DEFF Research Database (Denmark)
Birkedal, Dan; Shah, Jagdeep; Shchegrov, Andrei V.
2000-01-01
Resonant Rayleigh scattering from quantum well excitons is investigated using ultrafast spectral interferometry. We isolate the coherent Rayleigh scattering from incoherent luminescence in a single speckle. Averaging the resonant Rayleigh intensity over several speckles allows us to identify...... features in support of quantum corrections to the classical description of the underlying scattering process....
Investigating the effect and photon scattering correction in isotopic scanning with gamma and SPECT
International Nuclear Information System (INIS)
Movafeghi, Amir
1997-01-01
Nowdays medical imaging systems has been become a very important tool in medicine, both in diagnosis and treatment. With the fast improvement in the computer sciences in the last three decades, three dimensional imaging systems or topographic systems has been developed for the daily applications. Among the different methods, for now X-ray Computerized tomography scanning, Magnetic Resonance Imaging, Single Photon Emission Computerized Tomography and Positron Emission tomography have been found many clinical application. SPECT and PET imaging systems are working with the use of emitting photons from special radioisotopes. In these two systems, image is reconstructed from a distribution of radioisotope in the human body's organs. In SPECT accuracy of data quantification for image reconstruction has influenced from photon attenuation, photon scattering, statistical noises and variation in detector response due to distance. Except scattering other three factors could be modeled and compensated with relatively simple models. Photon scattering is a complex process and usually semiemperical methods is used for its modeling. The effect of scattering photons on images was considered. This survey was done in both lab and clinical cases. Radioisotopes were 192 Ir and 99m Tc. 192 Ir is a solid source with the half-life of 73 days and is used at industrial radiography application. At the beginning, models and methods, were established by the help of 192 Ir. Then at the final stage, they were developed to use for 99m Tc. There are different methods for the error correction of scattered photons. A method from the 'window subtraction' group has been developed for lab cases. Generally, in this method with the use of adjacent window of the photopeak window, scattered photons are subtracted from the original count. A Monte Carlo simulation is used for better evaluation of results. In the clinical section , a dual head SPECT system was (ADAC system of Shariati hospital at Tehran). The
Directory of Open Access Journals (Sweden)
Krit Koyvanich
2013-01-01
Full Text Available The segmentation between rigid and rubbery chains in polyurethanes (PUs influences polymeric properties and implementations. Several models have successfully been proposed to visualize the configuration between the hard segment (HS and soft segment (SS. For particulate PU composites, the arrangement of HS and SS is more complicated because the fillers tend to disrupt the chain formation and segmentation. In this work, the effect of ferromagnetic cobalt (Co powders (average diameter 2 μm on PU synthesized from a reaction between polyether polyol (soft segment and diphenylmethane-4,4′-diisocyanate (hard segment was studied with varying loadings (0, 20, 40, and 60 wt.%. The 300 μm thick PU/Co samples were tape-casted and then received heat treatment at 80°C for 180 min. From synchrotron small angle X-ray scattering (SAXS, the plot of the X-ray scattering intensity (I against the scattering vector (q exhibited a typical single peak of PU whose intensity was reduced by the increase in the Co loading. Characteristic SAXS peaks in the case of 0-20 wt.% Co agreed well with the scattering by globular hard segment domains according to Zernike-Prins and Percus-Yevick models. The higher Co loadings led to larger deviations from all theoretical models.
Psychophysical Investigation of the Effect of Coring on Perceived Toner Scatter
Park, Hyung Jun; Allebach, Jan P; Pizlo, Zygmunt
2010-01-01
The use of color electrophotographic (EP) laser printing systems is growing because of their declining cost. Thus, the print quality of color EP laser printers has become increasingly important. Since text and lines are indispensable to print quality, many studies have proposed methods for measuring these print quality attributes. Toner scatter caused by toner overdevelopment in color EP laser printers can significantly impact print quality. A conventional approach to reduce toner overdevelop...
International Nuclear Information System (INIS)
Kopitsa, G.P.; Runov, V.V.; Grigoriev, S.V.; Bliznuk, V.V.; Gavriljuk, V.G.; Glavatska, N.I.
2003-01-01
The small-angle polarized neutron scattering (SAPNS) technique has been used to study a nuclear and magnetic homogeneity in the distribution of both substituent (Si, Cr, Ni) and interstitial (C, N) alloying elements on the mesoscopic range in Fe-Mn-based alloys with shape memory effect (SME). The four groups of alloys with various basic compositions: FeMn 18 (wt%), FeMn 20 Si 6 , FeMn 20 Cr 9 N 0.2 and FeMn 17 Cr 9 Ni 4 Si 6 were investigated. It was found that the small-angle scattering of neutrons and depolarization on these alloys are very small altogether. The scattering did not exceed 1.5% from the incident beam and depolarization ∼2% for all samples. It means that these alloys are well nuclear and magnetically homogeneous on the scale of 10-1000 A. However, the difference in the homogeneity depending on the compositions still takes place. Thus, the adding of Si in FeMn 18 and FeMn 20 Cr 9 N 0.2 alloys improves the homogeneity pronouncedly. At once, the effect of the doping by C or N atoms on the homogeneity in FeMn 20 Si 6 and FeMn 17 Cr 9 Ni 4 Si 6 alloys is multivalued and depend on the presence of substitutional atoms (Ni and Cr). The capability of SAPNS as a method for the study of mesoscopic homogeneity in materials with SME and testing of the quality of their preparation is discussed
Interphase effects in dental nanocomposites investigated by small-angle neutron scattering.
Wilson, Kristen S; Allen, Andrew J; Washburn, Newell R; Antonucci, Joseph M
2007-04-01
Small-angle and ultrasmall-angle neutron scattering (SANS and USANS) were used to characterize silica nanoparticle dispersion morphologies and the interphase in thermoset dimethacrylate polymer nanocomposites. Silica nanoparticle fillers were silanized with varying mass ratios of 3-methacryloxypropyltrimethoxysilane (MPTMS), a silane that interacts with the matrix through covalent and H-bonding, and n-octyltrimethoxysilane (OTMS), a silane that interacts through weak dispersion forces. Interphases with high OTMS mass fractions were found to be fractally rough with fractal dimensions, D(s), between 2.19 and 2.49. This roughness was associated with poor interfacial adhesion and inferior mechanical properties. Mean interparticle distances calculated for composites containing 10 mass % and 25 mass % silica suggest that the nanoparticles treated with more MPTMS than OTMS may be better dispersed than OTMS-rich nanoparticles. The results indicate that the covalent bonding and H-bonding of MPTMS-rich nanoparticles with the matrix are necessary for preparing well-dispersed nanocomposites. In addition, interphases containing equal masses of MPTMS and OTMS may yield composites with overall optimal properties. Finally, the combined SANS/USANS data could distinguish the differences, as a function of silane chemistry, in the nanoparticle/silane and silane/matrix interfaces that affect the overall mechanical properties of the composites. (c) 2006 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Wampler, W.
1976-05-01
The physics of the dHvA effect is discussed and it is shown how it can be used to determine the Fermi surface geometry, the Fermi velocities and the local scattering rates. Dingle temperature measurements are discribed and discussed. Furthermore the way in which the samples were prepared is described. Also discussed are some aspects of the metallurgical behavior of hydrogen in copper which are relevant to the sample preparation such as solubility, diffusion, precipitation, and trapping at impurities. The experimental results are presented, and the local scattering rates are determined from the results. These are then compared with lifetimes from previously reported measurements on substitutional impurities in noble metals. The experimental results are found to be in excellent agreement with a recent calculation of the scattering rates for hydrogen in copper by Huisman and Weiss. The data is also analysed in terms of phase shifts using the Greens function theory of Holtzworth and Lee for scattering from interstitials. (HPOE) [de
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Kowalska, A.; Laut, Peter
1967-01-01
curves are suggested. The magnon cross section for unpolarized neutrons is calculated and shown to be dependent on the anisotropy in the spin interaction. Thus in principle it allows the detection of anisotropy in the exchange interaction. Some remarks are made concerning antiferromagnetic and plane...... for the exchange interaction seem to be necessary for agreement with experimental dispersion curves be obtained. The effect of the anisotropy in the cross section is estimated and shown to be important for small magnon energies....
Neutron scattering investigations of frustated magnets
Fennell, Tom
This thesis describes the experimental investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Ho2Ti207 and Dy2Ti207 are examples of spin ices, in which the manifold of disordered magnetic groundstates maps onto that of the proton positions in ice. Using single crystal neutron scattering to measure Bragg and diffuse scattering, the effect of applying magnetic fields along different directions in the crystal was investigated. Different schemes of degeneracy removal were observed for different directions. Long and short range order, and the coexistence of both could be observed by this technique.The field and temperature dependence of magnetic ordering was studied in Ho2Ti207 and Dy2Ti207. Ho2Ti2()7 has been more extensively investigated. The field was applied on [00l], [hh0], [hhh] and [hh2h]. Dy2Ti207 was studied with the field applied on [00l] and [hho] but more detailed information about the evolution of the scattering pattern across a large area of reciprocal space was obtained.With the field applied on [00l] both materials showed complete degeneracy removal. A long range ordered structure was formed. Any magnetic diffuse scattering vanished and was entirely replaced by strong magnetic Bragg scattering. At T =0.05 K both materials show unusual magnetization curves, with a prominent step and hysteresis. This was attributed to the extremely slow dynamics of spin ice materials at this temperature.Both materials were studied in greatest detail with the field applied on [hh0]. The coexistence of long and short range order was observed when the field was raised at T = 0.05 K. The application of a field in this direction separated the spin system into two populations. One could be ordered by the field, and one remained disordered. However, via spin-spin interactions, the field restricted the degeneracy of the disordered spin population. The neutron scattering pattern of Dy2Ti207 shows that the spin system was separated
Energy Technology Data Exchange (ETDEWEB)
Raut Dessai, R., E-mail: reshooin@yahoo.com [Department of Physics, Goa University, Taleigao Plateau, Goa 403 206 (India); Desa, J.A.E. [Department of Physics, Goa University, Taleigao Plateau, Goa 403 206 (India); Sen, D.; Mazumder, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)
2013-07-05
Highlights: ► A porous ceramic has been prepared from silica obtained from rice husk. ► The ceramic has a hierarchical pore structure from micrometric to nano-metric. ► Small Angle Neutron Scattering data indicate nano-pore connectivity to micro-pores. ► Pore morphology can be tuned by compaction pressure and sintering temperature. -- Abstract: Ceramic powder has been synthesized from rice husk as the source of silica. In order to probe the evolution of its hierarchical mesoscopic and microscopic porous structure, the ceramic powder was compacted at different pressures and was sintered at different temperatures. A glassy ceramic to crystalline transition under thermal treatment (up to 1000 °C) was revealed by X-ray diffraction. Existence of pores in two widely separated length scales was indicated by small angle neutron scattering with the smaller ones having mass fractal arrangement. Although no significant change in small pore structure under thermal effect was indicated, a significant modification of the same has been revealed by small angle neutron scattering at different compaction pressures. Connectivity between the pores was ascertained from scattering experiments on the ceramic compact impregnated with heavy water. Scanning electron microscopy shows the microstructure to undergo appreciable coalescence of micrometric ceramic particles for sintering temperature and pressure changes.
Shan, Xiao; Xiahou, Chengkui; Connor, J N L
2018-01-03
In earlier research, we have demonstrated that broad "hidden" rainbows can occur in the product differential cross sections (DCSs) of state-to-state chemical reactions. Here we ask the question: can pronounced and localized rainbows, rather than broad hidden ones, occur in reactive DCSs? Further motivation comes from recent measurements by H. Pan and K. Liu, J. Phys. Chem. A, 2016, 120, 6712, of a "bulge" in a reactive DCS, which they conjecture is a rainbow. Our theoretical approach uses a "weak" version of Heisenberg's scattering matrix program (wHSMP) introduced by X. Shan and J. N. L. Connor, Phys. Chem. Chem. Phys., 2011, 13, 8392. This wHSMP uses four general physical principles for chemical reactions to suggest simple parameterized forms for the S matrix; it does not employ a potential energy surface. We use a parameterization in which the modulus of the S matrix is a smooth-step function of the total angular momentum quantum number, J, and (importantly) its phase is a cubic polynomial in J. We demonstrate for a Legendre partial wave series (PWS) the existence of pronounced rainbows, supernumerary rainbows, and other interference effects, in reactive DCSs. We find that reactive rainbows can be more complicated in their structure than the familiar rainbows of elastic scattering. We also analyse the angular scattering using Nearside-Farside (NF) PWS theory and NF PWS Local Angular Momentum (LAM) theory, including resummations of the PWS. In addition, we apply full and NF asymptotic (semiclassical) rainbow theories to the PWS - in particular, the uniform Airy and transitional Airy approximations for the farside scattering. This lets us prove that structure in the DCSs are indeed rainbows, supernumerary rainbows as well as other interference effects.
International Nuclear Information System (INIS)
Schoenfeld, A; Poppinga, D; Poppe, B; Harder, D; Doerner, K
2014-01-01
Purpose: This study aims to investigate the optical properties of radiochromic EBT3 films on exposure to polarized incident light. Methods: An optical table setup was used to investigate the properties of exposed and unexposed EBT3 films. The films were placed with their long side horizontally and illuminated with polarized incident white light. The polarization of light with the electrical vector pointing vertically is referred to as 0°, accordingly horizontal orientation corresponds to 90°. The light transmission was measured depending on the polarization angle of the incident light and the polarization of a polarizer in front of the detector. Secondly, the scattering properties of exposed and unexposed films were measured by placing a plane convex lens behind the films and a screen in its focal plane. Thereby, the distribution of the scattering angles appears as an intensity map on the screen. The distributions of scattering angles caused by EBT3 films and by neutral density filters were compared. Results: EBT3 films show a strong dependence of the light transmission on the polarization of the incident light. With both polarizers parallel, a peak transmission was found at 90° orientation of the polarizers. With the rear polarizer at right angles with the front polarizer, peak transmissions were found at front polarizer orientations 45° and 135°. The scattering appears to be anisotropic with a preference direction parallel to the long side of the film. The portion of scattered light and the half value scattering angle both increase with the dose on the film. Conclusion: EBT3 films show dose dependent changes in polarized light transmission and anisotropic light scattering. These effects impair the light absorption measurements on exposed films performed with commercial flatbed scanners and are causing the well-known artifacts of radiochromic film dosimetry with flatbed scanners, the “orientation effect” and the “parabola effect”
Determination of multiple scattering effects
International Nuclear Information System (INIS)
Langevin, M.
1981-01-01
The integration of Sigmund and Winterbon numerical values is extended to the reduced thickness tau=2000. The diagram obtained allows a simple determination of the multiple scattering effect for different targets and projectiles [fr
International Nuclear Information System (INIS)
Rahimi, S.; Mohammadpour, R.; Iraji zad, A.
2012-01-01
TiO 2 nano fibers with different diameters have been fabricated through electro-spinning method and employed as a scattering layer in dye sensitized solar cell. The amount of scattering from nano-fibrous layers depends on their diameters; Because of various ability of light collection in fibers with different diameters, it can directly influence the solar cell performance. In this study, we have studied the optical and electrical properties of TiO 2 nano fibers and solar cells based on these structures have been fabricated and characterized. Finally, by optimizing the structure of scattering layer, maximum efficiency of 6.8 p ercent h as been achieved using fibers in range of 200-350 nm diameter.
Scattering Effect on Anomalous Hall Effect in Ferromagnetic Transition Metals
Zhang, Qiang
2017-11-30
The anomalous Hall effect (AHE) has been discovered for over a century, but its origin is still highly controversial theoretically and experimentally. In this study, we investigated the scattering effect on the AHE for both exploring the underlying physics and technical applications. We prepared Cox(MgO)100-x granular thin films with different Co volume fraction (34≤≤100) and studied the interfacial scattering effect on the AHE. The STEM HAADF images confirmed the inhomogeneous granular structure of the samples. As decreases from 100 to 34, the values of longitudinal resistivity () and anomalous Hall resistivity (AHE) respectively increase by about four and three orders in magnitude. The linear scaling relation between the anomalous Hall coefficient () and the measured at 5 K holds in both the as-prepared and annealed samples, which suggests a skew scattering dominated mechanism in Cox(MgO)100-x granular thin films. We prepared (Fe36//Au12/), (Ni36//Au12/) and (Ta12//Fe36/) multilayers to study the interfacial scattering effect on the AHE. The multilayer structures were characterized by the XRR spectra and TEM images of cross-sections. For the three serials of multilayers, both the and AHE increase with , which clearly shows interfacial scattering effect. The intrinsic contribution decreases with increases in the three serials of samples, which may be due to the crystallinity decaying or the finite size effect. In the (Fe36//Au12/) samples, the side-jump contribution increases with , which suggests an interfacial scattering-enhanced side jump. In the (Ni36//Au12/) samples, the side-jump contribution decreases with increases, which could be explained by the opposite sign of the interfacial scattering and grain boundary scattering contributed side jump. In the (Ta12//Fe36/) multilayers, the side-jump contribution changed from negative to positive, which is also because of the opposite sign of the interfacial scattering and grain boundary scattering
Energy Technology Data Exchange (ETDEWEB)
Palacios G, J., E-mail: jpalacios@ipn.mx [IPN, Escuela Superior de Fisica y Matematicas, San Pedro Zacatenco 07738, Ciudad de Mexico (Mexico)
2016-11-01
The integrated intensity of Debye-Scherrer (D-S) rings, arising from an eventual second diffraction process of a diffracted X-ray beam, was calculated. This represents the amount of intensity not arriving at the detector as oriented to register the first diffraction process, and as result, a measure of secondary extinction. Thus the objective is to investigate in this way if secondary extinction affects measurements of X-ray diffraction from textured polycrystals. This has been suggested by differences of pole density maxima observed between measured first and second order pole figures in strongly textured materials. Calculations are performed for a detector scan (varying only 2θ), and the integrated intensity is determined for first and second order diffraction conditions of a general plane (hkl). Normalization through corresponding powder is performed. It is found that this special case of multiple scattering effect, indeed affects both orders essentially in the same way. If corresponding detector scan measurements verify this, then the observed differences between pole density maxima of pole figures of different order cannot be attributed to secondary extinction. Instead, they can be attributed to heterogeneous texture or error propagation. On the other hand, if the detector scans do exhibit a difference as that of pole density maxima, these differences can possibly be attributed to primary extinction. (Author)
Study of multiple scattering effects in heavy ion RBS
Energy Technology Data Exchange (ETDEWEB)
Fang, Z; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics
1997-12-31
Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.
Study of multiple scattering effects in heavy ion RBS
Energy Technology Data Exchange (ETDEWEB)
Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics
1996-12-31
Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.
Spectrometer for neutron inelastic scattering investigations of microsamples
International Nuclear Information System (INIS)
Balagurov, A.M.; Kozlenko, D.P.; Platonov, S.L.; Savenko, B.N.; Glazkov, V.P.; Krasnikov, Yu.M.; Naumov, I.V.; Pukhov, A.V.; Somenkov, V.A.; Syrykh, G.F.
1997-01-01
A new neutron spectrometer for investigation of inelastic neutron scattering on polycrystal microsamples under high pressure in sapphire and diamond anvils cells is described. The spectrometer is operating at the IBR-2 pulsed reactor in JINR. Parameters and methodical peculiarities of the spectrometer and the examples of experimental studies are given. (author)
Devrient, M.; Da, X.; Frick, T.; Schmidt, M.
Laser transmission welding is a well known joining technology for thermoplastics. Because of the needs of lightweight, cost effective and green production thermoplastics are usually filled with glass fibers. These lead to higher absorption and more scattering within the upper joining partner with a negative influence on the welding process. Here an experimental method for the characterization of the scattering behavior of semi crystalline thermoplastics filled with short glass fibers and a finite element model of the welding process capable to consider scattering as well as an analytical model are introduced. The experimental data is used for the numerical and analytical investigation of laser transmission welding under consideration of scattering. The scattering effects of several thermoplastics onto the calculated temperature fields as well as weld seam geometries are quantified.
Sharma, Jayasree Roy; Mitra, Suchismita; Ghosh, Hemanta; Das, Gourab; Bose, Sukanta; Mandal, Sourav; Mukhopadhyay, Sumita; Saha, Hiranmay; Barua, A. K.
2018-02-01
In order to increase the stabilized efficiencies of thin film silicon (TFS) solar cells it is necessary to use better light management techniques. Texturization by etching of sputtered aluminum doped zinc oxide (Al:ZnO or AZO) films has opened up a variety of promises to optimize light trapping schemes. RF sputtered AZO film has been etched by potassium hydroxide (KOH). A systematic study of etching conditions such as etchant concentration, etching time, temperature management etc. have been performed in search of improved electrical and optical performances of the films. The change in etching conditions has exhibited a noticeable effect on the structure of AZO films for which the light trapping effect differs. After optimizing the etching conditions, nanorods have been found on the substrate. Hence, nanorods have been developed only by chemical etching, rather than the conventional development method (hydrothermal method, sol-gel method, electrolysis method etc.). The optimized etched substrate has 82% transmittance, moderate haze in the visible range and sheet resistance ∼13 (Ω/□). The developed nanorods (optimized etched substrate) provide better light trapping within the cell as the optical path length has been increased by using the nanorods. This provides an effect on carrier collection as well as the efficiency in a-Si solar cells. Finite difference time domain (FDTD) simulations have been performed to observe the light trapping by AZO nanorods formed on sputtered AZO films. For a p-i-n solar cell developed on AZO nanorods coated with sputtered AZO films, it has been found through simulations that, the incident light is back scattered into the absorbing layer, leading to an increase in photogenerated current and hence higher efficiency. It has been found that, the light that passes through the nanorods is not getting absorbed and maximum amount of light is back scattered towards the solar cell.
Dielectric effects on Thomson scattering in a relativistic magnetized plasma
DEFF Research Database (Denmark)
Bindslev, H.
1991-01-01
The effects of the dielectric properties of a relativistic magnetized plasma on the scattering of electromagnetic radiation by fluctuations in electron density are investigated. The origin of the density fluctuations is not considered. Expressions for the scattering cross-section and the scattered...... power accepted by the receiving antenna are derived for a plasma with spatial dispersion. The resulting expressions allow thermal motion to be included in the description of the plasma and remain valid for frequencies of the probing radiation in the region of omega(p) and omega(ce), provided...... the absorption is small. Symmetry between variables relating to incident and scattered fields is demonstrated and shown to be in agreement with the reciprocity relation. Earlier results are confirmed in the cold plasma limit. Significant relativistic effects, of practical importance to the scattering...
Complex scattering dynamics and the integer quantum Hall effect
International Nuclear Information System (INIS)
Trugman, S.A.; Waugh, F.R.
1987-01-01
The effect of a magnetic field on potential scattering is investigated microscopically. A magnetic field renders the scattering of a classical charged particle far more complex than previously suspected. Consequences include possible 1/f noise and an explanation of the observed breakdown of the quantum Hall effect at large currents. A particular scatterer is described by a discontinuous one dimensional Hamiltonian map, a class of maps that has not previously been studied. A renormalization group analysis indicates that singular behavior arises from the interplay of electron orbits that are periodic and orbits that are quasiperiodic
Neutron scattering investigations of the lipid bilayer structure pressure dependence
Directory of Open Access Journals (Sweden)
D. V. Soloviov
2012-03-01
Full Text Available Lipid bilayer structure investigation results obtained with small angle neutron scattering method at the Joint Institute for Nuclear Research IBR-2M nuclear reactor (Dubna, Russia are presented. Experiment has been per-formed with small angle neutron scattering spectrometer YuMO, upgraded with the apparatus for performing P-V-T measurements on the substance under investigation. D2O-1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC liquid system, presenting the model of natural live membrane, has been taken as the sample for investiga-tions. The lipid bilayer spatial period was measured in experiment along with isothermal compressibility simulta-neously at different pressures. It has been shown, that the bilayer structural transition from ripple (wavelike gel-phase phase to liquid-crystal phase is accompanied with anomalous rise of isothermal compressibility, indicat-ing occurrence of the phase transition.
Neutron scattering investigations of the lipid bilayer structure pressure dependence
International Nuclear Information System (INIS)
Solovjov, D.V.; Gordelyij, V.Yi.; Gorshkova, Yu.Je.; Yivan'kov, O.Yi.; Koval'ov, Yu.S.; Kuklyin, A.Yi.; Solovjov, D.V.; Bulavyin, L.A.; Yivan'kov, O.Yi.; Nyikolajenko, T.Yu.; Kuklyin, A.Yi.; Gordelyij, V.Yi.; Gordelyij, V.Yi.
2012-01-01
Lipid bilayer structure investigation results obtained with small angle neutron scattering method at the Joint Institute for Nuclear Research IBR-2M nuclear reactor (Dubna, Russia) are presented. Experiment has been performed with small angle neutron scattering spectrometer YuMO, upgraded with the apparatus for performing PV-T measurements on the substance under investigation. D 2 O-1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liquid system, presenting the model of natural live membrane, has been taken as the sample for investigations. The lipid bilayer spatial period was measured in experiment along with isothermal compressibility simultaneously at different pressures. It has been shown, that the bilayer structural transition from ripple (wavelike gel-phase) phase to liquid-crystal phase is accompanied with anomalous rise of isothermal compressibility, indicating occurrence of the phase transition.
Effective polarization in quasi-free scattering
Maris, Theodor August Johannes; Teodoro, Maria Ribeiro; Veit, Eliane Angela
1980-01-01
A simple relation, involving only experimental quantmes, for the effective polarizations m quasi-free (p, 2p) scattering on closed shell nuclei IS tested for recent TRIUMF (p, 2p) experiments with 200 MeV polanzed protons.
Coherence effects in radiative scattering
International Nuclear Information System (INIS)
Knoll, J.; Lenk, R.
1993-03-01
The bremsstrahl-production of photons in dense matter is reinvestigated using the example of an exactly solvable quantum mechanical model in one space dimension. Coherence phenomena between successive radiative scatterings among the constituents lead to a modification of the production cross section in the medium relative to the incoherent quasi-free prescription used in kinetic models. Analytic expressions for the correction factor have been derived comparing the quantum rates with the corresponding incoherent quasi-free rates. The result has implications for the kinetic description of all kinds of radiative processes in nucleus-nucleus collisions, both on the level of hadron and parton dynamics. (orig.)
Scattering effect on entanglement propagation in RCFTs
Energy Technology Data Exchange (ETDEWEB)
Numasawa, Tokiro [Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502 (Japan); Kavli Institute for Theoretical Physics, University of California Santa Barbara,Santa Barbara, CA, 93106 (United States)
2016-12-14
In this paper we discuss the scattering effect on entanglement propagation in RCFTs. In our setup, we consider the time evolution of excited states created by the insertion of many local operators. Our results show that because of the finiteness of quantum dimension, entanglement is not changed after the scattering in RCFTs. In this mean, entanglement is conserved after the scattering event in RCFTs, which reflects the integrability of the system. Our results are also consistent with the free quasiparticle picture after the global quenches.
International Nuclear Information System (INIS)
Itri, Rosangela; Caetano, Wilker; Barbosa, Leandro R.S.; Baptista, Mauricio S.
2004-01-01
The influence that urea has on the conformation of water-soluble globular protein, bovine serum albumin (BSA), exposed directly to the aqueous solution as compared to the condition where the macromolecule is confined in the Aerosol-OT (AOT - sodium bis-2-ethylhexyl sulfosuccinate)/n-hexane/water reverse micelle (RM) is addressed. Small angle X-ray scattering (SAXS), tryptophan (Trp) fluorescence emission and circular dichroism (CD) spectra of aqueous BSA solution in the absence and in the presence of urea (3M and 5M) confirm the known denaturing effect of urea in proteins. The loss of the globular native structure is observed by the increase in the protein maximum dimension and gyration radius, through the Trp emission increase and maximum red-shift as well as the decrease in helix content. In RMs, the Trp fluorescence and CD spectra show that BSA is mainly located in its interfacial region independently of the micellar size. Addition of urea in this BSA/RM system also causes changes in the Trp fluorescence (emission decrease and maximum red-shift) and in the BSA CD spectra (decrease in helix content), which are compatible with the denaturation of the protein and Trp exposition to a more apolar environment in the RM. The fact that urea causes changes in the protein structure when it is located in the interfacial region (evidenced by CD) is interpreted as an indication that the direct interaction of urea with the protein is the major factor to explain its denaturing effect. (author)
Neutron scattering investigation of magnetic excitations at high energy transfers
International Nuclear Information System (INIS)
Loong, C.K.
1984-01-01
With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures
Investigation of damage in KDP using scattering techniques
International Nuclear Information System (INIS)
Woods, B.; Runkel, M.; Yan, M.; Staggs, M.; Zaitseva, N.; Kozlowski, M.; De Yoreo, J.
1997-01-01
Interest in producing high damage threshold KH 2 PO 4 (KDP) and (D x H 1-x ) 2 PO 4 (DKDP)(also called KD*P) for frequency conversion and optical switching applications is driven by the requirements of the National Ignition Facility (NIF). Presently only the best crystals meet the NIF system requirements at the third harmonic (351 nm) and only after a laser conditioning process. Neither the mechanism for damage in bulk KDP nor the mechanism for conditioning is understood. As part of a development effort to increase the damage thresholds of KDP and DKDP, we have been developing techniques to pinpoint the locations where damage will initiate in the bulk material. After we find these locations we will use other measurement techniques to determine how these locations differ from the other surrounding material and why they cause damage. This will allow crystal growers to focus their efforts to improve damage thresholds. Historically damage thresholds have increased it is believed as a consequence of increased purity of the growth solution and through the use of constant filtration during the growth process. As a result we believe that damage is caused by defects in the crystals and have conducted a series of experiments using light scatter to locate these defects and to determine when and where damage occurs. In this paper we present results which show a low correlation between light scatter from bulk defects in KDP and the initiation sites for damage. We have also studied the effects of thermal conditioning on light scatter, strain induced birefringence and damage threshold. We have seen evidence that regions of high strain also exhibit lower damage threshold than the surrounding lower strain material. When thermally conditioned, these crystals show a decrease in some of the strong linear scattering features and a decrease in the strain birefringence while the damage threshold in these regions increased to that of the surrounding bulk material
Effective string theory and QCD scattering amplitudes
International Nuclear Information System (INIS)
Makeenko, Yuri
2011-01-01
QCD string is formed at distances larger than the confinement scale and can be described by the Polchinski-Strominger effective string theory with a nonpolynomial action, which has nevertheless a well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we obtain the Regge behavior with a linear trajectory of the intercept (d-2)/24 in d dimensions, which is computed semiclassically as a momentum-space Luescher term, and discuss an application to meson scattering amplitudes in QCD.
Investigation of second-order optical potential for elastic π4He scattering
International Nuclear Information System (INIS)
Mach, R.; Sapozhnikov, M.G.
1982-01-01
The calculations of elastic π - 4 He scattering within the framework of the optical model with a second-order potential were performed. The effects of recoil correlations, charge exchange and double spin (isospin) flip in the inter-- mediate states are studied. The correction of the impulse approximation is investigated. Comparison between Kerman-McManus-Thaler and Watson formalisms is made
Coherence effects in deep inelastic scattering
International Nuclear Information System (INIS)
Andersson, B.; Gustafson, G.; Loennblad, L.; Pettersson, U.
1988-09-01
We present a framework for deep inelastic scattering, with bound state properties in accordance with a QCD force field acting like a vortex line in a colour superconducting vacuum, which implies some simple coherence effects. Within this scheme one may describe the results of present energies very well, but one obtains an appreciable depletion of gluon radiation in the HERA energy regime. (authors)
Quantum Zeno effect in Raman scattering
Czech Academy of Sciences Publication Activity Database
Thun, K.; Peřina, Jan; Křepelka, Jaromír
2002-01-01
Roč. 299, - (2002), s. 19-30 ISSN 0375-9601 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : quantum measurement * Raman scattering * Zeno effect Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.483, year: 2002
Compact turnkey focussing neutron guide system for inelastic scattering investigations
Energy Technology Data Exchange (ETDEWEB)
Brandl, G., E-mail: g.brandl@fz-juelich.de [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching, Germany and Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum - MLZ, Forschungszentrum Jülich GmbH, 85748 Garching (Germany); Georgii, R. [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching (Germany); Dunsiger, S. R. [Physik Department E21, Technische Universität München, 85748 Garching, Germany and Center for Emergent Materials, Ohio State University, Columbus, Ohio 43210-1117 (United States); Tsurkan, V. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany and Institute of Applied Physics, Academy of Sciences of Moldova, MD 2028 Chisinau, Republic of Moldova (Germany); Loidl, A. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Adams, T.; Pfleiderer, C.; Böni, P. [Physik Department E21, Technische Universität München, 85748 Garching (Germany)
2015-12-21
We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.
Neutron scattering investigation of carbon/carbon composites
International Nuclear Information System (INIS)
Prem, M.; Krexner, G.; Peterlik, H.
2005-01-01
Full text: Carbon/Carbon (C/C) composites, built up from bi-directionally woven fabrics from PAN based carbon fibers, pre-impregnated with phenolic resin followed by pressure curing and carbonization at 1000 o C and a final heat treatment at either 1800 o C or 2400 o C, were investigated by means of small-angle as well as wideangle elastic neutron scattering. Sample orientations arranging the carbon fibers parallel and perpendicular to the incoming beam were examined. Structural features of the composites, i.e. of the fibers as well as the inherently existing pores, are presented and the influence of the heat treatment on the structural properties is discussed. (author)
Study of the multiple scattering effect in TEBENE using the Monte Carlo method
International Nuclear Information System (INIS)
Singkarat, Somsorn.
1990-01-01
The neutron time-of-flight and energy spectra, from the TEBENE set-up, have been calculated by a computer program using the Monte Carlo method. The neutron multiple scattering within the polyethylene scatterer ring is closely investigated. The results show that multiple scattering has a significant effect on the detected neutron yield. They also indicate that the thickness of the scatterer ring has to be carefully chosen. (author)
Effects of Scattering of Radiation on Wormholes
Directory of Open Access Journals (Sweden)
Alexander Kirillov
2018-02-01
Full Text Available Significant progress in the development of observational techniques gives us the hope to directly observe cosmological wormholes. We have collected basic effects produced by the scattering of radiation on wormholes, which can be used in observations. These are the additional topological damping of cosmic rays, the generation of a diffuse background around any discrete source, the generation of an interference picture, and distortion of the cosmic microwave background (CMB spectrum. It turns out that wormholes in the leading order mimic perfectly analogous effects of the scattering of radiation on the standard matter (dust, hot electron gas, etc.. However, in higher orders, a small difference appears, which allows for disentangling effects of wormholes and ordinary matter.
Induced Compton scattering effects in radiation transport approximations
International Nuclear Information System (INIS)
Gibson, D.R. Jr.
1982-01-01
In this thesis the method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions
Induced Compton-scattering effects in radiation-transport approximations
International Nuclear Information System (INIS)
Gibson, D.R. Jr.
1982-02-01
The method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions
International Nuclear Information System (INIS)
Epperson, J.E.; Lin, J.S.; Spooner, S.
1986-02-01
Small angle neutron scattering (SANS) allows clustering phenomena to be studied in systems for which the constituent atoms do not differ greatly in atomic number. This investigation used SANS to characterize the fine scale microstructure in two cast and aged duplex stainless steels; aging times extended up to eight years. The steels differed in ferrite content by about a factor of two. The scattering at lowest q was dominated by magnetic scattering effects associated with the ferrite phase. In the range 0.025 less than or equal to q less than or equal to 0.2A -1 , additional scattering due to a precipitating phase rich in Ni and Si was observed. This scattering was rather intense and revealed a volume fraction of precipitate, in the ferrite, estimated to be 12 to 18% after long time aging. After about 70,000 hours at 400 0 C, there were about 10 18 precipitate particles per cm 3 some 50A in mean diameter, and they were distributed in a nonrandom manner, i.e., spatially, short-range-ordered. This investigation suggests that after aging some 70,000 hours at 400 0 C, the precipitate in the ferrite phase is undergoing Ostwald ripening. The present data are insufficient to indicate at what time this ripening process began
Dressing effects on the occurrence scattering time retardation and advance in a dusty plasma
Lee, Myoung-Jae; Jung, Young-Dae; Hanyang Plasma Team
2017-10-01
The dressing effects on the occurrence scattering time for the dust-dust interaction are investigated in a complex plasma. The first-order eikonal analysis is applied to obtain the scattering amplitude and the occurrence scattering time for the dust-dust interaction. The result shows that dressing effect enhances the retardation phenomena of the occurrence scattering time in the forward scattering domain. It is shown that the oscillatory behavior of the scaled occurrence scattering time is getting more significant with an increase of the Debye length. It is also found that the retardation domain of the occurrence scattering time increases with a decrease of the Debye length. The variation of the occurrence scattering time retardation and advance due to the dressing effect is also discussed.
Investigation of static and dynamic properties of condensed matter by using neutron scattering
International Nuclear Information System (INIS)
Davidovic, M.
1997-01-01
Possibilities of using neutron scattering for investigating microscopic properties of materials are analyzed. Basic neutron scattering theory is presented and its use in structure and dynamics analyses of condense systems. (author)
Resonance effects in neutron scattering lengths
Energy Technology Data Exchange (ETDEWEB)
Lynn, J.E.
1989-06-01
The nature of neutron scattering lengths is described and the nuclear effects giving rise to their variation is discussed. Some examples of the shortcomings of the available nuclear data base, particularly for heavy nuclei, are given. Methods are presented for improving this data base, in particular for obtaining the energy variation of the complex coherent scattering length from long to sub-/angstrom/ wave lengths from the available sources of slow neutron cross section data. Examples of this information are given for several of the rare earth nuclides. Some examples of the effect of resonances in neutron reflection and diffraction are discussed. This report documents a seminar given at Argonne National Laboratory in March 1989. 18 refs., 18 figs.
Resonance effects in neutron scattering lengths
International Nuclear Information System (INIS)
Lynn, J.E.
1989-01-01
The nature of neutron scattering lengths is described and the nuclear effects giving rise to their variation is discussed. Some examples of the shortcomings of the available nuclear data base, particularly for heavy nuclei, are given. Methods are presented for improving this data base, in particular for obtaining the energy variation of the complex coherent scattering length from long to sub-angstrom wave lengths from the available sources of slow neutron cross section data. Examples of this information are given for several of the rare earth nuclides. Some examples of the effect of resonances in neutron reflection and diffraction are discussed. This report documents a seminar given at Argonne National Laboratory in March 1989. 18 refs., 18 figs
Effect of multiple scattering on lidar measurements
International Nuclear Information System (INIS)
Cohen, A.
1977-01-01
The lidar equation in its standard form involves the assumption that the scattered irradiance reaching the lidar receiver has been only singly scattered. However, in the cases of scattering from clouds and thick aerosol layers, it is shown that multiple scattering cannot be neglected. An experimental method for the detection of multiple scattering by depolarization measurement techniques is discussed. One method of theoretical calculations of double-scattering is presented and discussed
Scanning small angle X-ray scattering investigations of bone
International Nuclear Information System (INIS)
Rinnerthaler, S.
1998-06-01
An important characteristic of bone is its strength, which is determined by bone mass, architecture and material quality. From a physical point of view bone is a composite material consisting of an organic matrix (collagen) and of inlets of mineral crystals (hydroxyapatite). These components build up a hierarchical, heterogeneous structure. The size of the mineral crystals lies in the nano-meter range and can be investigated by positionsensitive Small-Angle X-ray Scattering (Scanning-SAXS) in a non-destructive way. The average thickness, the degree and direction of the predominant orientation, as well as some information about shape and arrangement of the mineral crystals were determined in bones of humans, mice, and baboons by Scanning-SAXS with respect to age, bone diseases (osteogenesis imperfecta, pycnodysostosis) or medical treatments (fluoride or alendronate) of osteoporosis. The crystal thickness and the degree of orientation is much smaller in young individuals than in adults and the predominant orientation of the mineral crystals is different in a mixture of bone and mineralized cartilage compared to bone. Further, because position-resolved measurements are now possible, results from Scanning-SAXS measurements could be compared with the results of other position resolved methods. Due to this new feature it was possible, for the first time, to correlate directly 'mottled' bone visible in back-scattered electron imaging with small η-parameters evaluated from SAXS-patterns and the course of the collagen fibers with the predominant orientation of the mineral crystals. Scanning-SAXS proved to be a powerful tool to characterize bone nano-structure. (author)
Investigation of short range order in Fe-C melts by neutron scattering
International Nuclear Information System (INIS)
Weber, M.; Steeb, S.
1978-01-01
Neutron diffraction measurements were done with Fe-C-melts (5; 13; and 17 at % C) using the method of isotopic substitution. The neutron small angle scattering effect observed could be explained by magnetic scattering, caused by spin-fluctuations still existing in the molten state far away from the Curie temperature. Total structure factors were calculated from observed intensities taking into account the correction for magnetic scattering. For each carbon concentration two alloys were investigated, one using iron of natural isotopic abundance and the other using enriched 57 Fe. From a comparison of the q-region below the first maximum of the total structure factor as obtained using Fesup(nat) or 57 Fe, respectively, a tendency to the preference of unlike nearest neighbours is concluded, the distance between Fe-C-pairs being 2.2 A. (orig.) [de
Investigation of Compton scattering correction methods in cardiac SPECT by Monte Carlo simulations
International Nuclear Information System (INIS)
Silva, A.M. Marques da; Furlan, A.M.; Robilotta, C.C.
2001-01-01
The goal of this work was the use of Monte Carlo simulations to investigate the effects of two scattering correction methods: dual energy window (DEW) and dual photopeak window (DPW), in quantitative cardiac SPECT reconstruction. MCAT torso-cardiac phantom, with 99m Tc and non-uniform attenuation map was simulated. Two different photopeak windows were evaluated in DEW method: 15% and 20%. Two 10% wide subwindows centered symmetrically within the photopeak were used in DPW method. Iterative ML-EM reconstruction with modified projector-backprojector for attenuation correction was applied. Results indicated that the choice of the scattering and photopeak windows determines the correction accuracy. For the 15% window, fitted scatter fraction gives better results than k = 0.5. For the 20% window, DPW is the best method, but it requires parameters estimation using Monte Carlo simulations. (author)
An investigation of accelerator head scatter and output factor in air
International Nuclear Information System (INIS)
Ding, George X.
2004-01-01
Our purpose in this study was to investigate whether the Monte Carlo simulation can accurately predict output factors in air. Secondary goals were to study the head scatter components and investigate the collimator exchange effect. The Monte Carlo code, BEAMnrc, was used in the study. Photon beams of 6 and 18 MV were from a Varian Clinac 2100EX accelerator and the measurements were performed using an ionization chamber in a mini-phantom. The Monte Carlo calculated in air output factors was within 1% of measured values. The simulation provided information of the origin and the magnitude of the collimator exchange effect. It was shown that the collimator backscatter to the beam monitor chamber played a significant role in the beam output factors. However the magnitude of the scattered dose contributions from the collimator at the isocenter is negligible. The maximum scattered dose contribution from the collimators was about 0.15% and 0.4% of the total dose at the isocenter for a 6 and 18 MV beam, respectively. The scattered dose contributions from the flattening filter at the isocenter were about 0.9-3% and 0.2-6% of the total dose for field sizes of 4x4 cm 2 -40x40 cm 2 for the 6 and 18 MV beam, respectively. The study suggests that measurements of head scatter factors be done at large depth well beyond the depth of electron contamination. The insight information may have some implications for developing generalized empirical models to calculate the head scatter
International Nuclear Information System (INIS)
Bell, H.G.
1976-07-01
The energy spectra of Ne studied under different temperatures and pressures with the aid of inelastic, coherent neutron scattering can be described by a scattering law derived from the basic hydrodynamic equations. The Brillouin lines found with very small momentum transfer 0.06 A -1 -1 are interpreted as collective, adiabatic pressure fluctuations. (orig./WL) [de
Effects of the ohmic current on collective scattering spectra
International Nuclear Information System (INIS)
Castiglioni, S.; Lontano, M.; Tartari, U.
1993-01-01
A numerical and analytical study of the modifications induced in the collective scattering spectra by the ohmic current governing the equilibrium magnetic configuration in toroidal plasmas is presented. The spectral density function is calculated assuming equilibrium distributions for the (bulk and impurity) ion species and a Spitzer-like distribution to describe the response of the electrons to the applied DC electric field. As expected, the spectral asymmetries can be non-negligibly enhanced in the region of the ion-acoustic frequency. They reach their maxima for tangential scattering geometries, where the magnetic effects on the spectra are negligible. This justifies the assumption of the non-magnetized spectra. A theoretically motivated potential is shown to exist for a more detailed experimental investigation of the feasibility of current-density measurements in ohmic plasmas, based on collective scattering. (author)
Forward scattering effects on muon imaging
Gómez, H.; Gibert, D.; Goy, C.; Jourde, K.; Karyotakis, Y.; Katsanevas, S.; Marteau, J.; Rosas-Carbajal, M.; Tonazzo, A.
2017-12-01
Muon imaging is one of the most promising non-invasive techniques for density structure scanning, specially for large objects reaching the kilometre scale. It has already interesting applications in different fields like geophysics or nuclear safety and has been proposed for some others like engineering or archaeology. One of the approaches of this technique is based on the well-known radiography principle, by reconstructing the incident direction of the detected muons after crossing the studied objects. In this case, muons detected after a previous forward scattering on the object surface represent an irreducible background noise, leading to a bias on the measurement and consequently on the reconstruction of the object mean density. Therefore, a prior characterization of this effect represents valuable information to conveniently correct the obtained results. Although the muon scattering process has been already theoretically described, a general study of this process has been carried out based on Monte Carlo simulations, resulting in a versatile tool to evaluate this effect for different object geometries and compositions. As an example, these simulations have been used to evaluate the impact of forward scattered muons on two different applications of muon imaging: archaeology and volcanology, revealing a significant impact on the latter case. The general way in which all the tools used have been developed can allow to make equivalent studies in the future for other muon imaging applications following the same procedure.
A study of phonon anisotropic scattering effect on silicon thermal conductivity at nanoscale
Energy Technology Data Exchange (ETDEWEB)
Bong, Victor N-S; Wong, Basil T. [Swinburne Sarawak Research Centre for Sustainable Technologies, Faculty of Engineering, Computing & Science, Swinburne University of Technology Sarawak Campus, 93350 Kuching, Sarawak (Malaysia)
2015-08-28
Previous studies have shown that anisotropy in phonon transport exist because of the difference in phonon dispersion relation due to different lattice direction, as observed by a difference in in-plane and cross-plane thermal conductivity. The directional preference (such as forward or backward scattering) in phonon propagation however, remains a relatively unexplored frontier. Our current work adopts a simple scattering probability in radiative transfer, which is called Henyey and Greenstein probability density function, and incorporates it into the phonon Monte Carlo simulation to investigate the effect of directional scattering in phonon transport. In this work, the effect of applying the anisotropy scattering is discussed, as well as its impact on the simulated thermal conductivity of silicon thin films. While the forward and backward scattering will increase and decrease thermal conductivity respectively, the extent of the effect is non-linear such that forward scattering has a more obvious effect than backward scattering.
A study of phonon anisotropic scattering effect on silicon thermal conductivity at nanoscale
International Nuclear Information System (INIS)
Bong, Victor N-S; Wong, Basil T.
2015-01-01
Previous studies have shown that anisotropy in phonon transport exist because of the difference in phonon dispersion relation due to different lattice direction, as observed by a difference in in-plane and cross-plane thermal conductivity. The directional preference (such as forward or backward scattering) in phonon propagation however, remains a relatively unexplored frontier. Our current work adopts a simple scattering probability in radiative transfer, which is called Henyey and Greenstein probability density function, and incorporates it into the phonon Monte Carlo simulation to investigate the effect of directional scattering in phonon transport. In this work, the effect of applying the anisotropy scattering is discussed, as well as its impact on the simulated thermal conductivity of silicon thin films. While the forward and backward scattering will increase and decrease thermal conductivity respectively, the extent of the effect is non-linear such that forward scattering has a more obvious effect than backward scattering
International Nuclear Information System (INIS)
Dawidowski, J.; Rodríguez Palomino, L.A.; Márquez Damián, J.I.; Blostein, J.J.; Cuello, G.J.
2016-01-01
Highlights: • Effective temperatures of atoms can be determined by the DINS technique. • This is the first time that such application of this experimental technique is made. • This technique is able to measure the known cross sections of the atoms. • No anomalous cross section was found, at variance with Dreissmann’s et al. claims. - Abstract: The present work shows a series of results of Deep Inelastic Neutron Scattering (DINS) experiments on light and heavy water mixtures performed at the spectrometer VESUVIO (Rutherford Appleton Laboratory, UK) employing an analysis method based on the information provided by individual detectors in forward and backward scattering positions. We investigated the effective temperatures of the different atoms composing the samples, a magnitude of considerable interest for Nuclear Engineering. The peak intensities and their relation with the bound-atom cross sections is analyzed, showing a good agreement with tabulated values which supports the use of this technique as non-destructive mass spectrometry. Previous results in the determination of scattering cross sections by this technique (known in the literature) that were at variance with the present findings are commented.
Small-Angle Neutron Scattering investigations of ferrofluids with different carrier liquids
International Nuclear Information System (INIS)
Balasoiu, M.; Avdeev, M. V.; Hasegan, D.; Ghenescu, V.; Ghenescu, M.; Bica, D.; Vekas, L.
2004-01-01
The aim of this paper is to present a method to investigate the properties of magnetic fluids by means of small angle neutron scattering (SANS). Ferrofluids are dispersions of small, single-domain magnetic particles suspended in a fluid carrier. The neutron scattering methods have been largely used the last two decades for the determination of structural properties of magnetic liquids at microscopic level. There can be investigated the structure of the particle, the aggregation phenomena, the magnetic liquid dynamics, particle-surfactant interaction, surfactant liquid-base interaction and structure and magnetic behavior of the samples. SANS is often used in structural studies of ferrofluids exploring two specific features of neutrons, the possibility of wide contrast variation using protonated/deuterated components and high magnetic scattering from ferromagnetics. This method can be effectively used for determination of the structural parameters of ferrofluids at the scale interval of 1-100 nm. In previous SANS experiments with ferrofluids of the same type it was shown that the nuclear scattering is described well by the spherical core-shell model (magnetite core plus surfactant shell) in a wide interval of momentum transfer (0.05 - 5 nm -1 ) and no significant effects of aggregation and interparticle interaction were observed in this interval for the magnetite concentration up to 5 vol. %. Experiments on small angle neutron scattering were carried out on SANS instrument YuMO in function at IBR-2 high pulsed reactor at the Frank Laboratory of Neutron Physics, Joint Institute of Nuclear Research, Dubna, Russia. (authors)
Effective channel approach to nuclear scattering at high energies
International Nuclear Information System (INIS)
Rule, D.W.
1975-01-01
The description of high energy nuclear reactions is considered within the framework of the effective channel approach. A variational procedure is used to obtain an expression for the Green's function in the effective channel, which includes the average fluctuation potential, average energy, and an additional term arising from the non-commutability of the kinetic energy operator and the effective target wave function. The resulting expression for the effective channel, containing one variational parameter, is used to obtain the coupling potential. The resulting formulation is applied to the elastic scattering of 1 GeV protons by 4 He nuclei. A simple Gaussian form is used for the spin--isospin averaged proton--nucleon interaction. The variational parameter in the effective channel wave function is fixed a posteriori via the total p-- 4 He cross section. The effect of the coupling to the effective channel is demonstrated, as well as the effect of each term in the coupled equation for this channel. The calculated elastic cross sections were compared to both the recent data from Saclay and the earlier Brookhaven data for the 1-GeV p-- 4 He elastic scattering cross section. Using proton--nucleus elastic scattering experiments to study the proton--nucleon elastic scattering amplitude is discussed. The main purpose of our study is to investigate the effects on the cross section of varying, within its estimated range of uncertainty, each parameter which enters into the coupled equations. The magnitude of these effects was found to be large enough to conclude that any effects due to dynamical correlations would be obscured by the uncertainties in the input parameters
Quantum effects in deep inelastic neutron scattering
International Nuclear Information System (INIS)
Mayers, J.
1989-07-01
In the Impulse Approximation (IA), which is used to interpret deep inelastic neutron scattering (DINS) measurements, it is assumed both that the target system can be treated as a gas of free atoms and that the struck atom recoils freely after the collision with the neutron. Departures from the IA are generally attributed to final state effects (FSE), which are due to the inaccuracy of the latter assumption. However it is shown that even when FSE are neglected, significant departures from the IA occur at low temperatures due to inaccuracies in the former assumption. These are referred to as initial state effects (ISE) and are due to the quantum nature of the initial state. Comparison with experimental data and exactly soluble models shows that ISE largely account for observed asymmetries and peak shifts in the neutron scattering function S(q,ω), compared with the IA prediction. It is shown that when FSE are neglected, ISE can also be neglected when either the momentum transfer or the temperature is high. Finally it is shown that FSE should be negligible at high momentum transfers in systems other than quantum fluids and that therefore in this regime the IA is reached in such systems. (author)
International Nuclear Information System (INIS)
Popovici, M.
1986-09-01
A consistent treatment of the optics of three-axis spectrometers with curved perfect crystals, the gradient of lattice spacing accounted for, is presented. The mosaic crystal case is treated within the same computational scheme. From the computational point of view, the perfect crystals case is not the zero mosaic spread limit of the mosaic crystals case. The estimation of the residual line-widths in conditions of reciprocal-space focusing allows the discussion of the possibilities and limitations of using spatial correlation effects for improving spectrometer performances. A computer programme is presented which makes it possible to calculate both analytically and numerically the optimal arrangements and the deviations of the optimal parameter values. The optimization of parameters not involved in the analytically expressed reciprocal-space focusing conditions is also possible with this programme. The experimental results presented in this paper show that both the line-widths and the absolute intensities can also be described with reasonable accuracy for the perfect curved crystals case. It is shown experimentally that even at low-flux reactors one can obtain with the aid of perfect curved crystals good resolutions at measurable intensities which are generally higher than those obtainable in conventional spectrometers with flat mosaic crystals
Symmetry effects in neutron scattering from isotopically enriched Se isotopes
Energy Technology Data Exchange (ETDEWEB)
Lachkar, J.; Haouat, G.; McEllistrem, M. T.; Patin, Y.; Sigaud, J.; Cocu, F.
1975-06-01
Differential cross sections for neutron elastic and inelastic scattering from {sup 76}Se, {sup 78}Se, {sup 80}Se and {sup 82}Se, have been measured at 8-MeV incident neutron energy and from {sup 76}Se and {sup 82}Se at 6- and 10-MeV incident energies. The differences observed in the elastic scattering cross sections are interpretable as the effects of isospin term in the scattering potentials. A full analysis of the elastic scattering data are presented.
Non-eikonal effects in high-energy scattering IV. Inelastic scattering
International Nuclear Information System (INIS)
Gurvitz, S.A.; Kok, L.P.; Rinat, A.S.
1978-01-01
Amplitudes of inelastically scattered high-energy projections were calculated. In the scattering on 12 C(Tsub(P)=1 GeV) sizeable non-eikonal corrections in diffraction extrema even for relatively small q 2 are demonstrated. At least part of the anomaly in the 3 - distribution may be due to these non-eikonal effects. (B.G.)
Memory effect for particle scattering in odd spacetime dimensions
Satishchandran, Gautam; Wald, Robert M.
2018-01-01
We investigate the gravitational memory effect for linearized perturbations off of Minkowski space in odd spacetime dimensions d by examining the effects of gravitational radiation from classical point particle scattering. We also investigate analogous memory effects for electromagnetic and scalar radiation. We find that there is no gravitational memory effect in all odd dimensions. For scalar and electromagnetic fields, there is no memory effect for d ≥7 ; for d =3 there is an infinite momentum memory effect, whereas for d =5 there is no momentum memory effect but the displacement of a test particle will grow unboundedly with time. Our results are further elucidated by analyzing the memory effect for any slowly moving source of compact spatial support in odd dimensions.
Inelastic Neutron Scattering Investigations of the Magnetic Excitations
DEFF Research Database (Denmark)
Feile, R; Kjems, Jørgen; Hauser, A.
1984-01-01
The magnetic excitations perpendicular to the antiferromagnetic chains in CsVX3 (X = Cl, Br, I) have been measured in the ordered state by inelastic neutron scattering. The dispersion relations and intensity distributions are those expected for ordinary spin waves in a triangular xy-model....
Back scattering interferometry revisited – A theoretical and experimental investigation
DEFF Research Database (Denmark)
Jørgensen, Thomas Martini; Jepsen, S. T.; Sørensen, Henrik Schiøtt
2015-01-01
A refractive index based detector based on so called back scattering interferometry (BSI) has been described in the literature as a unique optical method for measuring biomolecular binding interactions in solution. In this paper, we take a detailed look at the optical principle underlying this te...
Multiple scattering effects in 7Li
International Nuclear Information System (INIS)
Cox, A.J.; Warner, P.C.
1985-01-01
The differential cross-sections for the production of 0.478 MeV γ-rays following the inelastic scattering of 14 MeV neutrons in large samples of LiF, which will be used in fusion reactor blankets, have been measured. The neutrons were produced using the 3 H(d,n) 4 α reaction, with the deuterons being accelerated by a 150 kV SAMES type accelerator. In order to reduce the background level the γ-ray signal was gated, using a time of flight technique based on the α-particle associated with neutron production. Measurements of the γ-ray production differential cross-sections were made for various thicknesses of LiF. The results were compared to the predictions of the Monte Carlo Computer Code, MORSE, with an agreement of +-11% being achieved. In addition a phenomenological expression was found which is capable of predicting the variation in cross-sections with thickness due to multiple scattering effects to within +-12%. (author)
Complex scattering dynamics and the quantum Hall effects
International Nuclear Information System (INIS)
Trugman, S.A.
1994-01-01
We review both classical and quantum potential scattering in two dimensions in a magnetic field, with applications to the quantum Hall effect. Classical scattering is complex, due to the approach of scattering states to an infinite number of dynamically bound states. Quantum scattering follows the classical behavior rather closely, exhibiting sharp resonances in place of the classical bound states. Extended scatterers provide a quantitative explanation for the breakdown of the QHE at a comparatively small Hall voltage as seen by Kawaji et al., and possibly for noise effects
Approximate Coulomb effects in the three-body scattering problem
International Nuclear Information System (INIS)
Haftel, M.I.; Zankel, H.
1981-01-01
From the momentum space Faddeev equations we derive approximate expressions which describe the Coulomb-nuclear interference in the three-body elastic scattering, rearrangement, and breakup problems and apply the formalism to p-d elastic scattering. The approximations treat the Coulomb interference as mainly a two-body effect, but we allow for the charge distribution of the deuteron in the p-d calculations. Real and imaginary parts of the Coulomb correction to the elastic scattering phase shifts are described in terms of on-shell quantities only. In the case of pure Coulomb breakup we recover the distorted-wave Born approximation result. Comparing the derived approximation with the full Faddeev p-d elastic scattering calculation, which includes the Coulomb force, we obtain good qualitative agreement in S and P waves, but disagreement in repulsive higher partial waves. The on-shell approximation investigated is found to be superior to other current approximations. The calculated differential cross sections at 10 MeV raise the question of whether there is a significant Coulomb-nuclear interference at backward angles
Geometrical effects in X-mode scattering
International Nuclear Information System (INIS)
Bretz, N.
1986-10-01
One technique to extend microwave scattering as a probe of long wavelength density fluctuations in magnetically confined plasmas is to consider the launching and scattering of extraordinary (X-mode) waves nearly perpendicular to the field. When the incident frequency is less than the electron cyclotron frequency, this mode can penetrate beyond the ordinary mode cutoff at the plasma frequency and avoid significant distortions from density gradients typical of tokamak plasmas. In the more familiar case, where the incident and scattered waves are ordinary, the scattering is isotropic perpendicular to the field. However, because the X-mode polarization depends on the frequency ratios and the ray angle to the magnetic field, the coupling between the incident and scattered waves is complicated. This geometrical form factor must be unfolded from the observed scattering in order to interpret the scattering due to density fluctuations alone. The geometrical factor is calculated here for the special case of scattering perpendicular to the magnetic field. For frequencies above the ordinary mode cutoff the scattering is relatively isotropic, while below cutoff there are minima in the forward and backward directions which go to zero at approximately half the ordinary mode cutoff density
Investigation of {sup 17}F+p elastic scattering at near-barrier energies
Energy Technology Data Exchange (ETDEWEB)
El-Azab Farid, M. [Assiut University, Physics Department, Assiut (Egypt); Ibraheem, Awad A. [Al-Azhar University, Physics Department, Assiut (Egypt); King Khalid University, Physics Department, Abha (Saudi Arabia); Al-Hajjaji, Arwa S. [Taiz University, Physics Department, Taiz (Yemen)
2015-10-15
The {sup 17}F +p elastic scattering at two near-barrier energies of 3.5 and 4.3 MeV/nucleon, have been analyzed in the framework of the single folding approach. The folded potentials are constructed by folding the density-dependent (DDM3Y) effective nucleon-nucleon interaction over the nuclear density of the one-proton halo nucleus {sup 17}F. Two versions of the density are considered. In addition, two versions of the one-nucleon knock-on exchange potentials are introduced to construct the real microscopic potentials. The derived potentials supplemented by phenomenological Woods-Saxon imaginary and spin-orbit potentials produced excellent description of the differential elastic scattering cross sections at the higher energy without need to introduce any renormalization. At the lower energy, however, in order to successfully reproduce the data, it is necessary to reduce the strength of the constructed real DDM3Y potential by about 25% of its original value. Furthermore, good agreement with data is obtained using the extracted microscopic DDM3Y potentials for both real and imaginary parts. Moreover, the interesting notch test is applied to investigate the sensitivity of the elastic scattering cross section to the radial distribution of the constructed microscopic potentials. The extracted reaction (absorption) cross sections are, also, investigated. (orig.)
Investigation of 17F+p elastic scattering at near-barrier energies
International Nuclear Information System (INIS)
El-Azab Farid, M.; Ibraheem, Awad A.; Al-Hajjaji, Arwa S.
2015-01-01
The 17 F +p elastic scattering at two near-barrier energies of 3.5 and 4.3 MeV/nucleon, have been analyzed in the framework of the single folding approach. The folded potentials are constructed by folding the density-dependent (DDM3Y) effective nucleon-nucleon interaction over the nuclear density of the one-proton halo nucleus 17 F. Two versions of the density are considered. In addition, two versions of the one-nucleon knock-on exchange potentials are introduced to construct the real microscopic potentials. The derived potentials supplemented by phenomenological Woods-Saxon imaginary and spin-orbit potentials produced excellent description of the differential elastic scattering cross sections at the higher energy without need to introduce any renormalization. At the lower energy, however, in order to successfully reproduce the data, it is necessary to reduce the strength of the constructed real DDM3Y potential by about 25% of its original value. Furthermore, good agreement with data is obtained using the extracted microscopic DDM3Y potentials for both real and imaginary parts. Moreover, the interesting notch test is applied to investigate the sensitivity of the elastic scattering cross section to the radial distribution of the constructed microscopic potentials. The extracted reaction (absorption) cross sections are, also, investigated. (orig.)
International Nuclear Information System (INIS)
Broome, J.
1965-11-01
The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)
Investigation of multimodal forward scatter phenotyping from bacterial colonies
Kim, Huisung
A rapid, label-free, and elastic light scattering (ELS) based bacterial colony phenotyping technology, bacterial rapid detection using optical scattering technology (BARDOT) provides a successful classification of several bacterial genus and species. For a thorough understanding of the phenomena and overcoming the limitations of the previous design, five additional modalities from a bacterial colony: 3D morphology, spatial optical density (OD) distribution, spectral forward scattering pattern, spectral OD, and surface backward reflection pattern are proposed to enhance the classification/identification ratio, and the feasibilities of each modality are verified. For the verification, three different instruments: integrated colony morphology analyzer (ICMA), multi-spectral BARDOT (MS-BARDOT) , and multi-modal BARDOT (MM-BARDOT) are proposed and developed. The ICMA can measure 3D morphology and spatial OD distribution of the colony simultaneously. A commercialized confocal displacement meter is used to measure the profiles of the bacterial colonies, together with a custom built optical density measurement unit to interrogate the biophysics behind the collective behavior of a bacterial colony. The system delivers essential information related to the quantitative growth dynamics (height, diameter, aspect ratio, optical density) of the bacterial colony, as well as, a relationship in between the morphological characteristics of the bacterial colony and its forward scattering pattern. Two different genera: Escherichia coli O157:H7 EDL933, and Staphylococcus aureus ATCC 25923 are selected for the analysis of the spatially resolved growth dynamics, while, Bacillus spp. such as B. subtilis ATCC 6633, B. cereus ATCC 14579, B. thuringiensis DUP6044, B. polymyxa B719W, and B. megaterium DSP 81319, are interrogated since some of the Bacillus spp. provides strikingly different characteristics of ELS patterns, and the origin of the speckle patterns are successfully correlated with
Directory of Open Access Journals (Sweden)
R. Coppola
2016-12-01
Full Text Available High He/dpa microstructural effects have been investigated, by means of small-angle neutron scattering (SANS and transmission electron microscopy (TEM, in B-alloyed ferritic/martensitic steel Eurofer97-1 (0.12 C, 9 Cr, 0.2V, 1.08W wt%, B contents variable between 10 and 1000ppm, neutron irradiated at the High Flux Reactor of the JRC-Petten at temperatures between 250 °C and 450 °C, up do a dose level of 16 dpa. Under these irradiation parameters, B activation is expected to produce corresponding helium contents variable between 80 and 5600appm, with helium bubble distributions relevant for the technological applications. The SANS measurements were carried out under magnetic field to separate nuclear and magnetic SANS components; a reference, un-irradiated sample was also measured to evaluate as accurately as possible the genuine effect of the irradiation on the microstructure. Increasing the estimated helium content from 400 to 5600appm, the analysis of the SANS cross-sections yields an increase in the volume fraction, attributed to helium bubbles, of almost one order of magnitude (from 0.007 to 0.038; furthermore, the difference between nuclear and magnetic SANS components is strongly reduced. These results are discussed in correlation with TEM observations of the same samples and are tentatively attributed to the effect of drastic microstructural changes in Eurofer97-1 for high He/dpa ratio values, possibly relating to the dissolution of large B-carbides due to transmutation reactions.
Microscopic investigations of the backward angle anomaly in elastic α-40Ca scattering
International Nuclear Information System (INIS)
Langanke, K.; Frekers, D.
1978-01-01
Elastic α-scattering on 40 Ca is studied microscopically by the resonating group method (RGM). Absorption effects are simulated by an imaginary potential whose spatial structure is taken to be proportional to the RGM overlap exchange kernel. The experimentally well-known backward anomaly is reproduced by the calculated angular distributions, and a clear connection between the Psub(l) 2 structures at backward angles and l-phase-shift resonances is shown. In this context the consistency of various methods of defining resonances in the presence of absorption is investigated. (Auth.)
The effect of Compton scattering on quantitative SPECT imaging
International Nuclear Information System (INIS)
Beck, J.W.; Jaszczak, R.J.; Starmer, C.F.
1982-01-01
A Monte Carlo code has been developed to simulate the response of a SPECT system. The accuracy of the code has been verified and has been used in this research to study and illustrate the effects of Compton scatter on quantitative SPECT measurements. The effects of Compton scattered radiation on gamma camera response have been discussed by several authors, and will be extended to rotating gamma camera SPECT systems. The unique feature of this research includes the pictorial illustration of the Compton scattered and the unscattered components of the photopeak data on SPECT imaging by simulating phantom studies with and without Compton scatter
Study of double scattering effect in antiproton--deuteron annihilation
International Nuclear Information System (INIS)
Zemany, P.D.
1975-01-01
The double scattering process in the deuteron is investigated for the reaction anti pd → p/sub s/ + mesons. About 30 percent of the apparent anti pn annihilations are involved in double scattering. A model which describes the properties of protons emerging from apparent anti pn annihilations is presented
Interference scattering effects on intermediate resonance absorption at operating temperatures
International Nuclear Information System (INIS)
Goldstein, R.
1975-01-01
Resonance integrals may be accurately calculated using the intermediate resonance (IR) approximation. Results are summarized for the case of an absorber with given potential scattering cross sections and interference scattering parameter admixed with a non absorbing moderator of given cross section and located in a narrow resonance moderating medium. From the form of the IR solutions, it is possible to make some general observations about effects of interference scattering on resonance absorption. 2 figures
Energy Technology Data Exchange (ETDEWEB)
Costa, R. C. da [Universidade Federal de São Carlos, Departamento de Física, São Carlos-SP, 13565-905 (Brazil); Universidade Federal de Campina Grande, Pombal-PB, 58840-000 (Brazil); Toledo, T. A. de; Pizani, P. S., E-mail: pizani@df.ufscar.br [Universidade Federal de São Carlos, Departamento de Física, São Carlos-SP, 13565-905 (Brazil); Espinosa, J. W. M. [Universidade Federal de Goiás, Engenharia de Produção, Catalão-GO, 75704-020 (Brazil)
2015-07-15
The effects of the atomic substitution of Pb by Ni in the PbTiO{sub 3} ferroelectric perovskite on the vibrational and structural properties was studied using x-ray diffraction and Raman scattering. It was observed that for Ni concentrations between 0.0 and 0.4, there is the formation of a solid solution with reduction of the Raman wavenumber of the E(TO1) soft mode and the tetragonallity factor, which influence directly the temperature of the tetragonal ferroelectric to cubic paraelectric phase transition, the Curie temperature. For concentrations greater than 0.4, it is observed the formation of a PbTiO{sub 3} and NiTiO{sub 3} composite, denounced by the recovering of the both, tetragonallity factor and the E(TO1) soft mode wavenumber. The values of the Curie temperatures were estimated by the Raman scattering measurements for temperatures ranging from 300 to 950 K.
Electron-translation effects in heavy-ion scattering
International Nuclear Information System (INIS)
Heinz, U.; Greiner, W.; Mueller, B.
1981-01-01
The origin and importance of electron-translation effects within a molecular description of electronic excitations in heavy-ion collisions is investigated. First, a fully consistent quantum-mechanical description of the scattering process is developed; the electrons are described by relativistic molecular orbitals, while the nuclear motion is approximated nonrelativistically. Leaving the quantum-mechanical level by using the semiclassical approximation for the nuclear motion, a set of coupled differential equations for the occupation amplitudes of the molecular orbitals is derived. In these coupled-channel equations the spurious asymptotic dynamical couplings are corrected for by additional matrix elements stemming from the electron translation. Hence, a molecular description of electronic excitations in heavy-ion scattering has been achieved, which is free from the spurious asymptotic couplings of the conventional perturbated stationary-state approach. The importance of electron-translation effects for continuum electrons and positrons is investigated. To this end an algorithm for the description of continuum electrons is proposed, which for the first time should allow for the calculation of angular distributions for delta electrons. Finally, the practical consequences of electron-translation effects are studied by calculating the corrected coupling matrix elements for the Pb-Cm system and comparing the corresponding K-vacancy probabilities with conventional calculations. We critically discuss conventional methods for cutting off the coupling matrix elements in coupled-channel calculations
Effects of temperature and salinity on light scattering by water
Zhang, Xiaodong; Hu, Lianbo
2010-04-01
A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.
Energy Technology Data Exchange (ETDEWEB)
Falourd, Xavier [UR1268 Biopolymères Interactions Assemblages, INRA, F-44316 Nantes (France); Natali, Francesca [CNR-IOM-OGG, c/o Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France); Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France); Peters, Judith [Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France); Université Joseph Fourier UFR PhITEM, BP 53, 38041 Grenoble Cedex 9 (France); Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1 (France); Foucat, Loïc, E-mail: Loic.Foucat@nantes.inra.fr [UR1268 Biopolymères Interactions Assemblages, INRA, F-44316 Nantes (France)
2014-01-15
Highlights: • Neutron scattering and NMR approaches were used to characterize seed germination. • A parallel between macromolecular motions and water dynamics was established. • Freezing/thawing cycle revealed a hysteresis connected to the seed hydration level. - Abstract: First hours of Medicago truncatula (MT) seeds germination were investigated using elastic incoherent neutron scattering (EINS) and nuclear magnetic resonance (NMR), to follow respectively how macromolecular motions and water mobility evolve when water permeates into the seed. From EINS results, it was shown that there is an increase in macromolecular mobility with the water uptake. Changes in NMR relaxation parameters reflected microstructural changes associated with the recovery of the metabolic processes. The EINS investigation of the effect of temperature on macromolecular motions showed that there is a relationship between the amount of water in the seeds and the effect of freezing–thawing cycle. The NMR relaxometry results obtained at 253 K allowed establishing possible link between the freezing of water molecules tightly bound to macromolecules and their drastic motion restriction around 250 K, as observed with EINS at the highest water content.
Effective exchange potentials for electronically inelastic scattering
International Nuclear Information System (INIS)
Schwenke, D.W.; Staszewska, G.; Truhlar, D.G.
1983-01-01
We propose new methods for solving the electron scattering close coupling equations employing equivalent local exchange potentials in place of the continuum-multiconfiguration-Hartree--Fock-type exchange kernels. The local exchange potentials are Hermitian. They have the correct symmetry for any symmetries of excited electronic states included in the close coupling expansion, and they have the same limit at very high energy as previously employed exchange potentials. Comparison of numerical calculations employing the new exchange potentials with the results obtained with the standard nonlocal exchange kernels shows that the new exchange potentials are more accurate than the local exchange approximations previously available for electronically inelastic scattering. We anticipate that the new approximations will be most useful for intermediate-energy electronically inelastic electron--molecule scattering
Investigation of resonant Raman scattering in type II GaAs/AlAs superlattices
International Nuclear Information System (INIS)
Choi, H.
2001-01-01
As a consequence of the band alignment in GaAs/AIAs superlattices (SLs) and the indirect nature of bulk AIAs, quantum confinement can be used to engineer a Type II system. This produces an electron population in the AIAs longitudinal (X z ) or transverse (X xy ) zone-edge states, which is separated in both direct and reciprocal space from the hole population in the GaAs zone-centre (Γ) states. This thesis is an investigation of the electronic and vibrational structure of Type II GaAs/AIAs SLs using theoretical models and spectroscopic techniques, with special emphasis on Type II resonant Raman (RR) scattering. The majority of this thesis concerns short-period GaAs/AIAs SLs with X z as the lowest conduction band state. A model of the SL electronic band structure is presented, including the effects of interband Γ-X z mixing and the X-point camel's back structure. Interband mixing makes Γ-X z radiative transitions observable in photoluminescence (PL) and RR experiments. Phonon-assisted transitions from the X z state are also observed in PL experiments. Several of the participating phonon modes are unambiguously identified, in good agreement with recent reports. This thesis presents the first detailed experimental and theoretical study of Type II RR scattering from the incoming channel of the X z -related Type II bandgap. The X z - related Type II incoming RR spectra in the GaAs optic phonon region are compared with the Γ-related Type I outgoing RR spectra within several theoretical models. Thereby, the mechanisms of the Type II RR scattering, the origins of the RR lineshape and the polarisation dependence, are fully explained, clarifying the spectral features observed in the GaAs zone-centre optic phonon region. The Type II resonance also allows the observation of zone boundary (X-point) phonons from intervalley (IV) scattering. A model of the IV electron-phonon interaction involving X conduction band electrons and zone boundary phonons in Type II SLs is presented
Dispersive effects from a comparison of electron and positron scattering from
International Nuclear Information System (INIS)
Paul Gueye; M. Bernheim; J. F. Danel; Jean-Eric Ducret; L. Lakehal-Ayat; J. M. Le Goff; A. Magnon; C. March; J. Morgenstern; Jacques Marroncle; Pascal Vernin; A. Zghiche-Lakehal-Ayat; Vincent Breton; Salvatore Frullani; Franco Garibaldi; F. Ghio; Mauro Iodice; D. B. Isabelle; Zein-Eddine Meziani; E. Offermann; M. Traini
1998-01-01
Dispersive effects have been investigated by comparing elastic scattering of electrons and positrons from 12 C at the Saclay Linear Accelerator. The results demonstrate that dispersive effects at energies of 262 MeV and 450 MeV are less than 2% below the first diffraction minimum [0.95 eff (fm -1 ) eff = 1.84 fm -1 ), the deviation between the positron scattering cross section and the cross section derived from the electron results is -44% ± 30%
International Nuclear Information System (INIS)
Lychagin, E.V.; Muzychka, A.Yu.; Nekhaev, G.V.; Strelkov, A.V.; Shvetsov, V.N.; Nesvizhevskij, V.V.; Tal'daev, R.R.
2001-01-01
Inelastic scattering of neutrons with small energy transfer of ∼10 -7 eV was investigated using gravitational UCN spectrometer. The probability of such a process at stainless steel and beryllium surfaces was measured. It was also estimated at copper surface. The measurement showed that the detected flux of neutrons scattered at beryllium and copper surfaces is ∼ 2 times higher at room temperature compared to that at the liquid nitrogen temperature. (author)
International Nuclear Information System (INIS)
Liendo, J.A.; Instituto Venezolano de Investigaciones Cientificas, Caracas; Florida State University, Tallahasse, FL; Gonzalez, A.C.; Rojas, A.; Instituto Venezolano de Investigaciones Cientificas, Caracas; Fletcher, N.R.; Caussyn, D.D.; Barber, P.
2006-01-01
Lithium forward elastic scattering is investigated as an additional method for Z 6,7 Li beams and the elastically scattered beam is detected at 16.45 deg, 20.45 deg and 28.0 deg simultaneously. The quality of elastic spectra improves with sample dilution. The content of C and O in the backing is subtracted. Carbon and oxygen concentrations of the non-diluted AF sample are determined by assuming that elemental concentration varies linearly with dilution. (author)
Al-Taiy, Hassanain Majeed
2017-01-01
Stimulated Brillouin scattering is a third order non-linear effect with the lowest power threshold in standard single mode optical fiber, by which an interaction between optical and acoustic modes takes place. During the Brillouin scattering process, part of the pump wave power will be transferred to a counter propagating wave (Stokes), with a frequency shift of about 11 GHz for a telecommunication wavelength of 1550 nm in a standard single mode fiber. The frequency shift effective parameters...
Coupled channels effects in heavy ion elastic scattering
International Nuclear Information System (INIS)
Bond, P.D.
1977-01-01
The effects of inelastic excitation on the elastic scattering of heavy ions are considered within a coupled channels framework. Both Coulomb and nuclear excitation results are applied to 18 O + 184 W and other heavy ion reactions
Influence of the effective mass of water molecule on thermal neutron scattering
International Nuclear Information System (INIS)
Markovic, M.
1981-01-01
The influence of the effective water molecule mass on the thermal neutron scattering on the nucleus of the hydrogen atom has been investigated. Besides the actual water molecule mass (M = 18) the investigations have been carried out with its two effective values (M1 = 16 and M2 = 20). The differential and total cross sections have been calculated for the incident thermal neutron energy E o = 1 eV. Investigation results show different prominence of the quantum effects and for M2 the appearance of peaks in the quasielastic scattering. (author)
Shaping the light for the investigation of depth-extended scattering media
Osten, W.; Frenner, K.; Pedrini, G.; Singh, A. K.; Schindler, J.; Takeda, M.
2018-02-01
Scattering media are an ongoing challenge for all kind of imaging technologies including coherent and incoherent principles. Inspired by new approaches of computational imaging and supported by the availability of powerful computers, spatial light modulators, light sources and detectors, a variety of new methods ranging from holography to time-of-flight imaging, phase conjugation, phase recovery using iterative algorithms and correlation techniques have been introduced and applied to different types of objects. However, considering the obvious progress in this field, several problems are still matter of investigation and their solution could open new doors for the inspection and application of scattering media as well. In particular, these open questions include the possibility of extending the 2d-approach to the inspection of depth-extended objects, the direct use of a scattering media as a simple tool for imaging of complex objects and the improvement of coherent inspection techniques for the dimensional characterization of incoherently radiating spots embedded in scattering media. In this paper we show our recent findings in coping with these challenges. First we describe how to explore depth-extended objects by means of a scattering media. Afterwards, we extend this approach by implementing a new type of microscope making use of a simple scatter plate as a kind of flat and unconventional imaging lens. Finally, we introduce our shearing interferometer in combination with structured illumination for retrieving the axial position of fluorescent light emitting spots embedded in scattering media.
International Nuclear Information System (INIS)
Monkenbusch, M.
1981-01-01
The structures of benzene (C 6 H 6 , C 6 D 6 ) and toluene (C 6 H 5 -CH 3 , C 6 D 5 -CD 3 ) monolayers on the basal planes of graphite have been investigated by neutron diffraction. The dynamics of the benzene layer has been studied by observing the incoherently, inelastically scattered neutrons using the time-of-flight method. The main results are: Above a phase transition temperature Tsub(c)approx.=145 K benzene on the basal planes of graphite forms a quasi 2D-fluid with high compressibility. For toluene a fluid phase exists above 140 K, between 70 K and 140 K it forms an incommensurate layer and below 70 K a 3x3 structure has been observed. The fluid phase of adsorbed benzene shows a broad quasielastic scattering indicating an effective surface diffusion coefficient of 10 -4 cm 2 /s at 200 K. The inelastic spectrum has been compared with an appropriate lattice dynamical model. The comparison with the data reveals, can be considered as a fairly anharmonic 2D-solid with a static external potential due to the substrate. (orig./HK)
Multiple scattering effects in depth resolution of elastic recoil detection
International Nuclear Information System (INIS)
Wielunski, L.S.; Harding, G.L.
1998-01-01
Elastic Recoil Detection (ERD) is used to profile hydrogen and other low mass elements in thin films at surface and interfaces in a similar way that Rutherford Backscattering Spectroscopy (RBS) is used to detect and profile heavy elements. It is often assumed that the depth resolutions of these two techniques are similar. However, in contrast to typical RBS, the depth resolution of ERD is limited substantially by multiple scattering. In experimental data analysis and/or spectra simulations of a typical RBS measurement multiple scattering effects are often ignored. Computer programs used in IBA, such as RUMP, HYPRA or RBX do not include multiple scattering effects at all. In this paper, using practical thin metal structures with films containing intentionally introduced hydrogen, we demonstrate experimental ERD depth resolution and sensitivity limitations. The effects of sample material and scattering angle are also discussed. (authors)
Multiple scattering effects in depth resolution of elastic recoil detection
Energy Technology Data Exchange (ETDEWEB)
Wielunski, L.S.; Harding, G.L. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Telecommunications and Industrial Physics; Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, Budapest, (Hungary)
1998-06-01
Elastic Recoil Detection (ERD) is used to profile hydrogen and other low mass elements in thin films at surface and interfaces in a similar way that Rutherford Backscattering Spectroscopy (RBS) is used to detect and profile heavy elements. It is often assumed that the depth resolutions of these two techniques are similar. However, in contrast to typical RBS, the depth resolution of ERD is limited substantially by multiple scattering. In experimental data analysis and/or spectra simulations of a typical RBS measurement multiple scattering effects are often ignored. Computer programs used in IBA, such as RUMP, HYPRA or RBX do not include multiple scattering effects at all. In this paper, using practical thin metal structures with films containing intentionally introduced hydrogen, we demonstrate experimental ERD depth resolution and sensitivity limitations. The effects of sample material and scattering angle are also discussed. (authors). 19 refs., 4 figs.
Inelastic Neutron Scattering and Magnetisation Investigation of an Exchange-Coupled Dy2 SMM
Baker, Michael L.; Zhang, Qing; Sarachik, Myriam P.; Kent, Andrew D.; Chen, Yizhang; Butch, Nicholas; Pineda, Eufemio M.; McInnes, Eric
The strong spin orbit coupling and weak crystal field energies of simple exchange-coupled rare earth SMMs makes the precise evaluation of their magnetic properties nontrivial. Here we report a detailed investigation of the single molecule magnet hqH2Dy2(hq)4(NO3)3MeOH. Inelastic neutron scattering is used to obtain direct access to several low energy crystal field excitations. The INS results display several features that are not found in earlier FIR absorption experiments, while other features found in the latter are absent. Based on the effective point charge model, numerical calculations are currently underway to resolve these apparent discrepancies using complementary magnetisation measurements to resolve the exchange between Dy ions. Work supported by ARO W911NF-13-1-1025 (CCNY) and NSF-DMR-1309202 (NYU).
Analysis of multiple scattering effects in optical Doppler tomography
DEFF Research Database (Denmark)
Yura, H.T.; Thrane, L.; Andersen, Peter E.
2005-01-01
Optical Doppler tomography (ODT) combines Doppler velocimetry and optical coherence tomography (OCT) to obtain high-resolution cross-sectional imaging of particle flow velocity in scattering media such as the human retina and skin. Here, we present the results of a theoretical analysis of ODT where...... multiple scattering effects are included. The purpose of this analysis is to determine how multiple scattering affects the estimation of the depth-resolved localized flow velocity. Depth-resolved velocity estimates are obtained directly from the corresponding mean or standard deviation of the observed...
Effects of scattering anisotropy approximation in multigroup radiation shielding calculations
International Nuclear Information System (INIS)
Altiparmakov, D.
1983-01-01
Expansion of the scattering cross sections into Legendre series is the usual way of solving neutron transport problems. Because of the large space gradients of the neutron flux, the effects of that approximation become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account the scattering anisotropy is presented. From the point od view of the accuracy and computing rate, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations. (author)
Scattering Effects of Solar Panels on Space Station Antenna Performance
Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.
1994-01-01
Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.
Effective response and scattering cross section of spherical inclusions in a medium
Energy Technology Data Exchange (ETDEWEB)
Alexopoulos, A., E-mail: Aris.Alexopoulos@dsto.defence.gov.a [Electronic Warfare and Radar Division, Defence Science and Technology Organisation (DSTO), PO Box 1500, Edinburgh 5111 (Australia)
2009-08-24
The Maxwell-Garnett theory for a right-handed homogeneous system is extended in order to investigate the effective response of a medium consisting of low density distributed 3-dimensional inclusions. The polarisability factor is modified to account for inclusions with binary layered volumes and it is shown that such a configuration can yield doubly negative effective permittivity and permeability. Terms representing second-order scattering interactions between binary inclusions in the medium are derived and are used to reformulate conventional effective medium theory. In the appropriate limit, the one-body theory of Maxwell-Garnett is recovered. The scattering cross section of the spherical inclusions is determined and comparison is made to homogeneous dielectric scatterers in the Rayleigh limit. It is found that the scattering resonances can be manipulated using the inclusion parameters. Furthermore, the effect that two-interacting spherical inclusions in a medium have on the scattering cross section is investigated via higher order dipole moments while the issue of reducing the scattering cross section to zero is also examined.
Proteins on surfaces investigated by microbeam grazing incidence small angle X-ray scattering
Energy Technology Data Exchange (ETDEWEB)
Gebhardt, Ronald; Riekel, Christian; Burghammer, Manfred [European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble Cedex (France); Vendrely, Charlotte [Universite de Cergy-Pontoise, ERRMECE, F-95000, Cergy-Pontoise (France); Mueller-Buschbaum, Peter [TU Muenchen, Physik Department E13, Muenchen (Germany)
2009-07-01
Grazing incidence small angle scattering with a 1 micron x-ray beam ({mu}GISAXS) is applied to study structural ordering of casein micelles and fibroin in solution cast films. {mu}GISAXS scans provide the possibility to locate highly ordered areas and to investigate variation in the molecular packing. In the case of the casein micelles, ordered film structures have been generated by decreasing their natural size dispersion. While dynamic light scattering was used to characterize the different size fractions in solution, {mu}GISAXS and roughness are measured on the resulting casein films. GISAXS-Patterns are analyzed by simulations providing the dimension and nearest neighbor distances of casein micelles. In the case of fibroin, ordering of nano-fibers formed during the drying process is investigated. The experimental data are analyzed by simulations and compared to SEM, AFM and Raman scattering experiments.
Relativistic effects in elastic scattering of electrons in TEM
International Nuclear Information System (INIS)
Rother, Axel; Scheerschmidt, Kurt
2009-01-01
Transmission electron microscopy typically works with highly accelerated thus relativistic electrons. Consequently the scattering process is described within a relativistic formalism. In the following, we will examine three different relativistic formalisms for elastic electron scattering: Dirac, Klein-Gordon and approximated Klein-Gordon, the standard approach. This corresponds to a different consideration of spin effects and a different coupling to electromagnetic potentials. A detailed comparison is conducted by means of explicit numerical calculations. For this purpose two different formalisms have been applied to the approaches above: a numerical integration with predefined boundary conditions and the multislice algorithm, a standard procedure for such simulations. The results show a negligibly small difference between the different relativistic equations in the vicinity of electromagnetic potentials, prevailing in the electron microscope. The differences between the two numeric approaches are found to be small for small-angle scattering but eventually grow large for large-angle scattering, recorded for instance in high-angle annular dark field.
Pion inelastic scattering and the pion-nucleus effective interaction
International Nuclear Information System (INIS)
Carr, J.A.
1983-01-01
This work examines pion inelastic scattering with the primary purpose of gaining a better understanding of the properties of the pion-nucleus interaction. The main conclusion of the work is that an effective interaction which incorporates the most obvious theoretical corrections to the impulse approximation does a good job of explaining pion elastic and inelastic scattering from zero to 200 MeV without significant adjustments to the strength parameters of the force. Watson's multiple scattering theory is used to develop a theoretical interaction starting from the free pion-nucleon interaction. Elastic scattering was used to calibrate the isoscalar central interaction. It was found that the impulse approximation did poorly at low energy, while the multiple scattering corrections gave good agreement with all of the data after a few minor adjustments in the force. The distorted wave approximation for the inelastic transition matrix elements are evaluated for both natural and unnatural parity excitations. The isoscalar natural parity transitions are used to test the reaction theory, and it is found that the effective interaction calibrated by elastic scattering produces good agreement with the inelastic data. Calculations are also shown for other inelastic and charge exchange reactions. It appears that the isovector central interaction is reasonable, but the importance of medium corrections cannot be determined. The unnatural parity transitions are also reasonably described by the theoretical estimate of the spin-orbit interaction, but not enough systematic data exists to reach a firm conclusion
Investigation of nanoscale structures by small-angle X-ray scattering in a radiochromic dosimeter
DEFF Research Database (Denmark)
Skyt, Peter Sandegaard; Jensen, Grethe Vestergaard; Wahlstedt, Isak Hannes
2014-01-01
This study examines the nanoscale structures in a radiochromic dosimeter that was based on leuco-malachite-green dye and the surfactant sodium dodecyl sulfate (SDS) suspended in a gelatin matrix. Small-angle X-ray scattering was used to investigate the structures of a range of compositions...
Monte Carlo simulations of multiple scattering effects in ERD measurements
International Nuclear Information System (INIS)
Doyle, Barney Lee; Arstila, Kai.; Nordlumd, K.; Knapp, James Arthur
2003-01-01
Multiple scattering effects in ERD measurements are studied by comparing two Monte Carlo simulation codes, representing different approaches to obtain acceptable statistics, to experimental spectra measured from a HfO 2 sample with a time-of-flight-ERD setup. The results show that both codes can reproduce the absolute detection yields and the energy distributions in an adequate way. The effect of the choice of the interatomic potential in multiple scattering effects is also studied. Finally the capabilities of the MC simulations in the design of new measurement setups are demonstrated by simulating the recoil energy spectra from a WC x N y sample with a low energy heavy ion beam.
Scattering theory and effective medium approximations to heterogeneous materials
International Nuclear Information System (INIS)
Gubernatis, J.E.
1977-01-01
The formal analogy existing between problems studied in the microscopic theory of disordered alloys and problems concerned with the effective (macroscopic) behavior of heterogeneous materials is discussed. Attention is focused on (1) analogous approximations (effective medium approximations) developed for the microscopic problems by scattering theory concepts and techniques, but for the macroscopic problems principally by intuitive means, (2) the link, provided by scattering theory, of the intuitively developed approximations to a well-defined perturbative analysis, (3) the possible presence of conditionally convergent integrals in effective medium approximations
The Aharonov–Bohm effect in scattering theory
International Nuclear Information System (INIS)
Sitenko, Yu.A.; Vlasii, N.D.
2013-01-01
The Aharonov–Bohm effect is considered as a scattering event with nonrelativistic charged particles of the wavelength which is less than the transverse size of an impenetrable magnetic vortex. The quasiclassical WKB method is shown to be efficient in solving this scattering problem. We find that the scattering cross section consists of two terms, one describing the classical phenomenon of elastic reflection and another one describing the quantum phenomenon of diffraction; the Aharonov–Bohm effect is manifested as a fringe shift in the diffraction pattern. Both the classical and the quantum phenomena are independent of the choice of a boundary condition at the vortex edge, providing that probability is conserved. We show that a propagation of charged particles can be controlled by altering the flux of a magnetic vortex placed on their way. -- Highlights: •Aharonov–Bohm effect as a scattering event. •Impenetrable magnetic vortex of nonzero transverse size. •Scattering cross section is independent of a self-adjoint extension employed. •Classical phenomenon of elastic reflection and quantum phenomenon of diffraction. •Aharonov–Bohm effect as a fringe shift in the diffraction pattern
Effect of neutron anisotropic scattering in fast reactor analysis
International Nuclear Information System (INIS)
Chiba, Gou
2004-01-01
Numerical tests were performed about an effect of a neutron anisotropic scattering on criticality in the Sn transport calculation. The simplest approximation, the consistent P approximation and the extended transport approximation were compared with each other in one-dimensional slab fast reactor models. JAERI fast set which has been used for fast reactor analyses is inadequate to evaluate the effect because it doesn't include the scattering matrices and the self-shielding factors to calculate the group-averaged cross sections weighted by the higher-order moment of angular flux. In the present study, the sub-group method was used to evaluate the group-averaged cross sections. Results showed that the simplest approximation is inadequate and the transport approximation is effective for evaluating the anisotropic scattering. (author)
REVISITING THE SCATTERING GREENHOUSE EFFECT OF CO2 ICE CLOUDS
International Nuclear Information System (INIS)
Kitzmann, D.
2016-01-01
Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO 2 dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone
International Nuclear Information System (INIS)
Juan, Li; Li-Xin, Guo; Hao, Zeng
2009-01-01
Electromagnetic scattering from one-dimensional two-layered rough surfaces is investigated by using finite-difference time-domain algorithm (FDTD). The uniaxial perfectly matched layer (UPML) medium is adopted for truncation of FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. The rough surfaces are characterized with Gaussian statistics for the height and the autocorrelation function. The angular distribution of bistatic scattering coefficient from single-layered perfect electric conducting and dielectric rough surface is calculated and it is in good agreement with the numerical result with the conventional method of moments. The influence of the relative permittivity, the incident angle, and the correlative length of two-layered rough surfaces on the bistatic scattering coefficient with different polarizations are presented and discussed in detail. (fundamental areas of phenomenology (including applications))
Cluster explosion investigated by linearly chirped spectral scattering of an expanding plasma sphere
International Nuclear Information System (INIS)
Liu Jiansheng; Wang Cheng; Liu Bingchen; Shuai Bin; Wang Wentao; Cai Yi; Li Hongyu; Ni Guoquan; Li Ruxin; Xu Zhizhan
2006-01-01
Femtosecond explosive processes of argon clusters irradiated by linearly chirped ultraintense laser pulses have been investigated by 90 deg. side spectral scattering. The spectral redshift and blueshift, which correlate with the cluster explosion processes have been measured for negatively and positively chirped driving laser pulses, respectively. The evolution of the heated-cluster polarizability indicates that the core of the cluster is shielded from the laser field in the beginning of the explosion and enhanced scattering occurs after the fast explosion initiates. Evidence of resonant heating is found from the coincidence of enhanced scattering with enhanced absorption measured using the transmitted spectra. Anomalously large-size clusters with very low gas density have been observed in this way and can be used as clean and important cluster targets
Diffraction and angular momentum effects in semiclassical atomic scattering theory
International Nuclear Information System (INIS)
Russek, A.
1979-01-01
The semiclassical scattering theory of Mott and Massey and Ford and Wheeler is here extended to multichannel scattering as occurs at a crossing or pseudocrossing of the transient molecule formed by the colliding atoms. The generalized theory incorporates both interference and diffraction phenomena, but the emphasis in this work is on diffraction. For small-angle scattering, diffraction effects become broader, not narrower, as the collision energy increases: ΔbΔtau > or = h[E/sub inc//(2m)]/sup 1/2/ relates the uncertainties in impact parameter b and reduced scattering angle tau = E/sub inc/theta, and determines the range in b required to resolve a structure in the deflection function of height Δtau. In the kilovolt range of collision energies, the effects of local maxima and minima in the deflection function are washed out, and the Airy-function approximation of Ford and Wheeler is inappropriate to describe the differential cross section. More generally, it is shown that at keV collision energies the stationary-phase approximation, heretofore essential in the reduction to the semiclassical limit, breaks down in the vicinity of a level crossing. An approximate theorem is proposed which remains valid in this region and elsewhere reduces to the standard stationary-phase approximation. Several illustrative examples are considered. A separate development treats the effect on the differential scattering cross section of a change in electronic angular momentum when electronic excitation occurs
Scattering of decuplet baryons in chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Haidenbauer, J. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Petschauer, S.; Kaiser, N.; Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany)
2017-11-15
A formalism for treating the scattering of decuplet baryons in chiral effective field theory is developed. The minimal Lagrangian and potentials in leading-order SU(3) chiral effective field theory for the interactions of octet baryons (B) and decuplet baryons (D) for the transitions BB → BB, BB <-> DB, DB → DB, BB <-> DD, DB <-> DD, and DD → DD are provided. As an application of the formalism we compare with results from lattice QCD simulations for ΩΩ and NΩ scattering. Implications of our results pertinent to the quest for dibaryons are discussed. (orig.)
Effect of thallium impurity on hole scattering in lead telluride
International Nuclear Information System (INIS)
Kajdanov, V.I.; Nemov, S.A.
1981-01-01
Hole mobility in PbTe monocrystalline specimens in the temperature range from 4.2 to 300 K has been investigated. Detected is a sharp increase in scattering cross section of light and heavy holes in the specimens having the Hall hole concentration p approximately (5+-9)x10 19 cm -3 explained by resonant scattering into a band of quasilocal states of thallium located lower than the ceiling of heavy carrier zone by 0.01+-0.01 eV. Very large differences in resonant scattering of current carriers into the quasilocal states of In and Tl in PbTe result from the inertial polarizability of a crystal. The same mechanism is used to explain long-lived relaxation of zone electron concentration in lead telluride and Pbsub(1-x)Snsub(x)Te doped with indium [ru
Slit scattering effects in a well aligned pepper pot
International Nuclear Information System (INIS)
Power, J. G.
2003-01-01
A pepper pot is a device used to measure a medium energy (< 20 MeV) electron beam's transverse emittance by sampling its transverse phase space. This is accomplished by blocking most of the incident electron beam, while allowing small 'beamlets' to pass through openings in a mask. The accuracy of the transverse emittance measured by a pepper pot is limited by several factors including, electrons leaking through the solid region of the mask, the imaging system resolution and dynamic range, scattering, etc. While the noise contributions from the prior quantities can be easily estimated, scattering effects have previously been neglected due to the difficulty in estimating the effect. In this paper, EGS4 simulations are presented to determine the affect of scattering on emittance measurements for an 8 MeV electron beam
Effect of surface roughness scattering on the transport properties of a 2DEG
International Nuclear Information System (INIS)
Yarar, Z.
2004-01-01
In this work surface roughness scattering of electrons in a two dimensional electron gas (2DEG) formed at heterojunction interfaces is investigated for various auto-correlation functions. Gaussian, exponential and Lorentzian auto-correlation functions are used to represent surface roughness. Poisson and Schrodinger equations are solved self consistently at the hetero interface to find the energy levels, the wave functions corresponding to each level and electron concentrations at each level. Using these wave functions and the auto-correlation functions mentioned above, the scattering rates due to surface roughness are calculated. Scattering rates resulting from acoustic and optical phonons are also calculated. These rates are used to study the transport properties of the two dimensional electrons using ensemble Monte Carlo method at various temperatures. Emphasis is given to the effect of surface roughness scattering on the transport properties of the electrons
Preliminary investigation of an atmospheric microplasma using Raman and Thomson laser scattering
Sommers, Bradley; Adams, Steven
2014-10-01
A triple grating spectrometer system has been coupled with an ultraviolet laser at 266 nm for the purpose of investigating Rayleigh, Raman, and Thomson scattering within atmospheric plasma sources. Such laser interactions present a non-invasive diagnostic to investigate small scale atmospheric plasma sources, which have recently garnered interest for applications in remote optical sensing, materials processing, and environmental decontamination. In this work, the laser scatter and temperature relationship were calibrated with a heated nitrogen cell held at atmospheric pressure while subsequent scattering measurements were made in atmospheric discharges composed of nitrogen and air. An adjustable electrode configuration and dc circuit were assembled to produce a microdischarge operating in normal glow mode, thus providing a non-thermal plasma in which the translational, rotational, vibrational and electron temperatures are not in equilibrium. Preliminary results include measurements of these temperatures, which were calculated by fitting simulated scattering spectra to the experimental data obtained using the triple grating spectrometer. Measured temperatures were also compared with those obtained using standard optical emission spectroscopy methods. Special thanks to the NRC Research Associateship Program.
Effects of multiple scattering and target structure on photon emission
International Nuclear Information System (INIS)
Blankenbecler, R.
1996-05-01
The Landau-Pomeranchuk-Migdal effect is the suppression of Bethe-Heitler radiation caused by multiple scattering in the target medium. The quantum treatment given by S.D. Drell and the author for homogeneous targets of finite thickness will be reviewed. It will then be extended to structured targets. In brief, it is shown that radiators composed of separated plates or of a medium with a spatially varying radiation length can exhibit unexpected structure, even coherence maxima and minima, in their photon spectra. Finally, a functional integral method for performing the averaging implicit in multiple scattering will be briefly discussed and the leading corrections to previous results evaluated
Reconstruction of atomic effective potentials from isotropic scattering factors
International Nuclear Information System (INIS)
Romera, E.; Angulo, J.C.; Torres, J.J.
2002-01-01
We present a method for the approximate determination of one-electron effective potentials of many-electron systems from a finite number of values of the isotropic scattering factor. The method is based on the minimum cross-entropy technique. An application to some neutral ground-state atomic systems has been done within a Hartree-Fock framework
Effective single scattering albedo estimation using regional climate model
CSIR Research Space (South Africa)
Tesfaye, M
2011-09-01
Full Text Available In this study, by modifying the optical parameterization of Regional Climate model (RegCM), the authors have computed and compared the Effective Single-Scattering Albedo (ESSA) which is a representative of VIS spectral region. The arid, semi...
Effective lagrangian for Kaon-nucleon scattering
International Nuclear Information System (INIS)
Andrade, S.C.B. de; Ferreira, E.M.
1980-11-01
A model for the Kaon-nucleon interaction is investigated, based on a lagrangian which includes the Yukawa interactions of hyperons, kaons and nucleons plus contact terms representing short range interactions in each isospin state. All diagrams up to fourth order are evaluated and the partial wave S matrix elements are unitarized through diagonal Pade approximants. The results of the calculations with this model give a good description of all experimental data on both I = O and I = 1 states of the KN system at low and intermediate energies. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Deshmukh, N.N. [The M.S. University of Baroda, Department of Physics, Faculty of Science, Vadodara (India); Parul Institute of Engineering and Technology, Physics Department, Degree (First Shift), Limda, Waghodia, Vadodara (India); Mukherjee, S.; Appannababu, S.; Patel, D. [The M.S. University of Baroda, Department of Physics, Faculty of Science, Vadodara (India); Nayak, B.K.; Biswas, D.C.; Santra, S.; Mirgule, E.T.; Saxena, A.; Choudhury, R.K. [BARC Mumbai, Nuclear Physics Division, Mumbai (India); Lubian, J.; Gomes, P.R.S. [Universidade Federal Fluminense, Instituto de Fisica, Niteroi (Brazil)
2011-10-15
Elastic-scattering angular distributions of {sup 7}Li on {sup 116}Sn have been measured at different bombarding energies between 18 to 35 MeV. The effects of the weakly bound projectile breakup channel on the bombarding energy dependence of the interaction potential have been investigated. In this work we present the experimental results, along with the theoretical analysis using Woods-Saxon potential to investigate the energy dependence of the interacting polarizing potentials. Total reaction cross-sections are also presented and discussed. (orig.)
Investigation of isothermal water infiltration into fired clay brick by scattered neutrons
International Nuclear Information System (INIS)
El Abd, A.; Abdel-Monem, A.M.; Kansouh, W.A.
2012-01-01
A method based on neutron scattering was proposed to investigate isothermal water infiltration in porous media. Two different kinds of fired clay bricks were investigated. While the sample absorb water, scattered neutrons from the different wetted regions, along the flow direction were continuously recorded. The results were discussed in terms of the theory of water infiltration in unsaturated porous media as well as by an anomalous diffusion approach. It was shown that the infiltration process in the Canadian clay brick (CCB) is Fickian and the water diffusivity was analytically determined, while it is non-Fickian in the Egyptian clay brick (ECB). The infiltration process in ECB can be modeled as a two stage Fickian process, at the low and high absorption times. The anomalous diffusion approach failed to describe the diffusion process in the ECB at all water contents. (author)
Time reversal odd effects in semi-inclusive deep inelastic scattering
International Nuclear Information System (INIS)
Schlegel, M.
2006-04-01
In this thesis the semi-iclusive deep inelastic scattering l+h→l'+h+X is studied in the framework of the parton model. Especially sum rules are checked which contain transverse-momentum dependent parton distributions. Furthermore the influence of T-odd effects on the subleading order of a twist expansion are investigated. (HSI)
A non-destructive scattering technique for investigation of pulmonary edema
International Nuclear Information System (INIS)
Sharma, Amandeep; Singh, Bhajan; Sandhu, B.S.
2012-01-01
In many biomedical studies, the density of a biological system is of great importance to investigate its structure or functioning. In the present work, for the density measurement of lung phantom, the scattering of 59.54 and 662 keV gamma photons are studied using HPGe and NaI(Tl) detectors, respectively. Phantoms simulating lung density are prepared by mixing appropriate amount of saw dust and distilled water. The regression lines, obtained from experimental data of scattered spectra, provide the amount of excessive water storage in lungs, hence the technique has the potential for a measure of pathological state like pulmonary edema. The technique is quite sensitive for small change (∼23 Kg m −3 ) in the density of lung phantom. Also, Compton scatter profile measurements (in case of 59.54 keV) results that the technique is less sensitive beyond chest wall thickness of ∼26 mm due to overlying scatter components in the measured spectrum. A portable non-invasive system described presently may be used for various industrial applications also. - Highlights: ► Measurements specify the pathological state like pulmonary edema. ► Rayleigh to Compton ratio, Wing ratio and Compton profile authenticate the results. ► The radiation dose available to chest will be lesser in comparison to chest X-ray. ► Portable system can be used for density measurements in industrial applications.
Structure effects in the elastic scattering for the 16O + 46,50Ti systems
International Nuclear Information System (INIS)
Werner, J.C.; Leal, L.A.S.; Munhoz, M.G.; Carlin, N.; Chamon, L.C.; Added, N.; Brage, J.A.P.; Liguori Neto, R.; Coimbra, M.M.; Moura, M.M. de; Souza, F.A.; Suaide, A.A.P.; Szanto, E.M.; Szanto de Toledo, A.; Takahashi, J.
2007-01-01
Nuclear structure effects observed in the sub-Coulomb fusion of heavy-ions demand a careful investigation of the reaction cross section and optical potentials near the Coulomb barrier. The elastic scattering for the 16 O + 46,50 Ti systems was investigated in the bombarding energy range 30= lab = 46 Ti and the neutron magic 50 Ti targets. This result is in agreement with the observation of no significant structure effects in the fusion cross section study for the same systems
Faraday effect on stimulated Raman scattering in the linear region
Liu, Z. J.; Li, B.; Xiang, J.; Cao, L. H.; Zheng, C. Y.; Hao, L.
2018-04-01
The paper presents the effect of Faraday rotation on stimulated Raman scattering (SRS). When light propagates along the magnetic field upon plasma, Faraday rotation occurs. The rotation angle can be expressed as {{d}}θ /{{d}}{s}=2.93× {10}-4B\\tfrac{{n}e/{n}c}{\\sqrt{1-{n}e/{n}c}} {cm}}-1 approximately, where θ is the rotation angle and s is distance, n e is the electron density, n c is the critical density and B is magnetic field in unit of Gauss. Both the incident light and Raman light have Faraday effects. The angle between the polarization directions of incident light and Raman light changes with position. The driven force of electron plasma wave also reduces, and then SRS scattering level is reduced. Faraday rotation effect can increase the laser intensity threshold of Raman scattering, even if the magnetic field strength is small. The circularly polarized light incident case is also compared with that of the linearly polarized light incident. The Raman scattering level of linearly polarized light is much smaller than that of circularly polarized light in the magnetized plasma. The difference between linearly and circularly polarized lights is also discussed.
Malavasi, Lorenzo
2011-04-21
In this Perspective article we give an account of the application of total scattering methods and pair distribution function (PDF) analysis to the investigation of materials for clean energy applications such as materials for solid oxide fuel cells and lithium batteries, in order to show the power of this technique in providing new insights into the structure-property correlation in this class of materials.
International Nuclear Information System (INIS)
Glavata, D.; Pleshtil, I.; Kunchenko, A.B.; Ostanevich, Yu.M.
1982-01-01
Neutron experiments performed by the contrast (background) variation method allows to understand better the role that hydration plays in the study of macromolecules and to draw the connection between the excess scattering amplitude of hydrated molecule with its partial volume. The observed dependence of the compensation point on the degree of neutralization apparently plays an important role in the investigation of polyelectrolytes of biological origin
Creanga, Dorina; Balasoiu, Maria; Soloviov, Dmitro; Balasoiu-Gaina, Alexandra-Maria; Puscasu, Emil; Lupu, Nicoleta; Stan, Cristina
2018-03-01
Preliminary small-angle neutron scattering investigations on aqueous suspensions of several cobalt doped ferrites (CoxFe3-xO4, x=0; 0.5; 1) nanoparticles prepared by chemical co-precipitation method, are reported. The measurements were accomplished at the YuMO instrument in function at the IBR-2 reactor. Results of intermediary data treatment are presented and discussed.
International Nuclear Information System (INIS)
Fedotov, V.K.; Antonov, V.E.; Kolesnikov, A.I.; Kornell, K.; Vipf, G.; Grosse, G.; Vagner, F.Eh.; Sikolenko, V.V.; Sumin, V.V.; )
1997-01-01
The FCC-lattice of the solid solution α-MnH 0.073 with the mass of 8.45 g is investigated by the neutron diffraction method and the inelastic neutron scattering technique. The neutron diffraction measurements are made by the diffractometer D1B with pyrographite monochromator and the high-resolution Fourier diffractometer HRFD at 300 K. The study of the inelastic incoherent neutron scattering is carried out by means of the inverse geometry spectrometer KDSOG-M at 90 K. The comparative analysis of α-MnH 0.073 and α-Mn spectra is fulfilled for the more correct separation of effects of hydrogen introduction. It is found out that the structure of the solid solution α-MnH 0.073 belongs to the same spatial group I-43m as the structure of α-Mn [ru
Sharma, A.; Janssen, N.M.A.; Matthijssen, S.J.G.; de Leeuw, D.M.; Kemerink, M.; Bobbert, P.A.
2011-01-01
We investigate the effect of Coulomb scattering from trapped charges on the mobility in the two-dimensional channel of an organic field-effect transistor. The number of trapped charges can be tuned by applying a prolonged gate bias. Surprisingly, after increasing the number of trapped charges to a
Small-angle x-ray scattering investigation of the solution structure of troponin C
International Nuclear Information System (INIS)
Hubbard, S.R.; Hodgson, K.O.; Doniach, S.
1988-01-01
X-ray crystallographic studies of troponin C have revealed a novel protein structure consisting of two globular domains, each containing two Ca 2+ -binding sites, connected via a nine-turn alpha-helix, three turns of which are fully exposed to solvent. Since the crystals were grown at pH approximately 5, it is of interest to determine whether this structure is applicable to the protein in solution under physiological conditions. We have used small-angle x-ray scattering to examine the solution structure of troponin C at pH 6.8 and the effect of Ca 2+ on the structure. The scattering data are consistent with an elongated structure in solution with a radius of gyration of approximately 23.0 A, which is quite comparable to that computed for the crystal structure. The experimental scattering profile and the scattering profile computed from the crystal structure coordinates do, however, exhibit differences at the 40-A level. A weak Ca 2+ -facilitated dimerization of troponin C was observed. The data rule out large Ca 2+ -induced structural changes, indicating rather that the molecule with Ca 2+ bound is only slightly more compact than the Ca 2+ -free molecule
Longwave scattering effects on fluxes in broken cloud fields
Energy Technology Data Exchange (ETDEWEB)
Takara, E.E.; Ellingson, R.G. [Univ. of Maryland, College Park, MD (United States)
1996-04-01
The optical properties of clouds in the radiative energy balance are important. Most works on the effects of scattering have been in the shortwave; but longwave effects can be significant. In this work, the fluxes above and below a single cloud layer are presented, along with the errors in assuming flat black plate clouds or black clouds. The predicted fluxes are the averaged results of analysis of several fields with the same cloud amount.
Dyson Orbitals, Quasi-Particle effects and Compton scattering
Barbiellini, B.; Bansil, A.
2004-01-01
Dyson orbitals play an important role in understanding quasi-particle effects in the correlated ground state of a many-particle system and are relevant for describing the Compton scattering cross section beyond the frameworks of the impulse approximation (IA) and the independent particle model (IPM). Here we discuss corrections to the Kohn-Sham energies due to quasi-particle effects in terms of Dyson orbitals and obtain a relatively simple local form of the exchange-correlation energy. Illust...
Energy Technology Data Exchange (ETDEWEB)
Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA and Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Basque Country (Spain); Iurov, Andrii [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10065 (United States); Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, NM 87117 (United States); Fekete, Paula [West Point Military Academy, West Point, NY (United States); Zhemchuzhna, Liubov [Department of Physics, North Carolina Central University, Durham, North Carolina 27707 (United States)
2014-03-31
A two-dimensional periodic array of scatterers has been introduced to a single layer of graphene in the presence of an external magnetic field perpendicular to the graphene layer. The eigenvalue equation for such a system has been solved numerically to display the structure of split Landau subbands as functions of both wave number and magnetic flux. The effects of pseudo-spin coupling and Landau subbands mixing by a strong scattering potential have been demonstrated. Additionally, we investigated the square barrier tunneling problem when magnetic field is present, as well as demonstrate the crucial difference in the modulated band structure between graphene and the two-dimensional electron gas. The low-magnetic field regime is particularly interesting for Dirac fermions and has been discussed. Tunneling of Dirac electrons through a magnetic potential barrier has been investigated to complement the reported results on electrostatic potential scattering in the presence of an ambient magnetic field.
International Nuclear Information System (INIS)
Gumbs, Godfrey; Iurov, Andrii; Huang, Danhong; Fekete, Paula; Zhemchuzhna, Liubov
2014-01-01
A two-dimensional periodic array of scatterers has been introduced to a single layer of graphene in the presence of an external magnetic field perpendicular to the graphene layer. The eigenvalue equation for such a system has been solved numerically to display the structure of split Landau subbands as functions of both wave number and magnetic flux. The effects of pseudo-spin coupling and Landau subbands mixing by a strong scattering potential have been demonstrated. Additionally, we investigated the square barrier tunneling problem when magnetic field is present, as well as demonstrate the crucial difference in the modulated band structure between graphene and the two-dimensional electron gas. The low-magnetic field regime is particularly interesting for Dirac fermions and has been discussed. Tunneling of Dirac electrons through a magnetic potential barrier has been investigated to complement the reported results on electrostatic potential scattering in the presence of an ambient magnetic field
Chen, X. W.; Zhao, C. Y.; Wang, B. X.
2018-05-01
Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.
International Nuclear Information System (INIS)
Singh, Gurvinderjit; Singh, Manpreet; Sandhu, B.S.; Singh, Bhajan
2008-01-01
The energy, intensity and angular distributions of multiple scattering of 662 keV gamma photons, emerging from targets of pure elements and binary alloys, are observed as a function of target thickness in reflection and transmission geometries. The observed spectra recorded by a properly shielded NaI (Tl) scintillation detector, in addition to singly scattered events, consist of photons scattered more than once for thick targets. To extract the contribution of multiply scattered photons from the measured spectra, a singly scattered distribution is reconstructed analytically. We observe that the numbers of multiply scattered events increase with increase in target thickness, and saturate for a particular thickness called saturation thickness. The saturation thickness decreases with increasing atomic number. The multiple scattering, an interfering background noise in Compton profiles and Compton cross-section measurements, has been successfully used as a new technique to assign the 'effective atomic number' to binary alloys. Monte Carlo calculations support the present experimental results
More effective field theory for non-relativistic scattering
International Nuclear Information System (INIS)
Kaplan, D.B.
1997-01-01
An effective field theory treatment of nucleon-nucleon scattering at low energy shows much promise and could prove to be a useful tool in the study of nuclear matter at both ordinary and extreme densities. The analysis is complicated by the existence a large length scale - the scattering length -which arises due to couplings in the short distance theory being near critical values. I show how this can be dealt with by introducing an explicit s-channel state in the effective field theory. The procedure is worked out analytically in a toy example. I then demonstrate that a simple effective field theory excellently reproduces the 1 S 0 np phase shift up to the pion production threshold. (orig.)
International Nuclear Information System (INIS)
Maitland, C.F.; Buckley, C.E.; O'Connor, B.H.; Rowles, M.R.; Hart, R.D.; Gilbert, E.P.; Connolly, J.
2005-01-01
Full text: Rowles and O'Connor optimised the compressive strength of a geopolymer produced by sodium silicate-activation of metakaolinite, and found that this material may have a greater compressive strength than ordinary Portland cement. It has been observed that similar metakaolin-based geopolymers have a multiscale structure that consists of partially dissolved metakaolinite embedded in a nanoporous matrix. The characteristics of the nanostructure within this matrix influence the physical properties of the geopolymer. An investigation, using small-angle neutron scattering and imaging techniques, into how the matrix nanostructure varies with chemical composition of the starting material has been undertaken. The results of this investigation will be reported. (authors)
Investigation of density fluctuations in the ASDEX tokamak via collective laser scattering
International Nuclear Information System (INIS)
Dodel, G.; Holzhauer, E.
1990-01-01
A 119μm laser scattering experiment is used on ASDEX to investigate wavenumber and frequency spectra of the density fluctuations occurring in the different operational modes of the machine. The aim of the measurements is to get insight in the physical nature of the fluctuations and their possible role in connection with anomalous transport. Since no complete theory exists, the simple guidelines of gyroradius-scaling and mixinglength level are used in the choice of parameters to be varied. Particular emphasis has been placed on the investigation of the fluctuations in the ohmic phase. (author) 1 ref., 3 figs
Investigation of density fluctuations in the ASDEX tokamak via collective laser scattering
International Nuclear Information System (INIS)
Dodel, G.; Holzhauer, E.
1990-01-01
A 119 μm laser scattering experiment is used on ASDEX to investigate wavenumber and frequency spectra of the density fluctuations occurring in the different operational modes of the machine. The aim of the measurements is to get insight in the physical nature of the fluctuations and their possible role in connection with anomalous transport. Since no complete theory exists, the simple guidelines of gyroradius-scaling and mixinglength level are used in the choice of parameters to be varied. Particular emphasis has been placed on the investigation of the fluctuations in the ohmic phase. (orig./AH)
International Nuclear Information System (INIS)
Ditroi, F.; Meyer, J.D.; Michelmann, R.; Kislat, D.; Bethge, K.
1994-01-01
Crystalline silicon samples were investigated both in channeling and random directions by using the (p, p') resonance scattering at 2.3 MeV bombarding energy. The samples were positioned in the scattering chamber of a VdG accelerator after 2 m collimating path. The peaks due to the resonance at 2.1 MeV were measured at different angles in the vicinity of the channeling and random directions. A peak shift and broadening was seen at the channeling and near channeling directions compared with the random one. The spectra were also simulated using our modified Monte Carlo calculation method for stopping, range and energy distribution in highly ordered materials. The energy shift and the broadening between the random and the channeling spectra were compared and explained. (orig.)
Investigation of magneto-optical properties of ferrofluids by laser light scattering techniques
Energy Technology Data Exchange (ETDEWEB)
Nepomnyashchaya, E.K., E-mail: elina.nep@gmail.com [Department of Quantum Electronics, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251 (Russian Federation); Prokofiev, A.V.; Velichko, E.N. [Department of Quantum Electronics, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251 (Russian Federation); Pleshakov, I.V.; Kuzmin, Yu I. [Department of Quantum Electronics, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251 (Russian Federation); Laboratory of Quantum Electronics, Ioffe Institute, Saint-Petersburg 194021 (Russian Federation)
2017-06-01
Investigation of magnetooptical characteristics of ferrofluids is an important task aimed at the development of novel optoelectronic systems. This article reports on the results obtained in the experimental studies of the factors that affect the intensity and spatial distribution of the laser radiation scattered by magnetic particles and their agglomerates in a magnetic field. Laser correlation spectroscopy and direct measurements of laser radiation scattering for studies of the interactions and magnetooptical properties of magnetic particles in solutions were employed. The objects were samples of nanodispersed magnetite (Fe{sub 3}O{sub 4}) suspended in kerosene and in water. Our studies revealed some new behavior of magnetic particles in external magnetic and light fields, which make ferrofluids promising candidates for optical devices.
Theory of inelastic effects in resonant atom-surface scattering
International Nuclear Information System (INIS)
Evans, D.K.
1983-01-01
The progress of theoretical and experimental developments in atom-surface scattering is briefly reviewed. The formal theory of atom-surface resonant scattering is reviewed and expanded, with both S and T matrix approaches being explained. The two-potential formalism is shown to be useful for dealing with the problem in question. A detailed theory based on the S-matrix and the two-potential formalism is presented. This theory takes account of interactions between the incident atoms and the surface phonons, with resonant effects being displayed explicitly. The Debye-Waller attenuation is also studied. The case in which the atom-surface potential is divided into an attractive part V/sub a/ and a repulsive part V/sub r/ is considered at length. Several techniques are presented for handling the scattering due to V/sub r/, for the case in which V/sub r/ is taken to be the hard corrugated surface potential. The theory is used to calculate the scattered intensities for the system 4 He/LiF(001). A detailed comparison with experiment is made, with polar scans, azimuthal scans, and time-of-flight measurements being considered. The theory is seen to explain the location and signature of resonant features, and to provide reasonable overall agreement with the experimental results
Effective spectral function for quasielastic scattering on nuclei
Energy Technology Data Exchange (ETDEWEB)
Bodek, A.; Coopersmith, B. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Christy, M.E. [Hampton University, Hampton, VA (United States)
2014-10-15
Spectral functions that are used in neutrino event, generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν dependence of predictions of these spectral functions for the QE differential cross sections (d{sup 2}σ/dQ{sup 2}dν) are in disagreement with the prediction of the ψ' superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ' superscaling formalism can be well described with a modified effective spectral function (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data. (orig.)
Effective spectral function for quasielastic scattering on nuclei
International Nuclear Information System (INIS)
Bodek, A.; Coopersmith, B.; Christy, M.E.
2014-01-01
Spectral functions that are used in neutrino event, generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν dependence of predictions of these spectral functions for the QE differential cross sections (d 2 σ/dQ 2 dν) are in disagreement with the prediction of the ψ' superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ' superscaling formalism can be well described with a modified effective spectral function (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data. (orig.)
International Nuclear Information System (INIS)
Panek, P.; Kaminski, J.Z.; Ehlotzky, F.
2002-01-01
We reconsider the relativistic scattering of electrons by an atom, being approximated by a static potential, in an extremely powerful electromagnetic plane wave of frequency ω and linear polarization ε. Since to a first order of approximation spin effects can be neglected, we first describe the scattered electron by the Gordon solution of the Klein-Gordon equation. Then we investigate the same scattering process by including the spin effects, using for the electron the Volkov solution of the Dirac equation. For sufficiently energetic electrons, the first-order Born approximation can be employed to represent the corresponding scattering matrix element. We compare the results of the differential cross sections of induced and inverse bremsstrahlung, evaluated from both approximations, for various parameter values and angular configurations and we find that in most cases the spin effects are marginal, even at very high laser power. On the other hand, we recover the various asymmetries in the angular distributions of the scattered electrons and their respective energies due to the laser-induced drift motion of the electrons in the direction of propagation of the radiation field, thus confirming the findings of our previous work [Phys. Rev. A 59, 2105 (1999); Laser Physics 10, 163 (2000)
Guseva, N. P.; Maximova, Irina S.; Romanov, Sergey V.; Shubochkin, L. P.; Tatarintsev, Sergey N.
1991-05-01
Recently a great deal of attention has been given to the investigation artificial lipid liposomes, due to their application as "containers" for directed transport of biologically active compounds into particular cells, organs and tissues for prophylaxis and therapy of infectious diseases. The use of traditional methods of liposome investigation, such as sedimentation, electrophoresis and chromatography is impeded by low liposome resistivity to different deformations. In conjunction with this, optical methods of laser light scattering are promising as they allow nondisturbing, precise and quick investigations. This paper describes the investigation of vesicle systems prepared from egg lecithin of Serva Corporation and their complexes with the capsular antigen of the plague microbe. The capsular antigen Fl was obtained from EV plague microbe grown at 37° C on Huttinger agar. Fl was isolated by gel-filtration on ASA-22 followed by freeze drying of the preparation. Angular dependences of polarized radiation scattering were measured for several liposome suspension samples in a saline solution before and after the interaction with the plague microbe capsular antigen. The aim of the investigation was to analyze the nature of mutual antigen arrangement in a liposome and to develop methods for measuring its inclusion percentage.
Eliminating high-order scattering effects in optical microbubble sizing.
Qiu, Huihe
2003-04-01
Measurements of bubble size and velocity in multiphase flows are important in much research and many industrial applications. It has been found that high-order refractions have great impact on microbubble sizing by use of phase-Doppler anemometry (PDA). The problem has been investigated, and a model of phase-size correlation, which also takes high-order refractions into consideration, is introduced to improve the accuracy of bubble sizing. Hence the model relaxes the assumption of a single-scattering mechanism in a conventional PDA system. The results of simulation based on this new model are compared with those based on a single-scattering-mechanism approach or a first-order approach. An optimization method for accurately sizing air bubbles in water has been suggested.
Effective field theory and unitarity in vector boson scattering
International Nuclear Information System (INIS)
Sekulla, Marco; Kilian, Wolfgang; Ohl, Thorsten; Reuter, Juergen
2016-10-01
Weak vector boson scattering at high energies will be one of the key measurements in current and upcoming LHC runs. It is most sensitive to any new physics associated with electroweak symmetry breaking. However, a conventional EFT analysis will fail at high energies. To address this problem, we present a parameter-free prescription valid for arbitrary perturbative and non-perturbative models: the T-matrix unitarization. We describe its implementation as an asymptotically consistent reference model matched to the low-energy effective theory. We show examples of typical observables of vector-boson scattering at the LHC in our unitarized framework. For many strongly-coupled models like composite Higgs models, dimension-8 operators might be actually the leading operators. In addition to those longitudinal and transversal dimension eight EFT operators, the effects of generic tensor and scalar resonances within simplified models are considered.
International Nuclear Information System (INIS)
Schmidt, P.W.; Tang, Y.; Roell, A.; Steiner, M.; Hoehr, A.; Neumann, H.B.
1990-01-01
Small-angle x-ray and neutron scattering are useful methods for investigating the structure of materials on a scale from about 10 to 2000 A. Some experimental procedures and methods of data analysis for small-angle scattering are outlined, and the use of small-angle scattering for studies of polydisperse systems (i.e., systems of particles of different size) of independently scattering particles is reviewed. Some general properties of the small-angle scattering from mass and surface fractals are discussed, and some applications of these concepts in recent experimental studies are presented. Results obtained in calculations of the small-angle scattering from a model of a surface are summarized. (author) 3 figs., 18 refs
Energy Technology Data Exchange (ETDEWEB)
Maetz, J; Butt, N M; Jex, H; Muellner, M [Frankfurt Univ. (Germany, F.R.). Inst. fuer Kernphysik
1979-01-01
The critical scattering near the phase transition of RbCaF/sub 3/ from its cubic to the tetragonal structure at Tsub(c)=196 K is investigated. Moessbauer diffraction is applied to separate elastic and inelastic scattering intensities with energy resolution of 60 neV. The influence of domains is shown from X-ray diffraction.
Target mass effects in polarized deep-inelastic scattering
International Nuclear Information System (INIS)
Piccione, A.
1998-01-01
We present a computation of nucleon mass corrections to nucleon structure functions for polarized deep-inelastic scattering. We perform a fit to existing data including mass corrections at first order in m 2 /Q 2 and we study the effect of these corrections on physically interesting quantities. We conclude that mass corrections are generally small, and compatible with current estimates of higher twist uncertainties, when available. (orig.)
Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers
Guo, Zaibing
2012-09-27
In this paper, we report the results of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers with perpendicular magnetic anisotropy. The surface scattering effect has been extracted from the total anomalous Hall effect. By scaling surface scattering contribution with ρAHs∼ργss, the exponent γ has been found to decrease with the increase of surface scattering resistivity, which could account for the thickness-dependent anomalous Hall effect. Interface diffusion induced by rapid thermal annealing modifies not only the magnetization and longitudinal resistivity but also the anomalous Hall effect; a large exponent γ ∼ 5.7 has been attributed to interface scattering-dominated anomalous Hall effect.
Coulomb corrections to scattering length and effective radius
International Nuclear Information System (INIS)
Mur, V.D.; Kudryavtsev, A.E.; Popov, V.S.
1983-01-01
The problem considered is extraction of the ''purely nuclear'' scattering length asub(s) (corresponding to the strong potential Vsub(s) at the Coulomb interaction switched off) from the Coulomb-nuclear scattering length asub(cs), which is an object of experimental measurement. The difference between asub(s) and asub(cs) is especially large if the potential Vsub(s) has a level (real or virtual) with an energy close to zero. For this case formulae are obtained relating the scattering lengths asub(s) and asub(cs), as well as the effective radii rsub(s) and rsub(cs). The results are extended to states with arbitrary angular momenta l. It is shown that the Coulomb correction is especially large for the coefficient with ksup(2l) in the expansion of the effective radius; in this case the correction contains a large logarithm ln(asub(B)/rsub(0)). The Coulomb renormalization of other terms in the effective radius espansion is of order (rsub(0)/asub(B)), where r 0 is the nuclear force radius, asub(B) is the Bohr radius. The obtained formulae are tried on a number of model potentials Vsub(s), used in nuclear physics
Laser light scattering in a laser-induced argon plasma: Investigations of the shock wave
Energy Technology Data Exchange (ETDEWEB)
Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI, site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France)
2012-08-15
Shock wave produced by a laser induced spark in argon at atmospheric pressure was examined using Rayleigh and Thomson scattering. The spark was generated by focusing a laser pulse from the second harmonic ({lambda} = 532 nm) of a nanosecond Nd:YAG laser using an 80 mm focal length lens, with a fluence of 2 kJ{center_dot}cm{sup -2}. Images of the spark emission were recorded for times between 30 ns and 100 {mu}s after the laser pulse in order to characterize its spatial evolution. The position of the shock wave at several instants of its evolution and for several plasma regions was determined from the Rayleigh-scattered light of another nanosecond Nd:YAG laser (532 nm, 40 J{center_dot}cm{sup -2} fluence). Simultaneously, Thomson scattering technique was applied to determine the electron density and temperature in the hot plasma core. Attempts were made to describe the temporal evolution of the shock wave within a self-similar model, both by the simple Sedov-Taylor formula as well as its extension deduced by de Izarra. The temporal radial evolution of the shock position is similar to that obtained within theory taking into account the counter pressure of the ambient gas. Density profiles just behind the shock front are in qualitative agreement with those obtained by numerically solving the Euler equations for instantaneous explosion at a point with counter pressure. - Highlights: Black-Right-Pointing-Pointer We investigated shock wave evolution by Rayleigh scattering method. Black-Right-Pointing-Pointer 2D map of shockwave position for several times after plasma generation is presented. Black-Right-Pointing-Pointer Shock wave evolution is not satisfactorily described within self-similar models. Black-Right-Pointing-Pointer Evolution of shock position similar to theory taking into account counter pressure. Black-Right-Pointing-Pointer Density profile behind the shock similar to numerical solution of Euler equations.
Scattering Effect on Anomalous Hall Effect in Ferromagnetic Transition Metals
Zhang, Qiang
2017-01-01
, the side-jump contribution increases with 𝑛𝑛, which suggests an interfacial scattering-enhanced side jump. In the (Ni36/𝑛/Au12/𝑛)𝑛 samples, the side-jump contribution decreases with 𝑛 increases, which could be explained by the opposite sign
Institute of Scientific and Technical Information of China (English)
YANGYong－Hong; WANGYong－Gang; 等
2002-01-01
Two kinds of spin-dependent scattering effects (magnetic-impurity and spin-orbit scatterings) are investigated theoretically in a quasi-tow-dimensional (quasi-2D) disordered electron system.By making use of the diagrammatic techniques in perturbation theory,we have calculated the dc conductivity and magnetoresistance due to weak-localization effects,the analytical expressions of them are obtained as functions of the interlayer hopping energy and the characteristic times:elastic,inelastic,magnetic and spin-orbit scattering times.The relevant dimensional crossover behavior from 3D to 2D with decreasing the interlayer coupling is discussed,and the condition for the crossover is shown to be dependent on the aforementioned scattering times.At low temperature there exists a spin-dependent-scattering-induced dimensional crossover in this system.
Status of effective field theory of NN scattering
International Nuclear Information System (INIS)
Beane, S.R.
1998-06-01
There exist many nucleon-nucleon potentials which reproduce phase shifts and nuclear properties with remarkable accuracy. Three fundamental features are shared by these potential models: (1) pions are important at long distances, (2) there is a source of intermediate-range attraction, and (3) there is a source of short-distance repulsion. However, in general, distinct physical mechanisms in these models account for the same feature of the nuclear force. Agreement with experiment is maintained in spite of these differences because of the large number of fit parameters. Systematic approaches to the scattering of strongly interacting particles, such as chiral perturbation theory, are based on the ideas of effective field theory (EFT). The author reviews recent progress in developing a systematic power counting scheme for scattering processes involving more than one nucleon
Refractive effects in the scattering of loosely bound nuclei
International Nuclear Information System (INIS)
Carstoiu, F.; Trache, L.; Tribble, R.E.; Gagliardi, C.A.; Carstoiu, F.
2004-07-01
A study of the interaction of the loosely bound nuclei 6,7 Li at 9 and 19 MeV/nucleon with light targets has been undertaken. With the determination of unambiguous optical potentials in mind, elastic data for four projectile-target combinations and one neutron transfer reaction 13 C( 7 Li, 8 Li) 12 C have been measured over a large angular range. The kinematical regime encompasses a region where the mean field (optical potential) has a marked variation with mass and energy, but turns out to be sufficiently surface transparent to allow strong refractive effects to be manifested in elastic scattering data at intermediate angles. The identified exotic feature, a 'plateau' in the angular distributions at intermediate angles, is fully confirmed in four reaction channels and is interpreted as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier far-side scattering sub-amplitudes. (authors)
Continuum effects in the scattering of exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Druet, T. [Universite Libre de Bruxelles (ULB), Physique Quantique, C.P. 165/82, Brussels (Belgium); Universite Libre de Bruxelles (ULB), Physique Nucleaire Theorique et Physique Mathematique, Brussels (Belgium); Descouvemont, P. [Universite Libre de Bruxelles (ULB), Physique Nucleaire Theorique et Physique Mathematique, Brussels (Belgium)
2012-10-15
We discuss continuum effects in the scattering of exotic nuclei, and more specifically on the {sup 11}Be + {sup 64}Zn scattering. {sup 11}Be is a typical example of an exotic nucleus, with a low binding energy. Elastic, inelastic and breakup cross-sections of the {sup 11}Be + {sup 64}Zn system are computed in the Continuum Discretized Coupled Channel formalism, at energies near the Coulomb barrier. We show that converged cross-sections need high angular momenta as well as as large excitation energies in the wave functions of the projectile. Extensions to other systems are simulated by different collision energies, and by varying the binding energy of {sup 11}Be. (orig.)
Effects of magnetic impurity scattering on superfluid 3He in aerogel
Aoyama, Kazushi; Ikeda, Ryusuke
2009-02-01
We investigate impurity effects on superfluid 3He in aerogel whose surface is not coated with 4He, different from most experimental situations. In systems with no 4He coating, spins of solid 3He absorbed on the aerogel surface are active and interact with spins of quasiparticles relevant to superfluidity and, for this reason, such an aerogel is treated as magnetic scatterers. It is found that, in the ABM pairing state affected by magnetic scatterings, not only the l-vector but also the d-vector has no long-ranged orientational order, and that the strong-coupling correction due to impurity scatterings is less suppressed than that in the nonmagnetic case, implying an expansion of the A-like phase region.
Investigation of Doppler spectra of laser radiation scattered inside hand skin during occlusion test
Kozlov, I. O.; Zherebtsov, E. A.; Zherebtsova, A. I.; Dremin, V. V.; Dunaev, A. V.
2017-11-01
Laser Doppler flowmetry (LDF) is a method widely used in diagnosis of microcirculation diseases. It is well known that information about frequency distribution of Doppler spectrum of the laser radiation scattered by moving red blood cells (RBC) usually disappears after signal processing procedure. Photocurrent’s spectrum distribution contains valuable diagnostic information about velocity distribution of the RBC. In this research it is proposed to compute the indexes of microcirculation in the sub-ranges of the Doppler spectrum as well as investigate the frequency distribution of the computed indexes.
Structure investigations on Portland cement paste by small angle neutron scattering
International Nuclear Information System (INIS)
Dragolici, C.A.; Lin, A.
2004-01-01
Hydrated Portland cement is a very complex material. Cement paste consists of many crystalline and non-crystalline phases in various ranges of sizes (μm and nm scale). The crystalline phases are embedded in amorphous phases of hydration products. We investigated the structural changes of hydrating phases in a time interval up to 18 days, at Budapest Neutron Center's SANS spectrometer. The small angle neutron scattering of Portland cements prepared with a various water-to-cement ratios, gave us information about the microstructure changes in the material. Fractals were a suitable way for structure modelling. Some comments regarding the opportunity of using the most common models are pointed out. (authors)
Energy Technology Data Exchange (ETDEWEB)
Geselbracht, Philipp
2016-12-05
In Ce based heavy fermion systems the hybridization of the 4f orbital of the Ce ion and the conduction band lead to unconventional phenomena such as quantum critical points or superconductivity. The aim of this thesis is to investigate and compare the magnetism on a microscopic scale within the heavy fermion families CeT{sub 2}X{sub 2} (X=Si,Ge) and CeTIn{sub 5}. To do so neutron scattering was used as the experimental method. For CeCu{sub 2}Ge{sub 2}, the antiferromagnetic order AF1 (vector τ=(0.285 0.285 0.544)) is well described as a spin density wave with reduced ordered moments in [1 anti 10] direction. The phase diagram with magnetic field applied along [1 anti 10] direction was investigated. Two new phases were observed: the elliptical helix phase AF2 with modified propagation vector vector τ=(0.34 0.27 0.55) and the C-phase with a yet unknown magnetic order. Above T{sub N}, in zero field, short range order was observed, hinting competition of AF1 and AF2. It is assumed that both structures are due to different nesting properties of the Fermi surface. The RKKY character of the electronic system leads to effective Lande factors in the AF1 (g{sup eff}=0.36) and AF2 (g{sup eff}=0.525) phases. From the zero field dispersion the strength of the next nearest neighbor RKKY interactions was extracted, yielding 2SJ{sub 1}=(-0.042±0.007) meV (basal plane) and 2SJ{sub 2}=(-0.18±0.01) meV (body diagonal). Comparing the RKKY interaction to CeCu{sub 2}Si{sub 2} and CeNi{sub 2}Ge{sub 2} reveals a strong enhancement of the interaction in the basal plane going from antiferromagnetism (CeCu{sub 2}Ge{sub 2}) to superconductivity (CeCu{sub 2}Si{sub 2}) and finally paramagnetism (CeNi{sub 2}Ge{sub 2}). This new finding appears to be an important puzzle piece for the understanding of the CeT{sub 2}X{sub 2} family as it suggests a dependence of the anisotropy of the RKKY interaction from the hybridization strength of the 4f orbital and the conduction band. The obtained phase
Investigations of time resolved x-ray wide-angle scattering and x-ray small-angle scattering at DESY
International Nuclear Information System (INIS)
Zachmann, H.G.; Gehrke, R.; Prieske, W.; Riekel, C.
1985-01-01
Instrumentation is described for the simultaneous wide-angle and small-angle x-ray scattering. The method was applied to the study of the isothermal crystallization of polyethylene terephthalates. In agreement with the classical theories of crystallization, the data showed that the density difference between the crystals and the non-crystalline regions does not change with time. The mechanisms of melting, recrystallization, and crystal thickening were investigated by small-angle x-ray scattering with stepwise changes and continuous changes of temperature using polyethylene terephthalate
Effect of scatter media on small gamma camera imaging characteristics
International Nuclear Information System (INIS)
Ser, H. K.; Choi, Y.; Yim, K. C.
2001-01-01
Effect of scatter media materials and thickness, located between radioactivity and small gamma camera, on imaging characteristics was evaluated. The small gamma camera developed for breast imaging was consisted of collimator, NaI(TI) crystal (60x60x6 mm 3 ). PSPMT (position sensitive photomultiplier tube), NIMs and personal computer. Monte Carlo simulation was performed to evaluate the system sensitivity with different scatter media thickness (0∼8 cm) and materials (air and acrylie) with parallel hole collimator and diverging collimator. The sensitivity and spatial resolution was measured using the small gamma camera with the same condition applied to the simulation. Counts was decreased by 10% (air) and 54% (acrylic) with the parallel hole collimator and by 35% (air) and 63% (acrylic) with the diverging collimator. Spatial resolution was decreased as increasing the thickness of scatter media. This study substantiate the importance of a gamma camera positioning and the minimization of the distance between detector and target lesion in the clinical application of a gamma camera
Zhang, Qiang; Zhang, Junwei; Zhao, Yuelei; Wen, Yan; Li, Peng; Zhang, Senfu; He, Xin; Zhang, Junli; Zhang, Xixiang
2017-01-01
effect. The skew-scattering, side-jump and intrinsic contributions to the AHE were separated successfully. As n increases from 1 to 12, the intrinsic contribution decreases because of the decaying crystallinity or finite size effect and the intrinsic
Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers
Guo, Zaibing; Mi, W. B.; Aboljadayel, Razan; Zhang, Bei; Zhang, Q.; Gonzalez Barba, Priscila; Manchon, Aurelien; Zhang, Xixiang
2012-01-01
. By scaling surface scattering contribution with ρAHs∼ργss, the exponent γ has been found to decrease with the increase of surface scattering resistivity, which could account for the thickness-dependent anomalous Hall effect. Interface diffusion induced
Final state effects in neutron Compton scattering measurements
International Nuclear Information System (INIS)
Fielding, A.L.
1997-10-01
The single atom momentum distributions of condensed matter systems can be derived using the technique of neutron Compton scattering (NCS). The electron Volt spectrometer (eVS) which is situated at the world's most intense pulsed neutron spallation source, ISIS, has been configured to perform NCS measurements. Interpretation of NCS data requires the use of the impulse approximation, however even at the high energy and momentum transfers obtainable on the eVS deviations from the impulse approximation occur. These deviations are generally known as final state effects (FSE) which manifest themselves as an asymmetry in the measured momentum distribution. The aim of the work reported in this thesis is to demonstrate how final state effects can be accounted for in a simple way using the expansion method described by Sears. An advantage of the Sears method is that the first asymmetric term in the expansion is proportional to the mean Laplacian of the potential, 2 V>, thus giving access to further information on the single atom potential. The Sears expansion has been incorporated into data analysis routines and applied to measured data on three systems that were chosen to represent the systems that are regularly investigated using the eVS. Measurements have been carried out on the deuteron in ZrD 2 , a light atom in a heavy lattice, beryllium, a polycrystalline solid and pyrolytic graphite, an aligned crystalline sample with an anisotropic momentum distribution. The study shows how the new analysis method gives more reliable values for the mean kinetic energy k >, which can be derived from the measured momentum distribution. A comparison of measured data with simulated data calculated within the harmonic approximation reveals how 2 V> can be a sensitive probe of anharmonicity of the interatomic potential. An anisotropy in the derived k > and 2 V> of pyrolytic graphite has been measured indicating the dependence of final state effects on bonding strength. The derived 2 V
Institute of Scientific and Technical Information of China (English)
YANG YongHong; WANG YongGang; LIU Mei; WANG Jin
2002-01-01
Two kinds of spin-depcndcnt scattering effects (magnetic-iinpurity and spin-orbit scatterings) axe investi-gated theoretically in a quasi-two-dimensional (quasi-2D) disordered electron system. By making use of the diagrammatictechniques in perturbation theory, we have calculated the dc conductivity and magnetoresistance due to weak-localizationeffects, the analytical expressions of them are obtained as functions of the interlayer hopping energy and the charac-teristic times: elastic, inelastic, magnetic and spin-orbit scattering times. The relevant dimensional crossover behaviorfrom 3D to 2D with decreasing the interlayer coupling is discussed, and the condition for the crossover is shown to bedependent on the aforementioned scattering times. At low temperature there exists a spin-dcpendent-scattering-induccddimensional crossover in this system.
Resolution effects and analysis of small-angle neutron scattering data
DEFF Research Database (Denmark)
Pedersen, J.S.
1993-01-01
A discussion of the instrumental smearing effects for small-angle neutron scattering (SANS) data sets is given. It is shown that these effects can be described by a resolution function, which describes the distribution of scattering vectors probed for the nominal values of the scattering vector...
The dynamics of water in hydrated white bread investigated using quasielastic neutron scattering
International Nuclear Information System (INIS)
Sjoestroem, J; Kargl, F; Fernandez-Alonso, F; Swenson, J
2007-01-01
The dynamics of water in fresh and in rehydrated white bread is studied using quasielastic neutron scattering (QENS). A diffusion constant for water in fresh bread, without temperature gradients and with the use of a non-destructive technique, is presented here for the first time. The self-diffusion constant for fresh bread is estimated to be D s = 3.8 x 10 -10 m 2 s -1 and the result agrees well with previous findings for similar systems. It is also suggested that water exhibits a faster dynamics than previously reported in the literature using equilibration of a hydration-level gradient monitored by vibrational spectroscopy. The temperature dependence of the dynamics of low hydration bread is also investigated for T = 280-350 K. The average relaxation time at constant momentum transfer (Q) shows an Arrhenius behavior in the temperature range investigated
International Nuclear Information System (INIS)
Blazek, Jaroslav; Gilbert, Elliot Paul
2009-01-01
Full text: The digestion of starch has been the subject of many investigations, mostly involving in vitro measurement of the susceptibility of starches to attack by different enzymes, rather than measuring actual digestibility in vivo. The rate and extent of amylolytic hydrolysis of granular starches is known to vary according to botanical origin. Granule characteristics considered to influence susceptibility to attack by alpha-amylase include crystallinity, granule size and available specific surface, amylose content, porosity, structural inhomogeneities and degree of integrity. Most in-vitro studies of granular starch digestion have been limited to samples for which aliquots have been removed from the reaction mixture at various time intervals and freeze-dried to be subsequently characterized using a range of techniques. It remains unclear whether sample preparation creates artefacts in the samples. In this study, we have studied the kinetics of starch digestion of several commercial granular starches by time-resolved small-angle neutron scattering using an in-situ digestion chamber allowing, for the first time, to follow structural changes of starch in the course of digestion directly in the digestion mixture. Additionally, samples before and after digestion were studied by x-ray diffraction, small-angle x-ray scattering, differential scanning calorimetry and microscopy. Microscopy revealed that studied starches, which varied in their amylose content and digestion kinetics, followed different modes of attack The multidisciplinary approach allowed the nanostructural changes detected by small-angle scattering in the course of enzymic breakdown to be correlated with changes in crystallinity and functional properties.
Effect of the Pauli principle in elastic scattering
International Nuclear Information System (INIS)
Picklesimer, A.; Thaler, R.M.
1981-01-01
The effect of imposition of the Pauli principle for two-fragment elastic nuclear scattering is examined. It is shown that the antisymmetrized problem can be cast into the Lippmann-Schwinger form with an effective interaction in which the effect of the Pauli principle is entirely absorbed into the effective interaction potential operator. This result enables the formalism to be developed in analogy with the unsymmetrized formulation. Central to the approach is the choice of the off-shell extension of the transition operator. Comparison is made with a previously proposed treatment based on a different off-shell extension. It is shown that both the antisymmetrized transition operator and the associated optical potential proposed herein are readily expressed as spectator expansions in which the effect of the Pauli principle among the active fermions is incorporated in a physically appealing fashion at each stage of the expansion
Effect of losses on acceleration of energetic particles by diffusive scattering through shock waves
International Nuclear Information System (INIS)
Voelk, H.J.; Morfill, G.E.; Forman, M.A.
1981-01-01
The effect of local losses on the acceleration of energetic particles by shocks is discussed considering both energy losses of individual particles and damping processes for the scattering hydromagnetic waves. The calculations are all time asymptotic and steady state. For locally plane and infinitely extended shocks, the requirement for acceleration is that the loss time exceed the acceleration time. The resulting modifications of the spatial structure and of the momentum dependence of the cosmic-ray distribution are described. For acceleration to be a local effect within the Galaxy, the local scattering mean free path must be small compared to the effective overall galactic mean free path as deduced from the cosmic-ray escape time. The required strengths of the scattering wave fields are such that neutral molecular clouds do not allow acceleration; in a partially ionized, warm interstellar medium, quite large shock strengths are needed. Such strong shock discontinuities are surrounded by an ionization layer within which Alfven wave damping is presumably negligible. Given the spatial extent of the layer for strong shocks propagating into neutral interstellar clouds, the possibility of localized diffusive acceleration is investigated. The estimated strength and extent of the scattering region is not large enough to confine acceleration within the layer. Rather, it will extend across the whole cloud, whose integrated losses then determine the efficiency
Spin effects in high energy quark-quark scattering
International Nuclear Information System (INIS)
Goloskokov, S.V.; Selyugin, O.V.
1993-01-01
The spin amplitudes in high-energy quark-quark scattering at /t/>1 GeV 2 are analyzed. It is shown that the gluon contributions in the QCDα s 3 order lead to the spin-flip amplitude growing as s. This means the existence of the spin-flip part in pomeron exchange. The resulting T f is about few per cent of the spin-non-flip contribution. The factorization of the large-distance and high-energy effects in the spin-flip amplitude is obtained. 13 refs.; 2 figs.; 1 tab
Mesonic effects in the elastic electron deuteron scattering
International Nuclear Information System (INIS)
Konopka, G.
1981-01-01
The present thesis was concerned with the study of the electromagnetic structure of the deuteron in the framework of the OBE model using elastic electron-deuteron scattering with high momentum transfer. In the framework of the S-matrix formalism the differential cross sections was derived in first Born approximation. The calculation of the invariant amplitude led to the introduction of the electric and magnetic structure functions. From these structure functions the electromagnetic form factor was calculated. Furthermore the effective OBE-potential was derived in the framework of a projection procedure on the base of unitary transformations. (orig./HSI). [de
Characterization of a material by probability of linear scattering using effect of target thickness
International Nuclear Information System (INIS)
Nghiep, T.D.; Khai, N.T.; Cong, N.T.; Minh, D.T.N.
2013-01-01
We report on an experimental test with 662 keV gamma photons scattered from a set of samples from 6 C, 13 Al, 26 Fe, 29 Cu, 47 Ag, 82 Pb and stainless steel for determination of probability of linear scattering, which can be used for characterization of a material. The results show that for the given target and scattering angle, the effect of target thickness in gamma photons scattering relates to single and multiple scattering and that the scattered events exponentially increase with an increase in target thickness and saturation at some values of thickness. The experimental results correlate with the typical function of energy transfer model. (author)
Small-angle neutron scattering investigation of polyurethane aged in dry and wet air
Directory of Open Access Journals (Sweden)
Q. Tian
2014-05-01
Full Text Available The microstructures of Estane 5703 aged at 70°C in dry and wet air have been studied by small-angle neutron scattering. The samples were swollen in deuterated toluene for enhancing the contrast. The scattering data show the characteristic domain structure of polyurethanes consisting of soft and hard segments. Debye-Anderson-Brumberger function used with hard sphere structure factor, and the Teubner-Strey model are used to analyze the two-phase domain structure of the polymer. The combined effects of temperature and humidity have a strong disruption effect on the microstructures of Estane. For the sample aged at 70°C in wet air for 1 month, the domain size, described by the correlation length, increases from 2.3 to 3.8 nm and their distance, expressed by hard-sphere interaction radius, increases from 8.4 to 10.6 nm. The structure development is attributed to degradation of polymer chains as revealed by gel permeation chromatography. The hydrolysis of ester links on polymer backbone at 70°C in the presence of water humidity is the main reason for the changes of the microstructure. These findings can contribute to developing predictive models for the safety, performance, and lifetime of polyurethanes.
International Nuclear Information System (INIS)
Song, Mi-Young; Jung, Young-Dae
2003-01-01
Quantum screening effects on the occurrence scattering time advance for elastic electron-ion collisions in strongly coupled semiclassical plasmas are investigated using the second-order eikonal analysis. The electron-ion interaction in strongly coupled semiclassical plasmas is obtained by the pseudopotential model taking into account the plasma screening and quantum effects. It is found that the quantum-mechanical effects significantly reduce the occurrence scattering time advance. It is also found that the occurrence scattering time advance increases with increasing Debye length. It is quite interesting to note that the domain of the maximum occurrence time advance is localized for the forward scattering case. The region of the scaled thermal de Broglie wave length (λ-bar) for the maximum occurrence time advance is found to be 0.4≤λ-bar≤1.4
Coulomb effects in relativistic laser-assisted Mott scattering
International Nuclear Information System (INIS)
Ngoko Djiokap, J.M.; Kwato Njock, M.G.; Tetchou Nganso, H.M.
2004-09-01
We reconsider the influence of the Coulomb interaction on the process of relativistic Mott scattering in a powerful electromagnetic plane wave for which the ponderomotive energy is of the order of the magnitude of the electron's rest mass. Coulomb effects of the bare nucleus on the laser-dressed electron are treated more completely than in the previous work of Li et al. [J. Phys. B: At. Mol. Opt. Phys. 37 (2004) 653]. To this end we use Coulomb-Dirac-Volkov functions to describe the initial and the final states of the electron. First-order Born differential cross sections of induced and inverse bremsstrahlung are obtained for circularly and linearly polarized laser light. Numerical calculations are carried out from both polarizations, for various nucleus charge values, three angular configurations and an incident energy in the MeV range. It is found that for parameters used in the present work, incorporating Coulomb effects of the target nucleus either in the initial state or in the final state yields cross sections which are quite similar whatever the scattering geometry and polarization considered. When Coulomb distortions are included in both states, the cross sections are strongly modified with the increase of Z, as compared to the outcome of the prior form of the T-matrix treatment. (author)
Josephson effect in SIFS junctions at arbitrary scattering
International Nuclear Information System (INIS)
Pugach, N. G.; Kupriyanov, M. Yu.; Goldobin, E.; Koelle, D.; Kleiner, R.
2011-01-01
Full text: The interplay between dirty and clean limits in Superconductor-Ferromagnet-Superconductor (SFS) Josephson junctions is a subject of intensive theoretical studies. SIFS junctions, containing an additional insulator (I) barrier are interesting as potential logic elements in superconducting circuits, since their critical current I c can be tuned over a wide range, still keeping a high I c R N product, where R N is the normal resistance of the junction. They are also a convenient model system for a comparative study of the 0-π transitions for arbitrary relations between characteristic lengths of the F-layer: the layer thickness d, the mean free path l, the magnetic length ξ H =v F /2H, and the nonmagnetic coherence length ξ 0 =v F /2πT, where v F is the Fermi velocity, H is the exchange magnetic energy, and T is the temperature. The spatial variations of the order parameter are described by the complex coherent length in the ferromagnet ξ F -1 = ξ 1 -1 + iξ 2 -1 . It is well known, that in the dirty limit (l 1,2 ) described by the Usadel equations both ξ 1 2 = ξ 2 2 = v F l/3H. In this work the spatial distribution of the anomalous Green's functions and the Josephson current in the SIFS junction are calculated. The linearized Eilenberger equations are solved together with the Zaitsev boundary conditions. This allows comparing the dirty and the clean limits, investigating a moderate disorder, and establishing the applicability limits of the Usadel equations for such structures. We demonstrate that for an arbitrary relation between l, ξ H , and d the spatial distribution of the anomalous Green's function can be approximated by a single exponent with reasonable accuracy, and we find its effective decay length and oscillation period for several values of ξ H , l and d. The role of different types of the FS interface is analyzed. The applicability range of the Usadel equation is established. The results of calculations have been applied to the
Structure investigations on Portland cement paste by small angle neutron scattering
International Nuclear Information System (INIS)
Dragolici, C. A.; Len, A.
2003-01-01
Portland cement pastes consist of many crystalline and non-crystalline phases in various ranges of sizes (nm and mm scale). The crystalline phases are embedded in amorphous phases of the hydration products. We investigated the structural changes of hydrating phases in the time interval of 1-30 days at Budapest Neutron Center's SANS diffractometer. The small angle neutron scattering of Portland cements prepared with a water-to-cement ratio from 0,3 to 0,8 gave us information about the microstructure changes in the material. Fractals were a suitable way for structure modelling. The variation of fractals size depending on the preparation-to-measurement time interval and water-to-cement ratio could be observed. (authors)
Raman scattering investigation of the water-bridge phenomenon: Some preliminary results
Directory of Open Access Journals (Sweden)
Francesco Aliotta
2010-09-01
Full Text Available A floating water-bridge is formed if a high-voltage direct current is applied between two beakers filled of chemically pure water. Raman spectra of the OH-stretching region have been obtained at ambient condition of temperature and pressure. These preliminary results seem to indicate that the hydrogen-bond structure is only slightly modified by the presence of the electric field applied to form the floating water-bridge in agreement with recent neutron scattering investigation. In fact, the polarized Raman spectrum of the pure water and of the water-bridge is almost superimposable. We are planning to carry out further spectroscopic analysis, at different thermodynamic conditions, for better understanding the role played by the hydrogen-bond in driving the formation of the floating water-bridge.
International Nuclear Information System (INIS)
Yasenjan Ghupur; Mamtimin Geni; Mamatrishat Mamat; Abudukelimu Abudureheman
2015-01-01
The effects of multiple scattering on the electron transport properties in drain regions are numerically investigated for the cases of strained-Si diodes with or without scattering in the channel. The performance of non-ballistic (with scattering) channel Si-diodes is compared with that of ballistic (without scattering) channel Si-diodes, using the strain and scattering model. Our results show that the values of the electron velocity and the current in the strain model are higher than the respective values in the unstrained model, and the values of the velocity and the current in the ballistic channel model are higher than the respective values in the non-ballistic channel model. In the strain and scattering models, the effect of each carrier scattering mechanism on the performance of the Si-diodes is analyzed in the drain region. For the ballistic channel model, our results show that inter-valley optical phonon scattering improves device performance, whereas intra-valley acoustic phonon scattering degrades device performance. For the strain model, our results imply that the larger energy splitting of the strained Si could suppress the inter-valley phonon scattering rate. In conclusion, for the drain region, investigation of the strained-Si and scattering mechanisms are necessary, in order to improve the performance of nanoscale ballistic regime devices. (paper)
Energy Technology Data Exchange (ETDEWEB)
Stone, Kevin H.
2014-07-14
Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.
Electron scattering effects on absorbed dose measurements with LiF-dosemeters
International Nuclear Information System (INIS)
Bertilsson, G.
1975-10-01
The investigation deals with absorbed dose measurements with solid wall-less dosemeters. Electron scattering complicates both measurement of absorbed dose and its theoretical interpretation. The introduction of the dosemeter in a medium causes perturbations of the radiation field. This perturbation and its effect on the distribution of the absorbed dose inside the dosemeter is studied. Plane-parallel LiF-teflon dosemeters (0.005 - 0.1 g.cm -2 ) are irradiated by a photon beam ( 137 Cs) in different media. The investigation shows that corrections must be made for perturbations caused by electron scattering phenomena. Correction factors are given for use in accurate absorbed dose determinations with thermoluminescent dosemeters. (Auth.)
Effect of spin-orbit scattering on transport properties of low-dimensional dilute alloys
Energy Technology Data Exchange (ETDEWEB)
Heers, Swantje
2011-09-21
bulk in the first part of the thesis. In the third part, we investigate spin-orbit induced effects on thin (001) and (111) copper and gold films with focus on spin-relaxation mechanisms. We consider both symmetric and asymmetric systems, where the asymmetry of the latter ones is created by covering one side of the film with one layer of Zn. For the symmetric films, spin-mixing parameters and momentum- and spin-relaxation times due to scattering at self-adatoms are calculated. Whereas the largest spin-mixing in (111) films has been obtained for the surface states, on the Fermi surfaces of the (001) films spin hot spots occur, which are caused by anticrossings of bands and lead to locally very high spin mixing. In the asymmetric films, the situation is qualitatively different, as the spin-orbit coupling results in a splitting of all bands and the formation of local effective magnetic fields, the so-called spin-orbit fields. The precession of the electron spin around these axes together with momentum scattering, resulting in a change of the precession axis after each scattering event, is known to lead to spin dephasing. Spin-orbit fields for (001) and (111) copper and gold films are presented. Large fields have been obtained for both surface orientations especially for bulk-like states at the outer boundaries of the Brillouin zone. Furthermore, for the (111) surface states, we find a Rashba-splitting which agrees with experiment and previous calculations. (orig.)
Magnetic effects in the paraxial regime of elastic electron scattering
Edström, Alexander; Lubk, Axel; Rusz, Ján
2016-11-01
Motivated by a recent claim [Phys. Rev. Lett. 116, 127203 (2016), 10.1103/PhysRevLett.116.127203] that electron vortex beams can be used to image magnetism at the nanoscale in elastic scattering experiments, using transmission electron microscopy, a comprehensive computational study is performed to study magnetic effects in the paraxial regime of elastic electron scattering in magnetic solids. Magnetic interactions from electron vortex beams, spin polarized electron beams, and beams with phase aberrations are considered, as they pass through ferromagnetic FePt or antiferromagnetic LaMnAsO. The magnetic signals are obtained by comparing the intensity over a disk in the diffraction plane for beams with opposite angular momentum or aberrations. The strongest magnetic signals are obtained from vortex beams with large orbital angular momentum, where relative magnetic signals above 10-3 are indicated for 10 ℏ orbital angular momentum, meaning that relative signals of one percent could be expected with the even larger orbital angular momenta, which have been produced in experimental setups. All results indicate that beams with low acceleration voltage and small convergence angles yield stronger magnetic signals, which is unfortunately problematic for the possibility of high spatial resolution imaging. Nevertheless, under atomic resolution conditions, relative magnetic signals in the order of 10-4 are demonstrated, corresponding to an increase with one order of magnitude compared to previous work.
Resonant scattering on impurities in the quantum Hall effect
International Nuclear Information System (INIS)
Gurvitz, A.
1994-06-01
We developed a new approach to carrier transport between the edge states via resonant scattering on impurities, which is applicable both for short and long range impurities. A detailed analysis of resonant scattering on a single impurity is performed. The results used for study of the inter-edge transport by multiple resonant hopping via different impurities' site. We found the total conductance can be obtained from an effective Schroedinger equation with constant diagonal matrix elements in the Hamiltonian, where the complex non-diagonal matrix elements are the amplitudes of a carrier hopping between different impurities. It is explicitly shown how the complex phase leads to Aharonov-Bohm oscillations in the total conductance. Neglecting the contribution of self-crossing resonant-percolation trajectories, we found that the inter-edge carrier transport is similar to propagation in one-dimensional system with off-diagonal disorder. Then we demonstrated that each Landau band has an extended state Ε Ν , while all other states are localized, and the localization length behaves as L - 1 Ν (Ε) ∼ (Ε - Ε Ν ) 2 . (author)
Refractive effects in the scattering of loosely bound nuclei
Energy Technology Data Exchange (ETDEWEB)
Carstoiu, F.; Trache, L.; Tribble, R.E.; Gagliardi, C.A. [Texas A and M Univ., College Station, TX (United States). Cyclotron Inst; Carstoiu, F. [Laboratoire de Physique Corpusculaire, IN2P3-CNRS, ISMRA, Universite de Caen, 14 - Caen (France); Carstoiu, F. [National Institute for Physics and Nuclear Engineering, Horia Hulubei, Bucharest-Magurele (Romania)
2004-07-01
A study of the interaction of the loosely bound nuclei {sup 6,7}Li at 9 and 19 MeV/nucleon with light targets has been undertaken. With the determination of unambiguous optical potentials in mind, elastic data for four projectile-target combinations and one neutron transfer reaction {sup 13}C({sup 7}Li,{sup 8}Li){sup 12}C have been measured over a large angular range. The kinematical regime encompasses a region where the mean field (optical potential) has a marked variation with mass and energy, but turns out to be sufficiently surface transparent to allow strong refractive effects to be manifested in elastic scattering data at intermediate angles. The identified exotic feature, a 'plateau' in the angular distributions at intermediate angles, is fully confirmed in four reaction channels and is interpreted as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier far-side scattering sub-amplitudes. (authors)
International Nuclear Information System (INIS)
Lv, Yuanjie; Feng, Zhihong; Gu, Guodong; Han, Tingting; Yin, Jiayun; Liu, Bo; Cai, Shujun; Lin, Zhaojun; Ji, Ziwu; Zhao, Jingtao
2014-01-01
The electron mobility scattering mechanisms in AlN/GaN heterostuctures with 3 nm and 6 nm AlN barrier thicknesses were investigated by temperature-dependent Hall measurements. The effect of interface roughness (IFR) scattering on the electron mobility was found to be enhanced by increasing AlN barrier thickness. Moreover, using the measured capacitance-voltage and current-voltage characteristics of the fabricated heterostructure field-effect transistors (HFETs) with different Schottky areas on the two heterostuctures, the variations of electron mobility with different gate biases were investigated. Due to enhanced IFR scattering, the influence of polarization Coulomb field (PCF) scattering on electron mobility was found to decrease with increasing AlN barrier layer thickness. However, the PCF scattering remained an important scattering mechanism in the AlN/GaN HFETs.
Isotopic effects in elastic and inelastic 12,13C + 16,18O scattering
Directory of Open Access Journals (Sweden)
A. T. Rudchik
2010-09-01
Full Text Available New angular-distribution data of 13С + 18О elastic and inelastic scattering at the energy Elab(18O = 105 MeV were obtained for the transitions to the ground and excited states 3.088 MeV(1/2+, 3.555 MeV (1/2-, 3.854 MeV (5/2+ of 13С and 1.982 MeV (2+, 3.555 MeV (4+, 3.921 MeV (2+, 4.456 MeV (1-, 5.098 MeV (3-, 5.260 MeV (2+ of 18O. These and the 13С + 18О elastic scattering data taken from the literature at the energies Elab(18O = 15, 20, 24, 31 MeV and Elab(13С = 24 MeV were analysed within the optical model and coupled-reaction-channels methods. Sets of 13С + 18О optical potential parameters and their energy dependence were obtained. Contributions of potential scattering and transfer reactions to the elastic and inelastic channels of 13С + 18О scattering were studied. Isotopic differences (effects in 12, 13С + 16, 18О optical potential parameters were investigated.
Small-Angle Neutron Scattering Investigation of Growth Modifiers on Hydrate Crystal Surfaces
Sun, Thomas; Hutter, Jeffrey L.; Lin, M.; King, H. E., Jr.
1998-03-01
Hydrates are crystals consisting of small molecules enclathrated within an ice-like water cage. Suppression of their growth is important in the oil industry. The presence of small quantities of specific polymers during hydrate crystallization can induce a transition from an octahedral to planar growth habit. This symmetry breaking is surprising because of the suppression of two 111 planes relative to the other six crystallographically equivalent faces. To better understand the surface effects leading to this behavior, we have studied the surface adsorption of these growth-modifing polymers onto the hydrate crytals using SANS. The total hydrate surface area, as measured by Porod scattering, increases in the presence of the growth modifier, but, no significant increase in polymer concentration on the crystal surfaces is found. Implications for possible growth mechanisms will be discussed.
Performance Investigation of Millimeter Wave Generation Reliant on Stimulated Brillouin Scattering
Tickoo, Sheetal; Gupta, Amit
2018-04-01
In this work, photonic method of generating the millimeter waves has been done based on Brillouin scattering effect in optical fiber. Here different approaches are proposed to get maximum frequency shift in mm-wave region using only pumps, radio signals with Mach-Zehnder modulator. Moreover for generated signal validation, signals modulated and send to both wired and wireless medium in optical domain. It is observed that maximum shift of 300 GHz is realized using 60 GHz input sine wave. Basically a frequency doubler is proposed which double shift of input frequency and provide better SNR. For the future generation network system, the generation of millimeter waves makes them well reliable for the transmission of the data.
Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Anna; Kolb, Bryan; Kovalchuk, Olga
2013-09-01
In radiation biology, rats are often irradiated, but the precise dose distributions are often lacking, particularly in areas that receive scatter radiation. We used a non-dedicated set of resources to calculate detailed dose distributions, including doses to peripheral organs well outside of the primary field, in common rat exposure settings. We conducted a detailed dose reconstruction in a rat through an analog to the conventional human treatment planning process. The process consisted of: (i) Characterizing source properties of an X-ray irradiator system, (ii) acquiring a computed tomography (CT) scan of a rat model, and (iii) using a Monte Carlo (MC) dose calculation engine to generate the dose distribution within the rat model. We considered cranial and liver irradiation scenarios where the rest of the body was protected by a lead shield. Organs of interest were the brain, liver and gonads. The study also included paired scenarios where the dose to adjacent, shielded rats was determined as a potential control for analysis of bystander effects. We established the precise doses and dose distributions delivered to the peripheral organs in single and paired rats. Mean doses to non-targeted organs in irradiated rats ranged from 0.03-0.1% of the reference platform dose. Mean doses to the adjacent rat peripheral organs were consistent to within 10% those of the directly irradiated rat. This work provided details of dose distributions in rat models under common irradiation conditions and established an effective scenario for delivering only scattered radiation consistent with that in a directly irradiated rat.
International Nuclear Information System (INIS)
Verhaar, B.J.; de Goey, L.P.H.; Vredenbregt, E.J.D.
1985-01-01
The concepts of scattering length a and effective range r/sub e/ previously introduced for low-energy scattering from a potential V(r) in a plane and in higher dimensions are extended to include a 1/r potential (strength parameter γ). Both a and r/sub e/ have the physical significance of being equal to the radius of an equivalent hard sphere giving rise to the same O(k 0 ) and O(k 2 ) terms in the expression for the phase shift. The method used is based on the properties of the ''local scattering length'' a(r,γ) for the potential V(r) cut off at radius r and an ''equivalent hard-sphere radius'' a(r,k,γ) for wave number knot =0. It is shown that these quantities have a smooth behavior for γ→0 and for dimension n→2
DEFF Research Database (Denmark)
Cannavacciuolo, L.; Sommer, C.; Pedersen, J.S.
2000-01-01
outlined in the Odijk-Skolnick-Fixman theory, in which the behavior of charged polymers is described only in terms of increasing local rigidity and excluded volume effects. Moreover, the Monte Carlo data are found to be in very good agreement with experimental scattering measurements with equilibrium......We present a systematic Monte Carlo study of the scattering function S(q) of semiflexible polyelectrolytes at infinite dilution, in solutions with different concentrations of added salt. In the spirit of a theoretical description of polyelectrolytes in terms of the equivalent parameters, namely......, persistence length and excluded volume interactions, we used a modified wormlike chain model, in which the monomers are represented by charged hard spheres placed at distance a. The electrostatic interactions are approximated by a Debye-Huckel potential. We show that the scattering function is quantitatively...
Zhang, Qiang
2017-12-26
The effect of interfacial scattering on anisotropic magnetoresistance (AMR) and anomalous Hall effect (AHE) was studied in the (Ta12n/Fe36n)n multilayers, where the numbers give the thickness in nanometer and n is an integer from 1 to 12. The multilayer structure has been confirmed by the XRR spectra and STEM images of cross-sections. The magneto-transport properties were measured by four-point probe method in Hall bar shaped samples in the temperature range of 5 - 300 K. The AMR increases with n, which could be ascribed to the interfacial spin-orbit scattering. At 5 K, the longitudinal resistivity (ρ) increases by 6.4 times and the anomalous Hall resistivity (ρ) increases by 49.4 times from n =1 to n =12, indicative of the interfacial scattering effect. The skew-scattering, side-jump and intrinsic contributions to the AHE were separated successfully. As n increases from 1 to 12, the intrinsic contribution decreases because of the decaying crystallinity or finite size effect and the intrinsic contribution dominated the AHE for all samples. The side jump changes from negative to positive because the interfacial scattering and intralayer scattering in Fe layers both contribute to side jump in the AHE but with opposite sign.
Energy Technology Data Exchange (ETDEWEB)
Hassanain, Mahmoud A. [King Khalid University, Department of Physics, Abha (Saudi Arabia); Assiut University, Department of Physics, New-Valley Faculty of Science, Assiut (Egypt)
2016-01-15
Differential cross-section of the {sup 16}O+{sup 12}C elastic scattering at E{sub lab} = 132, 181, 200, 260, 300, 608 and 1503MeV has been reanalyzed in the framework of double-folding cluster (DFC1) potential over a wide angular range which cover both diffractive and refractive regions. Based upon the α-cluster structure of both colliding nuclei, the real DFC1 optical potential has been generated by using α-α effective interaction and new cluster modified Gaussian (CMGD) of target and projectile has also been extracted. Successful descriptions of the data were obtained over the full measured angular range at all considered energies. The results have been compared with the findings obtained by using the phenomenological approach as well as experimental data. Furthermore, the consistency between the real and imaginary volume integrals is checked by the dispersion relation and the total reaction cross-section has also been investigated. (orig.)
Initial investigations of (np)-scattering with a polarized deuterium target at ANKE-COSY
Energy Technology Data Exchange (ETDEWEB)
Gou, Boxing
2015-07-01
The understanding of the forces among nucleons is fundamental to the whole of nuclear and hadronic physics. The nucleon-nucleon (NN) scattering is the ideal probe to study the nuclear forces. The scattering amplitudes for the complete description of the NN interactions can be reconstructed from phase-shift analyses (PSA), which requires measurements with polarized experiments. The existing data allow to extract unambiguous proton-proton (pp) amplitudes below 2 GeV. However, there is very little known about the neutron-proton (np) system above 800 MeV nucleon energy. THE ANKE-COSY collaboration has embarked on a systematic program which aims to extract the np scattering amplitudes through the deuteron-proton charge-exchange process dp→{pp}{sub s}n. First part of the program via polarized deuteron beam and hydrogen target allowed successful measurement of np amplitudes up to 1.135 GeV nucleon energy, which is the maximum nucleon energy that can be accessed with deuteron beam at COSY. Via inverse kinematics, i.e. using a proton beam incident on a polarized deuterium target will allow to enhance the np study up to 2.8 GeV, the highest energy available at COSY. The method of inverse kinematics has to be validated prior to the production experiment. As the proof-of-principle (POP) experiment, the initial research has been conducted at proton energy T{sub p}=600 MeV using a polarized deuterium target. The projectiles were measured by two silicon tracking telescopes (STT) placed closed to the target and by the ANKE sub-detection systems. Four polarization modes of the deuterium target were employed. In order to increase the effective target thickness, polarized deuterium atoms produced by the atomic beam source (ABS) was filled into a storage cell, where the circulating COSY beam collides with the target. The target polarizations were measured using the proton-deuteron elastic reaction. The vector and tensor analyzing powers A{sub y} and A{sub yy} of pvector d
Spin effects in medium-energy electron-3He scattering
International Nuclear Information System (INIS)
van den Brand, J.F.J.; Alarcon, R.; Bauer, T.
1998-01-01
New physics can be accessed by scattering polarized electrons from a polarized 3 He internal gas target. It is discussed how the asymmetries for the reactions 3 vector He(vector e,e'), 3 vector He(vector e,e'p), 3 vector He(vector e,e'n), 3 vector He(vector e,e'd), and 3 vector He(vector e,e'pn) may provide precise information on the S' and the D-wave parts of the 3 He ground-state wave function, the neutron form factors, and the role of spin-dependent reaction mechanism effects. The experiment uses up to 900 MeV (polarized) electrons from the AmPS storage ring in Amsterdam, Netherlands, in combination with large acceptance electron and hadron detectors. (orig.)
Terrestrial effects on dark matter-electron scattering experiments
DEFF Research Database (Denmark)
Emken, Timon; Kouvaris, Chris; Shoemaker, Ian M.
2017-01-01
A well-studied possibility is that dark matter may reside in a sector secluded from the Standard Model, except for the so-called photon portal: kinetic mixing between the ordinary and dark photons. Such interactions can be probed in dark matter direct detection experiments, and new experimental...... techniques involving detection of dark matter-electron scattering offer new sensitivity to sub-GeV dark matter. Typically however it is implicitly assumed that the dark matter is not altered as it traverses the Earth to arrive at the detector. In this paper we study in detail the effects of terrestrial...... stopping on dark photon models of dark matter, and find that they significantly reduce the sensitivity of XENON10 and DAMIC. In particular we find that XENON10 only excludes masses in the range (5-3000) MeV while DAMIC only probes (20-50) MeV. Their corresponding cross section sensitivity is reduced...
Dark matter effective field theory scattering in direct detection experiments
Energy Technology Data Exchange (ETDEWEB)
Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.
2015-05-18
We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.
International Nuclear Information System (INIS)
Grinev, V.G.; Kudinova, O.I.; Novokshonova, L.A.; Kuznetsov, S.P.; Udovenko, A.I.; Shelagin, A.V.
2006-01-01
Very cold neutrons (VCN) with the wavelength λ > 4.0 ran are convenient tool for investigating the super molecular structures of different nature. Using a Born approximation (BA) to the analysis of dependencies on the wavelength of the VCN scattering cross sections, it is possible to obtain information about average sizes (R) and concentrations of the scattering particles with R∼ λ. However, with an increasing the sizes of scatterers the conditions for BA applicability can be disrupted. In this work we investigated the possibilities of BA, eikonal and geometric-optical approximations for the analysis of VCN scattering on the spherical particles with R ≥ λ
Investigation into magnetic correlations in cuprates by means of neutron scattering experiments
International Nuclear Information System (INIS)
Henggeler, W.
1996-01-01
This thesis shows the results of our investigation on cuprate materials containing rare earth ions. The main experimental tools were inelastic and elastic neutron scattering techniques. In some cases we also performed μSR, susceptibility and specific heat measurements. One aim was to learn more about the crystalline environment of the rare earth ions in these substances via the crystalline electric field (CEF) interaction. Furthermore, we investigated the correlations of the magnetic moments of these ions by a determination of the dispersion of the CEF excitations. The theory that is essential for the understanding of this work is outlined. The instruments on which the experiments have been performed are presented in the third chapter. In the fourth chapter we show the measurements of the CEF excitations of Ho 3+ in Y 0.99 Ho 0.01 Ba 2 Cu 3 O 6+x . The Ho ions represent ideal local probes to examine changes of the charge distribution in the copper oxide planes upon doping with oxygen. To prevent any influence of the Ho-Ho exchange interaction on the CEF excitations we performed the experiments on substances containing only one percent of Ho. Our results show that for all the intermediately doped compounds the charge distribution is very inhomogeneous. For all the highly doped samples we observe a line asymmetry for which several possible origins are discussed. In the fifth chapter we examine the Pr 3+ CEF excitations in the Pr 2-x Ce x CuO 4(-δ) (0≤x≤0.2)-substances. Our results show a coexistence of different environments of the Pr ions in all the doped compounds. We try to describe these inhomogeneities with the help of a model. We used the μSR-technique on some of these samples in order to learn more about the oxygen reduction process. Finally, we performed inelastic neutron scattering experiments on Pr 1.86 Ce 0.14 CuO 4 single crystal, which allowed a direct determination of the coupling constants between the magnetic moments of the Pr ions. (author
Classical theory of atom-surface scattering: The rainbow effect
Miret-Artés, Salvador; Pollak, Eli
2012-07-01
The scattering of heavy atoms and molecules from surfaces is oftentimes dominated by classical mechanics. A large body of experiments have gathered data on the angular distributions of the scattered species, their energy loss distribution, sticking probability, dependence on surface temperature and more. For many years these phenomena have been considered theoretically in the framework of the “washboard model” in which the interaction of the incident particle with the surface is described in terms of hard wall potentials. Although this class of models has helped in elucidating some of the features it left open many questions such as: true potentials are clearly not hard wall potentials, it does not provide a realistic framework for phonon scattering, and it cannot explain the incident angle and incident energy dependence of rainbow scattering, nor can it provide a consistent theory for sticking. In recent years we have been developing a classical perturbation theory approach which has provided new insight into the dynamics of atom-surface scattering. The theory includes both surface corrugation as well as interaction with surface phonons in terms of harmonic baths which are linearly coupled to the system coordinates. This model has been successful in elucidating many new features of rainbow scattering in terms of frictions and bath fluctuations or noise. It has also given new insight into the origins of asymmetry in atomic scattering from surfaces. New phenomena deduced from the theory include friction induced rainbows, energy loss rainbows, a theory of super-rainbows, and more. In this review we present the classical theory of atom-surface scattering as well as extensions and implications for semiclassical scattering and the further development of a quantum theory of surface scattering. Special emphasis is given to the inversion of scattering data into information on the particle-surface interactions.
Two-centre interference effects on the Thomas two-step scattering mechanisms
International Nuclear Information System (INIS)
Adivi, E Ghanbari
2010-01-01
The charge transfer process in the collision of fast protons with hydrogen molecules is theoretically investigated using the second-order Born approximation with correct boundary conditions. In addition to two first-order terms, the present calculations include the three second-order terms which correspond to the Thomas two-step scattering mechanisms. The interference effects, due to the scattering of the particles from two atomic centres, on the electron capture differential cross sections vary significantly with the orientation of the molecule and with the impact energy. After the averaging over all molecular orientations the interference patterns disappear but the Thomas peak becomes more pronounced. These patterns are also apparent in the differential cross sections as a function of the angle between the molecular axis and the incident beam direction. The integrated cross sections are calculated and the results are compared with available experimental data.
International Nuclear Information System (INIS)
Sallah, M.; Margeanu, C. A.
2016-01-01
The space-fractional neutron transport equation is used to describe the neutrons transport in finite disturbed reactors. It is approximated using the Pomraning-Eddington technique to yield two space-fractional differential equations, in terms of neutron density and net neutron flux. These resultant equations are coupled into a fractional diffusion-like equation for the neutron density whose solution is obtained by using Laplace transformation method. The solution is represented in terms of the Mittag-Leffler function and its different orders. The scattering is considered as quadratic scattering to offer a more realistic, compact representation of the system, and to increase the accuracy of the estimated neutronic parameters. The results are presented graphically to illustrate the fractional parameter effect in addition to the effect of radiative-transfer properties on the physical parameters of interest (reflection coefficient, transmission coefficient, neutron energy, and net neutron flux). The neutron transport problem in finite disturbed reactor with quadratic scattering is considered in investigating the shielding effectiveness, by using MAVRIC shielding module from SCALE6 programs package. The fractional parameter can be used to adjust the analysed data on neutron energy and flux, both for the theoretical model and the neutron transport application. (authors)
Energy Technology Data Exchange (ETDEWEB)
Shaw, D.J., E-mail: daniel.shaw@christie.nhs.uk [Diagnostic Radiology, Department of Medical Physics and Engineering, Leeds Teaching Hospitals, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom); Crawshaw, I. [Diagnostic X-ray Department, York Teaching Hospital NHS Foundation Trust, The York Hospital, Wigginton Road, York YO31 8HE (United Kingdom); Rimmer, S. D. [Diagnostic Radiology, Department of Medical Physics and Engineering, Leeds Teaching Hospitals, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom)
2013-11-15
Objectives: The purpose of this study was to investigate the effects of tube potential and scatter rejection techniques on image quality of digital posteroanterior (PA) chest radiographs. Methods: An anthropomorphic phantom was imaged using a range of tube potentials (81–125 kV{sub p}) without scatter rejection, with an anti-scatter grid, and using a 10 cm air gap. Images were anonymised and randomised before being evaluated using a visual graded analysis (VGA) method. Results: The effects of tube potential on image quality were found to be negligible (p > 0.63) for the flat panel detector (FPD). Decreased image quality (p = 0.031) was noted for 125 kV{sub p} relative to 109 kV{sub p}, though no difference was noted for any of the other potentials (p > 0.398) for computed radiography (CR). Both scatter rejection techniques improved image quality (p < 0.01). For FPD imaging the anti-scatter grid offered slightly improved image quality relative to the air gap (p = 0.038) but this was not seen for CR (p = 0.404). Conclusions: For FPD chest imaging of the anthropomorphic phantom there was no dependence of image quality on tube potential. Scatter rejection improved image quality, with the anti-scatter grid giving greater improvements than an air-gap, but at the expense of increased effective dose. CR imaging of the chest phantom demonstrated negligible dependence on tube potential except at 125 kV{sub p}. Scatter rejection improved image quality, but with no difference found between techniques. The air-gap resulted in a smaller increase in effective dose than the anti-scatter grid and would be the preferred scatter rejection technique.
Focusing effects in laser-electron Thomson scattering
Directory of Open Access Journals (Sweden)
Chris Harvey
2016-09-01
Full Text Available We study the effects of laser pulse focusing on the spectral properties of Thomson scattered radiation. Modeling the laser as a paraxial beam we find that, in all but the most extreme cases of focusing, the temporal envelope has a much bigger effect on the spectrum than the focusing itself. For the case of ultrashort pulses, where the paraxial model is no longer valid, we adopt a subcycle vector beam description of the field. It is found that the emission harmonics are blue shifted and broaden out in frequency space as the pulse becomes shorter. Additionally the carrier envelope phase becomes important, resulting in an angular asymmetry in the spectrum. We then use the same model to study the effects of focusing beyond the limit where the paraxial expansion is valid. It is found that fields focussed to subwavelength spot sizes produce spectra that are qualitatively similar to those from subcycle pulses due to the shortening of the pulse with focusing. Finally, we study high-intensity fields and find that, in general, the focusing makes negligible difference to the spectra in the regime of radiation reaction.
Transverse spin effects in polarized semi inclusive deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Pappalardo, Luciano Libero
2008-10-15
The theoretical framework for the inclusive and semi-inclusive deep inelastic scattering is provided in Chapters 2 and 3, respectively. While a phenomenological and historical perspective is adopted in Chapter 2 for the description of the inclusive processes, a detailed treatment of the formalism concerning the physics of the transverse degrees of freedom of the nucleon is presented in Chapter 3. In Chapter 4 the main components of the HERMES experimental apparatus are presented. The extraction of the Collins and Sivers moments is discussed in Chapter 5 after a brief overview of the main steps of the data analysis. A selection of systematic studies is also reported at the end of the chapter. Chapter 6 is completely devoted to the estimate of the acceptance and smearing effects on the extracted azimuthal moments. A crucial role in the studies presented is played by a newly developed Monte Carlo generator which simulates azimuthal asymmetries arising from intrinsic quark momenta. A novel approach for the estimate of the acceptance effects is presented at the end of the chapter. The extracted Collins and Sivers moments, corrected for the acceptance effects, are shown in Chapter 7. The discussion and the interpretation of the results, together with a preliminary extraction of the Sivers polarization, are also treated in Chapter 7. Final conclusions and a brief summary are reported in Chapter 8. (orig.)
One-particle reducibility in effective scattering theory
International Nuclear Information System (INIS)
Vereshagin, V.
2016-01-01
To construct the reasonable renormalization scheme suitable for the effective theories one needs to resolve the “problem of couplings” because the number of free parameters in a theory should be finite. Otherwise the theory would loose its predictive power. In the case of effective theory already the first step on this way shows the necessity to solve the above-mentioned problem for the 1-loop 2-leg function traditionally called self energy. In contrast to the customary renormalizable models the corresponding Feynman graph demonstrates divergencies that require introducing of an infinite number of prescriptions. In the recent paper [1] it has been shown that the way out of this difficulty requires the revision of the notion of one-particle reducibility. The point is that in effective scattering theory one can introduce two different notions: the graphic reducibility and the analytic one. Below we explain the main ideas of the paper [1] and recall some notions and definitions introduced earlier in [2] and [3
Transverse spin effects in polarized semi inclusive deep inelastic scattering
International Nuclear Information System (INIS)
Pappalardo, Luciano Libero
2008-03-01
The theoretical framework for the inclusive and semi-inclusive deep inelastic scattering is provided in Chapters 2 and 3, respectively. While a phenomenological and historical perspective is adopted in Chapter 2 for the description of the inclusive processes, a detailed treatment of the formalism concerning the physics of the transverse degrees of freedom of the nucleon is presented in Chapter 3. In Chapter 4 the main components of the HERMES experimental apparatus are presented. The extraction of the Collins and Sivers moments is discussed in Chapter 5 after a brief overview of the main steps of the data analysis. A selection of systematic studies is also reported at the end of the chapter. Chapter 6 is completely devoted to the estimate of the acceptance and smearing effects on the extracted azimuthal moments. A crucial role in the studies presented is played by a newly developed Monte Carlo generator which simulates azimuthal asymmetries arising from intrinsic quark momenta. A novel approach for the estimate of the acceptance effects is presented at the end of the chapter. The extracted Collins and Sivers moments, corrected for the acceptance effects, are shown in Chapter 7. The discussion and the interpretation of the results, together with a preliminary extraction of the Sivers polarization, are also treated in Chapter 7. Final conclusions and a brief summary are reported in Chapter 8. (orig.)
Inverse Scattering Method and Soliton Solution Family for String Effective Action
International Nuclear Information System (INIS)
Ya-Jun, Gao
2009-01-01
A modified Hauser–Ernst-type linear system is established and used to develop an inverse scattering method for solving the motion equations of the string effective action describing the coupled gravity, dilaton and Kalb–Ramond fields. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the proposed inverse scattering method applied fine and effective. As an application, a concrete family of soliton solutions for the considered theory is obtained
International Nuclear Information System (INIS)
Ren Xincheng; Guo Lixin
2008-01-01
A normalized two-dimensional band-limited Weierstrass fractal function is used for modelling the dielectric rough surface. An analytic solution of the scattered field is derived based on the Kirchhoff approximation. The variance of scattering intensity is presented to study the fractal characteristics through theoretical analysis and numerical calculations. The important conclusion is obtained that the diffracted envelope slopes of scattering pattern can be approximated as a slope of linear equation. This conclusion will be applicable for solving the inverse problem of reconstructing rough surface and remote sensing. (classical areas of phenomenology)
Energy Technology Data Exchange (ETDEWEB)
Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)
2013-01-01
This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.
Mikheyev-Smirnov-Wolfenstein effect in electron-neutrino scattering experiments
International Nuclear Information System (INIS)
Bahcall, J.N.; Gelb, J.M.; Rosen, S.P.
1987-01-01
We calculate the influence of resonant neutrino scattering [the Mikheyev-Smirnov-Wolfenstein (MSW) effect] in the Sun and in the Earth on measurable quantities in solar-neutrino--electron scattering experiments. The MSW effect reduces the expected rate for 8 B-neutrino--electron scattering by a factor that ranges from --0.8 to --0.2 if resonant scattering is the correct explanation for the discrepancy between observation and calculation in the /sup 37/Cl experiment. The Earth can produce a significant diurnal effect for certain values of the neutrino mixing angle and mass difference
An Investigation of the Polypeptide, Poly - L - Glutamic Acid, Using Neutron Inelastic Scattering
International Nuclear Information System (INIS)
Whittemore, W.L.
1968-01-01
The polypeptides are synthetic polymers of amino acids with many similarities to natural proteins. In a large number of cases, one of the conformations for both the synthetic and natural proteins is the α - helix. The simplest of the synthetic polymers with no side chains is polyglycine and the simplest of the synthetic polymers with a small side chain (methyl group) is polyalanine. Dispersion curves have been computed by Gupta for both of these polymers. Polyglutamic acid is similar to polyalanine in that the composition of the basic residue and radius of helix is the same. Polyglutamic acid has a more complicated side chain which will contribute a number of additional natural frequencies that are expected to be essentially independent of conformation. On the other hand, the dispersion curves already derived for polyalanine in the α -helix form should be correct in many specific details for polyglutamic acid. An experimental study has been undertaken for polyglutamic acid at room temperature using the techniques of inelastic neutron scattering. In the first measurements, 'cold' neutrons from a reactor were used to investigate the energy level structure up to ≃ 3 kT for both conformations of the polymer. In addition, the scattering of monoenergetic high-energy neutrons ( > 0.15 eV) provided- by an electron Linac was used to study energy levels above 3 kT. These latter measurements permit comparisons to be made between the calculated and measured results for a much larger range of frequencies (and hence permit a check for a larger number of dispersion curves). This extension of the experimental results to higher frequencies has made it possible to check on the earlier assumption that only the lower frequencies are altered when the conformation is changed. This assumption underlies the evaluation of changes in internal energy with conformation from only the 'cold' neutron data, as is done with the present data. An experiment was performed to evaluate the
An Investigation of the Polypeptide, Poly - L - Glutamic Acid, Using Neutron Inelastic Scattering
Energy Technology Data Exchange (ETDEWEB)
Whittemore, W. L. [Gulf General Atomic Incorporated, San Diego, CA (United States)
1968-09-15
The polypeptides are synthetic polymers of amino acids with many similarities to natural proteins. In a large number of cases, one of the conformations for both the synthetic and natural proteins is the {alpha} - helix. The simplest of the synthetic polymers with no side chains is polyglycine and the simplest of the synthetic polymers with a small side chain (methyl group) is polyalanine. Dispersion curves have been computed by Gupta for both of these polymers. Polyglutamic acid is similar to polyalanine in that the composition of the basic residue and radius of helix is the same. Polyglutamic acid has a more complicated side chain which will contribute a number of additional natural frequencies that are expected to be essentially independent of conformation. On the other hand, the dispersion curves already derived for polyalanine in the {alpha} -helix form should be correct in many specific details for polyglutamic acid. An experimental study has been undertaken for polyglutamic acid at room temperature using the techniques of inelastic neutron scattering. In the first measurements, 'cold' neutrons from a reactor were used to investigate the energy level structure up to Asymptotically-Equal-To 3 kT for both conformations of the polymer. In addition, the scattering of monoenergetic high-energy neutrons ( > 0.15 eV) provided- by an electron Linac was used to study energy levels above 3 kT. These latter measurements permit comparisons to be made between the calculated and measured results for a much larger range of frequencies (and hence permit a check for a larger number of dispersion curves). This extension of the experimental results to higher frequencies has made it possible to check on the earlier assumption that only the lower frequencies are altered when the conformation is changed. This assumption underlies the evaluation of changes in internal energy with conformation from only the 'cold' neutron data, as is done with the present data. An experiment was
Energy Technology Data Exchange (ETDEWEB)
Magazù, S.; Migliardo, F. [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy); Vertessy, B.G. [Institute of Enzymology, Hungarian Academy of Science, Budapest (Hungary); Caccamo, M.T., E-mail: maccamo@unime.it [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy)
2013-10-16
Highlights: • Innovative multiresolution wavelet analysis of elastic incoherent neutron scattering. • Elastic Incoherent Neutron Scattering measurements on homologues disaccharides. • EINS wavevector analysis. • EINS temperature analysis. - Abstract: In the present paper the results of a wavevector and thermal analysis of Elastic Incoherent Neutron Scattering (EINS) data collected on water mixtures of three homologous disaccharides through a wavelet approach are reported. The wavelet analysis allows to compare both the spatial properties of the three systems in the wavevector range of Q = 0.27 Å{sup −1} ÷ 4.27 Å{sup −1}. It emerges that, differently from previous analyses, for trehalose the scalograms are constantly lower and sharper in respect to maltose and sucrose, giving rise to a global spectral density along the wavevector range markedly less extended. As far as the thermal analysis is concerned, the global scattered intensity profiles suggest a higher thermal restrain of trehalose in respect to the other two homologous disaccharides.
International Nuclear Information System (INIS)
Simon, G.G.
1978-01-01
In this thesis results of measurements of the differential cross sections of the elastic and inelastic electron deuteron scattering are presented. The data were taken at several scattering angles and in the electron energy range of 150 MeV up to 320 MeV. The extracted form factors and structure functions are compared with theoretical results which are sensitive to details of nucleon structure and of the nucleon-nucleon forces. (FKS)
WIMP-nucleus scattering in chiral effective theory
Cirigliano, Vincenzo; Graesser, Michael L.; Ovanesyan, Grigory
2012-10-01
We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions in the framework of chiral effective theory. For scalar-mediated WIMP-quark interactions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus cross-section cannot be parameterized in terms of just two quantities, namely the neutron and proton scalar form factors at zero momentum transfer, but additional parameters appear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative factorization of the cross-section into particle, nuclear and astro-particle parts is violated. In practice, while the new effects are of the natural size expected by chiral power counting, they become very important in those regions of parameter space where the leading order WIMP-nucleus amplitude is suppressed, including the so-called "isospin-violating dark matter" regime. In these regions of parameter space we find order-of-magnitude corrections to the total scattering rates and qualitative changes to the shape of recoil spectra.
The effects of low-energy scattering on positron implantation
Energy Technology Data Exchange (ETDEWEB)
Ritley, K.A. (Dept. of Physics and Materials Research Laboratory, Univ. of Illinois, Urbana, IL (United States)); Lynn, K.G.; Ghosh, V.; Welch, D.O. (Brookhaven National Lab., Upton, NY (United States))
1992-01-01
Existing Monte Carlo models are capable of simulating the behavior of positrons incident at keV energies, then following the energy loss process to arbitrary final kinetic energies of from 20 eV to 100 eV. This work describes a Monte Carlo simulation of the final stages of positron thermalization in Al, from 25 eV to thermal energies, via the mechanisms of conduction-electron and longitudinal acoustic phonon scattering. The latter stages of thermalization can have important effects on the stopping profiles and mean depth. A novel way to obtain information about positron energy loss by considering the time-evolution of a point-concentration (delta-function distribution) of positrons is described. The effects of a positive positron work function are examined for the first time in the context of a positron Monte Carlo calculation. Finally, some issues relating to the agreement of Monte Carlo calculations with experimental data are discussed. 6 figs., 16 refs.
The effects of low-energy scattering on positron implantation
Energy Technology Data Exchange (ETDEWEB)
Ritley, K.A. [Dept. of Physics and Materials Research Laboratory, Univ. of Illinois, Urbana, IL (United States); Lynn, K.G.; Ghosh, V.; Welch, D.O. [Brookhaven National Lab., Upton, NY (United States)
1992-12-31
Existing Monte Carlo models are capable of simulating the behavior of positrons incident at keV energies, then following the energy loss process to arbitrary final kinetic energies of from 20 eV to 100 eV. This work describes a Monte Carlo simulation of the final stages of positron thermalization in Al, from 25 eV to thermal energies, via the mechanisms of conduction-electron and longitudinal acoustic phonon scattering. The latter stages of thermalization can have important effects on the stopping profiles and mean depth. A novel way to obtain information about positron energy loss by considering the time-evolution of a point-concentration (delta-function distribution) of positrons is described. The effects of a positive positron work function are examined for the first time in the context of a positron Monte Carlo calculation. Finally, some issues relating to the agreement of Monte Carlo calculations with experimental data are discussed. 6 figs., 16 refs.
Gu, Mingming; Satija, Aman; Lucht, Robert P.
2018-01-01
The effects of moderate levels of chirp in the pump and Stokes pulses on chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs CARS) were investigated. The frequency chirp in the pump and Stokes pulses was introduced
Energy Technology Data Exchange (ETDEWEB)
Berginc, G [THALES, 2 avenue Gay-Lussac 78995 ELANCOURT (France)
2013-11-30
We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell – Garnett formula at the low-frequency limit, and the Keller formula; the latter has been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength. (coherent light scattering)
International Nuclear Information System (INIS)
Nakajima, Kenichi; Matsudaira, Masamichi; Yamada, Masato; Taki, Junichi; Tonami, Norihisa; Hisada, Kinichi
1995-01-01
Triple-energy window (TEW) method is a simple and practical approach for correcting Compton scatter in single-photon emission tracer studies. The fraction of scatter correction, with a point source or 30 ml-syringe placed under the camera, was measured by the TEW method. The scatter fraction was 55% for 201 Tl, 29% for 99m Tc and 57% for 123 I. Composite energy spectra were generated and separated by the TEW method. Combination of 99m Tc and 201 Tl was well separated, and 201 Tl and 123 I were separated within an error of 10%; whereas asymmetric photopeak energy window was necessary for separating 123 I and 99m Tc. By applying this method to myocardial SPECT study, the effect of scatter elimination was investigated in each myocardial wall by polar map and profile curve analysis. The effect of scatter was higher in the septum and the inferior wall. The count ratio relative to the anterior wall including scatter was 9% higher in 123 I, 7-8% higher in 99m Tc and 6% higher in 201 Tl. Apparent count loss after scatter correction was 30% for 123 I, 13% for 99m Tc and 38% for 201 Tl. Image contrast, as defined myocardium-to-left ventricular cavity count ratio, improved by scatter correction. Since the influence of Compton scatter was significant in cardiac planar and SPECT studies; the degree of scatter fraction should be kept in mind both in quantification and visual interpretation. (author)
International Nuclear Information System (INIS)
Shaw, D.J.; Crawshaw, I.; Rimmer, S.D.
2013-01-01
Objectives: The purpose of this study was to investigate the effects of tube potential and scatter rejection techniques on image quality of digital posteroanterior (PA) chest radiographs. Methods: An anthropomorphic phantom was imaged using a range of tube potentials (81–125 kV p ) without scatter rejection, with an anti-scatter grid, and using a 10 cm air gap. Images were anonymised and randomised before being evaluated using a visual graded analysis (VGA) method. Results: The effects of tube potential on image quality were found to be negligible (p > 0.63) for the flat panel detector (FPD). Decreased image quality (p = 0.031) was noted for 125 kV p relative to 109 kV p , though no difference was noted for any of the other potentials (p > 0.398) for computed radiography (CR). Both scatter rejection techniques improved image quality (p p . Scatter rejection improved image quality, but with no difference found between techniques. The air-gap resulted in a smaller increase in effective dose than the anti-scatter grid and would be the preferred scatter rejection technique
Valley Hall Conductivity in Graphene: Effects of Higher-Order Scattering
Ando, Tsuneya
2018-04-01
The valley Hall conductivity, having opposite signs between the K and K' valleys, is calculated in monolayer and bilayer graphenes with nonzero gap in the presence of short-range scatterers within a single-site approximation. In the case of small disorder, the Hall conductivity is quantized into ±e2/2h and ±e2/h in the monolayer and bilayer graphene, respectively, in the gap region, while it is enhanced over the results in the absence of scatterers in the band region. With the increase in the strength of each impurity potential, large asymmetry between the conduction and valence band appears. For scatterers with attractive potential, the disorder parameter is effectively enhanced and reduced in the conduction and valence band, respectively. The behavior is opposite for repulsive scatterers. Effects of skew scattering causing asymmetry in the scattering direction remain small and do not play significant role.
Effective potential in the problem of scattering of three charged particles
International Nuclear Information System (INIS)
Kvitsinskii, A.A.; Merkur'ev, S.P.
1988-01-01
We study the effective interaction potential in the scattering of a charged particle by a bound state of two other charged particles. Scattering by both the ground and excited states of the target is considered. Explicit representations describing the asymptotic structure of effective potentials are proved
International Nuclear Information System (INIS)
Juan, Li; Li-Xin, Guo; Hao, Zeng; Xu-Biao, Han
2009-01-01
Composite electromagnetic scattering from a two-dimensional (2D) ship-like target on a one-dimensional sea surface is investigated by using the finite-difference time-domain (FDTD) method. A uniaxial perfectly matched layer is adopted for truncation of FDTD lattices. The FDTD updated equations can be used for the total computation domain by choosing the uniaxial parameters properly. To validate the proposed numerical technique, a 2D infinitely long cylinder over the sea surface is taken into account first. The variation of angular distribution of the scattering changing with incident angle is calculated. The results show good agreement with the conventional moment method. Finally, the influence of the incident angle, the polarization, and the size of the ship-like target on the composite scattering coefficient is discussed in detail. (classical areas of phenomenology)
Formal analogy between Compton scattering and Doppler effect
DEFF Research Database (Denmark)
Nielsen, A.; Olsen, Jørgen Seir
1966-01-01
Viewed from the scatterer, the energy of the incoming photon or particle is equal to that of the outgoing, and the angle of incidence is equal to the angle of reflection, when the direction of the velocity of the scatterer after the collision is taken as reference. This paper sets out to prove...... this statement in a more simple and direct way. The authors only consider the Compton scatting process as it is quite analogous to the particle case....
Li, Juan; Guo, Li-Xin; Jiao, Yong-Chang; Li, Ke
2011-01-17
Finite-difference time-domain (FDTD) algorithm with a pulse wave excitation is used to investigate the wide-band composite scattering from a two-dimensional(2-D) infinitely long target with arbitrary cross section located above a one-dimensional(1-D) randomly rough surface. The FDTD calculation is performed with a pulse wave incidence, and the 2-D representative time-domain scattered field in the far zone is obtained directly by extrapolating the currently calculated data on the output boundary. Then the 2-D wide-band scattering result is acquired by transforming the representative time-domain field to the frequency domain with a Fourier transform. Taking the composite scattering of an infinitely long cylinder above rough surface as an example, the wide-band response in the far zone by FDTD with the pulsed excitation is computed and it shows a good agreement with the numerical result by FDTD with the sinusoidal illumination. Finally, the normalized radar cross section (NRCS) from a 2-D target above 1-D rough surface versus the incident frequency, and the representative scattered fields in the far zone versus the time are analyzed in detail.
Dynamic effects on cyclotron scattering in pulsar accretion columns
International Nuclear Information System (INIS)
Brainerd, J.J.; Meszaros, P.
1991-01-01
A resonant scattering model for photon reprocessing in a pulsar accretion column is presented. The accretion column is optically thin to Thomson scattering and optically thick to resonant scattering at the cyclotron frequency. Radiation from the neutron star surface propagates freely through the column until the photon energy equals the local cyclotron frequency, at which point the radiation is scattered, much of it back toward the star. The radiation pressure in this regime is insufficient to stop the infall. Some of the scattered radiation heats the stellar surface around the base of the column, which adds a softer component to the spectrum. The partial blocking by the accretion column of X-rays from the surface produces a fan beam emission pattern. X-rays above the surface cyclotron frequency freely escape and are characterized by a pencil beam. Gravitational light bending produces a pencil beam pattern of column-scattered radiation in the antipodal direction, resulting in a strongly angle-dependent cyclotron feature. 31 refs
Aharonov-Bohm effect on Aharonov-Casher scattering
International Nuclear Information System (INIS)
Lin Qionggui
2010-01-01
The scattering of relativistic spin-1/2 neutral particles with a magnetic dipole moment by a long straight charged line and a magnetic flux line at the same position is studied. The scattering cross sections for unpolarized and polarized particles are obtained by solving the Dirac-Pauli equation. The results are in general the same as those for pure Aharonov-Casher scattering (by the charged line alone) as expected. However, in special cases when the incident energy, the line charge density, and the magnetic flux satisfy some relations, the cross section for polarized particles is dramatically changed. Relations between the polarization of incident particles and that of scattered ones are presented, both in the full relativistic case and the nonrelativistic limit. The characteristic difference between the general and special cases lies in the backward direction: in the general cases the incident particles are simply bounced while in the special cases their polarization is turned over simultaneously. For pure Aharonov-Casher scattering there exist cases where the helicities of all scattered particles are reversed. This seems to be remarkable but appears unnoticed previously. Two mathematical approaches are employed to deal with the singularity of the electric and magnetic field and it turns out that the physical results are essentially the same.
Global effects of moon phase on nocturnal acoustic scattering layers
Prihartato, PK
2016-01-18
© Inter-Research 2016. The impact of moon phase on the global nocturnal vertical distribution of acoustic scattering layers (SLs) in the upper 200 m was studied during the Malaspina expedition that circumnavigated the world. We assessed the nocturnal weighted mean depths and the vertical extension of the SL (the range between the upper 25th percentile and lower 75th percentile of the backscatter) and used a generalized additive model to reveal the relationship between the nocturnal vertical distribution of the SL and moon phase, as well as other environmental factors. Moon phase significantly affected the SL distribution on a global scale, in contrast to other factors such as dissolved oxygen, temperature and fluorescence, which each correlated with nocturnal SL distribution during the large geographic coverage. Full moon caused a deepening effect on the nocturnal SL. Contrary to expectations, the shallowest distribution was not observed during the darkest nights (new moon) and there was no difference in vertical distribution between new moon and intermediate moon phases. We conclude that the trend of deepening SL during approximately full moon (bright nights) is a global phenomenon related to anti-predator behavior.
Global effects of moon phase on nocturnal acoustic scattering layers
Prihartato, Perdana; Irigoien, Xabier; Genton, Marc G.; Kaartvedt, Stein
2016-01-01
© Inter-Research 2016. The impact of moon phase on the global nocturnal vertical distribution of acoustic scattering layers (SLs) in the upper 200 m was studied during the Malaspina expedition that circumnavigated the world. We assessed the nocturnal weighted mean depths and the vertical extension of the SL (the range between the upper 25th percentile and lower 75th percentile of the backscatter) and used a generalized additive model to reveal the relationship between the nocturnal vertical distribution of the SL and moon phase, as well as other environmental factors. Moon phase significantly affected the SL distribution on a global scale, in contrast to other factors such as dissolved oxygen, temperature and fluorescence, which each correlated with nocturnal SL distribution during the large geographic coverage. Full moon caused a deepening effect on the nocturnal SL. Contrary to expectations, the shallowest distribution was not observed during the darkest nights (new moon) and there was no difference in vertical distribution between new moon and intermediate moon phases. We conclude that the trend of deepening SL during approximately full moon (bright nights) is a global phenomenon related to anti-predator behavior.
Energy Technology Data Exchange (ETDEWEB)
Samanta, Kousik [Department of Chemistry, Rice University, Houston, TX 77005 (United States); Yeager, Danny L. [Department of Chemistry, Texas A and M University, College Station, TX 77843 (United States)
2015-01-22
Resonances are temporarily bound states which lie in the continuum part of the Hamiltonian. If the electronic coordinates of the Hamiltonian are scaled (“dilated”) by a complex parameter, η = αe{sup iθ} (α, θ real), then its complex eigenvalues represent the scattering states (resonant and non-resonant) while the eigenvalues corresponding to the bound states and the ionization and the excitation thresholds remain real and unmodified. These make the study of these transient species amenable to the bound state methods. We developed a quadratically convergent multiconfigurational self-consistent field method (MCSCF), a well-established bound-state technique, combined with a dilated Hamiltonian to investigate resonances. This is made possible by the adoption of a second quantization algebra suitable for a set of “complex conjugate biorthonormal” spin orbitals and a modified step-length constraining algorithm to control the walk on the complex energy hypersurface while searching for the stationary point using a multidimensional Newton-Raphson scheme. We present our computational results for the {sup 2}PBe{sup −} shape resonances using two different computationally efficient methods that utilize complex scaled MCSCF (i.e., CMCSCF). These two methods are to straightforwardly use CMCSCF energy differences and to obtain energy differences using an approximation to the complex multiconfigurational electron propagator. It is found that, differing from previous computational studies by others, there are actually two {sup 2}PBe{sup −} shape resonances very close in energy. In addition, N{sub 2} resonances are examined using one of these methods.
International Nuclear Information System (INIS)
Margetan, F.J.; Haldipur, Pranaam; Yu Linxiao; Thompson, R.B.
2005-01-01
For pulse/echo inspections of metals, models which predict backscattered noise characteristics often make a 'single-scattering' assumption, i.e., multiple-scattering events in which sound is scattered from one grain to another before returning to the transducer are ignored. Models based on the single-scattering assumption have proven to be very useful in simulating inspections of engine-alloy billets and forgings. However, this assumption may not be accurate if grain scattering is too 'strong' (e.g., if the mean grain diameter and/or the inspection frequency is too large). In this work, backscattered grain noise measurements and analyses were undertaken to search for evidence of significant multiple scattering in pulse/echo inspections of jet-engine Nickel alloys. At or above about 7 MHz frequency and 50 micron grain diameter, problems were seen with single-scattering noise models that are likely due to the neglect of multiple scattering by the models. The modeling errors were less severe for focused-probe measurements in the focal zone than for planar probe inspections. Single-scattering noise models are likely adequate for simulating current billet inspections which are carried out using 5-MHz focused transducers. However, multiple scattering effects should be taken into account in some fashion when simulating higher-frequency inspections of Nickel-alloy billets having large mean grain diameters (> 40 microns)
Directory of Open Access Journals (Sweden)
Figen Kırkpınar
2016-07-01
Full Text Available The aim of this study was investigate the effects of whole wheat scattered the litter on performance, carcass characteristics and viscosity and pH of excreta in male broilers. A total 336 male chicks (Ross-308 were randomly distributed into two dietary treatments of four replicates each. Same starter (0 to 21 d and finisher diets (22 to 45 d were used in both groups. All birds were given ad libitum access to feed and water throughout experimental period. From 8 to 21 days, whole wheat (10 g/bird/day was randomly thrown on the litter in one of the experimental groups twice a day (at 0800 and 1200 h. Scattering whole wheat in the litter decreased body weight of male broilers at 21 d of age while increased at 45 d of age. Feed intake was not affected by whole wheat scatter treatment. From 22 to 45 and 0 to 45 d of age, feed conversion ratio significantly improved in group scattered whole wheat in the litter than control group. No significant differences were occurred among groups for mortality, carcass characteristics and excreta viscosity. However, pH value of excreta in group scattered whole wheat the litter showed significant reduction as compared control group. According to these results, scattering whole wheat the litter at an early stage affected the performance of male broilers positively.
A study on the measurement of effective energy of scattering X-rays
International Nuclear Information System (INIS)
Oogama, Noboru; Fujimoto, Nobuhisa; Nishitani, Motohiro; Yamada, Katsuhiko
1995-01-01
Only a few studies have been reported on the measurement and evaluation of the effective energy of scattering X-rays using an ionization chamber. The reason for this is due to the difficulty in accurately measuring attenuation curve in scattering X-rays lacking any directional properties. We could come up with a new method for calculating the effective energy of scattering X-rays by utilizing their spectra data. First, for analysing the accuracy of our calculation method with using primary X-rays, a comparison was made of calculated values of the effective energy obtained by our calculation method with the measurement values obtained using an ionization chamber. The results gave the calculated values agreeing with the measurement values within a maximum error of 2%, and this method was very helpful in measuring the effective energy of the scattering X-rays. Consequently, this method was capable of measuring the effective energy of scattering X-rays in the following parameters: X-ray tube voltage, scattering angle and size of scatterer. In conclusion, it is considered that our method could solve the present difficulty regarding the measurement of effective energy of the scattering X-rays, and provided a useful procedure concerning the study of radiation protection. (author)
International Nuclear Information System (INIS)
Perelli-Cippo, E.; Andreani, C.; Casalboni, M.; Dire, S.; Fernandez-Canoto, D.; Gorini, G.; Imberti, S.; Pietropaolo, A.; Prosposito, P.; Schutzmann, S.; Senesi, R.; Tardocchi, M.
2006-01-01
High-energy inelastic neutron scattering (HINS) employing epithermal neutrons is a new technique under development at the VESUVIO spectrometer at ISIS, aiming to access the high-energy and low wave-vector transfer region in neutron scattering experiments at eV energies. New neutron detectors have been developed for HINS based on the resonant detector (RD). These make use of the detection of prompt gammas after neutron absorption in an analyzer foil. The RD is used in the very low angle detector (VLAD) bank, which will extend the explored kinematical region to momentum transfer -1 , whilst still keeping energy transfer >300 meV. The final VLAD will cover the scattering range 1-5 o and will be installed by the end of 2005. The results obtained with prototype VLAD detectors on polycrystalline ice and liquid water in silica xerogels provide a demonstration of the feasibility of the measurements under realistic conditions
Energy Technology Data Exchange (ETDEWEB)
Zecca, A; Trainotti, E; Chiari, L [Department of Physics, University of Trento, Povo, I-38123 Trento (Italy); GarcIa, G [Instituto de Matematicas y Fisica Fundamental, CSIC, Serrano 121, 28006 Madrid (Spain); Blanco, F [Facultad de Ciencias Fisicas, Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense, Avda. Complutense s/n, E-28040 Madrid (Spain); Bettega, M H F [Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19044, 81531-990 Curitiba, Parana (Brazil); Varella, M T do N [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo, SP (Brazil); Lima, M A P [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, Caixa Postal 6165, 13083-970 Campinas, Sao Paulo (Brazil); Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Brunger, M J, E-mail: Michael.Brunger@flinders.edu.au [ARC Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia)
2011-10-14
We report on measurements of total cross sections (TCSs) for positron scattering from the fundamental organic molecule formaldehyde (CH{sub 2}O). The energy range of these measurements was 0.26-50.3 eV, whereas the energy resolution was {approx}260 meV. To assist us in interpreting these data, Schwinger multichannel level calculations for positron elastic scattering from CH{sub 2}O were also undertaken (0.5-50 eV). These calculations, incorporating an accurate model for the target polarization, are found to be in good qualitative agreement with our measured data. In addition, in order to compare the behaviour of positron and electron scattering from this species, independent atom model-screened additivity rule theoretical electron TCSs, now for energies in the range 1-10 000 eV, are also reported.
Investigation of the paramagnetic phase of bcc iron using polarized neutron scattering
International Nuclear Information System (INIS)
Wicksted, J.P.; Shirane, G.; Steinsvoll, O.
1983-01-01
Recent neutron scattering experiments on Ni and Fe (4%-Si) above T/sub c/ have demonstrated that a simple paramagnetic scattering function S(Qω) proportional to 1/(kappa 1 2 + q 2 ).GAMMA/(GAMMA 2 + ω 2 ) can explain the persistent spin wave ridges previously reported by Lynn and Mook. We present our new polarized beam results on pure Fe and describe in some detail the special problems associated with the unpolarized beam studies of magnetic cross sections at high temperatures
Fractal morphology in lignite coal: a small angle x-ray scattering investigation
International Nuclear Information System (INIS)
Chitra, R.; Sen, D.; Mazumder, S.; Chandrasekaran, K.S.
1999-01-01
Small angle x-ray scattering technique has been used to study the pore morphology in lignite coal from Neyveli lignite mine (Tamilnadu, India). The sample were collected from three different locations of the same mine. SAXS profiles from all the three samples show almost identical functionality, irrespective of the locations from where the samples were collected. SAXS experiment using two different wavelengths also exhibit same functionality indicating the absence of multiple scattering. The analysis indicates the surface fractal nature of the pore morphology. The surface fractal dimension is calculated to be 2.58. (author)
Plasma-screening effects upon energy levels and electron scattering from neutral and ionized caesium
International Nuclear Information System (INIS)
Chin, Y.J.; Radtke, R.; Zimmermann, R.
1988-01-01
Using interaction potentials screened with the Debye-Hueckel length, the effects of plasma shielding on energy levels and electrons scattering from neutral and ionized caesium are estimated. Both energy levels and atomic scattering cross-sections are found to be sensitive to the inclusion of screening. Relating to the scattering by the Cs + ion, a low-energy resonance near E = 0.3 Ryd is found which arises from the f-wave phase shift and reflects the individual behaviour of the scattering ion. (author)
Plasma-screening effects upon energy levels and electron scattering from neutral and ionized caesium
Energy Technology Data Exchange (ETDEWEB)
Chin, Y J; Radtke, R; Zimmermann, R
1988-01-01
Using interaction potentials screened with the Debye-Hueckel length, the effects of plasma shielding on energy levels and electrons scattering from neutral and ionized caesium are estimated. Both energy levels and atomic scattering cross-sections are found to be sensitive to the inclusion of screening. Relating to the scattering by the Cs/sup +/ ion, a low-energy resonance near E = 0.3 Ryd is found which arises from the f-wave phase shift and reflects the individual behaviour of the scattering ion.
Toyokawa, Masakazu; Yahiro, Masanobu; Matsumoto, Takuma; Kohno, Michio
2018-02-01
An important current subject is to clarify the properties of chiral three-nucleon forces (3NFs) not only in nuclear matter but also in scattering between finite-size nuclei. Particularly for elastic scattering, this study has just started and the properties are not understood for a wide range of incident energies (E_in). We investigate basic properties of chiral 3NFs in nuclear matter with positive energies by using the Brueckner-Hartree-Fock method with chiral two-nucleon forces at N3LO and 3NFs at NNLO, and analyze the effects of chiral 3NFs on 4He elastic scattering from targets ^{208}Pb, ^{58}Ni, and ^{40}Ca over a wide range of 30 ≲ E_in/A_P ≲ 200 MeV by using the g-matrix folding model, where A_P is the mass number of the projectile. In symmetric nuclear matter with positive energies, chiral 3NFs make the single-particle potential less attractive and more absorptive. The effects mainly come from the Fujita-Miyazawa 2π-exchange 3NF and become slightly larger as E_in increases. These effects persist in the optical potentials of 4He scattering. As for the differential cross sections of 4He scattering, chiral-3NF effects are large for E_in/A_P ≳ 60 MeV and improve the agreement of the theoretical results with the measured ones. Particularly for E_in/A_P ≳ 100 MeV, the folding model reproduces measured differential cross sections pretty well. Cutoff (Λ) dependence is investigated for both nuclear matter and 4He scattering by considering two cases of Λ=450 and 550 MeV. The uncertainty coming from the dependence is smaller than chiral-3NF effects even at E_in/A_P=175 MeV.
Directory of Open Access Journals (Sweden)
Sara J. Callori
2016-05-01
Full Text Available Due to hydrogen possessing a relatively large neutron scattering length, hydrogen absorption and desorption behaviors in metal thin films can straightforwardly be investigated by neutron reflectometry. However, to further elucidate the chemical structure of the hydrogen absorbing materials, complementary techniques such as high resolution X-ray reflectometry and diffraction remain important too. Examples of work on such systems include Nb- and Pd-based multilayers, where Nb and Pd both have strong affinity to hydrogen. W/Nb and Fe/Nb multilayers were measured in situ with unpolarized and polarized neutron reflectometry under hydrogen gas charging conditions. The gas-pressure/hydrogen-concentration dependence, the hydrogen-induced macroscopic film swelling as well as the increase in crystal lattice plane distances of the films were determined. Ferromagnetic-Co/Pd multilayers were studied with polarized neutron reflectometry and in situ ferromagnetic resonance measurements to understand the effect of hydrogen absorption on the magnetic properties of the system. This electronic effect enables a novel approach for hydrogen sensing using a magnetic readout scheme.
International Nuclear Information System (INIS)
Kuprikov, V. I.; Pilipenko, V. V.; Soznik, A. P.; Tarasov, V. N.; Shlyakhov, N. A.
2009-01-01
The possibility of constructing such new versions of effective nucleon-nucleon forces that would make it possible to describe simultaneously the cross sections for nucleon-nucleus scattering and quantities characterizing nuclear matter and the structure of finite even-even nuclei is investigated on the basis of a microscopic nucleon-nucleus optical potential that is calculated by using effective Skyrme interaction. A procedure for optimizing the parameters of Skyrme forces by employing fits to specific angular distributions for neutron-nucleus scattering and by simultaneously testing the features of nuclear matter, the binding energy of the target nucleus, and its proton root-mean-square radius is proposed. A number of versions of modified Skyrme forces that ensure a reasonable description of both nucleon-nucleus scattering and the properties of nuclear structure are found on the basis of this procedure.
Scattering of intermediate energy protons
International Nuclear Information System (INIS)
Chaumeaux, Alain.
1980-06-01
The scattering of 1 GeV protons appears to be a powerful means of investigating nuclear matter. We worked with SPESI and the formalism of Kerman-Mc Manus and Thaler. The amplitude of nucleon-nucleon scattering was studied as were the aspects of 1 GeV proton scattering (multiple scattering, absorption, spin-orbit coupling, N-N amplitude, KMT-Glauber comparison, second order effects). The results of proton scattering on 16 O, the isotopes of calcium, 58 Ni, 90 Zr and 208 Pb are given [fr
Coastal Zone Color Scanner atmospheric correction algorithm - Multiple scattering effects
Gordon, Howard R.; Castano, Diego J.
1987-01-01
Errors due to multiple scattering which are expected to be encountered in application of the current Coastal Zone Color Scanner (CZCS) atmospheric correction algorithm are analyzed. The analysis is based on radiative transfer computations in model atmospheres, in which the aerosols and molecules are distributed vertically in an exponential manner, with most of the aerosol scattering located below the molecular scattering. A unique feature of the analysis is that it is carried out in scan coordinates rather than typical earth-sun coordinates, making it possible to determine the errors along typical CZCS scan lines. Information provided by the analysis makes it possible to judge the efficacy of the current algorithm with the current sensor and to estimate the impact of the algorithm-induced errors on a variety of applications.
An Investigation of Aerosol Scattering and Absorption Properties in Wuhan, Central China
Directory of Open Access Journals (Sweden)
Wei Gong
2015-04-01
Full Text Available Aerosol scattering and absorption properties were continuously measured and analyzed at the urban Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS site in Wuhan, central China, from 1 December 2009 to 31 March 2014. The mean aerosol scattering coefficient , absorption coefficient , and single scattering albedo (SSA were 377.54 Mm−1, 119.06 Mm−1, and 0.73, respectively. Both and showed obvious annual variability with large values in winter and small values in summer, principally caused by the annual characteristics of meteorological conditions, especially planetary boundary layer height (PBLH and local emissions. The SSA showed a slight annual variation. High values of SSA were related to formation of secondary aerosols in winter hazes and aerosol hygroscopic growth in humid summer. The large SSA in June can be attributed to the biomass combustion in Hubei and surrounding provinces. Both and showed double peak phenomena in diurnal variation resulting from the shallow stable PBLH at night and automobile exhaust emission during morning rush hours. The SSA also exhibited a double peak phenomenon related to the proportional variation of black carbon (BC and light scattering particulates in the day and night. The long-term exploration on quantified aerosol optical properties can help offer scientific basis of introducing timely environmental policies for local government.
International Nuclear Information System (INIS)
Becker, R.
1976-10-01
In the study, image improvement is proposed for scintiscanning, X-ray and neutron diagnosis as well as computer axial tomography. In order to reduce the scattered radiation, mainly two-dimensional radiation transport calculations are carried out, and the imaging properties are studied by simulation on a large computer. It was found, among other things, that in contrast to X-ray techniques, in diagnosis with fast neutrons the image quality can hardly be improved by screens for scattered radiation. Here the problem of scattered radiation can only be solved by using scanners with narrow beams. The new method of neutron diagnosis resulting from this is especially suited for representing structures behind bones or for the localization of bone tumors invisible to X-rays, but not for representing fatty tissue. For large depths of irradiation, the scattered radiation with neutron sources below 1 MeV gets so intensive that diagnosis becomes impossible. When fast neutrons are used are used, the method is applicable for computer axial tomography because of the narrow beams. (ORU) [de
Investigation of vacuum polarization in t-channel radiative Bhabha scattering
Karlen, D A
2001-01-01
We discuss the possibility of a precision measurement of vacuum polarization in t-channel radiative Bhabha scattering at a high luminosity collider. For illustration, the achievable precision is estimated for the BaBar experiment at PEP-II and for the OPAL experiment at LEP.
X-ray and neutron scattering investigations of YCo3-H
International Nuclear Information System (INIS)
Benham, M.J.; Bennington, S.M.; Ross, D.K.; Noreus, D.; Yamaguchi, M.
1989-01-01
Various structural studies of YCo 3 H(D) x in the β-phase (0 2 . Neutron diffraction and inelastic neutron scattering were also used in tandem, and hydrogen occupation of a single (36i) tetrahedral site was inferred for the entire concentration range. (orig.)
Investigation of metallic and ceramic materials by small-angle neutron scattering
Smirnov, YI; Elyutin, NO
Small-angle neutron scattering measurements on a double-crystal spectrometer with perfect monochromator and analyzer crystals were used to follow microstructural changes in the aluminum alloy VD-17. refractory alloy ZhS-6, and dispersion-hardened zirconia-based ceramics with yttria additions. The
Chemical binding effects in resonance - potential interference scattering for harmonic crystals
International Nuclear Information System (INIS)
Kuwaifi, A.; Summerfield, G.C.
1991-01-01
The neutron scattering cross section which is the quantity directly measured in experiments is given by the absolute square of the scattering amplitude. For energies near a resonance, this yields three terms: potential, resonant and interference. In this paper we deal with the interference neutron scattering cross section which is written in terms of a three-point correlation function. This function is calculated for the ideal gas and harmonic crystal models. For short collision times, the interference result for harmonic crystals is the same as the ideal gas but it has an effective temperature. This is the same effective temperature as was previously found for absorption and pure resonant processes. Therefore, the interference scattering cross section can be treated in the same way as resonant scattering and absorption are treated using an ideal gas result with the usual effective temperature. (author)
SIMULATION OF THE Ku-BAND RADAR ALTIMETER SEA ICE EFFECTIVE SCATTERING SURFACE
DEFF Research Database (Denmark)
Tonboe, Rasmus; Andersen, Søren; Pedersen, Leif Toudal
2006-01-01
A radiative transfer model is used to simulate the sea ice radar altimeter effective scattering surface variability as a function of snow depth and density. Under dry snow conditions without layering these are the primary snow parameters affecting the scattering surface variability. The model is ...
Structural effects at Λ3Hp-scattering
International Nuclear Information System (INIS)
Tartakovskij, V.K.; Fursaev, A.V.; Ivanova, O.I.
2003-01-01
In the paper the calculated dependences of falling hyper-tritons energy E=156 MeV differential cross sections from the scattering angle in the center of mass system θ and for more high energy values E from coupling energy ε 0 of Λ 3 H with regard to its disintegration into Λ-hyperon and deuteron are presented. It is established the strong dependence of differential cross section from ε 0 , moreover the sensitivity of differential cross sections to ε 0 value grows up with increasing of energy E. This allows to use the Λ 3 Hp-scattering as a method for ε 0 value elaboration
Rainbow and Fresnel diffraction effects in the heavy ion scattering
International Nuclear Information System (INIS)
Salvadori, M.C.B.S.
1984-01-01
A detailed theoretical analysis of the heavy-ion elastic scattering differential cross section, using the uniform semiclassical approximation of Berry in the sharp cut-off limit is presented. A decomposition of the cross section into four physically well-defined components is used in the analysis. The aim of the analysis is to explore the possibility of distinguishing at the cross-section level, between a pure raibow or Fresnel diffraction nature of the heavy-ion elastic scattering at above-barrier energies and not too large angles. (Author) [pt
Energy and target dependence of projectile breakup effect in the elastic scattering of 6Li
International Nuclear Information System (INIS)
Sakuragi, Y.
1986-03-01
Over the wide range of incident energy (E lab = 40 ∼ 170 MeV) and target mass number (A = 12 ∼ 208), projectile breakup effects in the elastic scattering of 6 Li have been investigated with a microscopic coupled-channel method. The coupling to the 6 Li → α + d breakup process is treated with the method of coupled discretized continuum channels (CDCC). 6 Li-target interactions are provided by the folding of the M3Y effective nucleon-nucleon potential with nucleon densities of colliding nuclei. The calculation well reproduces the observed elastic scattering for all the targets and incident energies without any renormalization in the real folding potentials. The breakup effect is found to depend little on the energy and target, which is confirmed by calculating the dynamical polarization potentials induced by the coupling to the breakup process. Almost irrespectively of energy and target, the potential has a repulsive real part with strength of about 40 % of the folding potential in addition to a negligible imaginary part, which explains well the empirical reduction factor of the double-folding model. Discussions are made on the origin of repulsive nature of the breakup effect. (author)
Angular momentum effects in electron scattering from atoms
International Nuclear Information System (INIS)
Williams, J F; Cvejanovie, D; Samarin, S; Pravica, L; Napier, S; Sergeant, A
2007-01-01
This paper concerns angular momentum-dependent phenomena in excited gas-phase atoms using incident photons or electrons in scattering experiments. A brief overview indicates the main capabilities of experimental techniques and the information which can be deduced about atomic structure and dynamics from conservation of momenta with measurement of polarization and detection of the number of emerging electrons, photons and ions. Maximum information may be obtained when the incident particles and the targets are state-selected both before and after scattering. The fundamental scattering amplitudes and their relative phases, and consequently derived quantities such as the parameters describing the electron charge cloud of the atomic target, have enabled significant advances of understanding of collision mechanisms. The angular momentum-dependent scattering probabilities change when, for example, the spin-orbit interaction for the target electrons becomes large compared with the Coulomb electron-electron interactions and also when electron exchange and the relative orientation of the electron spins change. Several examples are discussed to indicate significant principles and recent advances. Major contributions to this field from the technology associated with electron spin production and detection time, as well as time-coincidence detection, are discussed. New results from the authors' laboratory are presented
Effective Spectral Function for Quasielastic Scattering on Nuclei
Bodek, A.; Christy, M. E.; Coopersmith, B.
2014-01-01
Spectral functions that are used in neutrino event generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the $\
Ramsauer effect in triplet neutron-neutron scattering
International Nuclear Information System (INIS)
Pupyshev, V.V.; Solovtsova, O.P.
1995-01-01
As we show, due to interplay of pure nuclear and magnetic moment interactions, the total cross section of triplet neutron-neutron scattering should possess a non-zero limit at E cm = 0 and a local minimum at ∼ 20 keV. 17 refs., 1 fig
Small-angle neutron scattering studies of nonionic surfactant: Effect
Indian Academy of Sciences (India)
Micellar solution of nonionic surfactant -dodecyloligo ethyleneoxide surfactant, decaoxyethylene monododecyl ether [CH3(CH2)11(OCH2CH2)10OH], C12E10 in D2O solution have been analysed by small-angle neutron scattering (SANS) at different temperatures (30, 45 and 60°C) both in the presence and absence of ...
Color effects from scattering on random surface structures in dielectrics
DEFF Research Database (Denmark)
Clausen, Jeppe; Christiansen, Alexander B; Garnæs, Jørgen
2012-01-01
We show that cheap large area color filters, based on surface scattering, can be fabricated in dielectric materials by replication of random structures in silicon. The specular transmittance of three different types of structures, corresponding to three different colors, have been characterized...
Quasielastic electron scattering: effect of relativistic nuclear potentials
International Nuclear Information System (INIS)
Do Dang, G.; Nguyen Van Giai.
1983-11-01
It is shown that a solution to the difficulty encountered in reproducing simultaneously the experimental longitudinal and transverse response functions deduced from deep inelastic electron scattering may be found in a consistent treatment of the electromagnetic interaction in a Dirac equation in which Lorentz scalar and vector potentials are explicitly introduced. Results for 12 C and 40 Ca are given and compared with experiments
Electron distortion effects in quasi-eleastic electron scattering
International Nuclear Information System (INIS)
Jin, Yanhe.
1991-03-01
This report discusses the following topics: dirac single particle shell model; dirac free states in Coulomb and optical potentials; deep inelastic electron scattering; plane wave born approximation and Rosenbluth separation; analysis of the 40 Ca(e,e') experimental data; and analysis of the exclusive (e,e'p) experimental data
Characterization of the angular memory effect of scattered light in biological tissues.
Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain
2015-05-18
High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.
International Nuclear Information System (INIS)
Sadakane, Koichiro
2013-01-01
The effect of an antagonistic salt on the phase behavior and nanoscale structure of a mixture of water/organic solvent was investigated by visual inspection, optical microscope, and small-angle neutron scattering (SANS). The addition of the antagonistic salt, namely sodium tetraphenylborate (NaBPh 4 ), induces the shrinking of the two-phase region in contrast to the case in which a normal (hydrophilic) salt is added. Below the phase separation point, the SANS profiles cannot be described by the Ornstein-Zernike function owing to the existence of a long-range periodic structure. With increasing salt concentration, the critical exponents change from the values of 3D-Ising and approach those of 2D-Ising. Furthermore, an ordered phase with multilamellar (onion) structures was confirmed in an off-critical mixture of D 2 O and 3-methylpyridine containing 85 mM of a NaBPh 4 although no surfactants or polymers are contained. (author)
International Nuclear Information System (INIS)
Yee Madeira, H.T.
1989-03-01
The scope of this work is the investigation of the system PV ME/d-PS by small angle neutron scattering (SANS). The measurements were done with a pinhole-camera and a high resolution double crystal diffractometer and covered the resolution range from 10 -3 to 3x10 -2 A -1 and 2x10 -5 to 6x10 -4 A -1 respectively. As a basis for these investigations the phase diagram of a PVME/d-PS mixture was measured with SANS. The spinodal for different curve between stable and demixing region was obtained. For PVME with molecular weights M ω =60000 and d-PS with M ω =215103 the critical point is at the concentration Φ=0.2. From the spinodal and the structure factor the Flory-Huggins parameter Χ could be extracted as a function of temperature. It was found that Χ=0 for T comp =135 0 C and Χ is independent of the molecular weight within the accuracy of the data, thus Χ may be associated with a local interaction parameter. The scattering experiments for the determination of the spinodal confirmed the mean-field behaviour of the critical scattering which was earlier found by Herkt-Maetzky and Schelten. Further, the time dependence of the structure factor in the miscibility gap was investigated. From the structure factors, specially from the position Q max of their maxima, a characteristic length was extracted. (orig./RB) [de
Using Lattice Topology Information to Investigate Persistent Scatterers at Facades in Urban Areas
Schack, L.; Soergel, U.
2013-05-01
Modern spaceborne SAR sensors like TerraSAR-X offer ground resolution of up to one meter in range and azimuth direction. Buildings, roads, bridges, and other man-made structures appear in such data often as regular patterns of strong and temporally stable points (Persistent Scatterer, PS). As one step in the process of unveiling what object structure actually causes the PS (i.e., physical nature) we compare those regular structures in SAR data to their correspondences in optical imagery. We use lattices as a common data representation for visible facades. By exploiting the topology information given by the lattices we can complete gaps in the structures which is one step towards the understanding of the complex scattering characteristics of distinct facade objects.
Small angle neutron scattering investigations of spin disorder in nanocomposite soft magnets
International Nuclear Information System (INIS)
Vecchini, C.; Moze, O.; Suzuki, K.; Cadogan, J.M.; Pranzas, K.; Michels, A.; Weissmueller, J.
2006-01-01
The technique of SANS (small angle neutron scattering) furnishes unique information on the characteristic magnetic length scales and local magnetic anisotropies at the nanoscale in nanocomposite ferromagnets. Such information is not presently available using any other microscopic technique. The basic principles and results of the technique will be presented with regard to a unique and unexpected observation of a dipole field controlled spin disorder in a prototypical soft nanocomposite ferromagnet of the Nanoperm type
Small angle neutron scattering form polymer melts: structural investigation and phase behaviour
International Nuclear Information System (INIS)
Ertugrul, O.
2004-01-01
The Small-Angle Neutron Scattering (SANS) techniques have been used to study the structural properties and phase behavior of polymer melts. A model based on Random Phase Approximation (RPA) is proposed to predict the experimental data. By fitting the model to data we could be able to obtain radius of gyration (a measure of size of a polymer) and phase transition for the sample. (author)
International Nuclear Information System (INIS)
Zhu Zhengang; Su Gang; Jin Biao; Zheng Qingrong
2003-01-01
We have investigated the current-induced spin transfer torque of a ferromagnet-insulator-ferromagnet tunnel junction by taking the spin-flip scatterings into account. It is found that the spin-flip scattering can induce an additional spin torque, enhancing the maximum of the spin torque and giving rise to an angular shift compared to the case when the spin-flip scatterings are neglected. The effects of the molecular fields of the left and right ferromagnets on the spin torque are also studied. It is found that τ Rx /I e (τ Rx is the spin-transfer torque acting on the right ferromagnet and I e is the tunneling electrical current) does vary with the molecular fields. At two certain angles, τ Rx /I e is independent of the molecular field of the right ferromagnet, resulting in two crossing points in the curve of τ Rx /I e versus the relevant orientation for different molecular fields
The investigation of the elastic photon scattering cross sections by copper atoms and ions
International Nuclear Information System (INIS)
Kuplyauskene, A.B.
1976-01-01
The differential cross sections of coherent scattering of photons on a copper atom and ions Cu + and Cu 2+ and also on ions Zn + and Ga 2+ in their ground states have been studied theoretically. The energy of an incident photon has varied in the range from 0.5 keV to 200 keV, and the scattering cross sections are given for angles of 30 deg, 60 deg, 90 deg, 120 deg, 150 deg. The calculations are performed in the formfactor approximation with the use of generalized hydrogen-like analytical radial orbitals. To clarify the contribution from individual shells the cross sections of photon scattering on individual electron of shells are calculated. It follows from the calculations that when the energies of the incident photon are less than 4 keV, the main contribution into the differential cross section is made by external electrons. Then, alongside with the increase of the energy, the contribution of the electrons decreases, and the inner shells begin to play a more important role. Therefore the photon cross sections for the energies greater than 50 keV practically coincide for atoms and ions of copper. The general regularities of the cross section variation accompanying the increase of the photon energy are similar for all the elements under study. The angular dependences of cross sections are such that they decrease first and after reaching the minimum at angles of 90 deg - 120 deg increase again
International Nuclear Information System (INIS)
Staszewska, G.; Schwenke, D.W.; Truhlar, D.G.
1984-01-01
We present a comparative study of several empirical and nonempirical models for the absorption potential, which is the imaginary part of an optical-model potential, for electron scattering by rare gases. We show that the elastic differential cross section is most sensitive to the absorption potential for high-impact energy and large scattering angles. We compare differential cross sections calculated by several models for the absorption potential and by several arbitrary modifications of these model potentials. We are able to associate the effect of the absorption potential on the elastic differential cross section with its form at small electron-atom distances r, and we are able to deduce various qualitative features that the absorption potential must possess at small and large r in order to predict both accurate differential cross sections and accurate absorption cross sections. Based on these observations, the Pauli blocking conditions of the quasifree scattering model for the absorption potential are modified empirically, thus producing a more accurate model that may be applied to other systems; e.g., electron-molecule scattering, with no adjustable parameters
Effects of multiple scattering and atmospheric aerosol on the polarization of the twilight sky
International Nuclear Information System (INIS)
Ugolnikov, Oleg S.; Postylyakov, Oleg V.; Maslov, Igor A.
2004-01-01
The paper presents a review of a number of wide-angle polarization CCD-measurements of the twilight sky in V and R color bands with effective wavelengths 550 and 700nm. The basic factors affecting (usually decreasing) the polarization of the twilight sky are the atmospheric aerosol scattering and multiple scattering. These effects were distinguished from each other, and a method of multiple-scattering separation is discussed. The results are compared with the data of numerical simulation of radiative transfer in the atmosphere for different aerosol models. The whole twilight period is divided into different stages with different mechanisms forming the twilight-sky polarization properties
Effective diffusion constant in a two-dimensional medium of charged point scatterers
International Nuclear Information System (INIS)
Dean, D S; Drummond, I T; Horgan, R R
2004-01-01
We obtain exact results for the effective diffusion constant of a two-dimensional Langevin tracer particle in the force field generated by charged point scatterers with quenched positions. We show that if the point scatterers have a screened Coulomb (Yukawa) potential and are uniformly and independently distributed then the effective diffusion constant obeys the Volgel-Fulcher-Tammann law where it vanishes. Exact results are also obtained for pure Coulomb scatterers frozen in an equilibrium configuration of the same temperature as that of the tracer
The Effect of Atmospheric Scattering as Inferred from the Rocket-Borne UV Radiometer Measurements
Directory of Open Access Journals (Sweden)
Jhoon Kim
1997-06-01
Full Text Available Radiometers in UV and visible wavelengths were onboard the Korean Sounding Rocket(KSR-1 and 2 which were launched on June 4th and September 1st, 1993. These radiometers were designed to capture the solar radiation during the ascending period of the rocket flight. The purpose of the instrument was to measure the vertical profiles of stratospheric ozone densities. Since the instrument measured the solar radiation from the ground to its apogee, it is possible to investigate the altitude variation of the measured intensity and to estimate the effect of atmospheric scattering by comparing the UV and visible intensity. The visible channel was a reference because the 450-nm wavelength is in the atmospheric window region, where the solar radiation is transmitted through the atmosphere without being absorbed by other atmospheric gases. The use of 450-nm channel intensity as a reference should be limited to the altitude ranges above the certain altitudes, say 20 to 25§° where the signals are not perturbed by atmospheric scattering effects.
Energy Technology Data Exchange (ETDEWEB)
Markovic, M [Belgrade Univ. (Yugoslavia). Elektrotehnicki Fakultet
1981-07-01
The influence of the effective water molecule mass on the thermal neutron scattering on the nucleus of the hydrogen atom has been investigated. Besides the actual water molecule mass (M = 18) the investigations have been carried out with its two effective values (M1 = 16 and M2 = 20). The differential and total cross sections have been calculated for the incident thermal neutron energy E{sub o} = 1 eV. Investigation results show different prominence of the quantum effects and for M2 the appearance of peaks in the quasielastic scattering. (author)
Non-Linear Rheological Properties and Neutron Scattering Investigation on Dilute Ring-Linear Blends
DEFF Research Database (Denmark)
Pyckhout-Hintzen, W.; Bras, A.R.; Wischnewski, A.
in a filament stretching rheometer, followed by quenching, strong anisotropic scattering patterns were obtained which were described by affinely deformed rings which function as giant, polymeric chemical crosslinks or sliplinks and more or less isotropic topological contributions from the entangling...... with interpenetrating linear chains. At the same time the non-linear rheological and mechanical data fit to a non-affine slip-tube model as for moderately crosslinked networks and to interchain pressure models or a modified non-linear Doi-Edwards description for the observed strain hardening during the extensional...
Ion track annealing in quartz investigated by small angle X-ray scattering
Energy Technology Data Exchange (ETDEWEB)
Schauries, D.; Afra, B.; Rodriguez, M.D. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601 (Australia); Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64287 Darmstadt (Germany); Hawley, A. [Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168 (Australia); Kluth, P. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601 (Australia)
2015-12-15
We report on the reduction of cross-section and length of amorphous ion tracks embedded within crystalline quartz during thermal annealing. The ion tracks were created via Au ion irradiation with an energy of 2.2 GeV. The use of synchrotron-based small angle X-ray scattering (SAXS) allowed characterization of the latent tracks, without the need for chemical etching. Temperatures between 900 and 1000 °C were required to see a notable change in track size. The shrinkage in cross-section and length was found to be comparable for tracks aligned perpendicular and parallel to the c-axis.
Interest of neutron scattering for the investigation of liquid-crystalline polymers
International Nuclear Information System (INIS)
Noirez, L.
1994-01-01
Small-angle Neutron scattering is the unique method which allows the determination of polymer conformation in the bulk state. This method has been applied to several kinds of liquid crystalline polymers. Results concerning side-chain liquid-crystal polymer, main-chain liquid-crystal polymer and combined liquid-crystal polymers, are reported. It is shown that the polymer conformation is largely dependent on the insertion site of the liquid crystal molecule and of the structure of the meso-phase. (author). 11 refs
X-ray and neutron scattering investigations of YCo sub 3 -H
Energy Technology Data Exchange (ETDEWEB)
Benham, M J; Bennington, S M; Ross, D K [Birmingham Univ. (UK). School of Physics and Space Research; Noreus, D [Stockholm Univ. (Sweden). Dept. of Structural Chemistry; Yamaguchi, M [Yokohoma National Univ. (Japan). Dept. of Electrical and Computer Engineering
1989-01-01
Various structural studies of YCo{sub 3}H(D){sub x} in the {beta}-phase (0
Directory of Open Access Journals (Sweden)
L. A. Bulavin
2015-07-01
Full Text Available The paper presents the results of the structural study of various types of the water-detonation nanodiamond liquid systems, which are obtained by small-angle scattering of thermal neutrons. It was shown that in the mass fraction range (0.3 - 1.8 % the experimental spectra are well described by a two-level model of unified exponential/power-law approach. The resulting structural parameters allowed us to estimate the aggregation number in the studied systems. Sizes of the nanodiamond particles and their clusters are found as well as the fractal dimension of the latter.
International Nuclear Information System (INIS)
Bulavin, L.A.; Tomchuk, O.V.; Avdeev, M.V.
2015-01-01
The paper presents the results of the structural study of various types of the water-detonation nanodiamond liquid systems, which are obtained by small-angle scattering of thermal neutrons. It was shown that in the mass fraction range (0.3/1.8) % the experimental spectra are well described by a two-level model of unified exponential/power-law approach. The resulting structural parameters allowed us to estimate the aggregation number in the studied systems. Sizes of the nanodiamond particles and their clusters are found as well as the fractal dimension of the latter
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2012-01-01
The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Lin, H.; Wu, DS.; Wu, AD.
2005-01-01
The effects of internal and external scatter on surface, build-up and depth dose characteristics simulated by Monte Carlo code EGSnrc for varying field size and SSD for a 10 MeV monoenergetic electron beam with and without an accelerator model are extensively studied in this paper. In particular, sub-millimetre surface PDD was investigated. The percentage depth doses affected significantly by the external scatter show a larger build-up dose. A forward shifted Dmax depth and a sharper fall-off region compared to PDDs with only internal scatter considered. The surface dose with both internal and external scatter shows a marked decrease at 110 cm SSD, and then slight further changes with the increasing SSD since few external scattered particles from accelerator model can reach the phantom for large SSDs. The sharp PDD increase for the 5 cm x 5 cm field compared to other fields seen when only internal scatter is considered is significantly less when external scatter is also present. The effect of external scatter on surface PDD is more pronounced for large fields than small fields (5 cm x 5 cm field)
Effects of configuration mixing in heavy-ion elastic scattering
International Nuclear Information System (INIS)
Cappuzzello, F.; Bondi, M.; Nicoloso, D.; Tropea, S.; Lubian, J.; Gomes, P.R.S.; Linares, R.; Oliveira, J.R.B.; Chamon, L.C.; Gasques, L.R.; Agodi, C.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; De Napoli, M.; Nunes Garcia, V.; Paes, B.; Foti, A.
2014-01-01
A theoretical study of the influence of configuration mixing on elastic scattering cross section is performed for the system 16 O + 27 Al at 100 MeV. A simple two-state model space, including the 27 Al 5/2 + ground and 5/2 + excited state at 2.73 MeV, is used in the coupled channel equations. The results indicate that even a weak degree of mixing is able to sizeably affect the elastic cross section, determining mainly a damping of Fraunhofer oscillations, as observed in the experiments. (authors)
Hanle effect at forward scattering in excited media
International Nuclear Information System (INIS)
Veklenko, B.A.
2001-01-01
One introduces a new method to calculate matrix of density of quantized electromagnetic field interacting with environment with kinetic processes in the medium. This method alongside with the accurate account of photon-photon quantum correlators has a number of symmetry features essentially facilitating summing up of appearing Feynman diagrams. Forward scattering of resonance radiation by gas two-level atoms within magnetic field was studied as a supplement. It is shown that inadequacy of semiclassical description of this coherent process in the excited media using unique tensor factor of refraction follows from quantum electrodynamics. One more function depending on frequency of irradiation and on concentration of excited atoms should be introduced [ru
Skew scattering dominated anomalous Hall effect in Cox(MgO)100-x granular thin films
Zhang, Qiang
2017-07-31
We investigated the mechanism(s) of the anomalous Hall effect (AHE) in magnetic granular materials by fabricating 100-nm-thick thin films of Co_{x}(MgO)_{100-x} with a Co volume fraction of 34≤x≤100 using co-sputtering at room temperature. We measured the temperature dependence of longitudinal resistivity (ρ_{xx}) and anomalous Hall resistivity (ρ_{AHE}) from 5 K to 300 K in all samples. We found that when x decreases from 100 to 34, the values of ρ_{xx} and ρ_{AHE} respectively increased by about four and three orders in magnitude. By linearly fitting the data, obtained at 5 K, of anomalous Hall coefficient (R_{s}) and of ρ_{xx} to log(R_{s})~γlog(ρ_{xx}), we found that our results perfectly fell on a straight line with a slope of γ= 0.97±0.02. This fitting value of γ in R_{s}∝ρ_{xx}^{γ} clearly suggests that skew scattering dominated the AHE in this granular system. To explore the effect of the scattering on the AHE, we performed the same measurements on annealed samples. We found that although both ρ_{xx} and ρ_{AHE} significantly reduced after annealing, the correlation between them was almost the same, which was confirmed by the fitted value, γ=0.99±0.03. These data strongly suggest that the AHE originates from the skew scattering in Co-MgO granular thin films no matter how strong the scatterings of electrons by the interfaces and defects is. This observation may be of importance to the development of spintronic devices based on MgO.
International Nuclear Information System (INIS)
McFarlane, Andrew R.; Silverwood, Ian P.; Norris, Elizabeth L.; Ormerod, R. Mark; Frost, Christopher D.; Parker, Stewart F.; Lennon, David
2013-01-01
Highlights: • Inelastic neutron scattering has been used to investigate a Ni/alumina catalyst. • The extent of hydrogen retention by the catalyst has been determined. • Filamentous carbon is identified as a by-product. - Abstract: An alumina-supported nickel catalyst, previously used in methane reforming experiments employing CO 2 as the oxidant, is applied here in the steam reforming variant of the process. Micro-reactor experiments are used to discern an operational window compatible with sample cells designed for inelastic neutron scattering (INS) experiments. INS spectra are recorded after 6 h reaction of a 1:1 mixture of CH 4 and H 2 O at 898 K. Weak INS spectra are observed, indicating minimal hydrogen retention by the catalyst in this operational regime. Post-reaction, the catalyst is further characterised by powder X-ray diffraction, transmission electron microscopy and Raman scattering. In a comparable fashion to that seen for the ‘dry’ reforming experiments, the catalyst retains substantial quantities of carbon in the form of filamentous coke. The role for hydrogen incorporation by the catalyst is briefly considered
Energy Technology Data Exchange (ETDEWEB)
McFarlane, Andrew R.; Silverwood, Ian P. [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Norris, Elizabeth L.; Ormerod, R. Mark [Department of Chemistry, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG (United Kingdom); Frost, Christopher D.; Parker, Stewart F. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Lennon, David, E-mail: David.Lennon@glasgow.ac.uk [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom)
2013-12-12
Highlights: • Inelastic neutron scattering has been used to investigate a Ni/alumina catalyst. • The extent of hydrogen retention by the catalyst has been determined. • Filamentous carbon is identified as a by-product. - Abstract: An alumina-supported nickel catalyst, previously used in methane reforming experiments employing CO{sub 2} as the oxidant, is applied here in the steam reforming variant of the process. Micro-reactor experiments are used to discern an operational window compatible with sample cells designed for inelastic neutron scattering (INS) experiments. INS spectra are recorded after 6 h reaction of a 1:1 mixture of CH{sub 4} and H{sub 2}O at 898 K. Weak INS spectra are observed, indicating minimal hydrogen retention by the catalyst in this operational regime. Post-reaction, the catalyst is further characterised by powder X-ray diffraction, transmission electron microscopy and Raman scattering. In a comparable fashion to that seen for the ‘dry’ reforming experiments, the catalyst retains substantial quantities of carbon in the form of filamentous coke. The role for hydrogen incorporation by the catalyst is briefly considered.
Effects of the scattering anisotropy approximation in multigroup radiation shielding calculations
International Nuclear Information System (INIS)
Altiparmarkov, D.
1983-01-01
Expansion of the scattering cross-sections into Legendre series is the usual way of solving the neutron transport problem. Because of the large space gradients of the neutron flux, the effects of that approximations become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account scattering anisotropy is presented. From the point of view of the accuracy and computing speed, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations (author) [sr
Li, Kun; Hogan, Nathaniel J; Kale, Matthew J; Halas, Naomi J; Nordlander, Peter; Christopher, Phillip
2017-06-14
Efficient photocatalysis requires multifunctional materials that absorb photons and generate energetic charge carriers at catalytic active sites to facilitate a desired chemical reaction. Antenna-reactor complexes are an emerging multifunctional photocatalytic structure where the strong, localized near field of the plasmonic metal nanoparticle (e.g., Ag) is coupled to the catalytic properties of the nonplasmonic metal nanoparticle (e.g., Pt) to enable chemical transformations. With an eye toward sustainable solar driven photocatalysis, we investigate how the structure of antenna-reactor complexes governs their photocatalytic activity in the light-limited regime, where all photons need to be effectively utilized. By synthesizing core@shell/satellite (Ag@SiO 2 /Pt) antenna-reactor complexes with varying Ag nanoparticle diameters and performing photocatalytic CO oxidation, we observed plasmon-enhanced photocatalysis only for antenna-reactor complexes with antenna components of intermediate sizes (25 and 50 nm). Optimal photocatalytic performance was shown to be determined by a balance between maximized local field enhancements at the catalytically active Pt surface, minimized collective scattering of photons out of the catalyst bed by the complexes, and minimal light absorption in the Ag nanoparticle antenna. These results elucidate the critical aspects of local field enhancement, light scattering, and absorption in plasmonic photocatalyst design, especially under light-limited illumination conditions.
International Nuclear Information System (INIS)
Bauhoff, W.
1983-01-01
The excitation of the 0 2 + (7.65 MeV) state in 12 C by inelastic alpha scattering is investigated using microscopic resonating-group wave-functions in a coupled channel folding model. The importance of coupling to other states and the influence of varying the optical potential in the excited states is studied. Both effects must be taken into account for a quantitative description
Effects of multiple scattering on radiative properties of soot fractal aggregates
International Nuclear Information System (INIS)
Yon, Jérôme; Liu, Fengshan; Bescond, Alexandre; Caumont-Prim, Chloé; Rozé, Claude; Ouf, François-Xavier; Coppalle, Alexis
2014-01-01
The in situ optical characterization of smokes composed of soot particles relies on light extinction, angular static light scattering (SLS), or laser induced incandescence (LII). These measurements are usually interpreted by using the Rayleigh–Debye–Gans theory for Fractal Aggregates (RDG-FA). RDG-FA is simple to use but it completely neglects the impact of multiple scattering (MS) within soot aggregates. In this paper, based on a scaling approach that takes into account MS effects, an extended form of the RDG-FA theory is proposed in order to take into account these effects. The parameters of this extended theory and their dependency on the number of primary sphere inside the aggregate (1 p <1006) and on the wavelength (266nm<λ<1064nm) are evaluated thanks to rigorous calculations based on discrete dipole approximation (DDA) and generalized multi-sphere Mie-solution (GMM) calculations. This study shows that size determination by SLS is not distorted by MS effect. On the contrary, it is shown that fractal dimension can be misinterpreted by light scattering experiments, especially at short wavelengths. MS effects should be taken into account for the interpretation of absorption measurements that are involved in LII or extinction measurements. -- Highlights: • We incorporate multiple scattering effects in a scaling approach for fractal aggregates. • A generalized structure factor is introduced for implementation in RDG-FA theory. • Forward scattering is affected by multiple scattering as well as power law regime. • Absorption cross sections are affected by multiple scattering. • Absorption cross sections are 11% higher than that for forward scattering
Energy Technology Data Exchange (ETDEWEB)
Weidmann, R.; Albert, J.; Glombik, A.; Kretschmer, W.; Nebert, P.; Rauscher, A. (Physikalisches Inst., Univ. Erlangen-Nuernberg (Germany)); Clajus, M.; Egun, P.M.; Grueebler, W.; Hautle, P. (Inst. fuer Mittelenergiephysik, ETH, Zurich (Switzerland)); Schmelzbach, P.A. (Paul Scherrer Inst., F1, Accelerator Div., Villigen (Switzerland)); Slaus, I. (Inst. Ruder Boscovic, Zagreb (Croatia))
1993-03-01
The polarization-Transfer observables K[sub y][sup y']([theta]), K[sub x][sup x']([theta]) and K[sub z][sup x']([theta]) for proton-proton scattering have been measured at E[sub p]=25.68 MeV. A simultaneous phase-shift analysis of these new data with differential cross section and analyzing power data at the same energy resulted in a very accurate determination of the p-wave phase-shift combinations [Delta][sub C], [Delta][sub LS] and [Delta][sub T] and of the [sup 3]F[sub 2]-[sup 3]P[sub 2] mixing parameter [epsilon][sub 2]. With this complete set of high precision data a critical test of microscopic NN-potential models has been performed. (orig.).
A small-angle neutron scattering investigation of coke deposits on catalysts
International Nuclear Information System (INIS)
Acharya, D.R.; Hughes, R.; Allen, A.J.
1990-01-01
Small-angle neutron scattering (SANS) has been used to characterize a silica-alumina catalyst before and after coke deposition. The reaction used to deactivate the catalyst was the isomerization of xylenes. The results showed that, while most of the surface area in this type of catalyst resides in the ultrafine pores of diameters less than 1 nm occupying about 7% of the sample volume, there appears to be no coke deposition in these pores. The coke seems to coat the solid structures of 3.3-nm diameter which are of capillary shape. Such structures occupy about 6% of the sample volume. The coke was found to correspond to amonolayer of composition CH 0.3 with a density of 1660 kg/m 3
Investigation of scaling laws by critical neutron scattering from beta-brass
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage
1969-01-01
Using a Cu65-Zn β-brass crystal, the critical scattering of neutrons has been studied, both above and below T c. The staggered susceptibilities χ vary as C+(T/Tc-1)-γ and C-(1-T/Tc)-γ ', respectively. It is found that γ=γ' within an accuracy of 3%, in agreement with the scaling hypothesis of static...... critical phenomena; and that C+/C-=5.46±0.05, in excellent agreement with the recent parametric representation theory of Schofield and in fair agreement with the results of series expansions by Essam and Hunter. For fixed q, a flat maximum is observed in the wave-vector-dependent susceptibility χ(q, T...
Critical opalescence in fluids: 1.5-Scattering effects and the Landau-Placzek ratio
Sushko, M. Ya.
2010-01-01
We adduce new arguments for the significance of so-called 1.5- (or sesquialteral) molecular light scattering in one-component fluids. For this purpose, we analyze its effect on the Landau-Placzek ratio for the critical opalescence spectrum. The results obtained are used to reveal experimental data which can be interpreted as evidence for its existence and to evaluate both the relative magnitude and the sign of the 1.5-scattering contribution.
Energy Technology Data Exchange (ETDEWEB)
Safron, S.A.; Skofronick, J.G.
1997-07-01
Over the twelve years of this grant from the U.S. Department of Energy, DE-FG05-85ER45208, the over-reaching aims of this work have been to explore and to attempt to understand the fundamental physics and chemistry of surfaces and interfaces. The instrument we have employed m in this work is high-resolution helium atom scattering (HAS) which we have become even more convinced is an exceptionally powerful and useful tool for surface science. One can follow the evolution of the development and progress of the experiments that we have carried out by the evolution of the proposal titles for each of the four three-year periods. At first, m in 1985-1988, the main objective of this grant was to construct the HAS instrument so that we could begin work on the surface vibrational dynamics of crystalline materials; the title was {open_quotes}Helium Atom-Surface Scattering Apparatus for Studies of Crystalline Surface Dynamics{close_quotes}. Then, as we became more interested m in the growth of films and interfaces the title m in 1988-1991 became {open_quotes}Helium Atom Surface Spectroscopy: Surface Lattice Dynamics of Insulators, Metal and Metal Overlayers{close_quotes}. In 1991-1994, we headed even more m in this direction, and also recognized that we should focus more on insulator materials as very few techniques other than helium atom scattering could be applied to insulators without causing surface damage. Thus, the proposal title became {open_quotes}Helium Atom-Surface Scattering: Surface Dynamics of Insulators, Overlayers and Crystal Growth{close_quotes}. M in the final period of this grant the title ended up {open_quotes}Investigations of the Dynamics and Growth of Insulator Films by High Resolution Helium Atom Scattering{close_quotes} m in 1994-1997. The list of accomplishments briefly discussed in this report are: tests of the shell model; multiphoton scattering; physisorbed monolayer films; other surface phase transitions; and surface magnetic effects.
Di Pietro, A; Fisichella, M; Alcorta, M; Borge, M J G; Davinson, T; Ferrera, F; Figuera, P; Laird, A M; Lattuada, M; Shotter, A C; Soic, N; Tengblad, O; Torresi, D; Zadro, M
2017-01-01
The excitation function of the resonant reaction 4He(9Li,α) was measured with the aim of investigating the compound nucleus 13B. These measurements were performed in inverse kinematics at center-of-mass scattering angles close to 180◦ by using a thick 4He gas target and a 9Li beam. The 13B excitation energy region explored was 14–20 MeV where 9Li–α configurations of 13B are predicted by Antysimmetrised Molecular Dynamics calculations. The measured excitation function at θcm = 180◦ shows different clear structures in a 13B excitation energy region which was experimentally unknown.
Photon migration in non-scattering tissue and the effects on image reconstruction
Dehghani, H.; Delpy, D. T.; Arridge, S. R.
1999-12-01
Photon propagation in tissue can be calculated using the relationship described by the transport equation. For scattering tissue this relationship is often simplified and expressed in terms of the diffusion approximation. This approximation, however, is not valid for non-scattering regions, for example cerebrospinal fluid (CSF) below the skull. This study looks at the effects of a thin clear layer in a simple model representing the head and examines its effect on image reconstruction. Specifically, boundary photon intensities (total number of photons exiting at a point on the boundary due to a source input at another point on the boundary) are calculated using the transport equation and compared with data calculated using the diffusion approximation for both non-scattering and scattering regions. The effect of non-scattering regions on the calculated boundary photon intensities is presented together with the advantages and restrictions of the transport code used. Reconstructed images are then presented where the forward problem is solved using the transport equation for a simple two-dimensional system containing a non-scattering ring and the inverse problem is solved using the diffusion approximation to the transport equation.
Photon migration in non-scattering tissue and the effects on image reconstruction
International Nuclear Information System (INIS)
Dehghani, H.; Delpy, D.T.; Arridge, S.R.
1999-01-01
Photon propagation in tissue can be calculated using the relationship described by the transport equation. For scattering tissue this relationship is often simplified and expressed in terms of the diffusion approximation. This approximation, however, is not valid for non-scattering regions, for example cerebrospinal fluid (CSF) below the skull. This study looks at the effects of a thin clear layer in a simple model representing the head and examines its effect on image reconstruction. Specifically, boundary photon intensities (total number of photons exiting at a point on the boundary due to a source input at another point on the boundary) are calculated using the transport equation and compared with data calculated using the diffusion approximation for both non-scattering and scattering regions. The effect of non-scattering regions on the calculated boundary photon intensities is presented together with the advantages and restrictions of the transport code used. Reconstructed images are then presented where the forward problem is solved using the transport equation for a simple two-dimensional system containing a non-scattering ring and the inverse problem is solved using the diffusion approximation to the transport equation. (author)
International Nuclear Information System (INIS)
Breton, Vincent
1990-01-01
We have studied Coulomb effects in the electron-nucleus interaction by measuring electron and positron elastic scattering. The Coulomb field of the nucleus acts differently on theses particles because of their opposite charges. The experiment took place at the Accelerateur Lineaire de Saclay, with 450 MeV electrons and positrons. We measured the emittance of the positron and electron beams. We compared electron and positron beams having the same energy, the same emittance and the same intensity. This way, we measured positron scattering cross sections with 2 % systematic error. By comparing positron and electron elastic scattering cross sections for momentum transfers between 1 and 2 fm -1 , on a Lead 208 target, we showed that the calculations of Coulomb effects in elastic scattering are in perfect agreement with experimental results. The comparison of positron and electron elastic scattering cross sections on Carbon showed that dispersive effects are smaller than 2 % outside the diffraction minima. These two results demonstrate in a definitive way that electron scattering allows to measure charge densities in the center of nuclei with an accuracy of the order of 1 %. (author) [fr
Scattering effects on the performance of carbon nanotube field effect transistor in a compact model
Hamieh, S. D.; Desgreys, P.; Naviner, J. F.
2010-01-01
Carbon nanotube field-effect transistors (CNTFET) are being extensively studied as possible successors to CMOS. Device simulators have been developed to estimate their performance in sub-10-nm and device structures have been fabricated. In this work, a new compact model of single-walled semiconducting CNTFET is proposed implementing the calculation of energy conduction sub-band minima and the treatment of scattering effects through energy shift in CNTFET. The developed model has been used to simulate I-V characteristics using VHDL-AMS simulator.
Wade, M; Tucker, I; Cunningham, P; Skinner, R; Bell, F; Lyons, T; Patten, K; Gonzalez, L; Wess, T
2013-10-01
Human hair is a major determinant of visual ethnic differentiation. Although hair types are celebrated as part of our ethnic diversity, the approach to hair care has made the assumption that hair types are structurally and chemically similar. Although this is clearly not the case at the macroscopic level, the intervention of many hair treatments is at the nanoscopic and molecular levels. The purpose of the work presented here is to identify the main nanoscopic and molecular hierarchical differences across five different ethnic hair types from hair fibres taken exclusively from the scalp. These are Afro (subdivided into elastic 'rubber' and softer non-elastic 'soft'), Chinese, European and Mullato (mixed race). Small angle X-Ray scattering (SAXS) is a technique capable of resolving nanostructural variations in complex materials. Individual hair fibres from different ethnic hair types were used to investigate structural features found in common and also specific to each type. Simultaneous wide angle X-Ray scattering (WAXS) was used to analyse the submolecular level structure of the fibrous keratin present. The data sets from both techniques were analysed with principal component analysis (PCA) to identify underlying variables. Principal component analysis of both SAXS and WAXS data was shown to discriminate the scattering signal between different hair types. The X-ray scattering results show a common underlying keratin intermediate filament (KIF) structure. However, distinct differences were observed in the preferential orientation and intensity signal from the lipid component of the hair. In addition, differences were observed in the intensity distribution of the very low-angle sample-dependent diffuse scatter surrounding the 'beamstop.' The results indicate that the fibrous keratin scaffold remains consistent between ethnic hair types. The hierarchies made by these may be modulated by variation in the content of keratin-associated proteins (KAPs) and lipids that
Iwata, Hiromitsu; Ogino, Hiroyuki; Hashimoto, Shingo; Yamada, Maho; Shibata, Hiroki; Yasui, Keisuke; Toshito, Toshiyuki; Omachi, Chihiro; Tatekawa, Kotoha; Manabe, Yoshihiko; Mizoe, Jun-etsu; Shibamoto, Yuta
2016-05-01
To determine the relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and contribution of the indirect effect of spot scanning proton beams, passive scattering proton beams, or both in cultured cells in comparison with clinically used photons. The RBE of passive scattering proton beams at the center of the spread-out Bragg peak (SOBP) was determined from dose-survival curves in 4 cell lines using 6-MV X rays as controls. Survival of 2 cell lines after spot scanning and passive scattering proton irradiation was then compared. Biological effects at the distal end region of the SOBP were also investigated. The OER of passive scattering proton beams and 6 MX X rays were investigated in 2 cell lines. The RBE and OER values were estimated at a 10% cell survival level. The maximum degree of protection of radiation effects by dimethyl sulfoxide was determined to estimate the contribution of the indirect effect against DNA damage. All experiments comparing protons and X rays were made under the same biological conditions. The RBE values of passive scattering proton beams in the 4 cell lines examined were 1.01 to 1.22 (average, 1.14) and were almost identical to those of spot scanning beams. Biological effects increased at the distal end of the SOBP. In the 2 cell lines examined, the OER was 2.74 (95% confidence interval, 2.56-2.80) and 3.08 (2.84-3.11), respectively, for X rays, and 2.39 (2.38-2.43) and 2.72 (2.69-2.75), respectively, for protons (Pcells between X rays and protons). The maximum degree of protection was significantly higher for X rays than for proton beams (P<.05). The RBE values of spot scanning and passive scattering proton beams were almost identical. The OER was lower for protons than for X rays. The lower contribution of the indirect effect may partly account for the lower OER of protons. Copyright © 2016 Elsevier Inc. All rights reserved.
Study of the Effect of Active Regions on the Scattering Polarization in the Solar Corona
Derouich, M.; Badruddin
2018-03-01
The solar photospheric/chromospheric light exciting atoms/ions is not homogeneous because of the presence of active regions (ARs). The effect of ARs on the scattering polarization at the coronal level is an important ingredient for a realistic determination of the magnetic field. This effect is usually disregarded or mixed with other effects in the sense that the degree of its importance is not well known. The aim of this paper is to study the effect of atmospheric inhomogeneities on the coronal scattering polarization. We determined quantitatively the importance of the atmospheric inhomogeneities by using given geometries of solar ARs (plages and sunspots).
Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau
2012-12-01
To improve our understanding of lipid metabolism, Drosophila is used as a model animal, and its lipid homeostasis is monitored by coherent anti-Stokes Raman scattering microscopy. We are able to achieve in vivo imaging of larval fat body (analogous to adipose tissue in mammals) and oenocytes (analogous to hepatocytes) in Drosophila larvae at subcellular level without any labeling. By overexpressing two lipid regulatory proteins-Brummer lipase (Bmm) and lipid storage droplet-2 (Lsd-2)-we found different phenotypes and responses under fed and starved conditions. Comparing with the control larva, we observed more lipid droplet accumulation by ˜twofold in oenocytes of fat-body-Bmm-overexpressing (FB-Bmm-overexpressing) mutant under fed condition, and less lipid by ˜fourfold in oenocytes of fat-body-Lsd-2-overexpressing (FB-Lsd-2-overexpressing) mutant under starved condition. Moreover, together with reduced size of lipid droplets, the lipid content in the fat body of FB-Bmm-overexpressing mutant decreases much faster than that of the control and FB-Lsd-2-overexpressing mutant during starvation. From long-term starvation assay, we found FB-Bmm-overexpressing mutant has a shorter lifespan, which can be attributed to faster consumption of lipid in its fat body. Our results demonstrate in vivo observations of direct influences of Bmm and Lsd-2 on lipid homeostasis in Drosophila larvae.
International Nuclear Information System (INIS)
Herzig, C.
1995-01-01
For examining the connection between the diffusion systematics and the lattice dynamics of the body-centered cubic metals, the temperature dependence of the self-diffusion (radiotracer technique) and the phonon dispersion (neutron scattering) have been measured in selected systems. In continuation of previous studies, the goal of the examinations reported was to put the earlier developed phonon-related diffusion model on a broader experimental basis, in order to perform verifying analyses. The phonon dispersion of the group 5 metal Nb has been measured up to high temperatures. In contrast to the values measured for the group 4 (β-Zr) and group 6 (Cr) metals, the dispersion in Nb revealed an only very weak temperature dependence. The exceptional case of the bcc β-Tl has been examined by measuring the diffusion and the dispersion in the β-T 83 In 17 alloy. Significant deviations from the conditions in the bcc transition metals have been found. Self-diffusion has been measured for the first time in Ba and β-Sc. Their diffusion systematics correlate with electron configuration. The influence of the d-electron concentration on the diffusion systematics has been measured in Ti-Mo and Hf-Nb alloys, the results backing the predictions of the phonon-related diffusion model. (orig.) [de
Atkinson, John; Nickels, Jonathan; Papp-Szabo, Erzsi; Katsaras, John; Dutcher, John
2015-03-01
Phytoglycogen is a highly branched polysaccharide that is very similar to the energy storage molecule glycogen. We have isolated monodisperse phytoglycogen nanoparticles from corn and these particles are attractive for applications in the cosmetic, food and beverage, and biomedical industries. Many of these promising applications are due to the special interaction between the nanoparticles and water, which results in: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Our rheology measurements indicate that the nanoparticles behave like hard spheres in water, with the viscosity diverging for concentrations >25% (w/w). Because of this, aqueous suspensions of phytoglycogen provide an ideal platform for detailed testing of theories of colloidal glasses and jamming. To further explore the interaction of the phytoglycogen particles and water, we have performed small angle neutron scattering (SANS) measurements on the Extended Q-Range SANS (EQ-SANS) diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Measurements performed on phytoglycogen dispersions in mixtures of hydrogenated and deuterated water have allowed us to determine the particle size and average particle spacing as a function of the phytoglycogen concentration in the limits of dilute and concentrated dispersions.
Experimental and theoretical investigation of scattering of alpha particles from 13C nuclei
International Nuclear Information System (INIS)
Burtebayev, N.; Burtebayeva, D.T.; Baktybayev, M.K.; Duisebayev, B.A.; Ogloblin, A.A.; Demyanova, A.S.; Sakuta, Sh.; Hamada, C.B.; Janseitov, D.M.; Nassurlla, M.; Artemov, S.V.
2015-01-01
13 C is a good example of a “normal” nucleus well described by the shell model. Its level scheme is reliably determined up to the excitation energies ~ 10 MeV (see e.g. [1]). However, some new approaches such as the hypothesis of the α-particle condensation suggest that cluster states with an enhanced radius can appear. The famous Hoyle state (0 2 + , E* = 7.65 MeV) in 12 C was considered as the most probable candidate for having such structure. It was also expected that the analogues of the Hoyle state would reveal themselves in some neighboring nuclei, e.g., the ½- (E*= 8.86MeV) state in 13 C. The analysis of the 13 C + α scattering data measured at E (α) = 388 MeV really demonstrated a considerable enhancement of the radius of this particular state. However, the method of extracting the radii used may not be quite adequate at high energies (≥ 100 MeV) when nuclei are too transparent. The existence in 13 C of some states with enhanced dimensions but of different structure was discussed as well. Thus, a neutron halo was identified in the first excited state 3.09 MeV (1/2 + ) by two independent and complementary methods. Consequently, new measurements especially at lower energies are highly desirable
Sandri, Eva; Davies, Richard; Azzari, Phil; Frank, John; Frank, Jackson; James, Royce; Hopson, Jordon; Duke-Tinson, Omar; Paolino, Richard; Sherman, Justin; Wright, Erin; Turk, Jeremy
2016-10-01
Now that reproducible plasmas have been created on the Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Laboratory (CGAPL), a high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 is being assembled. This spectrometer will collect doppler shifted photons created by exciting the plasma with the first harmonic of a 2.5 J Nd:YAG laser at a wavelength of 1064 nm. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) system as a single spatial point diagnostic. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. Concurrently, through intensive study of the high energy TS system, safety protocols and standard operation procedures (SOP) for the Coast Guard's largest and most powerful Laser have been developed. The current status of the TS SOP, diagnostic development, and the collection optic's spectrometer will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.
International Nuclear Information System (INIS)
Jonah, E. O.; Britton, D. T.; Beaucage, P.; Rai, D. K.; Beaucage, G.; Magunje, B.; Ilavsky, J.; Scriba, M. R.; Härting, M.
2012-01-01
The network topology of two types of silicon nanoparticles, produced by high energy milling and pyrolysis of silane, in layers deposited from inks on permeable and impermeable substrates has been quantitatively characterized using ultra-small-angle X-ray scattering, supported by scanning electron microscopy observations. The milled particles with a highly polydisperse size distribution form agglomerates, which in turn cluster to form larger aggregates with a very high degree of aggregation. Smaller nanoparticles with less polydisperse size distribution synthesized by thermal catalytic pyrolysis of silane form small open clusters. The Sauter mean diameters of the primary particles of the two types of nanoparticles were obtained from USAXS particle volume to surface ratio, with values of ∼41 and ∼21 nm obtained for the high energy milled and pyrolysis samples, respectively. Assuming a log-normal distribution of the particles, the geometric standard deviation of the particles was calculated to be ∼1.48 for all the samples, using parameters derived from the unified fit to the USAXS data. The flow properties of the inks and substrate combination lead to quantitative changes in the mean particle separation, with slowly curing systems with good capillary flow resulting in denser networks with smaller aggregates and better contact between particles.
Xu, Wei-Qing; Xu, Long-Quan; Qi, De-Guang; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan
2018-04-01
The differential cross sections and generalized oscillator strengths for the low-lying excitations of the valence-shell 1eg orbital electron in ethane have been measured for the first time at a high incident electron energy of 1500 eV and a scattering angular range of 1.5°-10°. A weak feature, termed X here, with a band center of about 7.5 eV has been observed, which was also announced by the previous experimental and theoretical studies. The dynamic behaviors of the generalized oscillator strengths for the 3s (8.7 eV), 3s+3p (9.31 eV, 9.41 eV), and X (˜7.5 eV) transitions on the momentum transfer squared have been obtained. The integral cross sections of these transitions from their thresholds to 5000 eV have been obtained with the aid of the BE-scaling (B is the binding energy and E is the excitation energy) method. The optical oscillator strengths of the above transitions determined by extrapolating their generalized oscillator strengths to the limit of the squared momentum transfer K2 → 0 are in good agreement with the ones from the photoabsorption spectrum [J. W. Au et al., Chem. Phys. 173, 209 (1993)], which indicates that the present differential cross sections, generalized oscillator strengths, and integral cross sections can serve as benchmark data.
Energy Technology Data Exchange (ETDEWEB)
Carbone, D; Metzger, T H [ID01, ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex (France); Biermanns, A; Pietsch, U [Festkoerperphysik, Universitaet Siegen, D-57068 Siegen (Germany); Ziberi, B; Frost, F [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., D-04318 Leipzig (Germany); Plantevin, O [Universite Paris-Sud, Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, UMR 8609, F-91405 Orsay (France)], E-mail: gcarbone@esrf.fr
2009-06-03
In this review we cover and describe the application of grazing incidence x-ray scattering techniques to study and characterize nanopattern formation on semiconductor surfaces by ion beam erosion under various conditions. It is demonstrated that x-rays under grazing incidence are especially well suited to characterize (sub)surface structures on the nanoscale with high spatial and statistical accuracy. The corresponding theory and data evaluation is described in the distorted wave Born approximation. Both ex situ and in situ studies are presented, performed with the use of a specially designed sputtering chamber which allows us to follow the temporal evolution of the nanostructure formation. Corresponding results show a general stabilization of the ordering wavelength and the extension of the ordering as a function of the ion energy and fluence as predicted by theory. The in situ measurements are especially suited to study the early stages of pattern formation, which in some cases reveal a transition from dot to ripple formation. For the case of medium energy ions crystalline ripples are formed buried under a semi-amorphous thick layer with a ripple structure at the surface being conformal with the crystalline/amorphous interface. Here, the x-ray techniques are especially advantageous since they are non-destructive and bulk-sensitive by their very nature. In addition, the GI x-ray techniques described in this review are a unique tool to study the evolving strain, a topic which remains to be explored both experimentally and theoretically.
International Nuclear Information System (INIS)
Arrighi, V.; Triolo, A.
1999-01-01
Complete text of publication follows. Results from the analysis of recent quasielastic neutron scattering (QENS) experiments on atactic polypropylene (aPP), are presented both in the sub-T g and above T g regimes. Experiments were carried out on the IRIS (ISIS, Rutherford Appleton Laboratory, UK) and IN10 (ILL FR) spectrometers in the temperature range from 140 to 400 K. Different instrumental resolutions were used in order to cover a wide energy window. The high resolution data collected on IN10 using the fixed energy scan technique, give clear evidence of two separate dynamic processes that we attribute to methyl group rotational hopping (below T g ) and to segmental motion (above T g ), respectively. Data were fitted using a model involving a distribution of relaxation rates. The IN10 results are used in interpreting and analyzing the QENS data from the IRIS spectrometer. In order to exploit the different energy resolutions of IRIS, Fourier inversion of the experimental data was carried out. This approach to data analysis allows us to widen the energy range available for data analysis. Due to the high activation energy of the methyl group hopping in aPP, this motion overlaps with the segmental relaxation, thus making analysis of high temperature data quite complex. The IN10 results are employed in order to perform data analysis in terms of two distinct processes. (author)
On the effects of systematic errors in analysis of nuclear scattering data
International Nuclear Information System (INIS)
Bennett, M.T.; Steward, C.; Amos, K.; Allen, L.J.
1995-01-01
The effects of systematic errors on elastic scattering differential cross-section data upon the assessment of quality fits to that data have been studied. Three cases are studied, namely the differential cross-section data sets from elastic scattering of 200 MeV protons from 12 C, of 350 MeV 16 O- 16 O scattering and of 288.6 MeV 12 C- 12 C scattering. First, to estimate the probability of any unknown systematic errors, select sets of data have been processed using the method of generalized cross validation; a method based upon the premise that any data set should satisfy an optimal smoothness criterion. In another case, the S function that provided a statistically significant fit to data, upon allowance for angle variation, became overdetermined. A far simpler S function form could then be found to describe the scattering process. The S functions so obtained have been used in a fixed energy inverse scattering study to specify effective, local, Schroedinger potentials for the collisions. An error analysis has been performed on the results to specify confidence levels for those interactions. 19 refs., 6 tabs., 15 figs
Modifying infrared scattering effects of single yeast cells with plasmonic metal mesh
Malone, Marvin A.; Prakash, Suraj; Heer, Joseph M.; Corwin, Lloyd D.; Cilwa, Katherine E.; Coe, James V.
2010-11-01
The scattering effects in the infrared (IR) spectra of single, isolated bread yeast cells (Saccharomyces cerevisiae) on a ZnSe substrate and in metal microchannels have been probed by Fourier transform infrared imaging microspectroscopy. Absolute extinction [(3.4±0.6)×10-7 cm2 at 3178 cm-1], scattering, and absorption cross sections for a single yeast cell and a vibrational absorption spectrum have been determined by comparing it to the scattering properties of single, isolated, latex microspheres (polystyrene, 5.0 μm in diameter) on ZnSe, which are well modeled by the Mie scattering theory. Single yeast cells were then placed into the holes of the IR plasmonic mesh, i.e., metal films with arrays of subwavelength holes, yielding "scatter-free" IR absorption spectra, which have undistorted vibrational lineshapes and a rising generic IR absorption baseline. Absolute extinction, scattering, and absorption spectral profiles were determined for a single, ellipsoidal yeast cell to characterize the interplay of these effects.
DEFF Research Database (Denmark)
Haldrup, Martin Kristoffer; Vanko, G.; Gawelda, W.
2012-01-01
We have studied the photoinduced low spin (LS) to high spin (HS) conversion of [Fe(bipy)3]2+ in aqueous solution. In a laser pump/X-ray probe synchrotron setup permitting simultaneous, time-resolved X-ray diffuse scattering (XDS) and X-ray spectroscopic measurements at a 3.26 MHz repetition rate...... lifetime, allowing the detection of an ultrafast change in bulk solvent density. An analysis approach directly utilizing the spectroscopic data in the XDS analysis effectively reduces the number of free parameters, and both combined permit extraction of information about the ultrafast structural dynamics...
Ptychography: early history and 3D scattering effects
Rodenburg, J. M.
2012-01-01
The coherent diffractive imaging method of ptychography is first reviewed from a general historical perspective. Much more recent progress in extending the method to the 3D scattering geometry and the super-resolution configuration is also described. Ptychography was originally conceived by Walter Hoppe as a solution to the X-ray or electron crystallography phase problem. Although the existence of this type of phase information was clearly evident in the early 1970s, the technique was not implemented at atomic-scale wavelengths until the 1990s, and then only in a way that was computationally inefficient, especially in view of the limited size of computers at that time. Fast and efficient ptychographic algorithms were developed much later, in the mid-2000s. The extremes of crystallography ptychography, which only requires two diffraction patterns, and the Wigner Distribution Deconvolution (WDDC) method, which needs a diffraction pattern for every pixel of the final reconstruction, are described. Very recent work relating to the application of serial iterative to 3D inversion are also described.
International Nuclear Information System (INIS)
Johnston, P.N.; Franich, R.D.
1999-01-01
Heavy Ion Elastic Recoil Detection Analysis (HIERDA) is becoming widely used to study a range of problems in materials science, however there is no standard methodology for the analysis of HIERDA spectra. Major impediments are the effects of multiple and plural scattering which are very significant, even for quite thin (∼100nm) layers of very heavy elements. To examine the effects of multiple scattering a fast FORTRAN version of TRIM has been adapted to simulate the spectrum of backscattered and recoiled ions reaching the detector. Two problems have been initially investigated. In the first, the detector is positioned beyond the critical angle for single scattering from a pure vanadium target where traditional slab analysis would not predict any scattered yield. In the second, a thin Au layer on a Si substrate is modelled for two different thicknesses of the substrate to investigate the effect of the substrate chosen. The use of multiple processors enabled the acquisition of statistically reasonable simulation spectra for scattered and recoiled ions. For each target modelled, 10 9 incident ions were tracked. The results of the simulations are compared with experimental measurements performed using ToF-E HIERDA at Lucas Heights and show good agreement except in the long tails due to Plural Scattering
Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat; Russell, Philip B.
2003-01-01
Using measurements of the spectral solar radiative flux and optical depth for 2 days (24 August and 6 September 2000) during the SAFARI 2000 intensive field experiment and a detailed radiative transfer model, we estimate the spectral single scattering albedo of the aerosol layer. The single scattering albedo is similar on the 2 days even though the optical depth for the aerosol layer was quite different. The aerosol single scattering albedo was between 0.85 and 0.90 at 350 nm, decreasing to 0.6 in the near infrared. The magnitude and decrease with wavelength of the single scattering albedo are consistent with the absorption properties of small black carbon particles. We estimate the uncertainty in the single scattering albedo due to the uncertainty in the measured fractional absorption and optical depths. The uncertainty in the single scattering albedo is significantly less on the high-optical-depth day (6 September) than on the low-optical-depth day (24 August). On the high-optical-depth day, the uncertainty in the single scattering albedo is 0.02 in the midvisible whereas on the low-optical-depth day the uncertainty is 0.08 in the midvisible. On both days, the uncertainty becomes larger in the near infrared. We compute the radiative effect of the aerosol by comparing calculations with and without the aerosol. The effect at the top of the atmosphere (TOA) is to cool the atmosphere by 13 W/sq m on 24 August and 17 W/sq m on 6 September. The effect on the downward flux at the surface is a reduction of 57 W/sq m on 24 August and 200 W/sq m on 6 September. The aerosol effect on the downward flux at the surface is in good agreement with the results reported from the Indian Ocean Experiment (INDOEX).
Energy Technology Data Exchange (ETDEWEB)
Janoschek, Marc
2008-09-05
We investigated two different magnetic compounds that display magnetic chirality within the framework of this thesis, namely the multiferroic compound NdFe{sub 3}({sup 11}BO{sub 3}){sub 4} and the itinerant helimagnet MnSi. We investigated the magnetic structure of NdFe{sub 3}({sup 11}BO{sub 3}){sub 4} by unpolarised and polarised neutron scattering. As a result of this investigation we identified that NdFe{sub 3}({sup 11}BO{sub 3}){sub 4} orders antiferromagnetically below T{sub N}=31 K. By combined magnetic symmetry analysis and Rietvield fits of the powder diffraction data we identified two magnetic models for the commensurate magnetic phase that fitted our data equally well. By the use of spherical neutron polarimetry we finally revealed that for the correct magnetic model the magnetic moments of both Fe{sup 3+} and Nd{sup 3+} are oriented parallel to the basal hexagonal plane and couple antiferromagnetically along the hexagonal c-axis. Additionally the polarised neutron data yields that in the incommensurate magnetic phase below T{sub ICM} the magnetic structure is transformed into a long-period antiferromagnetic spiral that propagates parallel to the c-direction with a pitch of approximately 1140 A. Hence, our investigation clearly showed for the first time that NdFe{sub 3}({sup 11}BO{sub 3}){sub 4} is also a chiral magnet. Furthermore, a high resolution neutron diffraction experiment showed the presence of third order harmonics of the propagation vector in the incommensurate magnetic phase and suggests the evolution of a magnetic soliton lattice below the commensurate to incommensurate phase transition without the application of external forces like magnetic fields or pressure. Further we report our work on the cubic itinerant helimagnet MnSi. We carried out extensive unpolarised and polarised elastic neutron scattering experiments in the temperature regime where the sphere of magnetic intensity is observed in order to clarify the issue of a possible
Investigation of the chiral magnets NdFe3(11BO3)4 and MnSi by means of neutron scattering
International Nuclear Information System (INIS)
Janoschek, Marc
2008-01-01
We investigated two different magnetic compounds that display magnetic chirality within the framework of this thesis, namely the multiferroic compound NdFe 3 ( 11 BO 3 ) 4 and the itinerant helimagnet MnSi. We investigated the magnetic structure of NdFe 3 ( 11 BO 3 ) 4 by unpolarised and polarised neutron scattering. As a result of this investigation we identified that NdFe 3 ( 11 BO 3 ) 4 orders antiferromagnetically below T N =31 K. By combined magnetic symmetry analysis and Rietvield fits of the powder diffraction data we identified two magnetic models for the commensurate magnetic phase that fitted our data equally well. By the use of spherical neutron polarimetry we finally revealed that for the correct magnetic model the magnetic moments of both Fe 3+ and Nd 3+ are oriented parallel to the basal hexagonal plane and couple antiferromagnetically along the hexagonal c-axis. Additionally the polarised neutron data yields that in the incommensurate magnetic phase below T ICM the magnetic structure is transformed into a long-period antiferromagnetic spiral that propagates parallel to the c-direction with a pitch of approximately 1140 A. Hence, our investigation clearly showed for the first time that NdFe 3 ( 11 BO 3 ) 4 is also a chiral magnet. Furthermore, a high resolution neutron diffraction experiment showed the presence of third order harmonics of the propagation vector in the incommensurate magnetic phase and suggests the evolution of a magnetic soliton lattice below the commensurate to incommensurate phase transition without the application of external forces like magnetic fields or pressure. Further we report our work on the cubic itinerant helimagnet MnSi. We carried out extensive unpolarised and polarised elastic neutron scattering experiments in the temperature regime where the sphere of magnetic intensity is observed in order to clarify the issue of a possible intermediate phase. Our data suggests that the cubic anisotropy energy that locks the
International Nuclear Information System (INIS)
Adam, L.-E.; Brix, G.
1999-01-01
The correction of scattered radiation is one of the most challenging tasks in 3D positron emission tomography (PET) and knowledge about the amount of scatter and its distribution is a prerequisite for performing an accurate correction. One concern in 3D PET in contrast to 2D PET is the scatter contribution from activity outside the field-of-view (FOV) and multiple scatter. Using Monte Carlo simulations, we examined the scatter distribution for various phantoms. The simulations were performed for a whole-body PET system (ECAT EXACT HR + , Siemens/CTI) with an axial FOV of 15.5 cm and a ring diameter of 82.7 cm. With (without) interplane septa, up to one (two) out of three detected events are scattered (for a centred point source in a water-filled cylinder that nearly fills out the patient port), whereby the relative scatter fraction varies significantly with the axial position. Our results show that for an accurate scatter correction, activity as well as scattering media outside the FOV have to be taken into account. Furthermore it could be shown that there is a considerable amount of multiple scatter which has a different spatial distribution from single scatter. This means that multiple scatter cannot be corrected by simply rescaling the single scatter component. (author)
Three-Nucleon Force Effects in p-"3H and n-"3He Scattering
International Nuclear Information System (INIS)
Viviani, M.; Kievsky, A.; Girlanda, L.; Marcucci, L. E.
2017-01-01
We present a preliminary study of the effect of a three-nucleon force (3NF) in p-"3H and n-"3 He scattering at low energies. The used 3NF is derived from effective field theory at next-to-next-to-leading order. The four-nucleon scattering observables are calculated using the Kohn variational principle and the hyperspherical harmonics technique and the results are compared with available experimental data. We have found that the effect of introducing this type of 3NF is tiny, and sometimes worsens the agreement with the experimental data. (author)
International Nuclear Information System (INIS)
Bradley, K.S.
1993-01-01
Despite the apparent simplicity of controlled fusion, there are many phenomena which have prevented its achievement. One phenomenon is laser-plasma instabilities. An investigation of one such instability, stimulated Brillouin scattering (SBS), is reported here. SBS is a parametric process whereby an electromagnetic wave (the parent wave) decays into another electromagnetic wave and an ion acoustic wave (the daughter waves). SBS impedes controlled fusion since it can scatter much or all of the incident laser light, resulting in poor drive symmetry and inefficient laser-plasma coupling. It is widely believed that SBS becomes convectively unstable--that is, it grows as it traverses the plasma. Though it has yet to be definitively tested, convective theory is often invoked to explain experimental observations, even when one or more of the theory's assumptions are violated. In contrast, the experiments reported here not only obeyed the assumptions of the theory, but were also conducted in plasmas with peak densities well below quarter-critical density. This prevented other competing or coexisting phenomena from occurring, thereby providing clearly interpretable results. These are the first SBS experiments that were designed to be both a clear test of linear convective theory and pertinent to controlled fusion research. A crucial part of this series of experiments was the development of a new instrument, the Multiple Angle Time Resolving Spectrometer (MATRS). MATRS has the unique capability of both spectrally and temporally resolving absolute levels of scattered light at many angles simultaneously, and is the first of its kind used in laser-plasma experiments. A detailed comparison of the theoretical predictions and the experimental observations is made
Accounting for the effect of horizontal gradients in limb measurements of scattered sunlight
Directory of Open Access Journals (Sweden)
J. Puķīte
2008-06-01
Full Text Available Limb measurements provided by the SCanning Imaging Absorption spectrometer for Atmospheric CHartographY (SCIAMACHY on the ENVISAT satellite allow retrieving stratospheric profiles of various trace gases on a global scale, among them BrO for the first time. For limb observations in the UV/VIS spectral region the instrument measures scattered light with a complex distribution of light paths: the light is measured at different tangent heights and can be scattered or absorbed in the atmosphere or reflected by the ground. By means of spectroscopy and radiative transfer modelling these measurements can be inverted to retrieve the vertical distribution of stratospheric trace gases.
The fully spherical 3-D Monte Carlo radiative transfer model "Tracy-II" is applied in this study. The Monte Carlo method benefits from conceptual simplicity and allows realizing the concept of full spherical geometry of the atmosphere and also its 3-D properties, which is important for a realistic description of the limb geometry. Furthermore it allows accounting for horizontal gradients in the distribution of trace gases.
In this study the effect of horizontally inhomogeneous distributions of trace gases along flight/viewing direction on the retrieval of profiles is investigated. We introduce a tomographic method to correct for this effect by combining consecutive limb scanning sequences and utilizing the overlap in their measurement sensitivity regions. It is found that if horizontal inhomogenity is not properly accounted for, typical errors of 20% for NO_{2} and up to 50% for OClO around the altitude of the profile peak can arise for measurements close to the Arctic polar vortex boundary in boreal winter.
REVISITING THE SCATTERING GREENHOUSE EFFECT OF CO{sub 2} ICE CLOUDS
Energy Technology Data Exchange (ETDEWEB)
Kitzmann, D., E-mail: daniel.kitzmann@csh.unibe.ch [Center for Space and Habitability, University of Bern, Sidlerstr. 5, 3012 Bern (Switzerland)
2016-02-01
Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO{sub 2} dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone.
Inverse Raman scattering in silicon: A free-carrier enhanced effect
International Nuclear Information System (INIS)
Solli, D. R.; Koonath, P.; Jalali, B.
2009-01-01
Stimulated Raman scattering has been harnessed to produce the first silicon lasers and amplifiers. The Raman effect can also produce intensity-dependent nonlinear loss through a corollary process, inverse Raman scattering (IRS). This process has never been observed in a semiconductor. We demonstrate IRS in silicon--a process that is substantially modified by optically generated free carriers--achieving attenuation levels >15 dB with a pump intensity of 4 GW/cm 2 . Surprisingly, free-carrier absorption, the detrimental effect that generally suppresses nonlinear effects in silicon, actually facilitates IRS by delaying the onset of contamination from coherent anti-Stokes Raman scattering. Silicon-based IRS could be a valuable tool for chip-scale signal processing.
International Nuclear Information System (INIS)
Al'tshuler, G.B.; Ermolaev, V.S.; Krylov, K.I.; Manenkov, A.A.; Prokhorov, A.M.
1986-01-01
Transmission of intense laser beams through heterogeneous scattering media is considered. Effects of intensity limitation, self-recovery of the wave front of a transmitted beam, and bistable reflection associated with the laser-induced self-transparency (suppression of scattering) of such media are predicted because of the compensation of the linear refractive-index difference Δn/sub L/ of the heterocomponents of a medium by nonlinear change Δn/sub N//sub L/ for different mechanisms of nonlinearity. Applications of these effects in lasers for Q switching and mode locking are discussed. The observation of self-transparency effects in several heterogeneous media (glass particles in toluene and nitrobenzene, and lead molybdenite powder) for cw Ar- and pulsed Nd- and CO 2 -laser radiation is reported. Q switching and mode locking have also been demonstrated with a YAG:Nd laser using nonlinear scattering in a heterogeneous cell as a control element in a laser resonator
Collective effects in even-mass samarium isotopes by polarized-proton scattering
Petit, R.M.A.L.; Hall, van P.J.; Klein, S.S.; Moonen, W.H.L.; Nijgh, G.J.; Overveld, van C.W.A.M.; Poppema, O.J.
1993-01-01
The even-mass samarium isotopes 148,...,152Sm have been investigated by polarized proton scattering at 20.4 MeV beam energy. The data have been analysed with an 'extended' optical model, where the intensities of the first maxima of the main inelastic channels are fitted in a coupled-channels
Energy Technology Data Exchange (ETDEWEB)
Hu, Bo, E-mail: hubo2011@semi.ac.cn
2015-03-15
The effect of surface polar optical phonons (SOs) from the dielectric layers on electron mobility in dual-gated graphene field effect transistors (GFETs) is studied theoretically. By taking into account SO scattering of electron as a main scattering mechanism, the electron mobility is calculated by the iterative solution of Boltzmann transport equation. In treating scattering with the SO modes, the dynamic dielectric screening is included and compared to the static dielectric screening and the dielectric screening in the static limit. It is found that the dynamic dielectric screening effect plays an important role in the range of low net carrier density. More importantly, in-plane acoustic phonon scattering and charged impurity scattering are also included in the total mobility for SiO{sub 2}-supported GFETs with various high-κ top-gate dielectric layers considered. The calculated total mobility results suggest both Al{sub 2}O{sub 3} and AlN are the promising candidate dielectric layers for the enhancement in room temperature mobility of graphene in the future.
The effect of pressure on spontaneous Rayleigh-Brillouin scattering spectrum in nitrogen
Yang, Chuanyin; Wu, Tao; Shang, Jingcheng; Zhang, Xinyi; Hu, Rongjing; He, XingDao
2018-05-01
In order to study the effect of gas pressure on spontaneous Rayleigh-Brillouin scattering spectrum and verify the validity of Tenti S6 model at pressures up to 8 atm, the spontaneous Rayleigh-Brillouin scattering experiment in nitrogen was performed for a wavelength of 532 nm at the constant room temperature of 296 K and a 90° scattering angle. By comparing the experimental spectrum with the theoretical spectrum, the normalized root mean square deviation was calculated and found less than 2.2%. It is verified that Tenti S6 model can be applied to the spontaneous Rayleigh-Brillion scattering of nitrogen under higher pressures. The results of the experimental data analysis demonstrate that pressure has more effect on Brillouin peak intensity and has negligible effect on Brillouin frequency shift, and pressure retrieval based on spontaneous Rayleigh-Brillouin scattering profile is a promising method for remote of pressure, such as harsh environment applications. Some factors that caused experiment deviations are also discussed.
Energy Technology Data Exchange (ETDEWEB)
Magnuson, Martin, E-mail: Martin.Magnuson@ifm.liu.se
2017-01-15
The induced magnetic moments in the V 3d electronic states of interface atomic layers in a Fe(6ML)/V(7ML) superlattice was investigated by x-ray resonant magnetic scattering. The first V atomic layer next to Fe was found to be strongly antiferromagnetically polarized relatively to Fe and the magnetic moments of the next few atomic layers in the interior V region decay exponentially with increasing distance from the interface, while the magnetic moments of the Fe atomic layers largely remain bulk-like. The induced V moments decay more rapidly as observed by x-ray magnetic scattering than in standard x-ray magnetic circular dichroism. The theoretical description of the induced magnetic atomic layer profile in V was found to strongly rely on the interface roughness within the superlattice period. These results provide new insight into interface magnetism by taking advantage of the enhanced depth sensitivity to the magnetic profile over a certain resonant energy bandwidth in the vicinity of the Bragg angles. - Highlights: • Magnetic moments of buried layers are probed by XRMS in a Fe/V superlattice. • The induced V magnetic moments in XRMS are more rapidly decaying than previously observed by XMCD. • The magnetic depth profile sensitivity is enhanced at an energy bandwidth in the vicinity of the Bragg angles.
Directory of Open Access Journals (Sweden)
Ping Lu
2014-07-01
Full Text Available Persistent Scatterer Interferometry (PSI has been widely used for landslide studies in recent years. This paper investigated the spatial patterns of PSI point targets and landslide occurrences in the Arno River basin in Central Italy. The main purpose is to analyze whether spatial patterns of Persistent Scatterers (PS can be recognized as indicators of landslide occurrences throughout the whole basin. The bivariate K-function was employed to assess spatial relationships between PS and landslides. The PSI point targets were acquired from almost 4 years (from March 2003 to January 2007 of RADARSAT-1 images. The landslide inventory was collected from 15 years (from 1992–2007 of surveying and mapping data, mainly including remote sensing data, topographic maps and field investigations. The proposed approach is able to assess spatial patterns between a variety of PS and landslides, in particular, to understand if PSI point targets are spatially clustered (spatial attraction or randomly distributed (spatial independency on various types of landslides across the basin. Additionally, the degree and scale distances of PS clustering on a variety of landslides can be characterized. The results rejected the null hypothesis that PSI point targets appear to cluster similarly on four types of landslides (slides, flows, falls and creeps in the Arno River basin. Significant influence of PS velocities and acquisition orbits can be noticed on detecting landslides with different states of activities. Despite that the assessment may be influenced by the quality of landslide inventory and Synthetic Aperture Radar (SAR images, the proposed approach is expected to provide guidelines for studies trying to detect and investigate landslide occurrences at a regional scale through spatial statistical analysis of PS, for which an advanced understanding of the impact of scale distances on landslide clustering is fundamentally needed.
Interfacial scattering effect on anomalous Hall effect in Ni/Au multilayers
Zhang, Qiang
2017-04-21
The effect of interfacial scattering on anomalous Hall effect (AHE) was studied in the ${{\\\\left(\\\\text{N}{{\\\\text{i}}_{\\\\frac{36}{n}~\\\\text{nm}}}/\\\\text{A}{{\\\\text{u}}_{\\\\frac{12}{n}~\\\\text{nm}}}\\ ight)}_{n}}$ multilayers. Field-dependent Hall resistivity was measured in the temperature range of 5–300 K with the magnetic field up to 50 kOe. The anomalous Hall resistivity (${{\\ ho}_{\\\\text{AHE}}}$ ) was enhanced by more than six times at 5 K from n = 1 to n = 12 due to the increased interfacial scattering, whereas the longitudinal resistivity (${{\\ ho}_{xx}}$ ) was increased nearly three times. A scaling relation ${{\\ ho}_{\\\\text{AHE}}}\\\\sim \\ ho _{xx}^{\\\\gamma}$ with $\\\\gamma =1.85$ was obtained for ${{\\ ho}_{\\\\text{AHE}}}$ and ${{\\ ho}_{xx}}$ measured at 5 K, indicating that the dominant mechanism(s) of the AHE in these multilayers should be side-jump or/and intrinsic in nature. The new scaling relation ${{\\ ho}_{\\\\text{AHE}}}=\\\\alpha {{\\ ho}_{xx0}}+\\\\beta \\ ho _{xx0}^{2}+b\\ ho _{xx}^{2}$ (Tian et al 2009 Phys. Rev. Lett. 103 087206) has been applied to our data to identify the origin of the AHE in this type of multilayer.
Mitigating the effect of optical back-scatter in multispectral underwater imaging
International Nuclear Information System (INIS)
Mortazavi, Halleh; Oakley, John P; Barkat, Braham
2013-01-01
Multispectral imaging is a very useful technique for extracting information from the underwater world. However, optical back-scatter changes the intensity value in each spectral band and this distorts the estimated spectrum. In this work, a filter is used to detect the level of optical back-scatter in each spectral band from a set of multispectral images. Extraction of underwater object spectra can be done by subtracting the estimated level of optical back-scatter and scaling the remainder in each spectral band from the captured image in the corresponding band. An experiment has been designed to show the performance of the proposed filter for correcting the set of multispectral underwater images and recovering the pixel spectra. The multispectral images are captured by a B/W CCD digital camera with a fast tunable liquid-crystal filter in 33 narrow spectral bands in clear and different levels of turbid water. Reference estimates for the optical back-scatter spectra are found by comparing a clear and a degraded set of multispectral images. The accuracy and consistency of the proposed method, the extended Oakley–Bu cost function, is examined by comparing the estimated values with the reference level of an optical back-scatter spectrum. The same comparison is made for the simple estimation approach. The results show that the simple method is not reliable and fail to estimate the level of optical back-scatter spectrum accurately. The results from processing experimental images in turbid water show that the effect of optical back-scatter can be mitigated in the image of each spectral band and, as a result, the spectra of the object can be recovered. However, for a very high level of turbid water the recovery is limited because of the effect of extinction. (paper)
The analysis and correction of neutron scattering effects in neutron imaging
International Nuclear Information System (INIS)
Raine, D.A.; Brenizer, J.S.
1997-01-01
A method of correcting for the scattering effects present in neutron radiographic and computed tomographic imaging has been developed. Prior work has shown that beam, object, and imaging system geometry factors, such as the L/D ratio and angular divergence, are the primary sources contributing to the degradation of neutron images. With objects smaller than 20--40 mm in width, a parallel beam approximation can be made where the effects from geometry are negligible. Factors which remain important in the image formation process are the pixel size of the imaging system, neutron scattering, the size of the object, the conversion material, and the beam energy spectrum. The Monte Carlo N-Particle transport code, version 4A (MCNP4A), was used to separate and evaluate the effect that each of these parameters has on neutron image data. The simulations were used to develop a correction algorithm which is easy to implement and requires no a priori knowledge of the object. The correction algorithm is based on the determination of the object scatter function (OSF) using available data outside the object to estimate the shape and magnitude of the OSF based on a Gaussian functional form. For objects smaller than 1 mm (0.04 in.) in width, the correction function can be well approximated by a constant function. Errors in the determination and correction of the MCNP simulated neutron scattering component were under 5% and larger errors were only noted in objects which were at the extreme high end of the range of object sizes simulated. The Monte Carlo data also indicated that scattering does not play a significant role in the blurring of neutron radiographic and tomographic images. The effect of neutron scattering on computed tomography is shown to be minimal at best, with the most serious effect resulting when the basic backprojection method is used
Effects of the electron's anomaly in relativistic laser-assisted Mott scattering
International Nuclear Information System (INIS)
Ngoko Djiokap, J.M.; Tetchou Nganso, H.M.; Kwato Njock, M.G.
2006-02-01
We investigate the influence of the electron's anomalous magnetic moment on the process of relativistic Mott scattering in a powerful electromagnetic plane wave for which the ponderomotive energy is of the order of the magnitude of the electron's rest mass. For this purpose, we use the Coulomb-Dirac-Volkov and the Dirac-Volkov functions with the electron's anomaly to describe the initial and final states respectively. First-order Born differential cross sections of induced and inverse bremsstrahlung are obtained for linearly polarized laser light. Numerical calculations are carried out for various parameters values (i.e. scattering angle, the nucleus charge, photon energy, electrical field) and are compared with results obtained by Li et al. It is found that for parameters used in the present work, incorporating the anomaly of the electron in the initial and final states yields cross sections which are strongly modified whatever the scattering geometry, as compared to the outcome of the previous treatment. (author)
Effects of Hot-Spot Geometry on Backscattering and Down-Scattering Neutron Spectra
Mohamed, Z. L.; Mannion, O. M.; Forrest, C. J.; Knauer, J. P.; Anderson, K. S.; Radha, P. B.
2017-10-01
The measured neutron spectrum produced by a fusion experiment plays a key role in inferring observable quantities. One important observable is the areal density of an implosion, which is inferred by measuring the scattering of neutrons. This project seeks to use particle-transport simulations to model the effects of hot-spot geometry on backscattering and down-scattering neutron spectra along different lines of sight. Implosions similar to those conducted at the Laboratory of Laser Energetics are modeled by neutron transport through a DT plasma and a DT ice shell using the particle transport codes MCNP and IRIS. Effects of hot-spot geometry are obtained by ``detecting'' scattered neutrons along different lines of sight. This process is repeated for various hot-spot geometries representing known shape distortions between the hot spot and the shell. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Effect of pressure on the second-order Raman scattering intensities of zincblende semiconductors
Energy Technology Data Exchange (ETDEWEB)
Trallero-Giner, C.; Syassen, K. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany)
2010-01-15
A microscopic description of the two-phonon scattering intensities in direct-gap zincblende-type semiconductors as a function of hydrostatic pressure and for non-resonant excitation is presented. The calculations were performed according to the electron-two-phonon deformation potential interaction for the {gamma}{sub 1} and {gamma}{sub 15} components of the Raman tensor. It is shown that the effect of pressure on the Raman scattering cross-section exhibits a complex behavior according to the contribution of the acoustical or optical phonons to the overtones and combinations. Second-order scattering intensities via acoustical modes could decrease or increase with increasing hydrostatic pressure, while for combinations or overtones of optical phonons a decreasing intensity is obtained. Calculations of the effect of pressure on second-order Raman intensities are compared to experimental results for ZnTe. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Gluon bremstrahlung effects in large P/sub perpendicular/ hadron-hadron scattering
International Nuclear Information System (INIS)
Fox, G.C.; Kelly, R.L.
1982-02-01
We consider effects of parton (primarily gluon) bremstrahlung in the initial and final states of high transverse momentum hadron-hadron scattering. Monte Carlo calculations based on conventional QCD parton branching and scattering processes are presented. The calculations are carried only to the parton level in the final state. We apply the model to the Drell-Yan process and to high transverse momentum hadron-hadron scattering triggered with a large aperture calorimeter. We show that the latter triggers are biased in that they select events with unusually large bremstrahlung effects. We suggest that this trigger bias explains the large cross section and non-coplanar events observed in the NA5 experiment at the SPS
Study of the effects of photoelectron statistics on Thomson scattering data
International Nuclear Information System (INIS)
Hart, G.W.; Levinton, F.M.; McNeill, D.H.
1986-01-01
A computer code has been developed which simulates a Thomson scattering measurement, from the counting statistics of the input channels through the mathematical analysis of the data. The scattered and background signals in each of the wavelength channels are assumed to obey Poisson statistics, and the spectral data are fitted to a Gaussian curve using a nonlinear least-squares fitting algorithm. This method goes beyond the usual calculation of the signal-to-noise ratio for the hardware and gives a quantitative measure of the effect of the noise on the final measurement. This method is applicable to Thomson scattering measurements in which the signal-to-noise ratio is low due to either low signal or high background. Thomson scattering data from the S-1 spheromak have been compared to this simulation, and they have been found to be in good agreement. This code has proven to be useful in assessing the effects of counting statistics relative to shot-to-shot variability in producing the observed spread in the data. It was also useful for designing improvements for the S-1 Thomson scattering system, and this method would be applicable to any measurement affected by counting statistics
Iqbal, N.; Choudhury, P. K.
2017-12-01
The paper deals with scattering of electromagnetic (EM) waves by perfectly magnetic conducting (PMC) cylinder coated with chiro-ferrite medium under the assumption of oblique angle of incidence wave with perpendicular polarization (transverse electric; TE). An on-demand (in respect of orientation) kind of conducting sheath helix structure is assumed to exist at the outer surface of cylinder. The effects of sheath helix orientation, along with the material parameters, such as chirality admittance and gyrotropy, on the echo width as well as the magnitude and phase of the electric and magnetic fields are investigated. Control on the anisotropic property remains greatly useful in obtaining the required optical response from the scatterer - the feature which would find fabulous sensing related applications.
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.
2010-07-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2013-01-01
The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array
International Nuclear Information System (INIS)
Deng, S; Zhang, X; Loh, K P; Fan, H M; Sow, C H; Cheng, C-L; Foo, Y L
2009-01-01
An effective surface-enhanced Raman scattering (SERS) template based on a 3D hybrid Ag nanocluster (NC)-decorated ZnO nanowire array was fabricated through a simple process of depositing Ag NCs on ZnO nanowire arrays. The effects of particle size and excitation energy on the Raman scattering in these hybrid systems have been investigated using rhodamine 6G as a standard analyte. The results indicate that the hybrid nanosystem with 150 nm Ag NCs produces a larger SERS enhancement factor of 3.2 x 10 8 , which is much higher than that of 10 nm Ag NCs (6.0 x 10 6 ) under 532 nm excitation energy. The hybrid nanowire arrays were further applied to obtain SERS spectra of the two-photon absorption (TPA) chromophore T7. Finite-difference time-domain simulations reveal the presence of an enhanced field associated with inter-wire plasmon coupling of the 150 nm Ag NCs on adjacent ZnO nanowires; such a field was absent in the case of the 10 nm Ag NC-coated ZnO nanowire. Such hybrid nanosystems could be used as SERS substrates more effectively than assembled Ag NC film due to the enhanced light-scattering local field and the inter-wire plasmon-enhanced electromagnetic field.
International Nuclear Information System (INIS)
Zharikov, E.V.; Zagumennyj, A.I.; Kitaeva, V.F.; Lutts, G.B.; Terskov, D.B.
1991-01-01
The Gd-Sc-Al garnet (GSAG) crystals grown from the melt with composition Gd 2.88 Sc 1.89 Al 3.23 O 12 , were investigated. The GSAG doped with chromium was also studied. The Mandelstam-Brillouin (MB) light scattering in the GSAG crystals was observed. The garnet elastic components were determined using the data on the MB component shifts, the products of the elastic constants by molar volume were calculated as well. The GSAG is elastically anisotropic. The doping addition introduction do not cause noticeable change in the elastic properties. The obtained values of elastic constants and their combinations for GSAG were compared with the data for aluminium and gallium garnets. The comparison has shown that the values of elastic constants for GSAG is closer to those for Gd-Sc-Ga garnet than to the corresponding values for the Y-Al one
Herzog, Gerd; Benecke, Gunthard; Buffet, Adeline; Heidmann, Berit; Perlich, Jan; Risch, Johannes F H; Santoro, Gonzalo; Schwartzkopf, Matthias; Yu, Shun; Wurth, Wilfried; Roth, Stephan V
2013-09-10
We investigated the spray deposition and subsequent self-assembly during drying of a polystyrene nanoparticle dispersion with in situ grazing incidence small-angle X-ray scattering at high time resolution. During the fast deposition of the dispersion and the subsequent evaporation of the solvent, different transient stages of nanoparticle assembly can be identified. In the first stage, the solvent starts to evaporate without ordering of the nanoparticles. During the second stage, large-scale structures imposed by the breakup of the liquid film are observable. In this stage, the solvent evaporates further and nanoparticle ordering starts. In the late third drying stage, the nanoparticles self-assemble into the final layer structure.
International Nuclear Information System (INIS)
Van Hook, W.A.
2000-01-01
A research program examining the effects of pressure, isotope substitution and other variables on miscibility in polymer solvent systems is described. The techniques employed included phase equilibrium measurements and dynamic light scattering and small angle neutron scattering
International Nuclear Information System (INIS)
Silver, R.N.; Clark, J.W.
1988-01-01
The impulse approximation (IA) predicts that momentum distributions, n/sub k/, in many-body systems should be measurable by inclusive quasielastic scattering at high energy and momentum (w,Q) transfer. The observations that the cross section appears to satisfy ''Y-scaling'' (i.e., is a function not of both w and Q of a single variable, Y) is usually taken as a signature of the IA. In nuclear physics, inelastic electron scattering at GeV energies should reveal the high momentum components of the nuclear wave function. In quantum fluids, neutron scattering at hundreds of MeV energies should measure the Bose condensate in superfluid /sup 4/He and the Fermi surface discontinuity and depletion of the Fermi sea in /sup 3/He. In molecular and condensed matter systems, X-ray Compton scattering at keV energies reveals electronic n/sub k/. Such experiments test many-body wave functions calculated by methods such as Green Function and Path Integral Monte Carlo, and Fermi Hypernetted Chain. However, an outstanding issue has been the corrections to the IA due to the scattering of the recoiling particle from neighboring particles, which are termed ''final state effects'' (FSE). The FSE should be especially important in nuclei and quantum fluids where the potentials have steeply repulsive cores. While there have been a variety of theories proposed for FSE, until now none has been adequately tested by experiment. Recently, the ''hard core perturbation theory'' (HCPT) for FSE in quantum fluids by Silver has been successfully compared to new neutron scattering measurements on /sup 4/He by P. E. Sokol and colleagues. In this paper, we shall discuss the lessons of this success for the extraction of n/sub k/ in nuclei by inclusive ''quasielastic electron-nucleus scattering'' (QENS). 19 refs., 12 figs
Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique
2018-01-01
The time and frequency analyses of the acoustic scattering by an elastic cylindrical shell in bistatic method show that the arrival times of the echoes and the resonance frequencies of the elastic waves propagating in and around the cylindrical shell are a function of the bistatic angle, β, between the emitter and receiver transducers. The aim of this work is to explain the observed results in time and frequency domains using time-frequency analysis and graphical interpretations. The performance of four widely used time-frequency representations, the Smoothed Pseudo Wigner-Ville (SPWV), the Spectrogram (SP), the reassignment SPWV, and the reassignment SP, are studied. The investigation into the evolution of the time-frequency plane as a function of the bistatic angle β shows that there are the waves propagating in counter-clockwise direction (labeled wave+) and the waves which propagate in clockwise direction (labeled waves-). In this paper the A, S0, and A1 circumferential waves are investigated. The graphical interpretations are used to explain the formation mechanism of these waves and the acoustic scattering in monostatic and bistatic configurations. The delay between the echoes of the waves+ and those of the waves- is expressed in the case of the circumnavigating wave (Scholte-Stoneley wave). This study shows that the observed waves at β = 0 ° and β = 18 0 ° are the result of the constructive interferences between the waves+ and the waves-. A comparative study of the physical properties (group velocity dispersion and cut-off frequency) of the waves+, the waves- and the waves observed in monostatic configuration is conducted. Furthermore, it is shown that the ability of the time-frequency representation to highlight the waves+ and the waves- is very useful, for example, for the detection and the localization of defaults, the classification purposes, etc.
The memory effect for particle scattering in even spacetime dimensions
Garfinkle, David; Hollands, Stefan; Ishibashi, Akihiro; Tolish, Alexander; Wald, Robert M.
2017-07-01
We explicitly calculate the gravitational wave memory effect for classical point particle sources in linearized gravity off an even dimensional Minkowski background. We show that there is no memory effect in d > 4 dimensions, in agreement with the general analysis of Hollands et al (2016 arXiv:1612.03290).
Parity non-conserving effects in neutron-nucleus scattering
International Nuclear Information System (INIS)
Desplanques, B.
1990-01-01
The present lecture reviews the motivations which led to study the contribution of the neutron-nucleus component to parity-non-conserving effects observed in medium-heavy nuclei and considers its present status. It is shown that it cannot account for those experimental data. The order interpretation of these effects, which cannot lead to precise statements, is schematically described
Directory of Open Access Journals (Sweden)
Yuna Kim
2018-01-01
Full Text Available Surface dielectric barrier discharge (SDBD, which is widely used to control turbulence in aerodynamics, has a significant effect on the radar cross-section (RCS. A four-way linearly synthesized SDBD air plasma actuator is designed to bolster the plasma effects on electromagnetic waves. The diffraction angle is calculated to predict the RCS because of the periodic structure of staggered electrodes. The simplified plasma modeling is utilized to calculate the inhomogeneous surface plasma distribution. Monostatic RCS shows the diffraction in the plane perpendicular to the electrode array and the notable distortion by plasma. In comparison, the overall pattern is maintained in the parallel plane with minor plasma effects. The trends also appear in the bistatic RCS, which has a significant difference in the observation plane perpendicular to the electrodes. The peaks by Bragg’s diffraction are shown, and the RCS is reduced by 10 dB in a certain range by the plasma effect. The diffraction caused by the actuator and the inhomogeneous air plasma should be considered in designing an SDBD actuator for a wide range of application.
Controlled light scattering in transparent polycrystalline ferroelectrics
International Nuclear Information System (INIS)
Vasilevskaya, A.S.; Grodnenskij, I.M.; Sonin, A.S.
1977-01-01
Scattering indicatrices, birefringence, attenuation factor and time characteristics of the light scattering effect have been investigated in a polycrystal solid solution of Pbsub(0.92)Lasub(0.08)(Zrsub(0.65)Tisub(0.35))Osub(3) with the crystallite dimension 4-5 μm. The measurements have been taken for longitudinal and transverse scattering effects in the visible range of spectrum in the temperature range 20-200 deg C. The time characteristics of the scattering effect have been found to be significantly different when a sample transfers from a thermally depolarized state to an electrically polarized one and from an electrically polarized state to an electrically depolarized one. The shape of the scattering indicatrices depends on the polarization state of a sample. The distribution of the scattered light intensity in the part of the indicatrix characterizing the fundamental scattering is satisfactorily described by the Rayleigh-Hans theory. The diameter of scattering centres responsible for the scattering has been determined to be 6-7 μm. The experimental data show that there are different types of scattering centres, in the material. The fundamental scattering is caused by centres arising irreversibly during initial polarization of the sample. The second type of centres is responsible for the controlled part of scattering during repolarization
Vaz, Pedro G.; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João
2018-01-01
Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.
One phonon resonant Raman scattering in semiconductor quantum wires: Magnetic field effect
Energy Technology Data Exchange (ETDEWEB)
Betancourt-Riera, Re., E-mail: rbriera@posgrado.cifus.uson.mx [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonor, (Mexico); Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico); Betancourt-Riera, Ri. [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonora (Mexico); Nieto Jalil, J.M. [Tecnologico de Monterrey-Campus Sonora Norte, Bulevar Enrique Mazon Lopez No. 965, C.P. 83000, Hermosillo, Sonora (Mexico); Riera, R. [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico)
2013-02-01
We have developed a theory of one phonon resonant Raman scattering in a semiconductor quantum wire of cylindrical geometry in the presence of an external magnetic field distribution, parallel to the cylinder axis. The effect of the magnetic field in the electron and hole states, and in the Raman scattering efficiency, is determinate. We consider the electron-phonon interaction using a Froehlich-type Hamiltonian, deduced for the case of complete confinement phonon modes by Comas and his collaborators. We also assume T=0 K, a single parabolic conduction and valence bands. The spectra are discussed for different magnetic field values and the selection rules for the processes are also studied.
Isotope effects in complex scattering lengths for He collisions with molecular hydrogen
International Nuclear Information System (INIS)
Nolte, J. L.; Yang, B. H.; Stancil, P. C.; Lee, Teck-Ghee; Balakrishnan, N.; Forrey, R. C.; Dalgarno, A.
2010-01-01
We examine the effect of theoretically varying the collision-system reduced mass in collisions of He with vibrationally excited molecular hydrogen and observe zero-energy resonances for select atomic 'hydrogen' masses less than 1 u or a 'helium' mass of 1.95 u. Complex scattering lengths, state-to-state vibrational quenching cross sections, and a low-energy elastic scattering resonance are all studied as a function of collision-system reduced mass. Experimental observations of these phenomena in the cold and ultracold regimes for collisions of 3 He and 4 He with H 2 , HD, HT, and DT should be feasible in the near future.
International Nuclear Information System (INIS)
Öztürk, Hakan
2014-01-01
Highlights: • The criticality problem for one-speed neutrons in homogeneous slab is investigated. • A combination of forward–backward and linear anisotropy is used. • The effect of the strongly anisotropic scattering on the critical size is analyzed. - Abstract: The criticality problem for one-speed neutrons in a uniform finite slab is studied in the case of a combination of forward and backward scattering with linearly anisotropic scattering using U N method based on the Chebyshev polynomials of second kind. The effect of the linear anisotropy on the critical thickness of the slab is investigated. The critical slab thicknesses are calculated by using Marshak boundary condition for various values of the anisotropy parameters and they are presented in the tables. In comparison to the results obtained by other methods, the results of this study are in compatible with the former ones
Energy Technology Data Exchange (ETDEWEB)
Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil)
2011-10-01
In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90{sup o} (x=0.99 A{sup -1}). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Z{sub eff}) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Z{sub eff} of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.
International Nuclear Information System (INIS)
Antoniassi, M.; Conceicao, A.L.C.; Poletti, M.E.
2011-01-01
In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90 o (x=0.99 A -1 ). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Z eff ) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Z eff of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.
Antoniassi, M.; Conceição, A. L. C.; Poletti, M. E.
2011-10-01
In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90° ( x=0.99 Å -1). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number ( Zeff) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Zeff of breast tissues, which are mainly related to the elemental composition of carbon ( Z=6) and oxygen ( Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.
Coherence effects and average multiplicity in deep inelastic scattering at small χ
International Nuclear Information System (INIS)
Kisselev, A.V.; Petrov, V.A.
1988-01-01
The average hadron multiplicity in deep inelastic scattering at small χ is calculated in this paper. Its relationship with the average multiplicity in e + e - annihilation is established. As shown the results do not depend on a choice of the gauge vector. The important role of coherence effects in both space-like and time-like jet evolution is clarified. (orig.)
Hammers, Martijn; Muskens, Gerard; Van Kats, Ruud J. M.; Teunissen, Wolf A.; Kleijn, David
A key issue in conservation is where and how much management should be implemented to obtain optimal biodiversity benefits. Cost-effective conservation requires knowledge on whether biodiversity benefits are higher when management is concentrated in a few core areas or scattered across the
Doublet channel neutron-deuteron scattering in leading order effective field theory
B. BlankleiderFlinders U.; J. Gegelia(INFN)
2015-01-01
The doublet channel neutron-deuteron scattering amplitude is calculated in leading order effective field theory (EFT). It is shown that this amplitude does not depend on a constant contact interaction three-body force. Satisfactory agreement with available data is obtained when only two-body forces are included.
Nuclear re-interaction effects in quasi-elastic neutrino nucleus scattering
Energy Technology Data Exchange (ETDEWEB)
Co, G.; Bleve, C.; De Mitri, I.; Martello, D
2002-11-01
The quasi-elastic {nu}-nucleus cross section has been calculated by using a Fermi gas model corrected to consider the re-scattering between the emitted nucleon and the rest nucleus. As an example of the relevance of this effect we show results for the muon production cross section on {sup 16}O target.
Effects of recent measurements on phase shift analysis of nucleon--nucleon scattering
International Nuclear Information System (INIS)
Arndt, R.
1977-01-01
Four recent measurements in pp and np scattering below 250 MeV are used to indicate the substantial influence that new experiments can have upon phase parameters derived from the expanded data base. The cases are described separately, and the collective effect upon energy dependent analyses is discussed. It is indicated that the types of change are far from negligible. 7 refs
Effects of wave function correlations on scaling violation in quasi-free electron scattering
International Nuclear Information System (INIS)
Tornow, V.; Drechsel, D.; Orlandini, G.; Traini, M.
1981-01-01
The scaling law in quasi-free electron scattering is broken due to the existence of exchange forces, leading to a finite mean value of the scaling variable anti y. This effect is considerably increased by wave function correlations, in particular by tensor correlations, similar to the case of the photonuclear enhancement factor k. (orig.)
Effects of hadronic colour structure in quasi-elastic and charge-exchange scattering on nuclei
International Nuclear Information System (INIS)
Kopeliovich, B.Z.; Zakharov, B.G.
1986-01-01
Effects of hadronic hidden colour screening are considered in hadron-nucleus interaction. It is shown that in the quasi-free charge exchange-reaction nuclear matter becomes transparent for the scattered hadron if the momentum transfer is large enough. The available experimental data confirm this prediction of QCD
Beam size effects in the radiative Bhabha scattering
International Nuclear Information System (INIS)
Szczekowski, M.
1990-01-01
In some electromagnetic processes the measured cross section can be substantially smaller than calculated in standard Quantum Electrodynamics. The process of single bremsstrahlung, e + e - → e + e - γ is an example of such effect. If the size of the effect for large angle γ radiation is similar to its magnitude at low angles, then standard calculations of the radiative Bahbha background to e.g. the reaction used in counting the number of neutrino generations, e + e - → νν-barγ, at LEP energies can be overestimated by 10-20%. 5 refs., 5 figs. (author)
International Nuclear Information System (INIS)
Rizvi, S.A.H.
1983-01-01
In our experiment, the plasma was performed by means of a Z-pinch. Although a plasma near or above the critical density could have been produced, our experiment was deliberately restricted to underdense plasma as a) our interest was to investigate similar situations as encountered in the large extended coronal region of laser-pellet interaction which may endanger the prospects of laser fusion, b) it is readily accessible to various diagnostic methods, and, c) there is sufficient experimental data and theory availabe for comparison. After a brief introduction of the subject, the theory of laser-induced parametric instabilities, as well as various saturation mechanisms are discussed in the second chapter. The third Chapter contains the experimental details of the complete CO 2 laser system, the Z-pinch, and the laser plasma interaction experiment. Experimental results are reported in the next Chapter and are analyzed in the light of predictions discussed in the second Chapter. A comparison of our results with other experiments is made in Chapter 5, and the discrepancies are explained on the basis of a simple model. The last Chapter sums up the entire work. For a better understanding of the subject, the physics of the laser has been given in Appendix. (orig./HT)
International Nuclear Information System (INIS)
Muehlbauer, Sebastian C.
2009-01-01
In this thesis, we present a comprehensive small angle neutron scattering study of the vortex lattice (VL) in an ultra-pure Nb single crystal sample, characterized by a residual resistivity ratio of ∝ 10 4 . We systematically investigate the morphology of vortex structures with the magnetic field applied along a four-fold left angle 100 right angle axis. We succeed to deconvolute the general morphology of the VL and its orientation to three dominant mechanisms: First, non-local contributions, second, the transition between open and closed Fermi surface sheets and, third, the intermediate mixed state (IMS) between the Meissner and the Shubnikov phase. We present first time microscopic measurements of the intrinsic bulk VL tilt modulus c 44 by means of time resolved stroboscopic small angle neutron scattering in combination with a tailored magnetic field setup. In our study we find that the VL in Nb responds to an external force - in the form of a changed magnetic field - with an exponential relaxation. As expected, the relaxation process shows increasing VL stiffness with increasing magnetic field and reduced damping with increasing temperature. Besides this general trend, we observe a dramatic changeover of the relaxation process associated with the non-trivial VL morphology in the IMS and the crossover from attractive to repulsive vortex-vortex interaction. Furthermore we use small angle neutron scattering to establish the existence of a skyrmion lattice in the A-phase of MnSi. Due to a parallel alignment of the magnetic field with respect to the neutron beam, we are able to resolve the complete magnetic structure of the A-phase: The structure in the A-phase, reminiscent of a vortex lattice, consists of topological knots of the magnetization with particle-like properties, arranged in a regular six-fold lattice. The orientation of this lattice is strictly driven by the orientation of the applied magnetic field, regardless of the underlying crystal symmetry. The
Energy Technology Data Exchange (ETDEWEB)
Muehlbauer, Sebastian C
2009-12-10
In this thesis, we present a comprehensive small angle neutron scattering study of the vortex lattice (VL) in an ultra-pure Nb single crystal sample, characterized by a residual resistivity ratio of {proportional_to} 10{sup 4}. We systematically investigate the morphology of vortex structures with the magnetic field applied along a four-fold left angle 100 right angle axis. We succeed to deconvolute the general morphology of the VL and its orientation to three dominant mechanisms: First, non-local contributions, second, the transition between open and closed Fermi surface sheets and, third, the intermediate mixed state (IMS) between the Meissner and the Shubnikov phase. We present first time microscopic measurements of the intrinsic bulk VL tilt modulus c{sub 44} by means of time resolved stroboscopic small angle neutron scattering in combination with a tailored magnetic field setup. In our study we find that the VL in Nb responds to an external force - in the form of a changed magnetic field - with an exponential relaxation. As expected, the relaxation process shows increasing VL stiffness with increasing magnetic field and reduced damping with increasing temperature. Besides this general trend, we observe a dramatic changeover of the relaxation process associated with the non-trivial VL morphology in the IMS and the crossover from attractive to repulsive vortex-vortex interaction. Furthermore we use small angle neutron scattering to establish the existence of a skyrmion lattice in the A-phase of MnSi. Due to a parallel alignment of the magnetic field with respect to the neutron beam, we are able to resolve the complete magnetic structure of the A-phase: The structure in the A-phase, reminiscent of a vortex lattice, consists of topological knots of the magnetization with particle-like properties, arranged in a regular six-fold lattice. The orientation of this lattice is strictly driven by the orientation of the applied magnetic field, regardless of the underlying
Jankowska-Sumara, Irena; Ko, Jae-Hyeon; Podgórna, Maria; Oh, Soo Han; Majchrowski, Andrzej
2017-09-01
Raman light scattering was used to detect the sequence of transitions in a PbHf1-xSnxO3 (PHS) single crystal with x = 0.30 in a temperature range of 77-873 K. Changes of Raman spectra were observed in the vicinity of structural phase transitions: between the antiferroelectric (AFE1)-antiferroelectric (AFE2)—intermediate—paraelectric phases. Light scattering and dielectric investigations were used to find out the nature and sequence of the phase transition, as well as the large dielectric permittivity values measured at the phase transition, by searching for the soft-phonon-mode behavior. The experimentally recorded spectra were analyzed in terms of the damped-harmonic oscillator model for the phonon bands. It is demonstrated that the structural phase transformations in PHS can be considered as the result of softening of many modes, not only the ferroelectric one. It was also proved that locally broken symmetry effects are present at temperatures far above the Curie temperature and are connected with the softening of two optic modes of different nature.
The effect of roughness model on scattering properties of ice crystals
International Nuclear Information System (INIS)
Geogdzhayev, Igor; Diedenhoven, Bastiaan van
2016-01-01
We compare stochastic models of microscale surface roughness assuming uniform and Weibull distributions of crystal facet tilt angles to calculate scattering by roughened hexagonal ice crystals using the geometric optics (GO) approximation. Both distributions are determined by similar roughness parameters, while the Weibull model depends on the additional shape parameter. Calculations were performed for two visible wavelengths (864 nm and 410 nm) for roughness values between 0.2 and 0.7 and Weibull shape parameters between 0 and 1.0 for crystals with aspect ratios of 0.21, 1 and 4.8. For this range of parameters we find that, for a given roughness level, varying the Weibull shape parameter can change the asymmetry parameter by up to about 0.05. The largest effect of the shape parameter variation on the phase function is found in the backscattering region, while the degree of linear polarization is most affected at the side-scattering angles. For high roughness, scattering properties calculated using the uniform and Weibull models are in relatively close agreement for a given roughness parameter, especially when a Weibull shape parameter of 0.75 is used. For smaller roughness values, a shape parameter close to unity provides a better agreement. Notable differences are observed in the phase function over the scattering angle range from 5° to 20°, where the uniform roughness model produces a plateau while the Weibull model does not. - Highlights: • We compare scattering by hexagonal crystals for uniform and Weibull roughness models. • The Weibull shape parameter has a stronger effect on the phase function at backscattering. • DoLP is mostly affected at the side-scattering angles. • For high roughness, the two models are in relatively close agreement for a given roughness. • A plateau from 5° to 20° is observed in the phase function when using the uniform model.
International Nuclear Information System (INIS)
Chougle, Arun
1993-01-01
The mankind has been immensely benefited from discovery of X-ray and it has found wide spread application in diagnosis and treatment. Radiation is harmful and can produce somatic and genetic effects in the exposed person. International Commission on Radiation Protection (ICRP) has recommended a system of dose limitation based on principle of ALARA. All the efforts should be made to keep the radiation dose to the radiation worker as low as possible. Fluoroscopy gives maximum dose to the patient and staff and hence we have attempted to quantify the scattered radiation dose to the cornea, thyroid and gonads of the radiologist performing fluoroscopic examinations such as barium meal, barium swallow, barium enema, myelography, histerosalpingography and fracture reduction. Thermoluminescence dosimetry (TLD) method using CaSO 4 :Dy TLD disc was employed for these measurements. Use of lead apron has reduced the dose to radiologist's gonad. (author). 3 refs., 4 tabs
International Nuclear Information System (INIS)
Barbour, Andi M.; Telling, Mark T.; Larese, John Z.
2010-01-01
The wetting behavior of ethylene adsorbed on MgO(100) was investigated from 83-135 K using high resolution volumetric adsorption isotherms. The results are compared to ethylene adsorption on graphite, a prototype adsorption system, in an effort to gain further insight into the forces that drive the observed film growth. Layering transitions for ethylene on MgO(100) are observed below the bulk triple point of ethylene (T = 104.0 K). The formation of three discrete adlayers is observed on the MgO(100) surface; onset of the second and third layers occurs at 79.2 ± 1.3 K and 98.3 ± 0.9 K, respectively. Thermodynamic quantities such as differential enthalpy and entropy, heat of adsorption, and isosteric heat of adsorption are determined and compared to the previously published values for ethylene on graphite. The average area occupied by a ethylene molecule on MgO(100) is 22.6 ± 1.1 (angstrom) 2 molecule -1 . The locations of two phase transitions are identified (i.e., layer critical temperatures at T c2 (n=1) at 108.6 ± 1.7 K and T c2 (n=2) at 116.5 ± 1.2 K) and a phase diagram is proposed. Preliminary neutron diffraction measurements reveal evidence of a monolayer solid with a lattice constant of ∼4.2 (angstrom). High resolution INS measurements show that the onset to dynamical motion and monolayer melting take place at 35 K and 65 K, respectively. The data reported here exhibit a striking similarity to ethylene on graphite which suggests that molecule-molecule interactions play an important role in determining the physical properties and growth of molecularly thin ethylene films.
Particle trapping in stimulated scattering processes
International Nuclear Information System (INIS)
Karttunen, S.J.; Heikkinen, J.A.
1981-01-01
Particle trapping effects on stimulated Brillouin and Raman scattering are investigated. A time and space dependent model assumes a Maxwellian plasma which is taken to be homogeneous in the interaction region. Ion trapping has a rather weak effect on stimulated Brillouin scattering and large reflectivities are obtained even in strong trapping regime. Stimulated Raman scattering is considerably reduced by electron trapping. Typically 15-20 times larger laser intensities are required to obtain same reflectivity levels than without trapping. (author)
Scattering and Diffraction of Electromagnetic Radiation: An Effective Probe to Material Structure
Xu, Yu-Lin
2016-01-01
scattered intensities are cross sections, such as for extinction, scattering, absorption, and radiation pressure, as a critical type of key quantity addressed in most theoretical and experimental studies of radiative scattering. Cross sections predicted from different scattering theories are supposed to be in general agreement. For objects of irregular shape, the GMM-PA solutions can be compared with the highly flexible Discrete Dipole Approximation (DDA) [4,5] when dividing a target to no more than 106 unit cells. Also, there are different ways to calculate the cross sections in the GMM-PA, providing an additional means to examine the accuracy of the numerical solutions and to unveil potential issues concerning the theoretical formulations and numerical aspects. To solve multiple scattering by an assembly of material volumes through classical theories such as the GMM-PA, the radiative properties of the component scatterers, the complex refractive index in particular, must be provided as input parameters. When using a PA to characterize a material body, this involves the use of an adequate theoretical tool, an effective medium theory, to connect Maxwell's phenomenogical theory with the atomistic theory of matter. In the atomic theory, one regards matter as composed of interacting particles (atoms and molecules) embedded in the vacuum [6]. However, the radiative properties of atomic-scaled particles are known to be substantially different from bulk materials. Intensive research efforts in the fields of cluster science and nanoscience attempt to bridge the gap between bulk and atom and to understand the transition from classical to quantum physics. The GMM-PA calculations, which place virtually no restriction on the component-particle size, might help to gain certain insight into the transition.
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
International Nuclear Information System (INIS)
Shul'ga, N.F.; Truten', V.I.
1999-01-01
It is shown that a considerable decrease in a total cross-section of the elastic scattering of relativistic electrons by a crystal atomic string can take place at certain values of particle incidence angles. This effect is similar to the Ramsauer-Townsend effect of slow electrons scattering by an atom. It is shown that the decrease in the angle of particles incidence on the atomic string essentially changes the process of particles scattering. The phenomena of the particle rainbow scattering and orbiting may occur in this case. 14 refs., 5 figs
International Nuclear Information System (INIS)
Cvikl, B.; Dahlborg, U.; Calvo-Dahlborg, M.
1999-01-01
Based upon the model of particles diffusion within the sphere of partially absorbing boundaries, the possibilities of the detection, by the incoherent cold neutron scattering method, of particle precipitation on the boundary walls, has been investigated. The calculated scattering law as a function of the boundary absorption properties exhibits distinct characteristic which might, under favorable conditions, make such an experimental attempt feasible.(author)
Relativistic effects in ab initio electron-nucleus scattering
Rocco, Noemi; Leidemann, Winfried; Lovato, Alessandro; Orlandini, Giuseppina
2018-05-01
The electromagnetic responses obtained from Green's function Monte Carlo (GFMC) calculations are based on realistic treatments of nuclear interactions and currents. The main limitations of this method comes from its nonrelativistic nature and its computational cost, the latter hampering the direct evaluation of the inclusive cross sections as measured by experiments. We extend the applicability of GFMC in the quasielastic region to intermediate momentum transfers by performing the calculations in a reference frame that minimizes nucleon momenta. Additional relativistic effects in the kinematics are accounted for employing the two-fragment model. In addition, we developed a novel algorithm, based on the concept of first-kind scaling, to compute the inclusive electromagnetic cross section of 4He through an accurate and reliable interpolation of the response functions. A very good agreement is obtained between theoretical and experimental cross sections for a variety of kinematical setups. This offers a promising prospect for the data analysis of neutrino-oscillation experiments that requires an accurate description of nuclear dynamics in which relativistic effects are fully accounted for.
Light Scattering Studies of Organic Field Effect Transistors
Adil, Danish
Organic semiconductors hold a great promise of enabling new technology based on low cost and flexible electronic devices. While much work has been done in the field of organic semiconductors, the field is still quite immature when compared to that of traditional inorganic based devices. More work is required before the full potential of organic field effect transistors (OFETs), organic light emitting diodes (OLEDs), and organic photovoltaics (OPVs) is realized. Among such work, a further development of diagnostic tools that characterize charge transport and device robustness more efficiently is required. Charge transport in organic semiconductors is limited by the nature of the metal-semiconductor interfaces where charge is injected into the semiconductor film and the semiconductor-dielectric interface where the charge is accumulated and transported. This, combined with that fact that organic semiconductors are especially susceptible to having structural defects induced via oxidation, charge transport induced damage, and metallization results in a situation where a semiconductor film's ability to conduct charge can degrade over time. This degradation manifests itself in the electrical device characteristics of organic based electronic devices. OFETs, for example, may display changes in threshold voltage, lowering of charge carrier mobilities, or a decrease in the On/Off ratio. All these effects sum together to result in degradation in device performance. The work begins with a study where matrix assisted pulsed laser deposition (MAPLE), an alternative organic semiconductor thin film deposition method, is used to fabricate OFETs with improved semiconductor-dielectric interfaces. MAPLE allows for the controlled layer-by-layer growth of the semiconductor film. Devices fabricated using this technique are shown to exhibit desirable characteristics that are otherwise only achievable with additional surface treatments. MAPLE is shown to be viable alternative to other
The energy transport in a vegetated (corn) surface layer is examined by solving the vector radiative transfer equation using a numerical iterative approach. This approach allows a higher order that includes the multiple scattering effects. Multiple scattering effects are important when the optical t...
Salawu, Emmanuel Oluwatobi; Hesse, Evelyn; Stopford, Chris; Davey, Neil; Sun, Yi
2017-11-01
Better understanding and characterization of cloud particles, whose properties and distributions affect climate and weather, are essential for the understanding of present climate and climate change. Since imaging cloud probes have limitations of optical resolution, especially for small particles (with diameter < 25 μm), instruments like the Small Ice Detector (SID) probes, which capture high-resolution spatial light scattering patterns from individual particles down to 1 μm in size, have been developed. In this work, we have proposed a method using Machine Learning techniques to estimate simulated particles' orientation-averaged projected sizes (PAD) and aspect ratio from their 2D scattering patterns. The two-dimensional light scattering patterns (2DLSP) of hexagonal prisms are computed using the Ray Tracing with Diffraction on Facets (RTDF) model. The 2DLSP cover the same angular range as the SID probes. We generated 2DLSP for 162 hexagonal prisms at 133 orientations for each. In a first step, the 2DLSP were transformed into rotation-invariant Zernike moments (ZMs), which are particularly suitable for analyses of pattern symmetry. Then we used ZMs, summed intensities, and root mean square contrast as inputs to the advanced Machine Learning methods. We created one random forests classifier for predicting prism orientation, 133 orientation-specific (OS) support vector classification models for predicting the prism aspect-ratios, 133 OS support vector regression models for estimating prism sizes, and another 133 OS Support Vector Regression (SVR) models for estimating the size PADs. We have achieved a high accuracy of 0.99 in predicting prism aspect ratios, and a low value of normalized mean square error of 0.004 for estimating the particle's size and size PADs.
Effects of radiation scatter exposure on electrometer dose assessment in orthovoltage radiotherapy
International Nuclear Information System (INIS)
Butson, Martin J.; Yu, Peter K.N.; Cheung, Tsang; Oborn, B.M.
2011-01-01
During orthovoltage x-ray radiotherapy dosimetry, normal practice requires the use of a standard ionisation chamber and dedicated electrometer for dosimetry. In ideal conditions, the electrometer is positioned outside the treatment room to eliminate any effects from scatter radiation on dose measurement. However in some older designed rooms, there is no access portal for the chamber cable to run to an 'outside' position for the electrometer. As such the electrometer is positioned within the treatment room. This work quantifies the effects on measured charge when this occurs. Results have shown that with the electrometer positioned next to a solid water dosimetry stack and using a large 15 x 15 cm field at 250 kVp x-ray beam energy, charge results can deviate by up to ±17.2% depending on the polarity applied to the chamber compared to readings when the electrometer is outside the treatment room. It is assumed to be due to scatter radiation producing electrons in the amplifying circuit of the electrometer. Results are also shown when the electrometer is shielded by a 4 mm thick lead casing whilst inside the room which removes the scattering effect, providing the best case scenario when the electrometer must remain in the treatment room. Whilst it is well known that an electrometer should not be irradiated (even to scattered radiation), often small kilovoltage or orthovoltage rooms do not have a portal access for an electrometer to go outside. As such it would be recommended for a lead shield to be placed around the electrometer during irradiation if this was to occur to minimize dosimetric inaccuracies which may occur due to scattered radiation effects.
2002-01-01
This experiment will investigate various aspects of photon-parton scattering and will be performed in the H2 beam of the SPS North Area with high intensity hadron beams up to 350 GeV/c. \\\\\\\\ a) The directly produced photon yield in deep inelastic hadron-hadron collisions. Large p$_{t}$ direct photons from hadronic interactions are presumably a result of a simple annihilation process of quarks and antiquarks or of a QCD-Compton process. The relative contribution of the two processes can be studied by using various incident beam projectiles $\\pi^{+}, \\pi^{-}, p$ and in the future $\\bar{p}$. \\\\\\\\b) The correlations between directly produced photons and their accompanying hadronic jets. We will examine events with a large p$_{t}$ direct photon for away-side jets. If jets are recognised their properties will be investigated. Differences between a gluon and a quark jet may become observable by comparing reactions where valence quark annihilations (away-side jet originates from a gluon) dominate over the QDC-Compton...
The complete electroweak effect and perfection of Bhabha scattering in the standard model
International Nuclear Information System (INIS)
Shi Chengye; Fang Zhenyun; Chen Xuewen
2013-01-01
In this paper, we make a close and systematic research on Bhabha scattering in the electroweak unification of the standard model (SM). In concrete research methods we make the quantum field theory of perturbation theory in a new computing mode -renormalization chain propagation theory, and do an application to the Bhabha scattering calculation research. In SM, in order to consider complete electrical weak effect about Bhabha scattering internal process, we seek out the complex renormalization mixing-loop chain propagators constituted by photon y and intermediate boson Z 0 , and then calculate the Bhabha scattering cross section about this kind of propagator by transfer complete electrical weak reaction. Within the observed errors, the calculation results are in good agreement with the experimental values. Also, the main research results not only confirm the action of the particle reaction accuracy by SM theory for describing the electrical weak effect; but also suggests the SM theory may be a per ect theory and that the theory prophecy's Higgs 'mysterious particles' (which is of particular concern in the field of academic) have the large possibility to be eventually found. (authors)
Hoenders, BJ; Benaron, DA; Chance, B; Muller, GJ; Katzir, A
1996-01-01
We will present two methods leading to the solution for the problem of anisotropical light scattering by arbitrarily shaped bodies. Each method converts the equation of radiative transfer and the boundary conditions valid at the boundary of the scattering medium into a set of Fredholm integral
Berk, N. F.
2014-03-01
We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.
ΔΔ intermediate state in 1S0NN scattering from effective field theory
International Nuclear Information System (INIS)
Savage, M.J.
1997-01-01
We examine the role of the ΔΔ intermediate state in NN scattering in the 1 S 0 channel. The computation is performed at lowest order in an effective-field theory involving local four-fermion operators and one-pion exchange using dimensional regularization with minimal subtraction (MS). As first discussed by Weinberg, in the theory with only nucleons, the large-scattering length in this channel requires a small scale for the local N 4 operators. When Δ close-quote s are included (but without pions) a large-scattering length can be obtained from operators with a scale √(2M N (M Δ -M N )), but fine-tuning is required. The coefficients of the contact terms involving the Δ fields are not uniquely determined but for reasonable values one finds that, in general, NN scattering computed in the theory with Δ close-quote s looks like that computed in the theory without Δ close-quote s. The leading effect of the Δ close-quote s is to change the coefficients of the four-nucleon contact terms between the theories with and without Δ close-quote s. Further, the decoupling of the Δ close-quote s in the limit of large mass and strong coupling is clearly demonstrated. When pions are included, the typical scale for the contact terms is ∼100MeV, both with and without Δ close-quote s and is not set by √(2M N (M Δ -M N )). For reasonable values of contact terms that reproduce the scattering length and effective range (at lowest order) the phase shift is not well reproduced over a larger momentum range as is found in the theory without Δ close-quote s at lowest order. copyright 1997 The American Physical Society
Nuclear elastic scattering effects on fusion product transport in compact tori
International Nuclear Information System (INIS)
DeVeaux, J.; Greenspan, E.; Miley, G.H.
1980-01-01
This paper seeks to advance previous work including the effects of nuclear elastic scattering (NES) on fusion-product transport. We have found that NES may dominate the slowing-down process for high-temperature, advance-fuel plasmas which burn Cat.D or D- 3 He. A modified version of the Monte Carlo fusion product transport code, MCFRM, was used to evaluate the effects of NES on discrete fusion-product orbits in the FRM
Energy Technology Data Exchange (ETDEWEB)
Heintze, C. [Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Bergner, F., E-mail: f.bergner@fzd.de [Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Ulbricht, A. [Forschungszentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Hernandez-Mayoral, M. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Keiderling, U. [Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Lindau, R. [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Weissgaerber, T. [Fraunhofer Institute IFAM-Dresden, Winterbergstr. 28, 01277 Dresden (Germany)
2011-09-01
Oxide dispersion strengthening of ferritic/martensitic chromium steels is a promising route for the extension of the range of operation temperatures for nuclear applications. The investigation of dedicated model alloys is an important means in order to separate individual effects contributing to the mechanical behaviour under irradiation and to improve mechanistic understanding. A powder metallurgy route based on spark plasma sintering was applied to fabricate oxide dispersion strengthened (ODS) Fe9Cr model materials. These materials along with Eurofer97 and ODS-Eurofer were investigated by means of small-angle neutron scattering (SANS) and TEM. For Fe9Cr-0.6 wt.%Y{sub 2}O{sub 3}, TEM results indicate a peak radius of the size distribution of Y{sub 2}O{sub 3} particles of 4.2 nm with radii ranging up to 15 nm, and a volume fraction of 0.7%, whereas SANS indicates a peak radius of 3.8 nm and a volume fraction of 0.6%. It was found that the non-ODS Fe9Cr and Eurofer97 are suitable reference materials for ODS-Fe9Cr and ODS-Eurofer, respectively, and that the ODS-Fe9Cr variants are suitable model materials for the separated investigation of irradiation-Y{sub 2}O{sub 3} particle interaction effects.
Repeated sorption of water in SBA-15 investigated by means of in situ small-angle x-ray scattering
International Nuclear Information System (INIS)
Erko, M; Paris, O; Wallacher, D; Findenegg, G H
2012-01-01
The effect of repeated cycles of water adsorption/desorption on the structural stability of ordered mesoporous silica SBA-15 is studied by small-angle x-ray scattering (SAXS). In situ sorption measurements are conducted using a custom-built sorption apparatus in connection with a laboratory SAXS setup. Two striking irreversible changes are observed in the sorption isotherms as derived from the integrated SAXS intensity. First, the capillary condensation pressure shifts progressively to lower relative pressure values with increasing number of sorption cycles. This effect is attributed to chemisorption of water at the silica walls, resulting in a change of the fluid-wall interaction. Second, the sorption cycles do not close completely at vanishing vapour pressure, suggesting that progressively more water remains trapped within the porous material after each cycle. This effect is interpreted to be the result of an irreversible collapse of parts of mesopores, originating from pore wall deformation due to the large Laplace pressure of water acting on the pore walls at capillary condensation and capillary evaporation. (paper)
Delbrueck scattering of monoenergetic photons
International Nuclear Information System (INIS)
Kahane, S.
1978-05-01
The Delbrueck effect was experimentally investigated in high Z nuclei with monoenergetic photons in the range 6.8-11.4 MeV. Two different methods were used for measurements of the differential scattering cross-section, in the 25-140 deg range and in the forward direction (theta = 1.5 deg), respectively. The known Compton scattering cross-section was used in a new and unique way for the determination of the elastic scattering cross-section. Isolation of the contribution of the real Delbrueck amplitudes to the cross-section was crried out successfully. Experimental confirmation of the theoretical calculations of Papatzacos and Mork and measurement, for the first time, of the Rayleigh scattering in the 10 MeV region are also reported. One of the most interesting findings is the presence of Coulomb corrections in Delbrueck scattering at these energies. More theoretical effort is needed in this last direction. (author)
International Nuclear Information System (INIS)
Tornow, W.; Mertens, G.
1977-01-01
In order to study multiple scattering effects both in the gas and particularly in the solid materials of high-pressure gas scintillators, two asymmetry experiments have been performed by scattering of 15.6 MeV polarized neutrons from helium contained in stainless steel vessels of different wall thicknesses. A monte Carlo computer code taking into account the polarization dependence of the differential scattering cross sections has been written to simulate the experiments and to calculate corrections for multiple scattering on helium, xenon and the gas containment materials. Besides the asymmetries for the various scattering processes involved, the code yields time-of-flight spectra of the scattered neutrons and pulse height spectra of the helium recoil nuclei in the gas scintillator. The agreement between experimental results and Monte Carlo calculations is satisfactory. (Auth.)
Measurement of effective atomic number of composite materials using scattering of γ-rays
International Nuclear Information System (INIS)
Singh, M.P.; Sandhu, B.S.; Singh, Bhajan
2007-01-01
In the present experiment, to determine the effective atomic number of composite materials, the scattering of 145 keV γ-rays is studied using a high-resolution HPGe semiconductor detector placed at 70 deg. to the incident beam. The experiment is performed on various elements of different atomic number, 6≤Z≤64, for 145 keV incident photons. The intensity ratio of Rayleigh to Compton scattered peaks, corrected for photo-peak efficiency of the γ-detector and absorption of photons in the target and air, is plotted as a function of atomic number and constituted a fit curve. From this fit curve, the respective effective atomic numbers of the composite materials are determined. The agreement of measured values of effective atomic number with the theory is found to be quite satisfactory
Electron-phonon scattering in indium from r.f. size effect measurements
International Nuclear Information System (INIS)
Hoff, A.B.M.
1977-01-01
The anisotropy of the electron-phonon collison frequency on the second and third zone Fermi surfaces of indium has been determined from the temperature dependence of radiofrequency size effect (R.F.S.E.) line amplitudes. The orbitally-averaged scattering rates turn out to vary with temperature T according to a T 3 -dependence over the entire Fermi surface, except for orbits on the hole surface close to the (100) and (001) symmetry planes. The anomalous temperatue dependences found in the experiments could be attributed to the special circumstances under which the R.F.S.E. was observed. The influences of both the scattering effectiveness and the multiple turns of the electrons on the observed temperature dependence are discussed extensively. For a large number of extreme orbits on the second and third zone Fermi surfaces, the average scattering rates were measured. In order to obtain a functional expression for the local collision frequency over the entire Fermi surface, an inversion technique was used. As a result, it was found that the anisotropy of the collision frequency over the second zone surface is quite high (1:20) whereas the anisotropy over the third zone surface is rather small (<20%). Further, the variation of the scattering rate round the [111]-point on the hole surface could be confirmed by the results of limiting point measurements. The experimental scattering rates at several points on the Fermi surface were compared with theoretical values obtained from a simple two-OPW model calculation. The calculated anisotropy agrees roughly with the experimental one, although locally the actual values can differ by a factor of 2 or more
P-odd effects in the e-d scattering in the vector-like theories
International Nuclear Information System (INIS)
Gakh, G.I.
1979-01-01
P-odd effects in elastic electron-deuteron scattering, due to the weak neutral currents, are analyzed in the framework of the vector-like theories. Considered is the case of the most general form of the P-invariance breaking in the elastic e - d scattering amplitude in both the leptonic and hadronic vertices. It is found that in the vector-like theories the parity violation in the electro-deuteron elastic scattering is confined in the hadronic vertex, while in the Weinberg-Salam model it is confined in the leptonic vertex. In the vector-like theories the asymmetry in the scattering of longitudinally polarized electrons by nonpolarized deuterons depends on the electromagnetic and weak form factors of a deuteron, whereas in the Weinberg-Salam model it does not depend on the structure of the deuteron. In the Weinberg-Salam model the asymmetry is independent on the T-violating form factors of the deuteron, whereas such a dependence is present in the vector-like theories
International Nuclear Information System (INIS)
Singh, M.P.; Sharma, Amandeep; Singh, Bhajan; Sandhu, B.S.
2010-01-01
The objective of present experiment, employing a scattering of 59.54 keV gamma photons, is to assign effective atomic number (Z eff ) to scientific samples (rare earths) of known composition. An HPGe semiconductor detector, placed at 90 o to the incident beam, detects gamma photons scattered from the sample under investigation. The experiment is performed on various elements with atomic number satisfying, 6≤Z≤82, for 59.54 keV incident photons. The intensity ratio of Rayleigh to Compton scattered peaks, corrected for photo-peak efficiency of gamma detector and absorption of photons in the sample and air, is plotted as a function of atomic number and constituted a best fit-curve. From this fit-curve, the respective effective atomic numbers to samples of rare earths are determined. The agreement of measured values of Z eff with theoretical calculations is quite satisfactory.
Bouloussa, H.; Yu, J.; Roussigné, Y.; Belmeguenai, M.; Stashkevitch, A.; Yang, H.; Chérif, S. M.
2018-06-01
Interface Dzyaloshinskii–Moriya interaction (iDMI) is known to induce spinwaves non-reciprocity in ultrathin films. Indeed, Brillouin light scattering has been used to investigate how the lateral size reduction can affect the iDMI constant in Pt (6 nm)/Co (3 nm) based-nanostripe arrays. For this, 100 and 300 nm-width nanostripes have been fabricated using e-beam lithography and ion etching, and their behaviour has then been compared to the reference continuous film. The experimental data showed that the measured iDMI induced non-reciprocity is slightly different for the 100 nm-width nanostripes with respect to the other samples. This suggests that the width of the nanostripes can influence the strength of the apparent iDMI if this dimension is comparable to the spin waves attenuation length propagating within the nanostripes. Indeed, in contrast to the other samples, the linear frequency difference (non-reciprocity) behaviour versus wavenumber for the 100 nm-width nanostripes has been analysed and discussed through two approaches: either a different iDMI constant or an iDMI constant similar to one of the continuous films with a non-zero intercept for a zero wavenumber.
Energy Technology Data Exchange (ETDEWEB)
Abt, I. [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut; Cooper-Sarkar, A.M. [Oxford Univ. (United Kingdom). Dept. of Physics; Foster, B. [Oxford Univ. (United Kingdom). Dept. of Physics; Hamburg Univ. (Germany). I. Inst. of Experimental Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Myronenko, V.; Wichmann, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Wing, M. [University College London (United Kingdom). Dept. of Physics and Astronomy
2017-07-18
A phenomenological study of the final combined HERA data on inclusive deep inelastic scattering (DIS) has been performed. The data are presented and investigated for a kinematic range extending from values of the four-momentum transfer, Q{sup 2}, above 10{sup 4} GeV{sup 2} down to the lowest values observable at HERA of Q{sup 2}=0.045 GeV{sup 2} and Bjorken x, x{sub Bj}=6.10{sup -7}. The data are well described by fits based on perturbative quantum chromodynamics (QCD) using collinear factorisation and evolution of the parton densities encompassed in the DGLAP formalism from the highest Q{sup 2} down to Q{sup 2} of a few GeV{sup 2}. The Regge formalism with the soft Pomeron pole can describe the data up to Q{sup 2}∼0.65 GeV{sup 2}. The complete data set can be described by a new fit using the Abramowicz-Levin-Levy-Maor (ALLM) parameterisation. The region between the Regge and the perturbative QCD regimes is of particular interest.
Directory of Open Access Journals (Sweden)
Takatsugu Endo
2017-01-01
Full Text Available We investigated nano-structural changes of cellulose dissolved in 1-ethyl-3-methylimidazolium acetate—an ionic liquid (IL—using a small angle X-ray scattering (SAXS technique over the entire concentration range (0–100 mol %. Fibril structures of cellulose disappeared at 40 mol % of cellulose, which is a significantly higher concentration than the maximum concentration of dissolution (24–28 mol % previously determined in this IL. This behavior is explained by the presence of the anion bridging, whereby an anion prefers to interact with multiple OH groups of different cellulose molecules at high concentrations, discovered in our recent work. Furthermore, we observed the emergence of two aggregated nano-structures in the concentration range of 30–80 mol %. The diameter of one structure was 12–20 nm, dependent on concentration, which is ascribed to cellulose chain entanglement. In contrast, the other with 4.1 nm diameter exhibited concentration independence and is reminiscent of a cellulose microfibril, reflecting the occurrence of nanofibrillation. These results contribute to an understanding of the dissolution mechanism of cellulose in ILs. Finally, we unexpectedly proposed a novel cellulose/IL composite: the cellulose/IL mixtures of 30–50 mol % that possess liquid crystallinity are sufficiently hard to be moldable.
International Nuclear Information System (INIS)
Abt, I.; Myronenko, V.; Wichmann, K.; Wing, M.
2017-01-01
A phenomenological study of the final combined HERA data on inclusive deep inelastic scattering (DIS) has been performed. The data are presented and investigated for a kinematic range extending from values of the four-momentum transfer, Q"2, above 10"4 GeV"2 down to the lowest values observable at HERA of Q"2=0.045 GeV"2 and Bjorken x, x_B_j=6.10"-"7. The data are well described by fits based on perturbative quantum chromodynamics (QCD) using collinear factorisation and evolution of the parton densities encompassed in the DGLAP formalism from the highest Q"2 down to Q"2 of a few GeV"2. The Regge formalism with the soft Pomeron pole can describe the data up to Q"2∼0.65 GeV"2. The complete data set can be described by a new fit using the Abramowicz-Levin-Levy-Maor (ALLM) parameterisation. The region between the Regge and the perturbative QCD regimes is of particular interest.
Wu, Bin; Li, Xin; Do, Changwoo; Kim, Tae-Hwan; Shew, Chwen-Yang; Liu, Yun; Yang, Jun; Hong, Kunlun; Porcar, Lionel; Chen, Chun-Yu; Liu, Emily L.; Smith, Gregory S.; Herwig, Kenneth W.; Chen, Wei-Ren
2011-10-01
An experimental scheme using contrast variation small angle neutron scattering technique is developed to investigate the structural characteristics of amine-terminated poly(amidoamine) dendrimers solutions. Using this methodology, we present the dependence of both the intra-dendrimer water and the polymer distribution on molecular protonation, which can be precisely adjusted by tuning the pH of the solution. Assuming spherical symmetry of the spatial arrangement of the constituent components of dendrimer, and that the atomic ratio of hydrogen-to-deuterium for the solvent residing within the cavities of dendrimer is identical to that for the solvent outside the dendrimer, the intra-dendrimer water distribution along the radial direction is determined. Our result clearly reveals an outward relocation of the peripheral groups, as well as enhanced intra-dendrimer hydration, upon increasing the molecular protonation and, therefore, allows the determination of segmental backfolding in a quantitative manner. The connection between these charge-induced structural changes and our recently observed progressively active segmental dynamics is also discussed.
International Nuclear Information System (INIS)
Levelut, C.; Faivre, A.; Pelous, J.; Durand, D.
1999-01-01
Complete text of publication follows. An experimental investigation of the relaxational processes related to the glass transition in several glass formers with more or less complex molecular architecture is presented. This inelastic neutron scattering study concentrates on the region around 1.1 to 1.5 T g where the two relaxation processes usually identified in most glass formers, the α and the β relaxations, are expected to merge or cross. A recent study comparing the dynamics of Sorbitol and Maltitol (two low molecular and complementary glasses) seems to show that the way on which the α and β processes merge depends on the differences in the chemical architecture of these polyols [1]. In the present work, linear diols, three-arm-star triols and crosslinked polyurethanes, synthesized from the latter are studied. This work is an extension of a previous study of the relaxational processes in cross-linked polyurethanes [2]. For such series of samples of similar chemical composition but with increasing complexity in the architecture, the influence of the molecular complexity on the type of merging between α and β processes is tested. This allows to discuss the α-β cross-over on molecular level. (author)
Characterization of porous materials by small-angle scattering
Indian Academy of Sciences (India)
With the availability of ultra small-angle scattering instruments, one can investigate porous materials in the sub-micron length scale. Because of the increased accessible length scale vis-a-vis the multiple scattering effect, conventional data analysis procedures based on single scattering approximation quite often fail.
Effect of hyperon channels in low-energy k-d scattering
International Nuclear Information System (INIS)
Schick, L.H.; Gibson, B.F.
1978-01-01
Within the framework of a Faddeev formalism and an implicit hyperon channel approximation, we have calculated K - d elastic, total, and reaction cross sections for incident kaon laboratory momenta up to 120 Mev/c. We have used as input two different (slightly modified) multichannel M matrix fits to low-energy anti KN scattering, each of which contains explicitly the πY channels, as well as a single channel representation of the anti KN interaction in which the hyperon channels appear only through their contributions to the imaginary parts of the anti KN scattering lengths. The K - d cross sections obtained with the single channel anti KN input differ by only some 10% from those for which we used the multichannel anti KN input. The D - d cross sections calculated using anti KN input parameters from each of the two separate M matrix fits differ across the entire momentum range investigated by 25-35%. (orig.) [de
Xu, Wenhu; Haule, Kristjan; Kotliar, Gabriel
2013-07-19
We investigate the transport properties of a correlated metal within dynamical mean-field theory. Canonical Fermi liquid behavior emerges only below a very low temperature scale T(FL). Surprisingly the quasiparticle scattering rate follows a quadratic temperature dependence up to much higher temperatures and crosses over to saturated behavior around a temperature scale T(sat). We identify these quasiparticles as constituents of the hidden Fermi liquid. The non-Fermi-liquid transport above T(FL), in particular the linear-in-T resistivity, is shown to be a result of a strongly temperature dependent band dispersion. We derive simple expressions for the resistivity, Hall angle, thermoelectric power and Nernst coefficient in terms of a temperature dependent renormalized band structure and the quasiparticle scattering rate. We discuss possible tests of the dynamical mean-field theory picture of transport using ac measurements.
The effects of scattering on the relative LPI performance of optical and mm-wave systems
Oetting, John; Hampton, Jerry
1988-01-01
Previous results comparing the LPI performance of optical and millimeter-wave satellite systems is extended to include the effects of scattering on optical LPI performance. The LPI figure of merit used to compare the two media is the circular equivalent vulnerability radius (CEVR). The CEVR is calculated for typical optical and spread spectrum millimeter-wave systems, and the LPI performance tradeoffs available with each medium are compared. Attention is given to the possibility that light will be scattered into the interceptor's FOV and thereby enable detection in geometries in which interception of the main beam is impossible. The effects of daytime vs. nighttime operation of the optical LPI system are also considered. Some illustrative results for the case of a ground-to-space uplink to a low earth orbit satellite are presented, along with some conclusions and unresolved issues for further study.
International Nuclear Information System (INIS)
Gils, H.J.
1984-12-01
The radial size and shape of the distribution of nucleons - i.e. the sum of protons and neutrons - in atomic nuclei of the 1fsub(7/2) shell is investigated in the present work. The experimental basis of the studies are differential cross sections of elastic α particle scattering by sup(40,42,43,44,48)Ca, 50 Ti, 51 V, 52 Cr precisely measured over a wide angular range at the 104 MeV α particle beam from the Karlsruhe Isochronous Cyclotron. The experimental cross sections are analyzed using so-called 'model independent' optical potentials by which the data are very well reproduced. The error bands of these potentials are determined in a well-defined form from the analyses. The high sensitivity of the data to the radial form of the real optical potential justifies, in principle, that the experiments are a suitable tool for investigating nuclear density distributions. Some pre-informations on this question are obtained from the optical potential analyses. For a more direct access to the nuclear matter distributions - in particular to differences between neighbouring nuclei - a semimicroscopic reaction model is presented which on the one hand is based on a fully microscopic many body approach. On the other hand all quantities being not of particular interest for the results are treated in a phenomenological way. Thereby, it is possible to reproduce the experimental cross sections as well as by the 'model independent' potentials and to obtain full consistency between the two approaches. This has not been achieved by any other microscopic reaction model. (orig./HSI) [de
The effect of background absorption on the compound cross-section in resonance scattering
International Nuclear Information System (INIS)
Frenkel, A.
1976-01-01
The effect of channel-channel correlations in the compound cross-section is studied in a model of a resonance above a compound background characterized by equal absorption in all open channels. A general rule which cannot be derived from unitarity alone is proved for the fluctuating cross-section. It provides new understanding of level-level correlations in scattering through compound nucleus states. (author)
Revisit the spin-FET: Multiple reflection, inelastic scattering, and lateral size effects
Xu, Luting; Li, Xin-Qi; Sun, Qing-feng
2014-01-01
We revisit the spin-injected field effect transistor (spin-FET) by simulating a lattice model based on recursive lattice Green's function approach. In the one-dimensional case and coherent regime, the simulated results reveal noticeable differences from the celebrated Datta-Das model, which motivate thus an improved treatment and lead to analytic and generalized result. The simulation also allows us to address inelastic scattering (using B\\"uttiker's fictitious reservoir approach) and lateral...
Semenova, L. E.
2018-04-01
The hyper-Raman scattering of light by LO-phonons under two-photon excitation near resonance with the An=2 exciton level in the wurtzite semiconductors A2B6 was theoretically investigated, taking into account the influence of the complex structure of the top valence band.
DEFF Research Database (Denmark)
Manuel, P.; Adroja, D. T.; Lindgård, Per-Anker
2011-01-01
The S = 3/2, quasi-one-dimensional (1D) zig-zag chain Heisenberg antiferromagnet Li3RuO4 has been investigated using heat capacity, inelastic neutron scattering, neutron diffraction, and μSR measurements on a powder sample. Our neutron diffraction and μSR studies confirm a long-range ordering of ...
Raman scattering of monolayer graphene: the temperature and oxygen doping effects
International Nuclear Information System (INIS)
Zhou Haiqing; Qiu Caiyu; Yu Fang; Yang Huaichao; Chen Minjiang; Hu Lijun; Guo Yanjun; Sun Lianfeng
2011-01-01
Raman spectra of monolayer graphene at various temperatures (303-473 K) are measured. In Raman scattering with wave numbers ranging from 1200 to 3400 cm -1 , the four main Raman peaks (G, 2D, T + D and 2D') show temperature-dependent behaviour, but have different frequency shifts with increase in temperature. We propose that the peak frequency shift is related mainly to the elongation of C-C bond due to thermal expansion or anharmonic coupling of phonon modes, and oxygen-induced strong hole doping on the graphene surface. The doping effect can be confirmed from the frequency shifts, full-width at half-maximum as well as the area and intensity ratios of G and 2D peaks in temperature-dependent Raman scattering of graphene, room-temperature Raman spectra of pristine graphene and graphene cooled down after Raman measurement at 473 K in air. Therefore, the oxygen doping effect and temperature effect coexist in temperature-dependent Raman scattering of monolayer graphene.
The effect of positronium formation in e+ -Li and e+ -Na scattering
International Nuclear Information System (INIS)
Adhikari, S.K.; Ghosh, A.S.; Ray, H.
1994-02-01
The e + -Li and e + -Na scattering are studied, using the close coupling approximation in the static and coupled static expansion schemes. The effect of the positronium formation on the elastic channel is found to be strong in both cases. In the case of the lithium atom the effect is dramatic; the inclusion of the positronium formation channels transforms the purely repulsive effective e + -Li S wave (static) potential to a predominantly attractive (coupled static) potential. In this case, in the static model δ(0) - δ(∞) = π. According to Levinson's theorem this suggests the presence of a S wave bound or continuum bound state in the e + -Li system. (author)
High-energy effective action from scattering of QCD shock waves
Energy Technology Data Exchange (ETDEWEB)
Ian Balitsky
2005-07-01
At high energies, the relevant degrees of freedom are Wilson lines - infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.
Mahdavi, Sahel; Maghsoudi, Yasser; Amani, Meisam
2017-07-01
Environmental conditions have considerable effects on synthetic aperture radar (SAR) imagery. Therefore, assessing these effects is important for obtaining accurate and reliable results. In this study, three series of RADARSAT-2 SAR images were evaluated. In each of these series, the sensor configuration was fixed, but the environmental conditions differed. The effects of variable environmental conditions were also investigated on co- and cross-polarized backscattering coefficients, Freeman-Durden scattering contributions, and the pedestal height in different classes of a forest area in Ottawa, Ontario. It was observed that the backscattering coefficient of wet snow was up to 2 dB more than that of dry snow. The absence of snow also caused a decrease of up to 3 dB in the surface scattering of ground and up to 5 dB in that of trees. In addition, the backscatter coefficients of ground vegetation, hardwood species, and softwood species were more similar at temperatures below 0°C than those at temperatures above 0°C. Moreover, the pedestal height was generally greater at temperatures above 0°C than at temperatures below 0°C. Finally, the highest class separability was observed when the temperature was at or above 0°C and there was no snow on the ground or trees.
Limits on the effective quark radius from inclusive ep scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Sciences; Collaboration: ZEUS Collaboration; and others
2016-04-15
The high-precision HERA data allows searches up to TeV scales for Beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current ep scattering corresponding to a luminosity of around 1 fb{sup -1} have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive ep data is presented; simultaneous fits of parton distribution functions together with contributions of ''new physics'' processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is 0.43.10{sup -16} cm.
Effect of diffraction on stimulated Brillouin scattering from a single laser hot spot
International Nuclear Information System (INIS)
Eliseev, V.V.; Rozmus, W.; Tikhonchuk, V.T.; Capjack, C.E.
1996-01-01
A single laser hot spot in an underdense plasma is represented as a focused Gaussian laser beam. Stimulated Brillouin scattering (SBS) from such a Gaussian beam with small f/numbers 2-4 has been studied in a three-dimensional slab geometry. It is shown that the SBS reflectivity from a single laser hot spot is much lower than that predicted by a simple three wave coupling model because of the diffraction of the scattered light from the spatially localized ion acoustic wave. SBS gain per one Rayleigh length of the incident laser beam is proposed as a quantitative measure of this effect. Diffraction-limited SBS from a randomized laser beam is also discussed. copyright 1996 American Institute of Physics
Effects of Pressure on Stability of Biomolecules in Solutions Studied by Neutron Scattering
Bellissent-Funel, Marie-Claire-; Appavou, Marie-Sousai; Gibrat, Gabriel
Studies of the pressure dependence on protein structure and dynamics contribute not only to the basic knowledge of biological molecules but have also a considerable relevance in full technology, like in food sterilization and pharmacy. Conformational changes induced by pressure as well as the effects on the protein stability have been mostly studied by optical techniques (optical absorption, fluorescence, phosphorescence), and by NMR. Most optical techniques used so far give information related to the local nature of the used probe (fluorescent or phosphorescent tryptophan). Small angle neutron scattering and quasi-elastic neutron scattering provide essential complementary information to the optical data, giving quantitative data on change of conformation of soluble globular proteins such as bovine pancreatic trypsin inhibitor (BPTI) and on the mobility of protons belonging to the protein surface residues.
Deep inelastic scattering near the endpoint in soft-collinear effective theory
International Nuclear Information System (INIS)
Chay, Junegone; Kim, Chul
2007-01-01
We apply the soft-collinear effective theory to deep inelastic scattering near the endpoint region. The forward scattering amplitude and the structure functions are shown to factorize as a convolution of the Wilson coefficients, the jet functions, and the parton distribution functions. The behavior of the parton distribution functions near the endpoint region is considered. It turns out that it evolves with the Altarelli-Parisi kernel even in the endpoint region, and the parton distribution function can be factorized further into a collinear part and the soft Wilson line. The factorized form for the structure functions is obtained by the two-step matching, and the radiative corrections or the evolution for each factorized part can be computed in perturbation theory. We present the radiative corrections of each factorized part to leading order in α s , including the zero-bin subtraction for the collinear part
Effects of relative humidity on aerosol light scattering in the Arctic
Directory of Open Access Journals (Sweden)
P. Zieger
2010-04-01
Full Text Available Aerosol particles experience hygroscopic growth in the ambient atmosphere. Their optical properties – especially the aerosol light scattering – are therefore strongly dependent on the ambient relative humidity (RH. In-situ light scattering measurements of long-term observations are usually performed under dry conditions (RH>30–40%. The knowledge of this RH effect is of eminent importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. This study combines measurements and model calculations to describe the RH effect on aerosol light scattering for the first time for aerosol particles present in summer and fall in the high Arctic. For this purpose, a field campaign was carried out from July to October 2008 at the Zeppelin station in Ny-Ålesund, Svalbard. The aerosol light scattering coefficient σ_{sp}(λ was measured at three distinct wavelengths (λ=450, 550, and 700 nm at dry and at various, predefined RH conditions between 20% and 95% with a recently developed humidified nephelometer (WetNeph and with a second nephelometer measuring at dry conditions with an average RH<10% (DryNeph. In addition, the aerosol size distribution and the aerosol absorption coefficient were measured. The scattering enhancement factor f(RH, λ is the key parameter to describe the RH effect on σ_{sp}(λ and is defined as the RH dependent σ_{sp}(RH, λ divided by the corresponding dry σ_{sp}(RH_{dry}, λ. During our campaign the average f(RH=85%, λ=550 nm was 3.24±0.63 (mean ± standard deviation, and no clear wavelength dependence of f(RH, λ was observed. This means that the ambient scattering coefficients at RH=85% were on average about three times higher than the dry measured in-situ scattering coefficients. The RH dependency of the recorded f(RH, λ can be well described by an empirical one-parameter equation. We used a simplified
Limits on the effective quark radius from inclusive ep scattering at HERA
International Nuclear Information System (INIS)
Abramowicz, H.; Abt, I.; Adamczyk, L.
2016-04-01
The high-precision HERA data allows searches up to TeV scales for Beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current ep scattering corresponding to a luminosity of around 1 fb -1 have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive ep data is presented; simultaneous fits of parton distribution functions together with contributions of ''new physics'' processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is 0.43.10 -16 cm.
Separating form factor and nuclear model effects in quasielastic neutrino-nucleus scattering
Wieske, Joseph
2017-09-01
When studying neutrino oscillations an understanding of charged current quasielastic (CCQE) neutrino-nucleus scattering is imperative. This interaction depends on a nuclear model as well as knowledge of form factors. In the past, CCQE data from the MiniBooNE experiment was analyzed assuming the Relativistic Fermi Gas (RFG) nuclear model, an axial dipole form factor in, and using the the z-expansion for the axial form factor in. We present the first analysis that combines a non-RFG nuclear model, in particular the Correlated Fermi Gas nuclear model (CFG) of, and the z expansion for the axial form factor. This will allow us to separate form factor and nuclear model effects in CCQE scattering. This project was supported through the Wayne State University REU program under NSF Grant PHY-1460853 and by the DOE Grant DE-SC0007983.
Limits on the effective quark radius from inclusive $ep$ scattering at HERA
Abramowicz, H; Adamczyk, L; Adamus, M; Antonelli, S; Aushev, V; Behnke, O; Behrens, U; Bertolin, A; Bloch, I; Boos, EG; Brock, I; Brook, NH; Brugnera, R; Bruni, A; Bussey, PJ; Caldwell, A; Capua, M; Catterall, CD; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cooper-Sarkar, AM; Corradi, M; Dementiev, RK; Devenish, RCE; Dusini, S; Foster, B; Gach, G; Gallo, E; Garfagnini, A; Geiser, A; Gizhko, A; Gladilin, LK; Golubkov, Yu A; Grzelak, G; Guzik, M; Hain, W; Hochman, D; Hori, R; Ibrahim, ZA; Iga, Y; Ishitsuka, M; Januschek, F; Jomhari, NZ; Kadenko, I; Kananov, S; Karshon, U; Kaur, P; Kisielewska, D; Klanner, R; Klein, U; Korzhavina, IA; Kotański, A; Kötz, U; Kovalchuk, N; Kowalski, H; Krupa, B; Kuprash, O; Kuze, M; Levchenko, BB; Levy, A; Limentani, S; Lisovyi, M; Lobodzinska, E; Löhr, B; Lohrmann, E; Longhin, A; Lontkovskyi, D; Lukina, OYu; Makarenko, I; Malka, J; Mohamad Idris, F; Mohammad Nasir, N; Myronenko, V; Nagano, K; Nobe, T; Nowak, RJ; Onishchuk, Yu; Paul, E; Perlański, W; Pokrovskiy, NS; Przybycien, M; Roloff, P; Ruspa, M; Saxon, DH; Schioppa, M; Schneekloth, U; Schörner-Sadenius, T; Shcheglova, LM; Shevchenko, R; Shkola, O; Shyrma, Yu; Singh, I; Skillicorn, IO; Słomiński, W; Solano, A; Stanco, L; Stefaniuk, N; Stern, A; Stopa, P; Sztuk-Dambietz, J; Tassi, E; Tokushuku, K; Tomaszewska, J; Tsurugai, T; Turcato, M; Turkot, O; Tymieniecka, T; Verbytskyi, A; Wan Abdullah, WAT; Wichmann, K; Wing, M; Yamada, S; Yamazaki, Y; Zakharchuk, N; Żarnecki, AF; Zawiejski, L; Zenaiev, O; Zhautykov, BO; Zotkin, DS; Bhadra, S; Gwenlan, C; Hlushchenko, O; Polini, A; Mastroberardino, A; Sukhonos, D
2016-01-01
The high-precision HERA data allows searches up to TeV scales for Beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current $ep$ scattering corresponding to a luminosity of around 1 fb$^{-1}$ have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive $ep$ data is presented; simultaneous fits of parton distribution functions together with contributions of "new physics" processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is $0.43\\cdot 10^{-16}$ cm.
Ben-Asher, Anael; Moiseyev, Nimrod
2017-05-01
The appearance of oscillations in the energy-dependent cross sections of the vibrational excitation ν =0 →ν ≥3 of the hydrogen molecule in its electronic ground state as predicted by Mündel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)] was confirmed in the electron scattering experiments by Allan [J. Phys. B: At. Mol. Phys. 18, L451 (1985)]. These unusual structures were obtained in spite of the extremely short lifetime of H2- in its ro-vibrational states. Based on the standard (Hermitian) time-independent scattering calculations, Horáček et al. [Phys. Rev. A 73, 022701 (2006)] associated these oscillations with the boomerang effect. Here, we show the boomerang effect as developed in time, based on our time-dependent nuclear wavepacket (WP) calculations. The nuclear WP dynamics of H2- is determined using the non-Hermitian quantum mechanics (NH-QM) which enables the use of the Born-Oppenheimer approximation with complex potential energy surfaces. This NH-QM approach, which enables us the association of the nuclear WP dynamics as obtained from the complex potential energy curve of H2- with the evolution of cross section in time, can enlighten the dynamics in other scattering experiments.
Chen, Sow-Hsin; Baglioni, Piero
2006-09-01
This special issue of Journal of Physics: Condensed Matter gathers together a series of contributions presented at the workshop entitled `Topics in the Application of Scattering Methods to Investigate the Structure and Dynamics of Soft Condensed Matter' held at Pensione Bencista, Fiesole, Italy, a wonderful Italian jewel tucked high in the hills above Florence. This immaculate 14th century villa is a feast for the eyes with antiques and original artwork everywhere you turn, and a stunning view of Florence, overlooking numerous villas and groves of olive trees. The meeting consisted of about 40 invited talks delivered by a selected group of prominent physicists and chemists from the USA, Mexico, Europe and Asia working in the fields of complex and glassy liquids. The topics covered by the talks included: simulations on the liquid-liquid transition phenomenon dynamic crossover in deeply supercooled confined water thermodynamics and dynamics of complex fluids dynamics of interfacial water structural arrest transitions in colloidal systems structure and dynamics in complex systems structure of supramolecular assemblies The choice of topics is obviously heavily biased toward the current interests of the two organizers of the workshop, in view of the fact that one of the incentives for organizing the meeting was to celebrate Sow-Hsin Chen’s life-long scientific activities on the occasion of his 70th birthday. The 21 articles presented in this issue are a state-of-the-art description of the different aspects reported at the workshop from all points of view---experimental, theoretical and numerical. The interdisciplinary nature of the talks should make this special issue of interest to a broad community of scientists involved in the study of the properties of complex fluids, soft condensed matter and disordered glassy systems. We are grateful to the Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy and to the Materials Science Program of
Belmeguenai, M.; Gabor, M. S.; Roussigné, Y.; Petrisor, T.; Mos, R. B.; Stashkevich, A.; Chérif, S. M.; Tiusan, C.
2018-02-01
C o2FeAl (CFA) ultrathin films, of various thicknesses (0.9 nm ≤tCFA≤1.8 nm ), have been grown by sputtering on Si substrates, using Ir as a buffer layer. The magnetic properties of these structures have been studied by vibrating sample magnetometry (VSM), miscrostrip ferromagnetic resonance (MS-FMR), and Brillouin light scattering (BLS) in the Damon-Eshbach geometry. VSM characterizations show that films are mostly in-plane magnetized and the saturating field perpendicular to the film plane increases with decreasing CFA thickness suggesting the existence of a perpendicular interface anisotropy. The presence of a magnetic dead layer of 0.44 nm has been detected by VSM. The MS-FMR with the magnetic field applied perpendicularly to the film plane has been used to determine the gyromagnetic factor. The BLS measurements reveal a pronounced nonreciprocal spin wave propagation, due to the interfacial Dzyaloshinskii-Moriya interaction (DMI) induced by the Ir interface with CFA, which increases with decreasing CFA thickness. The DMI sign has been found to be the same (negative) as that of Pt/Co, in contrast to the ab initio calculation on Ir/Co, where it is found to be positive. The thickness dependence of the effective DMI constant shows the existence of two regimes similarly to that of the perpendicular anisotropy constant. The surface DMI constant Ds was estimated to be -0.37 pJ /m for the thickest samples, where a linear thickness dependence of the effective DMI constant has been observed.
CARBON-FIBRE-REINFORCED POLYMER PARTS EFFECT ON SPACECRAFT OPTOELECTRONIC MODULE LENS SCATTERING
Directory of Open Access Journals (Sweden)
S. S. Kolasha
2016-01-01
Full Text Available Spacecraft optoelectronic modules traditionally have aluminum alloy or titanium alloy casing which substantial weight increases fuel consumption required to put them into orbit and, consequently, total cost of the project. Carbon fiber reinforced polymer based composite constructive materials is an efficient solution that allows reducing weight and dimensions of large optoelectronic modules 1,5–3 times and the coefficient of linear thermal expansion 15–20 times if compared with metals. Optical characteristic is a crucial feature of carbon-fibre-reinforced polymer that determines composite material interaction with electromagnetic emission within the optical range. This work was intended to develop a method to evaluate Carbon fiber reinforced polymer optoelectronic modules casing effect on lens scattering by computer simulation with Zemax application software package. Degrees of scattered, reflected and absorbed radiant flux effect on imaging quality are described here. The work included experimental study in order to determine bidirectional reflectance distribution function by goniometric method for LUP-0.1 carbon fabric check test pieces of EDT-69U epoxy binder with EPOFLEX-0.4 glue layer and 5056-3.5-23-A aluminium honeycomb filler. The scattered emission was registered within a hemisphere above the check test piece surface. Optical detection direction was determined with zenith (0º < θ < 90º and azimuth (0º < φ < 180º angles with 10° increment. The check test piece surface was proved to scatter emission within a narrow angle range (approximately 20° with clear directivity. Carbon fiber reinforced polymers was found to feature integrated reflectance coefficient 3 to 4 times greater than special coatings do.
Abramo, M C; Caccamo, C; Costa, D; Pellicane, G; Ruberto, R; Wanderlingh, U
2012-01-21
We report protein-protein structure factors of aqueous lysozyme solutions at different pH and ionic strengths, as determined by small-angle neutron scattering experiments. The observed upturn of the structure factor at small wavevectors, as the pH increases, marks a crossover between two different regimes, one dominated by repulsive forces, and another one where attractive interactions become prominent, with the ensuing development of enhanced density fluctuations. In order to rationalize such experimental outcome from a microscopic viewpoint, we have carried out extensive simulations of different coarse-grained models. We have first studied a model in which macromolecules are described as soft spheres interacting through an attractive r(-6) potential, plus embedded pH-dependent discrete charges; we show that the uprise undergone by the structure factor is qualitatively predicted. We have then studied a Derjaguin-Landau-Verwey-Overbeek (DLVO) model, in which only central interactions are advocated; we demonstrate that this model leads to a protein-rich/protein-poor coexistence curve that agrees quite well with the experimental counterpart; experimental correlations are instead reproduced only at low pH and ionic strengths. We have finally investigated a third, "mixed" model in which the central attractive term of the DLVO potential is imported within the distributed-charge approach; it turns out that the different balance of interactions, with a much shorter-range attractive contribution, leads in this latter case to an improved agreement with the experimental crossover. We discuss the relationship between experimental correlations, phase coexistence, and features of effective interactions, as well as possible paths toward a quantitative prediction of structural properties of real lysozyme solutions. © 2012 American Institute of Physics
Electron scattering from tetrahydrofuran
International Nuclear Information System (INIS)
Fuss, M C; Sanz, A G; García, G; Muñoz, A; Oller, J C; Blanco, F; Do, T P T; Brunger, M J; Almeida, D; Limão-Vieira, P
2012-01-01
Electron scattering from Tetrahydrofuran (C 4 H 8 O) was investigated over a wide range of energies. Following a mixed experimental and theoretical approach, total scattering, elastic scattering and ionization cross sections as well as electron energy loss distributions were obtained.
Scatter from optical components
International Nuclear Information System (INIS)
Stover, J.C.
1989-01-01
This book is covered under the following topics: measurement and analysis techniques; BRDF standards, comparisons, and anomalies; scatter measurement of several materials; scatter from contaminations; and optical system contamination: effects, measurement, and control
The effects of one-body dissipation and collective inertias in heavy-ion scattering and fusion
International Nuclear Information System (INIS)
Stryjewski, J.S.
1989-01-01
A classical dynamical model of heavy ion scattering and fusion is presented. The model includes deformations, deformation-dependent inertias and one-body friction in both the entrance and exit channels. The deformation-dependent inertias are calculated using a hydrodynamic approach and the one-body friction is determined with the classical wall friction formalism. This model is used to study the effects of one-body friction and collective inertias on strongly damped heavy ion reactions and fusion. Quantum-mechanical calculations suggest that the strength of classical one-body friction, as calculated by the wall formalism, is too large by a factor of 3. Therefore, the fusion excitation functions for the reactions: 16 O + 16 O, 28 Si + 28 Si, 40 Ca + 40 Ca and 56 Fe + 56 Fe are calculated and compared with similar calculations in which the strength of the wall friction has been reduced by a factor of 3. Calculations using the full wall friction reproduce the experimental fusion excitation functions more accurately than calculations using the weaker wall friction. Also, because hydrodynamical inertias are the smallest possible classical inertias, the fusion excitation functions for: 16 O + 16 O, 28 Si + 28 Si, 40 Ca + 40 Ca and 56 Fe + 56 Fe are calculated with the size of the collective inertias increased by a factor of 2 over the hydrodynamical values. Once again, calculations using hydrodynamical collective inertias reproduce the experimental fusion excitation functions more accurately than calculations using the larger collective inertias. The effects of one-body friction and collective inertias on heavy ion scattering are also investigated; reaction times, scattering angles and energy loss are determined as functions of energy and angular momentum for the reactions 98 Mo + 98 Mo and 238 U + 238 U
The effective cross section for double parton scattering within a holographic AdS/QCD approach
Energy Technology Data Exchange (ETDEWEB)
Traini, Marco, E-mail: marcoclaudio.traini@unitn.it [Institut de Physique Théorique, Université Paris Saclay, CEA, F-91191 Gif-sur-Yvette (France); INFN - TIFPA, Dipartimento di Fisica, Università degli Studi di Trento, Via Sommarive 14, I-38123 Povo, Trento (Italy); Rinaldi, Matteo [Departament de Fisica Teòrica, Universitat de València and Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Científicas, 46100 Burjassot, València (Spain); Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, I-06123 (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Vento, Vicente [Departament de Fisica Teòrica, Universitat de València and Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Científicas, 46100 Burjassot, València (Spain)
2017-05-10
A first attempt to apply the AdS/QCD framework for a bottom–up approach to the evaluation of the effective cross section for double parton scattering in proton–proton collisions is presented. The main goal is the analytic evaluation of the dependence of the effective cross section on the longitudinal momenta of the involved partons, obtained within the holographic Soft-Wall model. If measured in high-energy processes at hadron colliders, this momentum dependence could open a new window on 2-parton correlations in a proton.
Electromagnetic effects and scattering lengths extraction from experimental data on K → 3π decays
International Nuclear Information System (INIS)
Gevorkyan, S.R.; Madigozhin, D.T.; Tarasov, A.V.; Voskresenskaya, O.O.
2008-01-01
The final state interactions in K ± → π ± π 0 π 0 decays are considered using the methods of non-relativistic quantum mechanics. We show how to take into account the largest electromagnetic effect in the analysis of experimental data using the amplitudes calculated earlier. We propose the relevant expressions for amplitude corrections valid both above and below the two charged pion production threshold M π 0 π 0 2m π ± , including the average effect for the threshold bin. These formulae can be used in the procedure of pion scattering lengths measurement from M π 0 π 0 spectrum
International Nuclear Information System (INIS)
Basu, C.; Gu Benyuan.
1994-12-01
We present the quantum mechanical calculations on the conductance of a quantum waveguide consisting of multiply connected mesoscopic rings with disordered ring-circumferences and ballistic lead connections between the rings with the transfer matrix approach. The profiles of the conductance as functions of the magnetic flux and the Fermi wave number of electrons depend on the number of rings as also on the geometric configuration of the system. The conductance spectrum of this system for disordered ring circumferences, disordered ring intervals and disordered magnetic flux is examined in detail. Studying the effect of geometric scattering and the two different length scales involved in the network, namely, the ring circumference and the ballistic lead connections on the conductance profile, we find that there exist two kinds of mini-bands, one originating from the bound states of the rings, i.e. the intrinsic mini-bands, and the other associated with the connecting leads between the adjacent rings, which are the extra mini-bands. These two kinds of mini-bands respond differently to external perturbations in parameters. Unlike the system of potential scatterers, this system of geometric scatterers show complete band formations at all energies even for finite systems and there is a preferential decay of the energy states depending upon the type of disorder introduced. The conductance band structures strongly depend on the geometric configuration of the network and so by controlling the geometric parameters, the conductance band structures can be artificially tailored. (author). 18 refs, 6 figs
Higher-twist effects in QCD, deep inelastic scattering, and the Drell-Yan process
International Nuclear Information System (INIS)
Berger, E.L.; Stanford Univ., CA
1980-01-01
Inclusion of specific effects associated with constituent binding in hadronic wave functions is shown to lead to important non-scaling, non-factorizing 1/Q 2 contributions to cross sections for semi-inclusive deep-inelastic scattering, the Drell-Yan process, and other hard scattering reactions. These 1/Q 2 higher-twist terms are predicted to be dominant in well defined kinematic regions such as large x and/or large z. The provide angular distributions typical of longitudinally polarized virtual photons and W's, including sin 2 theta terms in meson induced Drell-Yan processes and in e + e - → πX, as well as unusual (1-γ) terms in deep-inelastic scattering. Calculations are also presented of the quark structure functions of the pion qsub(π)(x,Q 2 ) and for the quark to pion fragmentation function Dsub(π)(z,Q 2 ). Predictions are made for the azimuthal angle dependence of the cross sections for πN → μ anti μX and IN → l'πX. (orig.)
Aluminum and carbon substitution in MgB2. Electron doping and scattering effects
International Nuclear Information System (INIS)
Samuely, P.; Szabo, P.; Pribulova, Z.; Angst, M.; Bud'ko, S.L.; Canfield, P.C.; Klein, T.; Lyard, L.; Marcus, J.; Marcenat, C.; Kang, B.W.; Kim, H.-J.; Lee, H.-S.; Lee, H.-K.; Lee, S.I.
2007-01-01
The point-contact spectroscopy is used to address the evolution of two superconducting energy gaps in the Al- and C-doped magnesium diboride polycrystals and single crystals with T c 's from 39 to 22 K prepared by different techniques. The obtained evolution of two gaps does not show any anomalous behavior but can be consistently described by the combination of the (prevailing) band filling effect and a (minor) increased interband scattering as proposed by Kortus et al. [Kortus et al., Phys. Rev. Lett. 94 (2005) 027002]. The approaching of two gaps is stronger in the Al-doped systems but interband scattering is still not large enough to merge two gaps. The full merging can expected only for higher dopings with T c 's below 10-15 K. In-magnetic-field measurements are used to analyze the intraband scatterings introduced by these two substitutions. It is shown that the carbon doping introduces significant disorder mainly by decreasing the diffusion coefficient in the π band while the Al substitution leaves the samples in the clean limit
Effect of infrared radiation on the threshold behavior of scattering (and decay) processes
International Nuclear Information System (INIS)
Mohanty, A.K.; Rosenberg, L.; Spruch, L.
1988-01-01
An analysis is given of the effect of radiative corrections on the threshold behavior of the cross section for the inelastic scattering of a light charged particle by a neutral composite system. Explicit results are obtained for a model problem where the target consists of a proton and antiproton bound under their mutual Coulomb interaction and excited to a 2p state from its 1s ground state by electron impact, but the conclusions drawn are applicable, qualitatively, to a wide range of problems. It is found that when the energy resolution Δepsilon-c of the electron detector is small compared with the kinetic energy K' of the electron in the final state, the more careful treatment given here, which properly accounts for the rapid variation of the cross section for scattering energies near threshold, leads to only small modifications in the standard form of the radiative correction factor δ. For sufficiently high resolution in energy of a (high-energy) incident beam, the modification could be significant if Δepsilon-c is comparable with K'. The above considerations are applicable not only to scattering cross sections but to endpoints of the energy spectrum of the charged particle in a decay process in which only one charged particle is emitted
International Nuclear Information System (INIS)
Singh, Manpreet; Singh, Gurvinderjit; Sandhu, B.S.; Singh, Bhajan
2006-01-01
The simultaneous effect of detector collimator and sample thickness on 0.662 MeV multiply Compton-scattered gamma photons was studied experimentally. An intense collimated beam, obtained from 6-Ci 137 Cs source, is allowed to impinge on cylindrical aluminium samples of varying diameter and the scattered photons are detected by a 51 mmx51 mm NaI(Tl) scintillation detector placed at 90 o to the incident beam. The full energy peak corresponding to singly scattered events is reconstructed analytically. The thickness at which the multiply scattered events saturate is determined for different detector collimators. The parameters like signal-to-noise ratio and multiply scatter fraction (MSF) have also been deduced and support the work carried out by Shengli et al. [2000. EGS4 simulation of Compton scattering for nondestructive testing. KEK proceedings 200-20, Tsukuba, Japan, pp. 216-223] and Barnea et al. [1995. A study of multiple scattering background in Compton scatter imaging. NDT and E International 28, 155-162] based upon Monte Carlo calculations
International Nuclear Information System (INIS)
Ito, Hiroshi; Iida, Hidehiro; Kinoshita, Toshibumi; Hatazawa, Jun; Okudera, Toshio; Uemura, Kazuo
1999-01-01
The transmission dependent convolution subtraction method which is one of the methods for scatter correction of SPECT was applied to the assessment of CBF using SPECT and I-123-IMP. The effects of scatter correction on regional distribution of CBF were evaluated on a pixel by pixel basis by means of an anatomic standardization technique. SPECT scan was performed on six healthy men. Image reconstruction was carried out with and without the scatter correction. All reconstructed images were globally normalized for the radioactivity of each pixel, and transformed into a standard brain anatomy. After anatomic standardization, the average SPECT images were calculated for scatter corrected and uncorrected groups, and these groups were compared on pixel by pixel basis. In the scatter uncorrected group, a significant overestimation of CBF was observed in the deep cerebral white matter, pons, thalamus, putamen, hippocampal region and cingulate gyrus as compared with scatter corrected group. A significant underestimation was observed in all neocortical regions, especially in the occipital and parietal lobes, and the cerebellar cortex. The regional distribution of CBF obtained by scatter corrected SPECT was similar to that obtained by O-15 water PET. The scatter correction is needed for the assessment of CBF using SPECT. (author)
Light scattering studies at UNICAMP
International Nuclear Information System (INIS)
Luzzi, R.; Cerdeira, H.A.; Salzberg, J.; Vasconcellos, A.R.; Frota Pessoa, S.; Reis, F.G. dos; Ferrari, C.A.; Algarte, C.A.S.; Tenan, M.A.
1975-01-01
Current theoretical studies on light scattering spectroscopy at UNICAMP is presented briefly, such as: inelastic scattering of radiation from a solid state plasma; resonant Ramman scattering; high excitation effects; saturated semiconductors and glasses
Regeta, Khrystyna; Allan, Michael; Winstead, Carl; McKoy, Vincent; Mašín, Zdeněk; Gorfinkiel, Jimena D
2016-01-14
We measured differential cross sections for elastic (rotationally integrated) electron scattering on pyrimidine, both as a function of angle up to 180(∘) at electron energies of 1, 5, 10, and 20 eV and as a function of electron energy in the range 0.1-14 eV. The experimental results are compared to the results of the fixed-nuclei Schwinger variational and R-matrix theoretical methods, which reproduce satisfactorily the magnitudes and shapes of the experimental cross sections. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. Resonant structures are observed at 0.2, 0.7, and 4.35 eV and calculations for different symmetries confirm their assignment as the X̃(2)A2, Ã(2)B1, and B̃(2)B1 shape resonances. As a consequence of superposition of coherent resonant amplitudes with background scattering the B̃(2)B1 shape resonance appears as a peak, a dip, or a step function in the cross sections recorded as a function of energy at different scattering angles and this effect is satisfactorily reproduced by theory. The dip and peak contributions at different scattering angles partially compensate, making the resonance nearly invisible in the integral cross section. Vibrationally integrated cross sections were also measured at 1, 5, 10 and 20 eV and the question of whether the fixed-nuclei cross sections should be compared to vibrationally elastic or vibrationally integrated cross section is discussed.
Multigroup analysis of nuclear elastic scattering effects in Cat-D and DD3He fusion plasmas
International Nuclear Information System (INIS)
Nakano, Yasuyuki; Hanada, Takahiro; Hori, Hidetoshi; Kudo, Kazuhiko; Ohta, Masao
1987-01-01
Effects of nuclear elastic scattering (NES) on the slowing down of charged fusion products in a typical deuterium plasma and the burn dynamics of ignited Cat-D and DD 3 He plasmas are investigated. A time-dependent multigroup method is used to take into account the effect of finite (non-zero) slowing-down time as well as the discrete nature of NES. It is shown that adequate treatment of the slowing-down process, especially consideration of NES and slowing-down time delay, is essential for an accurate prediction of the dynamic behavior and thermal instability of the plasmas. NES accelerates the temporal plasma behavior and enhances the thermal instability, leading to 20∼30 keV increase in the critical temperature. (author)
Effect of Δ-isobar excitation on spin-dependent observables of elastic nucleon-deuteron scattering
International Nuclear Information System (INIS)
Nemoto, S.; Oryu, S.; Chmielewski, K.; Sauer, P.U.
2000-01-01
Δ-isobar excitation in the nuclear medium yields an effective three-nucleon force. A coupled-channel formulation with Δ-isobar excitation developed previously is used. The three-particle scattering equations are solved by a separable expansion of the two-baryon transition matrix for elastic nucleon-deuteron scattering. The effect of Δ-isobar excitation on the spin-dependent observables is studied at energies above 50 MeV nucleon lab energy. (author)
Czech Academy of Sciences Publication Activity Database
Borodavka, Fedir; Pokorný, Jan; Hlinka, Jiří
2016-01-01
Roč. 89, 7-8 (2016), 746-751 ISSN 0141-1594 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : phase transition * BiFeO 3 * Raman scattering * piezoresponse force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.060, year: 2016
Neutron scattering investigation of the acoustic-mode Grüneisen parameters in RbBr
DEFF Research Database (Denmark)
Ernst, G.; Krexner, G.; Quittner, G.
1984-01-01
The microscopic Grüneisen parameters in RbBr have been determined for 44 acoustic modes in the main symmetry directions Δ, Σ, and Λ by inelastic neutron scattering under hydrostatic pressure. The experimental data are well described within the framework of a breathing-shell model, which includes...
The effects of pseudo magnetic fields in molecular spectra and scattering
International Nuclear Information System (INIS)
Kendrick, B.K.
1996-01-01
Pseudo magnetic fields appear in the Born-Oppenheimer method for molecules when conical intersections or electronic angular momenta are taken into account. These fields are not real magnetic fields but they have the same mathematical properties and can lead to real observable effects in the dynamics of molecules. A general vector potential (gauge theory) approach for including these field effects in the Born-Oppenheimer method is introduced and applied to H + O 2 scattering and the vibrational spectrum of Na 3 (X) for zero total angular momentum (J = 0). The scattering results for HO 2 show significant shifts in the resonance energies and lifetimes due to a magnetic solenoid type field originating from the C 2v conical intersection in HO 2 . Significant changes in the state-to-state transition probabilities are also observed. The non-degenerate A 1 and A 2 vibrational spectra of Na 3 (X) show significant shifts in the energy levels due to a magnetic solenoid type field originating from the D 3h conical intersection in Na 3 . These two examples show that the effects of pseudo magnetic fields can be significant and in many cases they must be included in order to obtain agreement between theory and experiment. The newly developed gauge theory techniques for treating pseudo magnetic fields are also relevant for including the effects of real magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Risterucci, P., E-mail: paul.risterucci@gmail.com [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Université de Lyon, Institut des Nanotechnologies de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark); Renault, O., E-mail: olivier.renault@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Zborowski, C. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005, Paris (France); Université de Lyon, Institut des Nanotechnologies de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark); Bertrand, D.; Torres, A. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Rueff, J.-P. [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, BP 48 91192, Gif-sur-Yvette Cedex (France); Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005, Paris (France); Ceolin, D. [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, BP 48 91192, Gif-sur-Yvette Cedex (France); Grenet, G. [Université de Lyon, Institut des Nanotechnologies de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)
2017-04-30
Highlights: • An effective approach for quantitative background analysis in HAXPES spectra of buried layer underneath complex overlayer structures is proposed. • The approach relies on using a weighted sum of inelastic scattering cross section of the pure layers. • The method is validated by the study of an advanced power transistor stack after successive annealing steps. • The depth distribution of crucial elements (Ti, Ga) is determined reliably at depths up to nearly 50 nm. - Abstract: Inelastic background analysis of HAXPES spectra was recently introduced as a powerful method to get access to the elemental distribution in deeply buried layers or interfaces, at depth up to 60 nm below the surface. However the accuracy of the analysis highly relies on suitable scattering cross-sections able to describe effectively the transport of photoelectrons through overlayer structures consisting of individual layers with potentially very different scattering properties. Here, we show that within Tougaard’s practical framework as implemented in the Quases-Analyze software, the photoelectron transport through thick (25–40 nm) multi-layer structures with widely different cross-sections can be reliably described with an effective cross-section in the form of a weighted sum of the individual cross-section of each layer. The high-resolution core-level analysis partly provides a guide for determining the nature of the individual cross-sections to be used. We illustrate this novel approach with the practical case of a top Al/Ti bilayer structure in an AlGaN/GaN power transistor device stack before and after sucessive annealing treatments. The analysis provides reliable insights on the Ti and Ga depth distributions up to nearly 50 nm below the surface.
Depth distribution of multiple order X-ray scatter
International Nuclear Information System (INIS)
Yao Weiguang; Leszczynski, Konrad
2008-01-01
Scatter can significantly affect quality of projectional X-ray radiographs and tomographic reconstructions. With this in mind, we examined some of the physical properties of multiple orders of scatter of X-ray photons traversing through a layer of scattering media such as water. Using Monte Carlo techniques, we investigated depth distributions of interactions between incident X-ray photons and water before the resulting scattered photons reach the detector plane. Effects of factors such as radiation field size, air gap, thickness of the layer of scattering medium and X-ray energy, on the scatter were included in the scope of this study. The following scatter characteristics were observed: (1) for a layer of scattering material corresponding to the typical subject thickness in medical imaging, frequency distribution of locations of the last scattering interaction increases approximately exponentially with depth, and the higher the order of scatter or the energy of the incident photon, the narrower is the distribution; (2) for the second order scatter, the distribution of locations of the first interaction is more uniform than that of the last interaction and is dependent on the energy of the primary photons. Theoretical proofs for some of these properties are given. These properties are important to better understanding of effects of scatter on the radiographic and tomographic imaging process and to developing effective methods for scatter correction
Chaotic scattering and quantum dynamics
International Nuclear Information System (INIS)
Doron, Eyal.
1992-11-01
The main concern of this thesis is the application of the semiclassical approximation to quantum chaotic scattering systems. We deal with two separate, although interconnected, subjects. The first subject dealt with is the semiclassical characterization of the fluctuations of the S matrix. A particular important parameter is the magnetic field B, and we show how the correlation length and line shape of S matrix elements under a change of B may be derived. An effect which is present in many physical wave systems is absorption of energy flux. We show how absorption affects both the reflectivity and the scattering phase and time delay of a scattering system. In the second part of the thesis, we show how the formalism and results obtained from chaotic scattering can be applied to the investigation of closed chaotic systems, and in particular to chaotic billiards. The semiclassical expansion for billiards is presented. In the last part of the thesis we deal with the statistics of S matrices of chaotic scattering systems. The main message of this work is that scattering matrix, and its classical counterpart the Poincare Scattering Map can be used to yield a powerful formulation of the quantum mechanical dynamics of bounded systems. (author)
Energy Technology Data Exchange (ETDEWEB)
Ishikawa, R.; Kubo, M.; Kano, R.; Narukage, N.; Bando, T.; Katsukawa, Y.; Giono, G.; Suematsu, Y.; Hara, H. [National Astronomical Observatory of Japan, National Institutes of Natural Science, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Uitenbroek, H. [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Tsuneta, S.; Ishikawa, S.; Shimizu, T.; Sakao, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Goto, M. [National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, Gifu 509-5292 (Japan); Winebarger, A.; Kobayashi, K. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Cirtain, J. [University of Virginia, Department of Astronomy, 530 McCormick Road, Charlottesville, VA 22904 (United States); Champey, P. [University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); and others
2017-05-20
The Chromospheric Lyman-Alpha Spectro-Polarimeter is a sounding rocket experiment that has provided the first successful measurement of the linear polarization produced by scattering processes in the hydrogen Ly α line (121.57 nm) radiation of the solar disk. In this paper, we report that the Si iii line at 120.65 nm also shows scattering polarization and we compare the scattering polarization signals observed in the Ly α and Si iii lines in order to search for observational signatures of the Hanle effect. We focus on four selected bright structures and investigate how the U / I spatial variations vary between the Ly α wing, the Ly α core, and the Si iii line as a function of the total unsigned photospheric magnetic flux estimated from Solar Dynamics Observatory /Helioseismic and Magnetic Imager observations. In an internetwork region, the Ly α core shows an antisymmetric spatial variation across the selected bright structure, but it does not show it in other more magnetized regions. In the Si iii line, the spatial variation of U / I deviates from the above-mentioned antisymmetric shape as the total unsigned photospheric magnetic flux increases. A plausible explanation of this difference is the operation of the Hanle effect. We argue that diagnostic techniques based on the scattering polarization observed simultaneously in two spectral lines with very different sensitivities to the Hanle effect, like Ly α and Si iii, are of great potential interest for exploring the magnetism of the upper solar chromosphere and transition region.
International Nuclear Information System (INIS)
Marinyuk, V V; Sheberstov, S V
2017-01-01
We calculate the total transmission coefficient (transmittance) of a disordered medium with large (compared to the light wavelength) inhomogeneities. To model highly forward scattering in the medium we take advantage of the Gegenbauer kernel phase function. In a subdiffusion thickness range, the transmittance is shown to be sensitive to the specific form of the single-scattering phase function. The effect reveals itself at grazing angles of incidence and originates from small-angle multiple scattering of light. Our results are in a good agreement with numerical solutions to the radiative transfer equation. (paper)
QCD effects to Bjorken unpolarized sum rule for νN deep-inelastic scattering
International Nuclear Information System (INIS)
Alekhin, S I; Kataev, A L
2003-01-01
The possibility of the first measurement of Bjorken unpolarized sum rule for F 1 structure function of νN deep-inelastic scattering at neutrino factories is commented. The brief summary of various theoretical contributions to this sum rule is given. Using the next-to-leading set of parton distributions functions, we simulate the expected Q 2 -behaviour and emphasize that its measurement can allow us to determine the value of the QCD strong coupling constant α s with reasonable theoretical uncertainty, dominated by the ambiguity in the existing estimates of the twist-4 non-perturbative 1/Q 2 -effect
Energy Technology Data Exchange (ETDEWEB)
Franz Gross, Alfred Stadler
2010-09-01
We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering
Gamayunov, K. V.; Khazanov, G. V.
2006-01-01
The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we
Effects of crystal defects on the diffuse scattering of X-rays
International Nuclear Information System (INIS)
Kremser, R.
1974-01-01
This thesis concerns with the influence of crystal defects in germanium-drifted silicium and in α=quartz on the intensity of the diffuse X-ray scattering. The experiments were performed at low and high temperatures to show the effect of the atomic thermal motion on the intensity of the diffuse maxima. The comparison of the results for pure silicium and for the germanium-drifted crystal gives information about the relation between the frequency-spectra and the defects of the drifted silicium. For α-quarts it was not possible to relate unequivocally the observed changes in the intensity to individual defects. (C.R.)
Fiber break location technique utilizing stimulated Brillouin scattering effects in optical fiber
International Nuclear Information System (INIS)
Bakar, A A A; Al-Mansoori, M H; Mahdi, M A; Mohd Azau, M A; Zainal Abidin, M S
2009-01-01
A new technique of fiber break detection system in optical communication networks is proposed and experimentally demonstrated in this paper. This technique is based-on continuous wave light source rather than pulsed source that is commonly deployed in existing techniques. The nonlinear effect of stimulated Brillouin scattering is manipulated to locate the fiber-break position in optical communication networks. This technique enables the utilization of a less-sensitive photodetector to detect the Brillouin Stokes line since its intensity increases with the fiber length in the detectable region. The fiber break location can be determined with accuracy of more than 98% for fiber length less than 50 km using this technique
Limiting effects on laser compression by resonant backward Raman scattering in modern experiments
International Nuclear Information System (INIS)
Yampolsky, Nikolai A.; Fisch, Nathaniel J.
2011-01-01
Through resonant backward Raman scattering, the plasma wave mediates the energy transfer between long pump and short seed laser pulses. These mediations can result in pulse compression at extraordinarily high powers. However, both the overall efficiency of the energy transfer and the duration of the amplified pulse depend upon the persistence of the plasma wave excitation. At least with respect to the recent state-of-the-art experiments, it is possible to deduce that at present the experimentally realized efficiency of the amplifier is likely constrained mainly by two effects, namely, the pump chirp and the plasma wave wavebreaking.
Four-body effects in the 6He+58Ni scattering
International Nuclear Information System (INIS)
Morcelle, V.; Pires, K.C.C.; Rodríguez-Gallardo, M.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Faria, P.N. de; Mendes Junior, D.R.; Moro, A.M.; Gasques, L.R.; Leistenschneider, E.; Pampa Condori, R.; Scarduelli, V.; Morais, M.C.
2014-01-01
We present angular distributions of the 6 He+ 58 Ni scattering measured at three bombarding energies above the Coulomb barrier: E lab =12.2 MeV,16.5 MeV,and 21.7 MeV. The angular distributions have been analysed in terms of three- and four-body Continuum-Discretized Coupled-Channels calculations considering the effect of the 6 He breakup. A behaviour in the cross section at large angles has been observed which was reproduced only by the four-body Continuum-Discretized Coupled-Channels calculation.
International Nuclear Information System (INIS)
Frey, R.W.
1978-01-01
Using high resolution inelastic electron scattering magnitic dipole and quadrupole excitations in 208 Pb were investigated in the energy range between 6 MeV and 8 MeV. The electron energy was 50 MeV and 63.5 MeV. With a mean absolute energy resolution of 33 kev. 44 excited states were found in the above energy range. The measured angular distributions were compared with DWBA-calculations using random phase approximated wave functions. (FKS)
Investigation of mean energy losses in quasi-elastic 3Hp scattering at 2'5 GeV/c tritium momentum
International Nuclear Information System (INIS)
Blinov, A.V.; Chuvilo, I.V.; Ergakov, V.A.
1983-01-01
The mean energy losses of fast protons in reaction p+sup(3)H→Psub(F)+X were investigated using the 80 cm liquid hydrogen bubble chamber exposed to a 2.5 GeV/c tritium beam. The experimental results are compared with the predictions based on the sum rule for energy losses which are valid in the multiple scattering theory when the completeness condition for the excited nucleus wave functions is combined with the locality of the nuclear potential
International Nuclear Information System (INIS)
El-Batanouny, M.; Martini, K.M.
1986-01-01
We discuss the applicability of high-resolution-He-beam/surface scattering to the investigation of the structural and dynamic properties of soliton-like surface misfit dislocations and associated phase transitions. We present evidence, based on recent He diffraction measurements, for the existence of double-sine-Gordon soliton-like dislocations on the reconstructed Au(111) surface. 18 refs., 3 figs., 1 tab
Polarization transfer in inelastic scattering and pionic models of the EMC effect
International Nuclear Information System (INIS)
Moss, J.M.
1985-01-01
At the 1982 Telluride Conference Magda Ericson spoke about the interest in a measurement of the sigma vector . q vector or spin-longitudinal nuclear response function. It inspired our collaboration to propose a LAMPF experiment, which was subsequently approved, and run in September 1983. In the intervening time the interest has increased dramatically in connection with the European Muon Collaboration (EMC) effect, and the exciting possibility that this ultra high-energy physics result may have to do with nuclear pions - and, hence, the isovector sigma vector . q vector nuclear response function. In this talk I will give a brief introduction to the EMC effect and its interpretation in terms of excess nuclear pions. This model establishes a connection between the vastly different scales of the EMC experiment (approx. 200 GeV deep-inelastic muon scattering) and the Los Alamos experiment (500 MeV polarized-proton quasifree scattering). Following this I will describe the Los Alamos experiment and its interpretation in terms of excess nuclear pions. Finally I will indulge in some speculation about quark effects in nuclei based on the EMC and Los Alamos experimental results. 29 refs
International Nuclear Information System (INIS)
Bosi, Stephen; Naseri, Pourandokht; Puran, Alicia; Davies, Justin; Baldock, Clive
2007-01-01
There is a need for stable gel materials for phantoms used to validate optical computerized tomography (CT) scanners used in conjunction with radiation-induced polymerizing gel dosimeters. Phantoms based on addition of light-absorbing dyes to gelatine to simulate gel dosimeters have been employed. However, to more accurately simulate polymerizing gels one requires phantoms that employ light-scattering colloidal suspensions added to the gel. In this paper, we present the initial results of using an optical CT scanner to evaluate a novel phantom in which radiation-exposed polymer gels are simulated by the addition of colloidal suspensions of varying turbidity. The phantom may be useful as a calibration transfer standard for polymer gel dosimeters. The tests reveal some phenomena peculiar to light-scattering gels that need to be taken into account when calibrating polymer gel dosimeters
Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.
2017-02-01
The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.
International Nuclear Information System (INIS)
Mohammadi, S.M.; Tavakoli-Anbaran, H.; Zeinali, H.Z.
2017-01-01
The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (k e ) and photon scattering correction factor (k sc ) are needed. k e factor corrects the charge loss from the collecting volume and k sc factor corrects the scattering of photons into collecting volume. In this work k e and k sc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the k e and k sc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.
Landau retardation on the occurrence scattering time in quantum electron–hole plasmas
International Nuclear Information System (INIS)
Hong, Woo-Pyo; Jung, Young-Dae
2016-01-01
The Landau damping effects on the occurrence scattering time in electron collisions are investigated in a quantum plasma composed of electrons and holes. The Shukla–Stenflo–Bingham effective potential model is employed to obtain the occurrence scattering time in a quantum electron–hole plasma. The result shows that the influence of Landau damping produces the imaginary term in the scattering amplitude. It is then found that the Landau damping generates the retardation effect on the occurrence scattering time. It is found that the occurrence scattering time increases in forward scattering domains and decreases in backward scattering domains with an increase of the Landau parameter. It is also found that the occurrence scattering time decreases with increasing collision energy. In addition, it is found that the quantum shielding effect enhances the occurrence scattering time in the forward scattering and, however, suppresses the occurrence scattering time in the backward scattering. - Highlights: • The Landau damping effects on the occurrence scattering time are investigated in a quantum electron–hole plasma. • The Shukla–Stenflo–Bingham potential model is employed to obtain the occurrence scattering time in quantum plasmas. • The influence of quantum shielding on the occurrence scattering time is discussed.
Marassi, Valentina; Casolari, Sonia; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Panzavolta, Silvia; Tofail, Syed A M; Ortelli, Simona; Delpivo, Camilla; Blosi, Magda; Costa, Anna Luisa
2015-03-15
Due to the increased use of silver nanoparticles in industrial scale manufacturing, consumer products and nanomedicine reliable measurements of properties such as the size, shape and distribution of these nano particles in aqueous medium is critical. These properties indeed affect both functional properties and biological impacts especially in quantifying associated risks and identifying suitable risk-mediation strategies. The feasibility of on-line coupling of a fractionation technique such as hollow-fiber flow field flow fractionation (HF5) with a light scattering technique such as MALS (multi-angle light scattering) is investigated here for this purpose. Data obtained from such a fractionation technique and its combination thereof with MALS have been compared with those from more conventional but often complementary techniques e.g. transmission electron microscopy, dynamic light scattering, atomic absorption spectroscopy, and X-ray fluorescence. The combination of fractionation and multi angle light scattering techniques have been found to offer an ideal, hyphenated methodology for a simultaneous size-separation and characterization of silver nanoparticles. The hydrodynamic radii determined by fractionation techniques can be conveniently correlated to the mean average diameters determined by multi angle light scattering and reliable information on particle morphology in aqueous dispersion has been obtained. The ability to separate silver (Ag(+)) ions from silver nanoparticles (AgNPs) via membrane filtration during size analysis is an added advantage in obtaining quantitative insights to its risk potential. Most importantly, the methodology developed in this article can potentially be extended to similar characterization of metal-based nanoparticles when studying their functional effectiveness and hazard potential. Copyright © 2014 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Chesskaya, T.Yu.
1998-01-01
The Rayleigh scattering spectrum of the Moessbauer radiation is plotted on the model simulating globular macromolecules. The modeling results are compared with experimental data on the spectra of the Rayleigh scattering of the Moessbauer radiation for various moisture content and hydratation dependence of the elastic scattering portion
Effect of reflecting modes on combined heat transfer within an anisotropic scattering slab
International Nuclear Information System (INIS)
Yi Hongliang; Tan Heping; Lu Yiping
2005-01-01
Under various interface reflecting modes, different transient thermal responses will occur in the media. Combined radiative-conductive heat transfer is investigated within a participating, anisotropic scattering gray planar slab. The two interfaces of the slab are considered to be diffuse and semitransparent. Using the ray tracing method, an anisotropic scattering radiative transfer model for diffuse reflection at boundaries is set up, and with the help of direct radiative transfer coefficients, corresponding radiative transfer coefficients (RTCs) are deduced. RTCs are used to calculate the radiative source term in energy equation. Transient energy equation is solved by the full implicit control-volume method under the external radiative-convective boundary conditions. The influences of two reflecting modes including both specular reflection and diffuse reflection on transient temperature fields and steady heat flux are examined. According to numerical results obtained in this paper, it is found that there exits great difference in thermal behavior between slabs with diffuse interfaces and that with specular interfaces for slabs with big refractive index
Coulomb corrections to nuclear scattering lengths and effective ranges for weakly bound systems
International Nuclear Information System (INIS)
Mur, V.D.; Popov, V.S.; Sergeev, A.V.
1996-01-01
A procedure is considered for extracting the purely nuclear scattering length as and effective range rs (which correspond to a strong-interaction potential Vs with disregarded Coulomb interaction) from the experimentally determined nuclear quantities acs and rcs, which are modified by Coulomb interaction. The Coulomb renormalization of as and rs is especially strong if the system under study involves a level with energy close to zero (on the nuclear scale). This applies to formulas that determine the Coulomb renormalization of the low-energy parameters of s scattering (l=0). Detailed numerical calculations are performed for coefficients appearing in the equations that determine Coulomb corrections for various models of the potential Vs(r). This makes it possible to draw qualitative conclusions that the dependence of Coulomb corrections on the form of the strong-interaction potential and, in particular, on its small-distance behavior. A considerable enhancement of Coulomb corrections to the effective range rs is found for potentials with a barrier
Exploring halo effects in the scattering of $^{11}$Be on heavy targets at REX-ISOLDE
2002-01-01
We propose to measure the scattering of $^{11}$Be on heavy targets at energies around the Coulomb barrier with the aim to study the effect of the neutron halo on the reaction mechanisms. We expect to see deviations of the elastic cross sections with respect to Rutherford, even at energies below the barrier, due to the effect of dipole polarizability. We also expect to observe the inelastic excitation from the 1/2$^{+}$ ground state to the 1/2$^{-}$ excited state. One neutron transfer, as well as break-up cross sections will be obtained from the analysis of the $^{10}$Be fragments produced in the collision. We expect to obtain information on the B(E1) distribution in the low energy continuum of $^{11}$Be. \\\\ \\\\In a previous experiment, $^{11}$Be was produced and accelerated at REX-ISOLDE with an intensity of 10$^{5}$ pps. This beam intensity would allow us to measure the scattered fragments, at forward and backward angles, with a detector array based on silicon strip detectors. We ask for a total of 27 shift...
International Nuclear Information System (INIS)
Torres-Espallardo, I; Spanoudaki, V; Ziegler, S I; Rafecas, M; McElroy, D P
2008-01-01
Random coincidences can contribute substantially to the background in positron emission tomography (PET). Several estimation methods are being used for correcting them. The goal of this study was to investigate the validity of techniques for random coincidence estimation, with various low-energy thresholds (LETs). Simulated singles list-mode data of the MADPET-II small animal PET scanner were used as input. The simulations have been performed using the GATE simulation toolkit. Several sources with different geometries have been employed. We evaluated the number of random events using three methods: delayed window (DW), singles rate (SR) and time histogram fitting (TH). Since the GATE simulations allow random and true coincidences to be distinguished, a comparison between the number of random coincidences estimated using the standard methods and the number obtained using GATE was performed. An overestimation in the number of random events was observed using the DW and SR methods. This overestimation decreases for LETs higher than 255 keV. It is additionally reduced when the single events which have undergone a Compton interaction in crystals before being detected are removed from the data. These two observations lead us to infer that the overestimation is due to inter-crystal scatter. The effect of this mismatch in the reconstructed images is important for quantification because it leads to an underestimation of activity. This was shown using a hot-cold-background source with 3.7 MBq total activity in the background region and a 1.59 MBq total activity in the hot region. For both 200 keV and 400 keV LET, an overestimation of random coincidences for the DW and SR methods was observed, resulting in approximately 1.5% or more (at 200 keV LET: 1.7% for DW and 7% for SR) and less than 1% (at 400 keV LET: both methods) underestimation of activity within the background region. In almost all cases, images obtained by compensating for random events in the reconstruction
Wang, Xiaolei; Xiang, Jinjuan; Wang, Shengkai; Wang, Wenwu; Zhao, Chao; Ye, Tianchun; Xiong, Yuhua; Zhang, Jing
2016-06-01
Remote Coulomb scattering (RCS) on electron mobility degradation is investigated experimentally in Ge-based metal-oxide-semiconductor field-effect-transistors (MOSFETs) with GeO x /Al2O3 gate stacks. It is found that the mobility increases with greater GeO x thickness (7.8-20.8 Å). The physical origin of this mobility dependence on GeO x thickness is explored. The following factors are excluded: Coulomb scattering due to interfacial traps at GeO x /Ge, phonon scattering, and surface roughness scattering. Therefore, the RCS from charges in gate stacks is studied. The charge distributions in GeO x /Al2O3 gate stacks are evaluated experimentally. The bulk charges in Al2O3 and GeO x are found to be negligible. The density of the interfacial charge is +3.2 × 1012 cm-2 at the GeO x /Ge interface and -2.3 × 1012 cm-2 at the Al2O3/GeO x interface. The electric dipole at the Al2O3/GeO x interface is found to be +0.15 V, which corresponds to an areal charge density of 1.9 × 1013 cm-2. The origin of this mobility dependence on GeO x thickness is attributed to the RCS due to the electric dipole at the Al2O3/GeO x interface. This remote dipole scattering is found to play a significant role in mobility degradation. The discovery of this new scattering mechanism indicates that the engineering of the Al2O3/GeO x interface is key for mobility enhancement and device performance improvement. These results are helpful for understanding and engineering Ge mobility enhancement.
Memory effects in microscopic traffic models and wide scattering in flow-density data
Treiber, Martin; Helbing, Dirk
2003-10-01
By means of microscopic simulations we show that noninstantaneous adaptation of the driving behavior to the traffic situation together with the conventional method to measure flow-density data provides a possible explanation for the observed inverse-λ shape and the wide scattering of flow-density data in “synchronized” congested traffic. We model a memory effect in the response of drivers to the traffic situation for a wide class of car-following models by introducing an additional dynamical variable (the “subjective level of service”) describing the adaptation of drivers to the surrounding traffic situation during the past few minutes and couple this internal state to parameters of the underlying model that are related to the driving style. For illustration, we use the intelligent-driver model (IDM) as the underlying model, characterize the level of service solely by the velocity, and couple the internal variable to the IDM parameter “time gap” to model an increase of the time gap in congested traffic (“frustration effect”), which is supported by single-vehicle data. We simulate open systems with a bottleneck and obtain flow-density data by implementing “virtual detectors.” The shape, relative size, and apparent “stochasticity” of the region of the scattered data points agree nearly quantitatively with empirical data. Wide scattering is even observed for identical vehicles, although the proposed model is a time-continuous, deterministic, single-lane car-following model with a unique fundamental diagram.
Giordano, M.; Meggiolaro, E.; Silva, P. V. R. G.
2017-08-01
In the present investigation we study the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data. The parametrization used for the hadron-hadron total cross sections at high energy is inspired by recent results obtained by Giordano and Meggiolaro [J. High Energy Phys. 03 (2014) 002, 10.1007/JHEP03(2014)002] using a nonperturbative approach in the framework of QCD, and it reads σtot˜B ln2s +C ln s ln ln s . We critically investigate if B and C can be obtained by means of best-fits to data for proton-proton and antiproton-proton scattering, including recent data obtained at the LHC, and also to data for other meson-baryon and baryon-baryon scattering processes. In particular, following the above-mentioned nonperturbative QCD approach, we also consider fits where the parameters B and C are set to B =κ Bth and C =κ Cth, where Bth and Cth are universal quantities related to the QCD stable spectrum, while κ (treated as an extra free parameter) is related to the asymptotic value of the ratio σel/σtot. Different possible scenarios are then considered and compared.
International Nuclear Information System (INIS)
Liang Yujie; Wang Wenzhong; Zeng Baoqing; Zhang Guling; Huang Jing; Li Jin; Li Te; Song Yangyang; Zhang Xiuyu
2011-01-01
Research highlights: → Hexagonal Bi 2 Te 3 thin nanoplates were synthesized by a simple solvothermal method. → Optical properties of the nanoplates were investigated by micro-Raman spectroscopy. → Infrared (IR) active mode (A 1u ) is greatly activated in Raman scattering spectrum. → Infrared (IR) active mode (A 1u ) shows up in Raman spectrum of hexagonal nanoplates. → Raman spectrum clearly shows crystal symmetry breaking of hexagonal nanoplates. - Abstract: Hexagonal Bi 2 Te 3 nanoplates were synthesized by a simple solvothermal process in the absence of NaOH. The composition, morphology and size of the as-prepared products were characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Raman scattering optical properties of the as-prepared Bi 2 Te 3 nanoplates were investigated by micro-Raman spectroscopy. The Raman spectrum shows that infrared (IR) active mode (A 1u ), which must be odd parity and is Raman forbidden for bulk crystal due to its inversion symmetry, is greatly activated and shown up clearly in Raman scattering spectrum. We attribute the appearance of infrared active (A 1u ) in Raman spectrum to crystal symmetry breaking of Bi 2 Te 3 hexagonal nanoplates. The as-grown Bi 2 Te 3 hexagonal nanoplates, exhibiting novel Raman optical properties compared with bulk crystals, may find potential applications in thermoelectric devices.
International Nuclear Information System (INIS)
Berg, F.T.M. van den.
1984-01-01
In this thesis the author presents measurements of differential cross sections for the scattering of Na-atoms in the ground-state and first excited-state by the rare gas atoms Ne and Ar. The scattering experiments were performed in a crossed-beam apparatus built and tested by van Deventer et al. The unique high angular-resolution (0.1 0 ) of this beam-scattering apparatus permits us (i) to remove the discrepancies that still exist between the various X 2 Σ- and A 2 PI-potential curves for Na-Ar and Na-Ne reported up to now, (ii) to obtain detailed information on the B 2 Σ-potentials for these systems and (iii) to demonstrate the necessity of taking into account the spin-uncoupling effects, in the interpretation of the experimental Na-Ne scattering patterns. (Auth.)
International Nuclear Information System (INIS)
Alberi, G.; Bleszynski, M.; California Univ., Los Angeles; Santos, S.; Jaroszewicz, T.
1980-01-01
It is shown that the tensor asymmetries in the elastic proton-deuteron scattering at medium energies are very sensitive to the non-eikonal corrections to the Glauber model. This sensitivity originates from the fact that, in double scattering, the non-eikonal corrections affect in a different way the contributions coming from the S- and D-wave parts of the deuteron wave function. This leads to considerable change of the tensor asymmetries not only in the region of the interference between single and double scatterings, but also in the region of dominance of the double scattering. It is suggested that these effects should be taken into account in any careful analysis of the proton-deuteron polarization data, which has as a goal the extraction of the NN amplitudes. (author)
Energy Technology Data Exchange (ETDEWEB)
Mousseau, Joel A. [Univ. of Florida, Gainesville, FL (United States)
2015-01-01
Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets.
Directory of Open Access Journals (Sweden)
Fraser P. R.
2014-03-01
Full Text Available The reaction 22Ne(p, γ23Na is key to the NeNa cycle of stellar nucleogenesis, and better understanding of the 22Mg(p, γ23Al reaction is needed to understand the 22Na puzzle in ONe white dwarf novae. We aim to study these reactions using a multi-channel algebraic scattering (MCAS formalism for low-energy nucleon-nucleus scattering, recently expanded to investigate radiative capture. As a first step towards this goal, we here calculate the energy levels of the mass-23 (Ne, Mg, Na, Al nuclei. This is not only because the resonant structure of these nuclei are related to the astrophysical -rates of interest, but also because the interaction parameters determined for describing the energy levels are an integral part of the future calculation of the astrophysical reactions when using the MCAS scheme.
International Nuclear Information System (INIS)
Singh, Tejbir; Singh, Parjit S
2011-01-01
The pulse height spectra for different thicknesses of portland cement in the reflected geometry has been recorded with the help of a NaI(Tl) scintillator detector and 2 K MCA card using different gamma-ray sources such as Hg 203 (279 keV), Cs 137 (662 keV) and Co 60 (1173 and 1332 keV). It has been observed that the multiple scatter peak for portland cement appears at 110 (±7) keV in all the spectra irrespective of different incident photon energies in the range 279-1332 keV from different gamma-ray sources. Further, the variation in the intensity of the multiple scatter peak with the thickness of portland cement in the backward semi-cylinders has been investigated.
International Nuclear Information System (INIS)
Dong Shuqiang; Chen Ximeng; Li Liqin; Liu Peng; Dong Yuhui
2008-01-01
This paper reports that at a newly constructed small-angle x-ray scattering station of Beijing Synchrotron Radiation Facility, the topological shape of ligand-free bovine serum albumin in solution has been investigated. An appropriate scattering curve is obtained and the calculated value of the gyration radius is 31.2Å±0.25A (1Å=0.1 nm) which is coincident with other ones' results. It finds that the low-resolution structure models obtained by making use of ab initio reconstruction methods are fitting the crystal structure of human serum albumin very well. All of these results perform the potential of the beamline to apply to structural biology studies. The characteristics, the defects, and the improving measures of the station in future are also discussed. (condensed matter: structure, thermal and mechanical properties)