

    To investigate the vibrational features of nitromethane (NM), which is a kind of energy material and a well known low-sensitivity and high explosive, experiments are performed to obtain the stimulated Raman scattering (SRS...

  7. An enhanced degree of charge transfer in dye-sensitized solar cells with a ZnO-TiO2/N3/Ag structure as revealed by surface-enhanced Raman scattering.

    Science.gov (United States)

    Wang, Xiaolei; Li, Peng; Han, Xiao Xia; Kitahama, Yasutaka; Zhao, Bing; Ozaki, Yukihiro

    2017-10-19

    A number of recent studies have focused on improving the performance of dye-sensitized solar cells (DSSCs). Cells with a ZnO-TiO2/N3/Ag structure have attracted particular attention because of their excellent power conversion efficiencies. Using a dendritic crystal ZnO-TiO2 composite semiconductor and Ag in conjunction leads to different charge-transfer (CT) processes, and this is the main theoretical basis for the improvement of DSSC performances. Thus, in the present study, TiO2/N3, ZnO/N3, ZnO-TiO2/N3, TiO2/N3/Ag, ZnO/N3/Ag, and ZnO-TiO2/N3/Ag assemblies have been fabricated and their CT processes have been monitored by using surface-enhanced Raman scattering (SERS) spectra, with particular focus on the differences caused by the synergistic effect of the ZnO-TiO2 component. The dye loading capacity of the dendritic crystal ZnO-TiO2 is much larger than that of TiO2. There are extra enhancements in the SERS intensity and degree of CT (ρCT) in ZnO-TiO2/N3 compared to ZnO + TiO2/N3 (based on a simulation curve for the physically mixed TiO2 and ZnO semiconductors) with 476.5 nm excitation due to the synergistic effect of the ZnO-TiO2 component. And these enhancements in ZnO-TiO2/N3/Ag compared to ZnO + TiO2/N3/Ag appear with 476.5 and 532 nm excitation, which are particularly large with 532 nm excitation. Accordingly, the participation of Ag in this synergistic effect can reduce its energy threshold, which will make it easier to appear. Finally, to rationalize these extra enhancements, the models describing the CT mechanism have been proposed. Thus, the use of the dendritic crystal ZnO-TiO2 composite semiconductor in the semiconductor/N3/Ag system can improve the adsorption capacity of N3 compared to that with TiO2. Meanwhile, the synergistic effect of ZnO-TiO2 and Ag can promote the CT process, demonstrating that ZnO-TiO2/N3/Ag is an excellent structure for DSSCs.

  8. Cascaded failures in weighted networks

    Science.gov (United States)

    Mirzasoleiman, Baharan; Babaei, Mahmoudreza; Jalili, Mahdi; Safari, Mohammadali

    2011-10-01

    Many technological networks can experience random and/or systematic failures in their components. More destructive situations can happen if the components have limited capacity, where the failure in one of them might lead to a cascade of failures in other components, and consequently break down the structure of the network. In this paper, the tolerance of cascaded failures was investigated in weighted networks. Three weighting strategies were considered including the betweenness centrality of the edges, the product of the degrees of the end nodes, and the product of their betweenness centralities. Then, the effect of the cascaded attack was investigated by considering the local weighted flow redistribution rule. The capacity of the edges was considered to be proportional to their initial weight distribution. The size of the survived part of the attacked network was determined in model networks as well as in a number of real-world networks including the power grid, the internet in the level of autonomous system, the railway network of Europe, and the United States airports network. We found that the networks in which the weight of each edge is the multiplication of the betweenness centrality of the end nodes had the best robustness against cascaded failures. In other words, the case where the load of the links is considered to be the product of the betweenness centrality of the end nodes is favored for the robustness of the network against cascaded failures.

  9. Preparation of a Superhydrophobic and Peroxidase-like Activity Array Chip for H2O2 Sensing by Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Yu, Zhi; Park, Yeonju; Chen, Lei; Zhao, Bing; Jung, Young Mee; Cong, Qian

    2015-10-28

    In this paper, we propose a novel and simple method for preparing a dual-biomimetic functional array possessing both superhydrophobic and peroxidase-like activity that can be used for hydrogen peroxide (H2O2) sensing. The proposed method is an integration innovation that combines the above two properties and surface-enhanced Raman scattering (SERS). We integrated a series of well-ordered arrays of Au points (d = 1 mm) onto a superhydrophobic copper (Cu)/silver (Ag) surface by replicating an arrayed molybdenum template. Instead of using photoresists and the traditional lithography method, we utilized a chemical etching method (a substitution reaction between Cu and HAuCl4) with a Cu/Ag superhydrophobic surface as the barrier layer, which has the benefit of water repellency. The as-prepared Au points were observed to possess peroxidase-like activity, allowing for catalytic oxidation of the chromogenic molecule o-phenylenediamine dihydrochloride (OPD). Oxidation was evidenced by a color change in the presence of H2O2, which allows the array chip to act as an H2O2 sensor. In this study, the water repellency of the superhydrophobic surface was used to fabricate the array chip and increase the local reactant concentration during the catalytic reaction. As a result, the catalytic reaction occurred when only 2 μL of an aqueous sample (OPD/H2O2) was placed onto the Au point, and the enzymatic product, 2,3-diaminophenazine, showed a SERS signal distinguishable from that of OPD after mixing with 2 μL of colloidal Au. Using the dual-biomimetic functional array chip, quantitative analysis of H2O2 was performed by observing the change in the SERS spectra, which showed a concentration-dependent behavior for H2O2. This method allows for the detection of H2O2 at concentrations as low as 3 pmol per 2 μL of sample, which is a considerable advantage in H2O2 analysis. The as-prepared substrate was convenient for H2O2 detection because only a small amount of sample was required in

  10. Scattering theory

    CERN Document Server

    Friedrich, Harald

    2016-01-01

    This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...

  11. Aeration efficiency over stepped cascades: better predictions from flow regimes.

    Science.gov (United States)

    Khdhiri, Hatem; Potier, Olivier; Leclerc, Jean-Pierre

    2014-05-15

    Stepped cascades are recognized as high potential air-water gas exchangers. In natural rivers, these structures enhance oxygen transfer to water by creating turbulence at interface with increasing air entrainment in water and air-water surface exchange. Stepped cascades could be really useful to improve the natural self-purification process by providing oxygen to aerobic micro-organisms. The aeration performance of these structures depends on several operating and geometrical parameters. In the literature, several empirical correlations for aeration efficiency prediction on stepped cascades exist. Most of these correlations are only applicable for operating and geometrical parameters in the range of which they have been developed. In this paper, 398 experimental sets of data (from our experiments and collected from literature) were used to develop a correlation for aeration prediction over stepped cascades derived from dimensional analysis and parameterized for each individual flow regime in order to consider change in flow regime effect on oxygen transfer. This new correlation allowed calculating the whole set of data obtained for cascades with steps heights between 0.05 m and 0.254 m, cascade total height between 0.25 m and 2.5 m, for discharges per unit of width ranging from 0.28 10(-3) m(2)/s to 600 10(-3) m(2)/s and for cascade steps number between 3 and 25. In these ranges of parameters, standard deviation for aeration efficiency estimation was found to be less than 17%. Finally, advices were proposed to help and improve the structure design in order to improve aeration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A Cascade-Based Emergency Model for Water Distribution Network

    Directory of Open Access Journals (Sweden)

    Qing Shuang

    2015-01-01

    Full Text Available Water distribution network is important in the critical physical infrastructure systems. The paper studies the emergency resource strategies on water distribution network with the approach of complex network and cascading failures. The model of cascade-based emergency for water distribution network is built. The cascade-based model considers the network topology analysis and hydraulic analysis to provide a more realistic result. A load redistribution function with emergency recovery mechanisms is established. From the aspects of uniform distribution, node betweenness, and node pressure, six recovery strategies are given to reflect the network topology and the failure information, respectively. The recovery strategies are evaluated with the complex network indicators to describe the failure scale and failure velocity. The proposed method is applied by an illustrative example. The results showed that the recovery strategy considering the node pressure can enhance the network robustness effectively. Besides, this strategy can reduce the failure nodes and generate the least failure nodes per time.

  13. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    Science.gov (United States)

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.

    2017-01-01

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained. PMID:28317835

  14. Supersymmetric cascade decays at NLO

    Energy Technology Data Exchange (ETDEWEB)

    Popenda, Eva; Muehlleitner, Margarete; Hangst, Christian [KIT, Institut fuer Theoretische Physik (Germany); Kraemer, Michael [RWTH Aachen University, Institut fuer Theoretische Teilchenphysik und Kosmologie (Germany); Spira, Michael [Paul Scherrer Institut, Theory Group LTP (Switzerland)

    2012-07-01

    The search for supersymmetric particles and determination of their properties is a major task at the LHC and is based on the analysis of the cascade decay chains in which SUSY particles are produced. This project aims at improving predictions for SUSY cascade decays through the inclusion of higher-order corrections in the production and decay processes and by embedding them in a fully flexible Monte Carlo program. In this talk we report on the progress of the implementation of squark pair production followed by the decay into a quark and the lightest neutralino including supersymmetric QCD corrections at next-to-leading order in a completely differential form.

  15. Bosonic cascades of indirect excitons

    Science.gov (United States)

    Nalitov, A. V.; De Liberato, S.; Lagoudakis, P.; Savvidis, P. G.; Kavokin, A. V.

    2017-08-01

    Recently, the concept of the terahertz bosonic cascade laser (BCL) based on a parabolic quantum well (PQW) embedded in a microcavity was proposed. We refine this proposal by suggesting transitions between indirect exciton (IX) states as a source of terahertz emission. We explicitly propose a structure containing a narrow-square QW and a wide-parabolic QW for the realisation of a bosonic cascade. Advantages of this type of structures are in large dipole matrix elements for terahertz transitions and in long exciton radiative lifetimes which are crucial for realisation of threshold and quantum efficiency BCLs.

  16. Neutron Transport Associated with the Galactic Cosmic Ray Cascade

    Science.gov (United States)

    Singleterry, Robert Clay, Jr.

    Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with B scRYNTRN, a computer program written by the High Energy Physics Division of N scASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. B scRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As N scASA Langley improves B scRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the F_{rm N} method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs M scGSLAB and M scGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The E scNDF/B V database is used to generate the total and scattering

  17. Cascaded logic gates in nanophotonic plasmon networks

    National Research Council Canada - National Science Library

    Wei, Hong; Wang, Zhuoxian; Tian, Xiaorui; Käll, Mikael; Xu, Hongxing

    2011-01-01

    ... integrated logic units and cascade devices have not been reported. Here we demonstrate that a plasmonic binary NOR gate, a 'universal logic gate', can be realized through cascaded OR and NOT gates in four-terminal plasmonic nanowire networks...

  18. Cascade Support Vector Machines with Dimensionality Reduction

    Directory of Open Access Journals (Sweden)

    Oliver Kramer

    2015-01-01

    Full Text Available Cascade support vector machines have been introduced as extension of classic support vector machines that allow a fast training on large data sets. In this work, we combine cascade support vector machines with dimensionality reduction based preprocessing. The cascade principle allows fast learning based on the division of the training set into subsets and the union of cascade learning results based on support vectors in each cascade level. The combination with dimensionality reduction as preprocessing results in a significant speedup, often without loss of classifier accuracies, while considering the high-dimensional pendants of the low-dimensional support vectors in each new cascade level. We analyze and compare various instantiations of dimensionality reduction preprocessing and cascade SVMs with principal component analysis, locally linear embedding, and isometric mapping. The experimental analysis on various artificial and real-world benchmark problems includes various cascade specific parameters like intermediate training set sizes and dimensionalities.

  19. Activation Cascading in Sign Production

    Science.gov (United States)

    Navarrete, Eduardo; Peressotti, Francesca; Lerose, Luigi; Miozzo, Michele

    2017-01-01

    In this study, we investigated how activation unfolds in sign production by examining whether signs that are not produced have their representations activated by semantics (cascading of activation). Deaf signers were tested with a picture-picture interference task. Participants were presented with pairs of overlapping pictures and named the green…

  20. Dynamics robustness of cascading systems.

    Directory of Open Access Journals (Sweden)

    Jonathan T Young

    2017-03-01

    Full Text Available A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1 Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2 Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it

  1. Quaternary Magmatism in the Cascades - Geologic Perspectives

    Science.gov (United States)

    Hildreth, Wes

    2007-01-01

    Foreward The Cascade magmatic arc is a belt of Quaternary volcanoes that extends 1,250 km from Lassen Peak in northern California to Meager Mountain in Canada, above the subduction zone where the Juan de Fuca Plate plunges beneath the North American Plate. This Professional Paper presents a synthesis of the entire volcanic arc, addressing all 2,300 known Quaternary volcanoes, not just the 30 or so visually prominent peaks that comprise the volcanic skyline. Study of Cascade volcanoes goes back to the geological explorers of the late 19th century and the seminal investigations of Howel Williams in the 1920s and 1930s. However, major progress and application of modern scientific methods and instrumentation began only in the 1970s with the advent of systematic geological, geophysical, and geochemical studies of the entire arc. Initial stimulus from the USGS Geothermal Research Program was enhanced by the USGS Volcano Hazards Program following the 1980 eruption of Mount St. Helens. Together, these two USGS Programs have provided more than three decades of stable funding, staffing, and analytical support. This Professional Paper summarizes the resultant USGS data sets and integrates them with the parallel contributions of other investigators. The product is based upon an all-encompassing and definitive geological database, including chemical and isotopic analyses to characterize the rocks and geochronology to provide the critical time constraints. Until now, this massive amount of data has not been summarized, and a systematic and uniform interpretation firmly grounded in geological fact has been lacking. Herein lies the primary utility of this Cascade volume. It not only will be the mandatory starting point for new workers, but also will provide essential geological context to broaden the perspectives of current investigators of specific Cascade volcanoes. Wes Hildreth's insightful understanding of volcanic processes and his uncompromising scientific integrity make him

  2. Information propagation in a noisy gene cascade

    Science.gov (United States)

    Monteoliva, D.; Diambra, L.

    2017-07-01

    We use information theory to study the information transmission through a simple gene cascade where the product of an unregulated gene regulates the expression activity of a cooperative genetic switch. While the input signal is provided by the upstream gene with two states, we consider that the expression of downstream gene is controlled by a cis-regulatory system with three binding sites for the regulator product, which can bind cooperatively. By computing exactly the associated probability distributions, we estimate information transmission thought the mutual information measure. We found that the mutual information associated with unimodal input signal is lower than the associated with bimodal inputs. We also observe that mutual information presents a maximum in the cooperativity intensity, and the position of this maximum depends on the kinetic rates of the promoter. Furthermore, we found that the bursting dynamics of the input signal can enhance the information transmission capacity.

  3. Bankruptcy cascades in interbank markets.

    Directory of Open Access Journals (Sweden)

    Gabriele Tedeschi

    Full Text Available We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank's liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable.

  4. Thermal cascaded lattice Boltzmann method

    CERN Document Server

    Fei, Linlin

    2016-01-01

    In this paper, a thermal cascaded lattice Boltzmann method (TCLBM) is developed in combination with the double-distribution-function (DDF) approach. A density distribution function relaxed by the cascaded scheme is employed to solve the flow field, and a total energy distribution function relaxed by the BGK scheme is used to solve temperature field, where two distribution functions are coupled naturally. The forcing terms are incorporated by means of central moments, which is consistent with the previous force scheme [Premnath \\emph{et al.}, Phys. Rev. E \\textbf{80}, 036702 (2009)] but the derivation is more intelligible and the evolution process is simpler. In the method, the viscous heat dissipation and compression work are taken into account, the Prandtl number and specific-heat ratio are adjustable, the external force is considered directly without the Boussinesq assumption, and the low-Mach number compressible flows can also be simulated. The forcing scheme is tested by simulating a steady Taylor-Green f...

  5. Magnetotransport in very long wave infrared quantum cascade detectors: Analyzing the current with and without illumination

    Energy Technology Data Exchange (ETDEWEB)

    Jasnot, François-Régis; Maëro, Simon; Vaulchier, Louis-Anne de; Guldner, Yves; Carosella, Francesca; Ferreira, Robson [Laboratoire Pierre Aigrain, École Normale Supérieure, CNRS (UMR 8551), Université P. et M. Curie, Université Paris Diderot, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Delga, Alexandre; Doyennette, Laetitia; Berger, Vincent [Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot - Paris 7, CNRS - UMR7162, Bâtiment Condorcet, 75205 Paris Cedex 13 (France); Carras, Mathieu [Alcatel-Thales 3-5 lab, Route départementale 128, 91767 Palaiseau Cedex (France)

    2013-12-04

    Current measurements of current have been performed on a very long wave infrared quantum cascade detector under magnetic field under both dark and light conditions. The analysis of dark current as a function of temperature highlights three regimes of transport. Under illumination, the model developed is in agreement with the oscillatory component of the experimental magnetophotocurrent. It allows to identify the key points controlling the electronic transport: crucial role of extraction, location of ionized impurities and scattering mechanisms involved in the structure. This work is valuable for the future conception of high-performance quantum cascade detectors in the infrared range.

  6. Turbulence: does energy cascade exist?

    CERN Document Server

    Josserand, Christophe; Lehner, Thierry; Pomeau, Yves

    2016-01-01

    To answer the question whether a cascade of energy exists or not in turbulence, we propose a set of correlation functions able to test if there is an irreversible transfert of energy, step by step, from large to small structures. These tests are applied to real Eulerian data of a turbulent velocity flow, taken in the wind grid tunnel of Modane, and also to a prototype model equation for wave turbulence. First we demonstrate the irreversible character of the flow by using multi-time correlation function at a given point of space. Moreover the unexpected behavior of the test function leads us to connect irreversibility and finite time singularities (intermittency). Secondly we show that turbulent cascade exists, and is a dynamical process, by using a test function depending on time and frequency. The cascade shows up only in the inertial domain where the kinetic energy is transferred more rapidly (on average) from the wavenumber $k_{1}$ to $k_{2}$ than from $k_{1}$ to $k'_{2}$ larger than $k_{2}$.

  7. Note: Light output enhanced fast response and low afterglow 6Li glass scintillator as potential down-scattered neutron diagnostics for inertial confinement fusion.

    Science.gov (United States)

    Arikawa, Yasunobu; Yamanoi, Kohei; Nagai, Takahiro; Watanabe, Kozue; Kouno, Masahiro; Sakai, Kohei; Nakazato, Tomoharu; Shimizu, Toshihiko; Cadatal, Marilou Raduban; Estacio, Elmer Surat; Sarukura, Nobuhiko; Nakai, Mitsuo; Norimatsu, Takayoshi; Azechi, Hiroshi; Murata, Takahiro; Fujino, Shigeru; Yoshida, Hideki; Izumi, Nobuhiko; Satoh, Nakahiro; Kan, Hirofumi

    2010-10-01

    The characteristics of an APLF80+3Ce scintillator are presented. Its sufficiently fast decay profile, low afterglow, and an improved light output compared to the recently developed APLF80+3Pr, were experimentally demonstrated. This scintillator material holds promise for applications in neutron imaging diagnostics at the energy regions of 0.27 MeV of DD fusion down-scattered neutron peak at the world's largest inertial confinement fusion facilities such as the National Ignition Facility and the Laser Mégajoule.

  8. On scattered subword complexity

    CERN Document Server

    Kása, Zoltán

    2011-01-01

    Special scattered subwords, in which the gaps are of length from a given set, are defined. The scattered subword complexity, which is the number of such scattered subwords, is computed for rainbow words.

  9. Mg2+-induced DNA compaction, condensation, and phase separation in gene delivery vehicles based on zwitterionic phospholipids: a dynamic light scattering and surface-enhanced Raman spectroscopic study.

    Science.gov (United States)

    Süleymanoğlu, Erhan

    2017-12-01

    Despite the significant efforts towards applying improved non-destructive and label-free measurements of biomolecular structures of lipid-based gene delivery vectors, little is achieved in terms of their structural relevance in gene transfections. Better understanding of structure-activity relationships of lipid-DNA complexes and their gene expression efficiencies thus becomes an essential issue. Raman scattering offers a complimentary measurement technique for following the structural transitions of both DNA and lipid vesicles employed for their transfer. This work describes the use of SERS coupled with light scattering approaches for deciphering the bioelectrochemical phase formations between nucleic acids and lipid vesicles within lipoplexes and their surface parameters that could influence both the uptake of non-viral gene carriers and the endocytic routes of interacting cells. As promising non-viral alternatives of currently employed risky viral systems or highly cytotoxic cationic liposomes, complexations of both nucleic acids and zwitterionic lipids in the presence of Mg 2+ were studied applying colloidal Ag nanoparticles. It is shown that the results could be employed in further conformational characterizations of similar polyelectrolyte gene delivery systems.

  10. Bidirectional optical scattering facility

    Data.gov (United States)

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...

  11. Fluctuation sensitivity of a transcriptional signaling cascade

    Science.gov (United States)

    Pilkiewicz, Kevin R.; Mayo, Michael L.

    2016-09-01

    The internal biochemical state of a cell is regulated by a vast transcriptional network that kinetically correlates the concentrations of numerous proteins. Fluctuations in protein concentration that encode crucial information about this changing state must compete with fluctuations caused by the noisy cellular environment in order to successfully transmit information across the network. Oftentimes, one protein must regulate another through a sequence of intermediaries, and conventional wisdom, derived from the data processing inequality of information theory, leads us to expect that longer sequences should lose more information to noise. Using the metric of mutual information to characterize the fluctuation sensitivity of transcriptional signaling cascades, we find, counter to this expectation, that longer chains of regulatory interactions can instead lead to enhanced informational efficiency. We derive an analytic expression for the mutual information from a generalized chemical kinetics model that we reduce to simple, mass-action kinetics by linearizing for small fluctuations about the basal biological steady state, and we find that at long times this expression depends only on a simple ratio of protein production to destruction rates and the length of the cascade. We place bounds on the values of these parameters by requiring that the mutual information be at least one bit—otherwise, any received signal would be indistinguishable from noise—and we find not only that nature has devised a way to circumvent the data processing inequality, but that it must be circumvented to attain this one-bit threshold. We demonstrate how this result places informational and biochemical efficiency at odds with one another by correlating high transcription factor binding affinities with low informational output, and we conclude with an analysis of the validity of our assumptions and propose how they might be tested experimentally.

  12. Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans

    Science.gov (United States)

    Zhuang, Ziheng; Li, Min; Liu, Hui; Luo, Libo; Gu, Weidong; Wu, Qiuli; Wang, Dayong

    2016-08-01

    Caenorhabditis elegans is an important non-mammalian alternative assay model for toxicological study. Previous study has indicated that exposure to multi-walled carbon nanotubes (MWCNTs) dysregulated the transcriptional expression of mir-259. In this study, we examined the molecular basis for mir-259 in regulating MWCNTs toxicity in nematodes. Mutation of mir-259 induced a susceptible property to MWCNTs toxicity, and MWCNTs exposure induced a significant increase in mir-259::GFP in pharyngeal/intestinal valve and reproductive tract, implying that mir-259 might mediate a protection mechanisms for nematodes against MWCNTs toxicity. RSKS-1, a putative ribosomal protein S6 kinase, acted as the target for mir-259 in regulating MWCNTs toxicity, and mutation of rsks-1 suppressed the susceptible property of mir-259 mutant to MWCNTs toxicity. Moreover, mir-259 functioned in pharynx-intestinal valve and RSKS-1 functioned in pharynx to regulate MWCNTs toxicity. Furthermore, RSKS-1 regulated MWCNTs toxicity by suppressing the function of AAK-2-DAF-16 signaling cascade. Our results will strengthen our understanding the microRNAs mediated protection mechanisms for animals against the toxicity from certain nanomaterials.

  13. Tip enhancement

    CERN Document Server

    Kawata, Satoshi

    2007-01-01

    This book discusses the recent advances in the area of near-field Raman scattering, mainly focusing on tip-enhanced and surface-enhanced Raman scattering. Some of the key features covered here are the optical structuring and manipulations, single molecule sensitivity, analysis of single-walled carbon nanotubes, and analytic applications in chemistry, biology and material sciences. This book also discusses the plasmonic materials for better enhancement, and optical antennas. Further, near-field microscopy based on second harmonic generation is also discussed. Chapters have been written by some of the leading scientists in this field, who present some of their recent work in this field.·Near-field Raman scattering·Tip-enhanced Raman spectroscopy·Surface-enhanced Raman spectroscopy·Nano-photonics·Nanoanalysis of Physical, chemical and biological materials beyond the diffraction limits·Single molecule detection

  14. Azobenzene-functionalized cascade molecules

    DEFF Research Database (Denmark)

    Archut, A.; Vogtle, F.; De Cola, L.

    1998-01-01

    Cascade molecules bearing up to 32 azobenzene groups in the periphery have been prepared from poly(propylene imine) dendrimers and N-hydroxysuccinimide esters. The dendritic azobenzene species show similar isomerization properties as the corresponding azobenzene monomers. The all-E azobenzene...... shows there is so far no effective steric constraint towards photoisomerism on increasing dimension (generation) of the dendrimer, The first attempts to use dendrimers for holography materials are described: It is shown that holographic gratings with diffraction efficiencies up to about 20 % can...

  15. Disaster Mythology and Availability Cascades

    Directory of Open Access Journals (Sweden)

    Lisa Grow Sun

    2013-04-01

    Full Text Available Sociological research conducted in the aftermath of natural disasters has uncovered a number of “disaster myths” – widely shared misconceptions about typical post-disaster human behavior. This paper discusses the possibility that perpetuation of disaster mythology reflects an “availability cascade,” defined in prior scholarship as a “self-reinforcing process of collective belief formation by which an expressed perception triggers a chain reaction that gives the perception increasing plausibility through its rising availability in public discourse.” (Kuran and Sunstein 1999. Framing the spread of disaster mythology as an availability cascade suggests that certain tools may be useful in halting the myths’ continued perpetuation. These tools include changing the legal and social incentives of so-called “availability entrepreneurs” – those principally responsible for beginning and perpetuating the cascade, as well as insulating decision-makers from political pressures generated by the availability cascade. This paper evaluates the potential effectiveness of these and other solutions for countering disaster mythology. Las investigaciones sociológicas realizadas tras los desastres naturales han hecho evidentes una serie de “mitos del desastre”, conceptos erróneos ampliamente compartidos sobre el comportamiento humano típico tras un desastre. Este artículo analiza la posibilidad de que la perpetuación de los mitos del desastre refleje una “cascada de disponibilidad”, definida en estudios anteriores como un “proceso de auto-refuerzo de la formación de una creencia colectiva, a través del que una percepción expresada produce una reacción en cadena que hace que la percepción sea cada vez más verosímil, a través de una mayor presencia en el discurso público” (Kuran y Sunstein 1999. Enmarcar la propagación de los mitos del desastre como una cascada de disponibilidad sugiere que ciertas herramientas pueden ser

  16. Herbivore release through cascading risk effects.

    Science.gov (United States)

    Schmidt-Entling, Martin H; Siegenthaler, Eva

    2009-12-23

    Predators influence prey through consumption, and through trait-mediated effects such as emigration in response to predation risk (risk effects). We studied top-down effects of (sub-) adult wolf spiders (Lycosidae) on arthropods in a meadow. We compared risk effects with the overall top-down effect (including consumption) by gluing the chelicers of wolf spiders to prevent them from killing the prey. In a field experiment, we created three treatments that included either: (i) intact ('predation') wolf spiders; (ii) wolf spiders with glued chelicers ('risk spiders'); or (iii) no (sub-) adult wolf spiders. Young wolf spiders were reduced by their (sub-) adult congeners. Densities of sheetweb spiders (Linyphiidae), a known intraguild prey of wolf spiders, were equally reduced by the presence of risk and predation wolf spiders. Plant- and leafhoppers (Auchenorrhyncha) showed the inverse pattern of higher densities in the presence of both risk and predation wolf spiders. We conclude that (sub-) adult wolf spiders acted as top predators, which reduced densities of intermediate predators and thereby enhanced herbivores. Complementary to earlier studies that found trait-mediated herbivore suppression, our results demonstrate that herbivores can be enhanced through cascading risk effects by top predators.

  17. WHISTLER TURBULENCE FORWARD CASCADE VERSUS INVERSE CASCADE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ouliang [Oracle Corporation, Redwood Shores, CA (United States); Gary, S. Peter [Space Science Institute, Boulder, CO (United States); Wang, Joseph, E-mail: ouliang@usc.edu, E-mail: pgary@lanl.gov, E-mail: josephjw@usc.edu [University of Southern California, Los Angeles, CA (United States)

    2015-02-20

    We present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta β {sub e} = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime.

  18. Optical Sensors Using Stimulated Brillouin Scattering

    Science.gov (United States)

    Christensen, Caleb A (Inventor); Zavriyev, Anton (Inventor)

    2017-01-01

    A method for enhancing a sensitivity of an optical sensor having an optical cavity counter-propagates beams of pump light within the optical cavity to produce scattered light based on Stimulated Brillouin Scattering (SBS). The properties of the pump light are selected to generate fast-light conditions for the scattered light, such that the scattered light includes counter-propagating beams of fast light. The method prevents the pump light from resonating within the optical cavity, while allowing the scattered light to resonate within the optical cavity. At least portions of the scattered light are interfered outside of the optical cavity to produce a beat note for a measurement of the optical sensor. The disclosed method is particularly applicable to optical gyroscopes.

  19. Contingency Analysis of Cascading Line Outage Events

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L Baldwin; Magdy S Tawfik; Miles McQueen

    2011-03-01

    As the US power systems continue to increase in size and complexity, including the growth of smart grids, larger blackouts due to cascading outages become more likely. Grid congestion is often associated with a cascading collapse leading to a major blackout. Such a collapse is characterized by a self-sustaining sequence of line outages followed by a topology breakup of the network. This paper addresses the implementation and testing of a process for N-k contingency analysis and sequential cascading outage simulation in order to identify potential cascading modes. A modeling approach described in this paper offers a unique capability to identify initiating events that may lead to cascading outages. It predicts the development of cascading events by identifying and visualizing potential cascading tiers. The proposed approach was implemented using a 328-bus simplified SERC power system network. The results of the study indicate that initiating events and possible cascading chains may be identified, ranked and visualized. This approach may be used to improve the reliability of a transmission grid and reduce its vulnerability to cascading outages.

  20. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  1. An ant colony based resilience approach to cascading failures in cluster supply network

    Science.gov (United States)

    Wang, Yingcong; Xiao, Renbin

    2016-11-01

    Cluster supply chain network is a typical complex network and easily suffers cascading failures under disruption events, which is caused by the under-load of enterprises. Improving network resilience can increase the ability of recovery from cascading failures. Social resilience is found in ant colony and comes from ant's spatial fidelity zones (SFZ). Starting from the under-load failures, this paper proposes a resilience method to cascading failures in cluster supply chain network by leveraging on social resilience of ant colony. First, the mapping between ant colony SFZ and cluster supply chain network SFZ is presented. Second, a new cascading model for cluster supply chain network is constructed based on under-load failures. Then, the SFZ-based resilience method and index to cascading failures are developed according to ant colony's social resilience. Finally, a numerical simulation and a case study are used to verify the validity of the cascading model and the resilience method. Experimental results show that, the cluster supply chain network becomes resilient to cascading failures under the SFZ-based resilience method, and the cluster supply chain network resilience can be enhanced by improving the ability of enterprises to recover and adjust.

  2. Physics of interband cascade lasers

    Science.gov (United States)

    Vurgaftman, I.; Bewley, W. W.; Merritt, C. D.; Canedy, C. L.; Kim, C. S.; Abell, J.; Meyer, J. R.; Kim, M.

    2012-01-01

    The interband cascade laser (ICL) is a unique device concept that combines the effective parallel connection of its multiple-quantum-well active regions, interband active transitions, and internal generation of electrons and holes at a semimetallic interface within each stage of the device. The internal generation of carriers becomes effective under bias, and the role of electrical injection is to replenish the carriers consumed by recombination processes. Major strides have been made toward fundamentally understanding the rich and intricate ICL physics, which has in turn led to dramatic improvements in the device performance. In this article, we review the physical principles of the ICL operation and designs of the active region, electron and hole injectors, and optical waveguide. The results for state-of- the-art ICLs spanning the 3-6 μm wavelength range are also briefly reviewed. The cw threshold input powers at room temperature are more than an order of magnitude lower than those for quantum cascade lasers throughout the mid-IR spectral range. This will lengthen battery lifetimes and greatly relax packaging and size/weight requirements for fielded sensing systems.

  3. Lifespans of Cascade Arc volcanoes

    Science.gov (United States)

    Calvert, A. T.

    2015-12-01

    Compiled argon ages reveal inception, eruptive episodes, ages, and durations of Cascade stratovolcanoes and their ancestral predecessors. Geologic mapping and geochronology show that most Cascade volcanoes grew episodically on multiple scales with periods of elevated behavior lasting hundreds of years to ca. 100 kyr. Notable examples include the paleomag-constrained, few-hundred-year-long building of the entire 15-20 km3 Shastina edifice at Mt. Shasta, the 100 kyr-long episode that produced half of Mt. Rainier's output, and the 30 kyr-long episode responsible for all of South and Middle Sister. Despite significant differences in timing and rates of construction, total durations of active and ancestral volcanoes at discrete central-vent locations are similar. Glacier Peak, Mt. Rainier, Mt. Adams, Mt. Hood, and Mt. Mazama all have inception ages of 400-600 ka. Mt. St. Helens, Mt. Jefferson, Newberry Volcano, Mt. Shasta and Lassen Domefield have more recent inception ages of 200-300 ka. Only the Sisters cluster and Mt. Baker have established eruptive histories spanning less than 50 kyr. Ancestral volcanoes centered 5-20 km from active stratocones appear to have similar total durations (200-600 kyr), but are less well exposed and dated. The underlying mechanisms governing volcano lifecycles are cryptic, presumably involving tectonic and plumbing changes and perhaps circulation cycles in the mantle wedge, but are remarkably consistent along the arc.

  4. A Semisupervised Cascade Classification Algorithm

    Directory of Open Access Journals (Sweden)

    Stamatis Karlos

    2016-01-01

    Full Text Available Classification is one of the most important tasks of data mining techniques, which have been adopted by several modern applications. The shortage of enough labeled data in the majority of these applications has shifted the interest towards using semisupervised methods. Under such schemes, the use of collected unlabeled data combined with a clearly smaller set of labeled examples leads to similar or even better classification accuracy against supervised algorithms, which use labeled examples exclusively during the training phase. A novel approach for increasing semisupervised classification using Cascade Classifier technique is presented in this paper. The main characteristic of Cascade Classifier strategy is the use of a base classifier for increasing the feature space by adding either the predicted class or the probability class distribution of the initial data. The classifier of the second level is supplied with the new dataset and extracts the decision for each instance. In this work, a self-trained NB∇C4.5 classifier algorithm is presented, which combines the characteristics of Naive Bayes as a base classifier and the speed of C4.5 for final classification. We performed an in-depth comparison with other well-known semisupervised classification methods on standard benchmark datasets and we finally reached to the point that the presented technique has better accuracy in most cases.

  5. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  6. Effect of polarization on the performance of ZnO/MgZnO quantum cascade detector

    Science.gov (United States)

    Li, Zhaoling; Wang, Ping; He, Jingfang; Chen, Hongyan; Cheng, Jingsi

    2017-11-01

    The impact of polarization effect on the performance of ZnO/MgZnO quantum cascade detector (QCD) is investigated with different scattering mechanisms taken into account. The energy band structure and wave functions are achieved by self-consistent calculation of Schrodinger-Poisson equations considering the spontaneous and piezoelectric polarization effects. The polarization field in the well or barrier of the QCD is obtained by assuming continuity of the displacement vector and the electronic transport is determined by piezoelectric polarization induced piezoelectric scattering, LO-phonon scattering and some other scattering mechanisms. The results show that the polarization charges at the interface make a significant contribution to the confining potential, which reduces the dark current, and increases the detectivity. The peak responsivity drops only 6.37% from 57 to 400 K without apparent redshift and the detectivity can be significantly improved by increasing doping concentration. This work is beneficial for the ZnO/MgZnO QCD design.

  7. Au-Ag Core-Shell Nanospheres for Surface-Enhanced Raman Scattering Detection of Sudan I and Sudan II in Chili Powder

    Directory of Open Access Journals (Sweden)

    Lu Pei

    2015-01-01

    Full Text Available Au-Ag core-shell (Au@Ag bimetallic nanospheres synthesized by a facile seed-growth method are proposed as a substrate for surface-enhanced Raman spectroscopy (SERS to detect azo-group dyes including Sudan I and Sudan II. Au@Ag nanospheres with a series of particle sizes (diameter: 30–120 nm and silver shell thicknesses (6–51 nm were synthesized and compared for their morphological and optical properties to obtain optimum enhancement effect. Normal Raman, SERS, infrared, and ultraviolet-visible were used to investigate the optical absorption properties of Sudan I and Sudan II as well as the enhancement mechanism of Au@Ag substrates. The nanospheres with particle size of 73 ± 6 nm in diameter and silver layer of 27 ± 2 nm resulted in the highest enhancement effect and could be used to detect Sudan I and Sudan II standard solutions at levels as low as 0.4 and 0.1 mg/L, respectively. Moreover, Sudan I and Sudan II in chili powder could be detected at 0.6 and 0.4 mg/kg, respectively. Sudan I and Sudan II with similar structures in complicated food matrices could be distinguished through applying principal component analysis, indicating good selectivity of the SERS method for detection of banned additives in food stuffs at trace levels.

  8. Raman spectroscopic analysis of cyanogenic glucosides in plants: development of a Flow Injection Surface-Enhanced Raman Scatter (FI-SERS) method for determination of cyanide

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Jørgensen, Kirsten; Møller, Birger Lindberg

    2004-01-01

    -dried sorghum leaf was also obtained using this instrument. Surface-enhanced Raman Spectroscopy (SERS) was demonstrated to be a more sensitive method that enabled determination of the cyanogenic potential of plant tissue. The SERS method was optimized by flow injection (FI) using a colloidal gold dispersion...... as effluent. Potential problems and pitfalls of the method are discussed....

  9. Enhanced

    Directory of Open Access Journals (Sweden)

    Martin I. Bayala

    2014-06-01

    Full Text Available Land Surface Temperature (LST is a key parameter in the energy balance model. However, the spatial resolution of the retrieved LST from sensors with high temporal resolution is not accurate enough to be used in local-scale studies. To explore the LST–Normalised Difference Vegetation Index relationship potential and obtain thermal images with high spatial resolution, six enhanced image sharpening techniques were assessed: the disaggregation procedure for radiometric surface temperatures (TsHARP, the Dry Edge Quadratic Function, the Difference of Edges (Ts∗DL and three models supported by the relationship of surface temperature and water stress of vegetation (Normalised Difference Water Index, Normalised Difference Infrared Index and Soil wetness index. Energy Balance Station data and in situ measurements were used to validate the enhanced LST images over a mixed agricultural landscape in the sub-humid Pampean Region of Argentina (PRA, during 2006–2010. Landsat Thematic Mapper (TM and Moderate Resolution Imaging Spectroradiometer (EOS-MODIS thermal datasets were assessed for different spatial resolutions (e.g., 960, 720 and 240 m and the performances were compared with global and local TsHARP procedures. Results suggest that the Ts∗DL technique is the most adequate for simulating LST to high spatial resolution over the heterogeneous landscape of a sub-humid region, showing an average root mean square error of less than 1 K.

  10. Cascading disaster models in postburn flash flood

    Science.gov (United States)

    Fred May

    2007-01-01

    A useful method of modeling threats from hazards and documenting their disaster causation sequences is called “cascading threat modeling.” This type of modeling enables emergency planners to address hazard and risk assessments systematically. This paper describes a cascading threat modeling and analysis process. Wildfire and an associated postburn flash flood disaster...

  11. Cascade Harvest’ red raspberry

    Science.gov (United States)

    Cascade Harvest’ is a new floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). ‘Cascade Harvest’ produces a high yield of large, firm fruit suited to machine harves...

  12. Suppressing cascades of load in interdependent networks

    CERN Document Server

    Brummitt, Charles D; Leicht, E A

    2011-01-01

    Understanding how interdependence among systems affects cascading behaviors is increasingly important across many fields of science and engineering. Inspired by cascades of load shedding in coupled electric grids and other infrastructure, we study the Bak-Tang-Wiesenfeld sandpile model on modular random graphs and on graphs based on actual, interdependent power grids. Starting from two isolated networks, adding some connectivity between them is beneficial, for it suppresses the largest cascades in each system. Too much interconnectivity, however, becomes detrimental for two reasons. First, interconnections open pathways for neighboring networks to inflict large cascades. Second, as in real infrastructure, new interconnections increase capacity and total possible load, which fuels even larger cascades. Using a multi-type branching process and simulations we show these effects and estimate the optimal level of interconnectivity that balances their tradeoffs. Such equilibria could allow, for example, power grid ...

  13. MAPK cascades in guard cell signal transduction

    Directory of Open Access Journals (Sweden)

    Yuree eLee

    2016-02-01

    Full Text Available Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions.

  14. Experimental study of flow through compressor Cascade

    Directory of Open Access Journals (Sweden)

    Satyam Panchal

    2017-09-01

    Full Text Available The objective of this research work is to study the behaviour of flow at the inlet, within the blade passage and at the exit of a compressor cascade. For this purpose, a cascade with six numbers of aerofoil blades was designed and constructed. The cascade was fitted on the cascade test tunnel. Out of six blades two were instrumented for measuring the pressure distribution on the pressure and suction surface. The blades had a parabolic camber line, with a maximum camber position at 40% of the chord from the leading edge of the blade. The profile of the blade was C4, height of the blade was 160 mm, chord length was 80 mm, camber angle was 45° and stagger angle was 30°. Similarly, the length of the cascade was 300 mm, span was 160 mm, pitch was 60 mm, the actual chord of the cascade was 80 mm, the axial chord of the cascade was 70 mm, the stagger angle of the cascade was 30° and the pitch-chord ratio was 0.75. The data was taken and analyzed at −500% of the axial chord before the cascade, −25% of the axial chord before the leading edge, 25%, 50%, 75% and 150% of the axial chord from the leading edge of the blade. The readings were taken from the cascade wall to the mid span position along the pitch wise direction. The angle of incidence was also changed during the experiment and varied from i=−50°, −30°, −10° to 5°.

  15. Lectures in scattering theory

    CERN Document Server

    Sitenko, A G

    1971-01-01

    Lectures in Scattering Theory discusses problems in quantum mechanics and the principles of the non-relativistic theory of potential scattering. This book describes in detail the properties of the scattering matrix and its connection with physically observable quantities. This text presents a stationary formulation of the scattering problem and the wave functions of a particle found in an external field. This book also examines the analytic properties of the scattering matrix, dispersion relations, complex angular moments, as well as the separable representation of the scattering amplitude. Th

  16. Cascaded Amplitude Modulations in Sound Texture Perception

    Directory of Open Access Journals (Sweden)

    Richard McWalter

    2017-09-01

    Full Text Available Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  17. Double-Cascade Events from New Physics in Icecube

    Science.gov (United States)

    Coloma, Pilar; Machado, Pedro A. N.; Martinez-Soler, Ivan; Shoemaker, Ian M.

    2017-11-01

    A variety of new physics models allows for neutrinos to up-scatter into heavier states. If the incident neutrino is energetic enough, the heavy neutrino may travel some distance before decaying. In this work, we consider the atmospheric neutrino flux as a source of such events. At IceCube, this would lead to a "double-bang" (DB) event topology, similar to what is predicted to occur for tau neutrinos at ultrahigh energies. The DB event topology has an extremely low background rate from coincident atmospheric cascades, making this a distinctive signature of new physics. Our results indicate that IceCube should already be able to derive new competitive constraints on models with GeV-scale sterile neutrinos using existing data.

  18. Double-Cascade Events from New Physics in Icecube.

    Science.gov (United States)

    Coloma, Pilar; Machado, Pedro A N; Martinez-Soler, Ivan; Shoemaker, Ian M

    2017-11-17

    A variety of new physics models allows for neutrinos to up-scatter into heavier states. If the incident neutrino is energetic enough, the heavy neutrino may travel some distance before decaying. In this work, we consider the atmospheric neutrino flux as a source of such events. At IceCube, this would lead to a "double-bang" (DB) event topology, similar to what is predicted to occur for tau neutrinos at ultrahigh energies. The DB event topology has an extremely low background rate from coincident atmospheric cascades, making this a distinctive signature of new physics. Our results indicate that IceCube should already be able to derive new competitive constraints on models with GeV-scale sterile neutrinos using existing data.

  19. Modified discrete particle model of optical scattering in skin tissue accounting for multiparticle scattering.

    Science.gov (United States)

    Schneiderheinze, Dirk H P; Hillman, Timothy R; Sampson, David D

    2007-11-12

    We rigorously account for the effects of multiparticle light scattering from a fractal sphere aggregate in order to simulate the optical properties of a soft biological tissue, human skin. Using a computational method that extends Mie theory to the multisphere case, we show that multiparticle scattering significantly affects the computed optical properties, resulting in a reduction in both scattering coefficient and anisotropy for the wavelengths simulated, as well as a significantly enhanced forward peak in the simulated phase function. The model is extended to incorporate the contribution of Rayleigh scatterers, which we show is required to obtain reasonable agreement with experimentally measured optical properties of skin tissue.

  20. Understanding the role of silica nanospheres with their light scattering and energy barrier properties in enhancing the photovoltaic performance of ZnO based solar cells.

    Science.gov (United States)

    Banik, Avishek; Ansari, Mohammad Shaad; Sahu, Tushar Kanta; Qureshi, Mohammad

    2016-10-12

    The present study discusses the design and development of a dye sensitized solar cell (DSSC) using a hybrid composite of ZnO nanoparticles (ZnO NP) and silica nanospheres (SiO 2 NS). A ≈22% enhancement in the overall power conversion efficiency (PCE, η) was observed for the device fabricated with a binary hybrid composite of 1 wt% SiO 2 NS and ZnO NP compared to the pristine ZnO NP device. A systematic investigation revealed the dual function of the silica nanospheres in enhancing the device efficacy compared to the bare ZnO NP based device. Sub-micron sized SiO 2 NS can boost the light harvesting efficiency of the photoanode by optical confinement, resulting in increased propagation length of the incident light by multiple internal reflections, which was confirmed by UV-Vis diffused reflectance spectroscopy. Electrochemical impedance spectroscopic (EIS) analysis showed a reduced recombination of photo-generated electrons to the I - /I 3 - redox shuttle in the case of the composite photoanode. The higher recombination resistance (R ct ) in the case of a 1 wt% composite indicates that the SiO 2 NS serves as a partial energy barrier layer to retard the interfacial recombination (back transfer) of photo-generated electrons at the working electrode/electrolyte interface, increasing the device efficiency.