WorldWideScience

Sample records for scattering association ensa

  1. Research and Development in ENSA

    International Nuclear Information System (INIS)

    2006-01-01

    We conceive R and D as a whole of creative works undertaken in a systematic way to increase our knowledge and conceive new applications for our productive processes. Advanced technology is developed and applied in ENSA by different departments. Coordination is done by the Technology Division. The development of new applications for the different metallurgical processes are mainly carried out by the Welding and Metallurgy Laboratories Development for process Automation and Robotization are carried out by the Automation department in close collaboration with the Welding, Engineering, Quality and Production departments, as appropriate. The upgrading of Machines and Installations is carried out by Engineering and Production. We believe in Innovation as an ongoing Strategy for our competitiveness. (Author)

  2. ENSA: History and success of first ENSA-DPT cask. A new evolution, ENUN 32P; ENSA: Historia y éxito del primer contenedor ENSA-DPT. Una nueva evolución, el ENUN 32P

    Energy Technology Data Exchange (ETDEWEB)

    Soto López, A.

    2016-07-01

    In 1991, Ensa received ENRESA’s order to develop and to license in Spain a fuel cask of dual purpose destined to store the spent fuel of the Trillo´s Nuclear power plant. With this, there was born the fuel cask Ensa-DPT (Ensa Dual Purpose Trillo) that Ensa has made, loaded and stored satisfactorily up to the date thirty units. During October and November, there will take place the last two loadings of spent fuel of the ENSA-DPT´s fuel cask, numbers 31 and 32, giving finished this project that will give a new and exciting challenge: the fuel cask ENSA Universal ENUN 32P. Let’s hope that the experience acquired during these almost two decades uses as precedent for the future that waits for us in the development, supply and load of equipments for the management of the spent fuel in the Spanish nuclearpower plants.

  3. The role of ENSA in the internationalization of the spanish nuclear industry; La participacion de ENSA en la internacionalizacion de la industria nuclear espanola

    Energy Technology Data Exchange (ETDEWEB)

    Zubimendi, J. M.

    2012-11-01

    Originally born to face the manufacture of the large components for the Spanish nuclear power plants, ENSA is a valid example of internationalization. Mainly based on its high technology and quality as a differential fact, the international success started at the end of the eighties. currently 90% of the manufactured equipment is exported and 50% of the services are performed abroad, ENSA is working for demanding markets as China, France, North America, Taiwan, Argentina, slovenia, Belgium, south Africa, etc. Today, all large equipment being manufactured at ENSA will be exported. (Author)

  4. The role of ENSA in the internationalization of the spanish nuclear industry

    International Nuclear Information System (INIS)

    Zubimendi, J. M.

    2012-01-01

    Originally born to face the manufacture of the large components for the Spanish nuclear power plants, ENSA is a valid example of internationalization. Mainly based on its high technology and quality as a differential fact, the international success started at the end of the eighties. currently 90% of the manufactured equipment is exported and 50% of the services are performed abroad, ENSA is working for demanding markets as China, France, North America, Taiwan, Argentina, slovenia, Belgium, south Africa, etc. Today, all large equipment being manufactured at ENSA will be exported. (Author)

  5. A metáfora na ensaística de Borges

    Directory of Open Access Journals (Sweden)

    Gustavo Ponciano Cunha de Oliveira

    2014-12-01

    Full Text Available http://dx.doi.org/10.5007/2176-8552.2014n17p115 A metáfora é uma recorrência temática na ensaística de Jorge Luis Borges. Porém, o tratamento dado pelo autor portenho ao objeto ensaiado não foi sempre o mesmo. Do jovem poeta e ensaísta ultraísta ao maduro palestrante, as concepções foram profundamente alteradas. Neste ensaio, pretendemos passar por estas diversificadas concepções para nos concentrarmos em uma delas: a metáfora entendida como possibilidade de convergência de conceitos diversos, mesmo contraditórios. Mais do que tema, defendemos a tese de que esta metáfora é própria ao funcionamento ensaístico de Borges. Para promover o debate, nos apoiamos em textos de Paul Ricoeur, Jaime Alazraki, Joseph Hillis Miller, Joaquina Navarro, Álvaro Salvador, entre outros.

  6. Remarks on the inverse scattering transform associated with toda equations

    Science.gov (United States)

    Ablowitz, Mark J.; Villorroel, J.

    The Inverse Scattering Transforms used to solve both the 2+1 Toda equation and a novel reduction, the Toda differential-delay equations are outlined. There are a number of interesting features associated with these systems and the related scattering theory.

  7. Perfil del comportamiento sexual en adolescentes mexicanos de 12 a 19 años de edad: resultados de la ENSA 2000 Profile of sexual behavior in 12 to 19 year-old Mexican adolescents: results of ENSA 2000

    Directory of Open Access Journals (Sweden)

    Carlos González-Garza

    2005-06-01

    embarazos.OBJECTIVE: To describe traits associated with sexual behaviors in Mexican adolescents, their knowledge about contraception, and factors associated with pregnancy and utilization of contraceptives during first sexual intercourse. MATERIAL AND METHODS: Data from the Mexican National Health Survey 2000 (ENSA 2000 were analyzed. This study, conducted between September 1999 and March 2000, was a complex survey with a probabilistic, stratified, and cluster sampling design. The sample population included 15 241 adolescents 12 to 19 years of age. Data analysis included descriptive statistics and a chi-squared test for differences of proportions; also, logistic regression was used to obtain odds ratios. RESULTS: A total of 69.2% adolescents reported knowledge of at least one contraception method; 16.4% of subjects reported having had sexual intercourse. Males initiated sexual intercourse earlier than females and only 37% of all adolescents utilized contraceptives during their first sexual intercourse. Logistic regression analysis showed that being male, having a higher education, having knowledge of at least one contraception method, and having initiated sexual intercourse at an older age, were factors associated with utilization of a contraception method in their first sexual intercourse. A total of 55.7% of sexually active female adolescents had been pregnant. Pregnancy among adolescents was associated with low educational level, sexual activity at early age, and to have sometime lived in free union. CONCLUSIONS: The majority of sexually active adolescents did not use contraception during their first sexual intercourse, rendering them at risk of unwanted pregnancies.

  8. The self-association of acebutolol: Conductometry and light scattering

    Science.gov (United States)

    Ruso, Juan M.; López-Fontán, José L.; Prieto, Gerardo; Sarmiento, Félix

    2003-04-01

    The association characteristics of an amphiphilic beta-blocker drug, acebutolol hydrochloride, in aqueous solution containing high concentrations of electrolyte and at different temperatures have been examined by static and dynamic light scattering and electrical conductivity. Time averaged light scattering measurements on aqueous solutions of acebutolol at 298.15 K in the presence of added electrolyte (0.4-1.0 mol kg-1 NaCl) have shown discontinuities which reflect the appearance of aggregates. The critical micelle concentration, aggregation numbers, effective micelle charges, and degree of micellar ionization were calculated. Dynamic light scattering has shown an increase in micellar size with increase in concentration of added electrolyte. Data have been interpreted using the DLVO theory to quantify the interaction between the drug aggregates and the colloidal stability. Critical micelle concentrations in water have been calculated from conductivity measurements over the temperature range 288.15-313.15 K. The variation in critical concentration with temperature passes through a minimum close to 294 K. Thermodynamic parameters of aggregate formation (ΔGm0,ΔHm0,ΔSm0) were obtained from a variation of the mass action model applicable to systems of low aggregation number.

  9. VI European Conference on Neutron Scattering (ECNS2015)

    International Nuclear Information System (INIS)

    2016-01-01

    Neutron Scattering (ECNS) was supported by our institutional sponsors (Government of Aragon, CSIC and University of Zaragoza) as well as one platinum sponsor (Consortium of German Neutron Sources), three gold sponsors (ILL, PSI, ESS), four silver sponsors (Swiss Neutronics, ISIS, ESS Bilbao, JINR-FLNP) and 12 bronze sponsors (NMi3, Airbus Defence and Space, Tessella, Oxford Instruments, General Electric, Laboratoire Leon Brillouin, HNF Technologies, AVS, ANTE, Mirrotron Ltd, Toshiba, and the ENATE winery). The Sponsors ranged from neutron sources, consortia and laboratories to industrial organisations. A total of 19 graduate students and post-graduate students received the International Union of Crystallography fellowships (IUCR). Fellows came from Denmark, France, Hungary, Russia, UK, Australia, Japan and Spain. ENSA has a long-standing culture of rewarding scientists for their work and at the ENSA session the 2015 Walter Halg Prize was awarded to Prof Dr Helmut Rauch for his outstanding and seminal contributions to the fundamental aspects of neutron physics and optics and many related aspects of quantum physics. The Seventh Erwin Felix Lewy Bertaut Prize of the European Crystallographic Association (ECA) and European Neutron Scattering Association (ENSA) was awarded to Dr. Giorgio Schiro for his work on movement of biological matter. A number of satellite meetings were also held during the conference such as the Swiss Neutron Scattering Society General Assembly, the Neutron sources directors meeting as well as the European Neutron Scattering Association (ENSA) meeting. In particular, the Neutron sources directors meeting gathered directors from 14 Neutron sources from countries around the world. The ENSA meeting, which was held on the second day of the conference, hosted delegates from Holland, Norway, Denmark, Germany, Norway, Spain and France. Several national facilities will close by 2020, which will cause the overall neutron capacity in Europe to be greatly reduced

  10. SCATTER

    International Nuclear Information System (INIS)

    Broome, J.

    1965-11-01

    The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)

  11. Insulin association in neutral solutions studied by light scattering

    DEFF Research Database (Denmark)

    Hvidt, S.

    1991-01-01

    Molecular weights and weight distributions of sulfated, Zn-free, and 2Zn insulins have been measured at pH 7.3 as a function of concentration from 0.1 to 2 mg/ml by use of a combination of light scattering, refractometry, and size-exclusion chromatography. Results show that sulfated insulin...

  12. Rail-Cask Tests: Normal-Conditionsof- Transport Tests of Surrogate PWR Fuel Assemblies in an ENSA ENUN 32P Cask.

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ross, Steven [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grey, Carissa Ann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arviso, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garmendia, Rafael [Equipos Nucleares Sociedad Anonima, Madrid (Spain); Fernandez Perez, Ismael [Equipos Nucleares Sociedad Anonima, Madrid (Spain); Palacio, Alejandro [Equipos Nucleares Sociedad Anonima, Madrid (Spain); Calleja, Guillermo [Equipos Nucleares Sociedad Anonima, Madrid (Spain); Garrido, David [COORDINADORA, Madrid (Spain); Rodriguez Casas, Ana [COORDINADORA, Madrid (Spain); Gonzalez Garcia, Luis [COORDINADORA, Madrid (Spain); Chilton, Lyman Wes [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ammerman, Douglas J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walz, Jacob [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gershon, Sabina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klymyshyn, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanson, Brady [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pena, Ruben [Transportation Technology Center, Inc., Pueblo, CO (United States); Walker, Russell [Transportation Technology Center, Inc., Pueblo, CO (United States)

    2018-01-01

    This report describes tests conducted using a full-size rail cask, the ENSA ENUN 32P, involving handling of the cask and transport of the cask via truck, ships, and rail. The purpose of the tests was to measure strains and accelerations on surrogate pressurized water reactor fuel rods when the fuel assemblies were subjected to Normal Conditions of Transport within the rail cask. In addition, accelerations were measured on the transport platform, the cask cradle, the cask, and the basket within the cask holding the assemblies. These tests were an international collaboration that included Equipos Nucleares S.A., Sandia National Laboratories, Pacific Northwest National Laboratory, Coordinadora Internacional de Cargas S.A., the Transportation Technology Center, Inc., the Korea Radioactive Waste Agency, and the Korea Atomic Energy Research Institute. All test results in this report are PRELIMINARY – complete analyses of test data will be completed and reported in FY18. However, preliminarily: The strains were exceedingly low on the surrogate fuel rods during the rail-cask tests for all the transport and handling modes. The test results provide a compelling technical basis for the safe transport of spent fuel.

  13. Direct Observation of Insulin Association Dynamics with Time-Resolved X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rimmerman, Dolev [Department; Leshchev, Denis [Department; Hsu, Darren J. [Department; Hong, Jiyun [Department; Kosheleva, Irina [Center; Chen, Lin X. [Department; Chemical

    2017-09-05

    Biological functions frequently require protein-protein interactions that involve secondary and tertiary structural perturbation. Here we study protein-protein dissociation and reassociation dynamics in insulin, a model system for protein oligomerization. Insulin dimer dissociation into monomers was induced by a nanosecond temperature-jump (T-jump) of ~8 °C in aqueous solution, and the resulting protein and solvent dynamics were tracked by time-resolved X-ray solution scattering (TRXSS) on time scales of 10 ns to 100 ms. The protein scattering signals revealed the formation of five distinguishable transient species during the association process that deviate from simple two state kinetics. Our results show that the combination of T-jump pump coupled to TRXSS probe allows for direct tracking of structural dynamics in nonphotoactive proteins.

  14. PREFACE: 7th Meeting of the Spanish Neutron Scattering Association (SETN)

    Science.gov (United States)

    Pérez-Landazábal, J. I.; Recarte, V.

    2015-11-01

    The VII th Meeting of the Spanish Neutron Scattering Association was held on the campus of the Public University of Navarra (UPNa) in Pamplona (Spain) during 22-25 June 2014. It was the seventh edition of a series of biennial meetings that began in San Sebastian in 2002, which followed the meetings of Puerto de La Cruz (2004), Jaca (2006), Sant Feliu de Guixols (2008), Gijón (2010) and Segovia (2012). It is the largest meeting and discussion forum for Spanish scientific users of neutron scattering techniques, whatever the branch of science or technology development their research activity concerns. Throughout these years, the Spanish community of neutron techniques has been consolidating, increasing every year both in the number of users and in the diversity of techniques and topics analyzed. In this sense, the series of biennial meetings of the Society aims to give visibility and summarize the activity taking place in this field. Ongoing with the initiative undertaken in the last two editions, some selected works shown in the conference are published in this edition of Journal of Physics: Conference Series. The conference consisted of plenary lectures issued by relevant researchers in neutron science techniques, as well as invited lectures in which the most significant recent results achieved by Spanish scientists from fundamental science to applied technology were shown. To encourage the participation of as many research groups as possible and in particular young researchers, oral and poster presentations were also included. The VII th SETN meeting was organized by the Physics Department of the Public University of Navarra in collaboration with the Spanish Society for Neutron Techniques (SETN, Sociedad Española de Técnicas Neutrónicas). The meeting attracted around 70 participants from all over the country and foreign researchers were also invited to the conference. We want to emphasize the excellent quality of the presentations and want to thank the support

  15. The association effect of human serum albumin under different zinc ion concentrations studied by small angle of neutron scattering

    International Nuclear Information System (INIS)

    He Jian; Xu Yanping; Yang Tonghua; He Jintian; Li Lianzhi; Zhou Yongqia

    1997-01-01

    The microscopic parameters of the HSA-Zn 2+ , R g and I(0), are obtained directedly by small angle of neutron scattering (SANS) under different concentrations of zinc ion. Comparing with other relevant experimental results, e.g. equilibrium dialysis, we can determine and distinguish the apparent interactive subsequences into more detailed sub-actions, such as self-association, inter-association, disintegration and deconformation et al., or even certain combination of them, other than some indirect and microscopic results. Results obtained by SANS can qualitatively and readily interpret the characteristics from the viewpoint of microscopic process

  16. Raman scattering and associated fast electron production. Final technical report, April 16, 1984-April 15, 1985

    International Nuclear Information System (INIS)

    Brooks, R.D.; Pietrzyk, Z.A.

    1985-08-01

    High energy electrons in plasmas have been attributed to various causes including trapping by electron plasma waves created by stimulated Raman scattering. A theory, consistent with experimental results, based on the acceleration of trapped electrons by such electron plasma waves as they propagate in the presence of a density gradient away from the region where they are created is presented. Single particle simulations show accelerating voltages as high as 20 GV/m

  17. Scattering rules in soliton cellular automata associated with Uq(D(1)n)-crystal Bn,1

    International Nuclear Information System (INIS)

    Mohamad, Mahathir bin

    2012-01-01

    By means of the crystal theory, we study a class of automata associated with U q (D (1) n )-crystal B n,1 . They have a commuting family of time evolutions, and solitons of length l are labeled by U q (A (1) n−1 )-crystal B 2,l A . The scattering rule of two solitons of lengths l 1 and l 2 (l 1 > l 2 ) including the phase shift is identified with the combinatorial R-matrix for the U q (A (1) n −1 )-crystal B 2,l 2 A ⊗B 2,l 1 A . (paper)

  18. Inclusive D*± meson and associated dijet production in deep-inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Aktas, A.; Andreev, V.; Anthonis, V.

    2007-01-01

    Inclusive D *± production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D *± meson is investigated. The analysis covers values of photon virtuality 2≤Q 2 ≤100 GeV 2 and of inelasticity 0.05≤y≤0.7. Differential cross sections are measured as a function of Q 2 and x and of various D *± meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the k T -unintegrated gluon distribution of the proton. (orig.)

  19. Inclusive D*± meson and associated dijet production in deep-inelastic scattering at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-07-01

    Inclusive D*± production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D*± meson is investigated. The analysis covers values of photon virtuality 2 ≤ Q2 ≤ 100 GeV2 and of inelasticity 0.05≤y≤0.7. Differential cross sections are measured as a function of Q2 and x and of various D*± meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the kT-unintegrated gluon distribution of the proton.

  20. OPTICAL DATA PROCESSING: Realization of associative memory with the aid of a nonlinear selective stimulated-Brillouin-scattering mirror

    Science.gov (United States)

    Matveyev, A. Z.; Pasmanik, G. A.

    1993-05-01

    An associative memory using only optical elements has been realized experimentally. The key element of the arrangement is a stimulated-Brillouin-scattering (SBS) selector consisting of a short SBS medium at the focus of a lens. The qualitative advantage of the selector over an SBS mirror is demonstrated experimentally. The response time of the arrangement is ~ 10-8 s and is determined by the duration of the SBS. Estimates show that the SBS selector is capable in practice of distinguishing a signal against background noise when the initial distortion level of the object beam is 10-3. Reliable operation of the SBS selector has been demonstrated for radiative and energy loads reaching 2 GW/cm2 and 2 J, respectively.

  1. Experimental study of single-particle inclusive hadron scattering and associated multiplicities

    International Nuclear Information System (INIS)

    Brenner, A.E.; Carey, D.C.; Elias, J.E.; Garbincius, P.H.; Mikenberg, G.; Polychronakos, V.A.; Aitkenhead, W.; Barton, D.S.; Brandenburg, G.W.; Busza, W.; Dobrowolski, T.; Friedman, J.I.; Kendall, H.W.; Lyons, T.; Nelson, B.; Rosenson, L.; Toy, W.; Verdier, R.; Votta, L.; Chiaradia, M.T.; DeMarzo, C.; Favuzzi, C.; Germinario, G.; Guerriero, L.; LaVopa, P.; Maggi, G.; Posa, F.; Selvaggi, G.; Spinelli, P.; Waldner, F.; Meunier, R.; Cutts, D.; Dulude, R.S.; Lanou, R.E. Jr.; Massimo, J.T.

    1982-01-01

    An experiment using the Fermilab single arm spectrometer (SAS) facility and an associated nonmagnetic vertex detector studied the reactions a+p→c+X where a and c were π +- , K +- , p, or p-bar. Extensive measurements were made at 100 and 175 GeV/c beam momenta with the outgoing hadrons detected in the SAS covering a kinematic range 0.12< x<1.0 and p/sub T/<1.25 GeV/c. Additional data covering a more restricted range in x were also gathered at 70 GeV/c incident momentum. In this high-statistics experiment, the identification of both the incoming and outgoing charged hadrons were made with a total of eight Cerenkov counters. New and extensive single-particle inclusive data for charged-particle production in low-p/sub T/ hadronic fragmentation are presented. The average associated charged-particle multiplicity and pseudorapidity distributions are also given

  2. Eigenfunctions and Eigenvalues for a Scalar Riemann-Hilbert Problem Associated to Inverse Scattering

    Science.gov (United States)

    Pelinovsky, Dmitry E.; Sulem, Catherine

    A complete set of eigenfunctions is introduced within the Riemann-Hilbert formalism for spectral problems associated to some solvable nonlinear evolution equations. In particular, we consider the time-independent and time-dependent Schrödinger problems which are related to the KdV and KPI equations possessing solitons and lumps, respectively. Non-standard scalar products, orthogonality and completeness relations are derived for these problems. The complete set of eigenfunctions is used for perturbation theory and bifurcation analysis of eigenvalues supported by the potentials under perturbations. We classify two different types of bifurcations of new eigenvalues and analyze their characteristic features. One type corresponds to thresholdless generation of solitons in the KdV equation, while the other predicts a threshold for generation of lumps in the KPI equation.

  3. Counterion Association and Structural Conformation Change of Charged PAMAM Dendrimer in Aqueous Solutions Revealed by Small Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Chen, Wei-Ren

    2009-01-01

    Our previous study of the structure change of poly(amidoamine) starburst dendrimers (PAMAM) dendrimer of generation 5 (G5) have demonstrated that although the overall molecular size is practically unaffected by increasing DCl concentration, a configurational transformation, from a diffusive density profile to a more uniform density distribution, is clearly observed. In the current paper, the focus is placed on understanding the effect of counterion identity on the inter-molecular structure and the conformational properties by studying the effect due to DBr using small angle neutron scattering (SANS) and integral equation theory. While the overall molecular size is found to be essentially unaffected by the change in the pD of solutions, it is surprising that the intra-molecular configurational transformation is not observed when DBr is used. The overall effective charge of a dendrimer is nearly the same for 1, the effect of counterion identity becomes significant, the effective charge carried by a charged G5 PAPAM protonated by DBr becomes smaller than that of solutions with DCl. As a consequence, a counterion identity dependence of counterion association is revealed: Under the same level of molecular protonation, the specific counterion association, which is defined as the ratio of bound chloride anions to positively charged amines per molecule, is larger for the G5 PAMAM dendrimer charged by DBr than the one by DCl.

  4. Modelling Hyperboloid Sound Scattering

    DEFF Research Database (Denmark)

    Burry, Jane; Davis, Daniel; Peters, Brady

    2011-01-01

    The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...... both physical and digital models at three distinct scales. The results suggest hyperboloid geometry, while difficult to fabricate, facilitates sound scattering....

  5. Noninvasive identification of subcellular organization and nuclear morphology features associated with leukemic cells using light-scattering spectroscopy

    Science.gov (United States)

    Hsiao, Austin; Hunter, Martin; Greiner, Cherry; Gupta, Sharad; Georgakoudi, Irene

    2011-03-01

    Leukemia is the most common and deadly cancer among children and one of the most prevalent cancers among adults. Improvements in its diagnosis and monitoring of leukemic patients could have a significant impact in their long-term treatment. We demonstrate that light-scattering spectroscopy (LSS)-based approaches could serve as a tool to achieve this goal. Specifically, we characterize the light scattering properties of leukemic (NALM-6) cells and compare them to those of normal lymphocytes and granulocytes in the 440-710 nm range, over +/-4 deg about the exact backscattering direction. We find that the LSS spectra are well described by an inverse power-law wavelength dependence, with a power exponent insensitive to the scattering angle but significantly higher for leukemic cells than for normal leukocytes. This is consistent with differences in the subcellular morphology of these cells, detected in differential interference contrast images. Furthermore, the residual light-scattering signal, extracted after subtracting the inverse power-law fit from the data, can be analyzed assuming a Gaussian distribution of spherical scatterers using Mie theory. This analysis yields scatterer sizes that are consistent with the diameters of cell nuclei and allows the detection of the larger nuclei of NALM-6 cells compared to those of lymphocytes and granulocytes.

  6. JNK-associated scattered growth of YD-10B oral squamous carcinoma cells while maintaining the epithelial phenotype

    International Nuclear Information System (INIS)

    Lee, Gayoung; Kim, Hyun-Man

    2017-01-01

    Cell scattering of epithelial carcinoma cancer cells is one of the critical event in tumorigenesis. Cells losing epithelial cohesion detach from aggregated epithelial cell masses and may migrate to fatal organs through metastasis. The present study investigated the molecular mechanism by which squamous cell carcinoma cells grow scattered at the early phase of transformation while maintaining the epithelial phenotype. We studied YD-10B cells, which are established from human oral squamous cell carcinoma, because the cells grow scattered without the development of E-cadherin junctions (ECJs) under routine culture conditions despite the high expression of functional E-cadherin. The functionality of their E-cadherin was demonstrated in that YD-10B cells developed ECJs, transiently or persistently, when they were cultured on substrates coated with a low amount of fibronectin or to confluence. The phosphorylation of JNK was up-regulated in YD-10B cells compared with that in human normal oral keratinocyte cells or human squamous cell carcinoma cells, which grew aggregated along with well-organized ECJs. The suppression of JNK activity induced the aggregated growth of YD-10B cells concomitant with the development of ECJs. These results indicate for the first time that inherently up-regulated JNK activity induces the scattered growth of the oral squamous cell carcinoma cells through down-regulating the development of ECJ despite the expression of functional E-cadherin, a hallmark of the epithelial phenotype. - Highlights: • JNK dissociates YD-10B oral squamous cell carcinoma cells. • JNK suppresses the development of E-cadherin junctions of oral carcinoma cells. • Suppression of JNK activity reverses the scattered growth of oral carcinoma cells.

  7. Quasiresonant scattering

    International Nuclear Information System (INIS)

    Hategan, Cornel; Comisel, Horia; Ionescu, Remus A.

    2004-01-01

    The quasiresonant scattering consists from a single channel resonance coupled by direct interaction transitions to some competing reaction channels. A description of quasiresonant Scattering, in terms of generalized reduced K-, R- and S- Matrix, is developed in this work. The quasiresonance's decay width is, due to channels coupling, smaller than the width of the ancestral single channel resonance (resonance's direct compression). (author)

  8. Thomson Scattering

    NARCIS (Netherlands)

    Donne, A. J. H.

    1994-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is

  9. Production of associated $\\Upsilon$ and open charm hadrons in $pp$ collisions at $\\sqrt{s}=7$ and $8$ TeV via double parton scattering

    CERN Document Server

    Aaij, Roel; Adeva, Bernardo; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefkova, Slavorima; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zucchelli, Stefano

    2016-07-11

    Associated production of bottomonia and open charm hadrons in $pp$ collisions at $\\sqrt{s}=7$ and $8$TeV is observed using data corresponding to an integrated luminosity of 3$fb^{-1}$ accumulated with the LHCb detector. The observation of five combinations, $\\Upsilon(1S)D^0$, $\\Upsilon(2S)D^0$, $\\Upsilon(1S)D^+$, $\\Upsilon(2S)D^+$ and $\\Upsilon(1S)D^+_{s}$, is reported. Production cross-sections are measured for $\\Upsilon(1S)D^0$ and $\\Upsilon(1S)D^+$ pairs in the forward region. The measured cross-sections and the differential distributions indicate the dominance of double parton scattering as the main production mechanism. This allows a precise measurement of the effective cross-section for double parton scattering.

  10. Scattering theory

    International Nuclear Information System (INIS)

    Sitenko, A.

    1991-01-01

    This book emerged out of graduate lectures given by the author at the University of Kiev and is intended as a graduate text. The fundamentals of non-relativistic quantum scattering theory are covered, including some topics, such as the phase-function formalism, separable potentials, and inverse scattering, which are not always coverded in textbooks on scattering theory. Criticisms of the text are minor, but the reviewer feels an inadequate index is provided and the citing of references in the Russian language is a hindrance in a graduate text

  11. Critical scattering

    International Nuclear Information System (INIS)

    Stirling, W.G.; Perry, S.C.

    1996-01-01

    We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO 3 is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs

  12. Hypofractionated passively scattered proton radiotherapy for low- and intermediate-risk prostate cancer is not associated with post-treatment testosterone suppression

    Energy Technology Data Exchange (ETDEWEB)

    Kil, Whoon Jong; Nichols, Romaine C. Jr. [Dept. of Radiation Oncology, Univ. of Florida, Gainesville (United States); Univ. of Florida Proton Therapy Inst., Jacksonville (United States)], e-mail: rnichols@floridaproton.org; And others

    2013-04-15

    Background: To investigate post-treatment changes in serum testosterone in low- and intermediate-risk prostate cancer patients treated with hypofractionated passively scattered proton radiotherapy. Material and methods: Between April 2008 and October 2011, 228 patients with low- and intermediate-risk prostate cancer were enrolled into an institutional review board-approved prospective protocol. Patients received doses ranging from 70 Cobalt Gray Equivalent (CGE) to 72.5 CGE at 2.5 CGE per fraction using passively scattered protons. Three patients were excluded for receiving androgen deprivation therapy (n = 2) or testosterone supplementation (n = 1) before radiation. Of the remaining 226 patients, pretreatment serum testosterone levels were available for 217. Of these patients, post-treatment serum testosterone levels were available for 207 in the final week of treatment, 165 at the six-month follow-up, and 116 at the 12-month follow-up. The post-treatment testosterone levels were compared with the pretreatment levels using Wilcoxon's signed-rank test for matched pairs. Results: The median pretreatment serum testosterone level was 367.7 ng/dl (12.8 nmol/l). The median changes in post-treatment testosterone value were as follows: +3.0 ng/dl (+0.1 nmol/l) at treatment completion; +6.0 ng/dl (+0.2 nmol/l) at six months after treatment; and +5.0 ng/dl (0.2 nmol/l) at 12 months after treatment. None of these changes were statistically significant. Conclusion: Patients with low- and intermediate-risk prostate cancer treated with hypofractionated passively scattered proton radiotherapy do not experience testosterone suppression. Our findings are consistent with physical measurements demonstrating that proton radiotherapy is associated with less scatter radiation exposure to tissues beyond the beam paths compared with intensity-modulated photon radiotherapy.

  13. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  14. Compton scattering

    International Nuclear Information System (INIS)

    Botto, D.J.; Pratt, R.H.

    1979-05-01

    The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A -2 based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required

  15. Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Botto, D.J.; Pratt, R.H.

    1979-05-01

    The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A/sup -2/ based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required.

  16. Crystallization of the Membrane-Associated Annexin B1: Roles of Additive Screen, Dynamic Light Scattering, and Bioactivity Assay

    Energy Technology Data Exchange (ETDEWEB)

    Ding, F.; Xu, Y; Azzi, A; Zhu, D; Rehse, D; Chen, C; Sun, S; Lin, S

    2010-01-01

    Annexin B1 (AnxB1) is a calcium-dependent phospholipid binding protein from Taenia solium cysticercus and has been reported to possess anticoagulant activity, to inhibit phospholipase A{sub 2}, and to regulate membrane transport. Native AnxB1 and its selenomethionyl derivative have been overproduced in Escherichia coli and purified. The results of dynamic light scattering analysis showed that Hepes buffer combined with low concentration salts (NaCl or CaCl{sub 2}) was beneficial for preventing aggregation and for AnxB1 stabilization in the storage. After the additive screen, crystals have been yielded in the presence of guanidine hydrochloride (Gn-HCl). We determined that a low concentration of Gn-HCl significantly delayed clotting time and increased anticoagulant activity. Analysis of the crystal showed that in the presence of Gn-HCl, AnxB1 crystallizes in orthorhombic space group, which is modified from the cubic space group for crystals grown in the absence of Gn-HCl. A high quality data set (at 1.9 {angstrom}) has been collected successfully for crystals of L-selenomethionine labeled protein in the presence of Gn-HCl, to solve the structure with the single anomalous dispersion method (SAD). The unit cell parameters are a = 102.35 {angstrom}, b = 103.59 {angstrom}, c = 114.60 {angstrom}, {alpha} = {beta} = {gamma} = 90.00{sup o}.

  17. Micellar Surfactant Association in the Presence of a Glucoside-based Amphiphile Detected via High-Throughput Small Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stanic, Vesna [Brazilian Synchrotron Light Source, Campinas (Brazil); Broadbent, Charlotte [Columbia Univ., New York, NY (United States). Engineering Dept.; DiMasi, Elaine [Brookhaven National Lab. (BNL), Upton, NY (United States). Photon Sciences Division; Galleguillos, Ramiro [Lubrizol Advanced Materials, Cleveland, OH (United States); Woodward, Valerie [Lubrizol Advanced Materials, Cleveland, OH (United States)

    2016-11-14

    The interactions of mixtures of anionic and amphoteric surfactants with sugar amphiphiles were studied via high throughput small angle x-ray scattering (SAXS). The sugar amphiphile was composed of Caprate, Caprylate, and Oleate mixed ester of methyl glucoside, MeGCCO. Optimal surfactant interactions are sought which have desirable physical properties, which must be identified in a cost effective manner that can access the large phase space of possible molecular combinations. X-ray scattering patterns obtained via high throughput SAXS can probe a combinatorial sample space and reveal the incorporation of MeGCCO into the micelles and the molecular associations between surfactant molecules. Such data make it possible to efficiently assess the effects of the new amphiphiles in the formulation. A specific finding of this study is that formulations containing comparatively monodisperse and homogeneous surfactant mixtures can be reliably tuned by addition of NaCl, which swells the surfactant micelles with a monotonic dependence on salt concentration. In contrast, the presence of multiple different surfactants destroys clear correlations with NaCl concentration, even in otherwise similar series of formulations.

  18. Study on the interaction between three benzimidazole anthelmintics and eosin Y by high performance liquid chromatography associating with resonance light scattering and its application.

    Science.gov (United States)

    Pan, Ziyu; Peng, Jingdong; Zang, Xu; Lei, Gang; He, Yan; Liu, Di

    2016-07-01

    A novel, highly selective, and sensitive resonance light scattering (RLS) detection approach coupled with high performance liquid chromatography (HPLC) was researched and developed for the synchronous analysis of three kinds of benzimidazole anthelmintics, including mebendazole (MBZ), albendazole (ABZ), and fenbendazole (FBZ) for the first time. In the pH range of 3.5-3.7 Britton-Robinson buffer medium, three kinds of anthelmintics, which were separated by HPLC, reacted with eosin Y (EY) to form 1:1 ion-association complexes, resulting in significantly enhanced RLS signals and the maximum peak located at 335 nm. The enhanced RLS intensity was in proportion to the MBZ, ABZ, and FBZ concentration in the range 0.2-25, 0.2-23, and 0.15-20 μg/mL, respectively. The limit of detection was in the range of 0.064-0.16 μg/mL. In addition, human urine was determined to validate the proposed method by spiked samples and real urine samples. Satisfactory results were obtained by HPLC-RLS method. Graphical Abstract The diagram mechanism of generating resonance between emitted light and scattered light.

  19. Elastic scattering

    International Nuclear Information System (INIS)

    Leader, Elliot

    1991-01-01

    With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees

  20. Neutron scattering

    International Nuclear Information System (INIS)

    1991-02-01

    The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research

  1. Scattering theory

    CERN Document Server

    Friedrich, Harald

    2016-01-01

    This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...

  2. Document notion and the image file appropriation in the contemporary documentary essay A noção de documento e a apropriação de imagens de arquivo no documentário ensaístico contemporâneo

    Directory of Open Access Journals (Sweden)

    Consuelo da Luz Lins

    2011-07-01

    Full Text Available The existing image appropration – in different audiovisual productions – is intensified and diversified. This article briefly recaptures ideas and authors already developed before in order to attain more specifically to the discussion of a fundamental notion of document, that allows us to approach th gestures of some New History historians to the modus operandi of certain cinema essayists: Harun Farocki (Arbeiter verlassen die Fabrik, Susana de Sousa Dias (48 e Eryk Rocha (Rocha que voa.A apropriação de imagens já existentes em diferentes produções audiovisuais se intensifica e se diversifica. Esse artigo retoma brevemente idéias e autores já trabalhados anteriormente para se ater mais longamente à discussão de uma noção fundamental para pensarmos a retomada de imagens de arquivo: a noção de documento, que nos permite aproximar o gesto de alguns historiadores da nova história ao modus operandi de certos ensaístas do cinema: Harun Farocki (Operários ao sair da fábrica, Susana de Sousa Dias (48 e Eryk Rocha (Rocha que voa.

  3. Diffractive scattering

    CERN Document Server

    De Wolf, E.A.

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken-x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wusthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed.

  4. Diffractive Scattering

    International Nuclear Information System (INIS)

    Wolf, E.A. de

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken - x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wuesthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed. (author)

  5. Second-order multiple-scattering theory associated with backscattering enhancement for a millimeter wavelength weather radar with a finite beam width

    Science.gov (United States)

    Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood

    2005-01-01

    Effects of multiple scattering on reflectivity are studied for millimeter wavelength weather radars. A time-independent vector theory, including up to second-order scattering, is derived for a single layer of hydrometeors of a uniform density and a uniform diameter. In this theory, spherical waves with a Gaussian antenna pattern are used to calculate ladder and cross terms in the analytical scattering theory. The former terms represent the conventional multiple scattering, while the latter terms cause backscattering enhancement in both the copolarized and cross-polarized components. As the optical thickness of the hydrometeor layer increases, the differences from the conventional plane wave theory become more significant, and essentially, the reflectivity of multiple scattering depends on the ratio of mean free path to radar footprint radius. These results must be taken into account when analyzing radar reflectivity for use in remote sensing.

  6. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  7. Semiclassical scattering theory

    International Nuclear Information System (INIS)

    Di Salvo, A.

    1985-01-01

    It is intended to write the semiclassical scattering amplitude as a sum of terms, each of them being associated to trajectory. First of all the classical equations of motion are studied, considering both the analytical (real and complex) solutions and a certain type of singular solutions, which behave similary to the difracted rays in optics; in particular, in the case of a central nuclear potential, classical effects like rainbow and orbiting and also wave effects like diffraction and direct reflection are singled out. Successively, considering the Debye expansion of the scattering amplitude relative to a central nuclear potential, and evaluating asymptotically each term by means of the saddle point technique, the decay exponents and difraction coefficients relative to such a potential are determined

  8. Magnetic diffuse scattering

    International Nuclear Information System (INIS)

    Cable, J.W.

    1987-01-01

    The diffuse scattering of neutrons from magnetic materials provides unique and important information regarding the spatial correlations of the atoms and the spins. Such measurements have been extensively applied to magnetically ordered systems, such as the ferromagnetic binary alloys, for which the observed correlations describe the magnetic moment fluctuations associated with local environment effects. With the advent of polarization analysis, these techniques are increasingly being applied to study disordered paramagnetic systems such as the spin-glasses and the diluted magnetic semiconductors. The spin-pair correlations obtained are essential in understanding the exchange interactions of such systems. In this paper, we describe recent neutron diffuse scattering results on the atom-pair and spin-pair correlations in some of these disordered magnetic systems. 56 refs

  9. Bidirectional optical scattering facility

    Data.gov (United States)

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...

  10. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  11. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2013-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  12. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  13. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  14. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  15. Cooperative scattering of scalar waves by optimized configurations of point scatterers

    Science.gov (United States)

    Schäfer, Frank; Eckert, Felix; Wellens, Thomas

    2017-12-01

    We investigate multiple scattering of scalar waves by an ensemble of N resonant point scatterers in three dimensions. For up to N = 21 scatterers, we numerically optimize the positions of the individual scatterers, to maximize the total scattering cross section for an incoming plane wave, on the one hand, and to minimize the decay rate associated to a long-lived scattering resonance, on the other. In both cases, the optimum is achieved by configurations where all scatterers are placed on a line parallel to the direction of the incoming plane wave. The associated maximal scattering cross section increases quadratically with the number of scatterers for large N, whereas the minimal decay rate—which is realized by configurations that are not the same as those that maximize the scattering cross section—decreases exponentially as a function of N. Finally, we also analyze the stability of our optimized configurations with respect to small random displacements of the scatterers. These results demonstrate that optimized configurations of scatterers bear a considerable potential for applications such as quantum memories or mirrors consisting of only a few atoms.

  16. Newtonian versus black-hole scattering

    International Nuclear Information System (INIS)

    Siopsis, G.

    1999-01-01

    We discuss non-relativistic scattering by a Newtonian potential. We show that the gray-body factors associated with scattering by a black hole exhibit the same functional dependence as scattering amplitudes in the Newtonian limit, which should be the weak-field limit of any quantum theory of gravity. This behavior arises independently of the presence of supersymmetry. The connection to two-dimensional conformal field theory is also discussed. copyright 1999 The American Physical Society

  17. Ensa, a nuclear enterprise in a changing market

    International Nuclear Information System (INIS)

    Ruiz, J.L.

    1997-01-01

    Since it was set up in 1973, the bussines activities of Equipos Nucleares have adapted to Spanish and international market demands. This article describes its history, its resources, it work and its future prospects centering around the nuclear product, both in component manufacturing and in maintenance services. (Author)

  18. Scattering and multiple scattering in disordered materials

    International Nuclear Information System (INIS)

    Weaver, R.L.; Butler, W.H.

    1992-01-01

    The papers in this section were presented at a joint session of symposium V on Applications of Multiple Scattering Theory and of Symposium P on Disordered Systems. They show that the ideas of scattering theory can help us to understand a very broad class of phenomena

  19. Structural phase transitions and Huang scattering

    International Nuclear Information System (INIS)

    Yamada, Yasusada

    1980-01-01

    The usefulness of the application of the concept of Huang scattering to the understandings of the origin of diffuse scatterings near structural phase transitions are discussed. It is pointed out that in several phase transitions, the observed diffuse scatterings can not be interpreted in terms of critical fluctuations of the order parameters associated with the structural phase transitions, and that they are rather interpreted as Huang scattering due to random distribution of individual order parameter which is 'dressed' by strain fields. Examples to show effective applications of this concept to analyze the experimental X-ray data and whence to understand microscopic mechanisms of structural phase transitions are presented. (author)

  20. Scattering Amplitudes from Intersection Theory.

    Science.gov (United States)

    Mizera, Sebastian

    2018-04-06

    We use Picard-Lefschetz theory to prove a new formula for intersection numbers of twisted cocycles associated with a given arrangement of hyperplanes. In a special case when this arrangement produces the moduli space of punctured Riemann spheres, intersection numbers become tree-level scattering amplitudes of quantum field theories in the Cachazo-He-Yuan formulation.

  1. Neutron scattering from fractals

    DEFF Research Database (Denmark)

    Kjems, Jørgen; Freltoft, T.; Richter, D.

    1986-01-01

    The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...

  2. Scatter from optical components

    International Nuclear Information System (INIS)

    Stover, J.C.

    1989-01-01

    This book is covered under the following topics: measurement and analysis techniques; BRDF standards, comparisons, and anomalies; scatter measurement of several materials; scatter from contaminations; and optical system contamination: effects, measurement, and control

  3. Electron scattering from tetrahydrofuran

    International Nuclear Information System (INIS)

    Fuss, M C; Sanz, A G; García, G; Muñoz, A; Oller, J C; Blanco, F; Do, T P T; Brunger, M J; Almeida, D; Limão-Vieira, P

    2012-01-01

    Electron scattering from Tetrahydrofuran (C 4 H 8 O) was investigated over a wide range of energies. Following a mixed experimental and theoretical approach, total scattering, elastic scattering and ionization cross sections as well as electron energy loss distributions were obtained.

  4. Neutron-proton scattering

    International Nuclear Information System (INIS)

    Doll, P.

    1990-02-01

    Neutron-proton scattering as fundamental interaction process below and above hundred MeV is discussed. Quark model inspired interactions and phenomenological potential models are described. The seminar also indicates the experimental improvements for achieving new precise scattering data. Concluding remarks indicate the relevance of nucleon-nucleon scattering results to finite nuclei. (orig.) [de

  5. Neutron Scattering Software

    Science.gov (United States)

    Home Page | Facilities | Reference | Software | Conferences | Announcements | Mailing Lists Neutron Scattering Banner Neutron Scattering Software A new portal for neutron scattering has just been established sets KUPLOT: data plotting and fitting software ILL/TAS: Matlab probrams for analyzing triple axis data

  6. Magnetic photon scattering

    International Nuclear Information System (INIS)

    Lovesey, S.W.

    1987-05-01

    The report reviews, at an introductory level, the theory of photon scattering from condensed matter. Magnetic scattering, which arises from first-order relativistic corrections to the Thomson scattering amplitude, is treated in detail and related to the corresponding interaction in the magnetic neutron diffraction amplitude. (author)

  7. Polarized Neutron Scattering

    OpenAIRE

    Roessli, B.; Böni, P.

    2000-01-01

    The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.

  8. Wigner representation in scattering problems

    International Nuclear Information System (INIS)

    Remler, E.A.

    1975-01-01

    The basic equations of quantum scattering are translated into the Wigner representation. This puts quantum mechanics in the form of a stochastic process in phase space. Instead of complex valued wavefunctions and transition matrices, one now works with real-valued probability distributions and source functions, objects more responsive to physical intuition. Aside from writing out certain necessary basic expressions, the main purpose is to develop and stress the interpretive picture associated with this representation and to derive results used in applications published elsewhere. The quasiclassical guise assumed by the formalism lends itself particularly to approximations of complex multiparticle scattering problems is laid. The foundation for a systematic application of statistical approximations to such problems. The form of the integral equation for scattering as well as its mulitple scattering expansion in this representation are derived. Since this formalism remains unchanged upon taking the classical limit, these results also constitute a general treatment of classical multiparticle collision theory. Quantum corrections to classical propogators are discussed briefly. The basic approximation used in the Monte Carlo method is derived in a fashion that allows for future refinement and includes bound state production. The close connection that must exist between inclusive production of a bound state and of its constituents is brought out in an especially graphic way by this formalism. In particular one can see how comparisons between such cross sections yield direct physical insight into relevant production mechanisms. A simple illustration of scattering by a bound two-body system is treated. Simple expressions for single- and double-scattering contributions to total and differential cross sections, as well as for all necessary shadow corrections thereto, are obtained and compared to previous results of Glauber and Goldberger

  9. Scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Schweizer, J.

    2007-01-01

    In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)

  10. Neutron scattering and magnetism

    International Nuclear Information System (INIS)

    Mackintosh, A.R.

    1983-01-01

    Those properties of the neutron which make it a unique tool for the study of magnetism are described. The scattering of neutrons by magnetic solids is briefly reviewed, with emphasis on the information on the magnetic structure and dynamics which is inherent in the scattering cross-section. The contribution of neutron scattering to our understanding of magnetic ordering, excitations and phase transitions is illustrated by experimental results on a variety of magnetic crystals. (author)

  11. Stationary theory of scattering

    International Nuclear Information System (INIS)

    Kato, T.

    1977-01-01

    A variant of the stationary methods is described, and it is shown that it is useful in a wide range of problems, including scattering, by long-range potentials, two-space scattering, and multichannel scattering. The method is based on the notion of spectral forms. The paper is restricted to the simplest case of continuous spectral forms defined on a Banach space embedded in the basic Hilbert space. (P.D.)

  12. Introduction to neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.

  13. Scattering from black holes

    International Nuclear Information System (INIS)

    Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.

    1987-01-01

    This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging

  14. Quantum theory of scattering

    CERN Document Server

    Wu Ta You

    1962-01-01

    This volume addresses the broad formal aspects and applications of the quantum theory of scattering in atomic and nuclear collisions. An encyclopedic source of pioneering work, it serves as a text for students and a reference for professionals in the fields of chemistry, physics, and astrophysics. The self-contained treatment begins with the general theory of scattering of a particle by a central field. Subsequent chapters explore particle scattering by a non-central field, collisions between composite particles, the time-dependent theory of scattering, and nuclear reactions. An examinati

  15. Cross plane scattering correction

    International Nuclear Information System (INIS)

    Shao, L.; Karp, J.S.

    1990-01-01

    Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution

  16. Neutron scattering science in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Robert [Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia)

    1999-10-01

    Neutron scattering science in Australia is making an impact on a number of fields in the scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a wide range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans are in progress to replace the present research reactor with a modern multi-purpose research reactor to offer the most advanced neutron scattering facilities. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. (author)

  17. Neutron scattering science in Australia

    International Nuclear Information System (INIS)

    Knott, Robert

    1999-01-01

    Neutron scattering science in Australia is making an impact on a number of fields in the scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a wide range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans are in progress to replace the present research reactor with a modern multi-purpose research reactor to offer the most advanced neutron scattering facilities. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. (author)

  18. Scattering of high energy electrons on deuteron

    International Nuclear Information System (INIS)

    Grossetete, B.

    1964-12-01

    The aim of this work is to obtain information on the neutron form factor from the study of the scattering of electrons on deuterium. The first part is dedicated to the theoretical study of the elastic and inelastic scattering. We introduce different form factors: Sachs form factor, the Pauli and Dirac form factors, they appear in the analytic expression of the scattering cross-section. We show how the deuteron form factors can be deduced from neutron's and proton's form factors. In the case of the inelastic scattering we show how the cross section can be broken into components associated to partial waves and we obtain different formulas for the inelastic cross-section based on the Breit formula or the Durand formalism. The second part is dedicated to the experiment setting of electron scattering on deuterium. The elastic scattering experiment has been made on solid or liquid CD 2 targets while inelastic scattering has been studied on a liquid target. We have used an electron beam produced by the Orsay linear accelerator and the scattered electrons have been analysed by a magnetic spectrometer and a Cerenkov detector. The results give a very low value (slightly positive)for the charge form factor of the neutron and a magnetic form factor for the neutron slightly below that of the proton [fr

  19. Sum rules in classical scattering

    International Nuclear Information System (INIS)

    Bolle, D.; Osborn, T.A.

    1981-01-01

    This paper derives sum rules associated with the classical scattering of two particles. These sum rules are the analogs of Levinson's theorem in quantum mechanics which provides a relationship between the number of bound-state wavefunctions and the energy integral of the time delay of the scattering process. The associated classical relation is an identity involving classical time delay and an integral over the classical bound-state density. We show that equalities between the Nth-order energy moment of the classical time delay and the Nth-order energy moment of the classical bound-state density hold in both a local and a global form. Local sum rules involve the time delay defined on a finite but otherwise arbitrary coordinate space volume S and the bound-state density associated with this same region. Global sum rules are those that obtain when S is the whole coordinate space. Both the local and global sum rules are derived for potentials of arbitrary shape and for scattering in any space dimension. Finally the set of classical sum rules, together with the known quantum mechanical analogs, are shown to provide a unified method of obtaining the high-temperature expansion of the classical, respectively the quantum-mechanical, virial coefficients

  20. Small angle X-ray scattering-based elucidation of the self-association mechanism of human insulin analogue lys(B29)(N(e)¿-carboxyheptadecanoyl) des(B30)

    DEFF Research Database (Denmark)

    Jensen, Malene Hillerup; Wahlund, Per-Olof; Toft, Katrine Nørgaard

    2013-01-01

    of biophysical and structural methods (field flow fractionation, dynamic and multiangle light scattering, circular dichroism, size exclusion chromatography, and crystallography), we propose a mechanism for the self-association expected to occur upon subcutaneous injection of this insulin analogue. SAXS data...... provide evidence of the in solution structure of the self-associated oligomer, which is a long straight rod composed of "tense" state insulin hexamers (T(6)-hexamers) as the smallest repeating unit. The smallest oligomer building block in the process is a T(6)T(6)-dihexamer. This tense dihexamer is formed...... by the allosteric change of the initial equilibrium between a proposed "relaxed" state R(6)-hexamer and an R(3)T(3)T(3)R(3)-dihexamer. The allosteric change from relaxed to tense is triggered by removal of phenol, mimicking subcutaneous injection. The data hence provide the first unequivocal evidence...

  1. Pion-pion scattering

    International Nuclear Information System (INIS)

    Kuehnelt, H.

    1975-01-01

    We discuss a few properties of scattering amplitudes proved within the framework of the field theory and their significance in the derivation of quantitative statements. The state of the boundaries for the scattering lengths is to be especially discussed as well as the question as to how far it is possible to exclude various solutions from phase displacement analyses. (orig./LH) [de

  2. Incoherent Thomson scattering

    NARCIS (Netherlands)

    Donne, A. J. H.

    1996-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wave vector is much larger than the plasma Debye length, the total scattered power is

  3. Concentric layered Hermite scatterers

    Science.gov (United States)

    Astheimer, Jeffrey P.; Parker, Kevin J.

    2018-05-01

    The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.

  4. Introductory theory of neutron scattering

    International Nuclear Information System (INIS)

    Gunn, J.M.F.

    1986-12-01

    The paper comprises a set of six lecture notes which were delivered to the summer school on 'Neutron Scattering at a pulsed source', Rutherford Laboratory, United Kingdom, 1986. The lectures concern the physical principles of neutron scattering. The topics of the lectures include: diffraction, incoherent inelastic scattering, connection with the Schroedinger equation, magnetic scattering, coherent inelastic scattering, and surfaces and neutron optics. (UK)

  5. Diffuse scattering of neutrons

    International Nuclear Information System (INIS)

    Novion, C.H. de.

    1981-02-01

    The use of neutron scattering to study atomic disorder in metals and alloys is described. The diffuse elastic scattering of neutrons by a perfect crystal lattice leads to a diffraction spectrum with only Bragg spreads. the existence of disorder in the crystal results in intensity and position modifications to these spreads, and above all, to the appearance of a low intensity scatter between Bragg peaks. The elastic scattering of neutrons is treated in this text, i.e. by measuring the number of scattered neutrons having the same energy as the incident neutrons. Such measurements yield information on the static disorder in the crystal and time average fluctuations in composition and atomic displacements [fr

  6. Inelastic Light Scattering Processes

    Science.gov (United States)

    Fouche, Daniel G.; Chang, Richard K.

    1973-01-01

    Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.

  7. Resonance Rayleigh Scattering Spectra of an Ion-Association Complex of Naphthol Green B–Chitosan System and Its Application in the Highly Sensitive Determination of Chitosan

    Directory of Open Access Journals (Sweden)

    Weiai Zhang

    2016-04-01

    Full Text Available This work describes a highly-sensitive and accurate approach for the determination of chitosan (CTS using Naphthol Green B (NGB as a probe in the Resonance Rayleigh scattering (RRS method. The interaction between CTS and NGB leads to notable enhancement of RRS, and the enhancement is proportional to the concentration of CTS over a certain range. Under optimum conditions, the calibration curve of ΔI against CTS concentration was ΔI = 1860.5c + 86.125 (c, µg/mL, R2 = 0.9999, and the linear range and detection limit (DL were 0.01–5.5 µg/mL and 8.87 ng/mL. Moreover, the effect of the molecular weight of CTS on the accurate quantification of CTS was studied. The experimental data were analyzed through linear regression analysis using SPSS20.0, and the molecular weight was found to have no statistical significance. This method has been applied to assay two CTS samples and obtained good recovery and reproducibility.

  8. Light scattering studies at UNICAMP

    International Nuclear Information System (INIS)

    Luzzi, R.; Cerdeira, H.A.; Salzberg, J.; Vasconcellos, A.R.; Frota Pessoa, S.; Reis, F.G. dos; Ferrari, C.A.; Algarte, C.A.S.; Tenan, M.A.

    1975-01-01

    Current theoretical studies on light scattering spectroscopy at UNICAMP is presented briefly, such as: inelastic scattering of radiation from a solid state plasma; resonant Ramman scattering; high excitation effects; saturated semiconductors and glasses

  9. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    . In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus......We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering...

  10. Scattering on magnetic monopoles

    International Nuclear Information System (INIS)

    Petry, H.R.

    1980-01-01

    The time-dependent scattering theory of charged particles on magnetic monopoles is investigated within a mathematical frame-work, which duely pays attention to the fact that the wavefunctions of the scattered particles are sections in a non-trivial complex line-bundle. It is found that Moeller operators have to be defined in a way which takes into account the peculiar long-range behaviour of the monopole field. Formulas for the scattering matrix and the differential cross-section are derived, and, as a by-product, a momentum space picture for particles, which are described by sections in the underlying complex line-bundle, is presented. (orig.)

  11. Deep inelastic neutron scattering

    International Nuclear Information System (INIS)

    Mayers, J.

    1989-03-01

    The report is based on an invited talk given at a conference on ''Neutron Scattering at ISIS: Recent Highlights in Condensed Matter Research'', which was held in Rome, 1988, and is intended as an introduction to the techniques of Deep Inelastic Neutron Scattering. The subject is discussed under the following topic headings:- the impulse approximation I.A., scaling behaviour, kinematical consequences of energy and momentum conservation, examples of measurements, derivation of the I.A., the I.A. in a harmonic system, and validity of the I.A. in neutron scattering. (U.K.)

  12. Transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton and a resulting model-dependent constraint on the total angular momentum of quarks in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zhenyu

    2007-02-15

    In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)

  13. Transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton and a resulting model-dependent constraint on the total angular momentum of quarks in the nucleon

    International Nuclear Information System (INIS)

    Ye, Zhenyu

    2007-02-01

    In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)

  14. Electron scattering from pyrimidine

    International Nuclear Information System (INIS)

    Colmenares, Rafael; Fuss, Martina C; García, Gustavo; Oller, Juan C; Muñoz, Antonio; Blanco, Francisco; Almeida, Diogo; Limão-Vieira, Paulo

    2014-01-01

    Electron scattering from pyrimidine (C 4 H 4 N 2 ) was investigated over a wide range of energies. Following different experimental and theoretical approaches, total, elastic and ionization cross sections as well as electron energy loss distributions were obtained.

  15. Gravitational Bhabha scattering

    International Nuclear Information System (INIS)

    Santos, A F; Khanna, Faqir C

    2017-01-01

    Gravitoelectromagnetism (GEM) as a theory for gravity has been developed similar to the electromagnetic field theory. A weak field approximation of Einstein theory of relativity is similar to GEM. This theory has been quantized. Traditional Bhabha scattering, electron–positron scattering, is based on quantized electrodynamics theory. Usually the amplitude is written in terms of one photon exchange process. With the development of quantized GEM theory, the scattering amplitude will have an additional component based on an exchange of one graviton at the lowest order of perturbation theory. An analysis will provide the relative importance of the two amplitudes for Bhabha scattering. This will allow an analysis of the relative importance of the two amplitudes as the energy of the exchanged particles increases. (paper)

  16. Applied electromagnetic scattering theory

    CERN Document Server

    Osipov, Andrey A

    2017-01-01

    Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...

  17. Scattering by bound nucleons

    International Nuclear Information System (INIS)

    Tezuka, Hirokazu.

    1984-10-01

    Scattering of a particle by bound nucleons is discussed. Effects of nucleons that are bound in a nucleus are taken as a structure function. The way how to calculate the structure function is given. (author)

  18. LIDAR Thomson scattering

    International Nuclear Information System (INIS)

    1991-07-01

    This collection contains 21 papers on the application and development of LIDAR (Light Detection and Ranging) Thomson scattering techniques for the determination of spatially resolved electron temperature and density in magnetic confinement experiments, particularly tokamaks. Refs, figs and tabs

  19. Magnetic electron scattering

    International Nuclear Information System (INIS)

    Peterson, G.A.

    1989-01-01

    We briefly review some of the motivations, early results, and techniques of magnetic elastic and inelastic electron-nucleus scattering. We then discuss recent results, especially those acquired at high momentum transfers. 50 refs., 19 figs

  20. Deep inelastic lepton scattering

    International Nuclear Information System (INIS)

    Nachtmann, O.

    1977-01-01

    Deep inelastic electron (muon) nucleon and neutrino nucleon scattering as well as electron positron annihilation into hadrons are reviewed from a theoretical point of view. The emphasis is placed on comparisons of quantum chromodynamics with the data. (orig.) [de

  1. Small angle neutron scattering

    International Nuclear Information System (INIS)

    Bernardini, G.; Cherubini, G.; Fioravanti, A.; Olivi, A.

    1976-09-01

    A method for the analysis of the data derived from neutron small angle scattering measurements has been accomplished in the case of homogeneous particles, starting from the basic theory without making any assumption on the form of particle size distribution function. The experimental scattering curves are interpreted with the aid the computer by means of a proper routine. The parameters obtained are compared with the corresponding ones derived from observations at the transmission electron microscope

  2. Pp scattering at SIN

    International Nuclear Information System (INIS)

    Aprile-Giboni, E.; Cantale, G.; Hausammann, R.

    1983-01-01

    Using the PM1 polarized proton beam at SIN and a polarized target, the elastic pp scattering as well as the inelastic channel pp → π + d have been studied between 400 and 600 MeV. For the elastic reaction, a sufficient number of spin dependent parameters has been measured in order to do a direct reconstruction of the scattering matrix between 38 0 /sub cm/ and 90 0 /sub cm/. 10 references, 6 figures

  3. Modeling small angle scattering data using FISH

    International Nuclear Information System (INIS)

    Elliott, T.; Buckely, C.E.

    2002-01-01

    Full text: Small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) are important techniques for the characterisation of samples on the nanometer scale. From the scattered intensity pattern information about the sample such as particle size distribution, concentration and particle interaction can be determined. Since the experimental data is in reciprocal space and information is needed about real space, modeling of the scattering data to obtain parameters is extremely important and several paradigms are available. The use of computer programs to analyze the data is imperative for a robust description of the sample to be obtained. This presentation gives an overview of the SAS process and describes the data-modeling program FISH, written by R. Heenan 1983-2000. The results of using FISH to obtain the particle size distribution of bubbles in the aluminum hydrogen system and other systems of interest are described. Copyright (2002) Australian X-ray Analytical Association Inc

  4. Ocular forward light scattering and corneal backward light scattering in patients with dry eye.

    Science.gov (United States)

    Koh, Shizuka; Maeda, Naoyuki; Ikeda, Chikako; Asonuma, Sanae; Mitamura, Hayato; Oie, Yoshinori; Soma, Takeshi; Tsujikawa, Motokazu; Kawasaki, Satoshi; Nishida, Kohji

    2014-09-18

    To evaluate ocular forward light scattering and corneal backward light scattering in patients with dry eye. Thirty-five eyes in 35 patients with dry eye and 20 eyes of 20 healthy control subjects were enrolled. The 35 dry eyes were classified into two groups according to whether superficial punctate keratopathy in the central 6-mm corneal zone (cSPK) was present or not. Ocular forward light scattering was quantified with a straylight meter. Corneal backward light scattering from the anterior, middle, and posterior corneal parts was assessed with a corneal densitometry program using the Scheimpflug imaging system. Both dry eye groups had significantly higher intraocular forward light scattering than the control group (both Pdry eye group with cSPK had significantly higher values in anterior and total corneal backward light scattering than the other two groups. Moderate positive correlations were observed between the cSPK score and corneal backward light scattering from the anterior cornea (R=0.60, Pdry eyes than in normal eyes. Increased corneal backward light scattering in dry eye at least partially results from cSPK overlying the optical zone. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  5. Small angle scattering and polymers

    International Nuclear Information System (INIS)

    Cotton, J.P.

    1996-01-01

    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs

  6. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2016-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  7. Electron scattering off nuclei

    International Nuclear Information System (INIS)

    Gattone, A.O.

    1989-01-01

    Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author) [es

  8. Cold moderator scattering kernels

    International Nuclear Information System (INIS)

    MacFarlane, R.E.

    1989-01-01

    New thermal-scattering-law files in ENDF format have been developed for solid methane, liquid methane liquid ortho- and para-hydrogen, and liquid ortho- and para-deuterium using up-to-date models that include such effects as incoherent elastic scattering in the solid, diffusion and hindered vibration and rotations in the liquids, and spin correlations for the hydrogen and deuterium. These files were generated with the new LEAPR module of the NJOY Nuclear Data Processing System. Other modules of this system were used to produce cross sections for these moderators in the correct format for the continuous-energy Monte Carlo code (MCNP) being used for cold-moderator-design calculations at the Los Alamos Neutron Scattering Center (LANSCE). 20 refs., 14 figs

  9. Quantum Optical Multiple Scattering

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær

    . In the first part we use a scattering-matrix formalism combined with results from random-matrix theory to investigate the interference of quantum optical states on a multiple scattering medium. We investigate a single realization of a scattering medium thereby showing that it is possible to create entangled...... states by interference of squeezed beams. Mixing photon states on the single realization also shows that quantum interference naturally arises by interfering quantum states. We further investigate the ensemble averaged transmission properties of the quantized light and see that the induced quantum...... interference survives even after disorder averaging. The quantum interference manifests itself through increased photon correlations. Furthermore, the theoretical description of a measurement procedure is presented. In this work we relate the noise power spectrum of the total transmitted or reflected light...

  10. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  11. Λ scattering equations

    Science.gov (United States)

    Gomez, Humberto

    2016-06-01

    The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm.

  12. Electromagnetic scattering theory

    Science.gov (United States)

    Bird, J. F.; Farrell, R. A.

    1986-01-01

    Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.

  13. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  14. Nuclear Compton scattering

    International Nuclear Information System (INIS)

    Christillin, P.

    1986-01-01

    The theory of nuclear Compton scattering is reformulated with explicit consideration of both virtual and real pionic degrees of freedom. The effects due to low-lying nuclear states, to seagull terms, to pion condensation and to the Δ dynamics in the nucleus and their interplay in the different energy regions are examined. It is shown that all corrections to the one-body terms, of diffractive behaviour determined by the nuclear form factor, have an effective two-body character. The possibility of using Compton scattering as a complementary source of information about nuclear dynamics is restressed. (author)

  15. Diffraction in nuclear scattering

    International Nuclear Information System (INIS)

    Wojciechowski, H.

    1986-01-01

    The elastic scattering amplitudes for charged and neutral particles have been decomposed into diffractive and refractive parts by splitting the nuclear elastic scattering matrix elements into components responsible for these effects. It has been shown that the pure geometrical diffractive effect which carries no information about the nuclear interaction is always predominant at forward angle of elastic angular distributions. This fact suggests that for strongly absorbed particles only elastic cross section at backward angles, i.e. the refractive cross section, can give us basic information about the central nuclear potential. 12 refs., 4 figs., 1 tab. (author)

  16. Proton nuclear scattering radiography

    International Nuclear Information System (INIS)

    Saudinos, J.

    1982-04-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: 3-dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore the nuclear scattering radiography (NSR) is a well adapted method to gating techniques allowing the radiography of fast periodic moving objects. Results obtained on phantoms, formalin fixed head and moving object are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiograph faster and to get a practical method are discussed

  17. Slow neutron scattering experiments

    International Nuclear Information System (INIS)

    Moon, R.M.

    1985-01-01

    Neutron scattering is a versatile technique that has been successfully applied to condensed-matter physics, biology, polymer science, chemistry, and materials science. The United States lost its leadership role in this field to Western Europe about 10 years ago. Recently, a modest investment in the United States in new facilities and a positive attitude on the part of the national laboratories toward outside users have resulted in a dramatic increase in the number of US scientists involved in neutron scattering research. Plans are being made for investments in new and improved facilities that could return the leadership role to the United States. 23 references, 4 figures, 3 tables

  18. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2014-01-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  19. Electron-atom scattering

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1991-07-01

    The coupled-channels-optical method has been implemented using two different approximations to the optical potential. The half-on-shell optical potential involves drastic approximations for numerical feasibility but still gives a good semiquantitative description of the effect of uncoupled channels on electron scattering from hydrogen, helium and sodium. The distorted-wave optical potential makes no approximations other than the weak coupling approximation for uncoupled channels. In applications to hydrogen and sodium it shows promise of describing scattering phenomena excellently at all energies. 27 refs., 5 figs

  20. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  1. Raman scattering tensors of tyrosine.

    Science.gov (United States)

    Tsuboi, M; Ezaki, Y; Aida, M; Suzuki, M; Yimit, A; Ushizawa, K; Ueda, T

    1998-01-01

    Polarized Raman scattering measurements have been made of a single crystal of L-tyrosine by the use of a Raman microscope with the 488.0-nm exciting beam from an argon ion laser. The L-tyrosine crystal belongs to the space group P2(1)2(1)2(1) (orthorhombic), and Raman scattering intensities corresponding to the aa, bb, cc, ab and ac components of the crystal Raman tensor have been determined for each prominent Raman band. A similar set of measurements has been made of L-tyrosine-d4, in which four hydrogen atoms on the benzene ring are replaced by deuterium atoms. The effects of NH3-->ND3 and OH-->OD on the Raman spectrum have also been examined. In addition, depolarization ratios of some bands of L-tyrosine in aqueous solutions of pH 13 and pH 1 were examined. For comparison with these experimental results, on the other hand, ab initio molecular orbital calculations have been made of the normal modes of vibration and their associated polarizability oscillations of the L-tyrosine molecule. On the basis of these experimental data and by referring to the results of the calculations, discussions have been presented on the Raman tensors associated to some Raman bands, including those at 829 cm-1 (benzene ring breathing), 642 cm-1 (benzene ring deformation), and 432 cm-1 (C alpha-C beta-C gamma bending).

  2. Phonon scattering in graphite

    International Nuclear Information System (INIS)

    Wagner, P.

    1976-04-01

    Effects on graphite thermal conductivities due to controlled alterations of the graphite structure by impurity addition, porosity, and neutron irradiation are shown to be consistent with the phonon-scattering formulation 1/l = Σ/sub i equals 1/sup/n/ 1/l/sub i/. Observed temperature effects on these doped and irradiated graphites are also explained by this mechanism

  3. High energy hadron scattering

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  4. Critical scattering by bubbles

    International Nuclear Information System (INIS)

    Fiedler-Ferrari, N.; Nussenzveig, H.M.

    1986-11-01

    We apply the complex angular momentum theory to the problem of the critical scattering of light by spherical cavities in the high frequency limit (permittivity greater than the external media) (e.g, air bubble in water) (M.W.O.) [pt

  5. Radiation scattering techniques

    International Nuclear Information System (INIS)

    Edmonds, E.A.

    1986-01-01

    Radiation backscattering techniques are useful when access to an item to be inspected is restricted to one side. These techniques are very sensitive to geometrical effects. Scattering processes and their application to the determination of voids, thickness measuring, well-logging and the use of x-ray fluorescence techniques are discussed. (U.K.)

  6. Scattering theory. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2016-07-01

    This corrected and updated second edition of ''Scattering Theory'' presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is kept as low as at all possible and deeper questions related to the mathematical foundations of scattering theory are passed by. It should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. The book is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.

  7. Lepton-nucleon scattering

    International Nuclear Information System (INIS)

    Windmolders, R.

    1989-01-01

    In this paper the following topics are reviewed: 1. the structure functions measured in deep inelastic e-N, μ-N and ν-N scattering; 2. nuclear effects on the structure functions; 3. nuclear effects on the fragmentation functions; 4. the spin dependent structure functions and their interpretation in terms of nucleon constituents. (orig./HSI)

  8. Deeply Virtual Neutrino Scattering

    International Nuclear Information System (INIS)

    Ales Psaker

    2007-01-01

    We investigate the extension of the deeply virtual Compton scattering process into the weak interaction sector. Standard electromagnetic Compton scattering provides a unique tool for studying hadrons, which is one of the most fascinating frontiers of modern science. In this process the relevant Compton scattering amplitude probes the hadron structure by means of two quark electromagnetic currents. We argue that replacing one of the currents with the weak interaction current can promise a new insight. The paper is organized as follows. In Sec. II we briefly discuss the features of the handbag factorization scheme. We introduce a new set of phenomenological functions, known as generalized parton distributions (GPDs) [1-6], and discuss some of their basic properties in Sec. III. An application of the GPD formalism to the neutrino-induced deeply virtual Compton scattering in the kinematics relevant to future high-intensity neutrino experiments is given in Sec. IV. The cross section results are presented in Sec. V. Finally, in Sec. VI we draw some conclusions and discuss future prospects. Some of the formal results in this paper have appeared in preliminary reports in Refs. [7] and [8], whereas a comprehensive analysis of the weak neutral and weak charged current DVCS reactions in collaboration with W. Melnitchouk and A. Radyushkin has been presented in Ref. [9

  9. Symposium on neutron scattering

    International Nuclear Information System (INIS)

    Lehmann, M.S.; Saenger, W.; Hildebrandt, G.; Dachs, H.

    1984-01-01

    Extended abstracts of the named symposium are presented. The first part of this report contains the abstracts of the lectures, the second those of the posters. Topics discussed on the symposium include neutron diffraction and neutron scattering studies in magnetism, solid state chemistry and physics, materials research. Some papers discussing instruments and methods are included too. (GSCH)

  10. Inversion assuming weak scattering

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus

    2013-01-01

    due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...

  11. Atom electron scattering

    International Nuclear Information System (INIS)

    Santoso, B.

    1976-01-01

    Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)

  12. Electron Scattering on deuterium

    International Nuclear Information System (INIS)

    Platchkov, S.

    1987-01-01

    Selected electron scattering experiments on the deuteron system are discussed. The main advantages of the electromagnetic probe are recalled. The deuteron A(q 2 ) structure function is analyzed and found to be very sensitive to the neutron electric form factor. Electrodisintegration of the deuteron near threshold is presented as evidence for the importance of meson exchange currents in nuclei [fr

  13. Parity violating electron scattering

    International Nuclear Information System (INIS)

    McKeown, R.D.

    1990-01-01

    Previous measurements of parity violation in electron scattering are reviewed with particular emphasis on experimental techniques. Significant progress in the attainment of higher precision is evident in these efforts. These pioneering experiments provide a basis for consideration of a future program of such measurements. In this paper some future plans and possibilities in this field are discussed

  14. Heavy ion elastic scatterings

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1984-01-01

    Diffraction and refraction play an important role in particle elastic scattering. The optical model treats correctly and simultaneously both phenomena but without disentangling them. Semi-classical discussions in terms of trajectories emphasize the refractive aspect due to the real part of the optical potential. The separation due to to R.C. Fuller of the quantal cross section into two components coming from opposite side of the target nucleus allows to understand better the refractive phenomenon and the origin of the observed oscillations in the elastic scattering angular distributions. We shall see that the real part of the potential is responsible of a Coulomb and a nuclear rainbow which allows to determine better the nuclear potential in the interior region near the nuclear surface since the volume absorption eliminates any effect of the real part of the potential for the internal partial scattering waves. Resonance phenomena seen in heavy ion scattering will be discussed in terms of optical model potential and Regge pole analysis. Compound nucleus resonances or quasi-molecular states can be indeed the more correct and fundamental alternative

  15. Multienergy anomalous diffuse scattering

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Miloš; Fábry, Jan; Kub, Jiří; Lausi, A.; Busetto, E.

    2008-01-01

    Roč. 100, č. 19 (2008), 195504/1-195504/4 ISSN 0031-9007 R&D Projects: GA AV ČR IAA100100529 Institutional research plan: CEZ:AV0Z10100523 Keywords : diffuse scattering * x-rays * structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008

  16. Correlation in atomic scattering

    International Nuclear Information System (INIS)

    McGuire, J.H.

    1987-01-01

    Correlation due to the Coulomb interactions between electrons in many-electron targets colliding with charged particles is formulated, and various approximate probability amplitudes are evaluated. In the limit that the electron-electron, 1/r/sub i//sub j/, correlation interactions are ignored or approximated by central potentials, the independent-electron approximation is obtained. Two types of correlations, or corrections to the independent-electron approximation due to 1/r/sub i//sub j/ terms, are identified: namely, static and scattering correlation. Static correlation is that contained in the asymptotic, e.g., bound-state, wave functions. Scattering correlation, arising from correlation in the scattering operator, is new and is considered in some detail. Expressions for a scattering correlation amplitude, static correlation or rearrangement amplitude, and independent-electron or direct amplitude are derived at high collision velocity and compared. At high velocities the direct and rearrangement amplitudes dominate. At very high velocities, ν, the rearrangement amplitude falls off less rapidly with ν than the direct amplitude which, however, is dominant as electron-electron correlation tends to zero. Comparisons with experimental observations are discussed

  17. Superradiative scattering magnons

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1980-01-01

    A magnon-photon interaction for the magnetic vector of the electromagnetic wave perpendicular to the direction of magnetization in a ferromagnet is constructed. The magnon part of the interaction is reduced with the use of Bogoliubov transformation. The resulting magnon-photon interaction is found to contain several interesting new radiation effects. The self energy of the magnon is calculated and life times arising from the radiation scattering are predicted. The magnon frequency shift due to the radiation field is found. One of the terms arising from the one-magnon one-photon scattering gives a line width in reasonable agreement with the experimentally measured value of ferromagnetic resonance line width in yttrium iron garnet. Surface magnon scattering is indicated and the contribution of this type of scattering to the radiative line width is discussed. The problem of magnetic superradiance is indicated and it is shown that in anisotropic ferromagnets the emission is proportional to the sqare of the number of magnons and the divergence is considerably minimized. Accordingly the magnetic superradiance emerges as a hyperradiance with much more radiation intensity than in the case of disordered atomic superradiance. (author)

  18. Inelastic magnon scattering

    Directory of Open Access Journals (Sweden)

    Robert de Mello Koch

    2017-05-01

    Full Text Available We study the worldsheet S-matrix of a string attached to a D-brane in AdS5×S5. The D-brane is either a giant graviton or a dual giant graviton. In the gauge theory, the operators we consider belong to the su(2|3 sector of the theory. Magnon excitations of open strings can exhibit both elastic (when magnons in the bulk of the string scatter and inelastic (when magnons at the endpoint of an open string participate scattering. Both of these S-matrices are determined (up to an overall phase by the su(2|22 global symmetry of the theory. In this note we study the S-matrix for inelastic scattering. We show that it exhibits poles corresponding to boundstates of bulk and boundary magnons. A crossing equation is derived for the overall phase. It reproduces the crossing equation for maximal giant gravitons, in the appropriate limit. Finally, scattering in the su(2 sector is computed to two loops. This two loop result, which determines the overall phase to two loops, will be useful when a unique solution to the crossing equation is to be selected.

  19. Interaction between structurally different heteroexopolysaccharides and β-lactoglobulin studied by solution scattering and analytical ultracentrifugation

    DEFF Research Database (Denmark)

    Khan, Sanaullah; Birch, Johnny; Van Calsteren, Marie-Rose

    2018-01-01

    Despite a very large number of bacterial exopolysaccharides have been reported, detailed knowledge on their molecular structures and associative interactions with proteins is lacking. Small-angle X-ray scattering, dynamic light scattering and analytical ultracentrifugation (AUC) were used...

  20. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  1. Cluster polylogarithms for scattering amplitudes

    International Nuclear Information System (INIS)

    Golden, John; Paulos, Miguel F; Spradlin, Marcus; Volovich, Anastasia

    2014-01-01

    Motivated by the cluster structure of two-loop scattering amplitudes in N=4 Yang-Mills theory we define cluster polylogarithm functions. We find that all such functions of weight four are made up of a single simple building block associated with the A 2 cluster algebra. Adding the requirement of locality on generalized Stasheff polytopes, we find that these A 2 building blocks arrange themselves to form a unique function associated with the A 3 cluster algebra. This A 3 function manifests all of the cluster algebraic structure of the two-loop n-particle MHV amplitudes for all n, and we use it to provide an explicit representation for the most complicated part of the n = 7 amplitude as an example. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

  2. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A

    2013-01-01

    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  3. Diffusion and scattering in multifractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Lovejoy, S. [McGill Univ., Montreal, Quebec (Canada); Schertzer, D. [Universite Pierre et Marie Curie, Paris (France); Waston, B. [St. Lawrence Univ., Canton, NY (United States)] [and others

    1996-04-01

    This paper describes investigations of radiative properties of multifractal clouds using two different approaches. In the first, diffusion is considered by examining the scaling properties of one dimensional random walks on media with multifractal diffusivities. The second approach considers the scattering statistics associated with radiative transport.

  4. The kinematic algebras from the scattering equations

    International Nuclear Information System (INIS)

    Monteiro, Ricardo; O’Connell, Donal

    2014-01-01

    We study kinematic algebras associated to the recently proposed scattering equations, which arise in the description of the scattering of massless particles. In particular, we describe the role that these algebras play in the BCJ duality between colour and kinematics in gauge theory, and its relation to gravity. We find that the scattering equations are a consistency condition for a self-dual-type vertex which is associated to each solution of those equations. We also identify an extension of the anti-self-dual vertex, such that the two vertices are not conjugate in general. Both vertices correspond to the structure constants of Lie algebras. We give a prescription for the use of the generators of these Lie algebras in trivalent graphs that leads to a natural set of BCJ numerators. In particular, we write BCJ numerators for each contribution to the amplitude associated to a solution of the scattering equations. This leads to a decomposition of the determinant of a certain kinematic matrix, which appears naturally in the amplitudes, in terms of trivalent graphs. We also present the kinematic analogues of colour traces, according to these algebras, and the associated decomposition of that determinant

  5. NEUTRON-SCATTERING STUDY OF DCN

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Pawley, G. S.

    1979-01-01

    Phonons in deuterium cyanide have been measured by neutron coherent inelastic scattering. The main subject of study was the transverse acoustic mode in the (110) direction polarised along (110) which is associated with the first-order structural phase transition at 160K. Measurements have shown...

  6. Superconducting quasiparticle lifetimes due to spin-fluctuation scattering

    International Nuclear Information System (INIS)

    Quinlan, S.M.; Scalapino, D.J.; Bulut, N.

    1994-01-01

    Superconducting quasiparticle lifetimes associated with spin-fluctuation scattering are calculated. A Berk-Schrieffer interaction with an irreducible susceptibility given by a BCS form is used to model the quasiparticle damping due to spin fluctuations. Results are presented for both s-wave and d-wave gaps. Also, quasiparticle lifetimes due to impurity scattering are calculated for a d-wave superconductor

  7. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  8. Thermal-neutron multiple scattering: critical double scattering

    International Nuclear Information System (INIS)

    Holm, W.A.

    1976-01-01

    A quantum mechanical formulation for multiple scattering of thermal-neutrons from macroscopic targets is presented and applied to single and double scattering. Critical nuclear scattering from liquids and critical magnetic scattering from ferromagnets are treated in detail in the quasielastic approximation for target systems slightly above their critical points. Numerical estimates are made of the double scattering contribution to the critical magnetic cross section using relevant parameters from actual experiments performed on various ferromagnets. The effect is to alter the usual Lorentzian line shape dependence on neutron wave vector transfer. Comparison with corresponding deviations in line shape resulting from the use of Fisher's modified form of the Ornstein-Zernike spin correlations within the framework of single scattering theory leads to values for the critical exponent eta of the modified correlations which reproduce the effect of double scattering. In addition, it is shown that by restricting the range of applicability of the multiple scattering theory from the outset to critical scattering, Glauber's high energy approximation can be used to provide a much simpler and more powerful description of multiple scattering effects. When sufficiently close to the critical point, it provides a closed form expression for the differential cross section which includes all orders of scattering and has the same form as the single scattering cross section with a modified exponent for the wave vector transfer

  9. FDTD scattered field formulation for scatterers in stratified dispersive media.

    Science.gov (United States)

    Olkkonen, Juuso

    2010-03-01

    We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.

  10. Energy evolution of the large-t elastic scattering and its correlation with multiparticle production

    International Nuclear Information System (INIS)

    Troshin, S. M.

    2013-01-01

    It is emphasized that the collective dynamics associated with color confinement is dominating over a point-like mechanism related to a scattering of the proton constituents at the currently available values of the momentum transferred in proton elastic scattering at the LHC. Deep-elastic scattering and its role in the dissimilation of the absorptive and reflective asymptotic scattering mechanisms are discussed with emphasis on the experimental signatures associated with the multiparticle production processes.

  11. Energy evolution of the large-t elastic scattering and its correlation with multiparticle production

    Energy Technology Data Exchange (ETDEWEB)

    Troshin, S. M. [Institute for High Energy Physics, Protvino, Moscow Region, 142281 (Russian Federation)

    2013-04-15

    It is emphasized that the collective dynamics associated with color confinement is dominating over a point-like mechanism related to a scattering of the proton constituents at the currently available values of the momentum transferred in proton elastic scattering at the LHC. Deep-elastic scattering and its role in the dissimilation of the absorptive and reflective asymptotic scattering mechanisms are discussed with emphasis on the experimental signatures associated with the multiparticle production processes.

  12. Online size-exclusion high-performance liquid chromatography light scattering and differential refractometry methods to determine degree of polymer conjugation to proteins and protein-protein or protein-ligand association states.

    Science.gov (United States)

    Kendrick, B S; Kerwin, B A; Chang, B S; Philo, J S

    2001-12-15

    Characterizing the solution structure of protein-polymer conjugates and protein-ligand interactions is important in fields such as biotechnology and biochemistry. Size-exclusion high-performance liquid chromatography with online classical light scattering (LS), refractive index (RI), and UV detection offers a powerful tool in such characterization. Novel methods are presented utilizing LS, RI, and UV signals to rapidly determine the degree of conjugation and the molecular mass of the protein conjugate. Baseline resolution of the chromatographic peaks is not required; peaks need only be sufficiently separated to represent relatively pure fractions. An improved technique for determining the polypeptide-only mass of protein conjugates is also described. These techniques are applied to determining the degree of erythropoietin glycosylation, the degree of polyethylene glycol conjugation to RNase A and brain-derived neurotrophic factor, and the solution association states of these molecules. Calibration methods for the RI, UV, and LS detectors will also be addressed, as well as online methods to determine protein extinction coefficients and dn/dc values both unconjugated and conjugated protein molecules. (c)2001 Elsevier Science.

  13. Electroweak physics and electron scattering

    International Nuclear Information System (INIS)

    Henley, E.M.; Hwang, W.Y.P.

    1988-01-01

    The electroweak theory is developed and applied to electron scattering from nucleons and light nuclei. It is shown that these scatterings can be used to test the standard theory and probe structure effects. 33 refs., 5 figs

  14. Regge poles and alpha scattering

    International Nuclear Information System (INIS)

    Ceuleneer, R.

    1974-01-01

    The direct Regge pole model as a means of describing resonances in elastic particle scattering has been used for the analysis of the so-called ''anormalous large angle scattering'' of alpha particles by spinless nuclei. (Z.M.)

  15. Electromagnetic scattering from random media

    CERN Document Server

    Field, Timothy R

    2009-01-01

    - ;The book develops the dynamical theory of scattering from random media from first principles. Its key findings are to characterize the time evolution of the scattered field in terms of stochastic differential equations, and to illustrate this framework

  16. ELASTIC SCATTERING: How goes the Odderon?

    International Nuclear Information System (INIS)

    Fried, H.M.; Kang, Kyungsik; Tan, C-I

    1994-01-01

    Spurred by new measurements of total reaction rates and associated parameters by groups at CERN, DESY, and Fermilab, and with the scent of possible solutions to past controversies in the air, some 110 experimental and theoretical highenergy physicists gathered at Brown University (Providence, Rhode Island) for the fifth traditional 'Blois' Workshop on High-Energy Elastic and Diffractive Scattering. Very much alive is the 'Odderon' - the extra effect to explain the difference between proton-proton and proton-antiproton scattering.

  17. CONFERENCE: Elastic and diffractive scattering

    Energy Technology Data Exchange (ETDEWEB)

    White, Alan

    1989-09-15

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago.

  18. Electron scattering on molecular hydrogen

    International Nuclear Information System (INIS)

    Wingerden, B. van.

    1980-01-01

    The author considers scattering phenomena which occur when a beam of electrons interacts with a molecular hydrogen gas of low density. Depending on the energy loss of the scattered electrons one can distinguish elastic scattering, excitation and (auto)ionization of the H 2 -molecule. The latter processes may also lead to dissociation. These processes are investigated in four experiments in increasing detail. (Auth.)

  19. Scattering Of Nonplanar Acoustic Waves

    Science.gov (United States)

    Gillman, Judith M.; Farassat, F.; Myers, M. K.

    1995-01-01

    Report presents theoretical study of scattering of nonplanar acoustic waves by rigid bodies. Study performed as part of effort to develop means of predicting scattering, from aircraft fuselages, of noise made by rotating blades. Basic approach was to model acoustic scattering by use of boundary integral equation to solve equation by the Galerkin method.

  20. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world's first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density ...

  1. Scattering theory and chemical reactions

    International Nuclear Information System (INIS)

    Kuppermann, A.

    1988-01-01

    In this course, scattering theory and chemical reactions are presented including scattering of one particle by a potential, n-particle systems, colinear triatomic molecules and the study of reactive scattering for 3-dimensional triatomic systems. (A.C.A.S.) [pt

  2. Neutrons scattering studies in the actinide region

    International Nuclear Information System (INIS)

    Kegel, G.H.R.; Egan, J.J.

    1992-09-01

    During the report period were investigated the following areas: prompt fission neutron energy spectra measurements; neutron elastic and inelastic scattering from 239 Pu; neutron scattering in 181 Ta and 197 Au; response of a 235 U fission chamber near reaction thresholds; two-parameter data acquisition system; ''black'' neutron detector; investigation of neutron-induced defects in silicon dioxide; and multiple scattering corrections. Four Ph.D. dissertations and one M.S. thesis were completed during the report period. Publications consisted of three journal articles, four conference papers in proceedings, and eleven abstracts of presentations at scientific meetings. There are currently four Ph.D. and one M.S. candidates working on dissertations directly associated with the project. In addition, three other Ph.D. candidates are working on dissertations involving other aspects of neutron physics in this laboratory

  3. A neutron scattering study of DCN

    International Nuclear Information System (INIS)

    Mackenzie, G.A.; Pawley, G.S.

    1979-01-01

    Phonons in deuterium cyanide have been measured by neutron coherent inelastic scattering. The main subject of study was the transverse acoustic mode in the (110) direction polarised along (110) which is associated with the first-order structural phase transition at 160 K. Measurements have shown that the frequency decreases by about 25% between about 225 and 160 K as the transition temperature is approached. The other acoustic modes observable in the a*b* scattering plane have been measured and show no anomalous temperature dependence. Optic modes were unobservable because of the small size of the single-crystal sample which gave insufficient scattered intensity. Apart from the 'soft' mode, the measured frequencies are in good agreement with lattice dynamics calculations. (author)

  4. Deep inelastic scattering

    International Nuclear Information System (INIS)

    Zakharov, V.I.

    1977-01-01

    The present status of the quark-parton-gluon picture of deep inelastic scattering is reviewed. The general framework is mostly theoretical and covers investigations since 1970. Predictions of the parton model and of the asymptotically free field theories are compared with experimental data available. The valence quark approximation is concluded to be valid in most cases, but fails to account for the data on the total momentum transfer. On the basis of gluon corrections introduced to the parton model certain predictions concerning both the deep inelastic structure functions and form factors are made. The contributions of gluon exchanges and gluon bremsstrahlung are highlighted. Asymptotic freedom is concluded to be very attractive and provide qualitative explanation to some experimental observations (scaling violations, breaking of the Drell-Yan-West type relations). Lepton-nuclear scattering is pointed out to be helpful in probing the nature of nuclear forces and studying the space-time picture of the parton model

  5. Stationary scattering theory

    International Nuclear Information System (INIS)

    Combes, J.M.

    1980-10-01

    A complementary approach to the time dependent scattering theory for one-body Schroedinger operators is presented. The stationary theory is concerned with objects of quantum theory like scattering waves and amplitudes. In the more recent abstract stationary theory some generalized form of the Lippman-Schwinger equation plays the basic role. Solving this equation leads to a linear map between generalized eigenfunctions of the perturbed and unperturbed operators. This map is the section at fixed energy of the wave-operator from the time dependent theory. Although the radiation condition does not appears explicitely in this formulation it can be shown to hold a posteriori in a variety of situations thus restoring the link with physical theories

  6. Pion nucleus scattering lengths

    International Nuclear Information System (INIS)

    Huang, W.T.; Levinson, C.A.; Banerjee, M.K.

    1971-09-01

    Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs

  7. LIGHT SCATTERING FROM EXOPLANET OCEANS AND ATMOSPHERES

    International Nuclear Information System (INIS)

    Zugger, M. E.; Kane, T. J.; Kasting, J. F.; Williams, D. M.; Philbrick, C. R.

    2010-01-01

    Orbital variation in reflected starlight from exoplanets could eventually be used to detect surface oceans. Exoplanets with rough surfaces, or dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180 0 , whereas ocean planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30 0 . Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74 0 ; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach peak polarization near OL = 90 0 , but clouds and Lambertian surface scattering dilute and shift this peak to smaller OL. A shifted Rayleigh peak might be mistaken for a water signature unless data from multiple wavelength bands are available. Our calculations suggest that polarization alone may not positively identify the presence of an ocean under an Earth-like atmosphere; however, polarization adds another dimension which can be used, in combination with unpolarized orbital light curves and contrast ratios, to detect extrasolar oceans, atmospheric water aerosols, and water clouds. Additionally, the presence and direction of the polarization vector could be used to determine planet association with the star, and constrain orbit inclination.

  8. Wavefield separation by energy norm Born scattering

    KAUST Repository

    Sun, Bingbing

    2017-08-17

    In Reflection Based Waveform Inversion, the gradient is computed by cross-correlating the direct and Born scattered wavefield with their adjoints applied to the data residuals. In this case, the transmitted part of the Born scattered wavefield produces high wavenumber artifacts, which would harm the convergence of the inversion process. We propose an efficient Energy Norm Born Scattering (ENBS) to attenuate the transmission components of the Born modeling, and allow it to produce only reflections. ENBS is derived from the adjoint of the Energy Norm (inverse scattering) imaging condition and in order to get deeper insights of how this method works, we show analytically that given an image, in which reflectivity is represented by a Dirac delta function, ENBS attenuates transmission energy perfectly. We use numerical examples to demonstrate that ENBS works in both the time and the frequency domain. We also show that in reflection waveform inversion (RWI) the wave path constructed by ENBS would be cleaner and free of high wavenumber artifacts associated with conventional Born scattering.

  9. Applications of ion scattering in surface analysis

    International Nuclear Information System (INIS)

    Armour, D.G.

    1981-01-01

    The study of ion scattering from surfaces has made an increasingly important contribution both to the development of highly surface specific analysis techniques and to the understanding of the atomic collision processes associated with ion bombardment of solid surfaces. From an analysis point of view, by appropriate choice of parameters such as ion energy and species, scattering geometry and target temperature, it is possible to study not only the composition of the surface layer but also the detailed atomic arrangement. The ion scattering technique is thus particularly useful for the study of surface compositional and structural changes caused by adsorption, thermal annealing or ion bombardment treatments of simple or composite materials. Ion bombardment induced desorption, damage or atomic mixing can also be effectively studied using scattering techniques. By reviewing the application of the technique to a variety of these technologically important surface investigations, it is possible to illustrate the way in which ion scattering has developed as the understanding of the underlying physics has improved. (author)

  10. Wavefield separation by energy norm Born scattering

    KAUST Repository

    Sun, Bingbing; Alkhalifah, Tariq Ali

    2017-01-01

    In Reflection Based Waveform Inversion, the gradient is computed by cross-correlating the direct and Born scattered wavefield with their adjoints applied to the data residuals. In this case, the transmitted part of the Born scattered wavefield produces high wavenumber artifacts, which would harm the convergence of the inversion process. We propose an efficient Energy Norm Born Scattering (ENBS) to attenuate the transmission components of the Born modeling, and allow it to produce only reflections. ENBS is derived from the adjoint of the Energy Norm (inverse scattering) imaging condition and in order to get deeper insights of how this method works, we show analytically that given an image, in which reflectivity is represented by a Dirac delta function, ENBS attenuates transmission energy perfectly. We use numerical examples to demonstrate that ENBS works in both the time and the frequency domain. We also show that in reflection waveform inversion (RWI) the wave path constructed by ENBS would be cleaner and free of high wavenumber artifacts associated with conventional Born scattering.

  11. Scattering of charged particles

    International Nuclear Information System (INIS)

    Barrachina, R.O.; Macek, J.H.

    1989-01-01

    Different methods of avoiding the known difficulties of the Coulomb potential scattering theory are reviewed. Mulherin and Zinnes' [J. Math. Phys. 11, 1402 (1976)] ''distorted'' free waves and van Haeringen's [J. Math. Phys. 17, 995 (1976)] Coulomb asymptotic states are considered. The equivalence of both approaches on the energy shell is shown. Actually the possibility of deriving the first method within van Haeringen's formalism by means of a distorted wave procedure is demonstrated

  12. Molecular-beam scattering

    International Nuclear Information System (INIS)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N 2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl → NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2 2 P/sub 3/2/) and Na(3 2 P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included

  13. Analytic nuclear scattering theories

    International Nuclear Information System (INIS)

    Di Marzio, F.; University of Melbourne, Parkville, VIC

    1999-01-01

    A wide range of nuclear reactions are examined in an analytical version of the usual distorted wave Born approximation. This new approach provides either semi analytic or fully analytic descriptions of the nuclear scattering processes. The resulting computational simplifications, when used within the limits of validity, allow very detailed tests of both nuclear interaction models as well as large basis models of nuclear structure to be performed

  14. Polarimetric neutron scattering

    International Nuclear Information System (INIS)

    Tasset, F.

    2001-01-01

    Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)

  15. Means on scattered compacta

    Czech Academy of Sciences Publication Activity Database

    Banakh, T.; Bonnet, R.; Kubiś, Wieslaw

    2014-01-01

    Roč. 2, č. 1 (2014), s. 5-10 ISSN 2299-3231 R&D Projects: GA ČR(CZ) GAP201/12/0290 Institutional support: RVO:67985840 Keywords : scattered compact space * mean operation Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/taa.2014.2.issue-1/taa-2014-0002/taa-2014-0002.xml

  16. Neutron scattering in Australia

    International Nuclear Information System (INIS)

    Knott, R.B.

    1994-01-01

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains

  17. Neutron scattering in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1994-12-31

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.

  18. Basic scattering theory

    International Nuclear Information System (INIS)

    Queen, N.M.

    1978-01-01

    This series of lectures on basic scattering theory were given as part of a course for postgraduate high energy physicists and were designed to acquaint the student with some of the basic language and formalism used for the phenomenological description of nuclear reactions and decay processes used for the study of elementary particle interactions. Well established and model independent aspects of scattering theory, which are the basis of S-matrix theory, are considered. The subject is considered under the following headings; the S-matrix, cross sections and decay rates, phase space, relativistic kinematics, the Mandelstam variables, the flux factor, two-body phase space, Dalitz plots, other kinematic plots, two-particle reactions, unitarity, the partial-wave expansion, resonances (single-channel case), multi-channel resonances, analyticity and crossing, dispersion relations, the one-particle exchange model, the density matrix, mathematical properties of the density matrix, the density matrix in scattering processes, the density matrix in decay processes, and the helicity formalism. Some exercises for the students are included. (U.K.)

  19. pp-elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E; Cantale, G; Degli-Agosti, S; Hausammann, R; Heer, E; Hess, R; Lechanoine-LeLuc, C; Leo, W; Morenzoni, S; Onel, Y [Geneva Univ. (Switzerland). Dept. de Physique Nucleaire et Corpusculaire

    1983-01-01

    The aim of the elastic pp experimental program at SIN was to measure enough spin dependent parameters in order to do a direct experimental reconstruction of the elastic scattering amplitudes at a few energies between 400 and 600 MeV and at several angles between 38/sup 0/ cm and 90/sup 0/ cm. This reconstruction was not possible until recently due to lack of experimental data. Information instead has come mainly from phase shift analysis (PSA). The only way to extract the elastic scattering amplitudes without any hypotheses except those of basic symmetries, is to measure a sufficient set of spin dependent parameters at a given angle and energy. With this in view, the authors have measured at 448, 494, 515, 536 and 579 MeV, the polarization, the spin correlation parameters Asub(00nn), Asub(00ss), Asub(00kk), Asub(00ks), the 2-spin parameters Dsub(n0n0), Ksub(n00n), Dsub(s'0s0), Dsub(s'0k0) and the 3-spin parameters Msub(s'0sn), Msub(s'0kn) between 34/sup 0/ cm and 118/sup 0/ cm. A few of these parameters have also been measured at 560 and 470 MeV and at a few energies below 448 MeV. The indices refer to the polarization orientation of the scattered, recoil, beam and target particle respectively.

  20. Diffuse scattering in Ih ice

    International Nuclear Information System (INIS)

    Wehinger, Björn; Krisch, Michael; Bosak, Alexeï; Chernyshov, Dmitry; Bulat, Sergey; Ezhov, Victor

    2014-01-01

    Single crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution. (paper)

  1. Scattering of intermediate energy protons

    International Nuclear Information System (INIS)

    Chaumeaux, Alain.

    1980-06-01

    The scattering of 1 GeV protons appears to be a powerful means of investigating nuclear matter. We worked with SPESI and the formalism of Kerman-Mc Manus and Thaler. The amplitude of nucleon-nucleon scattering was studied as were the aspects of 1 GeV proton scattering (multiple scattering, absorption, spin-orbit coupling, N-N amplitude, KMT-Glauber comparison, second order effects). The results of proton scattering on 16 O, the isotopes of calcium, 58 Ni, 90 Zr and 208 Pb are given [fr

  2. Compton scattering revisited

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, R.H., E-mail: rpratt@pitt.ed [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); LaJohn, L.A., E-mail: lal18@pitt.ed [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Florescu, V., E-mail: flor@barutu.fizica.unibuc.r [Centre for Advanced Quantum Physics, University of Bucharest, MG-11 Bucharest-Magurele, 077125 Magurele (Romania); Suric, T., E-mail: suric@irb.h [R. Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Chatterjee, B.K., E-mail: barun_k_chatterjee@yahoo.co [Department of Physics, Bose Institute, Kolkata 700009 (India); Roy, S.C., E-mail: suprakash.roy@gmail.co [Department of Physics, Bose Institute, Kolkata 700009 (India)

    2010-02-15

    We review the standard theory of Compton scattering from bound electrons, and we describe recent findings that require modification of the usual understanding, noting the nature of consequences for experiment. The subject began with Compton and scattering from free electrons. Experiment actually involved bound electrons, and this was accommodated with the use of impulse approximation (IA), which described inelastic scattering from bound electrons in terms of scattering from free electrons. This was good for the Compton peak but failed for soft final photons. The standard theory was formalized by Eisenberger and Platzman (EP) [1970. Phys. Rev. A 2, 415], whose work also suggested why impulse approximation was better than one would expect, for doubly differential cross sections (DDCS), but not for triply differential cross sections (TDCS). A relativistic version of IA (RIA) was worked out by Ribberfors [1975. Phys. Rev. B 12, 2067]. And Suric et al. [1991. Phys. Rev. Lett. 67, 189] and Bergstrom et al. [1993. Phys. Rev. A 48, 1134] developed a full relativistic second order S-matrix treatment, not making impulse approximation, but within independent particle approximation (IPA). Newer developments in the theory of Compton scattering include: (1) Demonstration that the EP estimates of the validity of IA are incorrect, although the qualitative conclusion remains unchanged; IA is not to be understood as the first term in a standard series expansion. (2) The greater validity of IA for DDCS than for the TDCS, which when integrated give DDCS, is related to the existence of a sum rule, only valid for DDCS. (3) The so-called 'asymmetry' of a Compton profile is primarily to be understood as simply the shift of the peak position in the profile; symmetric and anti-symmetric deviations from a shifted Compton profile are very small, except for high Z inner shells where further p{sup -}>.A{sup -}> effects come into play. (4) Most relativistic effects, except at low

  3. Compton scattering revisited

    International Nuclear Information System (INIS)

    Pratt, R.H.; LaJohn, L.A.; Florescu, V.; Suric, T.; Chatterjee, B.K.; Roy, S.C.

    2010-01-01

    We review the standard theory of Compton scattering from bound electrons, and we describe recent findings that require modification of the usual understanding, noting the nature of consequences for experiment. The subject began with Compton and scattering from free electrons. Experiment actually involved bound electrons, and this was accommodated with the use of impulse approximation (IA), which described inelastic scattering from bound electrons in terms of scattering from free electrons. This was good for the Compton peak but failed for soft final photons. The standard theory was formalized by Eisenberger and Platzman (EP) [1970. Phys. Rev. A 2, 415], whose work also suggested why impulse approximation was better than one would expect, for doubly differential cross sections (DDCS), but not for triply differential cross sections (TDCS). A relativistic version of IA (RIA) was worked out by Ribberfors [1975. Phys. Rev. B 12, 2067]. And Suric et al. [1991. Phys. Rev. Lett. 67, 189] and Bergstrom et al. [1993. Phys. Rev. A 48, 1134] developed a full relativistic second order S-matrix treatment, not making impulse approximation, but within independent particle approximation (IPA). Newer developments in the theory of Compton scattering include: (1) Demonstration that the EP estimates of the validity of IA are incorrect, although the qualitative conclusion remains unchanged; IA is not to be understood as the first term in a standard series expansion. (2) The greater validity of IA for DDCS than for the TDCS, which when integrated give DDCS, is related to the existence of a sum rule, only valid for DDCS. (3) The so-called 'asymmetry' of a Compton profile is primarily to be understood as simply the shift of the peak position in the profile; symmetric and anti-symmetric deviations from a shifted Compton profile are very small, except for high Z inner shells where further p → .A → effects come into play. (4) Most relativistic effects, except at low energies, are to be

  4. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  5. Some results on inverse scattering

    International Nuclear Information System (INIS)

    Ramm, A.G.

    2008-01-01

    A review of some of the author's results in the area of inverse scattering is given. The following topics are discussed: (1) Property C and applications, (2) Stable inversion of fixed-energy 3D scattering data and its error estimate, (3) Inverse scattering with 'incomplete' data, (4) Inverse scattering for inhomogeneous Schroedinger equation, (5) Krein's inverse scattering method, (6) Invertibility of the steps in Gel'fand-Levitan, Marchenko, and Krein inversion methods, (7) The Newton-Sabatier and Cox-Thompson procedures are not inversion methods, (8) Resonances: existence, location, perturbation theory, (9) Born inversion as an ill-posed problem, (10) Inverse obstacle scattering with fixed-frequency data, (11) Inverse scattering with data at a fixed energy and a fixed incident direction, (12) Creating materials with a desired refraction coefficient and wave-focusing properties. (author)

  6. Scattering Solar Thermal Concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel C. [Pennsylvania State Univ., State College, PA (United States)

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the

  7. Inelastic scattering of neutrons

    International Nuclear Information System (INIS)

    Sal'nikov, O.A.

    1984-06-01

    The paper reviews the main problems concerning the mechanism of the inelastic scatterings of neutrons by nuclei, concentrating on the different models which calculate the angular distributions. In the region of overlapping levels, both the compound nucleus mechanism and the preequilibrium Griffin (exciton) model are discussed, and their contribution relative to that of a direct mechanism is considered. The parametrization of the level density and of the nuclear moment of inertia are also discussed. The excitation functions of discrete levels are also presented, and the importance of elucidating their five structure (for practical calculations, such as for shielding) is pointed out

  8. Proton nuclear scattering radiography

    International Nuclear Information System (INIS)

    Duchazeaubeneix, J.C.; Faivre, J.C.; Garreta, D.

    1982-10-01

    Nuclear scattering of protons allows to radiograph objects with specific properties: direct 3- dimensional radiography, different information as compared to X-ray technique, hydrogen radiography. Furthermore, it is a well adapted method to gating techniques allowing the radiography of fast periodic moving systems. Results obtained on different objects (light and heavy materials) are shown and discussed. The dose delivery is compatible with clinical use, but at the moment, the irradiation time is too long between 1 and 4 hours. Perspectives to make the radiography faster and to get a practical method are discussed

  9. Quasi-elastic scattering

    International Nuclear Information System (INIS)

    Pizzi, J.R.

    1975-01-01

    In a first part, the kinematical conditions which are chosen to study quasi free scattering reactions are presented, as well as the impulse approximation which is used to interpret the experimental data. Then, the evolution of the study of these reactions in the last few years is analyzed. Three recent experiments are presented and discussed. Two of them deal with α-clusters studied by (p,pα) reaction at 157 and 600MeV. The third is concerned with d, t and 3 He clusters studied by (p,px) reaction at 75MeV [fr

  10. Migration of scattered teleseismic body waves

    Science.gov (United States)

    Bostock, M. G.; Rondenay, S.

    1999-06-01

    The retrieval of near-receiver mantle structure from scattered waves associated with teleseismic P and S and recorded on three-component, linear seismic arrays is considered in the context of inverse scattering theory. A Ray + Born formulation is proposed which admits linearization of the forward problem and economy in the computation of the elastic wave Green's function. The high-frequency approximation further simplifies the problem by enabling (1) the use of an earth-flattened, 1-D reference model, (2) a reduction in computations to 2-D through the assumption of 2.5-D experimental geometry, and (3) band-diagonalization of the Hessian matrix in the inverse formulation. The final expressions are in a form reminiscent of the classical diffraction stack of seismic migration. Implementation of this procedure demands an accurate estimate of the scattered wave contribution to the impulse response, and thus requires the removal of both the reference wavefield and the source time signature from the raw record sections. An approximate separation of direct and scattered waves is achieved through application of the inverse free-surface transfer operator to individual station records and a Karhunen-Loeve transform to the resulting record sections. This procedure takes the full displacement field to a wave vector space wherein the first principal component of the incident wave-type section is identified with the direct wave and is used as an estimate of the source time function. The scattered displacement field is reconstituted from the remaining principal components using the forward free-surface transfer operator, and may be reduced to a scattering impulse response upon deconvolution of the source estimate. An example employing pseudo-spectral synthetic seismograms demonstrates an application of the methodology.

  11. Single Crystal Diffuse Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Richard Welberry

    2018-01-01

    Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.

  12. Thermoelectric band engineering: The role of carrier scattering

    Science.gov (United States)

    Witkoske, Evan; Wang, Xufeng; Lundstrom, Mark; Askarpour, Vahid; Maassen, Jesse

    2017-11-01

    Complex electronic band structures, with multiple valleys or bands at the same or similar energies, can be beneficial for thermoelectric performance, but the advantages can be offset by inter-valley and inter-band scattering. In this paper, we demonstrate how first-principles band structures coupled with recently developed techniques for rigorous simulation of electron-phonon scattering provide the capabilities to realistically assess the benefits and trade-offs associated with these materials. We illustrate the approach using n-type silicon as a model material and show that intervalley scattering is strong. This example shows that the convergence of valleys and bands can improve thermoelectric performance, but the magnitude of the improvement depends sensitively on the relative strengths of intra- and inter-valley electron scattering. Because anisotropy of the band structure also plays an important role, a measure of the benefit of band anisotropy in the presence of strong intervalley scattering is presented.

  13. Brillouin scattering at high pressures

    International Nuclear Information System (INIS)

    Grimsditch, M.; Polian, A.

    1988-02-01

    Technical advances which have made Brillouin scattering a useful tool in high pressure diamond anvil cell (DAC) studies, viz. multipassing and tandem operation of Fabry-Perot interferometers, are reviewed. Experimental aspects, such as allowed scattering geometries, are outlined and the data analysis required to transform Brillouin spectra into sound velocities and elastic constants is presented. Experimental results on H 2 , N 2 , Ar, and He are presented, and the close relationship between the Brillouin scattering results and equations of state is highlighted

  14. Inelastic scattering and deformation parameters

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.

    1978-01-01

    In recent years there has been extensive study of nuclear shape parameters by electron scattering, μ meson atomic transitions, Coulomb excitation and direct nuclear inelastic scattering. Inelastic scattering of strongly absorbed particles, e.g., alpha-particles and heavy ions, at energies below and above the Coulomb barrier probe the charge and mass distributions within the nucleus. This paper summarizes measurements in this field performed at Oak Ridge National Laboratory

  15. Weak Deeply Virtual Compton Scattering

    International Nuclear Information System (INIS)

    Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin

    2006-01-01

    We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities

  16. Scattering theory for Stark Hamiltonians

    International Nuclear Information System (INIS)

    Jensen, Arne

    1994-01-01

    An introduction to the spectral and scattering theory for Schroedinger operators is given. An abstract short range scattering theory is developed. It is applied to perturbations of the Laplacian. Particular attention is paid to the study of Stark Hamiltonians. The main result is an explanation of the discrepancy between the classical and the quantum scattering theory for one-dimensional Stark Hamiltonians. (author). 47 refs

  17. CONFERENCE: Elastic and diffractive scattering

    International Nuclear Information System (INIS)

    White, Alan

    1989-01-01

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago

  18. Light scattering by small particles

    CERN Document Server

    Hulst, H C van de

    1981-01-01

    ""A must for researchers using the techniques of light scattering."" ? S. C. Snowdon, Journal of the Franklin InstituteThe measurement of light scattering of independent, homogeneous particles has many useful applications in physical chemistry, meteorology and astronomy. There is, however, a sizeable gap between the abstract formulae related to electromagnetic-wave-scattering phenomena, and the computation of reliable figures and curves. Dr. van de Hulst's book enables researchers to bridge that gap. The product of twelve years of work, it is an exhaustive study of light-scattering properties

  19. Light Scattering at Various Angles

    Science.gov (United States)

    Latimer, Paul; Pyle, B. E.

    1972-01-01

    The Mie theory of scattering is used to provide new information on how changes in particle volume, with no change in dry weight, should influence light scattering for various scattering angles and particle sizes. Many biological cells (e.g., algal cells, erythrocytes) and large subcellular structures (e.g., chloroplasts, mitochondria) in suspension undergo this type of reversible volume change, a change which is related to changes in the rates of cellular processes. A previous study examined the effects of such volume changes on total scattering. In this paper scattering at 10° is found to follow total scattering closely, but scattering at 45°, 90°, 135°, and 170° behaves differently. Small volume changes can cause very large observable changes in large angle scattering if the sample particles are uniform in size; however, the natural particle size heterogeneity of most samples would mask this effect. For heterogeneous samples of most particle size ranges, particle shrink-age is found to increase large angle scattering. PMID:4556610

  20. Dispersion Decay and Scattering Theory

    CERN Document Server

    Komech, Alexander

    2012-01-01

    A simplified, yet rigorous treatment of scattering theory methods and their applications Dispersion Decay and Scattering Theory provides thorough, easy-to-understand guidance on the application of scattering theory methods to modern problems in mathematics, quantum physics, and mathematical physics. Introducing spectral methods with applications to dispersion time-decay and scattering theory, this book presents, for the first time, the Agmon-Jensen-Kato spectral theory for the Schr?dinger equation, extending the theory to the Klein-Gordon equation. The dispersion decay plays a crucial role i

  1. Introduction to Schroedinger inverse scattering

    International Nuclear Information System (INIS)

    Roberts, T.M.

    1991-01-01

    Schroedinger inverse scattering uses scattering coefficients and bound state data to compute underlying potentials. Inverse scattering has been studied extensively for isolated potentials q(x), which tend to zero as vertical strokexvertical stroke→∞. Inverse scattering for isolated impurities in backgrounds p(x) that are periodic, are Heaviside steps, are constant for x>0 and periodic for x<0, or that tend to zero as x→∞ and tend to ∞ as x→-∞, have also been studied. This paper identifies literature for the five inverse problems just mentioned, and for four other inverse problems. Heaviside-step backgrounds are discussed at length. (orig.)

  2. Low-energy scattering data for oxygen

    International Nuclear Information System (INIS)

    Kopecky, S.; Plompen, A.J.M.

    2014-01-01

    A survey of literature data of the scattering lengths of oxygen is performed, and these values are compared to low-energy precise total cross-section data. To check the quality of the data and the correctness of the relation between coherent scattering lengths and low-energy total cross-sections the situation is examined first for carbon. A value and uncertainty for the coherent scattering length of oxygen is recommended for use in future evaluations of 16 O. This coherent scattering length is fully consistent with the high-precision, low-energy total cross-section data. The consistency requires the use of a larger uncertainty than claimed in the most accurate cross-section papers. This larger uncertainty is nevertheless very small and well within the requirements of applications of this cross-section. The recommended value is b c ( 16 O) = 5.816±0.015 fm and the associated total cross-section for the neutron-energy range 0.5 to 2 000 eV is 3.765±0.025 b. The stated uncertainties are one standard deviation total uncertainty. (authors)

  3. Second sound scattering in superfluid helium

    International Nuclear Information System (INIS)

    Rosgen, T.

    1985-01-01

    Focusing cavities are used to study the scattering of second sound in liquid helium II. The special geometries reduce wall interference effects and allow measurements in very small test volumes. In a first experiment, a double elliptical cavity is used to focus a second sound wave onto a small wire target. A thin film bolometer measures the side scattered wave component. The agreement with a theoretical estimate is reasonable, although some problems arise from the small measurement volume and associated alignment requirements. A second cavity is based on confocal parabolas, thus enabling the use of large planar sensors. A cylindrical heater produces again a focused second sound wave. Three sensors monitor the transmitted wave component as well as the side scatter in two different directions. The side looking sensors have very high sensitivities due to their large size and resistance. Specially developed cryogenic amplifers are used to match them to the signal cables. In one case, a second auxiliary heater is used to set up a strong counterflow in the focal region. The second sound wave then scatters from the induced fluid disturbances

  4. A Discrete Scatterer Technique for Evaluating Electromagnetic Scattering from Trees

    Science.gov (United States)

    2016-09-01

    Trees by DaHan Liao Approved for public release; distribution is unlimited. NOTICES Disclaimers The findings...for Evaluating Electromagnetic Scattering from Trees by DaHan Liao Sensors and Electron Devices Directorate, ARL...Technique for Evaluating Electromagnetic Scattering from Trees 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  5. Stimulated Thomson scattering

    International Nuclear Information System (INIS)

    Spencer, R.L.

    1979-03-01

    The theory of stimulated Thomson scattering is investigated both quantum mechanically and classically. Two monochromatic electromagnetic waves of like polarization travelling in opposite directions are allowed to interact for a time tau with the electrons in a collisionless plasma. The electromagnetic waves have frequencies well above the plasma frequency, and their difference frequency is allowed to range upward from the plasma frequency. With the difference frequency well above the plasma frequency, the rate at which energy is transferred from one wave to the other is calculated quantum mechanically, classically from a fluid theory, and classically from an independent electron theory. The rate is calculated in both the homogeneously broadened limit, and in the inhomogeneously broadened limit

  6. Multichannel Thomson scattering apparatus

    International Nuclear Information System (INIS)

    Bretz, N.; Dimock, D.; Foote, V.; Johnson, D.; Long, D.; Tolnas, E.

    1977-07-01

    A Thomson scattering apparatus for measuring the electron temperature and density along a 90 cm diameter of the PLT plasma has been built. A wide angle objective images the 3 mm x 900 mm ruby laser beam onto an image dissector which rearranges the 300 : 1 image to 20 : 1 forming the input slit of a spectrometer. The stigmatic spectrometer provides 20 wavelength elements of approximately 70 A each. A micro-channel-plate image intensifier optically coupled to a cooled SIT tube provides detection with single frame linearity and 1000 : 1 dynamic range. Spatial profiles of N/sub e/ and T/sub e/ in the range 10 13 - 10 14 cm -3 and 0.05 - 3 keV have an accuracy of 30 √10 13 /N/sub e/ (cm -3 ) percent per 1.2 cm element

  7. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  8. Analyticity and unitarity as constraints to obtain scattering phase shifts and applications to e-He scattering

    International Nuclear Information System (INIS)

    Huber, H.; Lun, D.R.; Allen, L.J.; Amos, K.

    1997-01-01

    The requirements that the scattering functions for quantal scattering at energies below the first inelastic threshold be unitary and analytic have been used to establish a process that gives the complex scattering amplitudes from differential cross sections. From those amplitudes scattering phase shifts have been deduced by Legendre integration. The effects of the natural ambiguity of the phase of the scattering phase shifts have been deduced by Legendre integration. The effects of the natural ambiguity of the phase of the scattering amplitude, under conditions for which uniqueness and (numerical) stability of solutions are not assured, also have been developed to specify the scattering phase shifts can give stable nonspurious results. The scattering of electrons from He atoms for incident energies ranging from 1.5 to 19 eV are considered as an example of the procedure. Phase shift analyses of that data have been made with a variety of other techniques to allow a comparative study of these results and of sets with which are associated fits to cross sections that are statistically significant. 18 refs., 2 tabs., 8 figs

  9. Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.

  10. Light scattering by soap films

    NARCIS (Netherlands)

    Vrij, A.

    A theory is constructed describing the scattering from a liquid film (e.g., a soap film) of a light beam polarized normal to the plane of incidence. This scattering is due to the small irregular corrugations caused by thermal motion. The interference of the reflected incident beam with its multiple

  11. Dynamic measurement of forward scattering

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen; Rusch, W.

    1975-01-01

    A dynamic method for the measurement of forward scattering in a radio anechoic chamber is described. The quantity determined is the induced-field-ratio (IFR) of conducting cylinders. The determination of the IFR is highly sensitive to 1) multiple scattering between the cylinder and the obpring...

  12. Polarization phenomena in inelastic scattering

    International Nuclear Information System (INIS)

    Verhaar, B.J.

    1974-01-01

    An attempt is made to clarify the principles of inelastic scattering using the distorted wave Born approximation, concentrating on inelastic proton scattering. The principle aspects and merits of the microscopic description and the necessity of including the N-N spin orbit force are discussed. (7 figures) (U.S.)

  13. Extreme scattering events towards two young pulsars

    Science.gov (United States)

    Kerr, M.; Coles, W. A.; Ward, C. A.; Johnston, S.; Tuntsov, A. V.; Shannon, R. M.

    2018-03-01

    We have measured the scintillation properties of 151 young, energetic pulsars with the Parkes radio telescope and have identified two extreme scattering events (ESEs). Towards PSR J1057-5226, we discovered a 3 yr span of strengthened scattering during which the variability in flux density and the scintillation bandwidth decreased markedly. The transverse size of the scattering region is ˜23 au, and strong flux density enhancement before and after the ESE may arise from refractive focusing. Long observations reveal scintillation arcs characteristic of interference between rays scattered at large angles, and the clearest arcs appear during the ESE. The arcs suggest scattering by a screen 100-200 pc from the Earth, perhaps ionized filamentary structure associated with the boundary of the local bubble(s). Towards PSR J1740-3015, we observed a `double dip' in the measured flux density similar to ESEs observed towards compact extragalactic radio sources. The observed shape is consistent with that produced by a many-au scale diverging plasma lens with electron density ˜500 cm-3. The continuing ESE is at least 1500 d long, making it the longest detected event to date. These detections, with materially different observational signatures, indicate that well-calibrated pulsar monitoring is a keen tool for ESE detection and interstellar medium (ISM) diagnostics. They illustrate the strong role au-scale non-Kolmogorov density fluctuations and the local ISM structure play in such events and are key to understanding both their intrinsic physics and their impact on other phenomena, particularly fast radio bursts.

  14. Delbrueck scattering of monoenergetic photons

    International Nuclear Information System (INIS)

    Kahane, S.

    1978-05-01

    The Delbrueck effect was experimentally investigated in high Z nuclei with monoenergetic photons in the range 6.8-11.4 MeV. Two different methods were used for measurements of the differential scattering cross-section, in the 25-140 deg range and in the forward direction (theta = 1.5 deg), respectively. The known Compton scattering cross-section was used in a new and unique way for the determination of the elastic scattering cross-section. Isolation of the contribution of the real Delbrueck amplitudes to the cross-section was crried out successfully. Experimental confirmation of the theoretical calculations of Papatzacos and Mork and measurement, for the first time, of the Rayleigh scattering in the 10 MeV region are also reported. One of the most interesting findings is the presence of Coulomb corrections in Delbrueck scattering at these energies. More theoretical effort is needed in this last direction. (author)

  15. Rayleigh scattering under light-atom coherent interaction

    OpenAIRE

    Takamizawa, Akifumi; Shimoda, Koichi

    2012-01-01

    Semi-classical calculation of an oscillating dipole induced in a two-level atom indicates that spherical radiation from the dipole under coherent interaction, i.e., Rayleigh scattering, has a power level comparable to that of spontaneous emission resulting from an incoherent process. Whereas spontaneous emission is nearly isotropic and has random polarization generally, Rayleigh scattering is strongly anisotropic and polarized in association with incident light. In the case where Rabi frequen...

  16. Neutron scattering and physisorption

    International Nuclear Information System (INIS)

    Marlow, I.; Thomas, R.K.; Trewern, T.D.

    1977-01-01

    Neutron scattering experiments on methane and ammonia adsorbed on a graphitized carbon black are described. Diffraction from adsorbed deuterated methane shows that, at a coverage of 0.7, it forms an epitaxial layer with a √3x√3 structure. Between 50 and 60 K it undergoes a phase transition from two-dimensional solid to liquid (bulk melting point=89.7 K). Similar results are obtained for deuterated methane on a sample of graphon intercalated with potassium. From the effect of adsorbed methane on the intensities of 001 peaks of both substrates the carbon atom of the methane is estimated to be 3.3+-0.2 A from the surface. Ammonia-d 3 on graphon behaves quite differently from methane. It follows a type III isotherm and at low temperatures desorbs from the surface to form bulk ammonia. This has anomalous melting properties which are shown to be related to adsorption isobars for the system. The detailed interpretation of the results emphasizes the close link between adsorption and heterogeneous nucleation. Quasielastic experiments on the ammonia-graphon system show that the adsorbed ammonia is undergoing translational diffusion on the surface which is much faster than in the bulk. This is attributed to the breaking up of the hydrogen bonded network normally present in t

  17. Relaxation oscillations in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Kachen, G.I.; Lowdermilk, W.H.

    1977-01-01

    Light pulses created by stimulated Raman scattering having been found to exhibit a complex time dependence which resembles relaxation oscillations. A focused laser pulse generated both forward and backward Raman emissions which appeared as a series of pulses with durations much shorter than the incident laser pulse. Time dependence of the Raman emission was observed directly by use of a streak camera. The number of observed pulses increased with the intensity of the incident pulse, while separation of the pulses in time depended on the length of the focal region. Beam focusing was incorporated in the coupled wave equations for stimulated Raman scattering. These rate equations were then solved numerically, and the results are in good qualitative agreement with the experimental observations. The short Raman pulses are created by a process associated with depletion of the incident laser pulse. This process occurs under a broad range of conditions

  18. Electron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Kingston, A.E.; Walters, H.R.J.

    1982-01-01

    The problems of intermediate energy scattering are approached from the low and high energy ends. At low intermediate energies difficulties associated with the use of pseudostates and correlation terms are discussed, special consideration being given to nonphysical pseudoresonances. Perturbation methods appropriate to high intermediate energies are described and attempts to extend these high energy approximations down to low intermediate energies are studied. It is shown how the importance of electron exchange effects develops with decreasing energy. The problem of assessing the 'effective completeness' of pseudostate sets at intermediate energies is mentioned and an instructive analysis of a 2p pseudostate approximation to elastic e - -H scattering is given. It is suggested that at low energies the Pauli Exclusion Principle can act to hide short range defects in pseudostate approximations. (author)

  19. Time delay of quantum scattering processes

    International Nuclear Information System (INIS)

    Martin, P.A.

    1981-01-01

    The author presents various aspects of the theory of the time delay of scattering processes. The author mainly studies non-relativistic two-body scattering processes, first summarizing briefly the theory of simple scattering systems. (Auth.)

  20. Scattering of electromagnetic waves by obstacles

    CERN Document Server

    Kristensson, Gerhard

    2016-01-01

    The main purpose of Scattering of Electromagnetic Waves by Obstacles is to give a theoretical treatment of the scattering phenomena, and to illustrate numerical computations of some canonical scattering problems for different geometries and materials.

  1. Chaotic scattering and quantum dynamics

    International Nuclear Information System (INIS)

    Doron, Eyal.

    1992-11-01

    The main concern of this thesis is the application of the semiclassical approximation to quantum chaotic scattering systems. We deal with two separate, although interconnected, subjects. The first subject dealt with is the semiclassical characterization of the fluctuations of the S matrix. A particular important parameter is the magnetic field B, and we show how the correlation length and line shape of S matrix elements under a change of B may be derived. An effect which is present in many physical wave systems is absorption of energy flux. We show how absorption affects both the reflectivity and the scattering phase and time delay of a scattering system. In the second part of the thesis, we show how the formalism and results obtained from chaotic scattering can be applied to the investigation of closed chaotic systems, and in particular to chaotic billiards. The semiclassical expansion for billiards is presented. In the last part of the thesis we deal with the statistics of S matrices of chaotic scattering systems. The main message of this work is that scattering matrix, and its classical counterpart the Poincare Scattering Map can be used to yield a powerful formulation of the quantum mechanical dynamics of bounded systems. (author)

  2. Light scattering reviews 9 light scattering and radiative transfer

    CERN Document Server

    Kokhanovsky, Alexander A

    2014-01-01

    This book details modern methods of the radiative transfer theory. It presents recent advances in light scattering (measurements and theory) and highlights the newest developments in remote sensing of aerosol and cloud properties.

  3. Effect of multiple scattering on lidar measurements

    International Nuclear Information System (INIS)

    Cohen, A.

    1977-01-01

    The lidar equation in its standard form involves the assumption that the scattered irradiance reaching the lidar receiver has been only singly scattered. However, in the cases of scattering from clouds and thick aerosol layers, it is shown that multiple scattering cannot be neglected. An experimental method for the detection of multiple scattering by depolarization measurement techniques is discussed. One method of theoretical calculations of double-scattering is presented and discussed

  4. Vector boson scattering at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, Wolfgang; Fleper, Christian [Department Physik, Universitaet Siegen, 57068 Siegen (Germany); Reuter, Juergen [DESY Theory Group, 22603 Hamburg (Germany); Sekulla, Marco [Institut fuer Theoretische Physik, Karlsruher Institut fuer Technologie, 76131 Karlsruhe (Germany)

    2016-07-01

    Linear colliders operating in a range of multiple TeV are able to investigate the details of vector boson scattering and electroweak symmetry breaking. We calculate cross sections with the Monte Carlo generator WHIZARD for vector boson scattering processes at the future linear e{sup +} e{sup -} collider CLIC. By finding suitable cuts, the vector boson scattering signal processes are isolated from the background. Finally, we are able to determine exclusion sensitivities on the non-Standard Model parameters of the relevant dimension eight operators.

  5. Output factors and scatter ratios

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, P N; Summers, R E; Samulski, T V; Baird, L C [Allegheny General Hospital, Pittsburgh, PA (USA); Ahuja, A S; Dubuque, G L; Hendee, W R; Chhabra, A S

    1979-07-01

    Reference is made to a previous publication on output factors and scatter ratios for radiotherapy units in which it was suggested that the output factor should be included in the definitions of scatter-air ratio and tissue-maximum ratio. In the present correspondence from other authors and from the authors of the previous publication, the original definitions and the proposed changes are discussed. Radiation scatter from source and collimator degradation of beam energy and calculation of dose in tissue are considered in relation to the objective of accurate dosimetry.

  6. Electron scattering for exotic nuclei

    International Nuclear Information System (INIS)

    Suda, T.

    2013-01-01

    An electron scattering facility is under construction in RIKEN RI Beam Factory, Japan, which is dedicated to the structure studies of short-lived nuclei. This is the world's first and currently only facility of its type. The construction is nearly completed, and the first electron scattering experiment off short-lived nuclei will be carried out in the beginning of next year. The charge density distributions of short-lived nuclei will be precisely determined by elastic electron scattering for the first time. Physics pursued at this facility including future perspectives are explained

  7. Interstellar scattering and resolution limitations

    International Nuclear Information System (INIS)

    Dennison, B.

    1987-01-01

    Density irregularities in both the interplanetary medium and the ionized component of the interstellar medium scatter radio waves, resulting in limitations on the achievable resolution. Interplanetary scattering (IPS) is weak for most observational situations, and in principle the resulting phase corruption can be corrected for when observing with sufficiently many array elements. Interstellar scattering (ISS), on the other hand, is usually strong at frequencies below about 8 GHz, in which case intrinsic structure information over a range of angular scales is irretrievably lost. With the earth-space baselines now planned, it will be possible to search directly for interstellar refraction, which is suspected of modulating the fluxes of background sources. 14 references

  8. Pelletron general purpose scattering chamber

    International Nuclear Information System (INIS)

    Chatterjee, A.; Kailas, S.; Kerekette, S.S.; Navin, A.; Kumar, Suresh

    1993-01-01

    A medium sized stainless steel scattering chamber has been constructed for nuclear scattering and reaction experiments at the 14UD pelletron accelerator facility. It has been so designed that several types of detectors, varying from small sized silicon surface barrier detectors to medium sized gas detectors and NaI detectors can be conveniently positioned inside the chamber for detection of charged particles. The chamber has been planned to perform the following types of experiments : angular distributions of elastically scattered particles, fission fragments and other charged particles, angular correlations for charged particles e.g. protons, alphas and fission fragments. (author). 2 figs

  9. Inelastic light scattering in crystals

    Science.gov (United States)

    Sushchinskii, M. M.

    The papers presented in this volume are concerned with a variety of problems in optics and solid state physics, such as Raman scattering of light in crystals and disperse media, Rayleigh and inelastic scattering during phase transitions, characteristics of ferroelectrics in relation to the general soft mode concept, and inelastic spectral opalescence. A group-theory approach is used to classify the vibrational spectra of the crystal lattice and to analyze the properties of idealized crystal models. Particular attention is given to surface vibrational states and to the study of the surface layers of crystals and films by light scattering methods.

  10. Laser light scattering basic principles and practice

    CERN Document Server

    Chu, Benjamin

    1994-01-01

    Geared toward upper-level undergraduate and graduate students, this text introduces the interdisciplinary area of laser light scattering, focusing chiefly on theoretical concepts of quasielastic laser scattering.

  11. Disadvantage factor for anisotropic scattering

    International Nuclear Information System (INIS)

    Saad, E.A.; Abdel Krim, M.S.; EL-Dimerdash, A.A.

    1990-01-01

    The invariant embedding method is used to solve the problem for a two region reactor with anisotropic scattering and to compute the disadvantage factor necessary for calculating some reactor parameters

  12. Inequalities for scattering phase shifts

    International Nuclear Information System (INIS)

    Baumgartner, B.; Grosse, H.

    1985-01-01

    A recently developed method, which was used to derive bounds on energy levels, is applied to continuous spectra and gives relations between scattering phase shifts of various angular momenta. (Author)

  13. Determination of multiple scattering effects

    International Nuclear Information System (INIS)

    Langevin, M.

    1981-01-01

    The integration of Sigmund and Winterbon numerical values is extended to the reduced thickness tau=2000. The diagram obtained allows a simple determination of the multiple scattering effect for different targets and projectiles [fr

  14. Compton scattering at high intensities

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas, E-mail: thomas.heinzl@plymouth.ac.u [University of Plymouth, School of Mathematics and Statistics, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-12-01

    High-intensity Compton scattering takes place when an electron beam is brought into collision with a high power laser. We briefly review the main intensity signatures using the formalism of strong-field quantum electrodynamics.

  15. Bibliography for thermal neutron scattering

    International Nuclear Information System (INIS)

    Sakamoto, M.; Chihara, J.; Nakahara, Y.; Kadotani, H.; Sekiya, T.

    1976-12-01

    It contains bibliographical references to measurements, calculations, reviews and basic studies on thermal neutron scatterings and dynamical properties of condensed matter. About 2,700 documents up to the end of 1975 are covered. (auth.)

  16. Integration rules for scattering equations

    International Nuclear Information System (INIS)

    Baadsgaard, Christian; Bjerrum-Bohr, N.E.J.; Bourjaily, Jacob L.; Damgaard, Poul H.

    2015-01-01

    As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints for any Möbius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.

  17. Applications of thermal neutron scattering

    International Nuclear Information System (INIS)

    Kostorz, G.

    1978-01-01

    Although in the past neutrons have been used quite frequently in the study of condensed matter, a more recent development has lead to applications of thermal neutron scattering in the investigation of more practical rather than purely academic problems. Physicists, chemists, materials scientists, biologists, and others have recognized and demonstrated that neutron scattering techniques can yield supplementary information which, in many cases, could not be obtained with other methods. The paper illustrates the use of neutron scattering in these areas of applied research. No attempt is made to present all the aspects of neutron scattering which can be found in textbooks. From the vast amount of experimental data, only a few examples are presented for the study of structure and atomic arrangement, ''extended'' structure, and dynamic phenomena in substances of current interest in applied research. (author)

  18. Light Scattering in Solid IX

    CERN Document Server

    Cardona, Manuel

    2007-01-01

    This is the ninth volume of a well-established series in which expert practitioners discuss topical aspects of light scattering in solids. It reviews recent developments concerning mainly semiconductor nanostructures and inelastic x-ray scattering, including both coherent time-domain and spontaneous scattering studies. In the past few years, light scattering has become one of the most important research and characterization methods for studying carbon nanotubes and semiconducting quantum dots, and a crucial tool for exploring the coupled exciton--photon system in semiconductor cavities. Among the novel techniques discussed in this volume are pump--probe ultrafast measurements and those which use synchrotron radiation as light source. The book addresses improvements in the intensity, beam quality and time synchronization of modern synchrotron sources, which made it possible to measure the phonon dispersion in very small samples and to determine electronic energy bands as well as enabling real-time observations...

  19. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Research Center for Electron-Photon Science, Tohoku University, 1-2-1 ... nuclei precisely determined by elastic scattering [1]. .... In order to fulfill these requirements, a window-frame shaped dipole magnet with a gap.

  20. Resonantly scattering crystals and surfaces

    International Nuclear Information System (INIS)

    Gunn, J.M.F.; Mahon, P.J.

    1990-12-01

    We examine coherence effects from forming a crystal of resonant scatterers by generalising the Fano model for autoionising resonances in electron scattering from atoms to a lattice of such scatterers. (We have in mind the case of neutron scattering from nuclei.) We solve this problem to yield two branches to the dispersion relation for the neutron in general and three when the resonance coincides with a Brillouin Zone boundary. The 'width' of the resonance is enhanced over the isolated nucleus, the best candidate for observation being the 2eV 185 Re resonance near the Bragg condition. We use these results to calculate the reflection coefficient from a surface, revealing total external reflection near resonance. We discuss experimental feasibility in both the neutron and electron cases. (author)

  1. Primer on laser scattering diagnostics

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1978-07-01

    The theory of laser scattering is presented in abbreviated format, with emphasis on physical interpretation, followed by sections on laser sources, practical considerations in designing experiments, and current developments in extending the techniques to multispace and multitime point measurements

  2. Seismic scatterers in the mid-lower mantle beneath Tonga-Fiji

    Science.gov (United States)

    Kaneshima, Satoshi

    2018-01-01

    We analyze deep and intermediate-depth earthquakes at the Tonga-Fiji region in order to reveal the distribution of scattering objects in the mid-lower mantle. By array processing waveform data recorded at regional seismograph stations in the US, Alaska, and Japan, we investigate S-to-P scattering waves in the P coda, which arise from kilometer-scale chemically distinct objects in the mid-lower mantle beneath Tonga-Fiji. With ten scatterers previously reported by the author included, twenty-three mid-lower mantle scatterers have been detected below 900 km depth, while scatterers deeper than 1900 km have not been identified. Strong mid-lower mantle S-to-P scattering most frequently occurs at the scatterers located within a depth range between 1400 km and 1600 km. The number of scatterers decreases below 1600 km depth, and the deeper objects tend to be weaker. The scatterer distribution may reflect diminishing elastic anomalies of basaltic rocks with depth relative to the surrounding mantle rocks, which mineral physics has predicted to occur. The predominant occurrence of strong S-to-P scattering waves within a narrow depth range may reflect significant reduction of rigidity due to the ferro-elastic transformation of stishovite in basaltic rocks. Very large signals associated with mid-mantle scatterers are observed only for a small portion of the entire earthquake-array pairs. Such infrequent observations of large scattering signals, combined with quite large event-to-event differences in the scattering intensity for each scatterer, suggest both that the strong arrivals approximately represent ray theoretical S-to-P converted waves at objects with a plane geometry. The plane portions of the strong scatterers may often dip steeply, with the size exceeding 100 km. For a few strong scatterers, the range of receivers showing clear scattered waves varies substantially from earthquake-array pair to pair. Some of the scatterers are also observed at different arrays that have

  3. Wavepacket scattering in potential theory

    International Nuclear Information System (INIS)

    Weber, T.A.; Hammer, C.L.

    1977-01-01

    A contour integration technique is developed which enforces the initial conditions for wavepacket-potential scattering. The expansion coefficients for the exact energy eigenstate expansion are automatically expressed in terms of the plane wave expansion coefficients of the initial wavepacket, thereby simplifying what is usually a tedious, mathematical process. The method is applicable regardless of the initial spatial separation of the wavepacket from the scattering center

  4. Phonon scattering by isotopic impurities

    International Nuclear Information System (INIS)

    Dacol, D.K.

    1974-06-01

    The effects upon vibrations of a perfect crystal lattice due to the replacement of some of its atoms by isotopes of these atoms are studied. The approach consists in considering the isotopic impurities as scattering centres for the quanta of the elastic waves the objective is to obtain the scattering amplitudes. These amplitudes are obtained through a canonical transformation method which was introduced by Chevalier and Rideau in the study of the Wentzel's model in quantum field theory

  5. WLWL scattering at the SSC

    International Nuclear Information System (INIS)

    Bagger, J.; Valencia, G.

    1990-01-01

    We use higher-order chiral Lagrangians to study W L W L scattering at the SSC. We analyze a model that is consistent with crossing, unitarity and chiral symmetry, with no resonant behavior at SSC energies. The only signal is a slightly enhanced rate for W L W L scattering. Our results indicate the level of sensitivity that must be reached before the SSC can be assured of discovering the mechanism for electroweak symmetry breaking. 19 refs., 4 figs., 2 tabs

  6. Scattering and Absorption Properties of Biomaterials for Dental Restorative Applications

    Science.gov (United States)

    Fernandez-Oliveras, A.; Rubiño, M.; Pérez, M. M.

    2013-08-01

    The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittance and reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to optically characterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively study them. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertainty associated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor were also considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lower associated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completely different for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the optical properties of the zirconia ceramic compared with those of the dental-resin composites.

  7. Progress in three-particle scattering from LQCD

    Directory of Open Access Journals (Sweden)

    Briceño Raúl A.

    2017-01-01

    Full Text Available We present the status of our formalism for extracting three-particle scattering observables from lattice QCD (LQCD. The method relies on relating the discrete finitevolume energy spectrum of a quantum field theory with its scattering amplitudes. As the finite-volume spectrum can be directly determined in LQCD, this provides a method for determining scattering observables, and associated resonance properties, from the underlying theory. In a pair of papers published over the last two years, two of us have extended this approach to apply to relativistic three-particle scattering states. In this talk we summarize recent progress in checking and further extending this result. We describe an extension of the formalism to include systems in which two-to-three transitions can occur. We then present a check of the previously published formalism, in which we reproduce the known finite-volume energy shift of a three-particle bound state.

  8. Quasinormal-Mode Expansion of the Scattering Matrix

    Directory of Open Access Journals (Sweden)

    Filippo Alpeggiani

    2017-06-01

    Full Text Available It is well known that the quasinormal modes (or resonant states of photonic structures can be associated with the poles of the scattering matrix of the system in the complex-frequency plane. In this work, the inverse problem, i.e., the reconstruction of the scattering matrix from the knowledge of the quasinormal modes, is addressed. We develop a general and scalable quasinormal-mode expansion of the scattering matrix, requiring only the complex eigenfrequencies and the far-field properties of the eigenmodes. The theory is validated by applying it to illustrative nanophotonic systems with multiple overlapping electromagnetic modes. The examples demonstrate that our theory provides an accurate first-principles prediction of the scattering properties, without the need for postulating ad hoc nonresonant channels.

  9. Group theory approach to scattering

    International Nuclear Information System (INIS)

    Wu, J.

    1985-01-01

    For certain physical systems, there exists a dynamical group which contains the operators connecting states with the same energy but belonging to potentials with different strengths. This group is called the potential group of that system. The SO(2,1) potential groups structure is introduced to describe physical systems with mixed spectra, such as Morse and Poeschl-teller potentials. The discrete spectrum describes bound states and the continuous spectrum describes bound states and the continuous spectrum describes scattering states. A solvable class of one-dimensional potentials given by Natanzon belongs to this structure with an SO(2,2) potential group. The potential group structure provides us with an algebraic procedure generating the recursion relations for the scattering matrix, which can be formulated in a purely algebraic fashion, divorced from any differential realization. This procedure, when applied to the three-dimensional scattering problem with SO(3,1) symmetry, generates the scattering matrix of the Coulomb problem. Preliminary phenomenological models for elastic scattering in a heavy-ion collision are constructed on the basis. The results obtained here can be regarded as an important extension of the group theory techniques to scattering problems similar to that developed for bound state problems

  10. Scattered light characterization of FORTIS

    Science.gov (United States)

    McCandliss, Stephan R.; Carter, Anna; Redwine, Keith; Teste, Stephane; Pelton, Russell; Hagopian, John; Kutyrev, Alexander; Li, Mary J.; Moseley, S. Harvey

    2017-08-01

    We describe our efforts to build a Wide-Field Lyman alpha Geocoronal simulator (WFLaGs) for characterizing the end-to-end sensitivity of FORTIS (Far-UV Off Rowland-circle Telescope for Imaging and Spectroscopy) to scattered Lyman α emission from outside of the nominal (1/2 degree)2 field-of-view. WFLaGs is a 50 mm diameter F/1 aluminum parabolic collimator fed by a hollow cathode discharge lamp with a 80 mm clear MgF2 window housed in a vacuum skin. It creates emission over a 10 degree FOV. WFLaGS will allow us to validate and refine a recently developed scattered light model and verify our scatter light mitigation strategies, which will incorporate low scatter baffle materials, and possibly 3-d printed light traps, covering exposed scatter centers. We present measurements of scattering intensity of Lyman alpha as a function of angle with respect to the specular reflectance direction for several candidate baffle materials. Initial testing of WFLaGs will be described.

  11. Deep Inelastic Scattering in Conformal QCD

    CERN Document Server

    Cornalba, Lorenzo; Penedones, Joao

    2010-01-01

    We consider the Regge limit of a CFT correlation function of two vector and two scalar operators, as appropriate to study small-x deep inelastic scattering in N=4 SYM or in QCD assuming approximate conformal symmetry. After clarifying the nature of the Regge limit for a CFT correlator, we use its conformal partial wave expansion to obtain an impact parameter representation encoding the exchange of a spin j Reggeon for any value of the coupling constant. The CFT impact parameter space is the three-dimensional hyperbolic space H3, which is the impact parameter space for high energy scattering in the dual AdS space. We determine the small-x structure functions associated to the exchange of a Reggeon. We discuss unitarization from the point of view of scattering in AdS and comment on the validity of the eikonal approximation. We then focus on the weak coupling limit of the theory where the amplitude is dominated by the exchange of the BFKL pomeron. Conformal invariance fixes the form of the vector impact factor a...

  12. Inverse scattering problems with multi-frequencies

    International Nuclear Information System (INIS)

    Bao, Gang; Li, Peijun; Lin, Junshan; Triki, Faouzi

    2015-01-01

    This paper is concerned with computational approaches and mathematical analysis for solving inverse scattering problems in the frequency domain. The problems arise in a diverse set of scientific areas with significant industrial, medical, and military applications. In addition to nonlinearity, there are two common difficulties associated with the inverse problems: ill-posedness and limited resolution (diffraction limit). Due to the diffraction limit, for a given frequency, only a low spatial frequency part of the desired parameter can be observed from measurements in the far field. The main idea developed here is that if the reconstruction is restricted to only the observable part, then the inversion will become stable. The challenging task is how to design stable numerical methods for solving these inverse scattering problems inspired by the diffraction limit. Recently, novel recursive linearization based algorithms have been presented in an attempt to answer the above question. These methods require multi-frequency scattering data and proceed via a continuation procedure with respect to the frequency from low to high. The objective of this paper is to give a brief review of these methods, their error estimates, and the related mathematical analysis. More attention is paid to the inverse medium and inverse source problems. Numerical experiments are included to illustrate the effectiveness of these methods. (topical review)

  13. Phaseless tomographic inverse scattering in Banach spaces

    International Nuclear Information System (INIS)

    Estatico, C.; Fedeli, A.; Pastorino, M.; Randazzo, A.; Tavanti, E.

    2016-01-01

    In conventional microwave imaging, a hidden dielectric object under test is illuminated by microwave incident waves and the field it scatters is measured in magnitude and phase in order to retrieve the dielectric properties by solving the related non-homogenous Helmholtz equation or its Lippmann-Schwinger integral formulation. Since the measurement of the phase of electromagnetic waves can be still considered expensive in real applications, in this paper only the magnitude of the scattering wave fields is measured in order to allow a reduction of the cost of the measurement apparatus. In this respect, we firstly analyse the properties of the phaseless scattering nonlinear forward modelling operator in its integral form and we provide an analytical expression for computing its Fréchet derivative. Then, we propose an inexact Newton method to solve the associated nonlinear inverse problems, where any linearized step is solved by a L p Banach space iterative regularization method which acts on the dual space L p* . Indeed, it is well known that regularization in special Banach spaces, such us L p with 1 < p < 2, allows to promote sparsity and to reduce Gibbs phenomena and over-smoothness. Preliminary results concerning numerically computed field data are shown. (paper)

  14. Bubble nonlinear dynamics and stimulated scattering process

    Science.gov (United States)

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  15. Study of nuclei by electron scattering

    International Nuclear Information System (INIS)

    Torizuka, Yoshiharu; Saito, Teijiro; Ito, Kohei; Terasawa, Tatsuo; Hosoyama, Kenji.

    1974-01-01

    It is urgently required to clarify the physical meaning of the quasi-elastic scattering associated with the background, in order to develop rapidly the study of giant resonance. The experimental works performed in the present term aimed at the synthetic understanding of both giant resonance and quasi-elastic scattering, and presented the possibility of the separability of giant resonance from quasi-elastic scattering. The object of this experiment was to measure higher order multi-pole moment of 51 V by using relatively high energy electron beam. Targets of chemically pure 51 V had thickness of 68.2 or 100.5 mg/cm 2 . The measurement was made at the position where scattering angle was 155 0 . The state of M7 can be well explained by the model with (fsub(7/2)) 3 coordination. This may be because the nuclei with stretched configuration such as 51 V do not have any contribution of orbital motion, but have the contribution of eigen magnetic moment to the highest multiplicity. States of M3 and M5 are a little complicated. Since in the experimental equipment used, the contribution of charge distribution was so large, that it was difficult to make the precision measurement of M3 and M5. In 51 V, however, it can be considered that M3 and M5 decreased by the contribution of 2Psub(3/2) and 1fsub(5/2). On the other hand, there is no contribution from these energy states to M7. (Tai, I.)

  16. Multiple Scattering Theory for Spectroscopies : a Guide to Multiple Scattering Computer Codes : Dedicated to C. R. Natoli on the Occasion of his 75th Birthday

    CERN Document Server

    Hatada, Keisuke; Ebert, Hubert

    2018-01-01

    This edited book, based on material presented at the EU Spec Training School on Multiple Scattering Codes and the following MSNano Conference, is divided into two distinct parts. The first part, subtitled “basic knowledge”, provides the basics of the multiple scattering description in spectroscopies, enabling readers to understand the physics behind the various multiple scattering codes available for modelling spectroscopies. The second part, “extended knowledge”, presents “state- of-the-art” short chapters on specific subjects associated with improving of the actual description of spectroscopies within the multiple scattering formalism, such as inelastic processes, or precise examples of modelling.

  17. Polaron scattering by an external field

    International Nuclear Information System (INIS)

    Kochetov, E.A.

    1980-01-01

    The problem of polaron scattering by an external field is studied. The problem is solved using the stationary scattering theory formalism based on two operators: the G Green function operator and the T scattering operator. The dependence of the scattering amplitude on the quasi particle structure is studied. The variation approach is used for estimation of the ground energy level

  18. A hybrid Scatter/Transform cloaking model

    Directory of Open Access Journals (Sweden)

    Gad Licht

    2015-01-01

    Full Text Available A new Scatter/Transform cloak is developed that combines the light bending of refraction characteristic of a Transform cloak with the scatter cancellation characteristic of a Scatter cloak. The hybrid cloak incorporates both Transform’s variable index of refraction with modified linear intrusions to maximize the Scatter cloak effect. Scatter/Transform improved the scattering cross-section of cloaking in a 2-dimensional space to 51.7% compared to only 39.6% or 45.1% respectively with either Scatter or Transform alone. Metamaterials developed with characteristics based on the new ST hybrid cloak will exhibit superior cloaking capabilities.

  19. Holographic corrections to meson scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Armoni, Adi; Ireson, Edwin, E-mail: 746616@swansea.ac.uk

    2017-06-15

    We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.

  20. Gold nanoparticles extraction from dielectric scattering background

    Science.gov (United States)

    Hong, Xin; Wang, Jingxin

    2014-11-01

    The unique advantages such as brightness, non-photobleaching, good bio-compatibility make gold nanoparticles desirable labels and play important roles in biotech and related research and applications. Distinguishing gold nanoparticles from other dielectric scattering particles is of more importance, especially in bio-tracing and imaging. The enhancement image results from the localized surface plasmon resonance associated with gold nanopartilces makes themselves distinguishable from other dielectric particles, based on which, we propose a dual-wavelength detection method by employing a high sensitive cross-polarization microscopy.

  1. Applications of inverse and algebraic scattering theories

    Energy Technology Data Exchange (ETDEWEB)

    Amos, K. [Qinghua Univ., Beijing, BJ (China). Dept. of Physics

    1997-06-01

    Inverse scattering theories, algebraic scattering theory and exactly solvable scattering potentials are diverse ways by which scattering potentials can be defined from S-functions specified by fits to fixed energy, quantal scattering data. Applications have been made in nuclear (heavy ion and nucleon-nucleus scattering), atomic and molecular (electron scattering from simple molecules) systems. Three inverse scattering approaches are considered in detail; the semiclassical WKB and fully quantal Lipperheide-Fiedeldey method, than algebraic scattering theory is applied to heavy ion scattering and finally the exactly solvable Ginocchio potentials. Some nuclear results are ambiguous but the atomic and molecular inversion potentials are in good agreement with postulated forms. 21 refs., 12 figs.

  2. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  3. Polarization recovery through scattering media.

    Science.gov (United States)

    de Aguiar, Hilton B; Gigan, Sylvain; Brasselet, Sophie

    2017-09-01

    The control and use of light polarization in optical sciences and engineering are widespread. Despite remarkable developments in polarization-resolved imaging for life sciences, their transposition to strongly scattering media is currently not possible, because of the inherent depolarization effects arising from multiple scattering. We show an unprecedented phenomenon that opens new possibilities for polarization-resolved microscopy in strongly scattering media: polarization recovery via broadband wavefront shaping. We demonstrate focusing and recovery of the original injected polarization state without using any polarizing optics at the detection. To enable molecular-level structural imaging, an arbitrary rotation of the input polarization does not degrade the quality of the focus. We further exploit the robustness of polarization recovery for structural imaging of biological tissues through scattering media. We retrieve molecular-level organization information of collagen fibers by polarization-resolved second harmonic generation, a topic of wide interest for diagnosis in biomedical optics. Ultimately, the observation of this new phenomenon paves the way for extending current polarization-based methods to strongly scattering environments.

  4. Strong SH-to-Love wave scattering off the Southern California Continental Borderland

    Science.gov (United States)

    Yu, Chunquan; Zhan, Zhongwen; Hauksson, Egill; Cochran, Elizabeth S.

    2017-01-01

    Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers associated with lateral heterogeneities remains challenging. In this study, we analyze broadband waveforms recorded by the Southern California Seismic Network and observe strongly scattered Love waves following the arrival of teleseismic SH wave. These scattered Love waves travel approximately in the same (azimuthal) direction as the incident SH wave at a dominant period of ~10 s but at an apparent velocity of ~3.6 km/s as compared to the ~11 km/s for the SH wave. Back-projection suggests that this strong scattering is associated with pronounced bathymetric relief in the Southern California Continental Borderland, in particular the Patton Escarpment. Finite-difference simulations using a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling suggests a relatively low shear wave velocity in the Continental Borderland.

  5. Post-PRK corneal scatter measurements with a scanning confocal slit photon counter

    Science.gov (United States)

    Taboada, John; Gaines, David; Perez, Mary A.; Waller, Steve G.; Ivan, Douglas J.; Baldwin, J. Bruce; LoRusso, Frank; Tutt, Ronald C.; Perez, Jose; Tredici, Thomas; Johnson, Dan A.

    2000-06-01

    Increased corneal light scatter or 'haze' has been associated with excimer laser photorefractive surgery of the cornea. The increased scatter can affect visual performance; however, topical steroid treatment post surgery substantially reduces the post PRK scatter. For the treatment and monitoring of the scattering characteristics of the cornea, various methods have been developed to objectively measure the magnitude of the scatter. These methods generally can measure scatter associated with clinically observable levels of haze. For patients with moderate to low PRK corrections receiving steroid treatment, measurement becomes fairly difficult as the haze clinical rating is non observable. The goal of this development was to realize an objective, non-invasive physical measurement that could produce a significant reading for any level including the background present in a normal cornea. As back-scatter is the only readily accessible observable, the instrument is based on this measurement. To achieve this end required the use of a confocal method to bias out the background light that would normally confound conventional methods. A number of subjects with nominal refractive errors in an Air Force study have undergone PRK surgery. A measurable increase in corneal scatter has been observed in these subjects whereas clinical ratings of the haze were noted as level zero. Other favorable aspects of this back-scatter based instrument include an optical capability to perform what is equivalent to an optical A-scan of the anterior chamber. Lens scatter can also be measured.

  6. Memory sparing, fast scattering formalism for rigorous diffraction modeling

    Science.gov (United States)

    Iff, W.; Kämpfe, T.; Jourlin, Y.; Tishchenko, A. V.

    2017-07-01

    The basics and algorithmic steps of a novel scattering formalism suited for memory sparing and fast electromagnetic calculations are presented. The formalism, called ‘S-vector algorithm’ (by analogy with the known scattering-matrix algorithm), allows the calculation of the collective scattering spectra of individual layered micro-structured scattering objects. A rigorous method of linear complexity is applied to model the scattering at individual layers; here the generalized source method (GSM) resorting to Fourier harmonics as basis functions is used as one possible method of linear complexity. The concatenation of the individual scattering events can be achieved sequentially or in parallel, both having pros and cons. The present development will largely concentrate on a consecutive approach based on the multiple reflection series. The latter will be reformulated into an implicit formalism which will be associated with an iterative solver, resulting in improved convergence. The examples will first refer to 1D grating diffraction for the sake of simplicity and intelligibility, with a final 2D application example.

  7. On the influence of resonance photon scattering on atom interference

    International Nuclear Information System (INIS)

    Bozic, M; Arsenovic, D; Sanz, A S; Davidovic, M

    2010-01-01

    Here, the influence of resonance photon-atom scattering on the atom interference pattern at the exit of a three-grating Mach-Zehnder interferometer is studied. It is assumed that the scattering process does not destroy the atomic wave function describing the state of the atom before the scattering process takes place, but only induces a certain shift and change of its phase. We find that the visibility of the interference strongly depends on the statistical distribution of transferred momenta to the atom during the photon-atom scattering event. This also explains the experimentally observed (Chapman et al 1995 Phys. Rev. Lett. 75 2783) dependence of the visibility on the ratio d p /λ i =y' 12 (2π/kdλ i ), where y' 12 is the distance between the place where the scattering event occurs and the first grating, k is the wave number of the atomic centre-of-mass motion, d is the grating constant and λ i is the photon wavelength. Furthermore, it is remarkable that photon-atom scattering events happen experimentally within the Fresnel region, i.e. the near-field region, associated with the first grating, which should be taken into account when drawing conclusions about the relevance of 'which-way' information for the interference visibility.

  8. Scattering of accelerated wave packets

    Science.gov (United States)

    Longhi, S.; Horsley, S. A. R.; Della Valle, G.

    2018-03-01

    Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.

  9. Quantum scattering at low energies

    DEFF Research Database (Denmark)

    Derezinski, Jan; Skibsted, Erik

    2009-01-01

    For a class of negative slowly decaying potentials, including V(x):=−γ|x|−μ with 0quantum mechanical scattering theory in the low-energy regime. Using appropriate modifiers of the Isozaki–Kitada type we show that scattering theory is well behaved on the whole continuous spectrum...... of the Hamiltonian, including the energy 0. We show that the modified scattering matrices S(λ) are well-defined and strongly continuous down to the zero energy threshold. Similarly, we prove that the modified wave matrices and generalized eigenfunctions are norm continuous down to the zero energy if we use...... of the kernel of S(λ) experiences an abrupt change from passing from positive energies λ to the limiting energy λ=0 . This change corresponds to the behaviour of the classical orbits. Under stronger conditions one can extract the leading term of the asymptotics of the kernel of S(λ) at its singularities....

  10. SCATTERING FROM RAMIFIED POLYMERIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    M.Benhamou

    2004-01-01

    Full Text Available Here, of great interest to us is a quantitative study of the scattering properties from ramified polymeric systems of arbitrary topology. We consider three types of systems, namely ramified polymers in solution, ramified polymer blends, or ternary mixtures made of two ramified polymers of different chemical nature immersed in a good solvent. To achieve the goal of the study, use is made of the Random Phase Approximation. First we determine the exact expression of the form factor of an ideal ramified polymer of any topology, from which we extract the exact expression of its gyration radius. Using the classical Zimm's formulae and the exact form factor, we determine all scattering properties of these three types of ramified polymeric systems. The main conclusion is that ramification of the chains induces drastic changes of the scattering properties.

  11. Kerr scattering coefficients via isomonodromy

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Bruno Carneiro da [Departamento de Física, Universidade Federal de Pernambuco,50670-901, Recife, Pernambuco (Brazil); Novaes, Fábio [International Institute of Physics, Federal University of Rio Grande do Norte,Av. Odilon Gomes de Lima 1722, Capim Macio, Natal-RN 59078-400 (Brazil)

    2015-11-23

    We study the scattering of a massless scalar field in a generic Kerr background. Using a particular gauge choice based on the current conservation of the radial equation, we give a generic formula for the scattering coefficient in terms of the composite monodromy parameter σ between the inner and the outer horizons. Using the isomonodromy flow, we calculate σ exactly in terms of the Painlevé V τ-function. We also show that the eigenvalue problem for the angular equation (spheroidal harmonics) can be calculated using the same techniques. We use recent developments relating the Painlevé V τ-function to Liouville irregular conformal blocks to claim that this scattering problem is solved in the combinatorial sense, with known expressions for the τ-function near the critical points.

  12. Huang diffuse scattering of neutrons

    International Nuclear Information System (INIS)

    Burkel, E.; Guerard, B. v.; Metzger, H.; Peisl, J.

    1979-01-01

    Huang diffuse neutron scattering was measured for the first time on niobium with interstitially dissolved deuterium as well as on MgO after neutron irradiation and Li 7 F after γ-irradiation. With Huang diffuse scattering the strength and symmetry of the distortion field around lattice defects can be determined. Our results clearly demonstrate that this method is feasible with neutrons. The present results are compared with X-ray experiments and the advantages of using neutrons is discussed in some detail. (orig.)

  13. [Inelastic electron scattering from surfaces

    International Nuclear Information System (INIS)

    1993-01-01

    This program uses ab-initio and multiple scattering to study surface dynamical processes; high-resolution electron-energy loss spectroscopy is used in particular. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50--300 eV). The analyses have been extended to surfaces of ordered alloys. Phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross section calculations. Work on low-energy electron and positron holography is mentioned

  14. Scattering behaviour of Janus particles

    CERN Document Server

    Kaya, H

    2002-01-01

    Recent advances in polymer synthesis has produced so-called Janus micelles: tailor-made copolymer structures in which the blocks constitute separate moieties. We present expressions for the form factors, P(Q), and the radii of gyration, R sub g , of Janus particles with spherical and cylindrical morphology and check their validity by comparison to simulated scattering data, calculated from Monte Carlo generations of the pair-distance distribution function, p(r). The effect of block incompatibilities on the scattering is briefly discussed. (orig.)

  15. Summary of neutron scattering lengths

    International Nuclear Information System (INIS)

    Koester, L.

    1981-12-01

    All available neutron-nuclei scattering lengths are collected together with their error bars in a uniform way. Bound scattering lengths are given for the elements, the isotopes, and the various spin-states. They are discussed in the sense of their use as basic parameters for many investigations in the field of nuclear and solid state physics. The data bank is available on magnetic tape, too. Recommended values and a map of these data serve for an uncomplicated use of these quantities. (orig.)

  16. High energy elastic hadron scattering

    International Nuclear Information System (INIS)

    Fearnly, T.A.

    1986-04-01

    The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described

  17. Electron scattering off palladium isotopes

    International Nuclear Information System (INIS)

    Laan, J.B. van der.

    1986-01-01

    The low-lying states of the even Pd isotopes are characterized by vibrator-like properties. In this thesis the results of an electron scattering experiment on the Pd isotopes, designed to study the description of such nuclei in the Anharmonic Vibrator Model (AVM) and the Interacting Boson Approximation (IBA), are presented and discussed. Data have been taken at the high-resolution electron scattering facility of NIKHEF-K and covered a momentum-transfer range of 0.4 to 2.5 fm -1 . (Auth.)

  18. Commercial applications of neutron scattering

    International Nuclear Information System (INIS)

    Hutchings, M.T.

    1993-01-01

    The fact that industry is now willing to pay the full commercial cost for certain neutron scattering experiments aimed at solving its urgent materials - related problems is a true testimony to the usefulness of neutrons as microscopic probes. This paper gives examples of such use of three techniques drawn mainly from our experience at AEA Technology Harwell Laboratory. These are diffraction to measure residual stress, small angle neutron scattering to examine hardening precipitates in ferritic steels brought about by irradiation, and reflectivity to study amorphous diamond layers deposited on silicon. In most cases it is the penetrative power of the neutron which proves to be its best asset for commercial industrial applicaitons. (author)

  19. Nucleon-nucleon scattering data

    International Nuclear Information System (INIS)

    Bystricky, J.; Lehar, F.

    1981-01-01

    The present review contains a compilation of p-p, n-n, n-p and p-n elastic scattering data, total cross sections for elastic and inelastic nucleon-nucleon processes as well as the slope parameters and the ratios of the real to the imaginary part of the forward scattering amplitude measured at all energies. The data are given in detailed tables with comments on each measurement. Summary tables, nucleon-nucleon kinematics formulae, transformation tables for kinematics, a detailed list of references and an author index complete the paper. (orig.)

  20. Optical scattering measurement and analysis

    CERN Document Server

    Stover, John C

    2012-01-01

    Newly included are scatter models for pits and particles as well as the use of wafer scanners to locate and size isolated surface features. New sections cover the multimillion-dollar wafer scanner business, establishing that microroughness is the noise, not the signal, in these systems. Scatter measurements, now routinely used to determine whether small-surface features are pits or particles and inspiring new technology that provides information on particle material, are also discussed. These new capabilities are now supported by a series of international standards, and a new chapter reviews t

  1. Thomson scattering if FIR radiation

    International Nuclear Information System (INIS)

    Evans, D.E.

    1976-12-01

    The frequency spectrum of radiation scattered by collective density fluctuations of electrons in a hot plasma is influenced by ion and electron temperatures, impurity concentration and plasma effective charge, magnetic field, and the level of microturbulence. A pulsed laser suitable for measuring collective scattering in a tokamak will have infrared wavelength, power of the order of MWs and bandwidth of a few 10s of MHz. The extent to which these conditions can be met by optically pumped submillimetre lasers, including narrow band oscillators, amplifiers and superradiance - injection assemblies operated in CH 3 F and D 2 O, under development at the Culham Laboratory, is discussed. (author)

  2. Detection of explosives by neutron scattering

    International Nuclear Information System (INIS)

    Brooks, F.D.; Buffler, A.; Allie, M.S.; Nchodu, M.R.; Bharuth-Ram, K.

    1998-01-01

    For non-intrusive detection of hidden explosives or other contraband such as narcotics a fast neutron scattering analysis (FNSA) technique is proposed. An experimental arrangement uses a collimated, pulsed beam of neutrons directed at the sample. Scattered neutrons are detected by liquid scintillation counters at different scattering angles. A scattering signature is derived from two-parameter data, counts vs pulse height and time-of-flight measured for each element (H, C, N or O) at each of two scattering angles and two neutron energies. The elemental signatures are very distinctive and constitute a good response matrix for unfolding elemental components from the scattering signatures measured for different compounds

  3. Alpha particle collective Thomson scattering in TFTR

    International Nuclear Information System (INIS)

    Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J.; Bindslev, H.

    1993-01-01

    A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques

  4. Scattering by two spheres: Theory and experiment

    DEFF Research Database (Denmark)

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1998-01-01

    of suspended sediments. The scattering properties of single regular-shaped particles have been studied in depth by several authors in the past. However, single particle scattering cannot explain all features of scattering by suspended sediment. When the concentration of particles exceeds a certain limit...... on three issues: (1) to develop a simplified theory for scattering by two elastical spheres; (2) to measure the scattering by two spheres in a water tank, and (3) to compare the theoretical/numerical results with the measured data. A number of factors influencing multiple scattering, including...

  5. Transition radiation and transition scattering

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1982-01-01

    Transition radiation is a process of a rather general character. It occurs when some source, which does not have a proper frequency (for example, a charge) moves at a constant velocity in an inhomogeneous and (or) nonstationary medium or near such a medium. The simplest type of transition radiation takes place when a charge crosses a boundary between two media (the role of one of the media may be played by vacuum). In the case of periodic variation of the medium, transition radiation possesses some specific features (resonance transition radiation or transition scattering). Transition scattering occurs, in particular, when a permittivity wave falls onto an nonmoving (fixed) charge. Transition scattering is closely connected with transition bremsstrahlung radiation. All these transition processes are essential for plasma physics. Transition radiation and transition scattering have analogues outside the framework of electrodynamics (like in the case of Vavilov-Cherenkov radiation). In the present report the corresponding range of phenomena is elucidated, as far as possible, in a generally physical aspect. (Auth.)

  6. Nuclear matter and electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sick, I [Dept. fuer Physik und Astronomie, Univ. Basel (Switzerland)

    1998-06-01

    We show that inclusive electron scattering at large momentum transfer allows a measurement of short-range properties of nuclear matter. This provides a very valuable constraint in selecting the calculations appropriate for predicting nuclear matter properties at the densities of astrophysical interest. (orig.)

  7. Scattering theory and automorphic functions

    International Nuclear Information System (INIS)

    Lachaud, G.

    1982-01-01

    After a consideration of the Fourier expansion of an automorphic function corresponding to the group SL(2,R) and a description of the Eisenstein series the author describes the application of these results to the quantum mechanical scattering theory using the group SO(2,R). (HSI)

  8. Antiproton-Proton Glory Scattering

    CERN Multimedia

    2002-01-01

    This experiment measures @*p and K|-p backwards scattering between 8 and 16 GeV/c in the Omega spectrometer using the S1 beam, with sensitivities of several events per nanobarn. The mechanism responsible for backward scattering in channels not mediated by particle exchange is not understood, and could be almost energy-independent glory scattering, especially since relatively high cross sections of 190~(@*p) and 120~(K|-p)nb have been measured earlier at 5~GeV/c. @p|-p backwards scattering is measured for monitoring purposes. The trigger requires a forward particle of momentum close to the beam momentum. Absence of light in the two forward Cerenkov counters indicates that the particle is a proton. Combinations of an incident @p|- and an outgoing K|+, or an incident K|- or @* and an outgoing @p|+, cover the following byproducts: @*p~@A~@p|+@p|- which is an (allowed) baryon exchange reaction, and the exotic exchange reactions @p|-p~@A~K|+Y K|-p~@A~@p|+Y|-, where Y|- may be the @S|- or the Y*|-(1385).

  9. Elastic scattering at the LHC

    CERN Document Server

    Kaspar, Jan; Deile, M

    The seemingly simple elastic scattering of protons still presents a challenge for the theory. In this thesis we discuss the elastic scattering from theoretical as well as experimental point of view. In the theory part, we present several models and their predictions for the LHC. We also discuss the Coulomb-hadronic interference, where we present a new eikonal calculation to all orders of alpha, the fine-structure constant. In the experimental part we introduce the TOTEM experiment which is dedicated, among other subjects, to the measurement of the elastic scattering at the LHC. This measurement is performed primarily with the Roman Pot (RP) detectors - movable beam-pipe insertions hundreds of meters from the interaction point, that can detect protons scattered to very small angles. We discuss some aspects of the RP simulation and reconstruction software. A central point is devoted to the techniques of RP alignment - determining the RP sensor positions relative to each other and to the beam. At the end we pres...

  10. Towards a nonpotential scattering theory

    International Nuclear Information System (INIS)

    Mignani, R.

    1985-01-01

    We present a formal approach to nonpotential scattering theory (i.e. scattering under unrestricted nonlocal non-Hamiltonian forces), based on the generalization of the concept of scattering matrix (and related topics) to the Lie-isotopic and Lie-admissible case. In the time-dependent formalism, the main taks is the determination of the evolution operator, from which the S matrix is found as a double infinite limit. The study of time-development operators is carried out in detail in the isotopic case, and involves the isotopic generalizations of Moller wave operators, in- and out-states, and temporal (retarded and advanced) propagators. We give also expansion techniques for the S matrix, which extend to the Lie-isotopic formulation the Feynman-Dyson perturbation series, the Magnus expansion, and the Wei-Norman theorem. In the time-independent approach, we solve the isotopic Schroedinger eigenvalue equation by exploiting the properties of isotopic Green operators, Lippmann-Schwinger equations, and incoming and outgoing states, which turn out to be suitable generalizations of the conventional ones. The changes in cross sections due to nonpotential forces are explicitly worked out in some simple cases. A purely algebraic approach to nonpotential scattering, essentially based on the properties of the isowave operators, is presented. The Lie-admissible formulation of the main results is briefly outlined

  11. Intrabeam scattering in the HEB

    International Nuclear Information System (INIS)

    Larson, D.J.

    1994-03-01

    A study of Intrabeam Scattering (IBS) in the High Energy Booster (HEB) is presented. Piwinski's formulas for IBS are presented and evaluated for the HEB. A computer code written to evaluate Piwinski's formulas is discussed. The result of the study is that IBS should not be a problem for the HEB, although the safety factor is not enormous

  12. Recent results in Rayleigh scattering

    International Nuclear Information System (INIS)

    Kahane, S.; Shahal, O.; Moreh, R.; Ben-Gurion Univ. of the Negev, Beer-Sheva

    1997-01-01

    New measurements of Rayleigh scattering, employing neutron capture γ rays are presented. Experimental conditions are achieved such that the Rayleigh contribution is dominant and much larger than other competing coherent process. A detailed comparison with the modified relativistic form factor approximation (MRFF) is made. It is found that MRFF overestimates the true cross sections by 3-4%. (author)

  13. Theoretical challenges in neutron scattering

    International Nuclear Information System (INIS)

    Lovesey, S.W.

    1985-07-01

    Topics in the interpretation of neutron scattering experiments from paramagnets and quantum fluids are used to illustrate the puissance of the technique in condensed matter research, and to record some fundamental shortcomings in the available theory of many-particle systems. (author)

  14. Inelastic scattering on 100Ru

    International Nuclear Information System (INIS)

    Sirota, S.

    1987-01-01

    Aspects of the nuclear structure of 100 Ru whe investigated by means of the scattering of 100 Ru (p,p') 100 Ru* with 16 MeV protons, where 21 states were investigated. The emergent protons were analysed by a magnetic spectrograph, of the enge type with a typical resolution of ≅ 9 KeV. (A.C.A.S.) [pt

  15. Geometric scattering in robotic manipulation

    NARCIS (Netherlands)

    Stramigioli, Stefano; van der Schaft, Arjan; Maschke, B.M.; Melchiorri, C.

    2002-01-01

    In this paper, we study the interconnection of two robots, which are modeled as port-controlled Hamiltonian systems through a transmission line with time delay. There will be no analysis of the time delay, but its presence justifies the use of scattering variables to preserve passivity. The

  16. Coupling between minimum scattering antennas

    DEFF Research Database (Denmark)

    Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans

    1974-01-01

    Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed...

  17. Bibliography for thermal neutron scattering

    International Nuclear Information System (INIS)

    Sakamoto, Masanobu; Chihara, Junzo; Gotoh, Yorio; Kadotani, Hiroyuki; Sekiya, Tamotsu.

    1979-09-01

    Bibliographic references are given for measurements, calculations, reviews and basic studies of thermal neutron scattering and dynamical properties of condensed matter. This is the sixth edition covering 3,326 articles collected up to 1978. The edition being the final issue of the present bibliography series, a forthcoming edition will be published in a new form of bibliography. (author)

  18. Scattering theory and orthogonal polynomials

    International Nuclear Information System (INIS)

    Geronimo, J.S.

    1977-01-01

    The application of the techniques of scattering theory to the study of polynomials orthogonal on the unit circle and a finite segment of the real line is considered. The starting point is the recurrence relations satisfied by the polynomials instead of the orthogonality condition. A set of two two terms recurrence relations for polynomials orthogonal on the real line is presented and used. These recurrence relations play roles analogous to those satisfied by polynomials orthogonal on unit circle. With these recurrence formulas a Wronskian theorem is proved and the Christoffel-Darboux formula is derived. In scattering theory a fundamental role is played by the Jost function. An analogy is deferred of this function and its analytic properties and the locations of its zeros investigated. The role of the analog Jost function in various properties of these orthogonal polynomials is investigated. The techniques of inverse scattering theory are also used. The discrete analogues of the Gelfand-Levitan and Marchenko equations are derived and solved. These techniques are used to calculate asymptotic formulas for the orthogonal polynomials. Finally Szego's theorem on toeplitz and Hankel determinants is proved using the recurrence formulas and some properties of the Jost function. The techniques of inverse scattering theory are used to calculate the correction terms

  19. Gamma holography from multiple scattering

    International Nuclear Information System (INIS)

    Coussement, R.

    2007-01-01

    Since the introduction of heterodyne methods for synchrotron radiation (Cousesement et al. in Phys. Rev. B 54:16003, 1996; Callens et al. in Phys. Rev. 67:104423, 2003) one observes interferences between two scattering amplitudes; the scattering amplitude of resonant nuclei in a reference sample and the scattering amplitude of nuclei in the sample under investigation. Theses interferences can easily been observed as resonances in velocity spectra when one uses a time integrated method. They can also been observed as quantum beats, when one would use the time differential method. For both methods it is important that one uses a reference sample and therefore both methods disserved the name 'heterodyne methods.' As theses interferences are a product of two scattering amplitudes, the amplitude of a wave scattered form the investigated sample can be known with its phase. But it is assumed that the reference wave is known in advance by a proper choice of the reference sample. At first sight it is very likely that multiple scattering would add more complexity but in this paper it is claimed that on the contrary it provide a bonus, especially for single crystals. It provokes only a line broadening and a line shift of the resonances in the velocity spectra (or a change in the damping and frequency of the quantum beats when the time spectra are registered). Moreover these changes in the line shapes can easily be measured and they provide all the information needed to reconstruct a 3-D picture of the atomic arrangement of resonant nuclei and moreover they distinguish between different hyperfine sites. The method may be more practical for measurements on synchrotron radiation but it does also apply to velocity spectra obtained from resonant scattering with strong sources. The use of radioactive sources suffer from the disadvantage of poorer statistics or much longer accumulation times but they enjoy the advantage to be table-top and at-home experiments. As strong sources are

  20. Neutron scattering and models: Silver

    International Nuclear Information System (INIS)

    Smith, A.B.

    1996-07-01

    Differential neutron elastic-scattering cross sections of elemental silver were measured from 1.5 → 10 MeV at ∼ 100 keV intervals up to 3 MeV, at ∼ 200 keV intervals from 3 → 4 MeV, and at ∼ 500 keV intervals above 4 MeV. At ≤ 4 MeV the angular range of the measurements was ∼ 20 0 → 160 0 with 10 measured values below 3 MeV and 20 from 3 → 4 MeV at each incident energy. Above 4 MeV ≥ 40 scattering angles were used distributed between ∼ 17 0 and 16 0 All of the measured elastic distributions included some contributions due to inelastic scattering. Below 4 MeV the measurements determined cross sections for ten inelastically-scattered neutron groups corresponding to observed excitations of 328 ± 13, 419 ± 50, 748 ± 25, 908 ± 26, 115 ± 38, 1286 ± 25, 1507 ± 20, 1632 ± 30, 1835 ± 20 and 1944 ± 26 keV. All of these inelastic groups probably were composites of contributions from the two isotopes 107 Ag and 109 Ag. The experimental results were interpreted in terms of the spherical optical model and of rotational and vibrational coupled-channels models, and physical implications are discussed. In particular, the neutron-scattering results are consistent with a ground-state rotational band with a quadrupole deformation Β 2 = 0.20 ± ∼ 10% for both of the naturally-occurring silver isotopes

  1. ΠN scattering at low energies

    International Nuclear Information System (INIS)

    Menezes, A.M.M.

    1985-01-01

    The pion-nucleon scattering for energies up to 300 MeV is studied by means of a theoretical model based on chiral symmetry, implemented by effective lagrangians. The interaction between the pion and the nucleon is mediated by only four particles: nucleon, delta, rho e sigma. The amplitudes associated to the delta and sigma contain free parameters, that must be extracted from experiment. The set of values obtained from fits below and above threshold disagree, indicating that, in the context of the model, a unified description in both regions is not possible. The results above threshold are sensitive to the method of unitarization employed. The method adopted in this work has a simple physical meaning and the ressonating wave associated to the delta is quite well reproduced. (Author) [pt

  2. Pion Virtual Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ocherashvili, Aharon [Tel Aviv U.

    2000-01-01

    Plasma production via field ionization occurs when an incoming electron beam is sufficiently dense that the electric field associated with the beam ionizes the neutral vapor. Experiments at the Stanford Linear Accelerator Center (SLAC) explore the threshold conditions necessary to induce field ionization in a neutral lithium (Li) vapor. By independently varying the bunch length, transverse spot size or number of electrons per bunch, the radial component of the electric field is controlled to be above or below the threshold for field ionization. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments. Based on the experimental results, the incoming beam ionizes the neutral Li vapor when its peak electric field is approximately 5 G V / m and higher. This electric field translates into a peak charge density of approximately 3x 1016 cm-3 . The experimental conditions are approximated and simulated in a 2-D particle-in-cell code, OOPIC. The code and the data correspond well in terms of the correct threshold conditions and the dependence on the critical beam parameters. In addition to the ionization threshold, the field ionization effects are characterized by the beam's energy loss through the Li vapor column due to the plasma wake field production. The peak and average energy loss as a result of wake production and beam propagation through the plasma is compared with simulation results from OOPIC. The simulation code accurately predicts the peak energy loss of the beam, but approximations in the code produce differences between the average energy loss measured and the loss calculated by the simulation.

  3. Raman scattering mediated by neighboring molecules

    Science.gov (United States)

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L.

    2016-05-01

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  4. Hyper-Rayleigh scattering in centrosymmetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mathew D.; Ford, Jack S.; Andrews, David L., E-mail: david.andrews@physics.org [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2015-09-28

    Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E1{sup 3}, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E1{sup 2}M1 and E1{sup 2}E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E1{sup 2}E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties.

  5. Raman scattering mediated by neighboring molecules

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L., E-mail: david.andrews@physics.org [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2016-05-07

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  6. Bursting behaviours in cascaded stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang

    2012-01-01

    Stimulated Brillouin scattering is studied by numerically solving the Vlasov—Maxwell system. A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma. It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light, as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction. The bursting time in the reflectivity is found to be less than half the ion acoustic period. The ion temperature can affect the stimulated Brillouin scattering cascade, which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures. For stimulated Brillouin scattering saturation, higher-harmonic generation and wave—wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter. In addition, stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light. (physics of gases, plasmas, and electric discharges)

  7. Scattering and transfer reactions with heavy ions

    International Nuclear Information System (INIS)

    Hussein, M.S.

    From the elastic scattering analysis the input parameters are found for the inelastic scattering analysis and the transfer reactions of the heavy ion reactions. The main theme reported is the likeness and conection among these processes. (L.C.) [pt

  8. Magnetoconductivity of quantum wires with elastic and inelastic scattering

    DEFF Research Database (Denmark)

    Bruus, Henrik; Flensberg, Karsten; Smith

    1993-01-01

    We use a Boltzmann equation to determine the magnetoconductivity of quantum wires. The presence of a confining potential in addtion to the magnetic field removes the degeneracy of the Landau levels and allows one to associate a group velocity with each single-particle state. The distribution...... function describing the occupation of these single-particle states satisfies a Boltzmann equation, which may be solved exactly in the case of impurity scattering. In the case where the electrons scatter against both phonons and impurities we solve numerically—and in certain limits analytically—the integral...

  9. Early history of neutron scattering at Oak Ridge

    International Nuclear Information System (INIS)

    Wilkinson, M.K.

    1985-07-01

    Most of the early development of neutron scattering techniques utilizing reactor neutrons occurred at the Oak Ridge National Laboratory during the years immediately following World War II. C.G. Shull, E.O. Wollan, and their associates systematically established neutron diffraction as a quantitative research tool and then applied this technique to important problems in nuclear physics, chemical crystallography, and magnetism. This article briefly summarizes the very important research at ORNL during this period, which laid the foundation for the establishment of neutron scattering programs throughout the world. 47 refs., 10 figs

  10. Approximate scattering wave functions for few-particle continua

    International Nuclear Information System (INIS)

    Briggs, J.S.

    1990-01-01

    An operator identity which allows the wave operator for N particles interacting pairwise to be expanded as products of operators in which fewer than N particles interact is given. This identity is used to derive appproximate scattering wave functions for N-particle continua that avoid certain difficulties associated with Faddeev-type expansions. For example, a derivation is given of a scattering wave function used successfully recently to describe the three-particle continuum occurring in the electron impact ionization of the hydrogen atom

  11. Direct nn-scattering at the YAGUAR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B.E. [Gettysburg College, Department of Physics, Gettysburg, PA 17325 (United States)]. E-mail: bcrawfor@gettysburg.edu; Furman, W.I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Howell, C.R. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Lychagin, E.V. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Levakov, B.G. [Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, P.O. Box 245, Snezhinsk 456770 (Russian Federation); Litvin, V.I. [Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, P.O. Box 245, Snezhinsk 456770 (Russian Federation); Lyzhin, A.E. [Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, P.O. Box 245, Snezhinsk 456770 (Russian Federation); Magda, E.P. [Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, P.O. Box 245, Snezhinsk 456770 (Russian Federation); Mitchell, G.E. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Muzichka, A.Yu. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Nekhaev, G.V. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Sharapov, E.I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Shvetsov, V.N. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Stephenson, S.L. [Gettysburg College, Department of Physics, Gettysburg, PA 17325 (United States); Strelkov, A.V. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Tornow, W. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2005-12-15

    The Direct Investigation of a {sub nn} Association (DIANNA) is finalizing the design of a direct measurement of the nn-scattering length to be performed at the YAGUAR reactor in Snezhinsk, Russia. Extensive modeling of the neutron field, nn-scattering kinematics, and sources of detector background have verified the plan for a 3% measurement of a {sub nn}. Measurements of the neutron flux support the neutron field modeling. Initial test measurements of the neutron field inside the underground channel have confirmed calculations of the thermal neutron background.

  12. General theory of intensity correlation on light scattering

    International Nuclear Information System (INIS)

    Villaeys, A.A.

    1978-01-01

    A general theory for spatio-temporal intensity correlations measurements for a scattered beam is developed. A completely quantum mechanical description for both excitation and detection set up is used. This description is essentially valid for weak incident light beams and single photon absorption processes. From a unified point of view both, stationary as well as, time resolved experiments are described. The interest for such experiments in the study of processes like resonance raman scattering and resonance fluorescence is emphasized. Also an observable coherent contribution associated to different final levels of the target-atoms or molecules is obtained a result which cannot be reached by intensity measurements

  13. Advantages of neutron scattering for biological structure analysis

    International Nuclear Information System (INIS)

    Schoenborn, B.P.

    1975-01-01

    The advantages and disadvantages of neutron scattering for protein crystallography, scattering from oriented systems, and solution scattering are summarized. Techniques for minimizing the disadvantages are indicated

  14. Time-reversal of electromagnetic scattering for small scatterer classification

    International Nuclear Information System (INIS)

    Smith, J Torquil; Berryman, James G

    2012-01-01

    Time-reversal operators, or the alternatively labelled, but equivalent, multistatic response matrix methods, are used to show how to determine the number of scatterers present in an electromagnetic scattering scenario that might be typical of UneXploded Ordinance (UXO) detection, classification and removal applications. Because the nature of the target UXO application differs from that of many other common inversion problems, emphasis is placed here on classification and enumeration rather than on detailed imaging. The main technical issues necessarily revolve around showing that it is possible to find a sufficient number of constraints via multiple measurements (i.e. using several distinct views at the target site) to solve the enumeration problem. The main results show that five measurements with antenna pairs are generally adequate to solve the classification and enumeration problems. However, these results also demonstrate a need for decreasing noise levels in the multistatic matrix as the number n of scatterers increases for the intended practical applications of the method. (paper)

  15. Scatter networks: a new approach for analysing information scatter

    International Nuclear Information System (INIS)

    Adamic, Lada A; Suresh, K; Shi Xiaolin

    2007-01-01

    Information on any given topic is often scattered across the Web. Previously this scatter has been characterized through the inequality of distribution of facts (i.e. pieces of information) across webpages. Such an approach conceals how specific facts (e.g. rare facts) occur in specific types of pages (e.g. fact-rich pages). To reveal such regularities, we construct bipartite networks, consisting of two types of vertices: the facts contained in webpages and the webpages themselves. Such a representation enables the application of a series of network analysis techniques, revealing structural features such as connectivity, robustness and clustering. Not only does network analysis yield new insights into information scatter, but we also illustrate the benefit of applying new and existing analysis techniques directly to a bipartite network as opposed to its one-mode projection. We discuss the implications of each network feature to the users' ability to find comprehensive information online. Finally, we compare the bipartite graph structure of webpages and facts with the hyperlink structure between the webpages

  16. Detection of charge scattering associated with stripe order in La1.775Sr0.225NiO4 by hard-x-ray diffraction

    DEFF Research Database (Denmark)

    Vigliante, A.; Zimmermann, M. von; Schneider, J.R.

    1997-01-01

    of the charge-density-modulation peaks were characterized and found to be in good agreement with the neutron-scattering results. Interestingly, weak, temperature-dependent scattering was also observed at positions consistent with nonresonant x-ray magnetic scattering from the spin correlations; however...

  17. Spatial photon correlations in multiple scattering media

    DEFF Research Database (Denmark)

    Smolka, Stephan; Muskens, O.; Lagendijk, A.

    2010-01-01

    We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations.......We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations....

  18. Nonstationary interference and scattering from random media

    International Nuclear Information System (INIS)

    Nazikian, R.

    1991-12-01

    For the small angle scattering of coherent plane waves from inhomogeneous random media, the three dimensional mean square distribution of random fluctuations may be recovered from the interferometric detection of the nonstationary modulational structure of the scattered field. Modulational properties of coherent waves scattered from random media are related to nonlocal correlations in the double sideband structure of the Fourier transform of the scattering potential. Such correlations may be expressed in terms of a suitability generalized spectral coherence function for analytic fields

  19. Scattering of light and other electromagnetic radiation

    CERN Document Server

    Kerker, Milton

    1969-01-01

    The Scattering of Light and Other Electromagnetic Radiation discusses the theory of electromagnetic scattering and describes some practical applications. The book reviews electromagnetic waves, optics, the interrelationships of main physical quantities and the physical concepts of optics, including Maxwell's equations, polarization, geometrical optics, interference, and diffraction. The text explains the Rayleigh2 theory of scattering by small dielectric spheres, the Bessel functions, and the Legendre functions. The author also explains how the scattering functions for a homogenous sphere chan

  20. Scattered X-ray beam nondestructive testing

    International Nuclear Information System (INIS)

    Harding, G.; Kosanetzky, J.

    1988-01-01

    X-ray scatter interactions generally dominate the linear attenuation coefficient at the photon energies typical of medical and industrial radiography. Specific advantages of X-ray scatter imaging, including a flexible choice of measurement geometry, direct 3D-imaging capability (tomography) and improved information for material characterization, are illustrated with results from Compton and coherent scatter devices. Applications of a Compton backscatter scanner (ComScan) in the aerospace industry and coherent scatter imaging in security screening are briefly considered [pt

  1. The Manuel Lujan Jr. Neutron Scattering Center

    International Nuclear Information System (INIS)

    Goldstone, J.A.

    1994-01-01

    High in the northcentral mountains of Los Alamos, New Mexico, is the Manuel Lujan Jr. Neutron Scattering Center (LANSCE), a pulsed-spallation neutron source located at Los Alamos National Laboratory. At LANSCE, neutrons are produced by spallation when a pulsed 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by a linear accelerator and an associated Proton Storage Ring (PSR), which alters the intensity, time structure, and repetition rate of the pulses. In October 1986, LANSCE was designated a national user facility, with a formal user program initiated in 1988. In July 1989, the LANSCE facility was dedicated as the Manuel Lujan Jr. Neutron Scattering Center in honor of the long-term Congressman from New Mexico. At present, the PSR operates with a proton pulse width of 0.27 μs at 20 Hz and 80 μA, attaining the highest peak neutron flux in the world and close to its goal of 100 μA, which would yield a peak thermal neutron flux of 10 16 n/cm -2 s -1 . This paper discusses the target/moderator/reflector shield system, the LANSCE instruments, the facility improvement projects, and user programs

  2. Multiple scattering effects in 7Li

    International Nuclear Information System (INIS)

    Cox, A.J.; Warner, P.C.

    1985-01-01

    The differential cross-sections for the production of 0.478 MeV γ-rays following the inelastic scattering of 14 MeV neutrons in large samples of LiF, which will be used in fusion reactor blankets, have been measured. The neutrons were produced using the 3 H(d,n) 4 α reaction, with the deuterons being accelerated by a 150 kV SAMES type accelerator. In order to reduce the background level the γ-ray signal was gated, using a time of flight technique based on the α-particle associated with neutron production. Measurements of the γ-ray production differential cross-sections were made for various thicknesses of LiF. The results were compared to the predictions of the Monte Carlo Computer Code, MORSE, with an agreement of +-11% being achieved. In addition a phenomenological expression was found which is capable of predicting the variation in cross-sections with thickness due to multiple scattering effects to within +-12%. (author)

  3. Scattering amplitudes from multivariate polynomial division

    Energy Technology Data Exchange (ETDEWEB)

    Mastrolia, Pierpaolo, E-mail: pierpaolo.mastrolia@cern.ch [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); INFN Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Mirabella, Edoardo, E-mail: mirabell@mppmu.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Ossola, Giovanni, E-mail: GOssola@citytech.cuny.edu [New York City College of Technology, City University of New York, 300 Jay Street, Brooklyn, NY 11201 (United States); Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY 10016 (United States); Peraro, Tiziano, E-mail: peraro@mppmu.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2012-11-15

    We show that the evaluation of scattering amplitudes can be formulated as a problem of multivariate polynomial division, with the components of the integration-momenta as indeterminates. We present a recurrence relation which, independently of the number of loops, leads to the multi-particle pole decomposition of the integrands of the scattering amplitudes. The recursive algorithm is based on the weak Nullstellensatz theorem and on the division modulo the Groebner basis associated to all possible multi-particle cuts. We apply it to dimensionally regulated one-loop amplitudes, recovering the well-known integrand-decomposition formula. Finally, we focus on the maximum-cut, defined as a system of on-shell conditions constraining the components of all the integration-momenta. By means of the Finiteness Theorem and of the Shape Lemma, we prove that the residue at the maximum-cut is parametrized by a number of coefficients equal to the number of solutions of the cut itself.

  4. Neutron scattering lengths of 3He

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Akopian, G.G.; Wierzbicki, J.; Govorov, A.M.; Pikelner, L.B.; Sharapov, E.I.

    1976-01-01

    The total neutron scattering cross-section of 3 He has been measured in the neutron energy range from 20 meV to 2 eV. Together with the known value of coherent scattering amplitude it leads to the two sts of n 3 He scattering lengths

  5. Scattering measurements in Tokamak type devices

    International Nuclear Information System (INIS)

    Matoba, Tohru

    1975-03-01

    Theories, experiments and proposals for light scattering in Tokamak type devices are reviewed. Thomson scattering, measuring method of the current density distribution by scattering and resonance fluorescence are summarily described. These methods may be useful for diagnosis of the fusion plasmas. The report may help planning of the measuring apparatus for the fusion plasmas in future. (auth.)

  6. Frequency shifts in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Zinth, W.; Kaiser, W.

    1980-01-01

    The nonresonant contributions to the nonlinear susceptibility chisup(()3) produce a frequency chirp during stimulated Raman scattering. In the case of transient stimulated Raman scattering, the spectrum of the generated Stokes pulse is found at higher frequencies than expected from spontaneous Raman data. The frequency difference can be calculated from the theory of stimulated Raman scattering. (orig.)

  7. Light scattering from crystals, glasses and liquids

    International Nuclear Information System (INIS)

    Subbaswamy, K.R.

    1984-09-01

    The theory of inelastic light scattering from a model system in the crystalline, disordered and liquid phases is analyzed. The roles of disorder induced first order scattering and second order scattering are clarified in the context of the classical liquid. The correlation functions appropriate for the various contributions are identified and useful ways of processing experimental data are pointed out. (author)

  8. Test Scatter on the WISC-R.

    Science.gov (United States)

    Tabachnick, Barbara Gerson

    1979-01-01

    The study was designed to investigate scatter produced by 105 learning disabled (LD) children (6 to 16 years old) and to compare Wechsler Intelligence Scale for Children-Revised (WISC-R) scatter with that produced by A. Kaufman's (1976) normal population. Range of scaled scores (i.e., scatter) was significantly greater for the LD group. (SBH)

  9. Controlled light scattering in transparent polycrystalline ferroelectrics

    International Nuclear Information System (INIS)

    Vasilevskaya, A.S.; Grodnenskij, I.M.; Sonin, A.S.

    1977-01-01

    Scattering indicatrices, birefringence, attenuation factor and time characteristics of the light scattering effect have been investigated in a polycrystal solid solution of Pbsub(0.92)Lasub(0.08)(Zrsub(0.65)Tisub(0.35))Osub(3) with the crystallite dimension 4-5 μm. The measurements have been taken for longitudinal and transverse scattering effects in the visible range of spectrum in the temperature range 20-200 deg C. The time characteristics of the scattering effect have been found to be significantly different when a sample transfers from a thermally depolarized state to an electrically polarized one and from an electrically polarized state to an electrically depolarized one. The shape of the scattering indicatrices depends on the polarization state of a sample. The distribution of the scattered light intensity in the part of the indicatrix characterizing the fundamental scattering is satisfactorily described by the Rayleigh-Hans theory. The diameter of scattering centres responsible for the scattering has been determined to be 6-7 μm. The experimental data show that there are different types of scattering centres, in the material. The fundamental scattering is caused by centres arising irreversibly during initial polarization of the sample. The second type of centres is responsible for the controlled part of scattering during repolarization

  10. Recent development in magnetic neutron scattering studies

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1993-01-01

    Neutron scattering results contain many new concepts in modern magnetism. We review here the most recent neutron magnetic scattering studies from so called '214' copper oxide lamellar materials, because a number of important developments in magnetism are condensed in this novel subject. We show that neutron scattering has played crucial role in our understanding of modern magnetism. (author)

  11. Neutron scattering studies in the actinide region

    International Nuclear Information System (INIS)

    Kegel, G.H.R.; Egan, J.J.

    1993-09-01

    This report discusses the following topics: Prompt fission neutron energy spectra for 235 U and 239 Pu; Two-parameter measurement of nuclear lifetimes; ''Black'' neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in 197 Au; Elastic and inelastic scattering studies in 239 Pu; and neutron induced defects in silicon dioxide MOS structures

  12. Intermediate energy nucleon-deuteron scattering theory.

    Science.gov (United States)

    Wilson, J. W.

    1973-01-01

    Sloan's conclusion (1969) that terms of the multiple-scattering series beyond single scattering contribute only to S- and P-wave amplitudes in an S-wave separable model is examined. A comparison of experiments with the calculation at 146 MeV shows that the conclusion is valid in nucleon-deuteron scattering applications.

  13. Quasielastic Neutron Scattering by Superionic Strontium Chloride

    DEFF Research Database (Denmark)

    Dickens, M. H.; Hutchings, M. T.; Kjems, Jørgen

    1978-01-01

    The scattering, from powder and single crystal samples, appears only above the superionic transition temperature, 1000K. The integrated intensity is found to be strongly dependent on the direction and magnitude of the scattering vector, Q, (which suggests the scattering is coherent) but does not ...

  14. Photons emission processes in electron scattering

    International Nuclear Information System (INIS)

    Soto Vargas, C.W.

    1996-01-01

    The investigations involving the scattering sections arising in virtual an real photon emission processes of electron and positron scattering by an atomic nucleus, have the need for thorough and complete calculations of the virtual photon spectrum and then introduce the distorted wave formulation, which is mathematically involved an numerically elaborated, but accessible to its use in experimental electron scattering facilities. (author) [es

  15. Raman scattering by hot and thermal polaritons in crystal quartz

    Energy Technology Data Exchange (ETDEWEB)

    Bogani, F.; Colocci, M.; Neri, M.; Querzoli, R.

    1984-11-01

    Nonlinear mixing of IR and visible radiation, i.e. coherent Raman scattering by polaritons driven by a CO/sub 2/ laser, has been used to obtain the dispersion curve and its width in q-space of the polariton associated to the E-phonon at 1065 cm/sup -1/ in crystal quartz. It is shown in this paper that a direct method to determine independently, with high precision, the refractive index and absorbance of a crystal can be obtained in this way. The results are compared with accurate data obtained from Raman scattering by polaritions in thermal equilibrium and very good agreement is found between the two measurements. It is finally shown that nonlinear-mixing techniques turn out to be completely consistent with the simple picture of scattering of light by hot polaritons.

  16. Stimulated Raman scattering of sub-millimeter waves in bismuth

    Science.gov (United States)

    Kumar, Pawan; Tripathi, V. K.

    2007-12-01

    A high-power sub-millimeter wave propagating through bismuth, a semimetal with non-spherical energy surfaces, parametrically excites a space-charge mode and a back-scattered electromagnetic wave. The free carrier density perturbation associated with the space-charge wave couples with the oscillatory velocity due to the pump to derive the scattered wave. The scattered and pump waves exert a pondermotive force on electrons and holes, driving the space-charge wave. The collisional damping of the decay waves determines the threshold for the parametric instability. The threshold intensity for 20 μm wavelength pump turns out to be ˜2×1012 W/cm2. Above the threshold, the growth rate scales increase with ωo, attain a maximum around ωo=6.5ωp, and, after this, falls off.

  17. New Techniques in Neutron Scattering

    DEFF Research Database (Denmark)

    Birk, Jonas Okkels

    potential performance than any existing facility, however in order to use this pulse structure optimally many existing neutron scattering instruments will need to be redesigned. This defense will concentrate on the design and optimization of the inverse time-of-flight cold neutron spectrometer CAMEA......, simulations and prototyping to optimize the instrument and ensure that it will deliver the predicted performance when constructed. During the design a new prismatic analyser concept that can be of interest to many other neutron spectrometers was developed. The design work was compiled into an instrument......Neutron scattering is an important experimental technique in amongst others solid state physics, biophysics, and engineering. This year construction of European Spallation Source (ESS) was commenced in Lund, Sweeden. The facility will use a new long pulsed source principle to obtain higher...

  18. Positron scattering from vinyl acetate

    International Nuclear Information System (INIS)

    Chiari, L; Brunger, M J; Zecca, A; Blanco, F; García, G

    2014-01-01

    Using a Beer–Lambert attenuation approach, we report measured total cross sections (TCSs) for positron scattering from vinyl acetate (C 4 H 6 O 2 ) in the incident positron energy range 0.15–50 eV. In addition, we also report an independent atom model with screening corrected additivity rule computation results for the TCSs, differential and integral elastic cross sections, the positronium formation cross section and inelastic integral cross sections. The energy range of these calculations is 1–1000 eV. While there is a reasonable qualitative correspondence between measurement and calculation for the TCSs, in terms of the energy dependence of those cross sections, the theory was found to be a factor of ∼2 larger in magnitude at the lower energies, even after the measured data were corrected for the forward angle scattering effect. (paper)

  19. Electron scattering and nuclear structure

    International Nuclear Information System (INIS)

    Frois, B.

    1987-01-01

    The search for the appropriate degrees of freedom to describe nuclei is the central focus of nuclear physics today. Therefore the authors explore in this review their current understanding of nuclear structure as defined by electromagnetic data. The precision of the electromagnetic probe allows us to define accurately the limits of present theoretical descriptions. The authors review here a broad range of subjects that have been addressed by recent experiments, from the study of meson exchange currents and single-particle distributions to collective excitations in heavy nuclei. However, they do not discuss elastic magnetic scattering, inelastic excitation of discrete states, or single-nucleon knockout reactions since these reactions were recently reviewed. The principal aim of this review is to offer a fresh perspective on nuclear structure, based on the new generation of electron scattering data presented here and in the above-mentioned articles

  20. Scattering amplitudes in gauge theories

    CERN Document Server

    Henn, Johannes M

    2014-01-01

    At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge.   These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...

  1. Quantum scattering at low energies

    DEFF Research Database (Denmark)

    Derezinski, Jan; Skibsted, Erik

    For a class of negative slowly decaying potentials, including with , we study the quantum mechanical scattering theory in the low-energy regime. Using modifiers of the Isozaki--Kitada type we show that scattering theory is well behaved on the {\\it whole} continuous spectrum of the Hamiltonian......, including the energy . We show that the --matrices are well-defined and strongly continuous down to the zero energy threshold. Similarly, we prove that the wave matrices and generalized eigenfunctions are norm continuous down to the zero energy if we use appropriate weighted spaces. These results are used...... from positive energies to the limiting energy . This change corresponds to the behaviour of the classical orbits. Under stronger conditions we extract the leading term of the asymptotics of the kernel of at its singularities; this leading term defines a Fourier integral operator in the sense...

  2. Inelastic scattering. Time of flight

    International Nuclear Information System (INIS)

    Eccleston, R.

    1999-01-01

    It is the scattering function, S(Q,ω), which provides the link between the scattering data and the physical system being studied and is thereby the parameter of interest. The nature of the experiment will dictate the portions of momentum transfer - energy transfer space that is to be probed. The portions of Q-ω space that are accessible and the way it is covered determine the appropriateness of an instrument or technique to a particular experiment. One should also remember that if studying a polycrystalline of disordered material, momentum transfer need only by characterized by modulus Q whereas in studies of single crystals one is operating in four-dimensional Q x -Q y -Q z -ω space. (author)

  3. Anomalous x-ray scattering

    International Nuclear Information System (INIS)

    Wendin, G.

    1979-01-01

    The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g. in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discuss the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L 3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references

  4. Scattering characteristics from porous silicon

    Directory of Open Access Journals (Sweden)

    R. Sabet-Dariani

    2000-12-01

    Full Text Available   Porous silicon (PS layers come into existance as a result of electrochemical anodization on silicon. Although a great deal of research has been done on the formation and optical properties of this material, the exact mechanism involved is not well-understood yet.   In this article, first, the optical properties of silicon and porous silicon are described. Then, previous research and the proposed models about reflection from PS and the origin of its photoluminescence are reveiwed. The reflecting and scattering, absorption and transmission of light from this material, are then investigated. These experiments include,different methods of PS sample preparation their photoluminescence, reflecting and scattering of light determining different characteristics with respect to Si bulk.

  5. Vector Boson Scattering at ATLAS

    CERN Document Server

    Ozcan, V E

    2009-01-01

    While the Higgs model is the best studied scenario of electroweak symmetry breaking, there is no fundamental reason for the physics responsible for the symmetry breaking to be weakly-coupled. Many alternatives exist, predicting highly model-dependent signatures. By measuring the cross-section for the W and Z scattering at the LHC, it will be possible to obtain model-independent evidence for strong symmetry breaking or to constrain these various models. ATLAS Collaboration has recently performed a realistic simulation of this process and its backgrounds, which takes into account the detector effects and has developed new jet-analysis techniques for identifying vector bosons within the immense QCD backgrounds expected at the LHC. These techniques and the prospects for measuring the scattering signal will be presented.

  6. Vector Boson Scattering at ATLAS

    CERN Document Server

    Ozcan, V E

    2008-01-01

    While the Higgs model is the best studied scenario of electroweak symmetry breaking, there is no fundamental reason for the physics responsible for the symmetry breaking to be weakly-coupled. Many alternatives exist, predicting highly model-dependent signatures. By measuring the cross-section for the W and Z scattering at the LHC, it will be possible to obtain model-independent evidence for strong symmetry breaking or to constrain these various models. ATLAS Collaboration has recently performed a realistic simulation of this process and its backgrounds, which takes into account the detector effects and has developed new jet-analysis techniques for identifying vector bosons within the immense QCD backgrounds expected at the LHC. These techniques and the prospects for measuring the scattering signal will be presented.

  7. Theory of Graphene Raman Scattering.

    Science.gov (United States)

    Heller, Eric J; Yang, Yuan; Kocia, Lucas; Chen, Wei; Fang, Shiang; Borunda, Mario; Kaxiras, Efthimios

    2016-02-23

    Raman scattering plays a key role in unraveling the quantum dynamics of graphene, perhaps the most promising material of recent times. It is crucial to correctly interpret the meaning of the spectra. It is therefore very surprising that the widely accepted understanding of Raman scattering, i.e., Kramers-Heisenberg-Dirac theory, has never been applied to graphene. Doing so here, a remarkable mechanism we term"transition sliding" is uncovered, explaining the uncommon brightness of overtones in graphene. Graphene's dispersive and fixed Raman bands, missing bands, defect density and laser frequency dependence of band intensities, widths of overtone bands, Stokes, anti-Stokes anomalies, and other known properties emerge simply and directly.

  8. Jets in deep inelastic scattering

    International Nuclear Information System (INIS)

    Joensson, L.

    1995-01-01

    Jet production in deep inelastic scattering provides a basis for the investigation of various phenomena related to QCD. Two-jet production at large Q 2 has been studied and the distributions with respect to the partonic scaling variables have been compared to models and to next to leading order calculations. The first observations of azimuthal asymmetries of jets produced in first order α s processes have been obtained. The gluon initiated boson-gluon fusion process permits a direct determination of the gluon density of the proton from an analysis of the jets produced in the hard scattering process. A comparison of these results with those from indirect extractions of the gluon density provides an important test of QCD. (author)

  9. Unifying relations for scattering amplitudes

    Science.gov (United States)

    Cheung, Clifford; Shen, Chia-Hsien; Wen, Congkao

    2018-02-01

    We derive new amplitudes relations revealing a hidden unity among a wideranging variety of theories in arbitrary spacetime dimensions. Our results rely on a set of Lorentz invariant differential operators which transmute physical tree-level scattering amplitudes into new ones. By transmuting the amplitudes of gravity coupled to a dilaton and two-form, we generate all the amplitudes of Einstein-Yang-Mills theory, Dirac-Born-Infield theory, special Galileon, nonlinear sigma model, and biadjoint scalar theory. Transmutation also relates amplitudes in string theory and its variants. As a corollary, celebrated aspects of gluon and graviton scattering like color-kinematics duality, the KLT relations, and the CHY construction are inherited traits of the transmuted amplitudes. Transmutation recasts the Adler zero as a trivial consequence of the Weinberg soft theorem and implies new subleading soft theorems for certain scalar theories.

  10. Periodic instantons and scattering amplitudes

    International Nuclear Information System (INIS)

    Khlebnikov, S.Yu.; Rubakov, V.A.; Tinyakov, P.G.

    1991-04-01

    We discuss the role of periodic euclidean solutions with two turning points and zero winding number (periodic instantons) in instanton induced processes below the sphaleron energy E sph . We find that the periodic instantons describe certain multiparticle scattering events leading to the transitions between topologically distinct vacua. Both the semiclassical amplitudes and inital and final states of these transitions are determined by the periodic instantons. Furthermore, the corresponding probabilities are maximal among all states of given energy. We show that at E ≤ E sph , the periodic instantons can be approximated by infinite chains of ordinary instantons and anti-instantons, and they naturally emerge as deformations of the zero energy instanton. In the framework of 2d abelian Higgs model and 4d electroweak theory we show, however, that there is not obvious relation between periodic instantons and two-particle scattering amplitudes. (orig.)

  11. Phase transitions and neutron scattering

    International Nuclear Information System (INIS)

    Shirane, G.

    1993-01-01

    A review is given of recent advances in neutron scattering studies of solid state physics. I have selected the study of a structural phase transition as the best example to demonstrate the power of neutron scattering techniques. Since energy analysis is relatively easy, the dynamical aspects of a transition can be elucidated by the neutron probe. I shall discuss in some detail current experiments on the 100 K transition in SrTiO 3 , the crystal which has been the paradigm of neutron studies of phase transitions for many years. This new experiment attempts to clarify the relation between the neutron central peak, observed in energy scans, and the two length scales observed in recent x-ray diffraction studies where only scans in momentum space are possible. (author)

  12. Polarization transfer in inelastic scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1980-01-01

    Polarization transfer experiments are now feasible for inelastic scattering experiments on complex nuclei. Experiments thus far have dealt with the spin-flip probability; this observable is sensitive to the action of spin-spin and tensor forces in inelastic scattering. Spin-flip probabilities at E approx. 40 MeV in isoscalar transitions in 12 C(12.71 MeV) and 15 O(8.89 MeV) show considerable deviation from DWBA-shell model predictions; this deviation indicates evidence for more complex reaction mechanisms. Experiments at intermediate energies will soon be possible and will yield data of much higher precision than is possible at lower (E < 100 MeV) energies. These experiments hold exciting promise in such areas as nuclear critical opalescence. 7 figures, 1 table

  13. Scattering-angle based filtering of the waveform inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it's ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  14. Scattering-angle based filtering of the waveform inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-11-22

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  15. Light-scattering evolution from particles to regolith

    International Nuclear Information System (INIS)

    Videen, Gorden; Muinonen, Karri

    2015-01-01

    The radiative-transfer coherent-backscattering (RT–CB) model is unique among light-scattering methodologies as it can be used to calculate accurate light-scattering properties of sparsely populated particle volumes with sizes ranging from subwavelength to infinity. We use the RT–CB model to examine the evolution of light-scattering properties as a volume of particles increases from wavelength-sized to several hundreds of wavelengths. We examine the evolution of light-scattering intensity phase function and polarization, as well as linear and circular polarization ratios. We confirm the expected trends for backscattering features to shift to smaller phase angles as the volume increases. In addition, we also see the amplitude of these features increases to some maximum for volumes having size parameters kR∼100, before decaying to less than half this amplitude as their volumes approach infinity. - Highlights: • We use the RT–CB method to examine how gross light-scattering properties evolve as particle size increases. • The transition from a wavelength-sized particle to a large particle is not monotonic. • Backscattering properties associated with the CB mechanism appear to have a peak value before decaying asymptotically

  16. Low angle X-ray scattering in biological tissues

    International Nuclear Information System (INIS)

    Lemos, Carla; Braz, Delson; Pinto, Nivia G.V.; Lima, Joao C.; Castro, Carlos R.F.; Filgueiras, R.A.; Mendonca, Leonardo; Lopes, Ricardo T.; Barroso, Regina C.

    2007-01-01

    Low-angle x-ray scatter (LAXS) for tissue characterization is based on the differences which result from the interference of photons coherently scattered from molecules of each sample. Biological samples (bone, blood and blood components) have been studied in recent years in our laboratory using powder diffractometer. The scattering information was obtained using a Shimadzu DRX 6000 diffractometer at the Nuclear Instrumentation Laboratory, Rio de Janeiro, Brazil. Unpolarized monoenergetic Kα radiation from Cu provided 8.04 keV photons. The measurements were made in reflection mode (θ-2θ geometry), with the sample stationary on a goniometer which rotates the sample and detector about an axis lying in the plane of the top of the sample holder. LAXS profiles from whole blood, plasma and formed elements were measured to investigate the nature of scattering from such lyophilized samples. The statistical analysis shows that the variation found for the characterization parameters is significant for whole blood considering the age. Gender was positively associated with the variation of the second peak position for the profiles obtained for formed elements. The correlation of the measured relative coherent intensity with the mineral content in the bone samples was investigated. These results suggest that the measurement of bone mineral content within trabecular bone can be performed by using quantitative coherent scattering information. (author)

  17. Radiation scatter apparatus and method

    International Nuclear Information System (INIS)

    Molbert, J. L.; Riddle, E. R.

    1985-01-01

    A radiation scatter gauge includes multiple detector locations for developing separate and independent sets of data from which multiple physical characteristics of a thin material and underlying substrate may be determined. In an illustrated embodiment, the apparatus and method of the invention are directed to determining characteristics of resurfaced pavement by nondestructive testing. More particularly, the density and thickness of a thin asphalt overlay and the density of the underlying pavement may be determined

  18. Scattering influence in mammographic image

    International Nuclear Information System (INIS)

    Poletti, Martin Eduardo; Almeida, Adelaide de

    1996-01-01

    The quantification of mammographic images affected by scattered radiation is studied. The average glandular dose as a function of kVp and breast thickness for breast composition 50/50% is also evaluated. The results show that the contrast decreases with increasing of kVp and breast thickness, and the average glandular dose increase with increasing breast thickness and decreases with increasing kVp

  19. Material science and neutron scattering

    International Nuclear Information System (INIS)

    1983-01-01

    Neutron scattering experiments complete and extend the condensed matter studies made with X and gamma rays. Then story show a permanent evolution of the instrumentation, methods and experimental techniques to improve the result quality. This is more especially important as neutron sources are weaker than photon and electron sources. Progress in this research domain is due, in most part, to discovery and development of materials for the different measurement device components [fr

  20. Diffraction dissociation and elastic scattering

    International Nuclear Information System (INIS)

    Verebryusov, V.S.; Ponomarev, L.A.; Smorodinskaya, N.Ya.

    1987-01-01

    In the framework of Regge scheme with supercritical pomeron a model is suggested for the NN-scattering amplitude which takes into account the contribution introduced to the intermediate state by diffraction dissociation (DD) processes. The DD amplitude is written in terms of the Deck model which has been previously applied to describing the main DD features. The calculated NN cross sections are compared with those obtained experimentally. Theoretical predictions for higher energy are presented

  1. Inelastic neutron scattering from clusters

    International Nuclear Information System (INIS)

    Gudel, H.U.

    1985-01-01

    Magnetic excitations in clusters of paramagnetic ions have non-vanishing cross-sections for inelastic neutron scattering (INS). Exchange splittings can be determined, the temperature dependence of exchange can be studied, intra- and intercluster effects can be separated and magnetic form factors determined. INS provides a more direct access to the molecular properties than bulk techniques. Its application is restricted to complexes with no or few (< 10%) hydrogen atoms

  2. Light scattering from superfluid fog

    International Nuclear Information System (INIS)

    Kim, Heetae; Lemieux, P.-A.Pierre-Anthony; Durian, Douglas; Williams, G.A.Gary A.

    2003-01-01

    The dynamics of the droplets of superfluid 4 He fog created by an ultrasonic transducer are investigated using a laser scattering technique. Diffusing-wave spectroscopy probes the motion of the droplets, which is found to be ballistic for times shorter than a characteristic viscous time τ v =10 -5 s. The average relative velocity between the droplets is small compared to the velocity that the droplets are ejected from the surface into the fog, but increases proportionally to it

  3. Determination of the scattering amplitude

    International Nuclear Information System (INIS)

    Gangal, A.D.; Kupsch, J.

    1984-01-01

    The problem to determine the elastic scattering amplitude from the differential cross-section by the unitarity equation is reexamined. We prove that the solution is unique and can be determined by a convergent iteration if the parameter lambda=sin μ of Newton and Martin is bounded by lambda 2 approx.=0.86. The method is based on a fixed point theorem for holomorphic mappings in a complex Banach space. (orig.)

  4. Resonant Impulsive Stimulated Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A; Chesnoy, J

    1988-03-15

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution.

  5. Transition densities with electron scattering

    International Nuclear Information System (INIS)

    Heisenberg, J.

    1985-01-01

    This paper reviews the ground state and transition charge densities in nuclei via electron scattering. Using electrons as a spectroscopic tool in nuclear physics, these transition densities can be determined with high precision, also in the nuclear interior. These densities generally ask for a microscopic interpretation in terms of contributions from individual nucleons. The results for single particle transitions confirm the picture of particle-phonon coupling. (Auth.)

  6. Resonant Impulsive Stimulated Raman Scattering

    International Nuclear Information System (INIS)

    Mokhtari, A.; Chesnoy, J.

    1988-01-01

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution

  7. Spectroscopy, scattering, and KK molecules

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J. [Univ. of Mississippi, University, MS (United States)

    1994-04-01

    The author presents a pedagogical description of a new theoretical technique, based on the multichannel Schroedinger equation, for simultaneously applying the quark model to both meson spectroscopy and meson-meson scattering. This is an extension of an earlier analysis which led to the prediction that the f{sub o}(975) and a{sub o}(980) scalar mesons are K{bar K} molecular states.

  8. Electron scattering by hydrogen atoms

    International Nuclear Information System (INIS)

    Fujii, D.H.

    1981-02-01

    A variational method to calculate the differential cross section of the electron-hydrogen atom scattering process is presented. The second Born approximation is calculated, through a variational calculation using the energy and electronic charge simultaneously as parameters, in order to calculate the differential cross section which is written in a fractional form according to the Schwinger variational principle. Effects due to the electron change are included in the calculations. (L.C.) [pt

  9. Potential scattering of Dirac particles

    International Nuclear Information System (INIS)

    Thaller, B.

    1981-01-01

    A quantum mechanical interpretation of the Dirac equation for particles in external electromagnetic potentials is discussed. It is shown that a consequent development of the Stueckelberg-Feynman theory into a probabilistic interpretation of the Dirac equation corrects some prejudices concerning negative energy states, Zitterbewegung and bound states in repulsive potentials and yields the connection between propagator theory and scattering theory. Limits of the Dirac equation, considered as a wave mechanical equation, are considered. (U.K.)

  10. πK-scattering lengths

    International Nuclear Information System (INIS)

    Volkov, M.K.; Osipov, A.A.

    1983-01-01

    The msub(π)asub(0)sup(1/2)=0.1, msub(π)asub(0)sup(3/2)=-0.1, msub(π)asub(0)sup((-))=0.07, msub(π)sup(3)asub(1)sup(1/2)=0.018, msub(π)sup(3)asub(1)aup(3/2)=0.002, msub(π)sup(3)asub(1)sup((-))=0.0044, msub(π)sup(5)asub(2)sup(1/2)=2.4x10sup(-4) and msub(π)sup(5)asub(2)sup(3/2)=-1.2x10sup(-4) scattering lengths are calculated in the framework of the composite meson model which is based on four-quark interaction. The decay form factors of (rho, epsilon, S*) → 2π, (K tilde, K*) → Kπ are used. The q 2 -terms of the quark box diagrams are taken into account. It is shown that the q 2 -terms of the box diagrams give the main contribution to the s-wave scattering lengths. The diagrams with the intermediate vector mesons begin to play the essential role at calculation of the p- and d-wave scattering lengths

  11. Glory scattering by black holes

    International Nuclear Information System (INIS)

    Matzner, R.A.; DeWitte-Morette, C.; Nelson, B.; Zhang, T.

    1985-01-01

    We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/dΩ = 4π 2 lambda -1 B/sub g/ 2 (dB mWπ, where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 √3 + 3.48 exp(-theta), theta > owigπ. The numerical values of dsigma/dΩ for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes

  12. Particle levitation and laboratory scattering

    International Nuclear Information System (INIS)

    Reid, Jonathan P.

    2009-01-01

    Measurements of light scattering from aerosol particles can provide a non-intrusive in situ method for characterising particle size distributions, composition, refractive index, phase and morphology. When coupled with techniques for isolating single particles, considerable information on the evolution of the properties of a single particle can be gained during changes in environmental conditions or chemical processing. Electrostatic, acoustic and optical techniques have been developed over many decades for capturing and levitating single particles. In this review, we will focus on studies of particles in the Mie size regime and consider the complimentarity of electrostatic and optical techniques for levitating particles and elastic and inelastic light scattering methods for characterising particles. In particular, we will review the specific advantages of establishing a single-beam gradient force optical trap (optical tweezers) for manipulating single particles or arrays of particles. Recent developments in characterising the nature of the optical trap, in applying elastic and inelastic light scattering measurements for characterising trapped particles, and in manipulating particles will be considered.

  13. Ultrastrong Coupling Few-Photon Scattering Theory

    Science.gov (United States)

    Shi, Tao; Chang, Yue; García-Ripoll, Juan José

    2018-04-01

    We study the scattering of individual photons by a two-level system ultrastrongly coupled to a waveguide. The scattering is elastic for a broad range of couplings and can be described with an effective U (1 )-symmetric Hamiltonian. This simple model allows the prediction of scattering resonance line shapes, validated up to α =0.3 , and close to the Toulouse point α =1 /2 , where inelastic scattering becomes relevant. Our predictions model experiments with superconducting circuits [P. Forn-Díaz et al., Nat. Phys. 13, 39 (2017), 10.1038/nphys3905] and can be extended to study multiphoton scattering.

  14. Wave propagation and scattering in random media

    CERN Document Server

    Ishimaru, Akira

    1978-01-01

    Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an

  15. Scattering theory of stochastic electromagnetic light waves.

    Science.gov (United States)

    Wang, Tao; Zhao, Daomu

    2010-07-15

    We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.

  16. Medium energy ion scattering (MEIS)

    International Nuclear Information System (INIS)

    Dittmann, K.; Markwitz, A.

    2009-01-01

    This report gives an overview about the technique and experimental study of medium energy ion scattering (MEIS) as a quantitative technique to determine and analyse the composition and geometrical structure of crystalline surfaces and near surface-layers by measuring the energy and yield of the backscattered ions. The use of a lower energy range of 50 to 500 keV accelerated ions impinging onto the target surface and the application of a high-resolution electrostatic energy analyser (ESA) makes medium energy ion scattering spectroscopy into a high depth resolution and surface-sensitive version of RBS with less resulting damage effects. This report details the first steps of research in that field of measurement technology using medium energetic backscattered ions detected by means of a semiconductor radiation detector instead of an ESA. The study of medium energy ion scattering (MEIS) has been performed using the 40 keV industrial ion implanter established at GNS Sciences remodelled with supplementary high voltage insulation for the ion source in order to apply voltages up to 45 kV, extra apertures installed in the beamline and sample chamber in order to set the beam diameter accurately, and a semiconductor radiation detector. For measurement purposes a beam of positive charged helium ions accelerated to an energy of about 80 keV has been used impinging onto target surfaces of lead implanted into silicon (PbSi), scandium implanted into aluminium (ScAl), aluminium foil (Al) and glassy carbon (C). First results show that it is possible to use the upgraded industrial implanter for medium energy ion scattering. The beam of 4 He 2+ with an energy up to 88 keV has been focussed to 1 mm in diameter. The 5 nA ion beam hit the samples under 2 x 10 -8 mbar. The results using the surface barrier detector show scattering events from the samples. Cooling of the detector to liquid nitrogen temperatures reduced the electronic noise in the backscattering spectrum close to zero. A

  17. Electron scattering by molecular oxygen

    International Nuclear Information System (INIS)

    Duddy, P.E.

    1999-03-01

    Collisions of electrons with molecules is one of the fundamental processes which occur both in atomic and molecular physics and also in chemistry. These collisions are vital in determining the energy balance and transport properties of electrons in gases and plasmas at low temperatures. There are many important applications for the basic understanding of these collision processes. For example, the study of planetary atmospheres and the interstellar medium involves electron collisions with both molecules and molecular ions. In particular, two of the major cooling mechanisms of electrons in the Earth's ionosphere are (i) the fine structure changing transitions of oxygen atoms by electron impact and (ii) the resonant electron-impact vibrational excitation of N 2 . Other applications include magnetohydrodynamic power generation and laser physics. A molecule, by definition, will contain more than one nucleus and consequently the effect of nuclear motion in the molecule leads to many extra processes in electron scattering by molecules which cannot occur in electron-atom scattering. As for atoms, both elastic and inelastic scattering occur, but in the case of inelastic electron scattering by molecules, the target molecule is excited to a different state by the process. The excitation may be one, or some combination, of rotational, vibrational and electronic transitions. Other reactions which may occur include dissociation of the molecule into its constituent atoms or ionisation. Another difficulty arises when considering the interactions between the electron and the molecule, This interaction, which considerably complicates the calculation, is non-spherical and various methods have been developed over the years to represent this interaction. This thesis considers electron scattering by molecular oxygen in the low energy range i.e. 0-15eV. These collisions are of considerable interest in atmospheric physics and chemistry where the electron impact excitation of O 2 has

  18. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering

    Science.gov (United States)

    Dierker, S. B.; Aronson, M. C.

    2018-05-01

    We describe a new design and use of a high pressure anvil cell that significantly reduces the Raman scattering and fluorescence from the anvils in high pressure Raman scattering experiments. The approach is particularly useful in Raman scattering studies of opaque, weakly scattering samples. The effectiveness of the technique is illustrated with measurements of two-magnon Raman scattering in La2CuO4.

  19. Neutron Inelastic Scattering Study of Liquid Argon

    Energy Technology Data Exchange (ETDEWEB)

    Skoeld, K; Rowe, J M; Ostrowski, G [Solid State Science Div., Argonne National Laboratory, Argonne, Illinois (US); Randolph, P D [Nuclear Technology Div., Idaho Nuclear Corporation, Idaho Falls, Idaho (US)

    1972-02-15

    The inelastic scattering functions for liquid argon have been measured at 85.2 K. The coherent scattering function was obtained from a measurement on pure A-36 and the incoherent function was derived from the result obtained from the A-36 sample and the result obtained from a mixture of A-36 and A-40 for which the scattering is predominantly incoherent. The data, which are presented as smooth scattering functions at constant values of the wave vector transfer in the range 10 - 44/nm, are corrected for multiple scattering contributions and for resolution effects. Such corrections are shown to be essential in the derivation of reliable scattering functions from neutron scattering data. The incoherent data are compared to recent molecular dynamics results and the mean square displacement as a function of time is derived. The coherent data are compared to molecular dynamics results and also, briefly, to some recent theoretical models

  20. Source distribution dependent scatter correction for PVI

    International Nuclear Information System (INIS)

    Barney, J.S.; Harrop, R.; Dykstra, C.J.

    1993-01-01

    Source distribution dependent scatter correction methods which incorporate different amounts of information about the source position and material distribution have been developed and tested. The techniques use image to projection integral transformation incorporating varying degrees of information on the distribution of scattering material, or convolution subtraction methods, with some information about the scattering material included in one of the convolution methods. To test the techniques, the authors apply them to data generated by Monte Carlo simulations which use geometric shapes or a voxelized density map to model the scattering material. Source position and material distribution have been found to have some effect on scatter correction. An image to projection method which incorporates a density map produces accurate scatter correction but is computationally expensive. Simpler methods, both image to projection and convolution, can also provide effective scatter correction

  1. PREFACE: Atom-surface scattering Atom-surface scattering

    Science.gov (United States)

    Miret-Artés, Salvador

    2010-08-01

    It has been a privilege and a real pleasure to organize this special issue or festschrift in the general field of atom-surface scattering (and its interaction) in honor of J R Manson. This is a good opportunity and an ideal place to express our deep gratitude to one of the leaders in this field for his fundamental and outstanding scientific contributions. J R Manson, or Dick to his friends and colleagues, is one of the founding fathers, together with N Cabrera and V Celli, of the 'Theory of surface scattering and detection of surface phonons'. This is the title of the very well-known first theoretical paper by Dick published in Physical Review Letters in 1969. My first meeting with Dick was around twenty years ago in Saclay. J Lapujoulade organized a small group seminar about selective adsorption resonances in metal vicinal surfaces. We discussed this important issue in surface physics and many other things as if we had always known each other. This familiarity and warm welcome struck me from the very beginning. During the coming years, I found this to be a very attractive aspect of his personality. During my stays in Göttingen, we had the opportunity to talk widely about science and life at lunch or dinner time, walking or cycling. During these nice meetings, he showed, with humility, an impressive cultural background. It is quite clear that his personal opinions about history, religion, politics, music, etc, come from considering and analyzing them as 'open dynamical systems'. In particular, with good food and better wine in a restaurant or at home, a happy cheerful soirée is guaranteed with him, or even with only a good beer or espresso, and an interesting conversation arises naturally. He likes to listen before speaking. Probably not many people know his interest in tractors. He has an incredible collection of very old tractors at home. In one of my visits to Clemson, he showed me the collection, explaining to me in great detail, their technical properties

  2. Elastic scattering at the collider and beyond

    International Nuclear Information System (INIS)

    Henzi, R.

    1985-01-01

    Not only in hard but also in soft collisions have new, very interesting and somewhat puzzling phenomena been discovered, especially in total cross sections and connected with it in elastic scattering by the UA4 Collaboration at the CERN Collider. It has turned out that Dispersive Diffraction Theory (DDT) is quite useful for the theoretical analysis of such phenomena, especially if one has in mind to make predictions for what will happen at the future colliders. In this paper new results of DDT are presented, among them: the use of black spots to discuss saturation mechanisms for the Froissart-Martin bound; the possible emergence of Martin scaling; a missing link between geometric scaling and factorizing eikonal; the real part and the associated dip-shoulder dynamics; and the nature of the change of slope at low momentum transfer

  3. Single and multiple electromagnetic scattering by dielectric obstacles from a resonance perspective

    International Nuclear Information System (INIS)

    Riley, D.J.

    1987-03-01

    A new application of the singularity expansion method (SEM) is explored. This application combines the classical theory of wave propagation through a multiple-scattering environment and the SEM. Because the SEM is generally considered to be a theory for describing surface currents on conducting scatters, extensions are made which permit, under certain conditions, a singularity expansion representation for the electromagnetic field scattered by a dielectric scatterer. Application of this expansion is then made to the multiple-scattering case using both single and multiple interactions. A resonance scattering tensor form is used for the SEM description which leds to an associated tensor form for the solution to the multiple-scattering problem with each SEM pole effect appearing explicitly. The coherent field is determined for both spatial and SEM parameter random variations. A numerical example for the case of an ensemble of dielectric spheres which possess frequency-dependent loss is also made. Accurate resonance expansions for the single-scattering problem are derived, and resonance trajectories based on the Debye relaxation model for the refractive index are introduced. Application of these resonance expansions is then made to the multiple-scattering results for a slab containing a distribution of spheres with varying radii. Conditions are discussed which describe when the hybrid theory is appropriate. 53 refs., 21 figs., 9 tabs

  4. Multiple-scattering in radar systems: A review

    International Nuclear Information System (INIS)

    Battaglia, Alessandro; Tanelli, Simone; Kobayashi, Satoru; Zrnic, Dusan; Hogan, Robin J.; Simmer, Clemens

    2010-01-01

    Although extensively studied within the lidar community, the multiple scattering phenomenon has always been considered a rare curiosity by radar meteorologists. Up to few years ago its appearance has only been associated with two- or three-body-scattering features (e.g. hail flares and mirror images) involving highly reflective surfaces. Recent atmospheric research aimed at better understanding of the water cycle and the role played by clouds and precipitation in affecting the Earth's climate has driven the deployment of high frequency radars in space. Examples are the TRMM 13.5 GHz, the CloudSat 94 GHz, the upcoming EarthCARE 94 GHz, and the GPM dual 13-35 GHz radars. These systems are able to detect the vertical distribution of hydrometeors and thus provide crucial feedbacks for radiation and climate studies. The shift towards higher frequencies increases the sensitivity to hydrometeors, improves the spatial resolution and reduces the size and weight of the radar systems. On the other hand, higher frequency radars are affected by stronger extinction, especially in the presence of large precipitating particles (e.g. raindrops or hail particles), which may eventually drive the signal below the minimum detection threshold. In such circumstances the interpretation of the radar equation via the single scattering approximation may be problematic. Errors will be large when the radiation emitted from the radar after interacting more than once with the medium still contributes substantially to the received power. This is the case if the transport mean-free-path becomes comparable with the instrument footprint (determined by the antenna beam-width and the platform altitude). This situation resembles to what has already been experienced in lidar observations, but with a predominance of wide- versus small-angle scattering events. At millimeter wavelengths, hydrometeors diffuse radiation rather isotropically compared to the visible or near infrared region where scattering is

  5. Classical relativistic constituent particles and composite-particle scattering

    International Nuclear Information System (INIS)

    King, M.J.

    1984-01-01

    A nonlocal Lagrangian formalism is developed to describe a classical many-particle system. The nonstandard Lagrangian is a function of a single parameter s which is not, in general, associated with the physical clock. The particles are constrained to be constituents of composite systems, which in turn can decompose into asymptotic composite states representing free observable particles. To demonstrate this, explicit models of composite-composite particle scattering are constructed. Space-time conservation laws are not imposed separately on the system, but follow upon requiring the constituents to ''pair up'' into free composites at s = +infinity,-infinity. One model is characterized by the appearance of an ''external'' zero-mass composite particle which participates in the scattering process without affecting the space-time conservation laws of the two-composite system. Initial conditions on the two incoming composite particles and the zero-mass participant determine the scattering angle and the final states of the two outgoing composite particles. Although the formalism is classical, the model displays some features usually associated with quantum field theory, such as particle scattering by means of constituent exchange, creation and annihilation of particles, and restriction of values of angular momentum

  6. Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering

    Directory of Open Access Journals (Sweden)

    Antoun Ayman

    2004-01-01

    Full Text Available Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is high-lighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix.

  7. Neutron transfer with anisotropic scattering

    International Nuclear Information System (INIS)

    El Wakil, S.A.; Haggag, M.H.; Saad, E.A.

    1979-01-01

    The finite slab problem is reduced to a semi-infinite one by adding an infinitesimally thick layer such that both the added layer and the total layer are semi-infinite. The relation between the reflection and transmission functions for a finite slab and those for an infinite one are obtained in terms of an operator which satisfies a semigroup equation. The method is applied to anisotropic scattering with azimuthal dependence. Numerical calculations are made and the results compared with those of other workers. (author)

  8. Advances in neutron scattering spectroscopy

    International Nuclear Information System (INIS)

    White, J.W.

    1977-01-01

    Some aspects of the application of neutron scattering to problems in polymer science, surface chemistry, and adsorption phenomena, as well as molecular biology, are reviewed. In all these areas, very significant work has been carried out using the medium flux reactors at Harwell, Juelich and Risoe, even without the use of advanced multidetector techniques or of a neutron cold source. A general tendency can also be distinguished in that, for each of these new fields, a distinct preference for colder neutrons rather than thermal neutron beams can be seen. (author)

  9. Thermally stimulated scattering in plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.

    1985-01-01

    this experiment local heat conduction is of little importance and the dynamic evolution for the electron temperature is dominated by heating and energy exchange with the ion component. These features are incorporated in the analysis. The resulting set of equations gives a growth rate and characteristic scale size......A theory for stimulated scattering of a laser beam is formulated where the dominant nonlinearity is the ohmic heating of the plasma. The analysis is carried out with particular reference to experimental investigations of CO2 laser heating of linear discharge plasma. In the conditions characterizing...

  10. Light scattering from superfluid fog

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heetae; Lemieux, P.-A.Pierre-Anthony; Durian, Douglas; Williams, G.A.Gary A

    2003-05-01

    The dynamics of the droplets of superfluid {sup 4}He fog created by an ultrasonic transducer are investigated using a laser scattering technique. Diffusing-wave spectroscopy probes the motion of the droplets, which is found to be ballistic for times shorter than a characteristic viscous time {tau}{sub v}=10{sup -5} s. The average relative velocity between the droplets is small compared to the velocity that the droplets are ejected from the surface into the fog, but increases proportionally to it.

  11. Topics in deep inelastic scattering

    International Nuclear Information System (INIS)

    Wandzura, S.M.

    1977-01-01

    Several topics in deep inelastic lepton--nucleon scattering are discussed, with emphasis on the structure functions appearing in polarized experiments. The major results are: infinite set of new sum rules reducing the number of independent spin dependent structure functions (for electroproduction) from two to one; the application of the techniques of Nachtmann to extract the coefficients appearing in the Wilson operator product expansion; and radiative corrections to the Wilson coefficients of free field theory. Also discussed are the use of dimensional regularization to simplify the calculation of these radiative corrections

  12. Scattering theory for Riemannian Laplacians

    DEFF Research Database (Denmark)

    Ito, Kenichi; Skibsted, Erik

    In this paper we introduce a notion of scattering theory for the Laplace-Beltrami operator on non-compact, connected and complete Riemannian manifolds. A principal condition is given by a certain positive lower bound of the second fundamental form of angular submanifolds at infinity. Another...... condition is certain bounds of derivatives up to order one of the trace of this quantity. These conditions are shown to be optimal for existence and completeness of a wave operator. Our theory does not involve prescribed asymptotic behaviour of the metric at infinity (like asymptotic Euclidean or hyperbolic...

  13. Coherence effects in radiative scattering

    International Nuclear Information System (INIS)

    Knoll, J.; Lenk, R.

    1993-03-01

    The bremsstrahl-production of photons in dense matter is reinvestigated using the example of an exactly solvable quantum mechanical model in one space dimension. Coherence phenomena between successive radiative scatterings among the constituents lead to a modification of the production cross section in the medium relative to the incoherent quasi-free prescription used in kinetic models. Analytic expressions for the correction factor have been derived comparing the quantum rates with the corresponding incoherent quasi-free rates. The result has implications for the kinetic description of all kinds of radiative processes in nucleus-nucleus collisions, both on the level of hadron and parton dynamics. (orig.)

  14. Compton scattering on 208Pb

    International Nuclear Information System (INIS)

    Alberico, W.M.; Molinari, A.

    1982-01-01

    In this paper we briefly review the formalism of the nuclear Compton scattering in the frame of the low-energy theorems (LET). We treat the resonant terms of the amplitude, having collective intermediate nuclear states, as a superposition of Lorentz lines with energy, width and strength fixed by the photo-absorption experiments. The gauge terms are evaluated starting from a simple, but realistic, nuclear Hamiltonian. Dynamical nucleon-nucleon correlations are consistently taken into account, beyond those imposed by the Pauli principle. The comparison of the theoretical predictions with the data of elastic diffusion of photons from 208 Pb shows that LET are insufficient to account for the experiment. (orig.)

  15. Fluence determination by scattering measurements

    CERN Document Server

    Albergo, S; Potenza, R; Tricomi, A; Pillon, M; Angarano, M M; Creanza, D; De Palma, M

    2000-01-01

    An alternative method to determine particle fluence is proposed, which is particularly suitable for irradiations with low-energy charged-particle beams. The fluence is obtained by measuring the elastic scattering produced by a composite thin target placed upstream of the sample. The absolute calibration is performed by comparison with the measured radioactivation of vanadium and copper samples. The composite thin target, made of aluminium, carbon and gold, allows not only the fluence to be measured, but also a continuous monitoring of the beam space distribution. Experimental results with a 27 MeV proton beam are reported and compared with Monte Carlo simulations. (7 refs).

  16. Inelastic scattering from amorphous solids

    International Nuclear Information System (INIS)

    Price, D.L.

    1985-08-01

    The potential of inelastic neutron scattering techniques for surveying various aspects of the dynamics of amorphous solids is briefly reviewed. The recent use of the Intense Pulsed Neutron Source to provide detailed information on the optical vibrations of glasses is discussed in more detail. The density of states represents an averaged quantity which gives information about the general characteristics of the structure and bonding. More extensive information can be obtained by studying the detailed wavevector dependence of the dynamic structure factor. 15 refs., 7 figs

  17. Light scattering near phase transitions

    CERN Document Server

    Cummins, HZ

    1983-01-01

    Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.

  18. Hadron scattering, resonances, and QCD

    Science.gov (United States)

    Briceño, R. A.

    2016-11-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  19. Monopole scattering with a twist

    International Nuclear Information System (INIS)

    Houghton, C.J.; Sutcliffe, P.M.

    1996-01-01

    By imposing certain combined inversion and rotation symmetries on the rational maps for SU(2) BPS monopoles we construct geodesics in the monopole moduli space. In the moduli space approximation these geodesics describe a novel kind of monopole scattering. During these scattering processes axial symmetry is instantaneously attained and, in some, monopoles with the symmetries of the regular solids are formed. The simplest example corresponds to a charge three monopole invariant under a combined inversion and 90 circle rotation symmetry. In this example three well-separated collinear unit charge monopoles coalesce to form first a tetrahedron, then a torus, then the dual tetrahedron and finally separate again along the same axis of motion. We explicitly construct the spectral curves in this case and use a numerical ADHMN construction to compute the energy density at various times during the motion. We find that the dynamics of the zeros of the Higgs field is extremely rich and we discover a new phenomenon; there exist charge k SU(2) BPS monopoles with more than k zeros of the Higgs field. (orig.)

  20. Neutron scattering from quantum liquids

    International Nuclear Information System (INIS)

    Cowley, R.A.

    1976-01-01

    Recent neutron scattering measurements on the quantum liquids 4 He and 3 He are described. In the Bose superfluid there is a well-defined excitation for wave vectors less than 3.6 A -1 . In the Fermi liquid measurements are much more difficult because of the large absorption cross section, but measurements at the Institute Laue-Langevin have shown that there are no well-defined excitations at 0.63 0 K for wave vectors between 1.0 and 2.6 A -1 . The difference between these results is due to the existence of particle-hole excitations in the Fermi liquid into which collective excitations can decay. Because of the simplicity of the excitations in 4 He, it has become a testing ground for the effects of the interactions between the excitations. Measurements are described which show that while roton-roton interactions are attractive at small wave vectors they are repulsive at larger wave vectors. The scattering at large momentum transfer in 4 He has been measured, but its interpretation is still open to question

  1. Interface detection by neutron scattering

    International Nuclear Information System (INIS)

    De Monchy, A.R.; Kok, C.A.; Dorrepaal, J.

    1979-01-01

    A method and apparatus for detecting an interface of materials having different hydrogen content present in a metal vessel or pipe eg. made of steel, are described. Steel walls of columns, reactors, pipelines etc can be monitored. It is very suitable for detection of liquid water or hydrocarbons present in gas pipelines and also for the detection of a liquid hydrocarbon in a vessel or column. A series of measurements of the hydrogen density of the contents of a vessel or pipe are made using at least one californium-252 neutron source located near the outer side of the pipe. Neutrons are emitted and are scattered by the contents of the pipe. At least one neutron detector is located near the outer side of the metal wall. The detectors have a higher sensitivity for scattered neutrons (from the light hydrogen nuclei present in water or hydrocarbons). A source of 0.1 - 1 micrograms produces enough neutrons for most technical applications so the handling is relatively safe although shielding is advocated. The detectors contain helium-3 at a pressure of about 10 bar. Current pulses from the detector are counted. (U.K.)

  2. Scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2014-03-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  3. Scattering amplitudes in gauge theories

    International Nuclear Information System (INIS)

    Henn, Johannes M.; Plefka, Jan C.

    2014-01-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  4. The fate of scattered planets

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-12-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.

  5. Pion scattering and nuclear dynamics

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1988-01-01

    A phenomenological optical-model analysis of pion elastic scattering and single- and double-charge-exchange scattering to isobaric-analog states is reviewed. Interpretation of the optical-model parameters is briefly discussed, and several applications and extensions are considered. The applications include the study of various nuclear properties, including neutron deformation and surface-fluctuation contributions to the density. One promising extension for the near future would be to develop a microscopic approach based on powerful momentum-space methods brought to existence over the last decade. In this, the lowest-order optical potential as well as specific higher-order pieces would be worked out in terms of microscopic pion-nucleon and delta-nucleon interactions that can be determined within modern meson-theoretical frameworks. A second extension, of a more phenomenological nature, would use coupled-channel methods and shell-model wave functions to study dynamical nuclear correlations in pion double charge exchange. 35 refs., 11 figs., 1 tab

  6. Positron scattering by rubidium and caesium

    International Nuclear Information System (INIS)

    Kernoghan, A.A.; Walters, H.R.J.; McAlinden, M.T.

    1996-01-01

    We report results in the energy range 0.5 to 64 eV for positron scattering by ground state rubidium and caesium in Ps(1s,2s,2p,3s,3p,3d) + Rb(5s,5p,6s,6p,4d) and Ps(1s,2s,2p,3s,3p,3d) + Cs(6s,6p,7s,7p,5d) coupled-state approximations, respectively. The pattern of results is similar to analogous calculations made on potassium by McAlinden et al. Except at the lowest energies, positronium formation is found to be almost entirely into excited states, with there being a dramatic collapse of the Ps(1s) cross section in the case of caesium. Ps(n = 2), Ps(n = 3) and Ps(n≥ 4) cross sections are predicted to be of comparable size. Ps(n≥ 4) formation is estimated from the calculated Ps(n = 3) results using the n 3 scaling rule. Good agreement in shape and magnitude is obtained with the recent lower bound measurements of total positronium formation in rubidium by Surdutovich et al, although there are differences in detail. Good agreement is also achieved with the total cross section measurements of Parikh et al on rubidium after these have been corrected for discrimination against forward elastic scattering and renormalized upwards by 5%. These total cross section measurements display a pronounced peak near 6 eV which is well reproduced by the present theory but is at variance with the earlier Rb(5s,5p,6s,6p,4d) calculations of McEachran et al which neglect positronium formation. This peak, which also appears in the calculations on potassium and caesium, is primarily associated with the maximum in the total positronium formation cross section. At low energies elastic scattering is dominant, this dominance being directly taken over by the resonance excitation of the atom with increasing impact energy. The next most important cross section is positronium formation, followed by excitation of the lowest atomic d-state. The 5s → 6s and 5s → 6p transitions in rubidium and the 6s → 7s and 6s → 7p transitions in caesium are of relatively minor importance. (Author)

  7. Modeling of light scattering by icy bodies

    Science.gov (United States)

    Kolokolova, L.; Mackowski, D.; Pitman, K.; Verbiscer, A.; Buratti, B.; Momary, T.

    2014-07-01

    As a result of ground-based, space-based, and in-situ spacecraft mission observations, a great amount of photometric, polarimetric, and spectroscopic data of icy bodies (satellites of giant planets, Kuiper Belt objects, comet nuclei, and icy particles in cometary comae and rings) has been accumulated. These data have revealed fascinating light-scattering phenomena, such as the opposition surge resulting from coherent backscattering and shadow hiding and the negative polarization associated with them. Near-infrared (NIR) spectra of these bodies are especially informative as the depth, width, and shape of the absorption bands of ice are sensitive not only to the ice abundance but also to the size of icy grains. Numerous NIR spectra obtained by Cassini's Visual and Infrared Mapping Spectrometer (VIMS) have been used to map the microcharacteristics of the icy satellites [1] and rings of Saturn [2]. VIMS data have also permitted a study of the opposition surge for icy satellites of Saturn [3], showing that coherent backscattering affects not only brightness and polarization of icy bodies but also their spectra [4]. To study all of the light-scattering phenomena that affect the photopolarimetric and spectroscopic characteristics of icy bodies, including coherent backscattering, requires computer modeling that rigorously considers light scattering by a large number of densely packed small particles that form either layers (in the case of regolith) or big clusters (ring and comet particles) . Such opportunity has appeared recently with a development of a new version MSTM4 of the Multi-Sphere T-Matrix code [5]. Simulations of reflectance and absorbance spectra of a ''target'' (particle layer or cluster) require that the dimensions of the target be significantly larger than the wavelength, sphere radius, and layer thickness. For wavelength-sized spheres and packing fractions typical of regolith, targets can contain dozens of thousands of spheres that, with the original MSTM

  8. Scattering of acoustic waves by small crustaceans

    Science.gov (United States)

    Andreeva, I. B.; Tarasov, L. L.

    2003-03-01

    Features of underwater sound scattering by small crustaceans are considered. The scattering data are obtained with the use of unique instrumentation that allows one to measure quantitative scattering characteristics (backscattering cross sections and angular scattering patterns) for crustaceans of different sizes, at different frequencies (20 200 kHz) and different insonification aspects. A computational model of crustaceans is considered with allowance for both the soft tissues of the main massive part of the animal's body and the stiff armour. The model proves to be advantageous for explaining some scattering features observed in the experiments. The scattering cross sections of crustaceans measured by other researchers are presented in a unified form appropriate for comparison. Based on such a quantitative comparison, relatively simple approximate empirical formulas are proposed for estimating the backscattering cross sections of small (within several centimeters) marine crustaceans in a broad frequency range.

  9. Solution of a simple inelastic scattering problem

    International Nuclear Information System (INIS)

    Knudson, S.K.

    1975-01-01

    Simple examples of elastic scattering, typically from square wells, serve as important pedagogical tools in discussion of the concepts and processes involved in elastic scattering events. An analytic solution of a model inelastic scattering system is presented here to serve in this role for inelastic events. The model and its solution are simple enough to be of pedagogical utility, but also retain enough of the important physical features to include most of the special characteristics of inelastic systems. The specific model chosen is the collision of an atom with a harmonic oscillator, interacting via a repulsive square well potential. Pedagogically important features of inelastic scattering, including its multistate character, convergence behavior, and dependence on an ''inelastic potential'' are emphasized as the solution is determined. Results are presented for various energies and strengths of inelastic scattering, which show that the model is capable of providing an elementary representation of vibrationally inelastic scattering

  10. Scattered radiation in fan beam imaging systems

    International Nuclear Information System (INIS)

    Johns, P.C.; Yaffe, M.

    1982-01-01

    Scatter-to-primary energy fluence ratios (S/P) have been studied for fan x-ray beams as used in CT scanners and slit projection radiography systems. The dependence of S/P on phantom diameter, distance from phantom to image receptor, and kilovoltage is presented. An empirical equation is given that predicts S/P over a wide range of fan beam imaging configurations. For CT body scans on a 4th-generation machine, S/P is approximately 5%. Scattered radiation can produce a significant cupping artefact in CT images which is similar to that due to beam hardening. When multiple slices are used in scanned slit radiography, they can be arranged such that the increase in S/P is negligible. Calculations of scatter-to-primary ratios for first order scattering showed that for fan beams the contribution of coherent scatter is comparable to or greater than that of incoherent first scatter

  11. Entanglement degradation in depolarizing light scattering

    International Nuclear Information System (INIS)

    Aiello, A.; Woerdman, J.P.

    2005-01-01

    Full text: In the classical regime, when a beam of light is scattered by a medium, it may emerge partially or completely depolarized depending on the optical properties of the medium. Correspondingly, in the quantum regime, when an entangled two-photon pair is scattered, the classical depolarization may result in an entanglement degradation. Here, relations between photon scattering, entanglement and multi-mode detection are investigated. We establish a general framework in which one- and two-photon elastic scattering processes can be discussed, and we focus on the study of the intrinsic entanglement degradation caused by a multi-mode detection. We show that any multi-mode scattered state cannot maximally violate the Bell-CHSH inequality because of the momentum spread. The results presented here have general validity and can be applied to both deterministic and random scattering processes. (author)

  12. Dynamic light scattering. Observation of polymer dynamics

    International Nuclear Information System (INIS)

    Hiroi, Takashi

    2015-01-01

    Dynamic light scattering is a technique to measure properties of polymer solutions such as size distribution. Principle of dynamic light scattering is briefly explained. Sometime dynamic light scattering is regarded as the observation of Doppler shift of scattered light. First, the difficulty for the direct observation of this Doppler shift is mentioned. Then the measurement by using a time correlation function is introduced. Measuring techniques for dynamic light scattering are also introduced. In addition to homodyne and heterodyne detection techniques, the technique called partial heterodyne method is also introduced. This technique is useful for the analysis of nonergodic medium such as polymer gels. Then the application of this technique to condensed suspension is briefly reviewed. As one of the examples, a dynamic light scattering microscope is introduced. By using this apparatus, we can measure the concentration dependence of the size distribution of polymer solutions. (author)

  13. Classical trajectory in non-relativistic scattering

    International Nuclear Information System (INIS)

    Williams, A.C.

    1978-01-01

    With the statistical interpretation of quantum mechanics as a guide, the classical trajectory is incorporated into quantum scattering theory. The Feynman path integral formalism is used as a starting point, and classical transformation theory is applied to the phase of the wave function so derived. This approach is then used to derive an expression for the scattering amplitude for potential scattering. It is found that the amplitude can be expressed in an impact parameter representation similar to the Glauber formalism. Connections are then made to the Glauber approximation and to semiclassical approximations derived from the Feynman path integral formalism. In extending this analysis to projectile-nucleus scattering, an approximation scheme is given with the first term being the same as in Glauber's multiple scattering theory. Higher-order approximations, thus, are found to give corrections to the fixed scatterer form of the impulse approximation inherent in the Glauber theory

  14. Theoretical study of the influence of small angle scattering on diffraction enhanced imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: zhupp@ihep.ac.cn; Huang Wanxia; Yuan, Qingxi [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Wang Junyue; Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graduate School of the Chinese Academy of Sciences, 100864 Beijing (China); Chen Bo [Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)], E-mail: wuzy@ihep.ac.cn

    2007-07-15

    Small angle scattering plays an important role in diffraction enhanced imaging (DEI). The DEI equation proposed by Chapman is accepted and widely used by many applications in medical, biological and material researches. However, in this framework the contribution of the small angle scattering determined by the crystal analyzer is neglected and the extinction contrast caused by the rejection of the small angle scattering by the analyzer is not explicitly expressed. In this contribution we introduce two additional terms in the DEI equation that describe the additional background introduced by the small angle scattering collected by the analyzer crystal and the extinction contrast associated to the rejection of the small angle scattering by the analyzer crystal, respectively. Four kinds of images of the DEI method were considered by using these revised equations and results were presented and discussed.

  15. Theoretical study of the influence of small angle scattering on diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Zhu Peiping; Huang Wanxia; Yuan, Qingxi; Wang Junyue; Shu Hang; Chen Bo; Wu Ziyu

    2007-01-01

    Small angle scattering plays an important role in diffraction enhanced imaging (DEI). The DEI equation proposed by Chapman is accepted and widely used by many applications in medical, biological and material researches. However, in this framework the contribution of the small angle scattering determined by the crystal analyzer is neglected and the extinction contrast caused by the rejection of the small angle scattering by the analyzer is not explicitly expressed. In this contribution we introduce two additional terms in the DEI equation that describe the additional background introduced by the small angle scattering collected by the analyzer crystal and the extinction contrast associated to the rejection of the small angle scattering by the analyzer crystal, respectively. Four kinds of images of the DEI method were considered by using these revised equations and results were presented and discussed

  16. Coherence factors in a high-tc cuprate probed by quasi-particle scattering off vortices.

    Science.gov (United States)

    Hanaguri, T; Kohsaka, Y; Ono, M; Maltseva, M; Coleman, P; Yamada, I; Azuma, M; Takano, M; Ohishi, K; Takagi, H

    2009-02-13

    When electrons pair in a superconductor, quasi-particles develop an acute sensitivity to different types of scattering potential that is described by the appearance of coherence factors in the scattering amplitudes. Although the effects of coherence factors are well established in isotropic superconductors, they are much harder to detect in their anisotropic counterparts, such as high-superconducting-transition-temperature cuprates. We demonstrate an approach that highlights the momentum-dependent coherence factors in Ca2-xNaxCuO2Cl2. We used Fourier-transform scanning tunneling spectroscopy to reveal a magnetic-field dependence in quasi-particle scattering interference patterns that is sensitive to the sign of the anisotropic gap. This result is associated with the d-wave coherence factors and quasi-particle scattering off vortices. Our technique thus provides insights into the nature of electron pairing as well as quasi-particle scattering processes in unconventional superconductors.

  17. Basis for calculating cross sections for nuclear magnetic resonance spin-modulated polarized neutron scattering.

    Science.gov (United States)

    Kotlarchyk, Michael; Thurston, George M

    2016-12-28

    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

  18. Particle trapping in stimulated scattering processes

    International Nuclear Information System (INIS)

    Karttunen, S.J.; Heikkinen, J.A.

    1981-01-01

    Particle trapping effects on stimulated Brillouin and Raman scattering are investigated. A time and space dependent model assumes a Maxwellian plasma which is taken to be homogeneous in the interaction region. Ion trapping has a rather weak effect on stimulated Brillouin scattering and large reflectivities are obtained even in strong trapping regime. Stimulated Raman scattering is considerably reduced by electron trapping. Typically 15-20 times larger laser intensities are required to obtain same reflectivity levels than without trapping. (author)

  19. Instruments and accessories for neutron scattering research

    International Nuclear Information System (INIS)

    Ishii, Yoshinobu; Morii, Yukio

    2000-04-01

    This report describes neutron scattering instruments and accessories installed by four neutron scattering research groups at the ASRC (Advanced Science Research Center) of the JAERI and the recent topics of neutron scattering research using these instruments. The specifications of nine instruments (HRPD, BIX-I, TAS-1 and PNO in the reactor hall, RESA, BIX-II, TAS-2, LTAS and SANS-J in the guide hall of the JRR-3M) are summarized in this booklet. (author)

  20. Small angle neutron scattering by polymer solutions

    International Nuclear Information System (INIS)

    Farnoux, B.; Jannink, G.

    1980-08-01

    Small angle neutron scattering is an experimental technique introduced since about 10 years for the observation of the polymer conformation in all the concentration range from dilute solution to the melt. After a brief recall of the elementary relations between scattering amplitude, index of refraction and scattered intensity, two concepts related to this last quantity (the contrast and the pair correlation function) are discussed in details

  1. Circular Intensity Differential Scattering of chiral molecules

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, C.J.

    1980-12-01

    In this thesis a theory of the Circular Intensity Differential Scattering (CIDS) of chiral molecules as modelled by a helix oriented with respect to the direction of incidence of light is presented. It is shown that a necessary condition for the existence of CIDS is the presence of an asymmetric polarizability in the scatterer. The polarizability of the scatterer is assumed generally complex, so that both refractive and absorptive phenomena are taken into account.

  2. Gamma camera scatter suppression unit WAM

    International Nuclear Information System (INIS)

    Kishi, Haruo; Shibahara, Noriyuki; Hirose, Yoshiharu; Shimonishi, Yoshihiro; Oumura, Masahiro; Ikeda, Hozumi; Hamada, Kunio; Ochi, Hironobu; Itagane, Hiroshi.

    1990-01-01

    In gamma camera imaging, scattered radiation is one of big factors to decrease image contrast. Simply, scatter suppression makes signal to noise ratio larger, but it makes statistics error because of radionuclide injection limit to the human body. EWA is a new method that suppresses scattered radiation and improves image contrast. In this article, WAM which is commercialized EWA method by Siemens Gammasonics Inc. is presented. (author)

  3. Inelastic neutron scattering from cerium under pressure

    International Nuclear Information System (INIS)

    Rainford, B.D.; Buras, B.; Lebech, B.

    1976-01-01

    Inelastic neutron scattering from Ce metal at 300K was studied both below and above the first order γ-α phase transition, using a triple axis spectrometer. It was found that (a) there is no indication of any residual magnetic scattering in the collapsed α phase and (b) the energy width of the paramagnetic scattering in the γ-phase increases with pressure. (Auth.)

  4. Thomson scattering measurements in atmospheric plasma jets

    International Nuclear Information System (INIS)

    Gregori, G.; Schein, J.; Schwendinger, P.; Kortshagen, U.; Heberlein, J.; Pfender, E.

    1999-01-01

    Electron temperature and electron density in a dc plasma jet at atmospheric pressure have been obtained using Thomson laser scattering. Measurements performed at various scattering angles have revealed effects that are not accounted for by the standard scattering theory. Differences between the predicted and experimental results suggest that higher order corrections to the theory may be required, and that corrections to the form of the spectral density function may play an important role. copyright 1999 The American Physical Society

  5. Optical theorem for heavy-ion scattering

    International Nuclear Information System (INIS)

    Schwarzschild, A.Z.; Auerbach, E.H.; Fuller, R.C.; Kahana, S.

    1976-01-01

    An heuristic derivation is given of an equivalent of the optical theorem stated in the charged situation with the remainder or nuclear elastic scattering amplitude defined as a difference of elastic and Coulomb amplitudes. To test the detailed behavior of this elastic scattering amplitude and the cross section, calculations were performed for elastic scattering of 18 O + 58 Ni, 136 Xe + 209 Bi, 84 Kr + 208 Pb, and 11 B + 26 Mg at 63.42 to 114 MeV

  6. How to calculate the Coulomb scattering amplitude

    International Nuclear Information System (INIS)

    Grosse, H.; Narnhofer, H.; Thirring, W.

    1974-01-01

    The derivation of scattering amplitudes for Coulomb scattering is discussed. A derivation of the S-matrix elements for a dense set of states in momentum space is given in the framework of time dependent scattering theory. The convergence of the S-matrix is studied. A purely algebraic derivation of the S-matrix elements and phase shifts is also presented. (HFdV)

  7. Lectures on the inverse scattering method

    International Nuclear Information System (INIS)

    Zakharov, V.E.

    1983-06-01

    In a series of six lectures an elementary introduction to the theory of inverse scattering is given. The first four lectures contain a detailed theory of solitons in the framework of the KdV equation, together with the inverse scattering theory of the one-dimensional Schroedinger equation. In the fifth lecture the dressing method is described, while the sixth lecture gives a brief review of the equations soluble by the inverse scattering method. (author)

  8. Scatter correction using a primary modulator on a clinical angiography C-arm CT system.

    Science.gov (United States)

    Bier, Bastian; Berger, Martin; Maier, Andreas; Kachelrieß, Marc; Ritschl, Ludwig; Müller, Kerstin; Choi, Jang-Hwan; Fahrig, Rebecca

    2017-09-01

    Cone beam computed tomography (CBCT) suffers from a large amount of scatter, resulting in severe scatter artifacts in the reconstructions. Recently, a new scatter correction approach, called improved primary modulator scatter estimation (iPMSE), was introduced. That approach utilizes a primary modulator that is inserted between the X-ray source and the object. This modulation enables estimation of the scatter in the projection domain by optimizing an objective function with respect to the scatter estimate. Up to now the approach has not been implemented on a clinical angiography C-arm CT system. In our work, the iPMSE method is transferred to a clinical C-arm CBCT. Additional processing steps are added in order to compensate for the C-arm scanner motion and the automatic X-ray tube current modulation. These challenges were overcome by establishing a reference modulator database and a block-matching algorithm. Experiments with phantom and experimental in vivo data were performed to evaluate the method. We show that scatter correction using primary modulation is possible on a clinical C-arm CBCT. Scatter artifacts in the reconstructions are reduced with the newly extended method. Compared to a scan with a narrow collimation, our approach showed superior results with an improvement of the contrast and the contrast-to-noise ratio for the phantom experiments. In vivo data are evaluated by comparing the results with a scan with a narrow collimation and with a constant scatter correction approach. Scatter correction using primary modulation is possible on a clinical CBCT by compensating for the scanner motion and the tube current modulation. Scatter artifacts could be reduced in the reconstructions of phantom scans and in experimental in vivo data. © 2017 American Association of Physicists in Medicine.

  9. Interference between magnetism and surface roughness in coherent soft X-ray scattering

    International Nuclear Information System (INIS)

    Rahmim, A.; Tixier, S.; Tiedje, T.; Eisebitt, S.; Lorgen, M.; Scherer, R.; Eberhardt, W.; Luning, J.; Scholl, A.

    2002-01-01

    In coherent soft x-ray scattering from magnetically ordered surfaces there are contributions to the scattering from the magnetic domains, from the surface roughness, and from the diffraction associated with the pinhole aperture used as a coherence filter. In the present work, we explore the interplay between these contributions by analyzing speckle patterns in diffusely scattered x rays from the surface of magnetic thin films. Magnetic contrast from the surface of anti ferro magnetically ordered LaFeO3 films is caused by magnetic linear dichroism in resonant x-ray scattering. The samples studied possess two types of domains with their magnetic orientations perpendicular to each other. By tuning the x-ray energy from one of the two Fe-L3 resonant absorption peaks to the other, the relative amplitudes of the x-ray scattering from the two domains is inverted which results in speckle pattern changes. A theoretical expression is derived for the intensity correlation between the speckle patterns with the magnetic contrast inverted and not inverted. The model is found to be in good agreement with the x-ray-scattering observations and independent measurements of the surface roughness. An analytical expression for the correlation function gives an explicit relation between the change in the speckle pattern and the roughness, and magnetic and aperture scattering. Changes in the speckle pattern are shown to arise from beating of magnetic scattering with the roughness scattering and diffraction from the aperture. The largest effect is found when the surface roughness scatter is comparable in intensity to the magnetic scatter

  10. New method for solving multidimensional scattering problem

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1991-01-01

    A new method is developed for solving the quantum mechanical problem of scattering of a particle with internal structure. The multichannel scattering problem is formulated as a system of nonlinear functional equations for the wave function and reaction matrix. The method is successfully tested for the scattering from a nonspherical potential well and a long-range nonspherical scatterer. The method is also applicable to solving the multidimensional Schroedinger equation with a discrete spectrum. As an example the known problem of a hydrogen atom in a homogeneous magnetic field is analyzed

  11. pp and ̄pp elastic scattering

    Directory of Open Access Journals (Sweden)

    A. Donnachie

    1984-01-01

    Full Text Available We present an analysis of pp and ̄pp elastic scattering in terms of various exchanges. Three-gluon exchange dominates at large t, and single-pomeron exchange at small t. The dip seen in high-energy pp scattering is provided by the interference of both of these with double-pomeron exchange. We predict that this dip will not be found in high-energy ̄pp scattering. The dip that is seen in low-energy ̄pp scattering is the result of the additional presence of reggeon-pomeron exchange.

  12. Experimental confirmation of neoclassical Compton scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Aristov, V. V., E-mail: aristov@iptm.ru [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation); Yakunin, S. N. [National Research Centre “Kurchatov Institute” (Russian Federation); Despotuli, A. A. [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation)

    2013-12-15

    Incoherent X-ray scattering spectra of diamond and silicon crystals recorded on the BESSY-2 electron storage ring have been analyzed. All spectral features are described well in terms of the neoclassical scattering theory without consideration for the hypotheses accepted in quantum electrodynamics. It is noted that the accepted tabular data on the intensity ratio between the Compton and Rayleigh spectral components may significantly differ from the experimental values. It is concluded that the development of the general theory (considering coherent scattering, incoherent scattering, and Bragg diffraction) must be continued.

  13. Fatigue and damage tolerance scatter models

    Science.gov (United States)

    Raikher, Veniamin L.

    1994-09-01

    Effective Total Fatigue Life and Crack Growth Scatter Models are proposed. The first of them is based on the power form of the Wohler curve, fatigue scatter dependence on mean life value, cycle stress ratio influence on fatigue scatter, and validated description of the mean stress influence on the mean fatigue life. The second uses in addition are fracture mechanics approach, assumption of initial damage existence, and Paris equation. Simple formulas are derived for configurations of models. A preliminary identification of the parameters of the models is fulfilled on the basis of experimental data. Some new and important results for fatigue and crack growth scatter characteristics are obtained.

  14. Material-independent modes for electromagnetic scattering

    Science.gov (United States)

    Forestiere, Carlo; Miano, Giovanni

    2016-11-01

    In this Rapid Communication, we introduce a representation of the electromagnetic field for the analysis and synthesis of the full-wave scattering by a homogeneous dielectric object of arbitrary shape in terms of a set of eigenmodes independent of its permittivity. The expansion coefficients are rational functions of the permittivity. This approach naturally highlights the role of plasmonic and photonic modes in any scattering process and suggests a straightforward methodology to design the permittivity of the object to pursue a prescribed tailoring of the scattered field. We discuss in depth the application of the proposed approach to the analysis and design of the scattering properties of a dielectric sphere.

  15. Geometrical effects in X-mode scattering

    International Nuclear Information System (INIS)

    Bretz, N.

    1986-10-01

    One technique to extend microwave scattering as a probe of long wavelength density fluctuations in magnetically confined plasmas is to consider the launching and scattering of extraordinary (X-mode) waves nearly perpendicular to the field. When the incident frequency is less than the electron cyclotron frequency, this mode can penetrate beyond the ordinary mode cutoff at the plasma frequency and avoid significant distortions from density gradients typical of tokamak plasmas. In the more familiar case, where the incident and scattered waves are ordinary, the scattering is isotropic perpendicular to the field. However, because the X-mode polarization depends on the frequency ratios and the ray angle to the magnetic field, the coupling between the incident and scattered waves is complicated. This geometrical form factor must be unfolded from the observed scattering in order to interpret the scattering due to density fluctuations alone. The geometrical factor is calculated here for the special case of scattering perpendicular to the magnetic field. For frequencies above the ordinary mode cutoff the scattering is relatively isotropic, while below cutoff there are minima in the forward and backward directions which go to zero at approximately half the ordinary mode cutoff density

  16. Forward Scattering of Loaded and Unloaded Antennas

    DEFF Research Database (Denmark)

    Gustafsson, Mats; Andersen, Jørgen Bach; Kristensson, Gerhard

    2012-01-01

    Forward scattering of antennas is related to antenna performance via the forward-scattering sum rule. The forward-scattering sum rule is an integral identity that shows that a weighted integral of the extinction cross section over all spectrum is proportional to the static polarizability...... of the antenna structure. Here, the forward-scattering sum rule is experimentally verified for loaded, short-circuit, and open-circuit cylindrical dipole antennas. It is also shown that the absorption efficiency cannot be greater than 1/2 for reciprocal linearly polarized lossless matched antennas...... with a symmetric radiation pattern in the forward and backward directions....

  17. Compton scatter tomography in TOF-PET

    Science.gov (United States)

    Hemmati, Hamidreza; Kamali-Asl, Alireza; Ay, Mohammadreza; Ghafarian, Pardis

    2017-10-01

    Scatter coincidences contain hidden information about the activity distribution on the positron emission tomography (PET) imaging system. However, in conventional reconstruction, the scattered data cause the blurring of images and thus are estimated and subtracted from detected coincidences. List mode format provides a new aspect to use time of flight (TOF) and energy information of each coincidence in the reconstruction process. In this study, a novel approach is proposed to reconstruct activity distribution using the scattered data in the PET system. For each single scattering coincidence, a scattering angle can be determined by the recorded energy of the detected photons, and then possible locations of scattering can be calculated based on the scattering angle. Geometry equations show that these sites lie on two arcs in 2D mode or the surface of a prolate spheroid in 3D mode, passing through the pair of detector elements. The proposed method uses a novel and flexible technique to estimate source origin locations from the possible scattering locations, using the TOF information. Evaluations were based on a Monte-Carlo simulation of uniform and non-uniform phantoms at different resolutions of time and detector energy. The results show that although the energy uncertainties deteriorate the image spatial resolution in the proposed method, the time resolution has more impact on image quality than the energy resolution. With progress of the TOF system, the reconstruction using the scattered data can be used in a complementary manner, or to improve image quality in the next generation of PET systems.

  18. Scatter factor corrections for elongated fields

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sohn, W.H.; Sibata, C.H.; McCarthy, W.A.

    1989-01-01

    Measurements have been made to determine scatter factor corrections for elongated fields of Cobalt-60 and for nominal linear accelerator energies of 6 MV (Siemens Mevatron 67) and 18 MV (AECL Therac 20). It was found that for every energy the collimator scatter factor varies by 2% or more as the field length-to-width ratio increases beyond 3:1. The phantom scatter factor is independent of which collimator pair is elongated at these energies. For 18 MV photons it was found that the collimator scatter factor is complicated by field-size-dependent backscatter into the beam monitor

  19. Scattering of photons from atomic electrons

    International Nuclear Information System (INIS)

    Pratt, R.H.; Zhou, B.; Bergstrom, P.M. Jr.; Pisk, K.; Suric, T.

    1990-01-01

    Validity of simpler approaches for elastic and inelastic photon scattering by atoms and ions is assessed by comparison with second-order S-matrix predictions. A simple scheme for elastic scattering based on angle-independent anomalous scattering factors has been found to give useful predictions near and below photoeffect thresholds. In inelastic scattering, major deviations are found from A 2 -based calculations. Extension of free-atom and free-ion cross sections to the dense plasma regime is discussed. 20 refs., 6 figs

  20. Neutron scattering lengths of molten metals determined by gravity refractometry

    International Nuclear Information System (INIS)

    Reiner, G.; Waschkowski, W.; Koester, L.

    1990-01-01

    Very accurate values of the coherent neutron scattering lengths of the heavy elements Bi and Pb are important quantities for the investigation of the electric interactions of neutrons with atoms. We performed, therefore, a series of experiments to determine accurate scattering lengths by means of neutron gravity refractometry on liquid mirrors of molten metals. The possible perturbations of the necessary reflection measurements have been discussed in details. After taking into account the uncertainties and corrections associated with observable perturbations we obtained the following values for bound atoms: b(Bi)=8.532±0.002 fm, b(Pb)=9.405±0.003 fm, b(Tl)=8.776±0.005 fm, b(Sn)=6.225±0.002 fm and b(Ga)=7.288±0.002 fm. These data are corrected for the local field effect occuring in the reflection on liquids. The recently reported results for the neutron's electric polarizability and the neutron-electron scattering length are supported by the Bi- and Pb-scattering length of this work. (orig.)

  1. Neutron scattering lengths of molten metals determined by gravity refractometry

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, G; Waschkowski, W; Koester, L [Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik

    1990-10-01

    Very accurate values of the coherent neutron scattering lengths of the heavy elements Bi and Pb are important quantities for the investigation of the electric interactions of neutrons with atoms. We performed, therefore, a series of experiments to determine accurate scattering lengths by means of neutron gravity refractometry on liquid mirrors of molten metals. The possible perturbations of the necessary reflection measurements have been discussed in details. After taking into account the uncertainties and corrections associated with observable perturbations we obtained the following values for bound atoms: b(Bi)=8.532{plus minus}0.002 fm, b(Pb)=9.405{plus minus}0.003 fm, b(Tl)=8.776{plus minus}0.005 fm, b(Sn)=6.225{plus minus}0.002 fm and b(Ga)=7.288{plus minus}0.002 fm. These data are corrected for the local field effect occuring in the reflection on liquids. The recently reported results for the neutron's electric polarizability and the neutron-electron scattering length are supported by the Bi- and Pb-scattering length of this work. (orig.).

  2. Neutron scattering lengths of molten metals determined by gravity refractometry

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, G.; Waschkowski, W.; Koester, L. (Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik)

    1990-10-01

    Very accurate values of the coherent neutron scattering lengths of the heavy elements Bi and Pb are important quantities for the investigation of the electric interactions of neutrons with atoms. We performed, therefore, a series of experiments to determine accurate scattering lengths by means of neutron gravity refractometry on liquid mirrors of molten metals. The possible perturbations of the necessary reflection measurements have been discussed in details. After taking into account the uncertainties and corrections associated with observable perturbations we obtained the following values for bound atoms: b(Bi)=8.532{plus minus}0.002 fm, b(Pb)=9.405{plus minus}0.003 fm, b(Tl)=8.776{plus minus}0.005 fm, b(Sn)=6.225{plus minus}0.002 fm and b(Ga)=7.288{plus minus}0.002 fm. These data are corrected for the local field effect occuring in the reflection on liquids. The recently reported results for the neutron's electric polarizability and the neutron-electron scattering length are supported by the Bi- and Pb-scattering length of this work. (orig.).

  3. Angular momentum effects in electron scattering from atoms

    International Nuclear Information System (INIS)

    Williams, J F; Cvejanovie, D; Samarin, S; Pravica, L; Napier, S; Sergeant, A

    2007-01-01

    This paper concerns angular momentum-dependent phenomena in excited gas-phase atoms using incident photons or electrons in scattering experiments. A brief overview indicates the main capabilities of experimental techniques and the information which can be deduced about atomic structure and dynamics from conservation of momenta with measurement of polarization and detection of the number of emerging electrons, photons and ions. Maximum information may be obtained when the incident particles and the targets are state-selected both before and after scattering. The fundamental scattering amplitudes and their relative phases, and consequently derived quantities such as the parameters describing the electron charge cloud of the atomic target, have enabled significant advances of understanding of collision mechanisms. The angular momentum-dependent scattering probabilities change when, for example, the spin-orbit interaction for the target electrons becomes large compared with the Coulomb electron-electron interactions and also when electron exchange and the relative orientation of the electron spins change. Several examples are discussed to indicate significant principles and recent advances. Major contributions to this field from the technology associated with electron spin production and detection time, as well as time-coincidence detection, are discussed. New results from the authors' laboratory are presented

  4. Rayleigh-wave scattering by shallow cracks using the indirect boundary element method

    International Nuclear Information System (INIS)

    Ávila-Carrera, R; Rodríguez-Castellanos, A; Ortiz-Alemán, C; Sánchez-Sesma, F J

    2009-01-01

    The scattering and diffraction of Rayleigh waves by shallow cracks using the indirect boundary element method (IBEM) are investigated. The detection of cracks is of interest because their presence may compromise structural elements, put technological devices at risk or represent economical potential in reservoir engineering. Shallow cracks may give rise to scattered body and surface waves. These waves are sensitive to the crack's geometry, size and orientation. Under certain conditions, amplitude spectra clearly show conspicuous resonances that are associated with trapped waves. Several applications based on the scattering of surface waves (e.g. Rayleigh and Stoneley waves), such as non-destructive testing or oil well exploration, have shown that the scattered fields may provide useful information to detect cracks and other heterogeneities. The subject is not new and several analytical and numerical techniques have been applied for the last 50 years to understand the basis of multiple scattering phenomena. In this work, we use the IBEM to calculate the scattered fields produced by single or multiple cracks near a free surface. This method is based upon an integral representation of the scattered displacement fields, which is derived from Somigliana's identity. Results are given in both frequency and time domains. The analyses of the displacement field using synthetic seismograms and snapshots reveal some important effects from various configurations of cracks. The study of these simple cases may provide an archetype to geoscientists and engineers to understand the fundamental aspects of multiple scattering and diffraction by cracks

  5. Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries.

    Science.gov (United States)

    Chalut, Kevin J; Giacomelli, Michael G; Wax, Adam

    2008-08-01

    Inverse light scattering analysis seeks to associate measured scattering properties with the most probable theoretical scattering distribution. Although Mie theory is a spherical scattering model, it has been used successfully for discerning the geometry of spheroidal scatterers. The goal of this study was an in-depth evaluation of the consequences of analyzing the structure of spheroidal geometries, which are relevant to cell and tissue studies in biology, by employing Mie-theory-based inverse light scattering analysis. As a basis for this study, the scattering from spheroidal geometries was modeled using T-matrix theory and used as test data. In a previous study, we used this technique to investigate the case of spheroidal scatterers aligned with the optical axis. In the present study, we look at a broader scope which includes the effects of aspect ratio, orientation, refractive index, and incident light polarization. Over this wide range of parameters, our results indicate that this method provides a good estimate of spheroidal structure.

  6. Uncertainty in the inelastic resonant scattering assisted by phonons

    International Nuclear Information System (INIS)

    Garcia, N.; Garcia-Sanz, J.; Solana, J.

    1977-01-01

    We have analyzed the inelastic minima observed in new results of He atoms scattered from LiF(001) surfaces. This is done considering bound state resonance processes assisted by phonons. The analysis presents large uncertainties. In the range of uncertainty, we find two ''possible'' bands associated with the vibrations of F - and Li + , respectively. Many more experimental data are necessary to confirm the existence of these processes

  7. Extended resolvent and inverse scattering with an application to KPI

    Science.gov (United States)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B.

    2003-08-01

    We present in detail an extended resolvent approach for investigating linear problems associated to 2+1 dimensional integrable equations. Our presentation is based as an example on the nonstationary Schrödinger equation with potential being a perturbation of the one-soliton potential by means of a decaying two-dimensional function. Modification of the inverse scattering theory as well as properties of the Jost solutions and spectral data as follows from the resolvent approach are given.

  8. Extended resolvent and inverse scattering with an application to KPI

    International Nuclear Information System (INIS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A.K.; Prinari, B.

    2003-01-01

    We present in detail an extended resolvent approach for investigating linear problems associated to 2+1 dimensional integrable equations. Our presentation is based as an example on the nonstationary Schroedinger equation with potential being a perturbation of the one-soliton potential by means of a decaying two-dimensional function. Modification of the inverse scattering theory as well as properties of the Jost solutions and spectral data as follows from the resolvent approach are given

  9. Deep inelastic scattering and disquarks

    International Nuclear Information System (INIS)

    Anselmino, M.

    1993-01-01

    The most comprehensive and detailed analyses of the existing data on the structure function F 2 (x, Q 2 ) of free nucleons, from the deep inelastic scattering (DIS) of charged leptons on hydrogen and deuterium targets, have proved beyond any doubt that higher twist, 1/Q 2 corrections are needed in order to obtain a perfect agreement between perturbative QCD predictions and the data. These higher twist corrections take into account two quark correlations inside the nucleon; it is then natural to try to model them in the quark-diquark model of the proton. In so doing all interactions between the two quarks inside the diquark, both perturbative and non perturbative, are supposed to be taken into account. (orig./HSI)

  10. Neutron scattering and models: molybdenum

    International Nuclear Information System (INIS)

    Smith, A.B.

    1999-01-01

    A comprehensive interpretation of the fast-neutron interaction with elemental and isotopic molybdenum at energies of le 30 MeV is given. New experimental elemental-scattering information over the incident energy range 4.5 r a rrow 10 MeV is presented. Spherical, vibrational and dispersive models are deduced and discussed, including isospin, energy-dependent and mass effects. The vibrational models are consistent with the ''Lane potential''. The importance of dispersion effects is noted. Dichotomies that exist in the literature are removed. The models are vehicles for fundamental physical investigations and for the provision of data for applied purposes. A ''regional'' molybdenum model is proposed. Finally, recommendations for future work are made

  11. Advanced electromagnetics and scattering theory

    CERN Document Server

    2015-01-01

    This book present the lecture notes used in two courses that the late Professor Kasra Barkeshli had offered at Sharif University of Technology, namely, Advanced Electromagnetics and Scattering Theory. The prerequisite for the sequence is vector calculus and electromagnetic fields and waves. Some familiarity with Green's functions and integral equations is desirable but not necessary. The book  provides a brief but concise introduction to classical topics in the field. It is divided into three parts including annexes. Part I covers principle of electromagnetic theory. The discussion starts with a review of the Maxwell's equations in differential and integral forms and basic boundary conditions. The solution of inhomogeneous wave equation and various field representations including Lorentz's potential functions and the Green's function method are discussed next. The solution of Helmholtz equation and wave harmonics follow. Next, the book presents plane wave propagation in dielectric and lossy media and various...

  12. Electron scattering from 17O

    International Nuclear Information System (INIS)

    Kim, J.C.; Hicks, R.S.; Yen, R.; Auer, I.P.; Caplan, H.S.; Bergstrom, J.C.

    1978-01-01

    Cross sections for elastic and inelastic scattering of electrons from 17 O have been measured for momentum transfers up to 1.2 fm -1 . The elastic cross section indicates that the rms charge radii of 17 O and 16 O are equal to within a few parts in a thousand: 2 17 >sup(1/2)/ 2 16 >sub(1/2)=1.0015+-0.0025. Reduced transition probabilities and ground-state radiative widths are deduced for 17 O excited states below 9 MeV. Various aspects of the inelastic spectrum are discussed, with emphasis on the 'single-particle' levels at 0.871 (1/2 + ) and 5.083 (3/2 + ) MeV, the levels at 7.569 (7/2 - ) and 7.378 (5/2 + ) MeV, and the spectrum of electric octupole excitations. (Auth.)

  13. Phonon scattering in metallic glasses

    International Nuclear Information System (INIS)

    Black, J.L.

    1979-01-01

    The purpose of this article is to review some recent theoretical and experimental developments in the study of metallic glasses at temperatures near or below 1K. In this temperature regime, it appears that practically all glasses, whether metallic or insulating, behave in a similar fashion. The fact that such similarities occur, despite substantial structural differences between metallic and insulating glasses, constitutes a major theoretical challenge. This challenge, however, is not directly addressed in what follows. Instead, the evidence for universal behavior and the theory which is necessary to understand this evidence are emphasized. It turns out that most of this evidence involves a comparison of phonon scattering in metallic glasses with its counterpart in insulating glasses

  14. Proton scattering at intermediate energies

    International Nuclear Information System (INIS)

    Chaumeaux, A.; Layly, V.; Schaeffer, R.

    1977-01-01

    This article is devoted to the analysis of the most recent Saclay data of elastic and inelastic proton scattering on nuclei at incident energies around 1GeV ( 16 O, the Ca isotopes, the Ni isotopes, 90 Zr and 208 Pb). Various theories (Impulse or Glauber approximation) are comapred. It is shown that the reaction mechanism is very well understood at 1GeV and that, at these energies, absorption and distortion is small enough, so one can extract nuclear densities from the experiment. In particular, the shape of the neutron densities is given, and compared to the Hartree-Fock predictions. The uncertainties, especially in the determination of the neutron radii are discussed [fr

  15. Topics in elementary scattering theory

    International Nuclear Information System (INIS)

    Imrie, D.C.

    1980-01-01

    In these lectures a summary is given of some of the fundamental ideas and formalism used to describe and understand the interactions of elementary particles. A brief review of relativistic kinematics is followed by a discussion of Lorentz-invariant variables for describing two-body processes, phase space and plots, such as the Dalitz plot, which can be used to study some aspects of the dynamics of an interaction, relatively free from kinematic complications. A general description of scattering and decay is given and then, more specifically, some aspects of two-body interactions in the absence of spin are discussed. Finally, complications that arise when particle spin has to be taken into account are considered. (U.K.)

  16. Grassmannian geometry of scattering amplitudes

    CERN Document Server

    Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav

    2016-01-01

    Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...

  17. Polymer research by neutron scattering

    International Nuclear Information System (INIS)

    Richter, D.

    1993-01-01

    Polymer physics aims on an understanding of the macroscopic behavior of polymer systems on the basis of their molecular structure and dynamics. For this purpose neutrons serve as a unique probe, allowing a simultaneous investigation of polymer structure and dynamics on a molecular scale. Furthermore, hydrogen deuterium exchange facilitates molecular labeling and offers the possibility to observe selected chains or chain parts in dense systems. Neutron small angle scattering reveals information on the conformation and possible aggregation of polymer chains. Data on linear and star like molecules are shown as examples. High resolution neutron spin-echospectroscopy observes the molecular dynamics of long chain molecules. Results on the large scale motion of chins in polymer melts are presented. finally, experiments on chain relaxation close to the glass transition are displayed. Three distinctly different relaxation processes are revealed. (author)

  18. New techniques in neutron scattering

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1993-01-01

    New neutron sources being planned, such as the Advanced Neutron Source (ANS) or the European Spallation Source (ESS), will provide an order of magnitude flux increase over what is available today, but neutron scattering will still remain a signal-limited technique. At the same time, the development of new materials, such as polymer and ceramic composites or a variety of complex fluids, will increasingly require neutron-based research. This paper will discuss some of the new techniques which will allow us to make better use of the available neutrons, either through improved instrumentation or through sample manipulation. Discussion will center primarily on unpolarized neutron techniques since polarized neutrons will be the subject of the next paper. (author)

  19. Bit-string scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1990-01-29

    We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc{sup 2} in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc{sup 2} our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G{sub {pi}N}{sup 2}){sup 2} = (2m{sub N}/m{sub {pi}}){sup 2} {minus} 1. 21 refs., 1 fig.

  20. Bit-string scattering theory

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1990-01-01

    We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc 2 in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are ''born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc 2 our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G πN 2 ) 2 = (2m N /m π ) 2 - 1. 21 refs., 1 fig

  1. An analytical approach to estimate the number of small scatterers in 2D inverse scattering problems

    International Nuclear Information System (INIS)

    Fazli, Roohallah; Nakhkash, Mansor

    2012-01-01

    This paper presents an analytical method to estimate the location and number of actual small targets in 2D inverse scattering problems. This method is motivated from the exact maximum likelihood estimation of signal parameters in white Gaussian noise for the linear data model. In the first stage, the method uses the MUSIC algorithm to acquire all possible target locations and in the next stage, it employs an analytical formula that works as a spatial filter to determine which target locations are associated to the actual ones. The ability of the method is examined for both the Born and multiple scattering cases and for the cases of well-resolved and non-resolved targets. Many numerical simulations using both the coincident and non-coincident arrays demonstrate that the proposed method can detect the number of actual targets even in the case of very noisy data and when the targets are closely located. Using the experimental microwave data sets, we further show that this method is successful in specifying the number of small inclusions. (paper)

  2. Thomson scattering using an atomic notch filter

    NARCIS (Netherlands)

    Bakker, L.P.; Freriks, J.M.; Hoog, de F.J.; Kroesen, G.M.W.

    2000-01-01

    One of the biggest problems in performing Thomson scattering experiments in low-density plasmas is the very high stray light intensity in comparison with the Thomson scattering intensity. This problem is especially present in fluorescent lamps because of the proximity of the glass tube. We propose

  3. An algebraic approach to the scattering equations

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Rijun; Rao, Junjie [Zhejiang Institute of Modern Physics, Zhejiang University,Hangzhou, 310027 (China); Feng, Bo [Zhejiang Institute of Modern Physics, Zhejiang University,Hangzhou, 310027 (China); Center of Mathematical Science, Zhejiang University,Hangzhou, 310027 (China); He, Yang-Hui [School of Physics, NanKai University,Tianjin, 300071 (China); Department of Mathematics, City University,London, EC1V 0HB (United Kingdom); Merton College, University of Oxford,Oxford, OX14JD (United Kingdom)

    2015-12-10

    We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.

  4. Hard scattering and a diffractive trigger

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-02-01

    Conclusions concerning the properties of hard scattering in diffractively produced systems are summarized. One motivation for studying diffractive hard scattering is to investigate the interface between Regge theory and perturbative QCD. Another is to see whether diffractive triggering can result in an improvement in the signal-to-background ratio of measurements of production of very heavy quarks. 5 refs

  5. Hermite scatterers in an ultraviolet sky

    Science.gov (United States)

    Parker, Kevin J.

    2017-12-01

    The scattering from spherical inhomogeneities has been a major historical topic in acoustics, optics, and electromagnetics and the phenomenon shapes our perception of the world including the blue sky. The long wavelength limit of ;Rayleigh scattering; is characterized by intensity proportional to k4 (or λ-4) where k is the wavenumber and λ is the wavelength. With the advance of nanotechnology, it is possible to produce scatterers that are inhomogeneous with material properties that are functions of radius r, such as concentric shells. We demonstrate that with proper choice of material properties linked to the Hermite polynomials in r, scatterers can have long wavelength scattering behavior of higher powers: k8, k16, and higher. These ;Hermite scatterers; could be useful in providing unique signatures (or colors) to regions where they are present. If suspended in air under white light, the back-scattered spectrum would be shifted from blue towards violet and then ultraviolet as the higher order Hermite scatterers were illuminated.

  6. Pion scattering from very light nuclei

    International Nuclear Information System (INIS)

    Berman, B.

    1993-01-01

    Selected recent elastic and inelastic pion-scattering experiments on 3 H, 3 He, and 4 He will be reviewed. Particular attention will be given to multinucleon or cluster aspects of the data, and to possible comparisons with electron-scattering results. From elastic scattering from 3 H and 3 He at forward angles, one can extract the matter distribution of the paired neutrons in 3 H as well as that of the paired protons in 3 He. At backward angles, scattering from correlated nucleon pairs and/or two-step processes play an important role. For inelastic scattering, the momentum-transfer dependence of the cross section varies strongly with incident energy. Elastic scattering from a polarized 3 He target shows a strong asymmetry near 90 degrees. Elastic scattering from 4 He yields results which cannot be fitted with a simple optical model. An for inelastic scattering from 4 He, analysis of the data requires an important contribution from direct triton knockout

  7. Arthur H. Compton and Compton Scattering

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Arthur H. Compton and Compton Scattering Resources with Additional Information * Compton Honored * Compton Scattering Arthur H. Compton Courtesy of Lawrence Berkeley , 1923 Establishing Site X: Letter, Arthur H. Compton to Enrico Fermi, September 14, 1942, DOE Technical

  8. Neutrino proton scattering and the isosinglet term

    International Nuclear Information System (INIS)

    White, D.H.

    1990-01-01

    Elastic neutrino proton scattering is sensitive to the SU(3) axial isosinglet term which is in turn dependent on the strangeness content of the proton. The uncertainties in the analysis of a neutrino proton elastic scattering experiment are discussed, and an experiment which is insensitive to many of the difficulties of the previous experiment is described

  9. Scattering Amplitudes via Algebraic Geometry Methods

    DEFF Research Database (Denmark)

    Søgaard, Mads

    Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized...

  10. On the K+-nucleus elastic scattering

    International Nuclear Information System (INIS)

    Ning, P.; Men, D.

    1991-01-01

    In this paper conventional and unconventional nuclear medium effects in the K + scattering are briefly reviewed. Microscopic calculations of the K + elastic scattering on 4 He, 12 C, 40 Ca, 120 Sn at 800 MeV/c are performed and then possible swellings of nucleons in nuclei are discussed

  11. SCATTERING OF SPIN WAVES BY MAGNETIC DEFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, Joseph

    1962-12-15

    The scattering of spin waves by magnetic point defects is considered using a Green's function method. A partial wave expansion for the scattering amplitude is derived. An expression for the cross section is determined that includes the effect of resonant states. Application is made to the calculation of the thermal conductivity of an insulating ferromagnet. (auth)

  12. Cascaded Bragg scattering in fiber optics.

    Science.gov (United States)

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  13. An algebraic approach to the scattering equations

    International Nuclear Information System (INIS)

    Huang, Rijun; Rao, Junjie; Feng, Bo; He, Yang-Hui

    2015-01-01

    We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.

  14. Heavy ion elastic scattering of code : OPTHI

    International Nuclear Information System (INIS)

    Ismail, M.; Divatia, A.S.

    1982-01-01

    A computer code, OPTHI has been designed to calculate nuclear optical model elastic cross sections for the scattering of heavy ions. The program has been designed to be utilitarian rather than capable of giving an exact description of elastic scattering. Input format is described and the program listing is given. (M.G.B.)

  15. Systematic study on nuclear resonant scattering

    International Nuclear Information System (INIS)

    Suarez, A.A.; Freitas, M.L.

    1974-01-01

    New resonant scattering effect of thermal neutron capture gamma rays from Ti and Fe on Sb, Cu, Se and Ce target were observed. These results together with those published by other authors are summarized and discussed in terms of a possible systematic search for new resonant scattering effects

  16. High-precision positioning of radar scatterers

    NARCIS (Netherlands)

    Dheenathayalan, P.; Small, D.; Schubert, A.; Hanssen, R.F.

    2016-01-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy

  17. Incoherent Thomson scattering as a diagnostic tool

    NARCIS (Netherlands)

    Barth, C. J.

    1998-01-01

    Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. Depending on the experimental conditions different plasma parameters can be diagnosed. When the wavelength is much smaller than the plasma Debye length, the total scattered power is

  18. RAYLEIGH SCATTERING MODELS WITH CORRELATION INTEGRAL

    Directory of Open Access Journals (Sweden)

    S. F. Kolomiets

    2014-01-01

    Full Text Available This article offers one of possible approaches to the use of the classical correlation concept in Rayleigh scattering models. Classical correlation in contrast to three types of correlations corresponding to stochastic point flows opens the door to the efficient explanation of the interaction between periodical structure of incident radiation and discreet stochastic structure of distributed scatters typical for Rayleigh problems.

  19. Inverse acoustic problem of N homogeneous scatterers

    DEFF Research Database (Denmark)

    Berntsen, Svend

    2002-01-01

    The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...

  20. Invariant imbedding equations for linear scattering problems

    International Nuclear Information System (INIS)

    Apresyan, L.

    1988-01-01

    A general form of the invariant imbedding equations is investigated for the linear problem of scattering by a bounded scattering volume. The conditions for the derivability of such equations are described. It is noted that the possibility of the explicit representation of these equations for a sphere and for a layer involves the separation of variables in the unperturbed wave equation

  1. Electromagnetic theory of plasma light scattering

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1969-01-01

    The theory of light scattering by a plasma is formulated using Klimontovich's microscopic distribution functions and Landau method to solve linear kinetic equations. First, Salpeter's derivation and results are given for the spectrum of light scattered by a collisionless plasma. Then, the influence of collision is investigated through B.G.K. kinetic equation. (author) [fr

  2. Bremsstrahlung in electron-positronium scattering

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Korol, A.V.; Solovyov, A.V.

    1986-01-01

    The spectrum of radiation formed in the fast nonrelativistic electron scattering on positronium is calculated. It is shown that all the radiation proceeds via virtual positronium deformations during the collision. An essential difference of bremsstrahlung spectra in electron on positronium and electron on hydrogen scattering is demonstrated. (orig.)

  3. On exact solutions of scattering problems

    International Nuclear Information System (INIS)

    Nikishov, P.Yu.; Plekhanov, E.B.; Zakhariev, B.N.

    1982-01-01

    Examples illustrating the quality of the reconstruction of potentials from single-channel scattering data by using exactly solvable models are given. Simple exact solutions for multi-channel systems with non-degenerated resonance singularities of the scattering matrix are derived

  4. Energy Transfer in Scattering by Rotating Potentials

    Indian Academy of Sciences (India)

    Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave ...

  5. Rayleigh scattering in coupled microcavities: theory.

    Science.gov (United States)

    Vörös, Zoltán; Weihs, Gregor

    2014-12-03

    In this paper we theoretically study how structural disorder in coupled semiconductor heterostructures influences single-particle scattering events that would otherwise be forbidden by symmetry. We extend the model of Savona (2007 J. Phys.: Condens. Matter 19 295208) to describe Rayleigh scattering in coupled planar microcavity structures, and find that effective filter theories can be ruled out.

  6. Momentum transfer in a Brillouin surface scattering

    International Nuclear Information System (INIS)

    Khater, A.F.

    1980-01-01

    The theory of acoustic excitation scattering in the surface of Brilloiun of opaque materials, is related to the question of momentum transfexed from radiation fields to the material when the incident eight is scattered in a measurable spectrum. (A.C.A.S.) [pt

  7. Diffractive hard scattering and the SSC

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-01-01

    Events in high energy hadron collisions are discussed that contain a hard scattering, in the sense that very heavy quarks or high P/sub T/ jets are produced, yet are diffractive, in the sense that one of the incident hadrons is scattered with only a small energy loss. 12 refs., 6 figs

  8. Scattering kernels and cross sections working group

    International Nuclear Information System (INIS)

    Russell, G.; MacFarlane, B.; Brun, T.

    1998-01-01

    Topics addressed by this working group are: (1) immediate needs of the cold-moderator community and how to fill them; (2) synthetic scattering kernels; (3) very simple synthetic scattering functions; (4) measurements of interest; and (5) general issues. Brief summaries are given for each of these topics

  9. On three-particle scattering theory

    International Nuclear Information System (INIS)

    Kuz'michev, V.E.

    1977-01-01

    The approach proposed earlier by the author to three-particle scattering theory is discussed. This approach may prove to be useful for studying certain problems in the physics of few-nucleon systems. The corresponding equations for the partial components of the amplitudes and the potentials are obtained in the N-d scattering case

  10. πd scattering lengths taking into account the pion and nucleon mass differences

    International Nuclear Information System (INIS)

    Pupyshev, V.V.; Rakityanskii, S.A.

    1985-01-01

    The scattering lengths and s-wave phase shifts for πd elastic scattering are calculated in the framework of an isotopically noninvariant approach that takes into account the mass splitting of the pionic and nucleonic isomultiplets. It is shown that the particle mass differences lead to appearance of the imaginary parts in the πd scattering lengths (approx.10 -4 fm) not associated with pion absorption. The sensitivity of the mass-difference effects to variation of the parameters of the πN potential is studied and turns out to be small

  11. Light Scatter in Optical Materials: Advanced Haze Modeling

    Science.gov (United States)

    2017-03-31

    contrast sensitivity with glare. This study measured angular scatter in the test articles , and showed that the cumulative (total) scatter beyond...Sample under laser illumination for angular scatter measurements ................................4  Figure 3: Scatter measurement system at a small...scatter effects image quality , visual performance and user acceptance. The purpose of the present effort was to develop a computational model that

  12. On the microscopic foundation of scattering theory

    International Nuclear Information System (INIS)

    Moser, T.

    2007-01-01

    The aim of the thesis is to give a contribution to the microscopic foundation of scattering theory, i. e. to show, how the asymptotic formalism of scattering theory with objects like the S-matrix as well the initial and final asymptotics ψ in and ψ out can be derived from a microscopic description of the basic system. First the final statistics from a N-particle system through farly distant surfaces is derived. Thereafter we confine us to the 1-particle scattering and apply the final statistics in order to derive the scattering cross section from a microscopical description of the scattering situation. The basing dynamics are Bohm's mechanics, a theory on the motion of point particles, which reproduces all results of nonrelativistic quantum mechanics

  13. Double hard scattering without double counting

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [VU Univ. Amsterdam (Netherlands). NIKHEF Theory Group; Schoenwald, Kay [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-02-15

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  14. Pion deuteron scattering at intermediate energies

    International Nuclear Information System (INIS)

    Ferreira, E.M.

    1978-09-01

    A comparison is made of results of calculations of πd elastic scattering cross section using multiple scattering and three-body equations, in relation to their ability to reproduce the experimental data at intermediate energies. It is shown that the two methods of theoretical calculation give quite similar curves for the elastic differential cross sections, and that both fail in reproducing backward scattering data above 200MeV. The new accurate experimental data on πd total cross section as a function of the energy are confronted with the theoretical values obtained from the multiple scattering calculation through the optical theorem. Comparison is made between the values of the real part of the forward amplitude evaluated using dispersion relations and using the multiple scattering method [pt

  15. Quantum entanglement and neutron scattering experiments

    International Nuclear Information System (INIS)

    Cowley, R A

    2003-01-01

    It is shown that quantum entanglement in condensed matter can be observed with scattering experiments if the energy resolution of the experiments enables a clear separation between the elastic scattering and the scattering from the excitations in the system. These conditions are not satisfied in recent deep inelastic neutron scattering experiments from hydrogen-containing systems that have been interpreted as showing the existence of quantum entanglement for short times in, for example, water at room temperature. It is shown that the theory put forward to explain these experiments is inconsistent with the first-moment sum rule for the Van Hove scattering function and we suggest that the theory is incorrect. The experiments were performed using the unique EVS spectrometer at ISIS and suggestions are made about how the data and their interpretation should be re-examined

  16. Diffraction scattering of strongly bound system

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.

    1982-04-01

    The scattering of a hadron on a strongly bound system of two hadrons (dihadron) is considered in the high-energy limit for the relative hadron-dihadron motion. The dihadron scatterer motion and the internal interaction are included in our consideration. It is shown that only small values of the internal transfer momentum of dihadron particles bring the principal contribution to the three-particle propagator in eikonal approximation. On the basis of the exact analytical solution of the integral equation for the total Green function the scattering amplitude is derived. It is shown that the scattering amplitude contains only single, double, and triple scattering terms. The three new terms to the Glauber formula for the total cross section are obtained. These terms decrease both the true total hadron-hadron cross section and the screening correction. (orig.)

  17. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.

    2015-01-01

    The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  18. Photon scattering by the giant dipole resonance

    International Nuclear Information System (INIS)

    Bowles, T.J.; Holt, R.J.; Jackson, H.E.; McKeown, R.D.; Specht, J.R.

    1979-01-01

    Although many features of the giant dipole resonance are well known, the coupling between the basic dipole oscillation and other nuclear collective degrees of freedom such as surface vibrations and rotations is poorly understood. This aspect was investigated by elastic and inelastic bremsstrahlung scattering of tagged photons over the energy range 15 to 22 MeV. Target nuclei were 60 Ni, 52 Cr, 56 Fe, 92 Mo, and 96 Mo. Scattering and absorption cross sections are tabulated, along with parameters obtained from a two-Lorentzian analysis of the scattering cross sections; measured spectra are shown. It was necessary to remove Thomson scattering from the experimental results. It was found that coupling to surface vibrations in the giant dipole resonance is much weaker than the dynamic collective model suggests. The elastic scattering cross section for all targets but 60 Ni showed structure that is not evident in the absorption cross section measurement. 12 figures, 2 tables

  19. Scattering of fast neutrons from elemental molybdenum

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-11-01

    Differential broad-resolution neutron-scattering cross sections of elemental molybdenum were measured at 10 to 20 scattering angles distributed between 20 and 160 degrees and at incident-neutron energy intervals of approx. = 50 to 200 keV from 1.5 to 4.0 MeV. Elastically-scattered neutrons were fully resolved from inelastic events. Lumped-level inelastic-neutron-scattering cross sections were determined corresponding to observed excitation energies of; 789 +- 23, 195 +- 23, 1500 +- 34, 1617 +- 12, 1787, 1874, 1991, 2063 +- 24, 2296, 2569 and 2802 keV. An optical-statistical model was deduced from the measured elastic-scattering results. The experimental values were compared with the respective quantities given in ENDF/B-V

  20. Inelastic scattering of fast electrons by crystals

    International Nuclear Information System (INIS)

    Allen, L.J.; Josefsson, T.W.

    1995-01-01

    Generalized fundamental equations for electron diffraction in crystals, which include the effect of inelastic scattering described by a nonlocal interaction, are derived. An expression is obtained for the cross section for any specific type of inelastic scattering (e.g. inner-shell ionization, Rutherford backscattering). This result takes into account all other (background) inelastic scattering in the crystal leading to absorption from the dynamical Bragg-reflected beams, in practice mainly due to thermal diffuse scattering. There is a contribution to the cross section from all absorbed electrons, which form a diffuse background, as well as from the dynamical electrons. The approximations involved, assuming that the interactions leading to inelastic scattering can be described by a local potential are discussed, together with the corresponding expression for the cross section. It is demonstrated by means of an example for K-shell electron energy loss spectroscopy that nonlocal effects can be significant. 47 refs., 4 figs