WorldWideScience

Sample records for scattered x-ray photons

  1. Search for photon–photon elastic scattering in the X-ray region

    International Nuclear Information System (INIS)

    Inada, T.; Yamaji, T.; Adachi, S.; Namba, T.; Asai, S.; Kobayashi, T.; Tamasaku, K.; Tanaka, Y.; Inubushi, Y.; Sawada, K.; Yabashi, M.; Ishikawa, T.

    2014-01-01

    We report the first results of a search for real photon–photon scattering using X rays. A novel system is developed to split and collide X-ray pulses by applying interferometric techniques. A total of 6.5×10 5 pulses (each containing about 10 11 photons) from an X-ray Free-Electron Laser are injected into the system. No scattered events are observed, and an upper limit of 1.7×10 −24  m 2 (95% C.L.) is obtained on the photon–photon elastic scattering cross section at 6.5 keV

  2. Soft X-ray production by photon scattering in pulsating binary neutron star sources

    International Nuclear Information System (INIS)

    Bussard, R.W.; Meszaros, P.; Alexander, S.

    1985-01-01

    A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column. 13 references

  3. Possibility of single biomolecule imaging with coherent amplification of weak scattering x-ray photons.

    Science.gov (United States)

    Shintake, Tsumoru

    2008-10-01

    The number of photons produced by coherent x-ray scattering from a single biomolecule is very small because of its extremely small elastic-scattering cross section and low damage threshold. Even with a high x-ray flux of 3 x 10;{12} photons per 100-nm -diameter spot and an ultrashort pulse of 10 fs driven by a future x-ray free electron laser (x-ray FEL), it has been predicted that only a few 100 photons will be produced from the scattering of a single lysozyme molecule. In observations of scattered x rays on a detector, the transfer of energy from wave to matter is accompanied by the quantization of the photon energy. Unfortunately, x rays have a high photon energy of 12 keV at wavelengths of 1A , which is required for atomic resolution imaging. Therefore, the number of photoionization events is small, which limits the resolution of imaging of a single biomolecule. In this paper, I propose a method: instead of directly observing the photons scattered from the sample, we amplify the scattered waves by superimposing an intense coherent reference pump wave on it and record the resulting interference pattern on a planar x-ray detector. Using a nanosized gold particle as a reference pump wave source, we can collect 10;{4}-10;{5} photons in single shot imaging where the signal from a single biomolecule is amplified and recorded as two-dimensional diffraction intensity data. An iterative phase retrieval technique can be used to recover the phase information and reconstruct the image of the single biomolecule and the gold particle at the same time. In order to precisely reconstruct a faint image of the single biomolecule in Angstrom resolution, whose intensity is much lower than that of the bright gold particle, I propose a technique that combines iterative phase retrieval on the reference pump wave and the digital Fourier transform holography on the sample. By using a large number of holography data, the three-dimensional electron density map can be assembled.

  4. Monte Carlo simulation of photon scattering in x-ray absorption imaging of high-intensity discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J, E-mail: jjcurry@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2010-06-16

    Coherent and incoherent scattering of x-rays during x-ray absorption imaging of high-intensity discharge lamps have been studied with Monte Carlo simulations developed specifically for this purpose. The Monte Carlo code is described and some initial results are discussed. Coherent scattering, because of its angular concentration in the forward direction, is found to be the most significant scattering mechanism. Incoherent scattering, although comparably strong, is not as significant because it results primarily in photons being scattered in the rearward direction and therefore out of the detector. Coherent scattering interferes with the detected absorption signal because the path of a scattered photon through the object to be imaged is unknown. Although scattering is usually a small effect, it can be significant in regions of high contrast. At the discharge/wall interface, as many as 50% of the detected photons are scattered photons. The effect of scattering on analysis of Hg distributions has not yet been quantified.

  5. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    International Nuclear Information System (INIS)

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-01-01

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  6. Scattered X-ray beam nondestructive testing

    International Nuclear Information System (INIS)

    Harding, G.; Kosanetzky, J.

    1988-01-01

    X-ray scatter interactions generally dominate the linear attenuation coefficient at the photon energies typical of medical and industrial radiography. Specific advantages of X-ray scatter imaging, including a flexible choice of measurement geometry, direct 3D-imaging capability (tomography) and improved information for material characterization, are illustrated with results from Compton and coherent scatter devices. Applications of a Compton backscatter scanner (ComScan) in the aerospace industry and coherent scatter imaging in security screening are briefly considered [pt

  7. Application of ultra-small-angle X-ray scattering / X-ray photon correlation spectroscopy to relate equilibrium or non-equilibrium dynamics to microstructure

    Science.gov (United States)

    Allen, Andrew; Zhang, Fan; Levine, Lyle; Ilavsky, Jan

    2013-03-01

    Ultra-small-angle X-ray scattering (USAXS) can probe microstructures over the nanometer-to-micrometer scale range. Through use of a small instrument entrance slit, X-ray photon correlation spectroscopy (XPCS) exploits the partial coherence of an X-ray synchrotron undulator beam to provide unprecedented sensitivity to the dynamics of microstructural change. In USAXS/XPCS studies, the dynamics of local structures in a scale range of 100 nm to 1000 nm can be related to an overall hierarchical microstructure extending from 1 nm to more than 1000 nm. Using a point-detection scintillator mode, the equilibrium dynamics at ambient temperature of small particles (which move more slowly than nanoparticles) in aqueous suspension have been quantified directly for the first time. Using a USAXS-XPCS scanning mode for non-equilibrium dynamics incipient processes within dental composites have been elucidated, prior to effects becoming detectable using any other technique. Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy (U.S. DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

  8. Resonant x-ray Raman scattering from atoms and molecules

    International Nuclear Information System (INIS)

    Cowan, P.L.

    1992-01-01

    Inelastic x-ray scattering and elastic x-ray scattering are fundamentally related processes. When the x-ray photon energy is near the ionization threshold for an inner shell, the inelastic channel is dominated by resonant x-ray Raman scattering. Studies of this emission not only illuminate the resonant scattering process in general, they also point to new opportunities for spectral studies of electronic structure using x-rays. Atoms in the form of a free gas provide an ideal target for testing the current theoretical understanding of resonant x-ray Raman scattering. In addition, x-ray scattering from molecular gases demonstrates the effect of bonding symmetry on the polarization and angular distribution of the scattered x-rays. Comparisons of experimental data with theory demonstrate both the successes and limitations of simple, single-electron interpretations of the scattering process

  9. A hybrid approach to simulate multiple photon scattering in X-ray imaging

    International Nuclear Information System (INIS)

    Freud, N.; Letang, J.-M.; Babot, D.

    2005-01-01

    A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or γ-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results

  10. A hybrid approach to simulate multiple photon scattering in X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: nicolas.freud@insa-lyon.fr; Letang, J.-M. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2005-01-01

    A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or {gamma}-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results.

  11. Dose distribution in lungs and thyroid from scatter photons of x-ray mammography imaging

    International Nuclear Information System (INIS)

    Faghihi, R.; Mehdizadeh, S.

    2006-01-01

    The contribution of scatter photons in dose of mammography image in thyroid and lungs are studied. Thyroid and in the form of distribution function and total delivered dose studied by direct measurement with Thermoluminescence dosimeter. The results of measurements compared to other published measurements and the total dose compared to our modelling with Monte Carlo method.. Our phantoms for direct measurement of Dose are a compressed breast phantom placed on a female RANDO phantom. The results of modelling and measurement are in agreement for the total delivered dose to thyroid and lungs and comparable to doses reported by the other researcher

  12. Effect of the X-ray scattering anisotropy on the diffusion of photons in the frame of the transport theory

    International Nuclear Information System (INIS)

    Fernandez, J.E.; Molinari, V.G.; Sumini, M.

    1988-01-01

    In the frame of the multiple applications of X-ray techniques a detailed description of the photon transport under several boundary conditions in condensed media is of utmost importance. In this work the photon transport equation for a homogeneous specimen of infinite thickness is considered and an exact iterative solution is reported, which is universally valid for all types of interactions because of its independence of the shape of the interaction kernel. As a test probe we use a specially simple elastic scattering expression that renders possible the exact calculation of the first two orders of the solution. It is shown that the second order does not produce any significant improvement over the first one. Due to its particular characteristics, the first-order solution for the simplified kernel can be extended to include the form factor, thus giving a more realistic description of the coherent scattering of monochromatic radiation by bound electrons. The relevant effects of the scattering anisotropy are also placed in evidence when they are constrated with the isotropic solution calculated in the same way. (author) [pt

  13. Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering.

    Science.gov (United States)

    Williams, G Jackson; Lee, Sooheyong; Walko, Donald A; Watson, Michael A; Jo, Wonhuyk; Lee, Dong Ryeol; Landahl, Eric C

    2016-12-22

    Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of the crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.

  14. Anomalous x-ray scattering

    International Nuclear Information System (INIS)

    Wendin, G.

    1979-01-01

    The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g. in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discuss the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L 3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references

  15. Time-resolved X-ray scattering program at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Rodricks, B.

    1994-01-01

    The Time-Resolved Scattering Program's goal is the development of instruments and techniques for time-resolved studies. This entails the development of wide bandpass and focusing optics, high-speed detectors, mechanical choppers, and components for the measurement and creation of changes in samples. Techniques being developed are pump-probe experiments, single-bunch scattering experiments, high-speed white and pink beam Laue scattering, and nanosecond to microsecond synchronization of instruments. This program will be carried out primarily from a white-beam, bend-magnet source, experimental station, 1-BM-B, that immediately follows the first optics enclosure (1-BM-A). This paper will describe the experimental station and instruments under development to carry out the program

  16. Characterization of Scattered X-Ray Photons in Dental Cone-Beam Computed Tomography.

    Science.gov (United States)

    Yang, Ching-Ching

    2016-01-01

    Scatter is a very important artifact causing factor in dental cone-beam CT (CBCT), which has a major influence on the detectability of details within images. This work aimed to improve the image quality of dental CBCT through scatter correction. Scatter was estimated in the projection domain from the low frequency component of the difference between the raw CBCT projection and the projection obtained by extrapolating the model fitted to the raw projections acquired with 2 different sizes of axial field-of-view (FOV). The function for curve fitting was optimized by using Monte Carlo simulation. To validate the proposed method, an anthropomorphic phantom and a water-filled cylindrical phantom with rod inserts simulating different tissue materials were scanned using 120 kVp, 5 mA and 9-second scanning time covering an axial FOV of 4 cm and 13 cm. The detectability of the CT image was evaluated by calculating the contrast-to-noise ratio (CNR). Beam hardening and cupping artifacts were observed in CBCT images without scatter correction, especially in those acquired with 13 cm FOV. These artifacts were reduced in CBCT images corrected by the proposed method, demonstrating its efficacy on scatter correction. After scatter correction, the image quality of CBCT was improved in terms of target detectability which was quantified as the CNR for rod inserts in the cylindrical phantom. Hopefully the calculations performed in this work can provide a route to reach a high level of diagnostic image quality for CBCT imaging used in oral and maxillofacial structures whilst ensuring patient dose as low as reasonably achievable, which may ultimately make CBCT scan a reliable and safe tool in clinical practice.

  17. Characterization of Scattered X-Ray Photons in Dental Cone-Beam Computed Tomography.

    Directory of Open Access Journals (Sweden)

    Ching-Ching Yang

    Full Text Available Scatter is a very important artifact causing factor in dental cone-beam CT (CBCT, which has a major influence on the detectability of details within images. This work aimed to improve the image quality of dental CBCT through scatter correction.Scatter was estimated in the projection domain from the low frequency component of the difference between the raw CBCT projection and the projection obtained by extrapolating the model fitted to the raw projections acquired with 2 different sizes of axial field-of-view (FOV. The function for curve fitting was optimized by using Monte Carlo simulation. To validate the proposed method, an anthropomorphic phantom and a water-filled cylindrical phantom with rod inserts simulating different tissue materials were scanned using 120 kVp, 5 mA and 9-second scanning time covering an axial FOV of 4 cm and 13 cm. The detectability of the CT image was evaluated by calculating the contrast-to-noise ratio (CNR.Beam hardening and cupping artifacts were observed in CBCT images without scatter correction, especially in those acquired with 13 cm FOV. These artifacts were reduced in CBCT images corrected by the proposed method, demonstrating its efficacy on scatter correction. After scatter correction, the image quality of CBCT was improved in terms of target detectability which was quantified as the CNR for rod inserts in the cylindrical phantom.Hopefully the calculations performed in this work can provide a route to reach a high level of diagnostic image quality for CBCT imaging used in oral and maxillofacial structures whilst ensuring patient dose as low as reasonably achievable, which may ultimately make CBCT scan a reliable and safe tool in clinical practice.

  18. Depth distribution of multiple order X-ray scatter

    International Nuclear Information System (INIS)

    Yao Weiguang; Leszczynski, Konrad

    2008-01-01

    Scatter can significantly affect quality of projectional X-ray radiographs and tomographic reconstructions. With this in mind, we examined some of the physical properties of multiple orders of scatter of X-ray photons traversing through a layer of scattering media such as water. Using Monte Carlo techniques, we investigated depth distributions of interactions between incident X-ray photons and water before the resulting scattered photons reach the detector plane. Effects of factors such as radiation field size, air gap, thickness of the layer of scattering medium and X-ray energy, on the scatter were included in the scope of this study. The following scatter characteristics were observed: (1) for a layer of scattering material corresponding to the typical subject thickness in medical imaging, frequency distribution of locations of the last scattering interaction increases approximately exponentially with depth, and the higher the order of scatter or the energy of the incident photon, the narrower is the distribution; (2) for the second order scatter, the distribution of locations of the first interaction is more uniform than that of the last interaction and is dependent on the energy of the primary photons. Theoretical proofs for some of these properties are given. These properties are important to better understanding of effects of scatter on the radiographic and tomographic imaging process and to developing effective methods for scatter correction

  19. Quantum effets in nonresonant X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Slowik, Jan Malte

    2015-11-15

    experiments. In the quantum theory it has however been revealed that X-ray scattering patterns of electronic motion are related to complex spatio-temporal correlations, instead of the instantaneous electron density. I scrutinize the time-resolved scattering pattern from coherent electronic wave packets. I show that timeresolved PCI recovers the instantaneous electron density of electronic motion. For the far-field diffraction scattering pattern, I analyze the influence of photon energy resolution of the detector. Moreover, I demonstrate that X-ray scattering from a crystal of identical wave packets also recovers the instantaneous electron density. I point out that a generalized electron density propagator of the wave packet can be reconstructed from a scattering experiment. Finally, I propose timeresolved Compton scattering of electronic wave packets. I show that X-ray scattering with large energy transfer can be used to recover the instantaneous momentum space density of the target. The third topic of this dissertation is Compton scattering in single molecule coherent diffractive imaging (CDI). The structure determination of single macromolecules via CDI is one of the key applications of XFELs. The structure of the molecule can be reconstructed from the elastic diffraction pattern. Inelastic X-ray scattering generates a background signal, which I determine for typical high-intensity imaging conditions. I find that at high X-ray fluence the background signal becomes dominating, posing a problem for high resolution imaging. The strong ionization by the X-ray pulse may ionize several electrons per atom. Scattering from these free electrons makes a major contribution to the background signal. I present and discuss detailed numerical studies for different X-ray fluence and photon energy.

  20. Quantum effets in nonresonant X-ray scattering

    International Nuclear Information System (INIS)

    Slowik, Jan Malte

    2015-11-01

    experiments. In the quantum theory it has however been revealed that X-ray scattering patterns of electronic motion are related to complex spatio-temporal correlations, instead of the instantaneous electron density. I scrutinize the time-resolved scattering pattern from coherent electronic wave packets. I show that timeresolved PCI recovers the instantaneous electron density of electronic motion. For the far-field diffraction scattering pattern, I analyze the influence of photon energy resolution of the detector. Moreover, I demonstrate that X-ray scattering from a crystal of identical wave packets also recovers the instantaneous electron density. I point out that a generalized electron density propagator of the wave packet can be reconstructed from a scattering experiment. Finally, I propose timeresolved Compton scattering of electronic wave packets. I show that X-ray scattering with large energy transfer can be used to recover the instantaneous momentum space density of the target. The third topic of this dissertation is Compton scattering in single molecule coherent diffractive imaging (CDI). The structure determination of single macromolecules via CDI is one of the key applications of XFELs. The structure of the molecule can be reconstructed from the elastic diffraction pattern. Inelastic X-ray scattering generates a background signal, which I determine for typical high-intensity imaging conditions. I find that at high X-ray fluence the background signal becomes dominating, posing a problem for high resolution imaging. The strong ionization by the X-ray pulse may ionize several electrons per atom. Scattering from these free electrons makes a major contribution to the background signal. I present and discuss detailed numerical studies for different X-ray fluence and photon energy.

  1. Polarized X-ray excitation for scatter reduction in X-ray fluorescence computed tomography.

    Science.gov (United States)

    Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei

    2018-05-25

    X-ray fluorescence computer tomography (XFCT) is a new molecular imaging modality which uses X-ray excitation to stimulate the emission of fluorescent photons in high atomic number contrast agents. Scatter contamination is one of the main challenges in XFCT imaging which limits the molecular sensitivity. When polarized X-rays are used, it is possible to reduce the scatter contamination significantly by placing detectors perpendicular to the polarization direction. This study quantifies scatter contamination for polarized and unpolarized X-ray excitation and determines the advantages of scatter reduction. The amount of scatter in preclinical XFCT is quantified in Monte Carlo simulations. The fluorescent X-rays are emitted isotropically, while scattered X-rays propagate in polarization direction. The magnitude of scatter contamination is studied in XFCT simulations of a mouse phantom. In this study, the contrast agent gold is examined as an example but a scatter reduction from polarized excitation is also expected for other elements. The scatter reduction capability is examined for different polarization intensities with a monoenergetic X-ray excitation energy of 82 keV. The study evaluates two different geometrical shapes of CZT detectors which are modeled with an energy resolution of 1 keV FWHM at an X-ray energy of 80 keV. Benefits of a detector placement perpendicular to the polarization direction are shown in iterative and analytic image reconstruction including scatter correction. The contrast to noise ratio (CNR) and the normalized mean square error (NMSE) are analyzed and compared for the reconstructed images. A substantial scatter reduction for common detector sizes was achieved for 100% and 80% linear polarization while lower polarization intensities provide a decreased scatter reduction. By placing the detector perpendicular to the polarization direction, a scatter reduction by factor up to 5.5 can be achieved for common detector sizes. The image

  2. X-ray scattering by interstellar dust

    International Nuclear Information System (INIS)

    Rolf, D.

    1980-10-01

    This thesis reports work carried out to make a first observation of x-rays scattered by interstellar dust grains. Data about the dust, obtained at wavelengths ranging from the infrared to ultra-violet spectral regions, are discussed in order to establish a useful description of the grains themselves. This is then used to estimate the magnitude and form of the expected x-ray scattering effect which is shown to manifest itself as a diffuse halo accompanying the image of a celestial x-ray source. Two x-ray imaging experiments are then discussed. The first, specifically proposed to look for this effect surrounding a point x-ray source, was the Skylark 1611 project, and comprised an imaging proportional counter coupled to an x-ray mirror. This is described up to its final calibration when the basis for a concise model of its point response function was established. The experiment was not carried out but its objective and the experience gained during its testing were transferred to the second of the x-ray imaging experiments, the Einstein Observatory. The new instrumental characteristics are described and a model for its point response function is developed. Using this, image data for the point x-ray source GX339-4 is shown to exhibit the sought after scattering phenomenon. (author)

  3. Small Angle X-Ray Scattering Detector

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  4. Lepton contamination and photon scatter produced by open field 18 MV X-ray beams in the build-up region

    International Nuclear Information System (INIS)

    Butson, M.J.; Cheung Tsang; Yu, P.K.N.

    2002-01-01

    18 MV X-ray beams used in radiotherapy have skin sparing properties as they produce a dose build-up effect whereby a smaller dose is delivered to the skin compared to dose at depth. Experimental results have shown that variations in the build-up dose significantly contribute to lepton contamination produced outside of the patient or the phantom in question. Monte Carlo simulations of 18 MV X-ray beams show that the surface dose contribution from in-phantom scatter alone is approximately 6% of the maximum dose. The contribution to dose from lepton contamination is found by comparison of Monte Carlo phantom photon scatter dose only and experimental data. Results show that the percentage contributions to dose from lepton contamination are approximately, 65%, 90% of dose at 0.05 mm (basal cell layer), 52%, 79% at 1 mm depth (dermal layer) and 15%, 26% at 10 mm depth (subcutaneous tissue) for 10 cmx10 cm 2 and 40 cmx40 cm 2 fields, respectively

  5. Lepton contamination and photon scatter produced by open field 18 MV X-ray beams in the build-up region

    Energy Technology Data Exchange (ETDEWEB)

    Butson, M.J. E-mail: mbutson@guessmail.com; Cheung Tsang; Yu, P.K.N

    2002-04-01

    18 MV X-ray beams used in radiotherapy have skin sparing properties as they produce a dose build-up effect whereby a smaller dose is delivered to the skin compared to dose at depth. Experimental results have shown that variations in the build-up dose significantly contribute to lepton contamination produced outside of the patient or the phantom in question. Monte Carlo simulations of 18 MV X-ray beams show that the surface dose contribution from in-phantom scatter alone is approximately 6% of the maximum dose. The contribution to dose from lepton contamination is found by comparison of Monte Carlo phantom photon scatter dose only and experimental data. Results show that the percentage contributions to dose from lepton contamination are approximately, 65%, 90% of dose at 0.05 mm (basal cell layer), 52%, 79% at 1 mm depth (dermal layer) and 15%, 26% at 10 mm depth (subcutaneous tissue) for 10 cmx10 cm{sup 2} and 40 cmx40 cm{sup 2} fields, respectively.

  6. X-ray scattering of soft matter

    International Nuclear Information System (INIS)

    Stribeck, N.

    2007-01-01

    This coherently written volume summarizes the analytical power of modern X-ray scattering in the field of soft matter. Applications of X-ray scattering to soft matter have advanced considerably within recent years, both conceptually and technically. There are now mature high-power X-ray sources, synchrotrons and rotating anodes, as well as high-speed detectors, which have become readily available and which make the whole process more viable. High-quality time-resolved experiments on polymer structure can now be performed with ease, a major advancement due to the genuine power of the scattering method. This manual is a detailed description of simple tools that can elucidate the mechanisms of structure evolution in the studied materials. It is also a step-by-step guide to more advanced methods of the latest X-ray scattering techniques, and breaks down these methods. Data analysis based on clear, unequivocal results is rendered simple and straightforward - with a stress on the careful planning of experiments and adequate recording of all required data. This book, then, serves as a useful ready-reference guide. It has been written for the modern scientist who is a generalist and needs a concise reference, and demonstrates typical errors in data evaluation. (orig.)

  7. X-ray scattering signatures of β-thalassemia

    International Nuclear Information System (INIS)

    Desouky, Omar S.; Elshemey, Wael M.; Selim, Nabila S.

    2009-01-01

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm -1 , respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; β-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of β-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm -1 , in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  8. X-ray scattering signatures of β-thalassemia

    Science.gov (United States)

    Desouky, Omar S.; Elshemey, Wael M.; Selim, Nabila S.

    2009-08-01

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm -1, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; β-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of β-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm -1, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  9. X-ray scattering signatures of {beta}-thalassemia

    Energy Technology Data Exchange (ETDEWEB)

    Desouky, Omar S. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT) (Egypt); Elshemey, Wael M. [Biophysics Department, Faculty of Science, Cairo University (Egypt)], E-mail: waelelshemey@yahoo.com; Selim, Nabila S. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT) (Egypt)

    2009-08-11

    X-ray scattering from lyophilized proteins or protein-rich samples is characterized by the presence of two characteristic broad peaks at scattering angles equivalent to momentum transfer values of 0.27 and 0.6 nm{sup -1}, respectively. These peaks arise from the interference of coherently scattered photons. Once the conformation of a protein is changed, these two peaks reflect such change with considerable sensitivity. The present work examines the possibility of characterizing the most common cause of hemolytic anaemia in Egypt and many Mediterranean countries; {beta}-thalassemia, from its X-ray scattering profile. This disease emerges from a genetic defect causing reduced rate in the synthesis of one of the globin chains that make up hemoglobin. As a result, structurally abnormal hemoglobin molecules are formed. In order to detect such molecular disorder, hemoglobin samples of {beta}-thalassemia patients are collected, lyophilized and measured using a conventional X-ray diffractometer. Results show significant differences in the X-ray scattering profiles of most of the diseased samples compared to control. The shape of the first scattering peak at 0.27 nm{sup -1}, in addition to the relative intensity of the first to the second scattering peaks, provides the most reliable signs of abnormality in diseased samples. The results are interpreted and confirmed with the aid of Fourier Transform Infrared (FTIR) spectroscopy of normal and thalassemia samples.

  10. X-ray scatter removal by deconvolution

    International Nuclear Information System (INIS)

    Seibert, J.A.; Boone, J.M.

    1988-01-01

    The distribution of scattered x rays detected in a two-dimensional projection radiograph at diagnostic x-ray energies is measured as a function of field size and object thickness at a fixed x-ray potential and air gap. An image intensifier-TV based imaging system is used for image acquisition, manipulation, and analysis. A scatter point spread function (PSF) with an assumed linear, spatially invariant response is modeled as a modified Gaussian distribution, and is characterized by two parameters describing the width of the distribution and the fraction of scattered events detected. The PSF parameters are determined from analysis of images obtained with radio-opaque lead disks centrally placed on the source side of a homogeneous phantom. Analytical methods are used to convert the PSF into the frequency domain. Numerical inversion provides an inverse filter that operates on frequency transformed, scatter degraded images. Resultant inverse transformed images demonstrate the nonarbitrary removal of scatter, increased radiographic contrast, and improved quantitative accuracy. The use of the deconvolution method appears to be clinically applicable to a variety of digital projection images

  11. Healing X-ray scattering images

    Directory of Open Access Journals (Sweden)

    Jiliang Liu

    2017-07-01

    Full Text Available X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuse versus sharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.

  12. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species.

    Science.gov (United States)

    Saranathan, Vinodkumar; Forster, Jason D; Noh, Heeso; Liew, Seng-Fatt; Mochrie, Simon G J; Cao, Hui; Dufresne, Eric R; Prum, Richard O

    2012-10-07

    Non-iridescent structural colours of feathers are a diverse and an important part of the phenotype of many birds. These colours are generally produced by three-dimensional, amorphous (or quasi-ordered) spongy β-keratin and air nanostructures found in the medullary cells of feather barbs. Two main classes of three-dimensional barb nanostructures are known, characterized by a tortuous network of air channels or a close packing of spheroidal air cavities. Using synchrotron small angle X-ray scattering (SAXS) and optical spectrophotometry, we characterized the nanostructure and optical function of 297 distinctly coloured feathers from 230 species belonging to 163 genera in 51 avian families. The SAXS data provided quantitative diagnoses of the channel- and sphere-type nanostructures, and confirmed the presence of a predominant, isotropic length scale of variation in refractive index that produces strong reinforcement of a narrow band of scattered wavelengths. The SAXS structural data identified a new class of rudimentary or weakly nanostructured feathers responsible for slate-grey, and blue-grey structural colours. SAXS structural data provided good predictions of the single-scattering peak of the optical reflectance of the feathers. The SAXS structural measurements of channel- and sphere-type nanostructures are also similar to experimental scattering data from synthetic soft matter systems that self-assemble by phase separation. These results further support the hypothesis that colour-producing protein and air nanostructures in feather barbs are probably self-assembled by arrested phase separation of polymerizing β-keratin from the cytoplasm of medullary cells. Such avian amorphous photonic nanostructures with isotropic optical properties may provide biomimetic inspiration for photonic technology.

  13. Development of general X-ray scattering model

    International Nuclear Information System (INIS)

    Gray, Joe; Wendt, Scott

    2015-01-01

    X-ray scattering is a complex process made difficult to describe due to the effects of a complex energy spectrum interacting with a wide range of material types in complex geometry. The scattering is further complicated by the volume of material illuminated and the experimental configuration of the data acquisition. The importance of accounting for the key physics in scattering modeling is critical to the viability of the model. For example, scattering in the detector and the speed of the detector, as measured by the absorbed dose needed to produce a signal, are important in capturing undercut effects. Another example is the noise properties of the detectors are dependent on photon energy. We report on a semi-empirical treatment of x-ray scattering that includes a full energy treatment for a wide range of material types. We also include complex geometry effects that the part shape introduces. The treatment is based on experimental measurements using an energy dispersive germanium detector over energies from treatment is showing good results with experimental measurements of the scattering component agreeing with the model results to the 10% level over the range of x-ray energies and materials typical in industrial applications. Computation times for this model are in the 20 keV to 320 keV. Detector stripping routines for detector artifacts were developed. The computation time is in the range of a few minutes on a typical PC

  14. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    Science.gov (United States)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  15. Resonant magnetic scattering of polarized soft x rays

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, M. [Centre Universitaire Paris-Sud, Orsay (France); Hague, C.F. [Universite Pierre et Marie Curie, Paris (France); Gullikson, E.M.; Underwood, J. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  16. Revealing inner shell dynamics with inelastic X-ray scattering

    International Nuclear Information System (INIS)

    Franck, C.

    1990-01-01

    One of the many opportunities provided by the Advanced Photon Source (APS) is to extend the study of intra-atomic dynamics. As a means of testing dynamic response, inelastic x-ray scattering is particularly promising since it allows us to independently vary the period of the exciting field in both space and time. As an example of this type of work, the author presents experiments performed at the Cornell High Energy Synchrotron Source (CHESS) laboratory, a prototype for the APS. This was inner shell inelastic scattering with a twist: in order to explore a new distance scale an x-ray fluorescence trigger was employed. Aside for the atomic insight gained, the experiment taught them the importance of the time structure of the synchrotron beam for coincidence experiments which are dominated by accidental events

  17. A compact X-ray source based on Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.; Gladkikh, P.; Grigor' ev, Yu.; Guk, I.; Karnaukhov, I.; Khodyachikh, A.; Kononenko, S.; Mocheshnikov, N.; Mytsykov, A.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Tarasenko, A.; Telegin, Yu.; Zelinsky, A

    2001-07-21

    The main parameters of Kharkov electron storage ring N-100 with a beam energy range from 70 to 150 MeV are presented. The main results that were obtained in experimental researches are briefly described. The future of the N-100 upgrade to the development of the X-ray generator based on Compton back-scattering are presented. The electron beam energy range will be extended up to 250 MeV and the circumference of the storage ring will be 13.72 m. The lattice, parameters of the electron beam and the Compton back-scattering photons flux are described.

  18. A compact X-ray source based on Compton scattering

    International Nuclear Information System (INIS)

    Bulyak, E.; Gladkikh, P.; Grigor'ev, Yu.; Guk, I.; Karnaukhov, I.; Khodyachikh, A.; Kononenko, S.; Mocheshnikov, N.; Mytsykov, A.; Shcherbakov, A.; Tarasenko, A.; Telegin, Yu.; Zelinsky, A.

    2001-01-01

    The main parameters of Kharkov electron storage ring N-100 with a beam energy range from 70 to 150 MeV are presented. The main results that were obtained in experimental researches are briefly described. The future of the N-100 upgrade to the development of the X-ray generator based on Compton back-scattering are presented. The electron beam energy range will be extended up to 250 MeV and the circumference of the storage ring will be 13.72 m. The lattice, parameters of the electron beam and the Compton back-scattering photons flux are described

  19. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael

    2016-01-01

    and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3]2+, with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe. We monitored the ultrafast structural...... rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering atterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited...

  20. Resonant x-ray scattering in correlated systems

    CERN Document Server

    Ishihara, Sumio

    2017-01-01

    The research and its outcomes presented here is devoted to the use of x-ray scattering to study correlated electron systems and magnetism. Different x-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with x-ray diffraction is shown.

  1. Resonant X-ray scattering in correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Youichi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan). Inst. of Materials Structure Science; Ishihara, Sumio (ed.) [Tohoku Univ., Sendai, Miyagi (Japan). Dept. of Physics

    2017-03-01

    The research and its outcomes presented here is devoted to the use of X-ray scattering to study correlated electron systems and magnetism. Different X-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with X-ray diffraction is shown.

  2. Resonant inelastic x-ray scattering studies of elementary excitations

    NARCIS (Netherlands)

    Ament, Lucas Johannes Peter (Luuk)

    2010-01-01

    Resonant Inelastic X-ray Scattering (RIXS) is an X-ray in, X-ray out technique that enables one to study the dispersion of excitations in solids. In this thesis, we investigated how various elementary excitations of transition metal oxides show up in RIXS spectra.

  3. VPD residue search by monitoring scattered x-rays

    International Nuclear Information System (INIS)

    Mori, Y.; Yamagami, M.; Yamada, T.

    2000-01-01

    Recently, VPD-TXRF has come into wide use for semiconductor analysis. In VPD-TXRF technique, adjusting the mechanical measuring point to the center of dried residue is of importance for accurate determination. Until now, the following searching methods have been used: monitoring light scattering under bright illumination, using laser scattering particle mapper, applying internal standard as a marker. However, each method has individual disadvantage. For example, interference of Kβ line (ex. Sc-Kβ to Ti-Kα) occurs in the internal standard method. We propose a new searching method 'scattered x-ray search' which utilizes x-ray scattering form the dried residue as a marker. Since the line profile of x-ray scattering agrees with that of fluorescent x-rays, scattered x-ray can be used as an alternative marker instead of internal standard. According to our experimental results, this search method shows the same accuracy as internal standard method. The merits are as follows: 1) no need to add internal standard, 2) rapid search because of high intensity of scattered x-rays, 3) searching software for internal standard can be applied without any modification. In this method, diffraction of incident x-rays by substrate causes irregular change over the detected scattering x-rays. Therefore, this method works better under x-y controlled stage than r-Θ one. (author)

  4. Ghost imaging with paired x-ray photons

    Science.gov (United States)

    Schori, A.; Borodin, D.; Tamasaku, K.; Shwartz, S.

    2018-06-01

    We report the experimental observation of ghost imaging with paired x-ray photons, which are generated by parametric downconversion. We use the one-to-one relation between the photon energies and the emission angles and the anticorrelation between the k -vectors of the signal and the idler photons to reconstruct the images of slits with nominally zero background levels. Further extension of our procedure can be used for the observation of various quantum phenomena at x-ray wavelengths.

  5. Dichroism in resonant inelastic soft X-ray scattering

    International Nuclear Information System (INIS)

    Braicovich, L.

    2004-01-01

    Full text: The dichroism (and in particular the magnetic dichroism) has emerged in the last decade as a key method in the study of electronic states in solids. This has been largely due to the exploitation of the modern sources of Synchrotron Radiation. This approach has been extensively used in X ray Absorption Spectroscopy i.e. in a first order process giving a straightforward access, trough sum rules, to the ground state properties of the sample. On the other hand the studies of dichroism in second order processes as the photon scattering experiments has been up to now relatively limited probably due to experimental difficulties. This is too bad because, at least in principle, the scattering experiments offer unique opportunities typical of second order processes, beyond the possibilities offered by absorption spectroscopy. This requires specific scattering experiments able to give information that cannot be obtained in the absorption mode. A typical example is the circular magnetic dichroism in resonant inelastic scattering in perpendicular geometry i.e. with the light incident perpendicular to the magnetisation. In this case the circular dichroism in absorption is zero by symmetry while the detection of the scattered photons at an angle breaks the left-right symmetry and allows a dichroism to be observed. The aim of the present talk is to review critically the dichroism in resonant X-ray scattering and to show the potential of this approach. In particular it will be shown how to recover, in magnetic samples, the ground state information up to the moments of order four. In this connection original results will be presented including the demonstration of a new experimental approach. The perspectives of the field will be also discussed

  6. Magnetic X-Ray Scattering with Synchrotron Radiation

    DEFF Research Database (Denmark)

    Moncton, D. E.; Gibbs, D.; Bohr, Jakob

    1986-01-01

    With the availability of high-brilliance synchrotron radiation from multiple wigglers, magnetic X-ray scattering has become a powerful new probe of magnetic structure and phase transitions. Similar to the well-established magnetic neutron scattering technique, magnetic X-ray scattering methods have...... many complementary advantages. A brief review is presented of the history of magnetic X-ray scattering as well as recent results obtained in studies of the rare-earth magnet holmium with emphasis on instrumentational aspects. In particular, the development of a simple polarization analyzer...... to distinguish charge and magnetic scattering is described....

  7. Scattering of x rays from low-Z materials

    International Nuclear Information System (INIS)

    Gaines, J.L.; Kissel, L.D.; Catron, H.C.; Hansen, R.A.

    1980-01-01

    X rays incident on thin beryllium, boron, carbon, and other low-Z materials undergo both elastic and inelastic scattering as well as diffraction from the crystalline or crystalline-like structure of the material. Unpolarized monoenergetic x rays in the 1.5 to 8.0-keV energy range were used to determine the absolute scattering efficiency of thin beryllium, carbon, and boron foils. These measurements are compared to calculated scattering efficiencies predicted by single-atom theories. In addition, the relative scattering efficiency versus x-ray energy was measured for other low-Z foils using unpolarized bremsstrahlung x rays. In all the low-Z foils examined, we observed Bragg-like x-ray diffraction due to the ordered structure of the materials

  8. Low angle X-ray scattering in biological tissues

    International Nuclear Information System (INIS)

    Lemos, Carla; Braz, Delson; Pinto, Nivia G.V.; Lima, Joao C.; Castro, Carlos R.F.; Filgueiras, R.A.; Mendonca, Leonardo; Lopes, Ricardo T.; Barroso, Regina C.

    2007-01-01

    Low-angle x-ray scatter (LAXS) for tissue characterization is based on the differences which result from the interference of photons coherently scattered from molecules of each sample. Biological samples (bone, blood and blood components) have been studied in recent years in our laboratory using powder diffractometer. The scattering information was obtained using a Shimadzu DRX 6000 diffractometer at the Nuclear Instrumentation Laboratory, Rio de Janeiro, Brazil. Unpolarized monoenergetic Kα radiation from Cu provided 8.04 keV photons. The measurements were made in reflection mode (θ-2θ geometry), with the sample stationary on a goniometer which rotates the sample and detector about an axis lying in the plane of the top of the sample holder. LAXS profiles from whole blood, plasma and formed elements were measured to investigate the nature of scattering from such lyophilized samples. The statistical analysis shows that the variation found for the characterization parameters is significant for whole blood considering the age. Gender was positively associated with the variation of the second peak position for the profiles obtained for formed elements. The correlation of the measured relative coherent intensity with the mineral content in the bone samples was investigated. These results suggest that the measurement of bone mineral content within trabecular bone can be performed by using quantitative coherent scattering information. (author)

  9. Low-angle X-ray scattering from spices

    International Nuclear Information System (INIS)

    Desouky, O.S.; Ashour, Ahmed H.; Abdullah, Mohamed I.; Elshemey, Wael M.

    2002-01-01

    Low-angle scattering of X-rays is characterized by the presence of one or more peaks in the forward direction of scattering. These peaks are due to the interference of photons coherently scattered from the molecules of the medium. Thus these patterns are closely linked to the molecular structure of the investigated medium. In this work, low-angle X-ray scattering (LAXS) profiles of five spices; pimpinella anisum (anise), coriandrum sativum (coriander), cuminum cyminum (cumin), foenculum vulgare (fennel) and nigella sativa (nigella or black cumin) are presented after extensive measurements. It is found that all spices exhibit one characteristic peak at a scattering angle around 10 deg. This is equivalent to a value x=0.0565 A -1 , where x=sin(θ/2)/λ. The full width at half maximum (FWHM) of this peak is found to be characteristic for each type of the investigated spices. The possibility to detect the irradiation of these spices from their LAXS profiles is also examined after 10, 20, 30 and 40 kGy doses of gamma radiation. Except for anise, coriander and cumin at 40 kGy, there are no detectable deviations from the control samples in the scattering profiles of irradiated samples. These results comply with the recommendations of the FDA (US Food and Drug Administration) which defines 30 kGy as the maximum dose for irradiation of spices. The present technique could be used to detect over-irradiation, which causes damage to the molecular structure of some spices

  10. X-Ray-Scattering Measurements Of Strain In PEEK

    Science.gov (United States)

    Cebe, Peggy; Lowry, Lynn E.; Chung, Shirley Y.; Yavrouian, Andre H.; Gupta, Amitava

    1988-01-01

    Internal stress relieved by heating above glass-transition temperature. Report describes wide-angle x-ray scattering and differential scanning calorimetry of specimens of poly(etheretherketone) having undergone various thermal treatments. Wide-angle x-ray scattering particularly useful in determining distances between atoms, crystallinity, and related microstructurally generated phenomena, as thermal expansion and strain. Calorimetric measurements aid interpretation of scattering measurements by enabling correlation with thermal effects.

  11. X-ray scatter data for diagnostic radiology

    International Nuclear Information System (INIS)

    Dick, C.E.; Soares, C.G.; Motz, J.W.

    1978-01-01

    The ratio of the scattered to the total X-ray fluence (scatter fraction) at the centre of the image plane for X-rays transmitted through polystyrene phantoms has been measured for X-ray energies of 32 and 69 keV, X-ray beam diameters from 4 to 40 cm, phantom thicknesses from 5 to 30 cm and phantom-to-image-plane separations from 0.3 to 40 cm. The experimental values for this ratio have less than a 10% variation for these two X-ray energies and the experimental data show good agreement with Monte Carlo calculations and available experimental results for low atomic number materials. Based on these results, simple curves are generated which give estimates (+ - 10%) of the scatter fraction for all combinations of the geometric parameters encountered in diagnostic radiology. (author)

  12. X-ray generator based on Compton scattering

    NARCIS (Netherlands)

    Androsov, V.P.; Agafonov, A.V.; Botman, J.I.M.; Bulyak, E.V.; Drebot, I.; Gladkikh, P.I.; Grevtsev, V.; Ivashchenko, V.; Karnaukhov, I.M.; Lapshin, V.I.

    2005-01-01

    Nowadays, the sources of the X-rays based on a storage ring with low beam energy and Compton scattering of intense laser beam are under development in several laboratories. In the paper the state-of-art in development and construction of cooperative project of a Kharkov advanced X-ray source NESTOR

  13. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...... in a test quadrant of the telescope structure and from ASTRO-D foils held in a simple fixture. The X-ray data is compared with laser data and other surface structure data such as STM, atomic force microscopy (AFM), TEM, and electron micrography. The data obtained at Cu K-alpha(1), (8.05 keV) from all...

  14. Kharkov X-ray Generator Based On Compton Scattering

    International Nuclear Information System (INIS)

    Shcherbakov, A.; Zelinsky, A.; Mytsykov, A.; Gladkikh, P.; Karnaukhov, I.; Lapshin, V.; Telegin, Y.; Androsov, V.; Bulyak, E.; Botman, J.I.M.; Tatchyn, R.; Lebedev, A.

    2004-01-01

    Nowadays X-ray sources based on storage rings with low beam energy and Compton scattering of intense laser beams are under development in several laboratories. An international cooperative project of an advanced X-ray source of this type at the Kharkov Institute of Physics and Technology (KIPT) is described. The status of the project is reviewed. The design lattice of the storage ring and calculated X-ray beam parameters are presented. The results of numerical simulation carried out for proposed facility show a peak spectral X-ray intensity of about 1014 can be produced

  15. Electron Dynamics by Inelastic X-Ray Scattering

    CERN Document Server

    Schülke, Winfried

    2007-01-01

    The book offers the first comprehensive review of experimental methods, theory, and successful applications of synchrotron radiation based inelastic X-ray scattering (IXS) spectroscopy, which enables the investigation of electron dynamics in condensed matter (correlated motion and excitation).

  16. Multiple scattering approach to X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Benfatto, M.; Wu Ziyu

    2003-01-01

    In this paper authors present the state of the art of the theoretical background needed for analyzing X-ray absorption spectra in the whole energy range. The multiple-scattering (MS) theory is presented in detail with some applications on real systems. Authors also describe recent progress in performing geometrical fitting of the XANES (X-ray absorption near-edge structure) energy region and beyond using a full multiple-scattering approach

  17. X-ray scattering studies of surfaces and interfaces

    International Nuclear Information System (INIS)

    Sanyal, M.K.

    1998-01-01

    Here we shall briefly review the basics and some applications of x-ray specular reflectivity and diffuse scattering techniques. These x-ray scattering techniques are uniquely suited to study of the structure of surfaces and interfaces at atomic resolutions as they are nondestructive and can probe even interfaces which are buried. The study of structure of surfaces and interfaces is not only required in understanding physics in reduced dimensions but is also essential in developing technologically important materials

  18. Sources of the X-rays Based on Compton Scattering

    International Nuclear Information System (INIS)

    Androsov, V.; Bulyak, E.; Gladkikh, P.; Karnaukhov, I.; Mytsykov, A.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.

    2007-01-01

    The principles of the intense X-rays generation by laser beam scattering on a relativistic electron beam are described and description of facilities assigned to produce the X-rays based on Compton scattering is presented. The possibilities of various types of such facilities are estimated and discussed. The source of the X-rays based on a storage ring with low beam energy is described in details and advantages of the sources of such type are discussed.The results of calculation and numerical simulation carried out for laser electron storage ring NESTOR that is under development in NSC KIPT show wide prospects of the accelerator facility of such type

  19. Kinoform optics applied to X-ray photon correlation spectroscopy.

    Science.gov (United States)

    Sandy, A R; Narayanan, S; Sprung, M; Su, J-D; Evans-Lutterodt, K; Isakovic, A F; Stein, A

    2010-05-01

    Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.

  20. X-ray scattering from periodic arrays of quantum dots

    International Nuclear Information System (INIS)

    Holy, V; Stangl, J; Lechner, R T; Springholz, G

    2008-01-01

    Three-dimensional periodic arrays of self-organized quantum dots in semiconductor multilayers are investigated by high-resolution x-ray scattering. We demonstrate that the statistical parameters of the dot array can be determined directly from the scattering data without performing a numerical simulation of the scattered intensity.

  1. Coherent methods in X-ray scattering

    International Nuclear Information System (INIS)

    Gorobtsov, Oleg

    2017-05-01

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  2. Coherent methods in X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gorobtsov, Oleg

    2017-05-15

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  3. Ultrafast x-ray scattering on nanoparticle dynamics

    International Nuclear Information System (INIS)

    Plech, A; Ibrahimkutty, S; Issenmann, D; Kotaidis, V; Siems, A

    2013-01-01

    Pulsed X-ray scattering is used for the determination of structural dynamics of laser-irradiated gold particles. By combining several scattering methods such as powder scattering, small angle scattering and diffuse wide angle scattering it is possible to reconstruct the kinetics of structure evolution on several lengths scales and derive complementary information on the particles and their local environment. A generic structural phase diagram for the reaction as function of delay time after laser excitation and laser fluence can be constructed.

  4. Resonant X-ray Raman scattering for Al, Si and their oxides

    International Nuclear Information System (INIS)

    Szlachetko, J.; Berset, M.; Dousse, J.-Cl.; Fennane, K.; Szlachetko, M.; Barrett, R.; Hoszowska, J.; Kubala-Kukus, A.; Pajek, M.

    2005-01-01

    High-resolution measurements of the resonant X-ray Raman scattering (RRS) of Al and Si and their oxides were performed at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, using a von Hamos Bragg-type curved crystal spectrometer. To probe the influence of chemical effects on the RRS X-ray spectra, Al 2 O 3 and SiO 2 samples were also investigated. The X-ray RRS spectra were measured at different photon beam energies tuned below the K-absorption edge. The measured spectra are compared to results of RRS calculations based on the second-order perturbation theory within the Kramers-Heisenberg approach

  5. Tutorial on X-ray photon counting detector characterization.

    Science.gov (United States)

    Ren, Liqiang; Zheng, Bin; Liu, Hong

    2018-01-01

    Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.

  6. Workshop report on new directions in x-ray scattering

    International Nuclear Information System (INIS)

    Brown, G.; Del Grande, N.K.; Fuoss, P.; Mallett, J.H.; Pratt, R.; Templeton, D.

    1987-01-01

    This report is a summary of the Workshop on New Directions in X-Ray Scattering held at the Asilomar Conference Center, Pacific Grove, California, April 2-5, 1985. The report primarily consists of the edited transcript of the final review session of the workshop, in which members of a panel summarized the proceedings. It is clear that we are close to achieving an accurate theory of scattering in independent particle approximation, but for edge regions, there is need to go beyond this approach. Much of what is experimentally interesting in scattering is occurring between the photoabsorption edge and the photoelectric threshold. Applications in condensed matter and biological and chemical material studies are expanding, exploiting higher intensity sources and faster time resolution as in magnetic scattering and surface studies. Storage rings are now conventional sources, and new high-intensity beam lines are under development; the free electron laser is one of the more speculative sources. Recent work in x-ray scattering has led to advances in x-ray optics, and conversely, advances in x-ray optics have benefitted our understanding of x-ray scattering

  7. Propagation and scattering of high-intensity X-ray pulses in dense atomic gases and plasmas

    International Nuclear Information System (INIS)

    Weninger, Clemens

    2015-10-01

    Nonlinear spectroscopy in the X-ray domain is a promising technique to explore the dynamics of elementary excitations in matter. X-rays provide an element specificity that allows them to target individual chemical elements, making them a great tool to study complex molecules. The recent advancement of X-ray free electron lasers (XFELs) allows to investigate non-linear processes in the X-ray domain for the first time. XFELs provide short femtosecond X-ray pulses with peak powers that exceed previous generation synchrotron X-ray sources by more than nine orders of magnitude. This thesis focuses on the theoretical description of stimulated emission processes in the X-ray regime in atomic gases. These processes form the basis for more complex schemes in molecules and provide a proof of principle for nonlinear X-ray spectroscopy. The thesis also includes results from two experimental campaigns at the Linac Coherent Light Source and presents the first experimental demonstration of stimulated X-ray Raman scattering. Focusing an X-ray free electron laser beam into an elongated neon gas target generates an intense stimulated X-ray emission beam in forward direction. If the incoming X-rays have a photon energy above the neon K edge, they can efficiently photo-ionize 1s electrons and generate short-lived core excited states. The core-excited states decay mostly via Auger decay but have a small probability to emit a spontaneous X-ray photon. The spontaneous emission emitted in forward direction can stimulate X-ray emission along the medium and generate a highly directional and intense X-ray laser pulse. If the photon energy of the incoming X-rays however is below the ionization edge in the region of the pre-edge resonance the incoming X-rays can be inelastically scattered. This spontaneous X-ray Raman scattering process has a very low probability, but the spontaneously scattered photons in the beginning of the medium can stimulate Raman scattering along the medium. The

  8. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure

    International Nuclear Information System (INIS)

    Chow, P.; Xiao, Y. M.; Rod, E.; Bai, L. G.; Shen, G. Y.; Sinogeikin, S.; Gao, N.; Ding, Y.; Mao, H.-K.

    2015-01-01

    The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input field of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation

  9. Resonance magnetic x-ray scattering study of erbium

    DEFF Research Database (Denmark)

    Sanyal, M.K.; Gibbs, D.; Bohr, J.

    1994-01-01

    The magnetic phases of erbium have been studied by resonance x-ray-scattering techniques. When the incident x-ray energy is tuned near the L(III) absorption edge, large resonant enhancements of the magnetic scattering are observed above 18 K. We have measured the energy and polarization dependence...... of this magnetic scattering and analyzed it using a simple model based on electric dipole and quadrupole transitions among atomic orbitals. The line shapes can be fitted to a magnetic structure combining both c-axis-modulated and basal-plane components. Below 18 K, we have observed unusual behavior of the magnetic...

  10. Resonant diffuse X-ray scattering from magnetic multilayers

    International Nuclear Information System (INIS)

    Spezzani, Carlo; Torelli, Piero; Delaunay, Renaud; Hague, C.F.; Petroff, Frederic; Scholl, Andreas; Gullikson, E.M.; Sacchi, Maurizio

    2004-01-01

    We have measured field-dependent resonant diffuse scattering from a magnetoresistive Co/Cu multilayer. We have observed that the magnetic domain size in zero field depends on the magnetic history of the sample. The results of the X-ray scattering analysis have been compared to PEEM images of the magnetic domains

  11. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  12. X-ray coherent scattering tomography of textured material (Conference Presentation)

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2017-05-01

    Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.

  13. CONTIN XPCS: Software for Inverse Transform Analysis of X-Ray Photon Correlation Spectroscopy Dynamics.

    Science.gov (United States)

    Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements.

  14. X-ray holography with an atomic scatterer

    Energy Technology Data Exchange (ETDEWEB)

    Mityureva, A.A.; Smirnov, V.V., E-mail: valery_smirnov@mail.ru

    2016-08-15

    X-ray holography scheme with reference scatterer consisting of heavy atom as reference center and its link to an object consisting of several light atoms and using controlled variation of the alignment is represented. The scheme can reproduce an object in three dimensions with atomic resolution. The distorting factors of reconstruction are considered. - Highlights: • X-ray holography scheme with a reference wave formed by atomic scatterer. • 3D object reconstruction with atomic resolution from the set of holograms. • Simple formula for the distorting factor in reconstruction.

  15. Source of X-ray radiation based on back compton scattering

    CERN Document Server

    Bulyak, E V; Karnaukhov, I M; Kononenko, S G; Lapshin, V G; Mytsykov, A O; Telegin, Yu P; Shcherbakov, A A; Zelinsky, Andrey Yurij

    2000-01-01

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 sup - sup 7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.

  16. Source of X-ray radiation based on back compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A.Yu

    2000-06-21

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10{sup -7} m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.

  17. Source of X-ray radiation based on back compton scattering

    International Nuclear Information System (INIS)

    Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A.; Zelinsky, A.Yu.

    2000-01-01

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 -7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam

  18. Preliminary Examination of X-ray Scattering from Human Tissues

    International Nuclear Information System (INIS)

    Desouky, O.S.; Wilkinson, S.; Hall, C.; Rogers, K.; Round, A.

    2008-01-01

    Small Angle x-ray scattering (SAXS) and wide angle x-ray scattering (WAXS) patterns have been recorded from different human soft tissues using x-ray synchrotron radiation.Pathological breast, normal kidney and lung tissues show SAXS peaks at q-values equal to 0.291 nm -1 and 0.481 nm -1 (d 21.6 nm and d =13. nm) which are the 3 r d and 5 t h order of the well known axial D-spacing of collagen fibrils. The diffraction is particularly intense in the meridional direction indicating some febrile alignment. In contrast, the normal tissue of brain, liver and heart shows diffuse scatter.The wide-angle coherent scattering from normal human tissues of brain, liver, heart, lung, and kidney is typical of that for amorphous materials. The scatter of the healthy adipose breast tissue shows a sharp peak at momentum transfer 1.24 nm -1 (d= 0.417 nm). The data of the other tissues appears to consist of a broad scattering peak. The two scattering regimes succeed in differentiating between the two major components of breast tissue, collagen and adipose tissue. The results of this study suggest that the soft tissues may have scattering patterns that are characteristics for the particular tissue types and tissue disease state. These results indicate that it may be possible use the coherent scattering as a diagnostic tool

  19. Modeling X-Ray Scattering Process and Applications of the Scattering Model

    Science.gov (United States)

    Al-Jundi, Taher Lutfi

    1995-01-01

    Computer modeling of nondestructive inspections with x-rays is proving to be a very useful tool for enhancing the performance of these techniques. Two x-ray based inspection techniques are considered in this study. The first is "Radiographic Inspection", where an existing simulation model has been improved to account for scattered radiation effects. The second technique is "Inspection with Compton backscattering", where a new simulation model has been developed. The effect of scattered radiation on a simulated radiographic image can be insignificant, equally important, or more important than the effect of the uncollided flux. Techniques to account for the scattered radiation effects include Monte Carlo techniques, and solving the particle transport equation for photons. However, these two techniques although accurate, are computationally expensive and hence inappropriate for use in computer simulation of radiography. A less accurate approach but computationally efficient is the principle of buildup factors. Traditionally, buildup factors are defined for monoenergetic photons of energies typical of a nuclear reactor. In this work I have expanded the definition of buildup factors to include a bremsstrahlung spectrum of photons with energies typically used in radiography (keV's instead of MeV's). This expansion of the definition relies on an intensive experimental work to measure buildup factors for a white spectrum of x-rays. I have also developed a monte carlo code to reproduce the measured buildup factors. The code was then converted to a parallel code and distributed on a network of workstations to reduce the execution time. The second inspection technique is based on Compton backscattering, where photons are scattered at large angles, more than 90 degrees. The importance of this technique arises when the inspected object is very large, or when access is limited to only one side of the specimen. The downside of detecting photons from backscattering is the low

  20. Single photon energy dispersive x-ray diffraction

    International Nuclear Information System (INIS)

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S.; Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H.; Tang, Henry

    2014-01-01

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored

  1. Single photon energy dispersive x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S. [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Tang, Henry [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720 (United States)

    2014-03-15

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.

  2. Inelastic X-ray scattering activities in Europe

    International Nuclear Information System (INIS)

    Dorner, B.

    1984-01-01

    Inelastic X-ray scattering requires an energy determination before and after the scattering process together with a technique to vary at least one energy continuously in a controlled way. Sufficiently monochromatic beams can only be produced by Bragg reflection from single crystals. Stationary X-ray monochromators are standard equipment of conventional X-ray generators to select a particular characteristic line. Quite often they are curved to focus on the sample or the detector. Devices with variable Bragg angle have been and are used as analyzers in Compton scattering which is inelastic X-ray scattering with moderate resolution. With the rapidly increasing availability of synchrotron radiation (SR) monochromators and analyzers became more and more sophisticated improving momentum (Q) resolution and only somewhat the energy resolution ΔE which stays in the order of eV. Very high energy resolution can only be obtained with Bragg angles Theta near to 90 0 . This field is the topic of the present paper

  3. Basic X-ray scattering for soft matter

    CERN Document Server

    De Jeu, Wim H

    2016-01-01

    X-ray scattering is a well-established technique in materials science. Several excellent textbooks exist in the field, typically written by physicists who use mathematics to make things clear. Often these books do not reach students and scientists in the field of soft matter (polymers, liquid crystals, colloids, and self-assembled organic systems), who usually have a chemical-oriented background with limited mathematics. Moreover, often these people like to know more about x-ray scattering as a technique to be used, but do not necessarily intend to become an expert. This volume is unique in trying to accommodate both points. The aim of the book is to explain basic principles and applications of x-ray scattering in a simple way. The intention is a paperback of limited size that people will like to have on hand rather than on a shelf. Second, it includes a large variety of examples of x-ray scattering of soft matter with, at the end of each chapter, a more elaborate case study. Third, the book contains a separa...

  4. Small angle X-ray scattering from protein in solution

    International Nuclear Information System (INIS)

    Souza, C.F. de; Torriani, I.L.

    1988-01-01

    In this work we report experiments performed with giant respiratory proteins from annelids. X-ray scattering data were obtained both by the use of conventional rotating anod source and synchotron radiation. Data from solutions with several protein concentrations were analyzed. (A.C.A.S.) [pt

  5. X-ray scattering from surfaces of organic crystals

    DEFF Research Database (Denmark)

    Gidalevitz, D.; Feidenhans'l, R.; Smilgies, D.-M.

    1997-01-01

    X-ray scattering experiments have been performed on the surfaces of organic crystals. The (010) cleavage planes of beta-alanine and alpha-glycine were investigated, and both specular and off-specular crystal truncation rods were measured. This allowed a determination of the molecular layering...

  6. Diffuse X-Ray Scattering from Several Platinum Chain Compounds

    DEFF Research Database (Denmark)

    Braude, A.; Lindegaard-Andersen, Asger; Carneiro, K.

    1980-01-01

    Values of the Fermi wavevector for several platinum based one-dimensional conductors were determined from diffuse X-ray scattering measurements. The values were compared with those expected from the chemical compositions. The importance of conclusive values of this parameter is stressed and the c...

  7. Defect properties from X-ray scattering experiments

    International Nuclear Information System (INIS)

    Peisl, H.

    1976-01-01

    Lattice distortions due to defects in crystals can be studied most directly by elastic X-ray or neutron scattering experiments. The 'size' of the defects can be determined from the shift of the Bragg reflections. Defect induced diffuse scattering intensity close to and between Bragg reflections gives information on the strength and symmetry of the distortion fields and yields the atomic structure of point defects (interstitials, vacancies, small aggregates). Diffuse scattering is a very sensitive method to decide whether defects are present as isolated point defects or have formed aggregates. X-ray scattering has been used to study defects produced in various ionic crystals by γ- and neutron irradiation. After an introduction to the principles of the method the experimental results will be reviewed and discussed in some detail. (orig.) [de

  8. Determination of X-ray anomalous scattering in silicon

    International Nuclear Information System (INIS)

    Cusatis, C.

    1987-01-01

    The linear attenuation coeficient for X-ray in silicon was measured with approximately 0,1% accuracy, for 6 diferent wavelenghts of caracteristic radiation. From these result the imaginary parts of the atomic scattering factors, for silicon and for those wavelenghts, were obtained with the same accuracy. The results are compared with the most recent published values. The proposed method to avoid Rayleigh scattering can be used for any type of ''perfect'' crystal. (author) [pt

  9. Small-angle X-ray scattering of solutions

    International Nuclear Information System (INIS)

    Koch, M.H.J.; Stuhrmann, H.B.; Vachette, P.; Tardieu, A.

    1982-01-01

    The use of synchrotron radiation in small-angle X-ray scattering (SAXS) techniques in biological structural studies is described. The main features of the monochromatic radiation systems and the white radiation systems are considered. The detectors, data acquisition and experimental procedures are briefly described. Experimental results are presented for 1) measurements on dilute solutions and weak scatterers, 2) measurement of conformational transitions, 3) contrast variation experiments, 4) time-resolved measurements and 5) complex contrast variation. (U.K.)

  10. Crystal defect studies using x-ray diffuse scattering

    International Nuclear Information System (INIS)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above

  11. Crystal defect studies using x-ray diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  12. Theory of inelastic scattering and absorption of X-rays

    CERN Document Server

    Veenendaal, Michel van

    2015-01-01

    This comprehensive, self-contained guide to X-ray spectroscopy will equip you with everything you need to begin extracting the maximum amount of information available from X-ray spectra. Key topics such as the interaction between X-rays and matter, the basic theory of spectroscopy, and selection and sum rules, are introduced from the ground up, providing a solid theoretical grounding. The book also introduces core underlying concepts such as atomic structure, solid-state effects, the fundamentals of tensor algebra and group theory, many-body interactions, scattering theory, and response functions, placing spectroscopy within a broader conceptual framework, and encouraging a deep understanding of this essential theoretical background. Suitable for graduate students, researchers, materials scientists and optical engineers, this is the definitive guide to the theory behind this powerful and widely used technique.

  13. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  14. X-ray scatter signatures for enhanced breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kidane, Ghirmay; Speller, Robert; Royle, Gary [Medical Physics and Bioengineering Department, University College Landon, 11-20 Capper Street, London WC1E 6JA (United Kingdom)

    1999-12-31

    Conventional mammographic imaging suffers from a low specificity. The main cause is the small difference in the x-ray attenuation properties of healthy and diseased tissue leading to poor contrast in the image. It has been observed that additional information on breast tissue type can be obtained from x-ray diffraction effects. A study of excised normal and neoplastic breast tissue samples using x-ray diffraction apparatus has been observed that significant differences exist in the measured spectra between carcinoma and healthy tissue adjacent to the carcinoma. Such a difference allows tissue type to be characterised according to is diseased state. Furthermore the information can be applied to improve diagnosis. It is proposed that collection and analysis of the scattered x-rays present during a mammographic procedure can supply the additional information and be used to improve the image contrast. The ultimate aim of the project is to improve the specificity of x-ray mammography. (authors) 10 refs., 3 figs.

  15. Scattering of x-ray from crystal surfaces

    International Nuclear Information System (INIS)

    Andrews, S.R.; Cowley, R.A.

    1985-01-01

    X-ray measurements performed on a variety of materials demonstrate that it is possible to observe diffuse scattering that originates in the abrupt change of density at a crystal surface. Such a discontinuity gives rise, in general, to rods of scattering in reciprocal space which are most intense close to the Bragg peaks tau and are well defined for sufficiently smooth surfaces. For wave-vector transfer Q=tau+q the q-dependence of the intensity of scattering gives information on the topographic structure of the crystal surface. Experimental results on crystals of GaAs and KTaO 3 , with surfaces prepared in various ways, were obtained using conventional x-ray techniques with a rotating anode source and can be described by a continuum model of the surface. There are discrepancies between the predictions of the models and the experimental results and the suggest that further experiments are needed to achieve a more complete understanding. (author)

  16. X-ray scattering at liquid surfaces and interfaces

    International Nuclear Information System (INIS)

    Daillant, Jean

    2000-01-01

    X-ray and neutron reflectivity techniques have become quite popular for the analysis of surfaces and interfaces over the last ten years. In this review, we discuss the specific aspects of both specular and diffuse x-ray reflectivity at liquid interfaces. We start from a model liquid surface for which the scattering cross-section can be calculated in terms of thermally excited capillary and acoustic waves, and we examine in detail the experimental consequences of the large bulk scattering and of the low q divergence of the surface scattering. Deviations from the simple calculated behaviour point to interesting phenomena which can be studied in detail, like the appearance of a bending stiffness. The method is illustrated through the discussion of representative studies of liquid surfaces, of surfactant monolayers, of liquid-liquid interfaces and of microemulsions. (author)

  17. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    Hodoroaba, V.-D.; Radtke, M.; Vincze, L.; Rackwitz, V.; Reuter, D.

    2010-01-01

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  18. X-ray and neutron scattering studies of complex confined fluids

    International Nuclear Information System (INIS)

    Sinha, S. K.

    1999-01-01

    We review recent X-ray and neutron scattering studies of the structure and dynamics of confined complex fluids. This includes the study of polymer conformations and binary fluid phase transitions in porous media using Small Angle Neutron scattering, and the use of synchrotrons radiation to study ordering and fluctuation phenomena at solid/liquid and liquid/air interfaces. Ordering of liquids near a solid surface or in confinement will be discussed, and the study, via specular and off-specular X-ray reflectivity, of capillary wave fluctuations on liquid polymer films. Finally, we shall discuss the use of high-brilliance beams from X-ray synchrotrons to study via photon correlation spectroscopy the slow dynamics of soft condensed matter systems

  19. Collective effects of nuclei in single X-ray photon superradiance

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiangjin

    2016-07-28

    This thesis is dedicated to the study of collective effects of nuclei in single X-ray photon superradiance. To this end we investigate aspects of superradiance in both nuclear forward scattering and in thin-film cavities with an embedded {sup 57}Fe nuclear layer. A general theoretical framework is developed to investigate a single-photon cooperative emission from a cloud of resonant systems, atoms or nuclei, in the presence of magnetic hyperfine splitting. In the limit of a thick sample, we present our results for two means to coherently control the collective single X-ray photon emission in nuclear forward scattering. In the limit of a thin sample in a thin-film cavity with embedded resonant nuclei, we find out that unlike the magnetic hyperfine splitting of a single atom or nucleus, interesting collective effects may occur which modify the hyperfine level structure. In addition, for a certain parameter regime a spectrum reminiscent of electromagnetically induced transparency (EIT) can be achieved. Based on this EIT-like effect, a theoretical control mechanism for stopping X-ray pulses in the thin-film X-ray cavity is put forward. Finally, we show theoretically that for the case of two nuclear ensembles in the thin-film cavity, pseudo-Rabi splitting due to the strong coupling between the two layers should occur. The latter findings are confirmed by preliminary experimental data.

  20. Small angle x-ray scattering from proteins in solution

    International Nuclear Information System (INIS)

    de Souza, C.F.; Torriani, I.L.; Bonafe, C.F.S.; Merrelles, N.C.; Vachette, P.

    1989-01-01

    In this work the authors report experiments performed with giant respiratory proteins from annelids (erythrocruorins), known to have a molecular weight in the order of four million Daltons. Preliminary x-ray scattering data was obtained using a conventional rotating anode source. High resolution small angle scattering curves were obtained with synchrotron radiation from the DCI storage ring at LURE. Data from solutions with several protein concentrations were analyzed in order to determine low resolution dimensional parameters, using Guinier plots from the smeared scattering curves and the inverse transformation method

  1. Diffuse scattering of neutrons and X-rays

    International Nuclear Information System (INIS)

    Novion, C.H. de

    1978-01-01

    Diffuse scattering is used to study defect concentrations of about 10 -4 in the case of X-rays and 10 -3 in the case of neutrons. The foundations of diffuse scattering formalism are given, some experimental devices described and a few applications discussed: study by diffraction on powders of defects in CeOsub(2-x); short-range order study by X-rays on Cusub(0.75) Ausub(0.25); short-range order study by neutrons on Cusub(0.435)Nisub(0.565); short-range order study by electrons TiOx; study of irradiation-induced self-interstitials in Al; study of holes created by neutrons in Al [fr

  2. Soft X-ray resonant scattering from magnetic heterostructures

    International Nuclear Information System (INIS)

    Grabis, J.

    2005-01-01

    Heterogenous magnetic multilayers are of great interest both because of their relevance for technological applications and since they provide model systems to understand magnetic behavior and interactions. Soft x-ray resonant magnetic scattering (XRMS) allows to determine element-specific and depth-resolving information of the local magnetic order of such systems. Within the framework of the present thesis the diffractometer ALICE for soft XRMS has been constructed. XRMS measurements of two different physical systems are presented in this thesis: The antiferromagnetic and ferromagnetic order in interlayer exchange-coupled Fe/Cr(001) superlattices are studied as a function of the applied field by measuring the reflected intensity at different positions in reciprocal space. Thin films and multilayers of the Heusler compound Co 2 MnGe are studied by means of soft x-ray absorption spectroscopy, magnetic circular dichroism and resonant magnetic scattering

  3. X-ray diffuse scattering holography of a centrosymmetric sample

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Miloš; Fábry, Jan; Kub, Jiří; Bussetto, E.; Lausi, A.

    2005-01-01

    Roč. 87, č. 23 (2005), 231914/1-231914/3 ISSN 0003-6951 R&D Projects: GA AV ČR IAA100100529 Grant - others:EU(XE) HPRI-CT-1999-00033 Institutional research plan: CEZ:AV0Z10100520 Keywords : x-ray holography * diffuse scattering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.127, year: 2005

  4. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    International Nuclear Information System (INIS)

    Bansil, Arun

    2016-01-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering-density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization-to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.

  5. CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    HAYASHI,H.; UDAGAWA,Y.; GILLET,J.M.; CALIEBE,W.A.; KAO,C.C.

    2001-08-01

    Inelastic x-ray scattering (IXS), complementary to other more established inelastic scattering probes, such as light scattering, electron scattering, and neutron scattering, is becoming an important experimental technique in the study of elementary excitations in condensed matters. Over the past decade, IXS with total energy resolution of few meV has been achieved, and is being used routinely in the study of phonon dispersions in solids and liquids as well as dynamics in disordered and biological systems. In the study of electronic excitations, IXS with total energy resolution on the order of 100 meV to 1 eV is gaining wider applications also. For example, IXS has been used to study collective excitations of valence electrons, single electron excitations of valence electrons, as well as core electron excitations. In comparison with the alternative scattering techniques mentioned above, IXS has several advantages. First, IXS probes the full momentum transfer range of the dielectric response of the sample, whereas light scattering is limited to very small momentum transfers, and electron scattering suffers the effects of multiple scattering at large momentum transfers. Second, since IXS measures the bulk properties of the sample it is not surface sensitive, therefore it does not require special preparation of the sample. The greater flexibility in sample conditions and environments makes IXS an ideal probe in the study of liquids and samples under extreme temperature, pressure, and magnetic field. Third, the tunability of synchrotron radiation sources enables IXS to exploit element specificity and resonant enhancement of scattering cross sections. Fourth, IXS is unique in the study of dynamics of liquids and amorphous solids because it can probe the particular region of energy-momentum transfer phase space, which is inaccessible to inelastic neutron scattering. On the other hand, the main disadvantages of IXS are the small cross sections and the strong absorption of

  6. Multiple scattering theory of X-ray absorption. A review

    International Nuclear Information System (INIS)

    Fonda, L.

    1991-11-01

    We review the basic elements of the theory of X-ray absorption using the tools provided by the theory of multiple scattering. A momentum space approach of clear physical insight is used where the final formulas expressing EXAFS and XANES, i.e. the structures appearing in the absorption coefficient above the edge of a deep core level threshold, are given in terms of eigenstates of the photoelectron momentum. A simple graphic representation is given for the multiple scattering function. (author). 38 refs, 4 figs, 1 tab

  7. X-ray scattering from thin organic films and multilayer

    International Nuclear Information System (INIS)

    Pietsch, U.; Barberka, T. A.; Geue, Th.; Stoemmer, R.

    1997-01-01

    The real structure of LB-multilayers prepared with fatty-acid salts is dominated by finite-sized scattering aggregates. Their different length scales become visible using AFM. It shows that not the whole substrate is wetted by the film. The molecular order is restricted into domains. These micrometer domains are not homogeneous. They contain mesoscopic subdomains of different heights which vary in steps of double layers. Finally high-resolution AFM-maps display a nearly hexagonal arrangement of molecules within subgrains with a diameter of several 10 nm. This domain structure has to be taken into account when interpreting X-ray diffraction data. The size of the crystalline aggregates is obtained by means of X-ray grazing incidence diffraction. On the mesoscopic scale the domain size is determined by X-ray diffuse scattering experiments. Because Sinha's model fails for the present kind of multilayers, they used another approach for data analysis. The lateral correlation length caused by height fluctuations is estimated without knowledge of a definite correlation function. Additionally the mosaicity of the domain orientation can be taken into account

  8. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-12-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering—density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization—to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.

  9. X-band RF gun and linac for medical Compton scattering X-ray source

    Science.gov (United States)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-12-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year.

  10. X-band RF gun and linac for medical Compton scattering X-ray source

    International Nuclear Information System (INIS)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-01-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year

  11. Development and characterization of a tunable ultrafast X-ray source via inverse-Compton-scattering

    International Nuclear Information System (INIS)

    Jochmann, Axel

    2014-01-01

    will serve as a milestone and starting point for the scaling of the X-ray flux based on available interaction parameters of an ultrashort bright X-ray source at the ELBE center for high power radiation sources. The knowledge of the spatial and spectral distribution of photons from an inverse Compton scattering source is essential in designing future experiments as well as for tailoring the X-ray spectral properties to an experimental need.

  12. K-edge resonant x-ray magnetic scattering from a transition-metal oxide: NiO

    DEFF Research Database (Denmark)

    Hill, J.P.; Kao, C.C.; McMorrow, D.F.

    1997-01-01

    We report the observation of resonant x-ray magnetic scattering in the vicinity of the Ni K edge in the antiferromagnet NiO. An approximately twofold increase in the scattering is observed as the incident photon energy is tuned through a pre-edge feature in the absorption spectrum, associated...

  13. Anomalous scattering and isomorphous replacement in X-ray diffuse scattering holography

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Miloš; Kub, Jiří; Busetto, E.; Lausi, A.; Fábry, Jan; Šourek, Zbyněk

    2007-01-01

    Roč. 204, č. 8 (2007), s. 2572-2577 ISSN 1862-6300 R&D Projects: GA AV ČR IAA100100529; GA MŠk LA 287 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z10100520 Keywords : x-ray difuse scattering * x-ray holography Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. Resonant inelastic scattering at intermediate X-ray energies

    CERN Document Server

    Hague, C F; Journel, L; Gallet, J J; Rogalev, A; Krill, G; Kappler, J P

    2000-01-01

    We describe resonant inelastic X-ray scattering (RIXS) experiments and magnetic circular dichroism (MCD) in X-ray fluorescence performed in the 3-5 keV range. The examples chosen are X-ray fluorescence MCD of FeRh and RIXS experiments performed at the L/sub 3/ edge of Ce. Fe Rh is antiferromagnetic at room temperature but has a transition to the ferromagnetic state above 400 K. The Rh MCD signal is compared with an augmented spherical wave calculation. The experiment confirms the predicted spin polarization of the Rh 4d valence states. The RIXS measurements on Ce compounds and intermetallics address the problem of mixed valency especially in systems where degeneracy with the Fermi level remains small. Examples are taken from the 2p to (4f5d) /sup +1/ followed by 3d to 2p RIXS for a highly ionic compound CeF /sub 3/ and for almost gamma -like CeCuSi. (38 refs).

  15. Dynamical X-ray scattering from the relaxed structures

    International Nuclear Information System (INIS)

    Benediktovitch, A.; Feranchuk, I.; Ulyanenkov, A.

    2009-01-01

    High-resolution X-ray diffraction is now widely used analytical tool for investigation of nano scale multilayered structures in semiconductor and optical technologies. The HRXRD method delivers unique information on the crystallographic lattice of the samples, concentration of solid solutions, lattice mismatches, layer thicknesses, defect distribution, and relaxation degree of the epitaxial layers. The evaluation of the experimental results, however, requires a robust and precise theory due to complex dynamical scattering of X-rays from near perfect crystallographic structure of the samples. Usually, the Takagi-Taupin approach [1] or the recurrent matrix methods [2] are used for the simulation of the X-ray diffraction profiles from the epitaxial multilayered structures. The use of these theories, however, becomes essentially difficult, when the lateral lattice mismatches are present in multilayers, for example, in the case of partially or fully relaxed epitaxially grown samples. In the present work, the general solution of this problem is found analytically. The angular divergence of the incident beam is also considered and the algorithm for the diffracted profile mapping in the reciprocal space is developed. The experimental reciprocal space mapping of typical AlGaN/GaN/AlN samples with partially relaxed layers is compared to the simulated maps, which describe well the location and character of the diffraction spots caused by different layers. (author)

  16. X-ray scattering in giant magneto-resistive multilayers

    International Nuclear Information System (INIS)

    Fulthorpe, B.D.

    1999-01-01

    The scattering mechanisms responsible for Giant Magneto-Resistance (GMR) in magnetic multilayers are believed to be related to many aspects of the multilayer structure. X-ray scattering techniques provide a powerful method with which to study the bulk and interface morphology in these systems, and are therefore crucial in developing an understanding of the dominant factors influencing the magnitude of the GMR. Reflectivity measurements performed on a series of Co/Cu multilayers, sputter deposited onto etched silicon, reveal no variation in the interface roughness with etching voltage, the thickness of the individual layers also remaining constant. The observed decrease in the GMR cannot, therefore, be attributed to variations in spacer thickness or interfacial spin-independent scattering. Electron and X-ray Diffraction measurements suggest the reduction in GMR is due to a loss of antiferromagnetic coupling associated with a transformation of the texture from a randomly oriented to well oriented (111) polycrystalline texture, and subsequent reduction in the volume fraction of (100) oriented grains. Interfaces within Co/Cu are found to propagate with a high degree of conformality with increasing bilayer number, with an out-of-plane correlation length well in excess of 300A. In contrast, the Co/Pt system exhibits a limiting out-of-plane correlation length of the order of 350A arising from a columnar growth mode. X-ray Reflectivity and Diffraction measurements provide' no structural interpretation for the 3-fold enhancement in the rate of increase of the saturation conductivity, as a function of spacer thickness, in Fe/Au (100) compared to Fe/Au (111), or why large oscillations in the GMR occur for the (100) orientation only. Such observations are, however, consistent with the existence of a channelling mechanism in Fe/Au (100). Grazing Incidence Fluorescence data indicates that Nb acts as a surfactant in Fe/Au (111) growth on sapphire. The influence of different

  17. Electron and photon emissions from gold nanoparticles irradiated by X-ray photons

    Energy Technology Data Exchange (ETDEWEB)

    Casta, R., E-mail: castaromain@gmail.com, E-mail: romain.casta@irsamc.ups-tlse.fr; Champeaux, J.-P.; Moretto-Capelle, P.; Sence, M.; Cafarelli, P. [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, CNRS, UMR 5589 (France)

    2015-01-15

    In this paper, we develop a totally new probabilistic model for the electron and photon emission of gold nanoparticles irradiated by X-ray photons. This model allows direct applications to recent researches about the radiotherapy enhancement by gold nanoparticles in the context of cancer treatment. Our model uses, in a complete original way, simulated Auger cascade and stopping power to compute electron emission spectra, photon emission spectra and released energy inside the material of gold nanoparticles. It allows us to present new results about the electron and photon emission of gold nanoparticle irradiated by hard X-rays.

  18. Testing ion structure models with x-ray Thomson scattering

    Directory of Open Access Journals (Sweden)

    Wünsch K.

    2013-11-01

    Full Text Available We investigate the influence of various ionic structure models on the interpretation of the X-ray Thomson scattering signal. For the calculation of the ion structure, classical hypernetted chain equations are used applying different effective inter-particle potentials. It is shown that the different models lead to significant discrepancies in the theoretically predicted weight of the Rayleigh peak, in particular for small k-values where correlation effects are important. Here, we propose conditions which might allow for an experimental verification of the theories under consideration of experimental constraints of k-vector blurring.

  19. Neutron and x-ray scattering studies of premartensitic phenomena

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1987-01-01

    This paper discusses neutron and x-ray investigations of some metallic alloys which are known to exhibit martensitic transformations. It is shown that precursor effects are usually present in the diffuse scattering and in the phonon dispersion curves, but the transition cannot be described in terms of the soft mode picture used in the Landau and Devonshire theory to describe structural phase transitions. In addition, it is noted that it is inappropriate to look at these microstructures as incommensurate systems, but more correctly as a coherent coexistence of two phases

  20. Time Resolved X-Ray Scattering of molecules in Solution

    DEFF Research Database (Denmark)

    Brandt van Driel, Tim

    The dissertation describes the use of Time-Resolved X-ray Diffuse Scattering (TR-XDS) to study photo-induced structural changes in molecules in solution. The application of the technique is exemplified with experiments on two bimetallic molecules. The main focus is on the data-flow and process......)42+ obtained at European Synchrotron Radiation Facility (ESRF) are presented to exemplify TR-XDS at synchrotrons. Similarly, measurements on Ir2(dimen)42+ are used to show the XFEL data-flow and how it deviates from the prior. A method to identify and account for systematic fluctuations...

  1. Photon counting and energy discriminating X-ray detectors. Benefits and applications

    International Nuclear Information System (INIS)

    Walter, David; Zscherpel, Uwe; Ewert, Uwe

    2016-01-01

    Since a few years the direct detection of X-ray photons into electrical signals is possible by usage of highly absorbing photo conducting materials (e.g. CdTe) as detection layer of an underlying CMOS semiconductor X-ray detector. Even NDT energies up to 400 keV are possible today, as well. The image sharpness and absorption efficiency is improved by the replacement of the unsharp scintillation layer (as used at indirect detecting detectors) by a photo conducting layer of much higher thickness. If the read-out speed is high enough (ca. 50 - 100 ns dead time) single X-ray photons can be counted and their energy measured. Read-out noise and dark image correction can be avoided. By setting energy thresholds selected energy ranges of the X-ray spectrum can be detected or suppressed. This allows material discrimination by dual-energy techniques or the reduction of image contributions of scattered radiation, which results in an enhanced contrast sensitivity. To use these advantages in an effective way, a special calibration procedure has to be developed, which considers also time dependent processes in the detection layer. This contribution presents some of these new properties of direct detecting digital detector arrays (DDAs) and shows first results on testing fiber reinforced composites as well as first approaches to dual energy imaging.

  2. Evolution of elastic x-ray scattering in laser-shocked warm dense lithium.

    Science.gov (United States)

    Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C M; Brown, C R D; Constantin, C; Glenzer, S H; Khattak, F Y; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D

    2009-12-01

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly- alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z[over ] and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  3. Evolution of elastic x-ray scattering in laser-shocked warm dense lithium

    International Nuclear Information System (INIS)

    Kugland, N. L.; Niemann, C.; Gregori, G.; Bandyopadhyay, S.; Spindloe, C.; Brenner, C. M.; Brown, C. R. D.; Constantin, C.; Glenzer, S. H.; Khattak, F. Y.; Kritcher, A. L.; Otten, A.; Pelka, A.; Roth, M.; Pasley, J.; Riley, D.

    2009-01-01

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-α photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 deg. using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  4. Femtosecond X-ray scattering in condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Korff Schmising, Clemens von

    2008-11-24

    This thesis investigates the manifold couplings between electronic and structural properties in crystalline Perovskite oxides and a polar molecular crystal. Ultrashort optical excitation changes the electronic structure and the dynamics of the connected reversible lattice rearrangement is imaged in real time by femtosecond X-ray scattering experiments. An epitaxially grown superlattice consisting of alternating nanolayers of metallic and ferromagnetic strontium ruthenate (SRO) and dielectric strontium titanate serves as a model system to study optically generated stress. In the ferromagnetic phase, phonon-mediated and magnetostrictive stress in SRO display similar sub-picosecond dynamics, similar strengths but opposite sign and different excitation spectra. The amplitude of the magnetic component follows the temperature dependent magnetization square, whereas the strength of phononic stress is determined by the amount of deposited energy only. The ultrafast, phonon-mediated stress in SRO compresses ferroelectric nanolayers of lead zirconate titanate in a further superlattice system. This change of tetragonal distortion of the ferroelectric layer reaches up to 2 percent within 1.5 picoseconds and couples to the ferroelectric soft mode, or ion displacement within the unit cell. As a result, the macroscopic polarization is reduced by up to 100 percent with a 500 femtosecond delay that is due to final elongation time of the two anharmonically coupled modes. Femtosecond photoexcitation of organic chromophores in a molecular, polar crystal induces strong changes of the electronic dipole moment via intramolecular charge transfer. Ultrafast changes of transmitted X-ray intensity evidence an angular rotation of molecules around excited dipoles following the 10 picosecond kinetics of the charge transfer reaction. Transient X-ray scattering is governed by solvation, masking changes of the chromophore's molecular structure. (orig.)

  5. Femtosecond X-ray scattering in condensed matter

    International Nuclear Information System (INIS)

    Korff Schmising, Clemens von

    2008-01-01

    This thesis investigates the manifold couplings between electronic and structural properties in crystalline Perovskite oxides and a polar molecular crystal. Ultrashort optical excitation changes the electronic structure and the dynamics of the connected reversible lattice rearrangement is imaged in real time by femtosecond X-ray scattering experiments. An epitaxially grown superlattice consisting of alternating nanolayers of metallic and ferromagnetic strontium ruthenate (SRO) and dielectric strontium titanate serves as a model system to study optically generated stress. In the ferromagnetic phase, phonon-mediated and magnetostrictive stress in SRO display similar sub-picosecond dynamics, similar strengths but opposite sign and different excitation spectra. The amplitude of the magnetic component follows the temperature dependent magnetization square, whereas the strength of phononic stress is determined by the amount of deposited energy only. The ultrafast, phonon-mediated stress in SRO compresses ferroelectric nanolayers of lead zirconate titanate in a further superlattice system. This change of tetragonal distortion of the ferroelectric layer reaches up to 2 percent within 1.5 picoseconds and couples to the ferroelectric soft mode, or ion displacement within the unit cell. As a result, the macroscopic polarization is reduced by up to 100 percent with a 500 femtosecond delay that is due to final elongation time of the two anharmonically coupled modes. Femtosecond photoexcitation of organic chromophores in a molecular, polar crystal induces strong changes of the electronic dipole moment via intramolecular charge transfer. Ultrafast changes of transmitted X-ray intensity evidence an angular rotation of molecules around excited dipoles following the 10 picosecond kinetics of the charge transfer reaction. Transient X-ray scattering is governed by solvation, masking changes of the chromophore's molecular structure. (orig.)

  6. X-ray nanoprobe project at Taiwan Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Gung-Chian, E-mail: gcyin@nsrrc.org.tw; Chang, Shih-Hung; Chen, Bo-Yi; Chen, Huang-Yeh; Lin, Bi-Hsuan; Tseng, Shao-Chin; Lee, Chien-Yu; Wu, Jian-Xing; Tang, Mau-Tsu [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Wu, Shao-Yun [National Tsing-Hua University, Hsinchu 30076, Taiwan (China)

    2016-07-27

    The hard X-ray nanoprobe facility at Taiwan Photon Source (TPS) provides versatile X-ray analysis techniques, with tens of nanometer resolution, including XRF, XAS, XEOL, projection microscope, CDI, etc. Resulting from the large numerical aperture obtained by utilizing Montel KB mirrors, the beamline with a moderate length 75 meters can conduct similar performance with those beamlines longer than 100 meters. The two silica-made Montel mirrors are 45 degree cut and placed in a V-shape to eliminate the gap loss and the deformation caused by gravity. The slope error of the KB mirror pair is less than 0.04 µrad accomplished by elastic emission machining (EEM) method. For the beamline, a horizontal DCM and two-stage focusing in horizontal direction is applied. For the endstation, a combination of SEM for quickly positioning the sample, a fly scanning system with laser interferometers, a precise temperature control system, and a load lock transfer system will be implemented. In this presentation, the design and construction progress of the beamline and endstation is reported. The endstation is scheduled to be in commissioning phase in 2016.

  7. Bone composition measured by x-ray scattering

    International Nuclear Information System (INIS)

    Newton, M.; Hukins, D.W.L.

    1992-01-01

    Ten composite samples consisting of cortical bone and adipose tissue, in known proportions, were made. The intensity of monochromatic x-rays (energy 8 keV) scattered by these samples was determined as a function of the modulus of the scattering vector, K. The ratio of the heights of peaks at K values of around 134 and 22 nm -1 provided a measure of the ratio of adipose tissue to bone mineral in these samples. This method was then used to determine the ratio of adipose tissue to mineral in samples of trabecular bone from 16 vertebral bodies. The results were correlated with measurements of the bone composition determined by ashing (r = 0.66) and histomorphometry (r = 0.66). Furthermore, the ashing and histomorphometry results were correlated with each other (r = 0.68). The feasibility of using higher energy x-rays (35-80 keV) for obtaining the same information from bone within the body is briefly discussed. (author)

  8. Sequential x-ray diffraction topography at 1-BM x-ray optics testing beamline at the advanced photon source

    Energy Technology Data Exchange (ETDEWEB)

    Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Shvyd’ko, Yuri; Trakhtenberg, Emil; Liu, Zunping; Lang, Keenan; Huang, Xianrong; Wieczorek, Michael; Kasman, Elina; Hammonds, John; Macrander, Albert; Assoufid, Lahsen [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2016-07-27

    We report progress on implementation and commissioning of sequential X-ray diffraction topography at 1-BM Optics Testing Beamline of the Advanced Photon Source to accommodate growing needs of strain characterization in diffractive crystal optics and other semiconductor single crystals. The setup enables evaluation of strain in single crystals in the nearly-nondispersive double-crystal geometry. Si asymmetric collimator crystals of different crystallographic orientations were designed, fabricated and characterized using in-house capabilities. Imaging the exit beam using digital area detectors permits rapid sequential acquisition of X-ray topographs at different angular positions on the rocking curve of a crystal under investigation. Results on sensitivity and spatial resolution are reported based on experiments with high-quality Si and diamond crystals. The new setup complements laboratory-based X-ray topography capabilities of the Optics group at the Advanced Photon Source.

  9. Inelastic X-ray Scattering Beamline Collaborative Development Team Final Report

    International Nuclear Information System (INIS)

    Burns, Clement

    2008-01-01

    This is the final report for the project to create a beam line for inelastic x-ray scattering at the Advanced Photon Source. The facility is complete and operating well, with spectrometers for both high resolution and medium resolution measurements. With the advent of third generation synchrotron sources, inelastic x-ray scattering (IXS) has become a valuable technique to probe the electronic and vibrational states of a wide variety of systems of interest in physics, chemistry, and biology. IXS is a weak probe, and experimental setups are complex and require well-optimized spectrometers which need a dedicated beamline to function efficiently. This project was the result of a proposal to provide a world-class, user friendly beamline for IXS at the Advanced Photon Source. The IXS Collaborative Development Team (IXS-CDT) was formed from groups at the national laboratories and a number of different universities. The beamline was designed from the front end to the experimental stations. Two different experimental stations were provided, one for medium resolution inelastic x-ray scattering (MERIX) and a spectrometer for high resolution inelastic x-ray scattering (HERIX). Funding for this project came from several sources as well as the DOE. The beamline is complete with both spectrometers operating well. The facility is now open to the general user community and there has been a tremendous demand to take advantage of the beamline's capabilities. A large number of different experiments have already been carried out on the beamline. A detailed description of the beamline has been given in the final design report (FDR) for the beamline from which much of the material in this report came. The first part of this report contains a general overview of the project with more technical details given later.

  10. Experimental validation of a multi-energy x-ray adapted scatter separation method

    Science.gov (United States)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-12-01

    Both in radiography and computed tomography (CT), recently emerged energy-resolved x-ray photon counting detectors enable the identification and quantification of individual materials comprising the inspected object. However, the approaches used for these operations require highly accurate x-ray images. The accuracy of the images is severely compromised by the presence of scattered radiation, which leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in CT. The aim of the present study was to experimentally evaluate a recently introduced partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. For this purpose, a prototype x-ray system was used. Several radiographic acquisitions of an anthropomorphic thorax phantom were performed. Reference primary images were obtained via the beam-stop (BS) approach. The attenuation images acquired from PASSSA-corrected data showed a substantial increase in local contrast and internal structure contour visibility when compared to uncorrected images. A substantial reduction of scatter induced bias was also achieved. Quantitatively, the developed method proved to be in relatively good agreement with the BS data. The application of the proposed scatter correction technique lowered the initial normalized root-mean-square error (NRMSE) of 45% between the uncorrected total and the reference primary spectral images by a factor of 9, thus reducing it to around 5%.

  11. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  12. X-ray Thomson Scattering from Spherically Imploded ICF Ablators

    Science.gov (United States)

    Kritcher, Andrea; Doeppner, Tilo; Landen, Otto; Glenzer, Siegfried

    2010-11-01

    Time-resolved X-ray Thomson scattering measurements from spherically imploded inertial fusion capsules-type targets have been obtained for the first time at the Omega OMEGA laser facility to characterize the in-flight properties of ICF ablators. In these experiments, the non-collective, or microscopic particle behavior, of imploding CH and Be shells, was probed using a 9 keV Zn He-alpha x-ray source at scattering angles of 113^o and 135^o. for two drive pulse shapes.As an example, the analysis of In-flight scattering measurements from one set of directly-driven compressed 8600 μm-diameter, 40-μm thick Be shells taken (4.2 ns after the start of the compression beamswhen compressed a factor of 4.83x) yielded electron densities of ˜ 1.2±0.23x10^24cm-3, temperatures of ˜13±32 eV, and an ionization state of Be(+2), with uncertainties in the temperature and density of about 40% and 20%. These conditions resulting in an inferred adiabat (ratio of plasma pressure to Fermi degenerate pressure) of 1.797 +0.3/-.5 with an error of about 30%. The high signal-to-noise and high signal-to-background ratio of data obtained in these experiments provides a platform for studying the adiabat of other indirect-drive ICF ablators such as CH and High Density Carbon (HDC) ablators and demonstrates the viability of using this diagnostic to study the in-flight properties adiabat of implosion targets at the National Ignition Facility (NIF).

  13. X-ray small angle scattering of polymer solutions

    International Nuclear Information System (INIS)

    Koyama, Ryuzo

    1975-01-01

    In recent papers, the calculated results were reported on the angular dependence of the intensity of scattered light or X-ray by chain polymers, on the basis of a stiff chain model. As the results, the curves of S 2 P (theta) corresponding to Kratky plot, for different molecular expansion, showed a plateau, and the height of the plateau was proportional to the inverse of molecular expansion coefficient α 2 . But as seen later, there is some possibility that the assumption made in the calculation overestimated the expansion of small segments which theoretically determines scattering curves at large scattering angles, such as the plateau. Accordingly, modified calculation was carried out by adopting the stiff chain polymer model as the previous case. When the contour length of a chain segment is very long, it can be treated approximately as a Gaussian coil, thus the equation for a chain segment expansion coefficient α (t) was obtained. Then the mean square distance of chain segments of polymer molecules was able to be determined, and the equation for a particle scattering factor P(theta) was obtained. The numerical calculation of P(theta) showed that this modified assumption considerably decreased the effect of molecular expansion on P(theta), and the curves of S 2 P(theta) increased monotonously without showing the plateau. The result of this calculation was compared with the experimental curves of polystyrene-toluene solution, and the agreement better than before was obtained. (Kako, I.)

  14. Probing warm dense lithium by inelastic X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Saiz, E; Riley, D [School of Mathematics and Physics, Queen' s University of Belfast, Belfast (United Kingdom); Gregori, G [Clarendon Laboratory, University of Oxford, Parks Road, Oxford (United Kingdom); Gregori, G; Clarke, R J; Neely, D; Notley, M M; Spindloe, C [Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX (United Kingdom); Gericke, D O; Vorberger, J; Wunsch, K [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Barbrel, B; Koenig, M [Laboratoire pour l' Utilisation des Laser Intenses, Ecole Polytechnique - Universite Paris-6, 91 - Palaiseau (France); Freeman, R R; Weber, R L; Van Woerkom, L [Department of Physics, The Ohio State University, Columbus, Ohio (United States); Glenzer, S H; Landen, O L; Neumayer, P; Price, D [Lawrence Livermore National Laboratory, Livermore, California (United States); Khattak, F Y [Department of Physics, Kohat University of Science and Technology, Kohat-26000, NWFP (Pakistan); Pelka, A; Roth, M; Schollmeier, M [Institut fur Kernphysik, Technische Universitat Darmstadt (Germany)

    2008-10-15

    One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars. Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure. (authors)

  15. Anomalous x-ray scattering studies of functional disordered materials

    International Nuclear Information System (INIS)

    Kohara, S; Tajiri, H; Song, C H; Ohara, K; Temleitner, L; Sugimito, K; Fujiwara, A; Pusztai, L; Usuki, T; Hosokawa, S; Benino, Y; Kitamura, N; Fukumi, K

    2014-01-01

    We have developed anomalous x-ray scattering (AXS) spectrometers, that employ intrinsic Ge detectors and crystal analyzers, at SPring-8. The use of LiF analyzer crystal provides us with an energy resolution of ∼ 12 eV. Furthermore, it has been established that the use of AXS technique is essential to reveal the relationship between the atomic structure and its function of a fast phase-change material, Ge 2 Sb 2 Te 5 . We were able to address the issue of why the amorphous phase of fast phase change materials is stable at room temperature for a long time despite the fact that it can rapidly transform to the crystalline phase by using a combination of AXS and large scale density functional theory-based molecular dynamics simulations.

  16. Small angle X-ray scattering on concentrated hemoglobin solutions

    International Nuclear Information System (INIS)

    Zinke, M.; Damaschun, G.; Mueller, J.J.; Ruckpaul, K.

    1978-01-01

    The small-angle X-ray scattering technique was used to determine the intermolecular structure and interaction potentials in oxi-and deoxi-hemoglobin solutions. The pair correlation function obtained by the ZERNICKE-PRINS equation characterizes the intermolecular structure of the hemoglobin molecules. The intermolecular structure is concentration dependent. The hemoglobin molecules have a 'short range order structure' with a range of about 4 molecule diameters at 324 g/l. The potential functions of the hemoglobin-hemoglobin interaction have been determined on the basis of fluid theories. Except for the deoxi-hemoglobin solution having the concentration 370 g/l, the pair interaction consists in a short repulsion and a weak short-range attraction against kT. The potential minimum is between 1.2 - 1.5 nm above the greatest hemoglobin diameter. (author)

  17. Inelastic x-ray scattering from polycrystalline materials

    International Nuclear Information System (INIS)

    Fischer, I.

    2008-09-01

    Inelastic X-ray scattering (IXS) is a tool to determine the phonon dispersion along high symmetry directions in single crystals. However, novel materials and crystals under extreme conditions are often only available in form of polycrystalline samples. Thus the investigation is limited to orientation-averaged properties. To overcome these limitations, a methodology to extract the single crystal phonon dispersion from polycrystalline materials was developed. The approach consists of recording IXS spectra over a large momentum transfer region and confront them with a Born - von Karman model calculation. A least-square refinement of the model IXS spectra then provides the single crystal dispersion scheme. In this work the method is developed on the test case Be. Further studies were performed on more and more complex systems, in order to explore the limitations. This novel application of IXS promises to be a valuable tool in cases where single crystalline materials are not available. (author)

  18. Sensitivity of photon-counting based K-edge imaging in X-ray computed tomography.

    Science.gov (United States)

    Roessl, Ewald; Brendel, Bernhard; Engel, Klaus-Jürgen; Schlomka, Jens-Peter; Thran, Axel; Proksa, Roland

    2011-09-01

    about two to three. The potentially very important impact of scattered X-ray radiation and pulse pile-up occurring at high photon rates on the sensitivity of the technique is qualitatively discussed.

  19. Au-coated X-ray Anti-scattering Grid Performance Test by MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Bae, JunWoo; Yoo, Dong Han; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    It is required to protect individual against the dangers of ionizing radiation from medical exposure. And increasing of resolution for x-ray radiography tools can give radiation protectoral benefits. Because the image device has higher resolution in same energy source, it requires low energy level source and it can reduce individual dose. The anti-scattering grid is sub-device that is attached in front of detector (direction of source). It is square lattice shape generally. It is composed of penetration parts and shielding parts. Penetration part is generally air (the void) and in some studies it uses wood or aluminum. Shielding part is composed of various materials such as lead or copper. In this study, it is focused on the gold as one of X-ray grid materials, where gold is generally known as excellent shielding material and the performance test on the gold coated anti-scattering grid is carried out by MCNP simulation. X-ray grid was simulated by using MCNP code and its performance was investigated. It was understood that glass based and Au-coated grid could lessen the scattered photons more where the reduction was about two third. In further study, geometry optimization or material selection will be conducted by MCNP simulation for giving benefits to design proper grid for various instruments.

  20. The performance test of anti-scattering x-ray grid with inclined shielding material by MCNP code simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jun Woo; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-06-15

    The scattered photons cause reduction of the contrast of radiographic image and it results in the degradation of the quality of the image. In order to acquire better quality image, an anti-scattering x-ray gird should be equipped in radiography system. The X-ray anti-scattering grid of the inclined type based on the hybrid concept for that of parallel and focused type was tested by MCNP code. The MCNPX 2.7.0 was used for the simulation based test. The geometry for the test was based on the IEC 60627 which was an international standard for diagnostic X-ray imaging equipment-Characteristics of general purpose and mammographic anti-scatter grids. The performance of grids with four inclined shielding material types was compared with that of the parallel type. The grid with completely tapered type the best performance where there were little performance difference according to the degree of inclination.

  1. Epp: A C++ EGSnrc user code for x-ray imaging and scattering simulations

    International Nuclear Information System (INIS)

    Lippuner, Jonas; Elbakri, Idris A.; Cui Congwu; Ingleby, Harry R.

    2011-01-01

    Purpose: Easy particle propagation (Epp) is a user code for the EGSnrc code package based on the C++ class library egspp. A main feature of egspp (and Epp) is the ability to use analytical objects to construct simulation geometries. The authors developed Epp to facilitate the simulation of x-ray imaging geometries, especially in the case of scatter studies. While direct use of egspp requires knowledge of C++, Epp requires no programming experience. Methods: Epp's features include calculation of dose deposited in a voxelized phantom and photon propagation to a user-defined imaging plane. Projection images of primary, single Rayleigh scattered, single Compton scattered, and multiple scattered photons may be generated. Epp input files can be nested, allowing for the construction of complex simulation geometries from more basic components. To demonstrate the imaging features of Epp, the authors simulate 38 keV x rays from a point source propagating through a water cylinder 12 cm in diameter, using both analytical and voxelized representations of the cylinder. The simulation generates projection images of primary and scattered photons at a user-defined imaging plane. The authors also simulate dose scoring in the voxelized version of the phantom in both Epp and DOSXYZnrc and examine the accuracy of Epp using the Kawrakow-Fippel test. Results: The results of the imaging simulations with Epp using voxelized and analytical descriptions of the water cylinder agree within 1%. The results of the Kawrakow-Fippel test suggest good agreement between Epp and DOSXYZnrc. Conclusions: Epp provides the user with useful features, including the ability to build complex geometries from simpler ones and the ability to generate images of scattered and primary photons. There is no inherent computational time saving arising from Epp, except for those arising from egspp's ability to use analytical representations of simulation geometries. Epp agrees with DOSXYZnrc in dose calculation, since

  2. X-ray photon-in/photon-out methods for chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Matthew A.

    2010-03-24

    Most interesting materials in nature are heterogeneous, so it is useful to have analytical techniques with spatial resolution sufficient to resolve these heterogeneities.This article presents the basics of X-ray photon-in/photon-out chemical imaging. This family of methods allows one to derive images reflectingthe chemical state of a given element in a complex sample, at micron or deep sub-micron scale. X-ray chemical imaging is relatively non-destructiveand element-selective, and requires minimal sample preparation. The article presents the basic concepts and some considerations of data takingand data analysis, along with some examples.

  3. Development of a methodology for low-energy X-ray absorption correction in biological samples using radiation scattering techniques

    International Nuclear Information System (INIS)

    Pereira, Marcelo O.; Anjos, Marcelino J.; Lopes, Ricardo T.

    2009-01-01

    Non-destructive techniques with X-ray, such as tomography, radiography and X-ray fluorescence are sensitive to the attenuation coefficient and have a large field of applications in medical as well as industrial area. In the case of X-ray fluorescence analysis the knowledge of photon X-ray attenuation coefficients provides important information to obtain the elemental concentration. On the other hand, the mass attenuation coefficient values are determined by transmission methods. So, the use of X-ray scattering can be considered as an alternative to transmission methods. This work proposes a new method for obtain the X-ray absorption curve through superposition peak Rayleigh and Compton scattering of the lines L a e L β of Tungsten (Tungsten L lines of an X-ray tube with W anode). The absorption curve was obtained using standard samples with effective atomic number in the range from 6 to 16. The method were applied in certified samples of bovine liver (NIST 1577B) , milk powder and V-10. The experimental measurements were obtained using the portable system EDXRF of the Nuclear Instrumentation Laboratory (LIN-COPPE/UFRJ) with Tungsten (W) anode. (author)

  4. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sen; Luo, Sheng-Nian

    2018-02-16

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10–100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are exploredviaGaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.

  5. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics.

    Science.gov (United States)

    Chen, Sen; Luo, Sheng Nian

    2018-03-01

    Polychromatic X-ray sources can be useful for photon-starved small-angle X-ray scattering given their high spectral fluxes. Their bandwidths, however, are 10-100 times larger than those using monochromators. To explore the feasibility, ideal scattering curves of homogeneous spherical particles for polychromatic X-rays are calculated and analyzed using the Guinier approach, maximum entropy and regularization methods. Monodisperse and polydisperse systems are explored. The influence of bandwidth and asymmetric spectra shape are explored via Gaussian and half-Gaussian spectra. Synchrotron undulator spectra represented by two undulator sources of the Advanced Photon Source are examined as an example, as regards the influence of asymmetric harmonic shape, fundamental harmonic bandwidth and high harmonics. The effects of bandwidth, spectral shape and high harmonics on particle size determination are evaluated quantitatively.

  6. Small angle neutron scattering and small angle X-ray scattering ...

    Indian Academy of Sciences (India)

    Abstract. The morphology of carbon nanofoam samples comprising platinum nanopar- ticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature ...

  7. ORNL 10-m small-angle X-ray scattering camera

    International Nuclear Information System (INIS)

    Hendricks, R.W.

    1979-12-01

    A new small-angle x-ray scattering camera utilizing a rotating anode x-ray source, crystal monochromatization of the incident beam, pinhole collimation, and a two-dimensional position-sensitive proportional counter was developed. The sample, and the resolution element of the detector are each approximately 1 x 1 mm 2 , the camera was designed so that the focal spot-to-sample and sample-to-detector distances may each be varied in 0.5-m increments up to 5 m to provide a system resolution in the range 0.5 to 4.0 mrad. A large, general-purpose specimen chamber has been provided into which a wide variety of special-purpose specimen holders can be mounted. The detector has an active area of 200 x 200 mm and has up to 200 x 200 resolution elements. The data are recorded in the memory of a minicomputer by a high-speed interface which uses a microprocessor to map the position of an incident photon into an absolute minicomputer memory address. The data recorded in the computer memory can be processed on-line by a variety of programs designed to enhance the user's interaction with the experiment. At the highest angular resolution (0.4 mrad), the flux incident on the specimen is 1.0 x 10 6 photons/s with the x-ray source operating at 45 kV and 100 mA. SAX and its associated programs OVF and MOT are high-priority, pre-queued, nonresident foreground tasks which run under the ModComp II MAX III operating system to provide complete user control of the ORNL 10-m small-angle x-ray scattering camera

  8. Reflections on hard X-ray photon-in/photon-out spectroscopy for electronic structure studies

    Energy Technology Data Exchange (ETDEWEB)

    Glatzel, Pieter, E-mail: glatzel@esrf.fr [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Weng, Tsu-Chien; Kvashnina, Kristina; Swarbrick, Janine; Sikora, Marcin [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Gallo, Erik [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Department of Inorganic, Physical and Materials Chemistry, INSTM Reference Center and NIS Centre of Excellence, Università di Torino, Via P. Giuria 7, I-10125 Torino (Italy); Smolentsev, Nikolay [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Research Center for Nanoscale Structure of Matter, Southern Federal University, str. Zorge 5, 344090 Rostov-on-Don (Russian Federation); Mori, Roberto Alonso [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France)

    2013-06-15

    Highlights: ► Overview of some recent developments in hard X-ray RXES/RIXS. ► Evaluation of spectral line broadening in RXES/RIXS. ► Modelling of RXES/RIXS by ground state DFT calculations. ► Discussion on when HERFD provides a good approximation to XAS. -- Abstract: An increasing community of researchers in various fields of natural sciences is combining X-ray absorption with X-ray emission spectroscopy (XAS–XES) to study electronic structure. With the applications becoming more diverse, the objectives and the requirements in photon-in/photon-out spectroscopy are becoming broader. It is desirable to find simple experimental protocols, robust data reduction and theoretical tools that help the experimentalist to understand their data and learn about the electronic structure. This article presents a collection of considerations on non-resonant and resonant XES with the aim to guide the experimentalist to make good use of this technique.

  9. Resonant inelastic X-ray scattering of liquid water

    International Nuclear Information System (INIS)

    Nilsson, Anders; Tokushima, Takashi; Horikawa, Yuka; Harada, Yoshihisa; Ljungberg, Mathias P.; Shin, Shik; Pettersson, Lars G.M.

    2013-01-01

    Highlights: ► Two peaks are observed in the lone pair region of the XES spectrum of water assigned to tetrahedral and distorted hydrogen bonding configurations. ► The isotope effect observed as different relative peak heights is due to spectral line shape differences. ► The two different hydrogen bonding environments can be related to local structures mimicking either low density water or high density water. -- Abstract: We review recent studies using resonant inelastic X-ray scattering (RIXS) or also here denoted X-ray emission spectroscopy (XES) on liquid water and the assignment of the two sharp peaks in the lone-pair region. Using the excitation energy dependence we connect the two peaks to specific features in the X-ray absorption (XAS) spectrum which have independently been assigned to molecules in tetrahedral or distorted configurations. The polarization dependence shows that both peaks are of 1b 1 origin supporting an interpretation in terms of two structural species, tetrahedral or disordered, which is furthermore consistent with the temperature-dependence of the two peaks. We discuss effects of life-time vibrational interference and how this affects the two components differently and also leads to differences in the relative peak heights for H 2 O and D 2 O. We show furthermore that the inherent structure in molecular dynamics simulations contain the structural bimodality suggested by XES, but this is smeared out in the real structure when temperature is included. We present a discussion around alternative interpretations suggesting that the origin of the two peaks is related to ultrafast dissociation and show evidence that such a model is inconsistent with several experimental observations and theoretical concepts. We conclude that the peaks reflect a temperature-dependent balance in fluctuations between tetrahedral and disordered structures in the liquid. This is well-aligned with theories of water under supercooled conditions and higher pressures

  10. Resonant inelastic X-ray scattering of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Anders, E-mail: nilsson@slac.stanford.edu [SUNCAT Ctr Interface Sci and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 (Sweden); Tokushima, Takashi [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Horikawa, Yuka [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Harada, Yoshihisa [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Synchrotron Radiation Research Organization, The University of Tokyo, Sayo-cho, Sayo, Hyogo 679-5165 (Japan); Ljungberg, Mathias P. [Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 (Sweden); Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra (Spain); Shin, Shik [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Synchrotron Radiation Research Organization, The University of Tokyo, Sayo-cho, Sayo, Hyogo 679-5165 (Japan); Pettersson, Lars G.M. [Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 (Sweden)

    2013-06-15

    Highlights: ► Two peaks are observed in the lone pair region of the XES spectrum of water assigned to tetrahedral and distorted hydrogen bonding configurations. ► The isotope effect observed as different relative peak heights is due to spectral line shape differences. ► The two different hydrogen bonding environments can be related to local structures mimicking either low density water or high density water. -- Abstract: We review recent studies using resonant inelastic X-ray scattering (RIXS) or also here denoted X-ray emission spectroscopy (XES) on liquid water and the assignment of the two sharp peaks in the lone-pair region. Using the excitation energy dependence we connect the two peaks to specific features in the X-ray absorption (XAS) spectrum which have independently been assigned to molecules in tetrahedral or distorted configurations. The polarization dependence shows that both peaks are of 1b{sub 1} origin supporting an interpretation in terms of two structural species, tetrahedral or disordered, which is furthermore consistent with the temperature-dependence of the two peaks. We discuss effects of life-time vibrational interference and how this affects the two components differently and also leads to differences in the relative peak heights for H{sub 2}O and D{sub 2}O. We show furthermore that the inherent structure in molecular dynamics simulations contain the structural bimodality suggested by XES, but this is smeared out in the real structure when temperature is included. We present a discussion around alternative interpretations suggesting that the origin of the two peaks is related to ultrafast dissociation and show evidence that such a model is inconsistent with several experimental observations and theoretical concepts. We conclude that the peaks reflect a temperature-dependent balance in fluctuations between tetrahedral and disordered structures in the liquid. This is well-aligned with theories of water under supercooled conditions and

  11. Structural studies using X-ray absorption and scattering techniques

    International Nuclear Information System (INIS)

    Ericson, Agneta.

    1989-01-01

    The thesis presents extended X-ray absorption fine structure, EXAFS, and large angle X-ray scattering, LAXS, techniques; instrumentation, data collection and reduction, and applications. These techniques have been used to determine the structures of magnesium halides and organomagnesium halides in diethyl ether and tetrahydrofuran solution. The iodides were used for the LAXS measurements and Br K edge EXAFS data were collected for the corresponding bromides. Two different complexes are present in the diethyl ether solution of magnesium iodide; a polymeric chain-type structure where magnesium is tetrahedrally coordinated, as well as dimeric complex with octahedrally coordinated magnesium. Solvated MgI + is the dominating species in tetrahydrofuran solution. The organomagnesium halides are present in diethyl ether solution as both solvated monomeric and dimeric complexes. Magnesium coordinates a halide ion, an alkyl or aryl group and four solvent molecules octahedrally in the monomeric complex. In the dimeric complex magnesium is octahedrally coordinated by two bridging halide ions, an alkyl or aryl group and three solvent molecules. The distribution of monomeric and dimeric complexes in various solutions are given by a dimerisation constant, K dl . The results indicate that the Schlenk equilibrium is present in these solutions, however, in an extended form. In diethyl ether solution, where MgX 2 does not dissociate, no MgX 2 complex and thereby no Schlenk equilibrium has been observed. In tetrahydrofuran solution MgI 2 has dissociated into mainly MgI + and I - . This indicates that the concentration of MgI 2 is low and that the Schlenk equilibrium should be expanded even further to include the dissociation equilibrium of the magnesium halide. In the thesis Fe K edge EXAFS data collected for the semireduced form of protein A of methane monooxygenase from Methylococcus capsulatus, are also presented. (139 refs.)

  12. Strongly correlated electrons at high pressure: an approach by inelastic X-Ray scattering

    International Nuclear Information System (INIS)

    Rueff, J.P.

    2007-06-01

    Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)

  13. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY 11973 (United States); Geloni, Gianluca [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Kocharyan, Vitali [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Madsen, Anders [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Shvyd’ko, Yuri, E-mail: shvydko@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Sutter, John [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom)

    2016-02-12

    This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems. Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup −1} spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup −1} are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10{sup 12} photons s{sup −1} in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  14. Computational time-resolved and resonant x-ray scattering of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-11-09

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source, literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of x-ray science. In particular, our Collaborative Research Team (CRT) focused on developing viable computational schemes for modeling x-ray scattering and photoemission spectra of strongly correlated materials in the time-domain. The vast arsenal of formal/numerical techniques and approaches encompassed by the members of our CRT were brought to bear through appropriate generalizations and extensions to model the pumped state and the dynamics of this non-equilibrium state, and how it can be probed via x-ray absorption (XAS), emission (XES), resonant and non-resonant x-ray scattering, and photoemission processes. We explored the conceptual connections between the time-domain problems and other second-order spectroscopies, such as resonant inelastic x-ray scattering (RIXS) because RIXS may be effectively thought of as a pump-probe experiment in which the incoming photon acts as the pump, and the fluorescent decay is the probe. Alternatively, when the core-valence interactions are strong, one can view K-edge RIXS for example, as the dynamic response of the material to the transient presence of a strong core-hole potential. Unlike an actual pump-probe experiment, here there is no mechanism for adjusting the time-delay between the pump and the probe. However, the core hole

  15. X-ray crystal structure and small-angle X-ray scattering of sheep liver sorbitol dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Yennawar, Hemant [Pennsylvania State University, 8 Althouse Laboratory, University Park, PA 16802 (United States); Møller, Magda [Cornell High Energy Synchrotron Source, Ithaca, NY 14853 (United States); University of Copenhagen, DK-2100 Copenhagen (Denmark); Gillilan, Richard [Cornell High Energy Synchrotron Source, Ithaca, NY 14853 (United States); Yennawar, Neela, E-mail: nhy1@psu.edu [Pennsylvania State University, 8 Althouse Laboratory, University Park, PA 16802 (United States)

    2011-05-01

    The X-ray crystal structure and a small-angle X-ray scattering solution structure of sheep liver sorbitol dehydrogenase have been determined. The details of the interactions that enable the tetramer scaffold to be the functional biological unit have been analyzed. The X-ray crystal structure of sheep liver sorbitol dehydrogenase (slSDH) has been determined using the crystal structure of human sorbitol dehydrogenase (hSDH) as a molecular-replacement model. slSDH crystallized in space group I222 with one monomer in the asymmetric unit. A conserved tetramer that superposes well with that seen in hSDH (despite belonging to a different space group) and obeying the 222 crystal symmetry is seen in slSDH. An acetate molecule is bound in the active site, coordinating to the active-site zinc through a water molecule. Glycerol, a substrate of slSDH, also occupies the substrate-binding pocket together with the acetate designed by nature to fit large polyol substrates. The substrate-binding pocket is seen to be in close proximity to the tetramer interface, which explains the need for the structural integrity of the tetramer for enzyme activity. Small-angle X-ray scattering was also used to identify the quaternary structure of the tetramer of slSDH in solution.

  16. Scattered hard X-ray and γ-ray generation from a chromatic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J. E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Welch, D. R.; Miller, C. L. [Voss Scientific, Albuquerque, New Mexico 87108 (United States)

    2015-11-14

    An array of photon diagnostics has been deployed on a high power relativistic electron beam diode. Electrons are extracted through a 17.8 cm diode from the surface discharge of a carbon fiber velvet cathode with a nominal diode voltage of 3.8 MV. <10% of the 100 ns electron pulse is composed of off energy electrons (1–3 MeV) accelerated during the rise and fall of the pulse that impact the stainless steel beam pipe and generate a Bremsstrahlung spectrum of 0.1–3 MeV photons with a total count of 10{sup 11}. The principal objective of these experiments is to quantify the electron beam dynamics and spatial dynamics of the hard X-ray and γ-ray flux generated in the diode region. A qualitative comparison of experimental and calculated results are presented, including time and energy resolved electron beam propagation and scattered photon measurements with X-ray PIN diodes and a photomultiplier tube indicating a dose dependence on the diode voltage >V{sup 4} and detected photon counts of nearly 10{sup 6} at a radial distance of 1 m which corresponds to dose ∼40 μrad at 1 m.

  17. A synchrotron radiation camera and data acquisition system for time resolved x-ray scattering studies

    International Nuclear Information System (INIS)

    Bordas, J.; Koch, M.H.J.; Clout, P.N.; Dorrington, E.; Boulin, C.; Gabriel, A.

    1980-01-01

    Until recently, time resolved measurements of x-ray scattering patterns have not been feasible because laboratory x-ray sources were too weak and detectors unavailable. Recent developments in both these fields have changed the situation, and it is now possible to follow changes in x-ray scattering patterns with a time resolution of a few ms. The apparatus used to achieve this is described and some examples from recent biological experiments are given. (author)

  18. Measurement of x-ray scattering cross sections of hydrogen and helium with synchrotron radiation

    International Nuclear Information System (INIS)

    Ice, G.E.

    1977-01-01

    Total x-ray scattering is a two-electron expectation value. The prominence of the electron correlation effect was demonstrated in recent theoretical work. Only one measurement of x-ray scattering from H 2 has been reported heretofore, nearly fifty years ago. New measurements were carried out using the virtually monochromatic, intense flux of synchrotron radiation in the SSRP EXAFS line. The targets, at 1 atm pressure, were UHP He and ultrapure H 2 that had been passed through a hot Pd--Ag alloy diffusion purifier. The scattered-photon spectra were measured with a Xe-filled proportional counter and fast multichannel analyzer. The incident flux was monitored with a parallel-plate ion chamber, calibrated by direct counting of the absorber-attenuated beam. Measurements were performed at 5, 6, and 7 keV photon energy, as a function of scattering angle (60, 90, and 135 deg) and azimuthal angle (i.e., polarization). The relative total differential photon scattering cross sections for H 2 over the range 3.0 less than or equal to x = 4πsin (theta/2)lambda less than or equal to 5.6 A -1 agree to within approx. 1% with the correlated calculations of Bentley and Stewart. The ratios of measured cross sections for H 2 to those for He at x = 3.0 and 5.6 A -1 agree to within 1% with the ratios of the Bentley--Stewart H 2 cross sections to the correlated wave-function calculations of Brown for He

  19. PLEIADES: A picosecond Compton scattering x-ray source for advanced backlighting and time-resolved material studies

    International Nuclear Information System (INIS)

    Gibson, David J.; Anderson, Scott G.; Barty, Christopher P.J.; Betts, Shawn M.; Booth, Rex; Brown, Winthrop J.; Crane, John K.; Cross, Robert R.; Fittinghoff, David N.; Hartemann, Fred V.; Kuba, Jaroslav; Le Sage, Gregory P.; Slaughter, Dennis R.; Tremaine, Aaron M.; Wootton, Alan J.; Hartouni, Edward P.; Springer, Paul T.; Rosenzweig, James B.

    2004-01-01

    The PLEIADES (Picosecond Laser-Electron Inter-Action for the Dynamical Evaluation of Structures) facility has produced first light at 70 keV. This milestone offers a new opportunity to develop laser-driven, compact, tunable x-ray sources for critical applications such as diagnostics for the National Ignition Facility and time-resolved material studies. The electron beam was focused to 50 μm rms, at 57 MeV, with 260 pC of charge, a relative energy spread of 0.2%, and a normalized emittance of 5 mm mrad horizontally and 13 mm mrad vertically. The scattered 820 nm laser pulse had an energy of 180 mJ and a duration of 54 fs. Initial x rays were captured with a cooled charge-coupled device using a cesium iodide scintillator; the peak photon energy was approximately 78 keV, with a total x-ray flux of 1.3x10 6 photons/shot, and the observed angular distribution found to agree very well with three-dimensional codes. Simple K-edge radiography of a tantalum foil showed good agreement with the theoretical divergence-angle dependence of the x-ray energy. Optimization of the x-ray dose is currently under way, with the goal of reaching 10 8 photons/shot and a peak brightness approaching 10 20 photons/mm 2 /mrad 2 /s/0.1% bandwidth

  20. Reduction of the scattered radiation during X-ray examination with screen-film systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V N; Stavitsky, R V [Moscow Research Inst. for Roentgenology and Radiology, Moscow (Russian Federation); Oshomkov, Yu V [Mosroentgen, Moscow Region (Russian Federation)

    1993-01-01

    In diagnostic radiography, during X-ray examination, photons scattered in the patient's body are detected by the intensifying screen and decrease the image contrast. A conventional way to avoid this image degradation is to attenuate the scattered radiation by an antiscatter grid placed between the patient's body and the screen. A grid selectivity effect originates from the greater attenuation of scattered as opposed to primary radiation. Previous authors calculated the primary and scattered radiation transmission factor of photons with initial energy 30-120 keV for a number of typical grids. The primary radiation transmission factor varied from 0.34 to 0.67 and the secondary radiation factor was equal from 0.03 to 0.13. This effect results in a contrast improvement from 2 to 6, but the patient exposure increases up to a factor of 10. In this work we studied the possibility of improving the image contrast by attenuating the scattered radiation by a secondary filter placed between the patient's body and the screen and made of an appropriate material. A selectivity effect due to the secondary filter arises from two circumstances. First, tilting incidence of the scattered radiation results in the path inside the filter being greater than the primary one. Second, the average energy of the scattered radiation is less than the primary and, hence, the attenuation coefficient is greater. (author).

  1. Introducing a New Capability at SSRL: Resonant Soft X-ray Scattering

    Science.gov (United States)

    Lee, Jun-Sik; Jang, Hoyoung; Lu, Donghui; Kao, Chi-Chang

    Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC recently developed a setup for the resonant soft x-ray scattering (RSXS). In general, the RSXS technique uniquely probes not only structural information, but also chemical specific information. This is because this technique can explore the spatial periodicities of charge, orbital, spin, and lattice with spectroscopic aspect. Moreover, the soft x-ray range is particularly relevant for a study of soft materials as it covers the K-edge of C, N, F, and O, as well as the L-edges of transition metals and M-edges of rare-earth elements. Hence, the RSXS capability has been regarded as a very powerful technique for investigating the intrinsic properties of materials such as quantum- and energy-materials. The RSXS capability at the SSRL composes of in-vacuum 4-circle diffractometer. There are also the fully motorized sample-motion manipulations. Also, the sample can be cooled down to 25 K via the liquid helium. This capability has been installed at BL 13-3, where the photon source is from elliptically polarized undulator (EPU). Covering the photon energies is from 230 eV to 1400 eV. Furthermore, this EPU system offers more degree of freedoms for controlling x-ray polarizations (linear and circular). Using the advance of controlling x-ray polarization, we can also investigate a morphology effect of local domain/grain in materials. The detailed introduction of the RSXS end-station and several results will be touched in this poster presentation.

  2. On-axis microscopes for the inelastic x-ray scattering beamline at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Gofron, K. J., E-mail: kgofron@bnl.gov; Cai, Y. Q.; Coburn, D. S.; Antonelli, S.; Suvorov, A. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States); Flores, J. [Department of Physics and Astronomy, Stony Brook University, NY 11794 (United States)

    2016-07-27

    A novel on-axis X-ray microscope with 3 µm resolution, 3x magnification, and a working distance of 600 mm for in-situ sample alignment and X-ray beam visualization for the Inelastic X-ray Scattering (IXS) beamline at NSLS-II is presented. The microscope uses reflective optics, which minimizes dispersion, and allows imaging from Ultraviolet (UV) to Infrared (IR) with specifically chosen objective components (coatings, etc.). Additionally, a portable high resolution X-ray microscope for KB mirror alignment and X-ray beam characterization was developed.

  3. Deterministic simulation of first-order scattering in virtual X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Freud, N. E-mail: nicolas.freud@insa-lyon.fr; Duvauchelle, P.; Pistrui-Maximean, S.A.; Letang, J.-M.; Babot, D

    2004-07-01

    A deterministic algorithm is proposed to compute the contribution of first-order Compton- and Rayleigh-scattered radiation in X-ray imaging. This algorithm has been implemented in a simulation code named virtual X-ray imaging. The physical models chosen to account for photon scattering are the well-known form factor and incoherent scattering function approximations, which are recalled in this paper and whose limits of validity are briefly discussed. The proposed algorithm, based on a voxel discretization of the inspected object, is presented in detail, as well as its results in simple configurations, which are shown to converge when the sampling steps are chosen sufficiently small. Simple criteria for choosing correct sampling steps (voxel and pixel size) are established. The order of magnitude of the computation time necessary to simulate first-order scattering images amounts to hours with a PC architecture and can even be decreased down to minutes, if only a profile is computed (along a linear detector). Finally, the results obtained with the proposed algorithm are compared to the ones given by the Monte Carlo code Geant4 and found to be in excellent accordance, which constitutes a validation of our algorithm. The advantages and drawbacks of the proposed deterministic method versus the Monte Carlo method are briefly discussed.

  4. The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, D.; Barbrel, B.; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Vorberger, J. [Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden (Germany); Helfrich, J.; Frydrych, S.; Ortner, A.; Otten, A.; Roth, F.; Schaumann, G.; Schumacher, D.; Siegenthaler, K.; Wagner, F.; Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 9, 64289 Darmstadt (Germany); Gericke, D. O.; Wünsch, K. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Bachmann, B.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bagnoud, V.; Blažević, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); and others

    2015-05-15

    We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability of spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.

  5. Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fluerasu, Andrei [Brookhaven National Laboratory, NSLS-II, Upton, NY 11973 (United States); Kwasniewski, Pawel; Caronna, Chiara; Madsen, Anders [European Synchrotron Radiation Facility, ID10 (Troika), Grenoble 38043 (France); Destremaut, Fanny; Salmon, Jean-Baptiste [LOF, UMR 5258 CNRS-Rhodia Bordeaux 1, 33608 Pessac (France)], E-mail: fluerasu@bnl.gov

    2010-03-15

    X-ray photon correlation spectroscopy (XPCS) has emerged as a unique technique allowing the measurement of dynamics of materials on mesoscopic lengthscales. One of the most common problems associated with the use of bright x-ray beams is beam-induced radiation damage, and this is likely to become an even more limiting factor at future synchrotron and free-electron laser sources. Flowing the sample during data acquisition is one of the simplest methods allowing the radiation damage to be limited. In addition to distributing the dose over many different scatterers, the method also enables new functionalities such as time-resolved studies. Here, we further develop a recently proposed experimental technique that combines XPCS and continuously flowing samples. More specifically, we use a model colloidal suspension to show how the macroscopic advective response to flow and the microscopic dissipative dynamics (diffusion) can be quantified from the x-ray data. Our results show very good quantitative agreement with a Poisseuille-flow hydrodynamical model combined with Brownian mechanics. The method has many potential applications, e.g. in the study of dynamics of glasses and gels under continuous shear/flow, protein aggregation processes and the interplay between dynamics and rheology in complex fluids.

  6. X-Ray Thomson Scattering Without the Chihara Decomposition

    Science.gov (United States)

    Magyar, Rudolph; Baczewski, Andrew; Shulenburger, Luke; Hansen, Stephanie B.; Desjarlais, Michael P.; Sandia National Laboratories Collaboration

    X-Ray Thomson Scattering is an important experimental technique used in dynamic compression experiments to measure the properties of warm dense matter. The fundamental property probed in these experiments is the electronic dynamic structure factor that is typically modeled using an empirical three-term decomposition (Chihara, J. Phys. F, 1987). One of the crucial assumptions of this decomposition is that the system's electrons can be either classified as bound to ions or free. This decomposition may not be accurate for materials in the warm dense regime. We present unambiguous first principles calculations of the dynamic structure factor independent of the Chihara decomposition that can be used to benchmark these assumptions. Results are generated using a finite-temperature real-time time-dependent density functional theory applied for the first time in these conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  7. A study on the measurement of effective energy of scattering X-rays

    International Nuclear Information System (INIS)

    Oogama, Noboru; Fujimoto, Nobuhisa; Nishitani, Motohiro; Yamada, Katsuhiko

    1995-01-01

    Only a few studies have been reported on the measurement and evaluation of the effective energy of scattering X-rays using an ionization chamber. The reason for this is due to the difficulty in accurately measuring attenuation curve in scattering X-rays lacking any directional properties. We could come up with a new method for calculating the effective energy of scattering X-rays by utilizing their spectra data. First, for analysing the accuracy of our calculation method with using primary X-rays, a comparison was made of calculated values of the effective energy obtained by our calculation method with the measurement values obtained using an ionization chamber. The results gave the calculated values agreeing with the measurement values within a maximum error of 2%, and this method was very helpful in measuring the effective energy of the scattering X-rays. Consequently, this method was capable of measuring the effective energy of scattering X-rays in the following parameters: X-ray tube voltage, scattering angle and size of scatterer. In conclusion, it is considered that our method could solve the present difficulty regarding the measurement of effective energy of the scattering X-rays, and provided a useful procedure concerning the study of radiation protection. (author)

  8. Scanning small angle X-ray scattering investigations of bone

    International Nuclear Information System (INIS)

    Rinnerthaler, S.

    1998-06-01

    An important characteristic of bone is its strength, which is determined by bone mass, architecture and material quality. From a physical point of view bone is a composite material consisting of an organic matrix (collagen) and of inlets of mineral crystals (hydroxyapatite). These components build up a hierarchical, heterogeneous structure. The size of the mineral crystals lies in the nano-meter range and can be investigated by positionsensitive Small-Angle X-ray Scattering (Scanning-SAXS) in a non-destructive way. The average thickness, the degree and direction of the predominant orientation, as well as some information about shape and arrangement of the mineral crystals were determined in bones of humans, mice, and baboons by Scanning-SAXS with respect to age, bone diseases (osteogenesis imperfecta, pycnodysostosis) or medical treatments (fluoride or alendronate) of osteoporosis. The crystal thickness and the degree of orientation is much smaller in young individuals than in adults and the predominant orientation of the mineral crystals is different in a mixture of bone and mineralized cartilage compared to bone. Further, because position-resolved measurements are now possible, results from Scanning-SAXS measurements could be compared with the results of other position resolved methods. Due to this new feature it was possible, for the first time, to correlate directly 'mottled' bone visible in back-scattered electron imaging with small η-parameters evaluated from SAXS-patterns and the course of the collagen fibers with the predominant orientation of the mineral crystals. Scanning-SAXS proved to be a powerful tool to characterize bone nano-structure. (author)

  9. Evaluation of the spectral distribution of X-ray beams from measurements on the scattered radiation

    International Nuclear Information System (INIS)

    Casnati, E.; Baraldi, C.

    1980-01-01

    Most of the phenomena activated by photons with energies below 100 keV show an apparent or real dependence on the quantum energy. Therefore, knowledge of the beam energy characteristics is of primary importance for interpretation of the irradiation results. The greatest difficulty arises from the high flux density of the beams usually employed which does not allow direct measurements of the beam. A method was developed which permits evaluation of the spectral distribution of the X-ray beam from a spectrometric measurement of the radiation scattered by a thin foil of a suitable metal. This makes possible a new and more rational approach to the measurement of X-rays in the energy range where the interaction parameters show a large photon energy dependence. The corrections required by the presence of some collateral effects, among which the most important is the coexistence of the coherent and incoherent scattering, must be evaluated. The knowledge of the spectral distribution is of immediate usefulness for studies of radiation damage in biological and other materials, for the calibration of radiation measuring instruments and for the improvement of the radiological instrumentation response which contributes to reducing the patient's dose. (H.K.)

  10. Development of a compact x-ray source via laser compton scattering at KEK-LUCX

    International Nuclear Information System (INIS)

    Sakaue, Kazuyuki; Washio, Masakazu; Aryshev, Alexander; Araki, Sakae; Urakawa, Junji; Terunuma, Nobuhiro; Fukuda, Masafumi; Miyoshi, Toshinobu; Takeda, Ayaki

    2013-01-01

    The compact X-ray source based on Laser-Compton scattering (LCS) has been developed at LUCX (Laser Undulator Compact X-ray source) facility in KEK. The multi-bunch high quality electron beam produced by a standing wave 3.6 cell RF Gun and accelerated by the followed S-band normal conducting 12 cells standing wave 'Booster' linear accelerator is scattered off the laser beam stored in the optical cavity. The 4-mirror planar optical cavity with finesse 335 is used. The MCP (Micro-Channer Plate) detector as well as SOI (Silicon-On-Insulator) pixel sensor was used for scattered X-ray detection. The SOI pixel sensor has been used for LCS X-ray detection for the first time and has demonstrated high spatial resolution and high SN ratio X-ray detection that in turn lead to clearest X-ray images achieved by LCS X-ray. We have also achieved generation of 6.38x10 6 ph./sec., which is more than 30 times larger LCS X-ray flux in comparison with our previous results. The complete details of LUCX LCS X-ray source, specifications of both electron and laser beams, and the results of LCS X-ray generation experiments are reported in this paper. (author)

  11. RESONANT X-RAY SCATTERING AS A PROBE OF ORBITAL AND CHARGE ORDERING

    International Nuclear Information System (INIS)

    NELSON, C.S.; HILL, J.P.; GIBBS, D.

    2002-01-01

    Resonant x-ray scattering is a powerful experimental technique for probing orbital and charge ordering. It involves tuning the incident photon energy to an absorption edge of the relevant ion and observing scattering at previously 'forbidden' Bragg peaks, and it allows high-resolution, quantitative studies of orbital and charge order--even from small samples. Further, resonant x-ray scattering from orbitally ordered systems exhibits polarization- and azimuthal-dependent properties that provide additional information about the details of the orbital order that is difficult, or impossible, to obtain with any other technique. In the manganites, the sensitivity to charge and orbital ordering is enhanced when the incident photon energy is tuned near the Mn K absorption edge (6.539 keV), which is the lowest energy at which a 1s electron can be excited into an unoccupied state. In this process, the core electron is promoted to an intermediate excited state, which decays with the emission of a photon. The sensitivity to charge ordering is believed to be due to the small difference in K absorption edges of the Mn 3+ and Mn 4+ sites. For orbital ordering, the sensitivity arises from a splitting--or difference in the weight of the density of states [239]--of the orbitals occupied by the excited electron in the intermediate state. In the absence of such a splitting, there is no resonant enhancement of the scattering intensity. In principle, other absorption edges in which the intermediate state is anisotropic could be utilized, but the strong dipole transition to the Mn 4p levels--and their convenient energies for x-ray diffraction--make the K edge well-suited to studies of manganites. The Mn 4p levels are affected by the symmetry of the orbital ordering, which makes the technique sensitive to the orbital degree of freedom. Therefore resonant x-ray scattering can be used to obtain important quantitative information concerning the details of this electronic order. Two

  12. Compact scanning transmission x-ray microscope at the photon factory

    International Nuclear Information System (INIS)

    Takeichi, Yasuo; Inami, Nobuhito; Ono, Kanta; Suga, Hiroki; Takahashi, Yoshio

    2016-01-01

    We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ∼10 7 photons/s was focused to a diameter of ∼40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250–1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences

  13. An x-ray-based capsule for colorectal cancer screening incorporating single photon counting technology

    Science.gov (United States)

    Lifshitz, Ronen; Kimchy, Yoav; Gelbard, Nir; Leibushor, Avi; Golan, Oleg; Elgali, Avner; Hassoon, Salah; Kaplan, Max; Smirnov, Michael; Shpigelman, Boaz; Bar-Ilan, Omer; Rubin, Daniel; Ovadia, Alex

    2017-03-01

    An ingestible capsule for colorectal cancer screening, based on ionizing-radiation imaging, has been developed and is in advanced stages of system stabilization and clinical evaluation. The imaging principle allows future patients using this technology to avoid bowel cleansing, and to continue the normal life routine during procedure. The Check-Cap capsule, or C-Scan ® Cap, imaging principle is essentially based on reconstructing scattered radiation, while both radiation source and radiation detectors reside within the capsule. The radiation source is a custom-made radioisotope encased in a small canister, collimated into rotating beams. While traveling along the human colon, irradiation occurs from within the capsule towards the colon wall. Scattering of radiation occurs both inside and outside the colon segment; some of this radiation is scattered back and detected by sensors onboard the capsule. During procedure, the patient receives small amounts of contrast agent as an addition to his/her normal diet. The presence of contrast agent inside the colon dictates the dominant physical processes to become Compton Scattering and X-Ray Fluorescence (XRF), which differ mainly by the energy of scattered photons. The detector readout electronics incorporates low-noise Single Photon Counting channels, allowing separation between the products of these different physical processes. Separating between radiation energies essentially allows estimation of the distance from the capsule to the colon wall, hence structural imaging of the intraluminal surface. This allows imaging of structural protrusions into the colon volume, especially focusing on adenomas that may develop into colorectal cancer.

  14. Integrated circuit authentication using photon-limited x-ray microscopy.

    Science.gov (United States)

    Markman, Adam; Javidi, Bahram

    2016-07-15

    A counterfeit integrated circuit (IC) may contain subtle changes to its circuit configuration. These changes may be observed when imaged using an x-ray; however, the energy from the x-ray can potentially damage the IC. We have investigated a technique to authenticate ICs under photon-limited x-ray imaging. We modeled an x-ray image with lower energy by generating a photon-limited image from a real x-ray image using a weighted photon-counting method. We performed feature extraction on the image using the speeded-up robust features (SURF) algorithm. We then authenticated the IC by comparing the SURF features to a database of SURF features from authentic and counterfeit ICs. Our experimental results with real and counterfeit ICs using an x-ray microscope demonstrate that we can correctly authenticate an IC image captured using orders of magnitude lower energy x-rays. To the best of our knowledge, this Letter is the first one on using a photon-counting x-ray imaging model and relevant algorithms to authenticate ICs to prevent potential damage.

  15. Study of human blood and hemocomponents irradiated by low angle x ray scattering (LAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Nivia G. Villela; Barroso, Regina C. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica. Dept. de Fisica Aplicada e Termodinamica], e-mail: nitatag@gmail.com; Mota, Carla L.S.; Almeida, Andre P.; Azeredo, Soraia R.; Braz, Delson [Coordenacao dos Programas de Pos-graduacao em Engenharia (COPPE/UFRJ), RJ (Brazil). Lab. de Instrumentacao Nuclear], e-mail: delson@lin.ufrj.br

    2009-07-01

    Irradiation of blood and blood components is currently practiced in developed and in a few developing countries. The main purpose of this process is the prevention of graft versus host disease in immunodeficient patients. The Food and Drug Administration recommends a dose range of 15 Gy to 25 Gy for these blood components. When x-ray photons are scattered from biological samples, their angular distribution shows one or more peaks in the forward direction of scattering. These peaks are characteristic for the investigated samples. Due to its wide range of biological and medical applications, low-angle x-ray scattering has attracted the attention of many authors. Thus in this present work was studied the possible variations in scattering profiles due to the irradiation when the gender of patients was considered. Fresh blood specimens were obtained from volunteers using vacutainer tubes containing EDTA, at the Dr. Eliel Figueiredo Laboratory, Rio de Janeiro. All the samples were lyophilized for 48 hours in a freeze drier in order to remove the water. The scattering measurements were carried out in e-2e reflection geometry using a powder diffractometer Shimadzu XRD- 6000. The measured characterization parameters for LAXS were associated with epidemiological data (gender). The mean values of the different parameters were compared using the Students's t-test for each characterization parameters. The scattering profiles from plasma and formed elements are characterized by the presence of two peaks in the forward direction of scattering. For epidemiological data (gender) analyzed was not found significant changes in the mostly of characterization parameters (p>0.05). (author)

  16. Study of human blood and hemocomponents irradiated by low angle x ray scattering (LAXS)

    International Nuclear Information System (INIS)

    Pinto, Nivia G. Villela; Barroso, Regina C.; Mota, Carla L.S.; Almeida, Andre P.; Azeredo, Soraia R.; Braz, Delson

    2009-01-01

    Irradiation of blood and blood components is currently practiced in developed and in a few developing countries. The main purpose of this process is the prevention of graft versus host disease in immunodeficient patients. The Food and Drug Administration recommends a dose range of 15 Gy to 25 Gy for these blood components. When x-ray photons are scattered from biological samples, their angular distribution shows one or more peaks in the forward direction of scattering. These peaks are characteristic for the investigated samples. Due to its wide range of biological and medical applications, low-angle x-ray scattering has attracted the attention of many authors. Thus in this present work was studied the possible variations in scattering profiles due to the irradiation when the gender of patients was considered. Fresh blood specimens were obtained from volunteers using vacutainer tubes containing EDTA, at the Dr. Eliel Figueiredo Laboratory, Rio de Janeiro. All the samples were lyophilized for 48 hours in a freeze drier in order to remove the water. The scattering measurements were carried out in e-2e reflection geometry using a powder diffractometer Shimadzu XRD- 6000. The measured characterization parameters for LAXS were associated with epidemiological data (gender). The mean values of the different parameters were compared using the Students's t-test for each characterization parameters. The scattering profiles from plasma and formed elements are characterized by the presence of two peaks in the forward direction of scattering. For epidemiological data (gender) analyzed was not found significant changes in the mostly of characterization parameters (p>0.05). (author)

  17. Anisotropy enhanced X-ray scattering from solvated transition metal complexes

    DEFF Research Database (Denmark)

    Biasin, Elisa; van Driel, Tim B.; Levi, Gianluca

    2018-01-01

    Time-resolved X-ray scattering patterns from photoexcited molecules in solution are in many cases anisotropic at the ultrafast time scales accessible at X-ray free-electron lasers (XFELs). This anisotropy arises from the interaction of a linearly polarized UV-Vis pump laser pulse with the sample......, which induces anisotropic structural changes that can be captured by femtosecond X-ray pulses. In this work, a method for quantitative analysis of the anisotropic scattering signal arising from an ensemble of molecules is described, and it is demonstrated how its use can enhance the structural...... sensitivity of the time-resolved X-ray scattering experiment. This method is applied on time-resolved X-ray scattering patterns measured upon photoexcitation of a solvated di-platinum complex at an XFEL, and the key parameters involved are explored. It is shown that a combined analysis of the anisotropic...

  18. X-ray, neutron, and electron scattering. Report of a materials sciences workshop

    International Nuclear Information System (INIS)

    1977-08-01

    The ERDA Workshop on X-ray, Neutron, and Electron Scattering to assess needs and establish priorities for energy-related basic research on materials. The general goals of the Workshop were: (1) to review various energy technologies where x-ray, neutron, and electron scattering techniques might make significant contributions, (2) to identify present and future materials problems in the energy technologies and translate these problems into requirements for basic research by x-ray, neutron, and electron scattering techniques, (3) to recommend research areas utilizing these three scattering techniques that should be supported by the DPR Materials Sciences Program, and (4) to assign priorities to these research areas

  19. Measurement of scattered and transmitted X-rays from intra-oral and panoramic dental X-ray equipment.

    Science.gov (United States)

    Holroyd, John Richard

    2018-04-10

    To quantify the levels of transmitted radiation arising from the use of intra-oral dental X-ray equipment and scattered radiation arising from the use of both intra-oral and panoramic X-ray equipment. Methods: Levels of scattered radiation were measured at 1 m from a phantom, using an 1800 cc ion chamber. Transmitted radiation was measured using both: i) a phantom and Dose Area Product (DAP) meter, ii) a patient and an 1800 cc ion chamber. Results: For intra-oral radiography the patient study gave a maximum transmission of 1.80% (range 0.04% to 1.80%, mean 0.26%) and the phantom study gave a maximum transmission of 6% (range 2% to 6%, mean 5%). The maximum scattered radiation, per unit DAP, was 5.5 nGy (mGy cm2)-1 at 70 kVp and a distance of 1 m. For panoramic radiography the maximum scattered radiation was 9.3 nGy (mGy cm2)-1 at 80 kVp and a distance of 1 m. Conclusions: Typical doses from scattered and transmitted radiation in modern dental practice have been measured and values are presented to enable the calculation of adequate protection measures for dental radiography rooms. Advances in knowledge: Previous studies have used a phantom and measured radiation doses at 1 m from the phantom to determine the radiation dose transmitted through a patient, whereas this study uses both patient and phantom measurements together with a large area dose meter, positioned to capture the entire X-ray beam, to ensure more realistic dose measurements can be made. © 2018 IOP Publishing Ltd.

  20. X-ray magnetic scattering in SDW Cr - ab initio study

    International Nuclear Information System (INIS)

    Takahashi, M.; Igarashi, J.-I.; Hirai, K.

    2004-01-01

    Full text: Resonant x-ray scattering at the K-edge of transition metal atom has attracted much attention as a powerful tool for obtaining information on magnetic or orbital properties of 3d electrons. Recently Mannix et al. performed the x-ray magnetic scattering experiment in SDW Chromium and observed the finite scattering intensity with resonant enhancement at Cr K-edge on the SDW magnetic spot (0, 0, 1 ±δ). Applying ab-initio band structure calculation based on the local spin density approximation, we analyze the scattering spectra and elucidate the mechanism of the resonant enhancement in connection with the electronic structure. We assumed the bcc structure with the lattice constant a = 5.45a 0 and the SDW wavelength λ SDW = 20a, which are nearly equilibrium value at the spin-flip temperature T SF = 122K. The K-edge x-ray absorption and scattering spectra are calculated using Fermi's golden rule. We evaluate the non-resonant scattering amplitude within the spherical and dipolar approximations for spin and orbital moment contributions, respectively. The calculated absorption spectra are in good agreement with the experiment. This may assure the validity of the calculation. We obtained finite scattering amplitude with resonant enhancement at the K-edge. The calculated photon energy dependence of the scattering intensity shows good agreement with the experiment. The contribution of the 3d and 4p orbital moments to the non-resonant scattering amplitude is negligible in consequence of the smallness of their values, which are l max d ∼ 0.006ℎ and l max p ∼ 0.00007ℎ. On the other hand, although the 3d and 4p orbital moments are infinitesimal, they play important role on the resonant enhancement, which occurs through the 1s - 4p dipole transition and reflects the 4p orbital polarization. The 4p orbital polarization is caused by the on-site spin-orbit interaction in 4p orbital itself and the hybridization of the 4p orbital with the 3d orbital at neighboring

  1. Degradation of periodic multilayers as seen by small-angle x-ray scattering and x-ray diffraction

    CERN Document Server

    Rafaja, D; Simek, D; Zdeborova, L; Valvoda, V

    2002-01-01

    The capabilities of small-angle x-ray scattering (SAXS) and wide-angle x-ray diffraction (XRD) to recognize structural changes in periodic multilayers were compared on Fe/Au multilayers with different degrees of structural degradation. Experimental results have shown that both methods are equally sensitive to the multilayer degradation, i.e., to the occurrence of non-continuous interfaces, to short-circuits in the multilayer structure and to the multilayer precipitation. XRD yielded additional information on the multilayer crystallinity, whilst SAXS could better recognize fragments of a long-range periodicity (remnants of the original multilayer structure). Changes in the multilayer structure were initiated by successive annealing at 200 and 300 deg. C. Experimental data were complemented by numerical simulations performed using a combination of optical theory and the distorted wave Born approximation for SAXS or the kinematical Born approximation for XRD.

  2. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    International Nuclear Information System (INIS)

    Eliezer, D.

    1994-06-01

    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein's amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate

  3. Determination of line profiles on nano-structured surfaces using EUV and x-ray scattering

    Science.gov (United States)

    Soltwisch, Victor; Wernecke, Jan; Haase, Anton; Probst, Jürgen; Schoengen, Max; Krumrey, Michael; Scholze, Frank; Pomplun, Jan; Burger, Sven

    2014-09-01

    Non-imaging techniques like X-ray scattering are supposed to play an important role in the further development of CD metrology for the semiconductor industry. Grazing Incidence Small Angle X-ray Scattering (GISAXS) provides directly assessable information on structure roughness and long-range periodic perturbations. The disadvantage of the method is the large footprint of the X-ray beam on the sample due to the extremely shallow angle of incidence. This can be overcome by using wavelengths in the extreme ultraviolet (EUV) spectral range, EUV small angle scattering (EUVSAS), which allows for much steeper angles of incidence but preserves the range of momentum transfer that can be observed. Generally, the potentially higher momentum transfer at shorter wavelengths is counterbalanced by decreasing diffraction efficiency. This results in a practical limit of about 10 nm pitch for which it is possible to observe at least the +/- 1st diffraction orders with reasonable efficiency. At the Physikalisch-Technische Bundesanstalt (PTB), the available photon energy range extends from 50 eV up to 10 keV at two adjacent beamlines. PTB commissioned a new versatile Ellipso-Scatterometer which is capable of measuring 6" square substrates in a clean, hydrocarbon-free environment with full flexibility regarding the direction of the incident light polarization. The reconstruction of line profiles using a geometrical model with six free parameters, based on a finite element method (FEM) Maxwell solver and a particle swarm based least-squares optimization yielded consistent results for EUV-SAS and GISAXS. In this contribution we present scatterometry data for line gratings and consistent reconstruction results of the line geometry for EUV-SAS and GISAXS.

  4. The modular small-angle X-ray scattering data correction sequence.

    Science.gov (United States)

    Pauw, B R; Smith, A J; Snow, T; Terrill, N J; Thünemann, A F

    2017-12-01

    Data correction is probably the least favourite activity amongst users experimenting with small-angle X-ray scattering: if it is not done sufficiently well, this may become evident only during the data analysis stage, necessitating the repetition of the data corrections from scratch. A recommended comprehensive sequence of elementary data correction steps is presented here to alleviate the difficulties associated with data correction, both in the laboratory and at the synchrotron. When applied in the proposed order to the raw signals, the resulting absolute scattering cross section will provide a high degree of accuracy for a very wide range of samples, with its values accompanied by uncertainty estimates. The method can be applied without modification to any pinhole-collimated instruments with photon-counting direct-detection area detectors.

  5. Characteristics of X-ray photons in tilted incident laser-produced plasma

    International Nuclear Information System (INIS)

    Wang Ruirong; Chen Weimin; Xie Dongzhu

    2008-01-01

    Characteristics of X-ray and spout direction of heat plasma flow were studied on Shenguang-II laser facility. Using of pinhole X-ray camera, X-ray photons from the plasma of aluminum (Al) irradiated by 1.053 μm laser, was measured and analysed. It is observed that the spatial distribution of X-ray photons in Al plasma for tilted irradiation is symmetic at the center of the target. The spout direction of heat plasma flow is inferred by the distribution contour of X-ray photons. the experimental results show that the spout direction of heat plasma flow is normal to target plane and the output intensity of X-ray photons does not increase significantly for tilted laser incidence. Uniformity of laser energy deposition is improved by superposing tilted incident and laser perpendicularly incident laser. At the same time, it is found that the conversion efficiency from the tilted incident laser energy to X-ray photons of laser-produced plasma is decreased. (authors)

  6. Detectors for X-ray diffraction and scattering: a user's overview

    International Nuclear Information System (INIS)

    Bruegemann, Lutz; Gerndt, E.K.E.

    2004-01-01

    An overview of the applications of X-ray detectors to material research is given. Four experimental techniques and their specific detector requirements are described. Detector types are classified and critical parameters described in the framework of X-ray diffraction and X-ray scattering experiments. The article aims at building a bridge between detector end-users and detector developers. It gives limits of critical detector parameters, like angular resolution, energy resolution, dynamic range, and active area

  7. Magnetic nanoparticles studied by small angle X-ray scattering

    International Nuclear Information System (INIS)

    Oliveira, Cristiano Luis Pinto; Antonel, Soledad; Negri, Martin

    2011-01-01

    because they exhibit magnetic (ferromagnetic) and electrical properties in the same material. Then, the nickel nanoparticles could be used for the development of electroelastic materials. In this case, the electrical conductivity of the material can be strongly dependent on the applied magnetic field, for example the case of nickel metal nanoparticles dispersed in a polymer, resulting in an anisotropic material with combined piezomagnetic and piezoelectric properties. In order to investigate the structural characteristics of cobalt-iron oxides and nickel nanoparticles, powder samples of those magnetic materials were studied by Small-Angle X-Ray Scattering. As will be shown, from the analysis and modeling of the scattering data, structural information could be obtained, enabling a detailed description of the structural properties of the studied samples which could be directly correlated to the magnetic properties. (author)

  8. Magnetic nanoparticles studied by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiano Luis Pinto [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Grupo de Fluidos Complexos; Antonel, Soledad; Negri, Martin [Universidad de Buenos Aires (UBA) (Argentina). Facultad de Ciencias Exactas y Naturales. Dept. de Quimica Inorganica, Analitica y Quimica Fisica

    2011-07-01

    nanoparticles are very interesting because they exhibit magnetic (ferromagnetic) and electrical properties in the same material. Then, the nickel nanoparticles could be used for the development of electroelastic materials. In this case, the electrical conductivity of the material can be strongly dependent on the applied magnetic field, for example the case of nickel metal nanoparticles dispersed in a polymer, resulting in an anisotropic material with combined piezomagnetic and piezoelectric properties. In order to investigate the structural characteristics of cobalt-iron oxides and nickel nanoparticles, powder samples of those magnetic materials were studied by Small-Angle X-Ray Scattering. As will be shown, from the analysis and modeling of the scattering data, structural information could be obtained, enabling a detailed description of the structural properties of the studied samples which could be directly correlated to the magnetic properties. (author)

  9. Simulation of photon and charge transport in X-ray imaging semiconductor sensors

    CERN Document Server

    Nilsson, H E; Hjelm, M; Bertilsson, K

    2002-01-01

    A fully stochastic model for the imaging properties of X-ray silicon pixel detectors is presented. Both integrating and photon counting configurations have been considered, as well as scintillator-coated structures. The model is based on three levels of Monte Carlo simulations; photon transport and absorption using MCNP, full band Monte Carlo simulation of charge transport and system level Monte Carlo simulation of the imaging performance of the detector system. In the case of scintillator-coated detectors, the light scattering in the detector layers has been simulated using a Monte Carlo method. The image resolution was found to be much lower in scintillator-coated systems due to large light spread in thick scintillator layers. A comparison between integrating and photon counting readout methods shows that the image resolution can be slightly enhanced using a photon-counting readout. In addition, the proposed model has been used to study charge-sharing effects on the energy resolution in photon counting dete...

  10. Leakage and scattered radiation from hand-held dental x-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2007-06-15

    To compare the leakage and scattered radiation from hand-held dental X-ray unit with radiation from fixed dental X-ray unit. For evaluation we used one hand-held dental X-ray unit and Oramatic 558 (Trophy Radiologie, France), a fixed dental X-ray unit. Doses were measured with Unfors Multi-O-Meter 512L at the right and left hand levels of X-ray tube head part for the scattered and leakage radiation when human skull DXTTR {iota}{iota}{iota} was exposed to both dental X-ray units. And for the leakage radiation only, doses were measured at the immediately right, left, superior and posterior side of the tube head part when air was exposed. Exposure parameters of hand-held dental X-ray unit were 70 kVp, 3 mA , 0.1 second, and of fixed X-ray unit 70 kVp, 8 mA, 0.45 second. The mean dose at the hand level when human skull DXTTR {iota}{iota}{iota} was exposed with portable X-ray unit 6.39 {mu}Gy, and the mean dose with fixed X-ray unit 3.03 {mu}Gy (p<0.001). The mean dose at the immediate side of the tube head part when air was exposed with portable X-ray unit was 2.97 {mu}Gy and with fixed X-ray unit the mean dose was 0.68 {mu}Gy (p<0.01). The leakage and scattered radiation from hand-held dental radiography was greater than from fixed dental radiography.

  11. Leakage and scattered radiation from hand-held dental x-ray unit

    International Nuclear Information System (INIS)

    Kim, Eun Kyung

    2007-01-01

    To compare the leakage and scattered radiation from hand-held dental X-ray unit with radiation from fixed dental X-ray unit. For evaluation we used one hand-held dental X-ray unit and Oramatic 558 (Trophy Radiologie, France), a fixed dental X-ray unit. Doses were measured with Unfors Multi-O-Meter 512L at the right and left hand levels of X-ray tube head part for the scattered and leakage radiation when human skull DXTTR ΙΙΙ was exposed to both dental X-ray units. And for the leakage radiation only, doses were measured at the immediately right, left, superior and posterior side of the tube head part when air was exposed. Exposure parameters of hand-held dental X-ray unit were 70 kVp, 3 mA , 0.1 second, and of fixed X-ray unit 70 kVp, 8 mA, 0.45 second. The mean dose at the hand level when human skull DXTTR ΙΙΙ was exposed with portable X-ray unit 6.39 μGy, and the mean dose with fixed X-ray unit 3.03 μGy (p<0.001). The mean dose at the immediate side of the tube head part when air was exposed with portable X-ray unit was 2.97 μGy and with fixed X-ray unit the mean dose was 0.68 μGy (p<0.01). The leakage and scattered radiation from hand-held dental radiography was greater than from fixed dental radiography

  12. Status of Kharkov X-ray Generator based on Compton Scattering NESTOR

    NARCIS (Netherlands)

    Zelinsky, A.; Androsov, V.P.; Bulyak, E.V.; Drebot, I.; Gladkikh, P.I.; Grevtsev, V.; Botman, J.I.M.; Ivashchenko, V.; Karnaukhov, I.M.; Lapshin, V.I.; Markov, V.; Mocheshnikov, N.; Mytsykov, A.; Peev, F.A.; Rezaev, A.; Shcherbakov, A.; Skomorkohov, V.; Skyrda, V.; Telegin, Y.; Trotsenko, V.; Tatchyn, R.; Lebedev, B.; Agafonov, A.V.

    2004-01-01

    Nowadays the sources of the X-rays based on a storage ring with low beam energy and Compton scattering of intense laser beam are under development in several laboratories. In the paper the state-of-art in development and construction of cooperative project of a Kharkov advanced X-ray source NESTOR

  13. Measuring scatter radiation in diagnostic x rays for radiation protection purposes

    International Nuclear Information System (INIS)

    Panayiotakis, George; Vlachos, Ioannis; Delis, Harry; Tsantilas, Xenophon; Kalyvas, Nektarios; Kandarakis, Ioannis

    2015-01-01

    During the last decades, radiation protection and dosimetry in medical X-ray imaging practice has been extensively studied. The purpose of this study was to measure secondary radiation in a conventional radiographic room, in terms of ambient dose rate equivalent H*(10) and its dependence on the radiographic exposure parameters such as X-ray tube voltage, tube current and distance. With some exceptions, the results indicated that the scattered radiation was uniform in the space around the water cylindrical phantom. The results also showed that the tube voltage and filtration affect the dose rate due to the scatter radiation. Finally, the scattered X-ray energy distribution was experimentally calculated. (authors)

  14. First observation of multi-pulse X-ray train via multi-collision laser Compton scattering

    International Nuclear Information System (INIS)

    Kuroda, R.; Toyokawa, H.; Yasumoto, M.; Ikeura-Sekiguchi, H.; Koike, M.; Yamada, K.; Yanagida, T.; Nakajyo, T.; Sakai, F.

    2009-01-01

    A compact hard X-ray source via laser Compton scattering (LCS) has been developed for biological and medical applications at the National Institute of Advanced Industrial Science and Technology (AIST) in Japan. The multi-collision LCS has been investigated in order to enhance the X-ray yields. The first observation of multi-pulse X-ray train with 6 pulses via the multi-collision LCS has been successfully demonstrated between the multi-bunch electron train with 6 bunches and the multi-pulse Ti:Sa laser train with 6 pulses. The 32 MeV electron train was generated from a Cs 2 Te photocathode rf gun with a multi-pulse UV laser and the S-band linac. The Ti:Sa laser train was obtained with the chirp pulse amplification (CPA) including the modified regenerative amplifier. The X-ray train with 6 pulses with 12.6 ns spacing was observed with the micro-channel plate (MCP). The maximum energy of the X-ray is analytically estimated to be about 24 keV and the total number of generated photons was calculated to be about 1.8x10 6 photons/train.

  15. Scattered fractions of dose from 18 and 25 MV X-ray radiotherapy linear accelerators

    International Nuclear Information System (INIS)

    Shobe, J.; Rodgers, J.E.; Taylor, P.L.; Jackson, J.; Popescu, G.

    1996-01-01

    Over the years, measurements have been made at a few energies to estimate the scattered fraction of dose from the patient in medical radiotherapy operations. This information has been a useful aid in the determination of shielding requirements for these facilities. With these measurements, known characteriztics of photons, and various other known parameters, Monte Carlo codes are being used to calculate the scattered fractions and hence the shielding requirements for the photons of other energies commonly used in radiotherapeutic applications. The National Institute of Standards and Technology (NIST) acquired a Sagittaire medical linear accelerator (linac) which was previously located at the Yale-New Haven Hospital. This linac provides an X-ray beam of 25 MV photons and electron beams with energies up to 32 MeV. The housing on the gantry was permanently removed from the accelerator during installation. A Varian Clinac 1800 linear accelerator was used to produce the 18 MV photons at the Frederick Memorial Hospital Regional Cancer Therapy Center in Frederick, MD. This paper represents a study of the photon dose scattered from a patient in typical radiation treatment situations as it relates to the dose delivered at the isocenter in water. The results of these measurements will be compared to Monte Carlo calculations. Photon spectral measurements were not made at this time. Neutron spectral measurements were made on this Sagittaire machine in its previous location and that work was not repeated here, although a brief study of the neutron component of the 18 and 25 MV linacs was performed utilizing thermoluminescent dosimetry (TLD) to determine the isotropy of the neutron dose. (author)

  16. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, G; Cibik, L; Mueller, P; Krumrey, M [Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin (Germany); Haas, S; Hoell, A, E-mail: gudrun.gleber@ptb.d [Helmholtz-Zentrum-Berlin fuer Materialien und Energie (HZB), Albert-Einstein-Strasse 15, 12489 Berlin (Germany)

    2010-10-01

    The size and size distribution of PMMA nanoparticles has been investigated with SAXS (small angle X-ray scattering) using monochromatized synchrotron radiation. The uncertainty has contributions from the wavelength or photon energy of the radiation, the scattering angle and the fit procedure for the obtained scattering curves. The wavelength can be traced back to the lattice constant of silicon, and the scattering angle is traceable via geometric measurements of the detector pixel size and the distance between the sample and the detector. SAXS measurements and data evaluations have been performed at different distances and photon energies for two PMMA nanoparticle suspensions with low polydispersity and nominal diameters of 108 nm and 192 nm, respectively, as well as for a mixture of both. The relative variation of the diameters obtained for different experimental conditions was below {+-} 0.3 %. The determined number-weighted mean diameters of (109.0 {+-} 0.7) nm and (188.0 {+-} 1.3) nm, respectively, are close to the nominal values.

  17. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS)

    Science.gov (United States)

    Gleber, G.; Cibik, L.; Haas, S.; Hoell, A.; Müller, P.; Krumrey, M.

    2010-10-01

    The size and size distribution of PMMA nanoparticles has been investigated with SAXS (small angle X-ray scattering) using monochromatized synchrotron radiation. The uncertainty has contributions from the wavelength or photon energy of the radiation, the scattering angle and the fit procedure for the obtained scattering curves. The wavelength can be traced back to the lattice constant of silicon, and the scattering angle is traceable via geometric measurements of the detector pixel size and the distance between the sample and the detector. SAXS measurements and data evaluations have been performed at different distances and photon energies for two PMMA nanoparticle suspensions with low polydispersity and nominal diameters of 108 nm and 192 nm, respectively, as well as for a mixture of both. The relative variation of the diameters obtained for different experimental conditions was below ± 0.3 %. The determined number-weighted mean diameters of (109.0 ± 0.7) nm and (188.0 ± 1.3) nm, respectively, are close to the nominal values.

  18. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS)

    International Nuclear Information System (INIS)

    Gleber, G; Cibik, L; Mueller, P; Krumrey, M; Haas, S; Hoell, A

    2010-01-01

    The size and size distribution of PMMA nanoparticles has been investigated with SAXS (small angle X-ray scattering) using monochromatized synchrotron radiation. The uncertainty has contributions from the wavelength or photon energy of the radiation, the scattering angle and the fit procedure for the obtained scattering curves. The wavelength can be traced back to the lattice constant of silicon, and the scattering angle is traceable via geometric measurements of the detector pixel size and the distance between the sample and the detector. SAXS measurements and data evaluations have been performed at different distances and photon energies for two PMMA nanoparticle suspensions with low polydispersity and nominal diameters of 108 nm and 192 nm, respectively, as well as for a mixture of both. The relative variation of the diameters obtained for different experimental conditions was below ± 0.3 %. The determined number-weighted mean diameters of (109.0 ± 0.7) nm and (188.0 ± 1.3) nm, respectively, are close to the nominal values.

  19. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    International Nuclear Information System (INIS)

    Chin, A.H.; Schoenlein, R.W.; Glover, T.E.

    1997-01-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale

  20. Study on the influences of X Ray Scattering on radioscopic inspection

    Energy Technology Data Exchange (ETDEWEB)

    Wozniak, M.; Torrent, J.; Bancelin, A. [SNECMA NDE Dept. Laboratory, France, Evry Corbeil, 91 - Evry (France)

    2007-07-01

    This study issued from European project 'Verdict' (Virtual Evaluation and Robust Detection for engine Components non destructive Testing), aimed at developing and evaluating X Ray Non Destructive Method simulation. An qualitative appreciation and quantification for X Ray scattering for modelling (SINDBAD software) was identified. The effect of such radiation on radiogram results in a disturbing blur for interpretation of indications. The method and the results described are innovative in the analysis of X Ray scattering because for aeronautic field, the configurations used with this energy range are breakthrough. The approach followed consists in an experimental and practical method for evaluating scattered radiation on final image issued from the inspection. Experimental tests results confirmed that the influence of scattering radiation are linked to density variation, geometry of parts in the axis of direct radiation and spatial area. This study performed in industrial configurations contributed to improve X Ray scattering understanding. (authors)

  1. A sample cell to study hydrate formation with x-ray scattering

    International Nuclear Information System (INIS)

    Conrad, Heiko; Lehmkuehler, Felix; Sternemann, Christian; Feroughi, Omid; Tolan, Metin; Simonelli, Laura; Huotari, Simo

    2009-01-01

    We present a new sample cell for measuring nonresonant inelastic x-ray scattering spectra of a tetrahydrofuran (THF)-water liquid mixture and THF hydrate. The hydrate is formed inside the cell after nucleation seeds have been offered by a special magnetic stirring mechanism. Hydrate formation was verified by wide angle x-ray scattering and nonresonant x-ray Raman scattering spectra at the oxygen K-edge. A broad range of scattering angles can be studied with this cell which is necessary for momentum transfer dependent inelastic x-ray scattering. This cell is ideal to examine other liquid hydrate formers or other liquid samples, which have to be mixed in situ during the measurements.

  2. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    International Nuclear Information System (INIS)

    Revesz, Peter; Temnykh, Alexander B.; Pauling, Alan K.

    2011-01-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  3. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, Peter, E-mail: pr20@cornell.edu [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States); Temnykh, Alexander B. [Cornell University, Laboratory for Elem-Particle Physics, Ithaca 14850, NY (United States); Pauling, Alan K. [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States)

    2011-09-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  4. Investigations of time resolved x-ray wide-angle scattering and x-ray small-angle scattering at DESY

    International Nuclear Information System (INIS)

    Zachmann, H.G.; Gehrke, R.; Prieske, W.; Riekel, C.

    1985-01-01

    Instrumentation is described for the simultaneous wide-angle and small-angle x-ray scattering. The method was applied to the study of the isothermal crystallization of polyethylene terephthalates. In agreement with the classical theories of crystallization, the data showed that the density difference between the crystals and the non-crystalline regions does not change with time. The mechanisms of melting, recrystallization, and crystal thickening were investigated by small-angle x-ray scattering with stepwise changes and continuous changes of temperature using polyethylene terephthalate

  5. Creation of X-Ray Transparency of Matter by Stimulated Elastic Forward Scattering.

    Science.gov (United States)

    Stöhr, J; Scherz, A

    2015-09-04

    X-ray absorption by matter has long been described by the famous Beer-Lambert law. Here, we show how this fundamental law needs to be modified for high-intensity coherent x-ray pulses, now available at x-ray free electron lasers, due to the onset of stimulated elastic forward scattering. We present an analytical expression for the modified polarization-dependent Beer-Lambert law for the case of resonant core-to-valence electronic transitions and incident transform limited x-ray pulses. Upon transmission through a solid, the resonant absorption and dichroic contrasts are found to vanish with increasing x-ray intensity, with the stimulation threshold lowered by orders of magnitude through a resonant superradiantlike effect. Our results have broad implications for the study of matter with x-ray lasers.

  6. An MCNP-based model of a medical linear accelerator x-ray photon beam.

    Science.gov (United States)

    Ajaj, F A; Ghassal, N M

    2003-09-01

    The major components in the x-ray photon beam path of the treatment head of the VARIAN Clinac 2300 EX medical linear accelerator were modeled and simulated using the Monte Carlo N-Particle radiation transport computer code (MCNP). Simulated components include x-ray target, primary conical collimator, x-ray beam flattening filter and secondary collimators. X-ray photon energy spectra and angular distributions were calculated using the model. The x-ray beam emerging from the secondary collimators were scored by considering the total x-ray spectra from the target as the source of x-rays at the target position. The depth dose distribution and dose profiles at different depths and field sizes have been calculated at a nominal operating potential of 6 MV and found to be within acceptable limits. It is concluded that accurate specification of the component dimensions, composition and nominal accelerating potential gives a good assessment of the x-ray energy spectra.

  7. Grazing Incidence X-ray Scattering and Diffraction

    Indian Academy of Sciences (India)

    IAS Admin

    several materials as a function of angle of incidence, αi with X-rays of wavelength ..... are several advantages of using this formulation for the description of surface ..... print of the surface (as shown at the botton of Figure. 5). A Soller collimator ...

  8. X-ray scattering studies of lanthanides magnetism

    DEFF Research Database (Denmark)

    McMorrow, D.; Bohr, Jakob; Gibbs, D.

    1999-01-01

    Interest in the applications of X-ray synchrotron radiation has grown rapidly during the last decade. At the present time, intense, ultra-bright synchrotron radiation is available on a routine basis from third-generation sources located in Europe (ESRF), North America (APS) and Japan (Spring8). T...

  9. Electron Dynamics in the Core-Excited CS 2 Molecule Revealed through Resonant Inelastic X-Ray Scattering Spectroscopy

    OpenAIRE

    Marchenko , T; Carniato , S; Journel , L; Guillemin , R; Kawerk , E; Žitnik , M; Kavčič , M; Bučar , K; Bohinc , R; Petric , M; Vaz Da Cruz , V; Gel 'mukhanov , F; Simon , Marielle

    2015-01-01

    International audience; We present an experimental and theoretical study of resonant inelastic x-ray scattering (RIXS) in the carbon disulphide CS 2 molecule near the sulfur K-absorption edge. We observe a strong evolution of the RIXS spectral profile with the excitation energy tuned below the lowest unoccupied molecular orbital (LUMO) absorption resonance. The reason for this is twofold. Reducing the photon energy in the vicinity of the LUMO absorption resonance leads to a relative suppressi...

  10. An upgrade beamline for combined wide, small and ultra small-angle x-ray scattering at the ESRF

    Energy Technology Data Exchange (ETDEWEB)

    Van Vaerenbergh, Pierre; Léonardon, Joachim; Sztucki, Michael; Boesecke, Peter; Gorini, Jacques; Claustre, Laurent; Sever, Franc; Morse, John; Narayanan, Theyencheri [ESRF - The European Synchrotron, F-38043 Grenoble (France)

    2016-07-27

    This contribution presents the main design features of the upgraded beamline ID02 (TRUSAXS). The beamline combines different small-angle X-ray scattering techniques in one unique instrument. The key component of this instrument is an evacuated (5×10{sup −3} mbar) stainless steel detector tube of length 34 m and diameter 2 m. Three different detectors (Rayonix MX170, Pilatus 300 K and FReLoN 4M) are housed inside a motorized wagon which travels along a rail system with very low parasitic lateral movements (± 0.3 mm). This system allows automatically changing the sample-to-detector distance from about 1 m to 31 m and selecting the desired detector. In addition, a wide angle detector (Rayonix LX170) is installed just above the entrance cone of the tube for optional wide-angle X-ray scattering measurements. The beamstop system enables monitoring of the X-ray beam intensity in addition to blocking the primary beam, and automated insertion of selected masks behind the primary beamstop. The focusing optics and collimation system permit to cover a scattering vector (q) range of 0.002 nm{sup −1} ≤ q ≤ 50 nm{sup −1} with one unique setting using 0.1 nm X-ray wavelength for moderate flux (5×10{sup 12} photons/sec). However, for higher flux (6x10{sup 13} photons/sec) or higher resolution (minimum q < 0.001 nm{sup −1}), focusing and collimation, respectively need to be varied. For a sample-to-detector distance of 31 m and 0.1 nm wavelength, two dimensional ultra small-angle X-ray scattering patterns can be recorded down to q≈0.001 nm{sup −1} with far superior quality as compared to one dimensional profiles obtained with a Bonse-Hart instrument.

  11. Small angle X-ray scattering experiments with three-dimensional imaging gas detectors

    International Nuclear Information System (INIS)

    La Monaca, A.; Iannuzzi, M.; Messi, R.

    1985-01-01

    Measurements of small angle X-ray scattering of lupolen - R, dry collagen and dry cornea are presented. The experiments have been performed with synchrotron radiation and a new three-dimensional imaging drif-chamber gas detector

  12. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Braicovich, L., E-mail: lucio.braicovich@polimi.it; Minola, M.; Dellea, G.; Ghiringhelli, G. [CNR-SPIN and Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano I-20133 (Italy); Le Tacon, M. [Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B. [European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble F-38043 (France); Supruangnet, R. [Synchrotron Light Research Institute, Nakhon Ratchasima (Thailand)

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  13. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities

    International Nuclear Information System (INIS)

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-01-01

    Purpose: A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Methods: Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. Results: An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenth value layer are calculated from the broad beam transmission for these tube potentials. Conclusions: The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.

  14. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities.

    Science.gov (United States)

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-10-01

    A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenth value layer are calculated from the broad beam transmission for these tube potentials. The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.

  15. Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?

    OpenAIRE

    Poludniowski, G; Evans, PM; Webb, S

    2009-01-01

    Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'inte...

  16. X-ray scattering studies of non-equilibrium ordering processes

    International Nuclear Information System (INIS)

    Nagler, S.E.

    1990-01-01

    We report on the progress of our project entitled ''X-ray Scattering of Non-Equilibrium Ordering Processes.'' During the past year we have made the first synchrotron measurements of ordering in Cu 3 Au have revealed the presence of an intermediate, non-equilibrium ordered state. Preliminary work involving x-ray magnetic scattering has been carried out. Work is continuing in these areas as well as on related problems. 5 refs

  17. X-ray diffraction analysis device with electronic photon counter

    International Nuclear Information System (INIS)

    Fillit, R.Y.; Bruyas, H.; Patay, F.

    1985-01-01

    The means provided to control the movements around the three axes are composed of step-by-step motors related to exits control logic which is connected to the calculation and monitored by a clock. The clock monitors also the calculator so as that the calculator controls, together with the programmable clock and control logic, the coordination of the whole rotation movements, along the three rotation axes, their velocity, their duration and the acquisition of the measured intensities of the diffracted X-ray beam [fr

  18. LCLS in—photon out: fluorescence measurement of neon using soft x-rays

    Science.gov (United States)

    Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; Beerwerth, Randolf; Holmes, Michael; Aldrich, Jeff; Lin, Ming-Fu; Minitti, Michael; Osipov, Timur; Schlotter, William; Cederbaum, Lorenz S.; Fritzsche, Stephan; Berrah, Nora

    2018-02-01

    We measured the fluorescence photon yield of neon upon soft x-ray ionization (∼1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.

  19. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Round, A R [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Wilkinson, S J [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Hall, C J [Daresbury Laboratories, Warrington, WA4 4AD (United Kingdom); Rogers, K D [Department of Materials and Medical Sciences, Cranfield University, Swindon, SN6 8LA (United Kingdom); Glatter, O [Department of Chemistry, University of Graz (Austria); Wess, T [School of Optometry and Vision Sciences, Cardiff University, Cardiff CF10 3NB, Wales (United Kingdom); Ellis, I O [Nottingham City Hospital, Nottingham (United Kingdom)

    2005-09-07

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique.

  20. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    International Nuclear Information System (INIS)

    Round, A R; Wilkinson, S J; Hall, C J; Rogers, K D; Glatter, O; Wess, T; Ellis, I O

    2005-01-01

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique

  1. A preliminary study of breast cancer diagnosis using laboratory based small angle x-ray scattering

    Science.gov (United States)

    Round, A. R.; Wilkinson, S. J.; Hall, C. J.; Rogers, K. D.; Glatter, O.; Wess, T.; Ellis, I. O.

    2005-09-01

    Breast tissue collected from tumour samples and normal tissue from bi-lateral mastectomy procedures were examined using small angle x-ray scattering. Previous work has indicated that breast tissue disease diagnosis could be performed using small angle x-ray scattering (SAXS) from a synchrotron radiation source. The technique would be more useful to health services if it could be made to work using a conventional x-ray source. Consistent and reliable differences in x-ray scatter distributions were observed between samples from normal and tumour tissue samples using the laboratory based 'SAXSess' system. Albeit from a small number of samples, a sensitivity of 100% was obtained. This result encourages us to pursue the implementation of SAXS as a laboratory based diagnosis technique.

  2. Small-angle X-ray scattering studies of thermally-induced globular protein gels

    International Nuclear Information System (INIS)

    Clark, A.H.; Tuffnell, C.D.

    1980-01-01

    Small-angle X-ray scattering has been applied to gels formed by heating globular proteins, in aqueous solution, above their unfolding temperatures. A number of BSA gels, previously characterised by electron microscopy, have been studied, and by setting up theoretical models for the scattering process, the X-ray data have been shown to be consistent with the microscope conclusions regarding network structure. It is concluded that the networks form by a linearly-directed aggregation of unfolded, disc-like, protein molecules, three-dimensional geometry being achieved by occasional branching, and/or cross-linking. Long-range inhomogeneities in network structure, easily observed by electron microscopy, and correlated with variations in pH or ionic strength, have an effect on X-ray scattering, and hence the X-ray method is sensitive not only to different network strand thicknesses, but to different degrees of uniformity as well. (author)

  3. Influence of X-ray scatter radiation on image quality in Digital Breast Tomosynthesis (DBT)

    International Nuclear Information System (INIS)

    Rodrigues, M.J.; Di Maria, S.; Baptista, M.; Belchior, A.; Afonso, J.; Venâncio, J.; Vaz, P.

    2017-01-01

    Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging technique that was developed to solve the principal limitation of mammography, namely the overlapping tissue effect. This issue in standard mammography (SM) leads to two main problems: low sensitivity (difficulty to detect lesions) and low specificity (non-negligible percentage of false positives). Although DBT is now being introduced in clinical practice the features of this technique have not yet been fully and accurately assessed. Consequently, optimization studies in terms of choosing the most suitable parameters which maximize image quality according to the known limits of breast dosimetry are currently performing. In DBT, scatter radiation can lead to a loss of contrast and to an increase of image noise by reducing the signal-to-difference-noise ratio (SDNR) of a lesion. Moreover the use of an anti-scatter grid is a concern due to the low exposure of the photon flux available per projection. For this reason the main aim of this study was to analyze the influence of the scatter radiation on image quality and the dose delivered to the breast. In particular a detailed analysis of the scatter radiation on the optimal energy that maximizes the SDNR was performed for different monochromatic energies and voltages. To reach this objective the PenEasy Monte Carlo (MC) simulation tool imbedded in the general-purpose main program PENELOPE, was used. After a successful validation of the MC model with measurements, 2D projection images of primary, coherent and incoherent photons were obtained. For that, a homogeneous breast phantom (2, 4, 6, 8 cm) with 25%, 50% and 75% glandular compositions was used, including a 5 mm thick tumor. The images were generated for each monochromatic X-ray energies in the range from 16 keV to 32 keV. For each angular projection considered (25 angular projections covering an arc of 50°) the scatter-to-primary ratio (SPR), the mean glandular dose (MGD) and the signal

  4. Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2018-04-01

    X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to

  5. Incoherent-scatter computed tomography with monochromatic synchrotron x ray: feasibility of multi-CT imaging system for simultaneous measurement-of fluorescent and incoherent scatter x rays

    Science.gov (United States)

    Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.

    1997-10-01

    We describe a new system of incoherent scatter computed tomography (ISCT) using monochromatic synchrotron X rays, and we discuss its potential to be used in in vivo imaging for medical use. The system operates on the basis of computed tomography (CT) of the first generation. The reconstruction method for ISCT uses the least squares method with singular value decomposition. The research was carried out at the BLNE-5A bending magnet beam line of the Tristan Accumulation Ring in KEK, Japan. An acrylic cylindrical phantom of 20-mm diameter containing a cross-shaped channel was imaged. The channel was filled with a diluted iodine solution with a concentration of 200 /spl mu/gI/ml. Spectra obtained with the system's high purity germanium (HPGe) detector separated the incoherent X-ray line from the other notable peaks, i.e., the iK/sub /spl alpha// and K/sub /spl beta/1/ X-ray fluorescent lines and the coherent scattering peak. CT images were reconstructed from projections generated by integrating the counts In the energy window centering around the incoherent scattering peak and whose width was approximately 2 keV. The reconstruction routine employed an X-ray attenuation correction algorithm. The resulting image showed more homogeneity than one without the attenuation correction.

  6. A filter based analyzer for studies of X-ray Raman scattering

    CERN Document Server

    Seidler, G T

    2001-01-01

    Non-resonant X-ray Raman scattering (XRS) with hard X-rays holds the potential for measuring local structure and local electronic properties around low-Z atoms in environments where traditional soft X-ray techniques are inapplicable. However, the small cross-section for XRS requires that experiments must simultaneously achieve high detection efficiency, large collection solid angles, and good energy resolution. We report here that a simple X-ray analyzer consisting of an absorber and a point-focusing spatial filter can be used to study some X-ray Raman near-edge features. This apparatus has greater than 10% detection efficiency, has an energy resolution of 8 eV, and can be readily extended to collection angles of more than 1 sr. We present preliminary measurements of the XRS from the nitrogen 1 s shell in pyrolitic boron nitride.

  7. Position sensitive detector for X-ray photons

    International Nuclear Information System (INIS)

    Barbosa, A.F.

    1988-01-01

    This work reports the theoretical basis and the details of the construction process, characterization and application of gas X-ray position sensitive detectors. The unidimensional detector consists of a gas camera (argon and CH 4 ), a metallic anode, a cathode and a delay line. Details of the construction process are given in order to allow the reproduction of the detector. It has been characterized by measuring its spatial resolution, homogeneity and linerity. The built linear detector has been used to obtain diffraction diagrams from polycrystalline silicon, C 23 H 48 paraffin and glassy carbon. These diagrams have been compared with those obtained under equivalent conditions with a conventional proportional detector by the step scanning method. It has been shown that the detector provides diffraction diagrams of equivalent quality to those obtained by the step scanning method, in appreciably lower time intervals. (author) [pt

  8. NIS tunnel junction as an x-ray photon sensor

    Science.gov (United States)

    Azgui, Fatma; Mears, Carl A.; Labov, Simon E.; Frank, Matthias A.; Sadoulet, Bernard; Brunet, E.; Hiller, Lawrence J.; Lindeman, Mark A.; Netel, Harrie

    1995-09-01

    This work presents the first results of our development of normal-insulating-superconducting tunnel junctions used as energy dispersive detectors for low energy particles. The device described here is a Ag/Al(subscript 2)O(subscript 3)/Al tunnel junction of area 1.5 multiplied by 10(superscript 4) micrometer squared with thicknesses of 200 nm for the normal Ag strip and 100 nm for the superconducting Al film. Two different high-speed SQUID systems manufactured by quantum magnetics and HYPRES, respectively, were used for the readout of this device. At 80 mK bath temperature we obtained an energy resolution DeltaE(subscript FWHM) equals 250 eV for 5.89 keV x rays absorbed directly in the normal metal. This energy resolution appears to be limited in large part by the observed strong position dependence of the device response.

  9. Interference between magnetism and surface roughness in coherent soft X-ray scattering

    International Nuclear Information System (INIS)

    Rahmim, A.; Tixier, S.; Tiedje, T.; Eisebitt, S.; Lorgen, M.; Scherer, R.; Eberhardt, W.; Luning, J.; Scholl, A.

    2002-01-01

    In coherent soft x-ray scattering from magnetically ordered surfaces there are contributions to the scattering from the magnetic domains, from the surface roughness, and from the diffraction associated with the pinhole aperture used as a coherence filter. In the present work, we explore the interplay between these contributions by analyzing speckle patterns in diffusely scattered x rays from the surface of magnetic thin films. Magnetic contrast from the surface of anti ferro magnetically ordered LaFeO3 films is caused by magnetic linear dichroism in resonant x-ray scattering. The samples studied possess two types of domains with their magnetic orientations perpendicular to each other. By tuning the x-ray energy from one of the two Fe-L3 resonant absorption peaks to the other, the relative amplitudes of the x-ray scattering from the two domains is inverted which results in speckle pattern changes. A theoretical expression is derived for the intensity correlation between the speckle patterns with the magnetic contrast inverted and not inverted. The model is found to be in good agreement with the x-ray-scattering observations and independent measurements of the surface roughness. An analytical expression for the correlation function gives an explicit relation between the change in the speckle pattern and the roughness, and magnetic and aperture scattering. Changes in the speckle pattern are shown to arise from beating of magnetic scattering with the roughness scattering and diffraction from the aperture. The largest effect is found when the surface roughness scatter is comparable in intensity to the magnetic scatter

  10. Selective photon counter for digital x-ray mammography tomosynthesis

    Science.gov (United States)

    Goldan, Amir H.; Karim, Karim S.; Rowlands, J. A.

    2006-03-01

    Photon counting is an emerging detection technique that is promising for mammography tomosynthesis imagers. In photon counting systems, the value of each image pixel is equal to the number of photons that interact with the detector. In this research, we introduce the design and implementation of a low noise, novel selective photon counting pixel for digital mammography tomosynthesis in crystalline silicon CMOS (complementary metal oxide semiconductor) 0.18 micron technology. The design comprises of a low noise charge amplifier (CA), two low offset voltage comparators, a decision-making unit (DMU), a mode selector, and a pseudo-random counter. Theoretical calculations and simulation results of linearity, gain, and noise of the photon counting pixel are presented.

  11. Trial fabrication of a secondary x-ray spectrometer with high energy resolution for use in x-ray resonant inelastic scattering experiments

    International Nuclear Information System (INIS)

    Iwazumi, Toshiaki

    2004-01-01

    An instrument was fabricated for use of x-ray resonant inelastic scattering with high-energy resolution in expectation of finding new physical phenomena in strongly correlated electron systems. In the scattering x-ray spectrometer, an asymmetric Johanson crystal spectrometer, which was deployed in an asymmetric Rowland configuration, was designed, fabricated and assessed. The performance expected theoretically for the Johanson spectrometer was recognized from experiments by use of synchrotron radiation. (Y. Kazumata)

  12. Use of x-ray scattering in absorption corrections for x-ray fluorescence analysis of aerosol loaded filters

    International Nuclear Information System (INIS)

    Nielson, K.K.; Garcia, S.R.

    1976-09-01

    Two methods are described for computing multielement x-ray absorption corrections for aerosol samples collected in IPC-1478 and Whatman 41 filters. The first relies on scatter peak intensities and scattering cross sections to estimate the mass of light elements (Z less than 14) in the sample. This mass is used with the measured heavy element (Z greater than or equal to 14) masses to iteratively compute sample absorption corrections. The second method utilizes a linear function of ln(μ) vs ln(E) determined from the scatter peak ratios and estimates sample mass from the scatter peak intensities. Both methods assume a homogeneous depth distribution of aerosol in a fraction of the front of the filters, and the assumption is evaluated with respect to an exponential aerosol depth distribution. Penetration depths for various real, synthethic and liquid aerosols were measured. Aerosol penetration appeared constant over a 1.1 mg/cm 2 range of sample loading for IPC filters, while absorption corrections for Si and S varied by a factor of two over the same loading range. Corrections computed by the two methods were compared with measured absorption corrections and with atomic absorption analyses of the same samples

  13. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies

    International Nuclear Information System (INIS)

    Islam, Zahirul; Lang, Jonathan C.; Ruff, Jacob P. C.; Ross, Kathryn A.; Gaulin, Bruce D.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Qu Zhe

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (∼1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  14. Structural analysis of polymer thin films using GISAXS in the tender X-ray region: Concept and design of GISAXS experiments using the tender X-ray energy at BL-15A2 at the Photon Factory

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, H., E-mail: takagih@post.kek.jp; Igarashi, N.; Mori, T.; Saijo, S.; Nagatani, Y.; Shimizu, N. [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Ohta, H. [Mitsubishi Electric System & Service Co., Ltd, Accelerator Engineering Center, 2-8- 8 Umezono, Tsukuba, Ibaraki 305-0045 (Japan); Yamamoto, K. [Graduate School of Engineering, Department of Materials Science & Technology, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2016-10-14

    If small angle X-ray scattering (SAXS) utilizing the soft X-ray region is available, advanced and unique experiments, which differ from traditional SAXS methods, can be realized. For example, grazing-incidence small angle X-ray scattering (GISAXS) using hard X-ray is a powerful tool for understanding the nanostructure in both vertical and lateral directions of thin films, while GISAXS utilizing the tender X-ray region (SX-GISAXS) enables depth-resolved analysis as well as a standard GISAXS analysis in thin films. Thus, at BL-15A2 at the Photon Factory, a dedicated diffractometer for SX-GISAXS (above 2.1 keV) was constructed. This diffractometer is composed of four vacuum chambers and can be converted into the vacuum state from the sample chamber in front of the detector surface. Diffractions are clearly observed until 12th peak when measuring collagen by SAXS with an X-ray energy of 2.40 keV and a camera length of 825 mm. Additionally, we conducted the model experiment using SX-GISAXS with an X-ray energy of 2.40 keV to confirm that a poly(methyl methacrylate)-poly(n-butyl acrylate) block copolymer thin film has a microphase-separated structure in the thin film, which is composed of lamellae aligned both parallel and perpendicular to the substrate surface. Similarly, in a polystyrene-poly(methyl methacrylate) block copolymer thin film, SX-GISAXS with 3.60 keV and 5.73 keV revealed that hexagonally packed cylinders are aligned parallel to the substrate surface. The incident angle dependence of the first order peak position of the q{sub z} direction obtained from experiments at various incident X-ray energies agrees very well with the theoretical one calculated from the distorted wave Born approximation.

  15. Structural analysis of polymer thin films using GISAXS in the tender X-ray region: Concept and design of GISAXS experiments using the tender X-ray energy at BL-15A2 at the Photon Factory

    International Nuclear Information System (INIS)

    Takagi, H.; Igarashi, N.; Mori, T.; Saijo, S.; Nagatani, Y.; Shimizu, N.; Ohta, H.; Yamamoto, K.

    2016-01-01

    If small angle X-ray scattering (SAXS) utilizing the soft X-ray region is available, advanced and unique experiments, which differ from traditional SAXS methods, can be realized. For example, grazing-incidence small angle X-ray scattering (GISAXS) using hard X-ray is a powerful tool for understanding the nanostructure in both vertical and lateral directions of thin films, while GISAXS utilizing the tender X-ray region (SX-GISAXS) enables depth-resolved analysis as well as a standard GISAXS analysis in thin films. Thus, at BL-15A2 at the Photon Factory, a dedicated diffractometer for SX-GISAXS (above 2.1 keV) was constructed. This diffractometer is composed of four vacuum chambers and can be converted into the vacuum state from the sample chamber in front of the detector surface. Diffractions are clearly observed until 12th peak when measuring collagen by SAXS with an X-ray energy of 2.40 keV and a camera length of 825 mm. Additionally, we conducted the model experiment using SX-GISAXS with an X-ray energy of 2.40 keV to confirm that a poly(methyl methacrylate)-poly(n-butyl acrylate) block copolymer thin film has a microphase-separated structure in the thin film, which is composed of lamellae aligned both parallel and perpendicular to the substrate surface. Similarly, in a polystyrene-poly(methyl methacrylate) block copolymer thin film, SX-GISAXS with 3.60 keV and 5.73 keV revealed that hexagonally packed cylinders are aligned parallel to the substrate surface. The incident angle dependence of the first order peak position of the q_z direction obtained from experiments at various incident X-ray energies agrees very well with the theoretical one calculated from the distorted wave Born approximation.

  16. A new method of explosive detection based on dual-energy X-ray technology and forward-scattering

    International Nuclear Information System (INIS)

    Zhao Kun; Li Jianmin

    2004-01-01

    Based on dual-energy X-ray technology combined with forward-scattering, a brand new explosive detection method is presented. Dual-energy technology can give the information on the effective atomic number (Z eff ) of an irradiated component, while the intensity of the forward scattered photons can reveal the density information according to our research. Therefore, the existence of the explosive can be effectively identified by combining these two characteristic quantities. Compared with the earlier inspection approaches, the new one has a series of particular advantages, such as high detection rate, low false alarm rate, automatic alarm and so forth. The project is ongoing. (authors)

  17. In situ microfluidic dialysis for biological small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Skou, Magda; Skou, Soren; Jensen, Thomas Glasdam

    2014-01-01

    Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented for sim...... in incidental sample purification. Hence, this versatile microfluidic device enables investigation of experimentally induced structural changes under dynamically controllable sample conditions. (C) 2014 International Union of Crystallography......Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented...

  18. Multiple X-ray tomography using transmitted, scattered and fluorescent radiation

    International Nuclear Information System (INIS)

    Cesareo, R.; Brunetti, A.; Golosio, B.; Lopes, R.T.; Barroso, R.C.; Donativi, M.; Castellano, A.; Quarta, S.

    2003-01-01

    A multiple CT-scanner is described, which contemporaneously uses transmitted, scattered and fluorescent X-rays for Imaging. The scanner is characterized by a small size X-ray tube and by four detectors: a ''pencil'' X-ray NaI(Tl) for transmitted tomography, a larger size NaI(Tl) for 90 C o Compton tomography, a thermoelectrically cooled Si-PIN or CdZnTe for fluorescent imaging and a CdZnTe for Rayleigh (or diffraction) tomography. Examples of applications are shown

  19. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  20. Resonant Inelastic X-ray Scattering: From band mapping to inter-orbital excitations

    International Nuclear Information System (INIS)

    Luning, J.; Hague, C.F.

    2008-01-01

    Resonant inelastic X-ray scattering (also known as resonant X-ray Raman spectroscopy when only valence and conduction states are involved in the final state excitation) has developed into a major tool for understanding the electronic properties of complex materials. Presently it provides access to electron excitations in the few hundred meV range with element and bulk selectivity. Recent progress in X-ray optics and synchrotron radiation engineering have opened up new perspectives for this powerful technique to improve resolving power and efficiency. We briefly present the basics of the method and illustrate its potential with examples chosen from the literature. (authors)

  1. A novel scatter separation method for multi-energy x-ray imaging

    Science.gov (United States)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-06-01

    X-ray imaging coupled with recently emerged energy-resolved photon counting detectors provides the ability to differentiate material components and to estimate their respective thicknesses. However, such techniques require highly accurate images. The presence of scattered radiation leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in computed tomography (CT). The aim of the present study was to introduce and evaluate a partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. This evaluation was carried out with the aid of numerical simulations provided by an internal simulation tool, Sindbad-SFFD. A simplified numerical thorax phantom placed in a CT geometry was used. The attenuation images and CT slices obtained from corrected data showed a remarkable increase in local contrast and internal structure detectability when compared to uncorrected images. Scatter induced bias was also substantially decreased. In terms of quantitative performance, the developed approach proved to be quite accurate as well. The average normalized root-mean-square error between the uncorrected projections and the reference primary projections was around 23%. The application of PASSSA reduced this error to around 5%. Finally, in terms of voxel value accuracy, an increase by a factor  >10 was observed for most inspected volumes-of-interest, when comparing the corrected and uncorrected total volumes.

  2. Ion chamber area monitor for low level scattered x-rays

    International Nuclear Information System (INIS)

    Fergus, R.W.; Robinet, M.J.

    1978-01-01

    An economical, high confidence instrument was developed for laboratories using low energy x-rays. The instrument detects increases in background caused by scattered radiation. Exposure rates close to the open part of the x-ray tubes are of the order of 10 3 to 10 6 R/min. A few meters away the background is a few tenths of a mR/hr

  3. Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering

    KAUST Repository

    Accardo, Angelo; Tirinato, Luca; Altamura, Davide; Sibillano, Teresa; Giannini, Cinzia; Riekel, Christian; Di Fabrizio, Enzo M.

    2013-01-01

    Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates. © 2013 The Royal Society of Chemistry.

  4. Acquiring molecular interference functions of X-ray coherent scattering for breast tissues by combination of simulation and experimental methods

    International Nuclear Information System (INIS)

    Chaparian, A.; Oghabian, M. A.; Changizi, V.

    2009-01-01

    Recently, it has been indicated that X-ray coherent scatter from biological tissues can be used to access signature of tissue. Some scientists are interested in studying this effect to get early detection of breast cancer. Since experimental methods for optimization are time consuming and expensive, some scientists suggest using simulation. Monte Carlo codes are the best option for radiation simulation: however, one permanent defect with Monte Carlo codes has been the lack of a sufficient physical model for coherent (Rayleigh) scattering, including molecular interference effects. Materials and Methods: It was decided to obtain molecular interference functions of coherent X-ray scattering for normal breast tissues by combination of modeling and experimental methods. A Monte Carlo simulation program was written to simulate the angular distribution of scattered photons for the normal breast tissue samples. Moreover, experimental diffraction patterns of these tissues were measured by means of energy dispersive X-ray diffraction method. The simulation and experimental data were used to obtain a tabulation of molecular interference functions for breast tissues. Results: With this study a tabulation of molecular interference functions for normal breast tissues Was prepared to facilitate the simulation diffraction patterns of the tissues without any experimental. Conclusion: The method may lead to design new systems for early detection of breast cancer.

  5. Application of small-angle X-ray scattering for differentiation among breast tumors

    International Nuclear Information System (INIS)

    Changizi, V.; Kheradmand, A. Arab; Oghabian, M.A.

    2008-01-01

    Small-angle X-ray scattering (SAXS) is an X-ray diffraction-based technique where a narrow collimated beam of X-rays is focused onto a sample and the scattered X-rays recorded by a detector. The pattern of the scattered X-rays carries information on the molecular structure of the material. As breast cancer is the most widespread cancer in women and differentiation among its tumors is important, this project compared the results of coherent X-ray scattering measurements obtained from benign and malignant breast tissues. The energy-dispersive method with a setup including X-ray tube, primary collimator, sample holder, secondary collimator and high-purity germanium (HpGe) detector was used. One hundred thirty-one breast-tissue samples, including normal, fibrocystic changes and carcinoma, were studied at the 6 deg scattering angle. Diffraction profiles (corrected scattered intensity versus momentum transfer) of normal, fibrocystic changes and carcinoma were obtained. These profiles showed a few peak positions for adipose (1.15 ± 0.06 nm -1 ), mixed normal (1.15 ± 0.06 nm -1 and 1.4 ± 0.04 nm -1 ), fibrocystic changes (1.46 ± 0.05 nm -1 and 1.74 ± 0.04 nm -1 ) and carcinoma (1.55 ± 0.04 nm -1 , 1.73 ± 0.06 nm -1 , 1.85 ± 0.05 nm -1 ). We were able to differentiate between normal, fibrocystic changes (benign) and carcinoma (malignant) breast tissues by SAXS. However, we were unable to differentiate between different types of carcinoma. (author)

  6. Application of small-angle X-ray scattering for differentiation among breast tumors

    Directory of Open Access Journals (Sweden)

    Changizi V

    2008-01-01

    Full Text Available Small-angle X-ray scattering (SAXS is an X-ray diffraction-based technique where a narrow collimated beam of X-rays is focused onto a sample and the scattered X-rays recorded by a detector. The pattern of the scattered X-rays carries information on the molecular structure of the material. As breast cancer is the most widespread cancer in women and differentiation among its tumors is important, this project compared the results of coherent X-ray scattering measurements obtained from benign and malignant breast tissues. The energy-dispersive method with a setup including X-ray tube, primary collimator, sample holder, secondary collimator and high-purity germanium (HpGe detector was used. One hundred thirty-one breast-tissue samples, including normal, fibrocystic changes and carcinoma, were studied at the 6° scattering angle. Diffraction profiles (corrected scattered intensity versus momentum transfer of normal, fibrocystic changes and carcinoma were obtained. These profiles showed a few peak positions for adipose (1.15 ± 0.06 nm -1 , mixed normal (1.15 ± 0.06 nm -1 and 1.4 ± 0.04 nm -1 , fibrocystic changes (1.46 ± 0.05 nm -1 and 1.74 ± 0.04 nm -1 and carcinoma (1.55 ± 0.04 nm -1 , 1.73 ± 0.06 nm -1 , 1.85 ± 0.05 nm -1 . We were able to differentiate between normal, fibrocystic changes (benign and carcinoma (malignant breast tissues by SAXS. However, we were unable to differentiate between different types of carcinoma.

  7. Common observations of solar X-rays from SPHINX/CORONAS-PHOTON and XRS/MESSENGER

    Science.gov (United States)

    Kepa, Anna; Sylwester, Janusz; Sylwester, Barbara; Siarkowski, Marek; Mrozek, Tomasz; Gryciuk, Magdalena; Phillips, Kenneth

    SphinX was a soft X-ray spectrophotometer constructed in the Space Research Centre of Polish Academy of Sciences. The instrument was launched on 30 January 2009 aboard CORONAS-PHOTON satellite as a part of TESIS instrument package. SphinX measured total solar X-ray flux in the energy range from 1 to 15 keV during the period of very low solar activity from 20 February to 29 November 2009. For these times the solar detector (X-ray Spectrometer - XRS) onboard MESSENGER also observed the solar X-rays from a different vantage point. XRS measured the radiation in similar energy range. We present results of the comparison of observations from both instruments and show the preliminary results of physical analysis of spectra for selected flares.

  8. Magnetism in heterogeneous thin film systems: Resonant X-ray scattering studies

    International Nuclear Information System (INIS)

    Kortright, J.B.; Jiang, J.S.; Bader, S.D.; Hellwig, O.; Marguiles, D.T.; Fullerton, E.E.

    2002-01-01

    Magnetic and chemical heterogeneity are common in a broad range of magnetic thin film systems. Emerging resonant soft x-ray scattering techniques are well suited to resolve such heterogeneity at relevant length scales. Resonant x-ray magneto-optical Kerr effect measurements laterally average over heterogeneity but can provide depth resolution in different ways, as illustrated in measurements resolving reversible and irreversible changes in different layers of exchange-spring heterostructures. Resonant small-angle scattering measures in-plane heterogeneity and can resolve magnetic and chemical scattering sources in different ways, as illustrated in measurements of granular alloy recording media

  9. The 7th Japan-Taiwan joint meeting on neutron and X-ray scattering. Proceedings

    International Nuclear Information System (INIS)

    2016-03-01

    The 7th Japan-Taiwan joint meeting on neutron and X-ray scattering in Kumatori is held bilaterally in Japan and Taiwan. This meeting provides the recent outstanding results in the fields of fundamental polymer and biological sciences and their applications as well. In the fields of the X-ray and/or neutron scattering, the methodological progress expands the research fields and gives us new scientific insights. This meeting invites the researchers developing new methodologies, such as dynamics measurement utilizing nuclear Bragg resonance, subunit-kinetics measurement with deuteration-assisted small-angle neutron scattering and so on. (J.P.N.)

  10. Toroidal silicon polarization analyzer for resonant inelastic x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xuan [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Casa, Diego; Kim, Jungho; Gog, Thomas [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Li, Chengyang [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Department of Physics, South University of Science and Technology of China, Shenzhen 518055 (China); Burns, Clement [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States)

    2016-08-15

    Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Here we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals.

  11. Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering.

    Science.gov (United States)

    Kritcher, A L; Neumayer, P; Brown, C R D; Davis, P; Döppner, T; Falcone, R W; Gericke, D O; Gregori, G; Holst, B; Landen, O L; Lee, H J; Morse, E C; Pelka, A; Redmer, R; Roth, M; Vorberger, J; Wünsch, K; Glenzer, S H

    2009-12-11

    We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

  12. Studies of oxide-based thin-layered heterostructures by X-ray scattering methods

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O. [Thales Research and Technology France, Route Departementale 128, F-91767 Palaiseau Cedex (France)]. E-mail: olivier.durand@thalesgroup.com; Rogers, D. [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Universite de Technologie de Troyes, 10-12 rue Marie Curie, 10010 (France); Teherani, F. Hosseini [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Andrieux, M. [LEMHE, ICMMOCNRS-UMR 8182, Universite d' Orsay, Batiment 410, 91410 Orsay (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland)

    2007-06-04

    Some X-ray scattering methods (X-ray reflectometry and Diffractometry) dedicated to the study of thin-layered heterostructures are presented with a particular focus, for practical purposes, on the description of fast, accurate and robust techniques. The use of X-ray scattering metrology as a routinely working non-destructive testing method, particularly by using procedures simplifying the data-evaluation, is emphasized. The model-independent Fourier-inversion method applied to a reflectivity curve allows a fast determination of the individual layer thicknesses. We demonstrate the capability of this method by reporting X-ray reflectometry study on multilayered oxide structures, even when the number of the layers constitutive of the stack is not known a-priori. Fast Fourier transform-based procedure has also been employed successfully on high resolution X-ray diffraction profiles. A study of the reliability of the integral-breadth methods in diffraction line-broadening analysis applied to thin layers, in order to determine coherent domain sizes, is also reported. Examples from studies of oxides-based thin-layers heterostructures will illustrate these methods. In particular, X-ray scattering studies performed on high-k HfO{sub 2} and SrZrO{sub 3} thin-layers, a (GaAs/AlOx) waveguide, and a ZnO thin-layer are reported.

  13. Computation of the Transmitted and Polarized Scattered Fluxes by the Exoplanet HD 189733b in X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Frédéric [Astronomical Institute of the Academy of Sciences, Boční II 1401, CZ-14100 Prague (Czech Republic); Grosso, Nicolas, E-mail: frederic.marin@astro.unistra.fr [Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg (France)

    2017-02-01

    Thousands of exoplanets have been detected, but only one exoplanetary transit was potentially observed in X-rays from HD 189733A. What makes the detection of exoplanets so difficult in this band? To answer this question, we run Monte-Carlo radiative transfer simulations to estimate the amount of X-ray flux reprocessed by HD 189733b. Despite its extended evaporating atmosphere, we find that the X-ray absorption radius of HD 189733b at 0.7 keV, which is the mean energy of the photons detected in the 0.25–2 keV energy band by XMM-Newton , is ∼1.01 times the planetary radius for an atmosphere of atomic hydrogen and helium (including ions), and produces a maximum depth of ∼2.1% at ∼±46 minutes from the center of the planetary transit on the geometrically thick and optically thin corona. We compute numerically in the 0.25–2 keV energy band that this maximum depth is only of ∼1.6% at ∼±47 minutes from the transit center, and not very sensitive to the metal abundance, assuming that adding metals in the atmosphere would not dramatically change the density–temperature profile. Regarding a direct detection of HD 189733b in X-rays, we find that the amount of flux reprocessed by the exoplanetary atmosphere varies with the orbital phase, spanning between three and five orders of magnitude fainter than the flux of the primary star. Additionally, the degree of linear polarization emerging from HD 189733b is <0.003%, with maximums detected near planetary greatest elongations. This implies that both the modulation of the X-ray flux with the orbital phase and the scatter-induced continuum polarization cannot be observed with current X-ray facilities.

  14. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    CERN Document Server

    Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C

    1999-01-01

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  15. Precision white-beam slit design for high power density x-ray undulator beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Brite, C.; Nian, T.

    1994-01-01

    A set of precision horizontal and vertical white-beam slits has been designed for the Advanced Photon Source (APS) X-ray undulator beamlines at Argonne National Laboratory. There are several new design concepts applied in this slit set, including: grazing-incidence knife-edge configuration to minimize the scattering of X-rays downstream, enhanced heat transfer tubing to provide water cooling, and a second slit to eliminate the thermal distortion on the slit knife edge. The novel aspect of this design is the use of two L-shaped knife-edge assemblies, which are manipulated by two precision X-Z stepping linear actuators. The principal and structural details of the design for this slit set are presented in this paper

  16. Experimental elucidation: microscopic mechanism of resonant X-ray scattering in manganite films

    CERN Document Server

    Ohsumi, H; Kiyama, T

    2003-01-01

    Resonant X-ray scattering experiments have been performed on perovskite manganite La sub 0 sub . sub 5 Sr sub 0 sub . sub 5 MnO sub 3 thin films, which are grown on three distinct perovskite with a coherent epitaxial strain and have a forced ferro-type orbital ordering of Mn 3d orbitals. Using an interference technique, we have successfully observed the resonant X-ray scattering signal from the system having the ferro-type orbital ordering and also revealed the energy scheme of Mn 4p bands. For the forced ferro-type orbital ordering system, the present results evidence that the resonant X-ray scattering signal originates from the band structure effect due to the Jahn-Teller distortion of a MnO sub 6 octahedron, and not from the Coulomb interaction between 3d and 4p electrons. (author)

  17. Methods for reduction of scattered x-ray in measuring MTF with the square chart

    International Nuclear Information System (INIS)

    Hatagawa, Masakatsu; Yoshida, Rie

    1982-01-01

    A square wave chart has been used to measure the MTF of a screen-film system. The problem is that the scattered X-ray from the chart may give rise to measurement errors. In this paper, the authors proposed two methods to reduce the scattered X-ray: the first method is the use of a Pb mask and second is to provide for an air gap between the chart and the screen-film system. In these methods, the scattered X-ray from the chart was reduced. MTFs were measured by both of the new methods and the conventional method, and MTF values of the new methods were in good agreement while that of the conventional method was not. It was concluded that these new methods are able to reduce errors in the measurement of MTF. (author)

  18. Thin film growth studies using time-resolved x-ray scattering

    Science.gov (United States)

    Kowarik, Stefan

    2017-02-01

    Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.

  19. X-ray satellite spectra of Ti, V, Cr and Mn induced by photons

    Indian Academy of Sciences (India)

    K X-ray emission spectra of Ti, V, Cr and Mn generated by photon excitation have been studied with a crystal spectrometer. The measured energy shifts of K satellite relative to the diagram line are compared with values obtained by electron excitation and with different theoretical estimates. The present experimental ...

  20. Photon induced x-ray fluorescence analysis using energy dispersive detector and dichotomous sampler

    International Nuclear Information System (INIS)

    Jaklevic, J.M.; Loo, B.W.; Goulding, F.S.

    1976-01-01

    Operating experience in using the photon-excited energy-dispersive x-ray fluorescence analysis system has demonstrated the applicability of this technique to large-scale air-sampling networks. This experience has shown that it is possible to perform automatic sampling and analysis of aerosol particulates at a sensitivity and accuracy more than adequate for most air pollution studies

  1. Soft x-ray spectroscopy undulator beamline at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Randall, K.J.; Xu, Z.; Moore, J.F.; Gluskin, E.

    1997-09-01

    Construction of the high-resolution soft x ray spectroscopy undulator beamline, 2ID-C, at the Advanced Photon Source (APS) has been completed. The beamline, one of two soft x ray beamlines at the APS, will cover the photon energy range from 500 to 3,000 eV, with a maximum resolving power between 7,000 and 14,000. The optical design is based on a spherical grating monochromator (SGM) giving both high resolution and high flux throughput. Photon flux is calculated to be approximately 10{sup 12}--10{sup 13} photons per second with a beam size of approximately 1 x 1 mm{sup 2} at the sample.

  2. [Research on increasing X-ray protection capability based on photonic crystal technology].

    Science.gov (United States)

    Li, Ping; Zhao, Peng; Zhang, Rui

    2014-06-01

    Light cannot be propagated within the range of photonic crystal band gaps. Based on this unique property, we proposed a method to improve anti-radiation capability through one-dimensional photonic crystal coating. Using transmission matrix method, we determined the appropriate dielectric materials, thickness and periodic numbers of photonic crystals through Matlab programming simulation. Then, compound one-dimensional photonic crystal coating was designed which was of high anti-radiation rate within the range of X-ray. As is shown through simulation experiments, the reflection rate against X-ray was higher than 90 percent, and the desired anti-radiation effect was achieved. Thus, this method is able to help solve the technical problems facing the inorganic lead glass such as thickness, weightiness, costliness, high lead equivalent, low transparency and high cost. This method has won China's national invention patent approval, and the patent number is 201220228549.2.

  3. Experiment and application of soft x-ray grazing incidence optical scattering phenomena

    Science.gov (United States)

    Chen, Shuyan; Li, Cheng; Zhang, Yang; Su, Liping; Geng, Tao; Li, Kun

    2017-08-01

    For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.

  4. X-ray and neutron scattering from amorphous diamondlike carbon and hydrocarbon films

    International Nuclear Information System (INIS)

    Findeisen, E.

    1994-10-01

    In this report amorphous, diamondlike, carbon and hydrocarbon films are investigated by two different methods, namely, X-ray scattering and a combination of X-ray and neutron reflectivity. As specular reflectivity probes the scattering length density profile of a sample perpendicular to its surface, the combination of X-ray and neutron reflectivity reveals the nuclei density of both carbon and hydrogen separately. This allows to calculate the concentration of hydrogen in the films, which varies in the presented experiments between 0 and 36 atomic %. This method is a new and nondestructive technique to determine the concentration of hydrogen within an error of about ±1 at. % in samples with sharp interfaces. It is well suited for thin diamondlike carbon films. X-ray scattering is used to obtain structural information on the atomic scale, especially the average carbon-carbon distance and the average coordination number of the carbon atoms. As grazing incidence diffraction experiments were not successful, free-standing films are used for the scattering experiments with synchrotron light. However, the scattered intensity for large scattering vectors is, in spite of the intense primary beam, very weak, and therefore the accuracy of the obtained structural parameter is not sufficient to prove the diamondlike properties also on the atomic scale. (au) (10 tabs., 76 ills., 102 refs.)

  5. Observations of non-collective x-ray scattering in warm dense carbon plasma

    International Nuclear Information System (INIS)

    Bao Lihua; Zhang Jiyan; Zhao Yang; Ding Yongkun; Zhang Xiaoding

    2012-01-01

    An experiment for observing the spectrally resolved non-collective x-ray scattering in warm dense carbon plasma is presented in this paper. The experiment used Ta M-band x-rays to heat a foamed carbon cylinder sample isochorically and measured the scattering spectrum with a HOPG crystal spectrometer. The spectrum was compared with the calculation results using a Born-Mermin-approximation model. The best fitting was found at an electron temperature of T e =34 eV and an electron density of n e =1.6×10 23 cm −3 .

  6. High energy resolution inelastic x-ray scattering at the SRI-CAT

    International Nuclear Information System (INIS)

    Macrander, A.T.

    1996-08-01

    This report is a combination of vugraphs and two papers. The vugraphs give information on the beamline at the APS for IXS and the science addressable by IXS. They also cover the 10 milli-eV resolution spectrometer and the 200 milli-eV resolution spectrometer. The first paper covers the performance of the focusing Ge(444) backscattering analyzers for the inelastic x-ray scattering. The second paper discusses inelastic x-ray scattering from TiC and Ti single crystals

  7. International workshop on resonant X-ray scattering in electrically-ordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S.P.; Pettifer, R.F.; Laundy, D.; Ishida, K.; Kokubun, J.; Giles, C.; Yokaichiya, F.; Song, C.; Lee, K.B.; Ji, S.; Koo, J.; Park, Y.J.; Kim, J.Y.; Park, J.H.; Shin, H.J.; Rhyee, J.S.; Oh, B.H.; Cho, B.K.; Wilkins Stuart, B.; Paixao, J.A.; Caciuffo, R.; Javorsky, P.; Wastin, F.; Rebizant, J.; Detlefs, C.; Bernheoft, N.; Lander, G.H.; Bombardi, A.; Bergevin, F. de; Matteo, S. di; Paolasini, L.; Rodriguez-Carvajal, J.; Carretta, P.; Millet, P.; Caciuffo, R.; Goff, J.P.; Deen, P.P.; Lee, S.; Stunault, A.; Brown, S.; Mannix, D.; McIntyre, G.J.; Ward, R.C.C.; Wells, M.R.; Lorenzo, J.E.; Joly, Y.; Nazarenko, E.; Staub, U.; Srajer, G.; Haskel, D.; Choi, Y.; Lee, D.R.; Lang, J.C.; Meersschaut, J.; Jiang, J.S.; Bader, S.D.; Bouchenoire, L.; Brown, S.D.; Beesley, A.; Herring, A.; Thomas, M.; Thompson, P.; Langridge, S.; Stirling, W.G.; Mirone, A.; Lander, G.; Wilkins, S.; Ward, R.C.C.; Wells, M.R.; Zochowski, S.W.; Garcia, J.; Subias, G.; Blasco, J.; Sanchez, M.C.; Proietti, M.G.; Lovesey, S.W.; Dmitrienko, V.E.; Ovchinnikova, E.N.; Ishida, K.; Kokubun, J.; Kirfel, A.; Collins, S.P.; Laundy, D.; Oreshko, A.P.; Strange, P.; Horne, M.; Arola, E.; Winter, H.; Szotek, Z.; Temmerman, W.M.; Igarashi, J.; Usuda, M.; Takahashi, M.; Matteo, S. di; Bernhoeft, N.; Hill, J.P.; Lang, J.C.; McWhan, D.; Lee, D.R.; Haskel, D.; Srajer, G.; Hatton Peter, D.; Katsumata, K.; Braithwaite, D

    2004-07-01

    The research field of Resonant X-ray Scattering (RXS) has achieved tremendous progress in the last years. Nowadays RXS is rapidly becoming the crucial technique for investigating the subtleties of microscopic magnetism in systems where the ground state properties reflect a delicate balance between several different correlated processes. The aim of this workshop is to discuss present and future possibilities for RXS investigations of electronic order, including studies of charge, magnetic, and multipolar ordered states. The sessions will cover experimental and theoretical aspects of hard and soft X-ray resonant scattering from single crystals and thin films. This document gathers the summaries of the presentations.

  8. International workshop on resonant X-ray scattering in electrically-ordered systems

    International Nuclear Information System (INIS)

    Collins, S.P.; Pettifer, R.F.; Laundy, D.; Ishida, K.; Kokubun, J.; Giles, C.; Yokaichiya, F.; Song, C.; Lee, K.B.; Ji, S.; Koo, J.; Park, Y.J.; Kim, J.Y.; Park, J.H.; Shin, H.J.; Rhyee, J.S.; Oh, B.H.; Cho, B.K.; Wilkins Stuart, B.; Paixao, J.A.; Caciuffo, R.; Javorsky, P.; Wastin, F.; Rebizant, J.; Detlefs, C.; Bernheoft, N.; Lander, G.H.; Bombardi, A.; Bergevin, F. de; Matteo, S. di; Paolasini, L.; Rodriguez-Carvajal, J.; Carretta, P.; Millet, P.; Caciuffo, R.; Goff, J.P.; Deen, P.P.; Lee, S.; Stunault, A.; Brown, S.; Mannix, D.; McIntyre, G.J.; Ward, R.C.C.; Wells, M.R.; Lorenzo, J.E.; Joly, Y.; Nazarenko, E.; Staub, U.; Srajer, G.; Haskel, D.; Choi, Y.; Lee, D.R.; Lang, J.C.; Meersschaut, J.; Jiang, J.S.; Bader, S.D.; Bouchenoire, L.; Brown, S.D.; Beesley, A.; Herring, A.; Thomas, M.; Thompson, P.; Langridge, S.; Stirling, W.G.; Mirone, A.; Lander, G.; Wilkins, S.; Ward, R.C.C.; Wells, M.R.; Zochowski, S.W.; Garcia, J.; Subias, G.; Blasco, J.; Sanchez, M.C.; Proietti, M.G.; Lovesey, S.W.; Dmitrienko, V.E.; Ovchinnikova, E.N.; Ishida, K.; Kokubun, J.; Kirfel, A.; Collins, S.P.; Laundy, D.; Oreshko, A.P.; Strange, P.; Horne, M.; Arola, E.; Winter, H.; Szotek, Z.; Temmerman, W.M.; Igarashi, J.; Usuda, M.; Takahashi, M.; Matteo, S. di; Bernhoeft, N.; Hill, J.P.; Lang, J.C.; McWhan, D.; Lee, D.R.; Haskel, D.; Srajer, G.; Hatton Peter, D.; Katsumata, K.; Braithwaite, D.

    2004-01-01

    The research field of Resonant X-ray Scattering (RXS) has achieved tremendous progress in the last years. Nowadays RXS is rapidly becoming the crucial technique for investigating the subtleties of microscopic magnetism in systems where the ground state properties reflect a delicate balance between several different correlated processes. The aim of this workshop is to discuss present and future possibilities for RXS investigations of electronic order, including studies of charge, magnetic, and multipolar ordered states. The sessions will cover experimental and theoretical aspects of hard and soft X-ray resonant scattering from single crystals and thin films. This document gathers the summaries of the presentations

  9. PREFACE: REXS 2013 - Workshop on Resonant Elastic X-ray Scattering in Condensed Matter

    Science.gov (United States)

    Beutier, G.; Mazzoli, C.; Yakhou, F.; Brown, S. D.; Bombardi, A.; Collins, S. P.

    2014-05-01

    The aim of this workshop was to bring together experts in experimental and theoretical aspects of resonant elastic x-ray scattering, along with researchers who are new to the field, to discuss important recent results and the fundamentals of the technique. The meeting was a great success, with the first day dedicated to students and new researchers in the field, who received introductory lectures and tutorials. All conference delegates were invited either to make an oral presentation or to present a poster, accompanied by a short talk. The first two papers selected for the REXS13 proceedings (Grenier & Joly and Helliwell) give a basic background to the theory of REXS and applications across a wide range of scientific areas. The remainder of the papers report on some of the latest scientific results obtained by applying the REXS technique to contemporary problems in condensed matter, materials and x-ray physics. It is hoped that these proceedings provide a snapshot of the current status of a vibrant and diverse scientific technique that will be of value not just to those who attended the workshop but also to any other reader with an interest in the subject. Local Scientific Committee REXS13 International Scientific Advisory Committee M Altarelli, European XFEL, Germany F de Bergevin, European Synchrotron Radiation Facility, France J Garcia-Ruiz, Universidad de Zaragoza, Spain A I Goldman, Iowa State University, USA M Goldmann, Institut Nanosciences, France T Schulli, European Synchrotron Radiation Facility, France C R Natoli, Laboratori Nazionali de Frascati, Italy G Materlik, Diamond Light Source, UK L Paolasini, European Synchrotron Radiation Facility, France U Staub, Paul Scherrer Institut, Switzerland K Finkelstein, Cornell University, USA Y Murakami, Photon Factory, Japan REXS13 Local Scientific Committee G Beutier, CNRS Grenoble, France C Mazzoli, Politecnico di Milano, Italy F Yakhou, European Synchrotron Radiation Facility, France S D Brown, XMaS UK CRG

  10. Nonperturbative Series Expansion of Green's Functions: The Anatomy of Resonant Inelastic X-Ray Scattering in the Doped Hubbard Model

    Science.gov (United States)

    Lu, Yi; Haverkort, Maurits W.

    2017-12-01

    We present a nonperturbative, divergence-free series expansion of Green's functions using effective operators. The method is especially suited for computing correlators of complex operators as a series of correlation functions of simpler forms. We apply the method to study low-energy excitations in resonant inelastic x-ray scattering (RIXS) in doped one- and two-dimensional single-band Hubbard models. The RIXS operator is expanded into polynomials of spin, density, and current operators weighted by fundamental x-ray spectral functions. These operators couple to different polarization channels resulting in simple selection rules. The incident photon energy dependent coefficients help to pinpoint main RIXS contributions from different degrees of freedom. We show in particular that, with parameters pertaining to cuprate superconductors, local spin excitation dominates the RIXS spectral weight over a wide doping range in the cross-polarization channel.

  11. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Döppner, T., E-mail: doeppner1@llnl.gov; Bachmann, B.; Emig, J.; Hardy, M.; Kalantar, D. H.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Wood, R. D. [Lawrence Livermore National Laboratory, Livermore, California 94720 (United States); Kraus, D.; Saunders, A. M. [University of California, Berkeley, California 94720 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, Darmstadt (Germany); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fletcher, L. B. [SLAC National Accelerator Laboratory, Menlo Park, California 94720 (United States)

    2016-11-15

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5–10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  12. X-ray-scattering study of copper magnetism in nonsuperconducting PrBa2Cu3O6.92

    DEFF Research Database (Denmark)

    Hill, J.P.; McMorrow, D.F.; Boothroyd, A.T.

    2000-01-01

    X-ray magnetic scattering from ordered Cu spins has been observed in a high-T-c compound. The measurements were made on the anomalous cuprate PrBa2Cu3O6.92 with x-ray photon energies tuned in the vicinity of the Cu K edge. The high wave-vector resolution enabled us to observe an incommensurate...... double-Q Cu spin structure below T-Pr = 19 K that forms as a result of coupling between the magnetically ordered Cu and Pr sublattices. Above T-Pr, the Cu ordering is commensurate, ruling out static spin-charge stripe order as an explanation for the absence of superconductivity in this material....

  13. Simulation tools for scattering corrections in spectrally resolved x-ray computed tomography using McXtrace

    Science.gov (United States)

    Busi, Matteo; Olsen, Ulrik L.; Knudsen, Erik B.; Frisvad, Jeppe R.; Kehres, Jan; Dreier, Erik S.; Khalil, Mohamad; Haldrup, Kristoffer

    2018-03-01

    Spectral computed tomography is an emerging imaging method that involves using recently developed energy discriminating photon-counting detectors (PCDs). This technique enables measurements at isolated high-energy ranges, in which the dominating undergoing interaction between the x-ray and the sample is the incoherent scattering. The scattered radiation causes a loss of contrast in the results, and its correction has proven to be a complex problem, due to its dependence on energy, material composition, and geometry. Monte Carlo simulations can utilize a physical model to estimate the scattering contribution to the signal, at the cost of high computational time. We present a fast Monte Carlo simulation tool, based on McXtrace, to predict the energy resolved radiation being scattered and absorbed by objects of complex shapes. We validate the tool through measurements using a CdTe single PCD (Multix ME-100) and use it for scattering correction in a simulation of a spectral CT. We found the correction to account for up to 7% relative amplification in the reconstructed linear attenuation. It is a useful tool for x-ray CT to obtain a more accurate material discrimination, especially in the high-energy range, where the incoherent scattering interactions become prevailing (>50 keV).

  14. Hard synchrotron radiation scattering from a nonideal surface grating from multilayer X-ray mirrors

    International Nuclear Information System (INIS)

    Punegov, V.I.; Nesterets, Ya.I.; Mytnichenko, S.V.; Kovalenko, N.V.; Chernov, V.A.

    2003-01-01

    The hard synchrotron radiation scattering from a multilayer surface grating is theoretically and experimentally investigated. The numerical calculations of angular distribution of scattering intensity from X-ray mirror Ni/C are executed with use of recurrence formulae and statistical dynamical theory of diffraction. It is shown, that the essential role in formation of a diffraction pattern plays a diffuse scattering caused by structure imperfection of a multilayer grating [ru

  15. Fingerprints of orbital physics in magnetic resonant inelastic X-ray scattering

    Science.gov (United States)

    Marra, Pasquale

    2012-09-01

    Orbital degrees of freedom play a major role in the physics of many strongly correlated transition metal compounds. However, they are still very difficult to access experimentally, in particular by neutron scattering. We propose here how to reveal orbital occupancies of the system ground state by magnetic resonant inelastic x-ray scattering (RIXS). This is possible because, unlike in neutron scattering, the intensity of the magnetic excitations in RIXS depends essentially on the symmetry of the orbitals where the spins are in.

  16. Influence of X-ray scatter radiation on image quality in Digital Breast Tomosynthesis (DBT)

    Science.gov (United States)

    Rodrigues, M. J.; Di Maria, S.; Baptista, M.; Belchior, A.; Afonso, J.; Venâncio, J.; Vaz, P.

    2017-11-01

    Digital breast tomosynthesis (DBT) is a quasi-three-dimensional imaging technique that was developed to solve the principal limitation of mammography, namely the overlapping tissue effect. This issue in standard mammography (SM) leads to two main problems: low sensitivity (difficulty to detect lesions) and low specificity (non-negligible percentage of false positives). Although DBT is now being introduced in clinical practice the features of this technique have not yet been fully and accurately assessed. Consequently, optimization studies in terms of choosing the most suitable parameters which maximize image quality according to the known limits of breast dosimetry are currently performing. In DBT, scatter radiation can lead to a loss of contrast and to an increase of image noise by reducing the signal-to-difference-noise ratio (SDNR) of a lesion. Moreover the use of an anti-scatter grid is a concern due to the low exposure of the photon flux available per projection. For this reason the main aim of this study was to analyze the influence of the scatter radiation on image quality and the dose delivered to the breast. In particular a detailed analysis of the scatter radiation on the optimal energy that maximizes the SDNR was performed for different monochromatic energies and voltages. To reach this objective the PenEasy Monte Carlo (MC) simulation tool imbedded in the general-purpose main program PENELOPE, was used. After a successful validation of the MC model with measurements, 2D projection images of primary, coherent and incoherent photons were obtained. For that, a homogeneous breast phantom (2, 4, 6, 8 cm) with 25%, 50% and 75% glandular compositions was used, including a 5 mm thick tumor. The images were generated for each monochromatic X-ray energies in the range from 16 keV to 32 keV. For each angular projection considered (25 angular projections covering an arc of 50°) the scatter-to-primary ratio (SPR), the mean glandular dose (MGD) and the signal

  17. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    International Nuclear Information System (INIS)

    Anderson, S.G.; Barty, C.P.J.; Betts, S.M.; Brown, W.J.; Crane, J.K.; Cross, R.R.; Fittinghoff, D.N.; Gibson, D.J.; Hartemann, F.V.; Kuba, J.; LaSage, G.P.; Rosenzweig, J.B.; Slaughter, D.R.; Springer, P.T.; Tremaine, A.M.

    2003-01-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10 20 photons/s/0.1% bandwidth/mm 2 /mrad 2 . Initial results are reported and compared to theoretical calculations

  18. Resonant Soft X-ray Scattering of Cellulose Microstructure in Plant Primary Cell Walls

    Science.gov (United States)

    Ye, Dan; Kiemle, Sarah N.; Wang, Cheng; Cosgrove, Daniel J.; Gomez, Esther W.; Gomez, Enrique D.

    Cellulosic biomass is the most abundant raw material available for the production of renewable and sustainable biofuels. Breaking down cellulose is the rate-limiting step in economical biofuel production; therefore, a detailed understanding of the microscopic structure of plant cell walls is required to develop efficient biofuel conversion methods. Primary cell walls are key determinants of plant growth and mechanics. Their structure is complex and heterogeneous, making it difficult to elucidate how various components such as pectin, hemicellulose, and cellulose contribute to the overall structure. The electron density of these wall components is similar; such that conventional hard X-ray scattering does not generate enough contrast to resolve the different elements of the polysaccharide network. The chemical specificity of resonant soft X-ray scattering allows contrast to be generated based on differences in chemistry of the different polysaccharides. By varying incident X-ray energies, we have achieved increased scattering contrast between cellulose and other polysaccharides from primary cell walls of onions. By performing scattering at certain energies, features of the network structure of the cell wall are resolved. From the soft X-ray scattering results, we obtained the packing distance of cellulose microfibrils embedded in the polysaccharide network.

  19. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of ~200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  20. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Science.gov (United States)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka; Toshito, Toshiyuki

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of 200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  1. Imaging Molecular Motion: Femtosecond X-Ray Scattering of an Electrocyclic Chemical Reaction

    Science.gov (United States)

    Minitti, M. P.; Budarz, J. M.; Kirrander, A.; Robinson, J. S.; Ratner, D.; Lane, T. J.; Zhu, D.; Glownia, J. M.; Kozina, M.; Lemke, H. T.; Sikorski, M.; Feng, Y.; Nelson, S.; Saita, K.; Stankus, B.; Northey, T.; Hastings, J. B.; Weber, P. M.

    2015-06-01

    Structural rearrangements within single molecules occur on ultrafast time scales. Many aspects of molecular dynamics, such as the energy flow through excited states, have been studied using spectroscopic techniques, yet the goal to watch molecules evolve their geometrical structure in real time remains challenging. By mapping nuclear motions using femtosecond x-ray pulses, we have created real-space representations of the evolving dynamics during a well-known chemical reaction and show a series of time-sorted structural snapshots produced by ultrafast time-resolved hard x-ray scattering. A computational analysis optimally matches the series of scattering patterns produced by the x rays to a multitude of potential reaction paths. In so doing, we have made a critical step toward the goal of viewing chemical reactions on femtosecond time scales, opening a new direction in studies of ultrafast chemical reactions in the gas phase.

  2. Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.S.; Kung, Y.F.; Moritz, B.; Coslovich, G.; Kaindl, R.A.; Chuang, Y.D.; Moore, R.G.; Lu, D.H.; Kirchmann, P.S.; Robinson, J.S.; Minitti, M.P.; Dakovski, G.; Schlotter, W.F.; Turner, J.J.; Gerber, S.; Sasagawa, T.; Hussain, Z.; Shen, Z.X.; Devereaux, T.P.

    2017-03-13

    We investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4 , using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.

  3. A comparative analysis of OTF, NPS, and DQE in energy integrating and photon counting digital x-ray detectors

    International Nuclear Information System (INIS)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2010-01-01

    Purpose: One of the benefits of photon counting (PC) detectors over energy integrating (EI) detectors is the absence of many additive noise sources, such as electronic noise and secondary quantum noise. The purpose of this work is to demonstrate that thresholding voltage gains to detect individual x rays actually generates an unexpected source of white noise in photon counters. Methods: To distinguish the two detector types, their point spread function (PSF) is interpreted differently. The PSF of the energy integrating detector is treated as a weighting function for counting x rays, while the PSF of the photon counting detector is interpreted as a probability. Although this model ignores some subtleties of real imaging systems, such as scatter and the energy-dependent amplification of secondary quanta in indirect-converting detectors, it is useful for demonstrating fundamental differences between the two detector types. From first principles, the optical transfer function (OTF) is calculated as the continuous Fourier transform of the PSF, the noise power spectra (NPS) is determined by the discrete space Fourier transform (DSFT) of the autocovariance of signal intensity, and the detective quantum efficiency (DQE) is found from combined knowledge of the OTF and NPS. To illustrate the calculation of the transfer functions, the PSF is modeled as the convolution of a Gaussian with the product of rect functions. The Gaussian reflects the blurring of the x-ray converter, while the rect functions model the sampling of the detector. Results: The transfer functions are first calculated assuming outside noise sources such as electronic noise and secondary quantum noise are negligible. It is demonstrated that while OTF is the same for two detector types possessing an equivalent PSF, a frequency-independent (i.e., ''white'') difference in their NPS exists such that NPS PC ≥NPS EI and hence DQE PC ≤DQE EI . The necessary and sufficient condition for equality is that the PSF

  4. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    Science.gov (United States)

    Jurdit, M.; Brambilla, A.; Moulin, V.; Ouvrier-Buffet, P.; Radisson, P.; Verger, L.

    2017-09-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm2. Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 106 incident photons.s-1.mm-2.

  5. X-ray spectral determination by detection of radiation scattered at different angles

    International Nuclear Information System (INIS)

    Barrea, Raul; Mainardi, R.T.

    1987-01-01

    A precise knowledge of the spectral content of an X-ray beam is of fundamental importance in areas such as X-ray fluorescence analysis by absolute methods, radiodiagnosis, radiotherapy, computed tomography, etc. A simple practical method was developed to determine X-ray spectra emitted by X-ray tubes. It is based on the scattering of the beam on a solid target and detection of this radiation at different angles. This methodology can easily be adapted to the successive attenuation of the beam procedure. Numerical parameter values of a proposed analytical function for the energy spectrum are found measuring the radiation intensity with a suitable detector (ionization chamber or plastic scintillation detector) and equating it with the convolution integral of the proposed spectrum with the incoherent scattering function. This procedure of spectra determination is enclosed in the same group of those generically referred as successive modifications of the irradiation set up used in absolute methods of X-ray fluorescence analysis. (Author) [es

  6. Revisiting Bragg's X-ray microscope: Scatter based optical transient grating detection of pulsed ionising radiation

    International Nuclear Information System (INIS)

    Fullagar, Wilfred K.; Paganin, David M.; Hall, Chris J.

    2011-01-01

    Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered. -- Research highlights: → It is timely that the concept of Bragg's X-ray microscope be revisited. → Transient gratings can be used for X-ray all-optical information processing. → Applications to optical real-time X-ray phase-retrieval are considered.

  7. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Talla, Patrick Takoukam

    2011-04-07

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 {mu}m. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  8. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    International Nuclear Information System (INIS)

    Talla, Patrick Takoukam

    2011-01-01

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 μm. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  9. Oil classification using X-ray scattering and principal component analysis

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Danielle S.; Souza, Amanda S.; Lopes, Ricardo T., E-mail: dani.almeida84@gmail.com, E-mail: ricardo@lin.ufrj.br, E-mail: amandass@bioqmed.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Oliveira, Davi F.; Anjos, Marcelino J., E-mail: davi.oliveira@uerj.br, E-mail: marcelin@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica Armando Dias Tavares

    2015-07-01

    X-ray scattering techniques have been considered promising for the classification and characterization of many types of samples. This study employed this technique combined with chemical analysis and multivariate analysis to characterize 54 vegetable oil samples (being 25 olive oils)with different properties obtained in commercial establishments in Rio de Janeiro city. The samples were chemically analyzed using the following indexes: iodine, acidity, saponification and peroxide. In order to obtain the X-ray scattering spectrum, an X-ray tube with a silver anode operating at 40kV and 50 μA was used. The results showed that oils cab ne divided in tow large groups: olive oils and non-olive oils. Additionally, in a multivariate analysis (Principal Component Analysis - PCA), two components were obtained and accounted for more than 80% of the variance. One component was associated with chemical parameters and the other with scattering profiles of each sample. Results showed that use of X-ray scattering spectra combined with chemical analysis and PCA can be a fast, cheap and efficient method for vegetable oil characterization. (author)

  10. Diffuse X-ray scattering near the Bragg reflection of P-doped Czochralski silicon

    International Nuclear Information System (INIS)

    Stojanoff, V.; Pimentel, C.A.F.

    1983-01-01

    Bragg line profile and high resolution diffuse X-ray scattering measurements around the (400) reciprocal lattice point of dislocation-free Czochralski Si single crystals P-doped have shown defects of interstitial nature with typical size about 1000 A. (Author) [pt

  11. The scattering problem in X-ray adsorptiometry using an MWPC; and its solution

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1978-03-01

    It is shown that a large aperture imaging X-ray absorptiometric system (in this case a xenon filled MWPC) suffers very badly from scattering in the water bath and soft tissue components of the imaged system in the bone mass measuring case. Applications of a fine focused collimator provides a satisfactory solution to the problem. (author)

  12. Data Analysis Of Small Angle X-Ray Solution Scattering And Its ...

    African Journals Online (AJOL)

    Small Angle X-ray Scattering analysis was used for the study of the protein, Human Tumour Necrosis Factor (TNF) homogeneously dispersed in solution. The experiment consisted in sending a well collimated beam of synchrotron radiation of wavelength, λ through the sample and measuring the variation of the intensity as a ...

  13. Resonant soft x-ray scattering and charge density waves in correlated systems

    NARCIS (Netherlands)

    Rusydi, Andrivo

    2006-01-01

    Summary This work describes results obtained on the study of charge density waves (CDW) in strongly correlated systems with a new experimental method: resonant soft x-ray scattering (RSXS). The basic motivation is the 1986 discovery by Bednorz and Müler of a new type of superconductor, based on Cu

  14. Soft X-ray magnetic scattering study of rotational magnetisation processes in cobalt/copper multilayers

    International Nuclear Information System (INIS)

    Hase, T.P.A.; Fulthorpe, B.D.; Wilkins, S.B.; Tanner, B.K.; Marrows, C.H.; Hickey, B.J.

    2001-01-01

    We report the observation of magnetic viscosity in the intensity of resonant magnetic soft X-ray scattering during rotational magnetisation processes in antiferromagnetically coupled Co/Cu multilayers. The hysteretic time-dependent component of the signal can be fitted to a single-exponential function that varies as a function of magnetising field

  15. Investigation of nanoscale structures by small-angle X-ray scattering in a radiochromic dosimeter

    DEFF Research Database (Denmark)

    Skyt, Peter Sandegaard; Jensen, Grethe Vestergaard; Wahlstedt, Isak Hannes

    2014-01-01

    This study examines the nanoscale structures in a radiochromic dosimeter that was based on leuco-malachite-green dye and the surfactant sodium dodecyl sulfate (SDS) suspended in a gelatin matrix. Small-angle X-ray scattering was used to investigate the structures of a range of compositions...

  16. Oil classification using X-ray scattering and principal component analysis

    International Nuclear Information System (INIS)

    Almeida, Danielle S.; Souza, Amanda S.; Lopes, Ricardo T.; Oliveira, Davi F.; Anjos, Marcelino J.

    2015-01-01

    X-ray scattering techniques have been considered promising for the classification and characterization of many types of samples. This study employed this technique combined with chemical analysis and multivariate analysis to characterize 54 vegetable oil samples (being 25 olive oils)with different properties obtained in commercial establishments in Rio de Janeiro city. The samples were chemically analyzed using the following indexes: iodine, acidity, saponification and peroxide. In order to obtain the X-ray scattering spectrum, an X-ray tube with a silver anode operating at 40kV and 50 μA was used. The results showed that oils cab ne divided in tow large groups: olive oils and non-olive oils. Additionally, in a multivariate analysis (Principal Component Analysis - PCA), two components were obtained and accounted for more than 80% of the variance. One component was associated with chemical parameters and the other with scattering profiles of each sample. Results showed that use of X-ray scattering spectra combined with chemical analysis and PCA can be a fast, cheap and efficient method for vegetable oil characterization. (author)

  17. Anomalous X-ray scattering studies of short-, intermediate- and extended-range order in glasses

    International Nuclear Information System (INIS)

    Price, D.L.; Saboungi, M.L.; Armand, P.; Cox, D.E.

    1998-01-01

    The authors present the formalism of anomalous x-ray scattering as applied to partial structure analysis of disordered materials, and give an example of how the technique has been applied, together with that of neutron diffraction, to investigate short-, intermediate- and extended-range order in vitreous germania and rubidium germanate

  18. Surface x-ray scattering and scanning tunneling microscopy studies at the Au(111) electrode

    International Nuclear Information System (INIS)

    Ocko, B.M.; Magnussen, O.M.; Wang, J.X.; Adzic, R.R.

    1993-01-01

    This chapter reviews Surface X-ray Scattering and Scanning Tunneling Microscopy results carried out at the Au(111) surface under electrochemical conditions. Results are presented for the reconstructed surface, and for bromide and thallium monolayers. These examples are used to illustrate the complementary nature of the techniques

  19. Diffuse X-ray scattering and far infrared absorption of barium and lead β" aluminas

    DEFF Research Database (Denmark)

    Hayes, W.; Kjær, Kristian; Pratt, F. L.

    1985-01-01

    The authors have carried out high-momentum-resolution studies in diffuse X-ray scattering of barium and lead B" aluminas in the temperature range 20-700 degrees C. They have also measured the vibrational spectra of these compounds between 2K and 300K in the energy range 10-100 cm-1. The results...

  20. Resonant X-ray Scattering of carbonyl sulfide at the sulfur K edge

    International Nuclear Information System (INIS)

    Journel, Loïc; Marchenko, Tatiana; Guillemin, Renaud; Kawerk, Elie; Simon, Marc; Kavčič, Matjaž; Žit-nik, Matjaž; Bučar, Klemen; Bohinc, Rok

    2015-01-01

    New results on free OCS molecules have been obtained using Resonant X-ray Inelastic Scattering spectroscopy. A deconvolution algorithm has been applied to improve the energy resolution spectra of which we can extract detailed information on nuclear dynamics in the system. (paper)

  1. Resonant X-ray Scattering of carbonyl sulfide at the sulfur K edge

    OpenAIRE

    Journel , Loïc; Marchenko , Tatiana; Guillemin , Renaud; Kawerk , Elie; Kavčič , Matjaž; Žit-nik , Matjaž; Bučar , Klemen; Bohinc , Rok; Simon , Marc

    2015-01-01

    International audience; New results on free OCS molecules have been obtained using Resonant X-ray Inelastic Scattering spectroscopy. A deconvolution algorithm has been applied to improve the energy resolution spectra of which we can extract detailed information on nuclear dynamics in the system.

  2. A Monte Carlo simulation of scattering reduction in spectral x-ray computed tomography

    DEFF Research Database (Denmark)

    Busi, Matteo; Olsen, Ulrik Lund; Bergbäck Knudsen, Erik

    2017-01-01

    In X-ray computed tomography (CT), scattered radiation plays an important role in the accurate reconstruction of the inspected object, leading to a loss of contrast between the different materials in the reconstruction volume and cupping artifacts in the images. We present a Monte Carlo simulation...

  3. On the calculation of x-ray scattering signals from pairwise radial distribution functions

    DEFF Research Database (Denmark)

    Dohn, Asmus Ougaard; Biasin, Elisa; Haldrup, Kristoffer

    2015-01-01

    We derive a formulation for evaluating (time-resolved) x-ray scattering signals of solvated chemical systems, based on pairwise radial distribution functions, with the aim of this formulation to accompany molecular dynamics simulations. The derivation is described in detail to eliminate any possi...

  4. RESONANT MAGNETIC-X-RAY SCATTERING FROM MIXED-VALENCE TMSE

    NARCIS (Netherlands)

    MCWHAN, DB; ISAACS, ED; CARRA, P; SHAPIRO, SM; THOLE, BT; HOSHINO, S

    1993-01-01

    The mixed-valent compound TmSe has been studied in its antiferromagnetic state (T x-ray scattering. The (003) magnetic reflection shows two peaks as a function of incident energy corresponding to the L(III) absorption edges of its Tm2+ and Tm2+ configurations. This

  5. Effects of Interstellar Dust Scattering on the X-ray Eclipses of the LMXB AX J1745.6-2901 in the Galactic Center

    Science.gov (United States)

    Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall; Valencic, Lynne

    2018-04-01

    AX J1745.6-2901 is an eclipsing low mass X-ray binary (LMXB) in the Galactic Centre (GC). It shows significant X-ray excess emission during the eclipse phase, and its eclipse light curve shows an asymmetric shape. We use archival XMM-Newton and Chandra observations to study the origin of these peculiar X-ray eclipsing phenomena. We find that the shape of the observed X-ray eclipse light curves depends on both photon energy and the shape of the source extraction region, and also shows differences between the two instruments. By performing detailed simulations for the time-dependent X-ray dust scattering halo, as well as directly modelling the observed eclipse and non-eclipse halo profiles of AX J1745.6-2901, we obtained solid evidence that its peculiar eclipse phenomena are indeed caused by the X-ray dust scattering in multiple foreground dust layers along the line-of-sight (LOS). The apparent dependence on the instruments is caused by different instrumental point-spread-functions. Our results can be used to assess the influence of dust scattering in other eclipsing X-ray sources, and raise the importance of considering the timing effects of dust scattering halo when studying the variability of other X-ray sources in the GC, such as Sgr A⋆. Moreover, our study of halo eclipse reinforces the existence of a dust layer local to AX J1745.6-2901 as reported by Jin et al. (2017), as well as identifying another dust layer within a few hundred parsecs to Earth, containing up to several tens of percent LOS dust, which is likely to be associated with the molecular clouds in the Solar neighbourhood. The remaining LOS dust is likely to be associated with the molecular clouds located in the Galactic disk in-between.

  6. Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?

    Science.gov (United States)

    Poludniowski, G.; Evans, P. M.; Webb, S.

    2009-11-01

    Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'interference function' model into a custom-written Monte Carlo code. First, we conduct simulations of scatter from isolated voxels of soft tissue, adipose, cortical bone and spongiosa. Then, we simulate scatter profiles from a cylinder of water and from phantoms of a patient's head, thorax and pelvis, constructed from diagnostic-quality CT data sets. Lastly, we reconstruct CT numbers from simulated sets of projection images and investigate the quantitative effects of the approximation. We show that the IAA can produce errors of several per cent of the total scatter, across a projection image, for typical x-ray beams and patients. The errors in reconstructed CT number, however, for the phantoms simulated, were small (typically < 10 HU). The IAA can therefore be considered sufficient for the modelling of scatter correction in CT imaging. Where accurate quantitative estimates of scatter in individual projection images are required, however, the appropriate interference functions should be included.

  7. Coherent scattering X-ray imaging at the Brazilian National Synchrotron Laboratory: Preliminary breast images

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.R.F. [Nuclear Instrumentation Laboratory-COPPE/UFRJ, P.O. Box 68509, Rio de Janeiro 21945-970 (Brazil); Barroso, R.C. [Physics Institute-University of Rio de Janeiro State, Rio de Janeiro 20559-900 (Brazil)]. E-mail: cely@uerij.br; Oliveira, L.F. de [Physics Institute-University of Rio de Janeiro State, Rio de Janeiro 20559-900 (Brazil); Lopes, R.T. [Nuclear Instrumentation Laboratory-COPPE/UFRJ, P.O. Box 68509, Rio de Janeiro 21945-970 (Brazil)

    2005-08-11

    The angular distribution of coherent scatter (low-momentum transfer) carries information about atomic structures, resulting in a pattern, which can be used to reconstruct a series of images. Coherent-scatter computed tomography is a novel imaging method developed to produce cross-sectional images based on the X-ray diffraction properties of an object. A different approach to coherent X-ray imaging is possible by fixing the detector at a given scatter angle {theta}, which produces an interference peak and then, carried out a tomography in the standard way. The cross-sectional images obtained allow determining the spatial dependence of coherent scatter cross-section of selected volume elements of inhomogeneous, extend objects for a single predetermined value of {theta} of interest, leading to a simplification of the data processing and the complexity of the apparatus. This work presents preliminary coherent scattering images carried out at the X-ray Diffraction beamline of the National Synchrotron Light Laboratory in Campinas, Brazil. The specimens were excised human breast tissues fixed in formaline. No frozen procedure was used in order to minimize preferred orientation during sample preparation. About 1mm thick slices cut from each of the fresh samples were mounted in frames without windows and placed on a translator to allow acquisition of scattering spectra. Cylinders containing healthy and cancerous (infiltrating ductal carcinoma) breast tissues were imagined at the characteristic angle for adipose tissue. Transmission and coherent scatter images are compared.

  8. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.

    Science.gov (United States)

    Alnewaini, Zaid; Langer, Eric; Schaber, Philipp; David, Matthias; Kretz, Dominik; Steil, Volker; Hesser, Jürgen

    2017-03-01

    Dosimetric control of staff exposure during interventional procedures under fluoroscopy is of high relevance. In this paper, a novel ray casting approximation of radiation transport is presented and the potential and limitation vs. a full Monte Carlo transport and dose measurements are discussed. The x-ray source of a Siemens Axiom Artix C-arm is modeled by a virtual source model using single Gaussian-shaped source. A Geant4-based Monte Carlo simulation determines the radiation transport from the source to compute scatter from the patient, the table, the ceiling and the floor. A phase space around these scatterers stores all photon information. Only those photons are traced that hit a surface of phantom that represents medical staff in the treatment room, no indirect scattering is considered; and a complete dose deposition on the surface is calculated. To evaluate the accuracy of the approximation, both experimental measurements using Thermoluminescent dosimeters (TLDs) and a Geant4-based Monte Carlo simulation of dose depositing for different tube angulations of the C-arm from cranial-caudal angle 0° and from LAO (Left Anterior Oblique) 0°-90° are realized. Since the measurements were performed on both sides of the table, using the symmetry of the setup, RAO (Right Anterior Oblique) measurements were not necessary. The Geant4-Monte Carlo simulation agreed within 3% with the measured data, which is within the accuracy of measurement and simulation. The ray casting approximation has been compared to TLD measurements and the achieved percentage difference was -7% for data from tube angulations 45°-90° and -29% from tube angulations 0°-45° on the side of the x-ray source, whereas on the opposite side of the x-ray source, the difference was -83.8% and -75%, respectively. Ray casting approximation for only LAO 90° was compared to a Monte Carlo simulation, where the percentage differences were between 0.5-3% on the side of the x-ray source where the highest dose

  9. Theoretical approach to direct resonant inelastic X-ray scattering on magnets and superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Pasquale

    2015-10-26

    The capability to probe the dispersion of elementary spin, charge, orbital, and lattice excitations has positioned resonant inelastic X-ray scattering (RIXS) at the forefront of photon science. In this work, we will investigate how RIXS can contribute to a deeper understanding of the orbital properties and of the pairing mechanism in unconventional high-temperature superconductors. In particular, we show how direct RIXS spectra of magnetic excitations can reveal long-range orbital correlations in transition metal compounds, by discriminating different kind of orbital order in magnetic and antiferromagnetic systems. Moreover, we show how RIXS spectra of quasiparticle excitations in superconductors can measure the superconducting gap magnitude, and reveal the presence of nodal points and phase differences of the superconducting order parameter on the Fermi surface. This can reveal the properties of the underlying pairing mechanism in unconventional superconductors, in particular cuprates and iron pnictides, discriminating between different superconducting order parameter symmetries, such as s,d (singlet pairing) and p wave (triplet pairing).

  10. Small-angle x-ray scattering from the early growth stages of zeolite A

    International Nuclear Information System (INIS)

    Singh, P.; White, J.

    1999-01-01

    Full text: The work presented here with the use of SAXS (Small-Angle X-ray Scattering) is in attempt to identify a different paradigm to the organic template induced crystallization of zeolites, in particular zeolite 'A'. The reactions have been followed by small angle X-ray scattering from the time of first mixing of the constituents until the final separation of zeolite A crystals. The processes happening during the growth are expected to follow successive transformation of intermediate metastable phases until the formation of thermodynamically most stable phase and scattering signatures from these developments may be useful for extracting interesting information about the processes in situ. The scattering functions from a synthesis system of zeolite 'A' at the initial and final stage of reaction are presented.The different growth processes of zeolite 'A' from different silicate and aluminium sources are found. The differences are attributed to different rate limiting steps in the syntheses

  11. Low-angle polarized neutron and X-ray scattering from magnetic nanolayers and nanostructures

    CERN Document Server

    Paul, Amitesh

    2017-01-01

    This research monograph presents the latest results related to the characterization of low dimensional systems. Low-angle polarized neutron scattering and X-ray scattering at grazing incidence are used as the two main techniques to explore various physical phenomena of these systems. Special focus is put on systems like thin film transition metal and rare-earth layers, oxide heterostructures, hybrid systems, self-assembled nanostructures and self-diffusion.  Readers will gain in-depth knowledge about the usage of specular scattering and off-specular scattering techniques. Investigation of in-plane and out-of-plane structures and magnetism with vector magnetometric information is illustrated comprehensively. The book caters to a wide audience working in the field of nano-dimensional magnetic systems and the neutron and X-ray reflectometry community in particular.

  12. Fast scattering simulation tool for multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, A., E-mail: artur.sossin@cea.fr [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Tabary, J.; Rebuffel, V. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Claude Bernard Lyon 1, Centre Léon Bérard (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)

    2015-12-01

    A combination of Monte Carlo (MC) and deterministic approaches was employed as a means of creating a simulation tool capable of providing energy resolved x-ray primary and scatter images within a reasonable time interval. Libraries of Sindbad, a previously developed x-ray simulation software, were used in the development. The scatter simulation capabilities of the tool were validated through simulation with the aid of GATE and through experimentation by using a spectrometric CdTe detector. A simple cylindrical phantom with cavities and an aluminum insert was used. Cross-validation with GATE showed good agreement with a global spatial error of 1.5% and a maximum scatter spectrum error of around 6%. Experimental validation also supported the accuracy of the simulations obtained from the developed software with a global spatial error of 1.8% and a maximum error of around 8.5% in the scatter spectra.

  13. Precise tests of x-ray scattering theories in the Compton regime

    International Nuclear Information System (INIS)

    Dunford, R. W.; Gemmell, D. S.; Kanter, E. P.; Kraessig, B.; Southworth, S. H.; Young, L.

    1999-01-01

    The authors report two experiments intended to test the accuracy of state-of-the-art theoretical predictions for x-ray scattering from low-Z atoms. The first one deals with the differential x-ray scattering cross sections in Ne and He from 11-22 keV and the Ne Compton-to-Rayleigh scattering ratio in this energy range. It was found that, in order to be consistent with the experimental results, an accurate description at low Z must include nonlocal exchange, electron correlation, and dynamic effects. The second experiment concerns the ratio of helium double-to-single ionization for Compton scattering in the 8-28 keV energy range where published experimental and theoretical results so far fail to give a consistent picture. The progress of the experiment and the data analysis is reported

  14. FDTD parallel computational analysis of grid-type scattering filter characteristics for medical X-ray image diagnosis

    International Nuclear Information System (INIS)

    Takahashi, Koichi; Miyazaki, Yasumitsu; Goto, Nobuo

    2007-01-01

    X-ray diagnosis depends on the intensity of transmitted and scattered waves in X-ray propagation in biomedical media. X-ray is scattered and absorbed by tissues, such as fat, bone and internal organs. However, image processing for medical diagnosis, based on the scattering and absorption characteristics of these tissues in X-ray spectrum is not so much studied. To obtain precise information of tissues in a living body, the accurate characteristics of scattering and absorption are required. In this paper, X-ray scattering and absorption in biomedical media are studied using 2-dimensional finite difference time domain (FDTD) method. In FDTD method, the size of analysis space is very limited by the performance of available computers. To overcome this limitation, parallel and successive FDTD method is introduced. As a result of computer simulation, the amplitude of transmitted and scattered waves are presented numerically. The fundamental filtering characteristics of grid-type filter are also shown numerically. (author)

  15. Measurement and Interpretation of Diffuse Scattering in X-Ray Diffraction for Macromolecular Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Michael E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-16

    X-ray diffraction from macromolecular crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering reflects the mean electron density in the unit cells of the crystal. The diffuse scattering arises from correlations in the variations of electron density that may occur from one unit cell to another, and therefore contains information about collective motions in proteins.

  16. Quantitative analysis of thermal diffuse X-ray scattering on single crystals. Communication 2. FCC metals

    International Nuclear Information System (INIS)

    Najsh, V.E.; Novoselova, T.V.; Sagaradze, I.V.; Kvyatkovskij, B.E.; Fedorov, V.I.; Chernenkov, Yu.P.

    1994-01-01

    With the use of X-ray diffractometer a study was made into the intensity of diffuse scattering in Ni crystals with FCC lattice. Earlier accomplished quantitative analysis for BCC crystals was extended to FCC lattices. Comparative evaluation was made for cooperative thermal oscillation patterns and corresponding diffuse scattering in crystals of various structures. Measurements on FCC crystals were carried out at room temperature using AgK a lpha-radiation in 96 points of Ni crystal. 8 refs., 4 figs

  17. Design of a scattering polarimeter for hard X-ray astronomy

    International Nuclear Information System (INIS)

    Costa, E.; Cinti, M.N.; Feroci, M.; Matt, G.; Rapisarda, M.

    1995-01-01

    The design of a new hard X-ray Compton scattering polarimeter based on scintillating fibre technology is presented and studied in detail by means of Monte Carlo calculations. Several different configurations and materials have been tested in order to optimise the sensitivity in the medium/high energy X-ray band. A high sensitivity over the energy band 20-200 keV is obtained for a two material configuration. The advantages deriving from employing a new scintillating material, the YAP (YAlO 3 ), are also discussed. (orig.)

  18. Magnetic x-ray scattering studies of holmium using synchro- tron radiation

    International Nuclear Information System (INIS)

    Gibbs, D.; Moncton, D.E.; D'Amico, K.L.; Bohr, J.; Grier, B.H.

    1985-01-01

    We present the results of magnetic x-ray scattering experiments on the rare-earth metal holmium using synchrotron radiation. Direct high-resolution measurements of the nominally incommensurate magnetic satellite reflections reveal new lock-in behavior which we explain within a simple spin-discommensuration model. As a result of magnetoelastic coupling, the spin-discommensuration array produces additional x-ray diffraction satellites. Their observation further substantiates the model and demonstrates additional advantages of synchrotron radiation for magnetic-structure studies

  19. X-Band Linac Beam-Line for Medical Compton Scattering X-Ray Source

    CERN Document Server

    Dobashi, Katsuhiro; Ebina, Futaro; Fukasawa, Atsushi; Hayano, Hitoshi; Higo, Toshiyasu; Kaneyasu, Tatsuo; Ogino, Haruyuki; Sakamoto, Fumito; Uesaka, Mitsuru; Urakawa, Junji; Yamamoto, Tomohiko

    2005-01-01

    Compton scattering hard X-ray source for 10~80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U. Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard ( 10-80

  20. Electrochemically adsorbed Pb on Ag (111) studied with grazing- incidence x-ray scattering

    International Nuclear Information System (INIS)

    Kortright, J.B.; Ross, P.N.; Melroy, O.R.; Toney, M.F.; Borges, G.L.; Samant, M.G.

    1989-04-01

    Grazing-incidence x-ray scattering studies of the evolution of electrochemically deposited layers of lead on silver (111) as a function of applied electrochemical potential are presented. Measurements were made with the adsorbed layers in contact with solution in a specially designed sample cell. The observed lead structures are a function of the applied potential and range from an incommensurate monolayer, resulting from underpotential deposition, to randomly oriented polycrystalline bulk lead, resulting from lower deposition potentials. These early experiments demonstrate the ability of in situ x-ray diffraction measurements to determine structures associated with electrochemical deposition. 6 refs., 4 figs

  1. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    Science.gov (United States)

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-05-01

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  2. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    International Nuclear Information System (INIS)

    Barbera, M.; Ayers, T.; Collura, A.; Nasillo, G.; Pareschi, G.; Tagliaferri, G.

    2009-01-01

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  3. A high-resolution multiwire area detector for X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Faruqi, A R; Andrews, H [Medical Research Council, Cambridge (UK). Lab. of Molecular Biology

    1989-11-10

    A high-resolution multiwire area detector has been developed for recording X-ray scattering from biological specimens. The detector is 100x100 mm{sup 2} and, under the present operating conditions, has a spatial resolution of about 250 {mu}m in both directions. The detector is set up on a double-mirror focusing camera on a rotating anode X-ray generator and has been used in a number of small-angle experiments, two of which are described in this paper. (orig.).

  4. Evaluation of a hybrid photon counting pixel detector for X-ray polarimetry

    International Nuclear Information System (INIS)

    Michel, T.; Durst, J.

    2008-01-01

    It has already been shown in literature that X-ray sensitive CCDs can be used to measure the degree of linear polarization of X-rays using the effect that photoelectrons are emitted with a non-isotropic angular distribution in respect to the orientation of the electric field vector of impinging photons. Up to now hybrid semiconductor pixel detectors like the Timepix-detector have never been used for X-ray polarimetry. The main reason for this is that the pixel pitch is large compared to CCDs which results in a much smaller analyzing power. On the other hand, the active thickness of the sensor layer can be larger than in CCDs leading to an increased efficiency. Therefore hybrid photon counting pixel detectors may be used for imaging and polarimetry at higher photon energies. For irradiation with polarized X-ray photons we were able to measure an asymmetry between vertical and horizontal double hit events in neighboring pixels of the hybrid photon counting Timepix-detector at room temperature. For the specific spectrum used in our experiment an average polarization asymmetry of (0.96±0.02)% was measured. Additionally, the Timepix-detector with its spectroscopic time-over-threshold-mode was used to measure the dependence of the polarization asymmetry on energy deposition in the detector. Polarization asymmetries between 0.2% at 29 keV and 3.4% at 78 keV energy deposition were determined. The results can be reproduced with our EGS4-based Monte-Carlo simulation

  5. X-ray electromagnetic application technology

    International Nuclear Information System (INIS)

    2011-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, particularly for X-ray electromagnetic application technology from January 2006 to December 2008. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and free-electron laser, Saga Synchrotron Project, X-ray waveguides and waveguide-based lens-less hard-X-ray imaging, X-ray nanofocusing for capillaries and zone plates, dispersion characteristics in photonics crystal consisting of periodic atoms for nanometer waveguides, electromagnetic characteristics of grid structures for scattering fields of nano-meter electromagnetic waves and X-rays, FDTD parallel computing of fundamental scattering and attenuation characteristics of X-ray for medical imaging diagnosis, orthogonal relations of electromagnetic fields including evanescent field in dispersive medium. (author)

  6. An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements

    Science.gov (United States)

    Ross, H. Richard

    1993-01-01

    A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.

  7. Structure and dynamics of concentrated dispersions of polystyrene latex spheres in glycerol: Static and dynamic x-ray scattering

    International Nuclear Information System (INIS)

    Lumma, D.; Lurio, L. B.; Borthwick, M. A.; Falus, P.; Mochrie, S. G. J.

    2000-01-01

    X-ray photon correlation spectroscopy and small-angle x-ray scattering measurements are applied to characterize the dynamics and structure of concentrated suspensions of charge-stabilized polystyrene latex spheres dispersed in glycerol, for volume fractions between 2.7% and 52%. The static structures of the suspensions show essentially hard-sphere behavior. The short-time dynamics shows good agreement with predictions for the wave-vector-dependent collective diffusion coefficient, which are based on a hard-sphere model [C. W. J. Beenakker and P. Mazur, Physica A 126, 349 (1984)]. However, the intermediate scattering function is found to violate a scaling behavior found previously for a sterically stabilized hard-sphere suspension [P. N. Segre and P. N. Pusey, Phys. Rev. Lett. 77, 771 (1996)]. Our measurements are parametrized in terms of a viscoelastic model for the intermediate scattering function [W. Hess and R. Klein, Adv. Phys. 32, 173 (1983)]. Within this framework, two relaxation modes are predicted to contribute to the decay of the dynamic structure factor, with mode amplitudes depending on both wave vector and volume fraction. Our measurements indicate that, for particle volume fractions smaller than about 0.30, the intermediate scattering function is well described in terms of single-exponential decays, whereas a double-mode structure becomes apparent for more concentrated systems

  8. Temperature- and density-dependent x-ray scattering in a low-Z plasma

    International Nuclear Information System (INIS)

    Brown, R.T.

    1976-06-01

    A computer program is described which calculates temperature- and density-dependent differential and total coherent and incoherent x-ray scattering cross sections for a low-Z scattering medium. Temperature and density are arbitrary within the limitations of the validity of local thermodynamic equilbrium, since ionic populations are calculated under this assumption. Scattering cross sections are calculated in the form factor approximation. The scattering medium may consist of any mixure of elements with Z less than or equal to 8, with this limitation imposed by the availability of atomic data

  9. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  10. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    International Nuclear Information System (INIS)

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.

    2015-01-01

    A method of simulating X-ray diffuse scattering from multi-model PDB files is presented. Despite similar agreement with Bragg data, different translation–libration–screw refinement strategies produce unique diffuse intensity patterns. Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls-as-xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis

  11. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Van Benschoten, Andrew H. [University of California San Francisco, San Francisco, CA 94158 (United States); Afonine, Pavel V. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Terwilliger, Thomas C.; Wall, Michael E. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Jackson, Colin J. [Australian National University, Canberra, ACT 2601 (Australia); Sauter, Nicholas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California Berkeley, Berkeley, CA 94720 (United States); Urzhumtsev, Alexandre [Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Université de Lorraine, BP 239, 54506 Vandoeuvre-les-Nancy (France); Fraser, James S., E-mail: james.fraser@ucsf.edu [University of California San Francisco, San Francisco, CA 94158 (United States)

    2015-07-28

    A method of simulating X-ray diffuse scattering from multi-model PDB files is presented. Despite similar agreement with Bragg data, different translation–libration–screw refinement strategies produce unique diffuse intensity patterns. Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls-as-xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.

  12. Design of a 4.8-m ring for inverse Compton scattering x-ray source

    Directory of Open Access Journals (Sweden)

    H. S. Xu

    2014-07-01

    Full Text Available In this paper we present the design of a 50 MeV compact electron storage ring with 4.8-meter circumference for the Tsinghua Thomson scattering x-ray source. The ring consists of four dipole magnets with properly adjusted bending radii and edge angles for both horizontal and vertical focusing, and a pair of quadrupole magnets used to adjust the horizontal damping partition number. We find that the dynamic aperture of compact storage rings depends essentially on the intrinsic nonlinearity of the dipole magnets with small bending radius. Hamiltonian dynamics is found to agree well with results from numerical particle tracking. We develop a self-consistent method to estimate the equilibrium beam parameters in the presence of the intrabeam scattering, synchrotron radiation damping, quantum excitation, and residual gas scattering. We also optimize the rf parameters for achieving a maximum x-ray flux.

  13. Interpretation and Utility of the Moments of Small-Angle X-Ray Scattering Distributions.

    Science.gov (United States)

    Modregger, Peter; Kagias, Matias; Irvine, Sarah C; Brönnimann, Rolf; Jefimovs, Konstantins; Endrizzi, Marco; Olivo, Alessandro

    2017-06-30

    Small angle x-ray scattering has been proven to be a valuable method for accessing structural information below the spatial resolution limit implied by direct imaging. Here, we theoretically derive the relation that links the subpixel differential phase signal provided by the sample to the moments of scattering distributions accessible by refraction sensitive x-ray imaging techniques. As an important special case we explain the scatter or dark-field contrast in terms of the sample's phase signal. Further, we establish that, for binary phase objects, the nth moment scales with the difference of the refractive index decrement to the power of n. Finally, we experimentally demonstrate the utility of the moments by quantitatively determining the particle sizes of a range of powders with a laboratory-based setup.

  14. Ultra-High Field Magnets for X-Ray and Neutron Scattering using High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Broholm, C. [Johns Hopkins Univ., Baltimore, MD (United States); Bird, M. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Breneman, Bruce C. [General Atomics, San Diego, CA (United States); Coffey, Michael [Cryomagnetics, Oak Ridge, TN (United States); Cutler, Roy I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duckworth, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erwin, R. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Hahn, Seungyong [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Hernandez, Yamali [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Herwig, Kenneth W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holland, Leo D. [General Atomics, San Diego, CA (United States); Lonergan, Kevin M. [Oxford Instruments, Abingdon (United Kingdom); Melhem, Ziad [Oxford Instruments, Abingdon (United Kingdom); Minter, Stephen J. [Cryomagnetics, Oak Ridge, TN (United States); Nelson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Paranthaman, M. Parans [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pierce, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruff, Jacob [Cornell Univ., Ithaca, NY (United States); Shen, Tengming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherline, Todd E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smeibidl, Peter G. [Helmholtz-Zentrum Berlin (HZB), (Germany); Tennant, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); van der Laan, Danko [Advanced Conductor Technologies, LLC, Boulder, CO (United States); Wahle, Robert J. [Helmholtz-Zentrum Berlin (HZB), (Germany); Zhang, Yifei [SuperPower, Inc., Schenectady, NY (United States)

    2017-01-01

    X-ray and neutron scattering techniques are capable of acquiring information about the structure and dynamics of quantum matter. However, the high-field magnet systems currently available at x-ray and neutron scattering facilities in the United States are limited to fields of 16 tesla (T) at maximum, which precludes applications that require and/or study ultra-high field states of matter. This gap in capability—and the need to address it—is a central conclusion of the 2005 National Academy of Sciences report by the Committee on Opportunities in High Magnetic Field Science. To address this gap, we propose a magnet development program that would more than double the field range accessible to scattering experiments. With the development and use of new ultra-high field–magnets, the program would bring into view new worlds of quantum matter with profound impacts on our understanding of advanced electronic materials.

  15. Electron Dynamics in the Core-Excited CS_{2} Molecule Revealed through Resonant Inelastic X-Ray Scattering Spectroscopy

    Directory of Open Access Journals (Sweden)

    T. Marchenko

    2015-08-01

    Full Text Available We present an experimental and theoretical study of resonant inelastic x-ray scattering (RIXS in the carbon disulphide CS_{2} molecule near the sulfur K-absorption edge. We observe a strong evolution of the RIXS spectral profile with the excitation energy tuned below the lowest unoccupied molecular orbital (LUMO absorption resonance. The reason for this is twofold. Reducing the photon energy in the vicinity of the LUMO absorption resonance leads to a relative suppression of the LUMO contribution with respect to the emission signal from the higher unoccupied molecular orbitals, which results in the modulation of the total RIXS profile. At even larger negative photon-energy detuning from the resonance, the excitation-energy dependence of the RIXS profile is dominated by the onset of electron dynamics triggered by a coherent excitation of multiple electronic states. Furthermore, our study demonstrates that in the hard x-ray regime, localization of the S 1s core hole occurs in CS_{2} during the RIXS process because of the orientational dephasing of interference between the waves scattering on the two sulfur atoms. Core-hole localization leads to violation of the symmetry selection rules for the electron transitions observed in the spectra.

  16. A comparison of two photon planning algorithms for 8 MV and 25 MV X-ray beams in lung

    International Nuclear Information System (INIS)

    Kan, M.W.K.; Young, E.C.M.; Yu, P.K.N.

    1995-01-01

    The results of a comparison of two photon planning algorithms, the Clarkson Scatter Integration algorithm and the Equivalent Tissue-air Ratio algorithm are reported, using a simple lung phantom for 8 MV and 25 MV X-ray beams of field sizes 5 cm x 5 cm and 10 cm x 10 cm. Central axis depth-dose distributions were measured with a thimble chamber or a Markus parallel-plate chamber. Dose profile distributions were measured with TLD rods and films. Measured dose distributions were then compared to predicted dose distributions. Both algorithms overestimate the dose at mid-lung as they do not account for the effect of electronic disequilibrium. The Clarkson algorithm consistently shows less accurate results in comparison with the ETAR algorithm. There is additional error in the case of the Clarkson algorithm because of the assumption of a unit density medium in calculating scatter, which gives an overestimate in the effective scatter-air ratios in lung. For a 5 cm x 5 cm field, the error of dose prediction for 25 MV x-ray beam at mid-lung is 15.8 % and 12.8 % for Clarkson and ETAR algorithm respectively. At 8 MV the error is 9.3 % and 5.1 % respectively. In addition, both algorithms underestimate the penumbral width at mid-lung as they do not account for the penumbral flaring effect in low density medium. 25 refs., 2 tabs., 5 figs

  17. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  18. Characterizing the behavior of scattered radiation in multi-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sossin, Artur, E-mail: artur.sossin@gmail.com [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Rebuffel, V.; Tabary, J. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France); Létang, J.M.; Freud, N. [Univ Lyon, INSA-Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Centre Léon Bérard, CREATIS UMR 5220 U1206, F-69373 Lyon (France); Verger, L. [CEA-LETI MINATEC Grenoble, F-38054 Grenoble (France)

    2017-04-01

    Scattered radiation results in various undesirable effects in medical diagnostics, non-destructive testing (NDT) and security x-ray imaging. Despite numerous studies characterizing this phenomenon and its effects, the knowledge of its behavior in the energy domain remains limited. The present study aims at summarizing some key insights on scattered radiation originating from the inspected object. In addition, various simulations and experiments with limited collimation on both simplified and realistic phantoms were conducted in order to study scatter behavior in multi-energy x-ray imaging. Results showed that the spectrum shape of the scatter component can be considered preserved in the first approximation across the image plane for various acquisition geometries and phantoms. The variations exhibited by the scatter spectrum were below 10% for most examined cases. Furthermore, the corresponding spectrum shape proved to be also relatively invariant for different experimental angular projections of one of the examined phantoms. The observed property of scattered radiation can potentially lead to the decoupling of spatial and energy scatter components, which can in turn enable speed ups in scatter simulations and reduce the complexity of scatter correction.

  19. Scatter fractions from linear accelerators with x-ray energies from 6 to 24 MV.

    Science.gov (United States)

    Taylor, P L; Rodgers, J E; Shobe, J

    1999-08-01

    Computation of shielding requirements for a linear accelerator must take into account the amount of radiation scattered from the patient to areas outside the primary beam. Currently, the most frequently used data are from NCRP 49 that only includes data for x-ray energies up to 6 MV and angles from 30 degrees to 135 degrees. In this work we have determined by Monte Carlo simulation the scattered fractions of dose for a wide range of energies and angles of clinical significance including 6, 10, 18, and 24 MV and scattering angles from 10 degrees to 150 degrees. Calculations were made for a 400 cm2 circular field size impinging onto a spherical phantom. Scattered fractions of dose were determined at 1 m from the phantom. Angles from 10 degrees to 30 degrees are of concern for higher energies where the scatter is primarily in the forward direction. An error in scatter fraction may result in too little secondary shielding near the junction with the primary barrier. The Monte Carlo code ITS (Version 3.0) developed at Sandia National Laboratory and NIST was used to simulate scatter from the patient to the barrier. Of significance was the variation of calculated scattered dose with depth of measurement within the barrier indicating that accurate values may be difficult to obtain. Mean energies of scatter x-ray spectra are presented.

  20. Inverse Compton scattering X-ray source yield optimization with a laser path folding system inserted in a pre-existent RF linac

    Energy Technology Data Exchange (ETDEWEB)

    Chaleil, A.; Le Flanchec, V.; Binet, A.; Nègre, J.P.; Devaux, J.F.; Jacob, V.; Millerioux, M.; Bayle, A.; Balleyguier, P. [CEA DAM DIF, F-91297 Arpajon (France); Prazeres, R. [CLIO/LCP, Bâtiment 201, Université Paris-Sud, F-91450 Orsay (France)

    2016-12-21

    An inverse Compton scattering source is under development at the ELSA linac of CEA, Bruyères-le-Châtel. Ultra-short X-ray pulses are produced by inverse Compton scattering of 30 ps-laser pulses by relativistic electron bunches. The source will be able to operate in single shot mode as well as in recurrent mode with 72.2 MHz pulse trains. Within this framework, an optical multipass system that multiplies the number of emitted X-ray photons in both regimes has been designed in 2014, then implemented and tested on ELSA facility in the course of 2015. The device is described from both geometrical and timing viewpoints. It is based on the idea of folding the laser optical path to pile-up laser pulses at the interaction point, thus increasing the interaction probability. The X-ray output gain measurements obtained using this system are presented and compared with calculated expectations.

  1. Technique charts for EC film: direct optical measurements to account for the effects of X-ray scatter

    International Nuclear Information System (INIS)

    Munro, Peter; Jordan, Kevin; Lewis, Craig; Heerema, Tim

    2001-01-01

    Purpose: To develop a method of measuring technique charts for enhanced contrast (EC) film, to demonstrate how X-ray scatter changes the response of EC film, and to generate technique charts for general use. Methods and Materials: We have developed a 'digital cassette' - consisting of a metal plate/phosphor screen, a light guide, a photodiode sensor, and an electrometer - that can be used to measure the light generated in the phosphor screen of the film cassette. In turn, these measurements can be used to generate technique charts for EC film. The digital cassette has been used to measure technique charts for 4-MV and 6-MV X-ray beams for a variety of different phantom thicknesses, field sizes, and phantom-to-cassette air gaps. Results and Discussion: We have observed that the signals generated in an ionization chamber located 9.4 cm behind a 30-cm-thick water-equivalent phantom increase by a factor of 1.9 when the field size is increased from 4x4 cm 2 to 40x40 cm 2 when irradiated by a 6-MV X-ray beam. However, the change in EC film response is a factor of 3.5 under the same conditions. Irradiations to optimally expose the EC film predicted by the digital cassette differ by up to 82% compared to those predicted by ion chamber measurements. Nevertheless, the technique charts measured using the digital cassette predict the response of the EC film to ±0.2 optical density. The overresponse of the EC film is most likely due to low-energy scattered photons, which interact with the high atomic number (Z=64) phosphor screen of the enhanced contrast localization cassette. Therefore, simple solutions, such as placing a high atomic number material above the enhanced contrast localization cassette, can reduce this contribution by scattered photons to the signal generated in the cassettes. Conclusions: We have developed a digital cassette that can make more accurate measurements of the technique charts for EC films. Our measurements show that under some conditions, X-ray

  2. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    Science.gov (United States)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future

  3. Magnetic photon scattering

    International Nuclear Information System (INIS)

    Lovesey, S.W.

    1987-05-01

    The report reviews, at an introductory level, the theory of photon scattering from condensed matter. Magnetic scattering, which arises from first-order relativistic corrections to the Thomson scattering amplitude, is treated in detail and related to the corresponding interaction in the magnetic neutron diffraction amplitude. (author)

  4. The Soft X-ray Spectrophotometer SphinX for the CORONAS-Photon Mission

    Science.gov (United States)

    Sylwester, Janusz; Kowalinski, Miroslaw; Szymon, Gburek; Bakala, Jaroslaw; Kuzin, Sergey; Kotov, Yury; Farnik, Frantisek; Reale, Fabio

    The purpose, construction details and calibration results of the new design, Polish-led solar X-ray spectrophotometer SphinX will be presented. The instrument constitutes a part of the Russian TESIS X-ray and EUV complex aboard the forthcoming CORONAS-Photon solar mission to be launched later in 2008. SphinX uses Si-PIN detectors for high time resolution (down to 0.01 s) measurements of solar spectra in the energy range between 0.5 keV and 15 keV. The spectral resolution allows separating 256 individual energy channels in this range with particular groups of lines clearly distinguishable. Unprecedented accuracy of the instrument calibration at the XACT (Palermo) and BESSY (Berlin) synchrotron will allow for establishing the solar soft X-ray photometric reference system. The cross-comparison between SphinX and the other instruments presently in orbit like XRT on Hinode, RHESSI and GOES X-ray monitor, will allow for a precise determination of the coronal emission measure and temperature during both very low and very high activity periods. Examples of the detectors' ground calibration results as well as the calculated synthetic spectra will be presented. The operation of the instrument while in orbit will be discussed allowing for suggestions from other groups to be still included in mission planning.

  5. Preliminary small-angle X-ray scattering and X-ray diffraction studies of the BTB domain of lola protein from Drosophila melanogaster

    Science.gov (United States)

    Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Dorovatovskii, P. V.; Popov, V. O.

    2017-11-01

    The Drosophila genome has several dozens of transcription factors (TTK group) containing BTB domains assembled into octamers. The LOLA protein belongs to this family. The purification, crystallization, and preliminary X-ray diffraction and small-angle X-ray scattering (SAXS) studies of the BTB domain of this protein are reported. The crystallization conditions were found by the vapor-diffusion technique. A very low diffraction resolution (8.7 Å resolution) of the crystals was insufficient for the determination of the threedimensional structure of the BTB domain. The SAXS study demonstrated that the BTB domain of the LOLA protein exists as an octamer in solution.

  6. A new microcalorimeter concept for photon counting X-ray spectroscopy

    International Nuclear Information System (INIS)

    Silver, E.H.; Labov, S.E.

    1989-01-01

    We present an innovative approach for performing photon counting X-ray spectroscopy with cryogenic microcalorimeters. The detector concept takes advantage of the temperature dependence of the dielectric constant in ferroelectric materials. A dielectric calorimeter has many potential advantages over traditional resistive devices, particularly in the reduction of Johnson noise. This makes the energy resolution for photon counting spectroscopy limited only to the noise produced by the intrinsic temperature fluctuations of the device. The detector concept is presented and its predicted performance is compared with resistive calorimeters. Calculations have shown that practical instruments operating with an energy resolution less than 20 eV may be possible at 300 mK. (orig.)

  7. Mapping of trace elements with photon microprobes: x-ray fluorescence with focussed synchrotron radiation

    International Nuclear Information System (INIS)

    Hanson, A.L.; Jones, K.W.; Gordon, B.M.; Pounds, J.G.; Rivers, M.L.; Schidlovsky, G.

    1985-04-01

    High energy electron synchrotron storage rings provide copious quantities of polarized photons that make possible the mapping of many trace elements with sensitivities at the parts per billion (ppB) level with spatial resolutions in the micrometer range. The brightness of the x-ray ring of the National Synchrotron Light Source (NSLS), presently being commissioned, will be five orders of magnitude larger than that of the bremsstrahlung spectrum of state-of-the-art rotating anode tubes. We will discuss mapping trace elements with a photon microprobe presently being constructed for use at the NSLS. This microprobe will have micrometer spatial resolution

  8. Strong Three-magnon Scattering in Cuprates by Resonant X-rays

    OpenAIRE

    Ament, Luuk J. P.; Brink, Jeroen van den

    2010-01-01

    We show that Resonant Inelastic X-ray scattering (RIXS) is sensitive to three-magnon excitations in cuprates. Even if it requires three electrons to simultaneously flip their spin, the RIXS tri-magnon scattering amplitude is not small. At the Cu $L$-edge its intensity is generally larger than the bi-magnon one and at low transferred momentum even larger than the single-magnon intensity. At the copper $M$-edge the situation is yet more extreme: in this case three-magnon scattering is dominatin...

  9. Neutron, x-ray scattering and TEM studies of Ni-Ti multilayers

    International Nuclear Information System (INIS)

    Keem, J.E.; Wood, J.; Grupido, N.; Hart, K.; Nutt, S.; Reichel, D.G.; Yelon, W.B.

    1988-01-01

    The authors present an analysis of Ni-Ti multilayer neutron reflectors and supermirrors undertaken to identify the causes of the lower than expected observed scattering power and critical angle enhancement of Ni-Ti supermirrors. Results of these investigations focus attention on cusp formation in the Ni-Ti bilayers as probable cause for the reduced neutron scattering power. Grazing angle x-ray and neutron scattering, wide angle neutron diffraction and analytical cross sectional TEM have been used. The multilayers were produced by magnetron sputtering and ion-beam deposition on float glass substrates and silicon wafers

  10. X-ray crystal structure and small-angle X-ray scattering of sheep liver sorbitol dehydrogenase

    DEFF Research Database (Denmark)

    Yennawar, Hemant; Møller, Magda; Gillilan, Richard

    2011-01-01

    The X-ray crystal structure of sheep liver sorbitol dehydrogenase (slSDH) has been determined using the crystal structure of human sorbitol dehydrogenase (hSDH) as a molecular-replacement model. slSDH crystallized in space group I222 with one monomer in the asymmetric unit. A conserved tetramer...

  11. X-ray fluorescence in some medium-Z elements excited by 59.5 keV photons

    International Nuclear Information System (INIS)

    Han, I.; Shahin, M.; Demir, L.; Narmanli, E.

    2010-01-01

    K X-ray fluorescence parameters cross sections and average shell fluorescence yields) for selected ten elements in the atomic range 42 ≤ Z ≤ 66 have been experimentally determined at photon excitation energy of 59.5 keV. K X-rays emitted from the samples have been counted by a Si (Li) detector. The K spectra for investigated elements have been derived from the measured K shell X-ray spectra by peak fitting process. Experimental results of K X-ray fluorescence parameters have been compared with theory. In general there is an agreement within the standard uncertainties of the experimental and theoretical values

  12. Power spectrum analysis of the x-ray scatter signal in mammography and breast tomosynthesis projections.

    Science.gov (United States)

    Sechopoulos, Ioannis; Bliznakova, Kristina; Fei, Baowei

    2013-10-01

    To analyze the frequency domain characteristics of the signal in mammography images and breast tomosynthesis projections with patient tissue texture due to detected scattered x-rays. Acquisitions of x-ray projection images of 19 different patient breasts were simulated using previously acquired volumetric patient images. Acquisition of these images was performed with a dedicated breast CT prototype system, and the images were classified into voxels representing skin, adipose, and glandular tissue with a previously validated automated algorithm. The classified three dimensional images then underwent simulated mechanical compression representing that which is performed during acquisition of mammography and breast tomosynthesis images. The acquisition of projection images of each patient breast was simulated using Monte Carlo methods with each simulation resulting in two images: one of the primary (non-scattered) signal and one of the scatter signal. To analyze the scatter signal for both mammography and breast tomosynthesis, two projections images of each patient breast were simulated, one with the x-ray source positioned at 0° (mammography and central tomosynthesis projection) and at 30° (wide tomosynthesis projection). The noise power spectra (NPS) for both the scatter signal alone and the total signal (primary + scatter) for all images were obtained and the combined results of all patients analyzed. The total NPS was fit to the expected power-law relationship NPS(f) = k/f β and the results were compared with those previously published on the power spectrum characteristics of mammographic texture. The scatter signal alone was analyzed qualitatively and a power-law fit was also performed. The mammography and tomosynthesis projections of three patient breasts were too small to analyze, so a total of 16 patient breasts were analyzed. The values of β for the total signal of the 0° projections agreed well with previously published results. As expected, the scatter

  13. TH-AB-209-11: Breast Microcalcification Classification Using Spectral X-Ray Coherent Scatter Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ghammraoui, B; M Popescu, L; Badano, A [Food & Drug Administration, Silver Spring, MD (United States)

    2016-06-15

    Purpose: To investigate the ability of Coherent Scatter Computed Tomography (CSCT) to distinguish non-invasively between type I calcifications, consisting of calcium oxalate dihydrate (CO) compounds which are more often associated with benign lesions, and type II calcifications containing hydroxyapatite (HA) which are predominantly associated with malignant tumors. Methods: The coherent scatter cross sections of HA and CO were measured using an energy dispersive x-ray diffractometer. The measured cross sections were introduced into MC-GPU Monte Carlo simulation code for studying the applicability of CSCT to discriminate between the two types of microcalcifications within the whole breast. Simulations were performed on a virtual phantom with inserted HA and CO spots of different sizes and placed in regions of interest having different background compositions. We considered a polychromatic x-ray source and an energy resolving photon counting detector. We applied an algorithm that estimates scatter components in projection space in order to obtain material-specific images of the breast. As material components adipose, glandular, HA and CO were used. The relative contrast of HA and CO components were used for type I and type II microcalcification discrimination. Results: The reconstructed CSCT images showed material-specific component-contrast values, with the highest CO or HA component contrast corresponding generally to the actual CO or HA feature, respectively. The discrimination performance varies with the x-ray intensity, calcification size, and background composition. The results were summarized using receiver operating characteristic (ROC) analysis with the area under the curve (AUC) taken as an overall indicator of discrimination performance and showing high AUC values up to unity. Conclusion: The simulation results obtained for a uniform breast imaging phantom indicate that CSCT has potential to be used as a non-invasive method for discrimination between type

  14. X-ray diffuse scattering effects from Coulomb-type defects in multilayered structures

    International Nuclear Information System (INIS)

    Olikhovskii, S.I.; Molodkin, V.B.; Skakunova, E.S.; Kislovskii, E.N.; Fodchuk, I.M.

    2009-01-01

    The theoretical X-ray diffraction model starting from Takagi-Taupin equation has been developed for the description of coherent and diffuse components of the rocking curve (RC) measured from the multilayered crystal structure with randomly distributed Coulomb-type defects in all the layers and substrate. The model describes both diffuse scattering (DS) intensity distribution and influence of DS on attenuation and angular redistribution of the coherent X-ray scattering intensity. By analyzing the total measured RC with using the proposed diffraction model, the chemical compositions, strains, and characteristics of dislocation loops in layers and substrate of the multilayered structure with InGaAsN/GaAs single quantum well have been determined. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  15. Nonspherical atomic ground-state densities and chemical deformation densities from x-ray scattering

    International Nuclear Information System (INIS)

    Ruedenberg, K.; Schwarz, W.H.E.

    1990-01-01

    Presuming that chemical insight can be gained from the difference between the molecular electron density and the superposition of the ground-state densities of the atoms in a molecule, it is pointed out that, for atoms with degenerate ground states, an unpromoted ''atom in a molecule'' is represented by a specific ensemble of the degenerate atomic ground-state wave functions and that this ensemble is determined by the anisotropic local surroundings. The resulting atomic density contributions are termed oriented ground state densities, and the corresponding density difference is called the chemical deformation density. The constraints implied by this conceptual approach for the atomic density contributions are formulated and a method is developed for determining them from x-ray scattering data. The electron density of the appropriate promolecule and its x-ray scattering are derived, the determination of the parameters of the promolecule is outlined, and the chemical deformation density is formulated

  16. Revisiting Bragg's X-ray microscope: scatter based optical transient grating detection of pulsed ionising radiation.

    Science.gov (United States)

    Fullagar, Wilfred K; Paganin, David M; Hall, Chris J

    2011-06-01

    Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Structural characterization of oxidized allotaxially grown CoSi2 layers by x-ray scattering

    International Nuclear Information System (INIS)

    Kaendler, I. D.; Seeck, O. H.; Schlomka, J.-P.; Tolan, M.; Press, W.; Stettner, J.; Kappius, L.; Dieker, C.; Mantl, S.

    2000-01-01

    A series of buried CoSi 2 layers prepared by a modified molecular beam epitaxy process (allotaxy) and a subsequent wet-oxidation process was investigated by x-ray scattering. The oxidation time which determines the depth in which the CoSi 2 layers are located within the Si substrates has been varied during the preparation. The electron density profiles and the structure of the interfaces were extracted from specular reflectivity and diffuse scattering measurements. Crystal truncation rod investigations yielded the structure on an atomic level (crystalline quality). It turns out that the roughness of the CoSi 2 layers increases drastically with increasing oxidation time, i.e., with increasing depth of the buried layers. Furthermore, the x-ray data reveal that the oxidation growth process is diffusion limited. (c) 2000 American Institute of Physics

  18. Structure of liposome encapsulating proteins characterized by X-ray scattering and shell-modeling

    International Nuclear Information System (INIS)

    Hirai, Mitsuhiro; Kimura, Ryota; Takeuchi, Kazuki; Hagiwara, Yoshihiko; Kawai-Hirai, Rika; Ohta, Noboru; Igarashi, Noriyuki; Shimuzu, Nobutaka

    2013-01-01

    Wide-angle X-ray scattering data using a third-generation synchrotron radiation source are presented. Lipid liposomes are promising drug delivery systems because they have superior curative effects owing to their high adaptability to a living body. Lipid liposomes encapsulating proteins were constructed and the structures examined using synchrotron radiation small- and wide-angle X-ray scattering (SR-SWAXS). The liposomes were prepared by a sequential combination of natural swelling, ultrasonic dispersion, freeze-throw, extrusion and spin-filtration. The liposomes were composed of acidic glycosphingolipid (ganglioside), cholesterol and phospholipids. By using shell-modeling methods, the asymmetric bilayer structure of the liposome and the encapsulation efficiency of proteins were determined. As well as other analytical techniques, SR-SWAXS and shell-modeling methods are shown to be a powerful tool for characterizing in situ structures of lipid liposomes as an important candidate of drug delivery systems

  19. X-ray scattering on liquid-gas interfaces; Roentgenstreuung an Fluessigkeits-Gas Grenzflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Michael

    2006-07-01

    In the framework of this thesis two different theme-fields were studied with dhe methods of the elastic, surface sensitive X-ray scattering. In the first part of the thesis the liquid-gas interfaces water-propane and glycerol-isobutane were studied concerning the structure formation on these interfaces. The system water-propane served for the study of the gas hydrate formation on the water-gas interface. Studies on this interface could give no hints on the formation of propane hydrates or propane-hydrate fragments. However the adsorption of molecularly thin propane films on the water surface was observed. The adsorption behaviour of gases on liquid surfaces was studied by further experiments on the glycerol-isobutane interface. In the second part of the thesis the surfaces of aqueous salt solutions and water were studied. The lateralstructure of these liquid-gas interfaces was studied by the method of the diffuse X-ray scattering.

  20. X-ray scattering for the characterization of lyophilized breast tissue samples

    International Nuclear Information System (INIS)

    Elshemey, Wael M.; Mohamed, Fayrouz S.; Khater, Ibrahim M.

    2013-01-01

    This work investigates the possibility of characterizing breast cancer by measuring the X-ray scattering profiles of lyophilized excised breast tissue samples. Since X-ray scattering from water-rich tissue is dominated by scattering from water, the removal of water by lyophilization would enhance the characterization process. In the present study, X-ray scattering profiles of 22 normal, 22 malignant and 10 benign breast tissue samples are measured. The cut-offs of scatter diagrams, sensitivity, specificity and diagnostic accuracy of three characterization parameters (full width at half maximum (FWHM) for the peak at 1.1 nm −1 , area under curve (AUC), and ratio of 1st to 2nd scattering peak intensities (I 1 /I 2 %)) are calculated and compared to the data from non-lyophilized samples. Results show increased sensitivity (up to 100%) of the present data on lyophilized breast tissue samples compared to previously reported data for non-lyophilized samples while the specificity (up to 95.4%), diagnostic accuracy (up to 95.4%) and receiver operating characteristic (ROC) curve values (up to 0.9979) for both sets of data are comparable. The present study shows significant differences between normal samples and each of malignant and benign samples. Only subtle differences exist between malignant and benign lyophilized breast tissue samples where FWHM=0.7±0.1 and 0.8±0.3, AUC=1.3±0.2 and 1.4±0.2 and I 1 /I 2 %=44.9±11.0 and 52.4±7.6 for malignant and benign samples respectively. - Highlights: • X-ray scattering profiles of breast tissue samples are acquired. • Three X-ray profile characterization parameters are calculated. • The cut-offs, sensitivity, specificity and diagnostic accuracy are calculated. • They are compared to the data from non-lyophilized samples. • Results show increased sensitivity in case of lyophilized samples

  1. TH-AB-209-10: Breast Cancer Identification Through X-Ray Coherent Scatter Spectral Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kapadia, A; Morris, R; Albanese, K; Spencer, J; McCall, S; Greenberg, J [Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: We have previously described the development and testing of a coherent-scatter spectral imaging system for identification of cancer. Our prior evaluations were performed using either tissue surrogate phantoms or formalin-fixed tissue obtained from pathology. Here we present the first results from a scatter imaging study using fresh breast tumor tissues obtained through surgical excision. Methods: A coherent-scatter imaging system was built using a clinical X-ray tube, photon counting detectors, and custom-designed coded-apertures. System performance was characterized using calibration phantoms of biological materials. Fresh breast tumors were obtained from patients undergoing mastectomy and lumpectomy surgeries for breast cancer. Each specimen was vacuum-sealed, scanned using the scatter imaging system, and then sent to pathology for histological workup. Scatter images were generated separately for each tissue specimen and analyzed to identify voxels containing malignant tissue. The images were compared against histological analysis (H&E + pathologist identification of tumors) to assess the match between scatter-based and histological diagnosis. Results: In all specimens scanned, the scatter images showed the location of cancerous regions within the specimen. The detection and classification was performed through automated spectral matching without the need for manual intervention. The scatter spectra corresponding to cancer tissue were found to be in agreement with those reported in literature. Inter-patient variability was found to be within limits reported in literature. The scatter images showed agreement with pathologist-identified regions of cancer. Spatial resolution for this configuration of the scanner was determined to be 2–3 mm, and the total scan time for each specimen was under 15 minutes. Conclusion: This work demonstrates the utility of coherent scatter imaging in identifying cancer based on the scatter properties of the tissue. It

  2. The APS x-ray undulator photon beam position monitor and tests at CHESS and NSLS

    International Nuclear Information System (INIS)

    Shu, D.; Rodricks, B.; Barraza, J.; Sanchez, T.; Kuzay, T.M.

    1992-01-01

    The advent of third generation synchrotron radiation sources, like the Advanced Photon Source (APS), will provide significant increases in brilliance over existing synchrotron sources. The APS x-ray undulators will increase the brilliance in the 3-40 KeV range by several orders of magnitude. Thus, the design of the photon beam position monitor is a challenging engineering task. The beam position monitors must withstand the high thermal load, be able to achieve sub-micron spatial resolution while maintaining their stability, and be compatible with both undulators and wigglers. A preliminary APS prototype photon beam position monitor consisting of a CVD-diamond-based, tungsten-coated blade was tested on the APS/CHESS undulator at the Cornell High Energy Synchrotron Radiation Source (CHESS) and on the NSLS X-13 undulator beamline. Results from these tests, as well as the design of this prototype APS photon beam position monitor, will be discussed in this paper

  3. The APS X-ray undulator photon beam position monitor and tests at CHESS and NSLS

    International Nuclear Information System (INIS)

    Shu, D.; Rodricks, B.; Barraza, J.; Sanchez, T.; Kuzay, T.M.

    1992-01-01

    The advent of thirs generation synchrotron sources, like the Advanced Photon Source (APS), will provide significant increases in brilliance over existing synchrotron sources. The APS X-ray undulators will increase the brilliance in the 3-40 keV range by several orders of magnitude. Thus, the design of the photon beam position monitor is a challenging engineering task. The beam position monitors must withstand the high thermal load, be able to achieve submicron spatial resolution while maintaining their stability, and be compatible with both undulators and wigglers. A preliminary APS prototype photon beam position monitor consisting of a CVD-diamond-based, tungsten-coated blade was tested on the APS/CHESS undulator at the Cornell High Energy Synchrotron Radiation Source (CHESS) and on the NSLS X-13 undulator beamline. Results from these tests, as well as the design of this prototype APS photon beam position monitor, will be discussed in this paper. (orig.)

  4. Simulated x-ray scattering of protein solutions using explicit-solvent models

    International Nuclear Information System (INIS)

    Park, Sanghyun; Bardhan, Jaydeep P.; Makowski, Lee; Roux, Benoit

    2009-01-01

    X-ray solution scattering shows new promise for the study of protein structures, complementing crystallography and nuclear magnetic resonance. In order to realize the full potential of solution scattering, it is necessary to not only improve experimental techniques but also develop accurate and efficient computational schemes to relate atomistic models to measurements. Previous computational methods, based on continuum models of water, have been unable to calculate scattering patterns accurately, especially in the wide-angle regime which contains most of the information on the secondary, tertiary, and quaternary structures. Here we present a novel formulation based on the atomistic description of water, in which scattering patterns are calculated from atomic coordinates of protein and water. Without any empirical adjustments, this method produces scattering patterns of unprecedented accuracy in the length scale between 5 and 100 A, as we demonstrate by comparing simulated and observed scattering patterns for myoglobin and lysozyme.

  5. High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles

    NARCIS (Netherlands)

    Huotari, Simo; Suljoti, Edlira; Sahle, Christoph J.; Raedel, Stephanie; Monaco, Giulio; de Groot, Frank M. F.

    2015-01-01

    We report high-resolution x-ray Raman scattering studies of high-order multipole spectra of rare earth 4d -> 4f excitations (the N-4,N-5 absorption edge) in nanoparticles of the phosphates LaPO4, CePO4, PrPO4, and NdPO4. We also present corresponding data for La 5p -> 5d excitations (the O-2,O-3

  6. X-ray and neutron small-angle scattering studies of human serum lipoproteins

    International Nuclear Information System (INIS)

    Luzzati, V.; Tardieu, A.; Mateu, L.; Sardet, C.; Stuhrmann, H.B.; Aggerbeck, L.; Scanu, A.M.

    1976-01-01

    The paper describes an extended x-ray study of two types of human serum lipoproteins and a neutron study of one of them. The results are similar and to some extent complementary. Serum lipoproteins provide an excellent illustration of the wealth of information that can be obtained by a small-angle scattering approach to the structure of particles with non-uniform density distribution, by using solvents of variable density

  7. X-ray scattering studies of non-equilibrium ordering processes

    International Nuclear Information System (INIS)

    Nagler, S.E.

    1992-01-01

    This report summarizes the major results obtained under US DOE Grant Number FG05-90ER45280 from the dates November 1, 1989 through October 31, 1992 inclusive. The principal work includes x-ray scattering studies of phase transition kinetics in binary alloy order-disorder transitions, block co-polymer crystallization, and charge density wave solids under applied electric fields, and studies of magnetic excitations in low dimensional quantum systems

  8. Study of humic acids by small-angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Timchenko, A.; Trubetskaya, O.; Kihara, H.

    1999-01-01

    Humic acids are an important component of natural ecological system and represent a polydisperse complex of natural biopolymers with molecular masses from several to hundreds kilodaltons. They are both a source of organic compounds and a protector against anthropogenic pollutions of biosphere. The aim of the report is to underline some possibilities of small-angle X-ray and neutron scattering to study HA and their fractions. (author)

  9. Quantitative characterization of fatty liver disease using x-ray scattering

    International Nuclear Information System (INIS)

    Elsharkawy, Wafaa B.; Elshemey, Wael M.

    2013-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a dynamic condition in which fat abnormally accumulates within the hepatocytes. It is believed to be a marker of risk of later chronic liver diseases, such as liver cirrhosis and carcinoma. The fat content in liver biopsies determines its validity for liver transplantation. Transplantation of livers with severe NAFLD is associated with a high risk of primary non-function. Moreover, NAFLD is recognized as a clinically important feature that influences patient morbidity and mortality after hepatic resection. Unfortunately, there is a lack in a precise, reliable and reproducible method for quantification of NAFLD. This work suggests a method for the quantification of NAFLD. The method is based on the fact that fatty liver tissue would have a characteristic x-ray scattering profile with a relatively intense fat peak at a momentum transfer value of 1.1 nm −1 compared to a soft tissue peak at 1.6 nm −1 . The fat content in normal and fatty liver is plotted against three profile characterization parameters (ratio of peak intensities, ratio of area under peaks and ratio of area under fat peak to total profile area) for measured and Monte Carlo simulated x-ray scattering profiles. Results show a high linear dependence (R 2 >0.9) of the characterization parameters on the liver fat content with a reported high correlation coefficient (>0.9) between measured and simulated data. These results indicate that the current method probably offers reliable quantification of fatty liver disease. - Highlights: • A method for the quantification of NAFLD is suggested. • Fatty liver tissue has characteristic x-ray scattering profile. • Profile characterization parameters show differences between normal and fatty liver. • Monte Carlo simulated x-ray scattering profiles are compared to measured

  10. Image combination enhancement method for X-ray compton back-scattering security inspection body scanner

    International Nuclear Information System (INIS)

    Wang Huaiying; Zhang Yujin; Yang Lirui; Li Dong

    2011-01-01

    As for X-ray Compton Back-Scattering (CBS) body scanner, image clearness is very important for the performance of detecting the contraband hidden on the body. A new image combination enhancement method is provided based on characteristics of CBS body images and points of human vision. After processed by this method, the CBS image will be obviously improved with clear levels, distinct outline and uniform background. (authors)

  11. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    International Nuclear Information System (INIS)

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  12. Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector

    DEFF Research Database (Denmark)

    Ejdrup, T.; Lemke, H.T.; Haldrup, Martin Kristoffer

    2009-01-01

    The recent developments in X-ray detectors have opened new possibilities in the area of time-resolved pump/probe X-ray experiments; this article presents the novel use of a PILATUS detector to achieve X-ray pulse duration limited time-resolution at the Advanced Photon Source (APS), USA...... limited time-resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X-ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline........ The capability of the gated PILATUS detector to selectively detect the signal from a given X-ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of [alpha]-perylene illustrates the possibility of reaching an X-ray pulse duration...

  13. PREFACE: Structure and dynamics determined by neutron and x-ray scattering Structure and dynamics determined by neutron and x-ray scattering

    Science.gov (United States)

    Müller-Buschbaum, Peter

    2011-06-01

    Neutron and x-ray scattering have emerged as powerful methods for the determination of structure and dynamics. Driven by emerging new, powerful neutron and synchrotron radiation sources, the continuous development of new instrumentation and novel scattering techniques gives rise to exciting possibilities. For example, in situ observations become possible via a high neutron or x-ray flux at the sample and, as a consequence, morphological transitions with small time constants can be detected. This special issue covers a broad range of different materials from soft to hard condensed matter. Hence, different material classes such as colloids, polymers, alloys, oxides and metals are addressed. The issue is dedicated to the 60th birthday of Professor Winfried Petry, scientific director of the Research Neutron Source Heinz Maier-Leibnitz (FRM-II), Germany, advisor at the physics department for the Bayerische Elite-Akademie, chair person of the Arbeitsgemeinschaft Metall- und Materialphysik of the German Physical Society (DPG) and a member of the professional council of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). We would like to acknowledge and thank all contributors for their submissions, which made this special issue possible in the first place. Moreover, we would like to thank the staff at IOP Publishing for helping us with the administrative aspects and for coordinating the refereeing process, and Valeria Lauter for the beautiful cover artwork. Finally, to the readers, we hope that you find this special issue a valuable resource that provides insights into the present possibilities of neutron and x-ray scattering as powerful tools for the investigation of structure and dynamics. Structure and dynamics determined by neutron and x-ray scattering contents In situ studies of mass transport in liquid alloys by means of neutron radiography F Kargl, M Engelhardt, F Yang, H Weis, P Schmakat, B Schillinger, A Griesche and A Meyer Magnetic spin

  14. X-ray evidence of low-energy photon therapy for cervical lordosis restoration and radial head spur healing

    Science.gov (United States)

    Fitz-Ritson, Donald; Filonenko, Natalia; Salansky, Norman M.

    1994-09-01

    X rays were used for low energy photon therapy (LEPT) efficacy assessment for cervical lordosis restoration and radial head spur healing. Two cases, their evaluation, and treatment are discussed along with the follow-up results.

  15. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  16. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    International Nuclear Information System (INIS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-01-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  17. Density Determination of Metallic Melts from Diffuse X-Ray Scattering

    Science.gov (United States)

    Brauser, N.; Davis, A.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Liquids comprise several important structural components of the deep Earth, for example, the present outer core and a hypothesized magma ocean early in Earth history. However, the physical properties of the constituent materials of these structures at high pressures and temperatures are less well constrained than their crystalline counterparts. Determination of the physical properties of these liquids can inform geophysical models of the composition and structure of the Earth, but methods for studying the physical properties of liquids at high pressure and temperatures are underdeveloped. One proposed method for direct determination of density of a melt requires analysis of the diffuse scattered X-ray signal of the liquid. Among the challenges to applying this technique to high-pressure melts within a laser heated diamond anvil cell are the low signal-to-noise ratio and overlapping diffraction peaks from the crystalline components of the sample assembly interfering with the diffuse scattering from the liquid. Recent advances in instrumentation at synchrotron X-ray sources have made this method more accessible for determination of density of melted material. In this work we present the technique and report the densities of three high-pressure melts of the FCC metals iron, nickel, and gold derived from diffuse scattered X-ray spectra collected from in situ laser-heated diamond anvil cell synchrotron experiments. The results are compared to densities derived from shock wave experiments.

  18. Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roshchin, B. S., E-mail: ross@crys.ras.ru; Chukhovsky, F. N.; Pavlyuk, M. D.; Opolchentsev, A. M.; Asadchikov, V. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface between two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.

  19. Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Wei [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

  20. Computer simulation tools for X-ray analysis scattering and diffraction methods

    CERN Document Server

    Morelhão, Sérgio Luiz

    2016-01-01

    The main goal of this book is to break down the huge barrier of difficulties faced by beginners from many fields (Engineering, Physics, Chemistry, Biology, Medicine, Material Science, etc.) in using X-rays as an analytical tool in their research. Besides fundamental concepts, MatLab routines are provided, showing how to test and implement the concepts. The major difficult in analyzing materials by X-ray techniques is that it strongly depends on simulation software. This book teaches the users on how to construct a library of routines to simulate scattering and diffraction by almost any kind of samples. It provides to a young student the knowledge that would take more than 20 years to acquire by working on X-rays and relying on the available textbooks. In this book, fundamental concepts in applied X-ray physics are demonstrated through available computer simulation tools. Using MatLab, more than eighty routines are developed for solving the proposed exercises, most of which can be directly used in experimental...

  1. X-ray Scatter Imaging of Hepatocellular Carcinoma in a Mouse Model Using Nanoparticle Contrast Agents

    Science.gov (United States)

    Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph

    2015-10-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.

  2. Ion-induced nanopatterns on semiconductor surfaces investigated by grazing incidence x-ray scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Carbone, D; Metzger, T H [ID01, ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex (France); Biermanns, A; Pietsch, U [Festkoerperphysik, Universitaet Siegen, D-57068 Siegen (Germany); Ziberi, B; Frost, F [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., D-04318 Leipzig (Germany); Plantevin, O [Universite Paris-Sud, Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, UMR 8609, F-91405 Orsay (France)], E-mail: gcarbone@esrf.fr

    2009-06-03

    In this review we cover and describe the application of grazing incidence x-ray scattering techniques to study and characterize nanopattern formation on semiconductor surfaces by ion beam erosion under various conditions. It is demonstrated that x-rays under grazing incidence are especially well suited to characterize (sub)surface structures on the nanoscale with high spatial and statistical accuracy. The corresponding theory and data evaluation is described in the distorted wave Born approximation. Both ex situ and in situ studies are presented, performed with the use of a specially designed sputtering chamber which allows us to follow the temporal evolution of the nanostructure formation. Corresponding results show a general stabilization of the ordering wavelength and the extension of the ordering as a function of the ion energy and fluence as predicted by theory. The in situ measurements are especially suited to study the early stages of pattern formation, which in some cases reveal a transition from dot to ripple formation. For the case of medium energy ions crystalline ripples are formed buried under a semi-amorphous thick layer with a ripple structure at the surface being conformal with the crystalline/amorphous interface. Here, the x-ray techniques are especially advantageous since they are non-destructive and bulk-sensitive by their very nature. In addition, the GI x-ray techniques described in this review are a unique tool to study the evolving strain, a topic which remains to be explored both experimentally and theoretically.

  3. Status of Kharkov X-Ray Generator Based on Compton Scattering NESTOR

    Energy Technology Data Exchange (ETDEWEB)

    Zelinsky, A.

    2005-04-11

    Nowadays the sources of the X-rays based on a storage ring with low beam energy and Compton scattering of intense laser beam are under development in several laboratories. In the paper the state-of-art in development and construction of cooperative project of a Kharkov advanced X-ray source NESTOR based on electron storage ring with beam energy 43-225 MeV and Nd:YAG laser is described. The layout of the facility is presented and latest results are described. The designed lattice includes 4 dipole magnets with combined focusing functions, 20 quadrupole magnets and 19 sextupoles with correcting components of magnetic field. At the present time a set of quadrupole magnet is under manufacturing and bending magnet reconstruction is going on. The main parameters of developed vacuum system providing residual gas pressure in the storage ring vacuum chamber up to 10{sup -9} torr are presented. The basic parameters of the X-ray source laser and injection systems are presented. The facility is going to be in operation in the middle of 2006 and generated X-rays flux is expected to be of about 10{sup 13} phot/s.

  4. Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector

    Science.gov (United States)

    Jorgensen, Steven M.; Vercnocke, Andrew J.; Rundle, David S.; Butler, Philip H.; McCollough, Cynthia H.; Ritman, Erik L.

    2016-10-01

    We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = -0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches.

  5. Performance of a high-resolution x-ray microprobe at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Cai, Z.; Lai, B.; Yun, W.; McNulty, I.; Khounsary, A.; Maser, J.; Ilinski, P.; Legnini, D.; Trakhtenberg, E.; Xu, S.; Tieman, B.; Wiemerslage, G.; Gluskin, E.

    1999-01-01

    The authors have developed a x-ray microprobe in the energy region from 6 to 20 keV using undulator radiation and zone-plate optics for microfocusing-based techniques and applications at a beamline at the Advanced Photon Source (APS). The performance of the beamline was shown to meet the design objectives, including preservation of the source brilliance and coherence, selectable transverse coherence length and energy bandwidth, high angular stability, and harmonic suppression of the beam. These objectives were achieved by careful thermal management and use of a novel mirror and crystal monochromator cooling geometry. All beamline optical components are water cooled, and the x-ray beam in the experiment station is stable in beam intensity, energy, and position over many days with no active feedback. Using a double-crystal Si(111) monochromator, they have obtained a focal spot size (FWHM) of 0.15 (micro)m (v) x 1.0 (micro)m (h), and a photon flux of 4 x 10 9 photons/sec at the focal spot, and thus a photon flux density gain of 15,000. A circular beam spot of 0.15 (micro)m in diameter can be achieved by reducing the horizontal source size using a white beam slit located 43.5 meters upstream of the zone plate, with an order of magnitude less flux in the focal spot

  6. Scatter and transmission doses from several pediatric X-ray examinations in a nursery

    International Nuclear Information System (INIS)

    Burrage, John W.; Rampant, Peter L.; Beeson, Brendan P.

    2003-01-01

    While several studies have investigated the dose from scattered radiation from X-ray procedures in a pediatric nursery, they examined scatter from chest procedures only, or the types of examination were not specified. The aim of this study was to collect scatter and transmission data from several types of X-ray examinations. Using a ''newborn'' anthropomorphic phantom and an ion chamber, a series of scatter and transmission dose measurements were performed using typical exposure factors for chest, chest and abdomen, skull, skeletal long bone and spine procedures. The phantom was inside a crib for all exposures. The maximum scatter dose measured at 1 m from the field center was about 0.05 μGy per exposure for lateral skulls. Transmission doses for lateral exams were around 0.1 μGy per exposure at 1 m from the isocenter. The study demonstrated that scatter dose to other patients in a neonatal unit is not significant, assuming the distance between adjacent cribs is in the order of 1 m. Transmission doses are also low provided the beam is fully intercepted by the cassette. For an average workload the dose received by imaging technologists would be small. (orig.)

  7. Cascaded systems analysis of charge sharing in cadmium telluride photon-counting x-ray detectors.

    Science.gov (United States)

    Tanguay, Jesse; Cunningham, Ian A

    2018-05-01

    Single-photon-counting (SPC) and spectroscopic x-ray detectors are under development in academic and industry laboratories for medical imaging applications. The spatial resolution of SPC and spectroscopic x-ray detectors is an important design criterion. The purpose of this article was to extend the cascaded systems approach to include a description of the spatial resolution of SPC and spectroscopic x-ray imaging detectors. A cascaded systems approach was used to model reabsorption of characteristic x rays, Coulomb repulsion, and diffusion in SPC and spectroscopic x-ray detectors. In addition to reabsorption, diffusion, and Coulomb repulsion, the model accounted for x-ray conversion to electron-hole (e-h) pairs, integration of e-h pairs in detector elements, electronic noise, and energy thresholding. The probability density function (PDF) describing the number of e-h pairs was propagated through each stage of the model and was used to derive new theoretical expressions for the large-area gain and modulation transfer function (MTF) of CdTe SPC x-ray detectors, and the energy bin sensitivity functions and MTFs of CdTe spectroscopic detectors. Theoretical predictions were compared with the results of MATLAB-based Monte Carlo (MC) simulations and published data. Comparisons were also made with the MTF of energy-integrating systems. Under general radiographic conditions, reabsorption, diffusion, and Coulomb repulsion together artificially inflate count rates by 20% to 50%. For thicker converters (e.g. 1000 μm) and larger detector elements (e.g. 500 μm pixel pitch) these processes result in modest inflation (i.e. ∼10%) in apparent count rates. Our theoretical and MC analyses predict that SPC MTFs will be degraded relative to those of energy-integrating systems for fluoroscopic, general radiographic, and CT imaging conditions. In most cases, this degradation is modest (i.e., ∼10% at the Nyquist frequency). However, for thicker converters, the SPC MTF can be degraded

  8. Resonant x-ray scattering in manganites: study of the orbital degree of freedom

    International Nuclear Information System (INIS)

    Ishihara, Sumio; Maekawa, Sadamichi

    2002-01-01

    The orbital degree of freedom of electrons and its interplay with spin, charge and lattice degrees of freedom are some of the central issues in colossal magnetoresistive manganites. The orbital degree of freedom has until recently remained hidden, since it does not couple directly to most experimental probes. Development of synchrotron light sources has changed the situation; by the resonant x-ray scattering (RXS) technique the orbital ordering has successfully been observed. In this article, we review progress in the recent studies of RXS in manganites. We start with a detailed review of the RXS experiments applied to the orbital-ordered manganites and other correlated electron systems. We derive the scattering cross section of RXS, where the tensor character of the atomic scattering factor (ASF) with respect to the x-ray polarization is stressed. Microscopic mechanisms of the anisotropic tensor character of the ASF are introduced and numerical results of the ASF and the scattering intensity are presented. The azimuthal angle scan is a unique experimental method to identify RXS from the orbital degree of freedom. A theory of the azimuthal angle and polarization dependence of the RXS intensity is presented. The theoretical results show good agreement with the experiments in manganites. Apart from the microscopic description of the ASF, a theoretical framework of RXS to relate directly to the 3d orbital is presented. The scattering cross section is represented by the correlation function of the pseudo-spin operator for the orbital degree of freedom. A theory is extended to the resonant inelastic x-ray scattering and methods to observe excitations of the orbital degree of freedom are proposed. (author)

  9. Transmission X-ray scattering as a probe for complex liquid-surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuto, Masafumi; Yang, Lin; Nykypanchuk, Dmytro; Kuzmenko, Ivan

    2016-01-28

    The need for functional materials calls for increasing complexity in self-assembly systems. As a result, the ability to probe both local structure and heterogeneities, such as phase-coexistence and domain morphologies, has become increasingly important to controlling self-assembly processes, including those at liquid surfaces. The traditional X-ray scattering methods for liquid surfaces, such as specular reflectivity and grazing-incidence diffraction, are not well suited to spatially resolving lateral heterogeneities due to large illuminated footprint. A possible alternative approach is to use scanning transmission X-ray scattering to simultaneously probe local intermolecular structures and heterogeneous domain morphologies on liquid surfaces. To test the feasibility of this approach, transmission small- and wide-angle X-ray scattering (TSAXS/TWAXS) studies of Langmuir films formed on water meniscus against a vertically immersed hydrophilic Si substrate were recently carried out. First-order diffraction rings were observed in TSAXS patterns from a monolayer of hexagonally packed gold nanoparticles and in TWAXS patterns from a monolayer of fluorinated fatty acids, both as a Langmuir monolayer on water meniscus and as a Langmuir–Blodgett monolayer on the substrate. The patterns taken at multiple spots have been analyzed to extract the shape of the meniscus surface and the ordered-monolayer coverage as a function of spot position. These results, together with continual improvement in the brightness and spot size of X-ray beams available at synchrotron facilities, support the possibility of using scanning-probe TSAXS/TWAXS to characterize heterogeneous structures at liquid surfaces.

  10. 1s2p resonant inelastic x-ray scattering in a-Fe2O3

    NARCIS (Netherlands)

    Caliebe, W.A.; Kao, C.-C.; Hastings, J.B.; Taguchi, M.; Kotani, A.; Uozumi, T.; Groot, F.M.F. de

    1998-01-01

    We report experimental and theoretical results on the Fe K edge x-ray absorption spectrum and 1s2p resonant inelastic x-ray scattering (RIXS) spectra in a-Fe2O3 . The results are interpreted using an FeO6^9- cluster model with intra-atomic multiplet coupling and interatomic covalency

  11. Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser

    DEFF Research Database (Denmark)

    Arnlund, David; Johansson, Linda C.; Wickstrand, Cecilia

    2014-01-01

    We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast glob...

  12. Influence of multiple scattering of a relativistic electron in a periodic layered medium on coherent X-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Blazhevich, S. V.; Kos’kova, T. V.; Noskov, A. V., E-mail: noskovbupk@mail.ru [Belgorod State National Research University (Russian Federation)

    2016-01-15

    A dynamic theory of coherent X-ray radiation generated in a periodic layered medium by a relativistic electron multiply scattered by target atoms has been developed. The expressions describing the spectral–angular characteristics of parametric X-ray radiation and diffracted transition radiation are derived. Numerical calculations based on the derived expressions have been performed.

  13. Microdefects revealed by X-ray diffusion scattering in Czochralski-growth dislocation-free silicon single crystals

    International Nuclear Information System (INIS)

    Bublik, B.T.; Zotov, N.M.

    1997-01-01

    Microdefects in the regions of Si crystals having different thermal history defined by growth conditions was studied by the X-ray diffuse scattering method on a triple crystal X-ray diffractometer. It was shown that in such crystals the microdefects with positive strength are prevalent. However, between the above indicated regions the defects with the strength of opposite sign prevail

  14. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    Science.gov (United States)

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.

    2018-03-01

    We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.

  15. XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms

    Science.gov (United States)

    Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.

    2017-12-01

    Elastic scattering of electromagnetic pulses on atoms in XUV and soft x-ray ranges is considered for ultra-short pulses. The inclusion of the retardation term, non-dipole interaction and an efficient scattering tensor approximation allowed studying the scattering probability in dependence of the pulse duration for different carrier frequencies. Numerical calculations carried out for Mg, Al and Fe atoms demonstrate that the scattering probability is a highly nonlinear function of the pulse duration and has extrema for pulse carrier frequencies in the vicinity of the resonance-like features of the polarization charge spectrum. Closed expressions for the non-dipole correction and the angular dependence of the scattered radiation are obtained.

  16. K-α X-ray Thomson Scattering From Dense Plasmas

    International Nuclear Information System (INIS)

    Kritcher, Andrea L.; Neumayer, Paul; Castor, John; Doeppner, Tilo; Landen, Otto L.; Ng, Andrew; Pollaine, Steve; Price, Dwight; Glenzer, Siegfried H.; Falcone, Roger W.; Ja Lee, Hae; Lee, Richard W.; Morse, Edward C.

    2009-01-01

    Spectrally resolved Thomson scattering using ultra-fast K-α x rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7x10 23 cm -3 , were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation.

  17. K-(alpha) X-ray Thomson Scattering From Dense Plasmas

    International Nuclear Information System (INIS)

    Kritcher, A.L.; Neumayer, P.; Castor, J.; Doppner, T.; Falcone, R.W.; Landen, O.L.; Lee, H.J.; Lee, R.W.; Morse, E.C.; Ng, A.; Pollaine, S.; Price, D.; Glenzer, S.H.

    2009-01-01

    Spectrally resolved Thomson scattering using ultra-fast K-α x-rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7 x 10 23 cm -3 , were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation

  18. Diffuse x-ray scattering study of interfacial structure of self-assembled conjugated polymers

    International Nuclear Information System (INIS)

    Wang Jun; Park, Y.J.; Lee, K.-B.; Hong, H.; Davidov, D.

    2002-01-01

    The interfacial structures of self-assembled heterostructures through alternate deposition of conjugated and nonconjugated polymers were studied by x-ray reflectivity and nonspecular scattering. We found that the interfacial width including the effects of both interdiffusion and interfacial roughness (correlated) was mainly contributed by the latter one. The self-assembled deposition induced very small interdiffusion between layers. The lateral correlation length ξ parallel grew as a function of deposition time (or film thickness) described by a power law ξ parallel ∝t β/H and was also observed from the off-specular scattering

  19. X-ray scattering studies of non-equilibrium ordering processes

    International Nuclear Information System (INIS)

    Nagler, S.E.

    1991-01-01

    We report on the progress of the project entitled ''X-ray Scattering Studies of Non-Equilibrium Ordering Processes.'' The past year has seen continued progress in the study of kinetic effects in metallic binary alloys and polymers. In addition, work has begun on a low dimensional CDW system: blue bronze. A sample chamber has been constructed to perform small angle neutron scattering measurements on a model quantum system with phase separation: solid He3/He4. Work is continuing on magnetic systems. Planned future experiments include an investigation of crystallization in Rubidium

  20. Fractal morphology in lignite coal: a small angle x-ray scattering investigation

    International Nuclear Information System (INIS)

    Chitra, R.; Sen, D.; Mazumder, S.; Chandrasekaran, K.S.

    1999-01-01

    Small angle x-ray scattering technique has been used to study the pore morphology in lignite coal from Neyveli lignite mine (Tamilnadu, India). The sample were collected from three different locations of the same mine. SAXS profiles from all the three samples show almost identical functionality, irrespective of the locations from where the samples were collected. SAXS experiment using two different wavelengths also exhibit same functionality indicating the absence of multiple scattering. The analysis indicates the surface fractal nature of the pore morphology. The surface fractal dimension is calculated to be 2.58. (author)

  1. Performance of a micro-strip gas chamber in solution X-ray scattering

    CERN Document Server

    Toyokawa, H; Inoko, Y; Nagayoshi, T; Nishi, Y; Nishikawa, Y; Ochi, A; Suzuki, M; Tanimori, T

    2001-01-01

    The performance of a Micro-Strip Gas Chamber in solution X-ray scattering was studied at the RIKEN structural biology beamline I of the SPring-8 facility. The practical dynamic range was confirmed to be approx 1,000,000 : 1 by measuring S sup - sup 4 decay from a polystyrene latex solution. Steep troughs of scattering profile from an apoferritin solution were clearly obtained without smearing. An unfolding process of a pH jump of cytochrome c was measured. A time resolution of 500 mu s was achieved.

  2. Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic X-ray scattering instrument

    Science.gov (United States)

    Shu, Deming; Shvydko, Yuri; Stoupin, Stanislav A.; Khachatryan, Ruben; Goetze, Kurt A.; Roberts, Timothy

    2015-04-14

    A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.

  3. Erratum: Creation of X-Ray Transparency of Matter by Stimulated Elastic Forward Scattering [Phys. Rev. Lett. 115 , 107402 (2015)

    Energy Technology Data Exchange (ETDEWEB)

    Stöhr, J.; Scherz, A.

    2016-01-06

    X-ray absorption by matter has long been described by the famous Beer-Lambert law. Here we show how this fundamental law needs to be modified for high-intensity coherent x-ray pulses, now available at x-ray free electron lasers, due to the onset of stimulated elastic forward scattering. We present an analytical expression for the modified polarization-dependent Beer-Lambert law for the case of resonant core-to-valence electronic transitions and incident transform limited x-ray pulses. Upon transmission through a solid, the absorption and dichroic contrasts are found to vanish with increasing x-ray intensity, with the stimulation threshold lowered by orders of magnitude through a super-radiative coherent effect. Our results have broad implications for the study of matter with x-ray lasers.

  4. High energy x-ray scattering studies of strongly correlated oxides

    International Nuclear Information System (INIS)

    Hatton, Peter D; Wilkins, S B; Spencer, P D; Zimmermann, M v; D'Almeida, T

    2003-01-01

    Many transition metal oxides display strongly correlated charge, spin, or orbital ordering resulting in varied phenomena such as colossal magnetoresistance, high temperature superconductivity, metal-insulator transitions etc. X-ray scattering is one of the principle techniques for probing the structural response to such effects. In this paper, we discuss and review the use of synchrotron radiation high energy x-rays (50-200 keV) for the study of transition metal oxides such as nickelates (La 2-x Sr x NiO 4 ) and manganites (La 2-2x Sr 1+2x Mn 2 O 7 ). High energy x-rays have sufficient penetration to allow us to study large flux-grown single crystals. The huge increase in sample scattering volume means that extremely weak peaks can be observed. This allows us to study very weak charge ordering. Measurements of the intensity, width and position of the charge ordering satellites as a function of temperature provide us with quantitative measures of the charge amplitude, inverse correlation length and wavevector of the charge ordering

  5. X-ray resonant Raman scattering cross sections of Mn, Fe, Cu and Zn

    International Nuclear Information System (INIS)

    Sanchez, Hector Jorge; Valentinuzzi, MarIa Cecilia; Perez, Carlos

    2006-01-01

    X-ray fluorescence spectra present singular characteristics produced by the different scattering processes. When atoms are irradiated with incident energy lower and close to an absorption edge, scattering peaks appear due to an inelastic process known as resonant Raman scattering. It constitutes an important contribution to the background of the fluorescent line. The resonant Raman scattering must be taken into account in the determination of low concentration contaminants, especially when the elements have proximate atomic numbers. The values of the mass attenuation coefficients experimentally obtained when materials are analysed with monochromatic x-ray beams under resonant conditions differ from the theoretical values (between 5% and 10%). This difference is due, in part, to the resonant Raman scattering. Monochromatic synchrotron radiation was used to study the Raman effect on pure samples of Mn, Fe, Cu and Zn. Energy scans were carried out in different ranges of energy near the absorption edge of the target element. As the Raman peak has a non-symmetric shape, theoretical models for the differential cross section, convoluted with the instrument function, were used to determine the RRS cross section as a function of the incident energy

  6. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    Science.gov (United States)

    Hong, Xinguo; Hao, Quan

    2009-01-01

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 °C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  7. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    International Nuclear Information System (INIS)

    Hong Xinguo; Hao Quan

    2009-01-01

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 deg. C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  8. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    International Nuclear Information System (INIS)

    Jurdit, M.; Moulin, V.; Ouvrier-Buffet, P.; Verger, L.; Brambilla, A.; Radisson, P.

    2017-01-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm 2 . Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 10 6 incident photons.s −1 .mm −2 .

  9. X-ray Imaging Using a Hybrid Photon Counting GaAs Pixel Detector

    CERN Document Server

    Schwarz, C; Göppert, R; Heijne, Erik H M; Ludwig, J; Meddeler, G; Mikulec, B; Pernigotti, E; Rogalla, M; Runge, K; Smith, K M; Snoeys, W; Söldner-Rembold, S; Watt, J

    1999-01-01

    The performance of hybrid GaAs pixel detectors as X-ray imaging sensors were investigated at room temperature. These hybrids consist of 300 mu-m thick GaAs pixel detectors, flip-chip bonded to a CMOS Single Photon Counting Chip (PCC). This chip consists of a matrix of 64 x 64 identical square pixels (170 mu-m x 170 mu-m) and covers a total area of 1.2 cm**2. The electronics in each cell comprises a preamplifier, a discriminator with a 3-bit threshold adjust and a 15-bit counter. The detector is realized by an array of Schottky diodes processed on semi-insulating LEC-GaAs bulk material. An IV-charcteristic and a detector bias voltage scan showed that the detector can be operated with voltages around 200 V. Images of various objects were taken by using a standard X-ray tube for dental diagnostics. The signal to noise ratio (SNR) was also determined. The applications of these imaging systems range from medical applications like digital mammography or dental X-ray diagnostics to non destructive material testing (...

  10. Process strategies for ultra-deep x-ray lithography at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Mancini, D.C.; Moldovan, N.; Divan, R.; De Carlo, F.; Yaeger, J.

    2001-01-01

    For the past five years, we have been investigating and advancing processing capabilities for deep x-ray lithography (DXRL) using synchrotron radiation from a bending magnet at the Advanced Photon Source (APS), with an emphasis on ultra-deep structures (1mm to 1cm thick). The use of higher-energy x-rays has presented many challenges in developing optimal lithographic techniques for high-aspect ratio structures: mask requirements, resist preparation, exposure, development, and post-processing. Many problems are more severe for high-energy exposure of thicker films than for sub-millimeter structures and affect resolution, processing time, adhesion, damage, and residue. A number of strategies have been created to overcome the challenges and limitations of ultra-deep x-ray lithography (UDXRL), that have resulted in the current choices for mask, substrate, and process flow at the APS. We describe our current process strategies for UDXRL, how they address the challenges presented, and their current limitations. We note especially the importance of the process parameters for use of the positive tone resist PMMA for UDXRL, and compare to the use of negative tone resists such as SU-8 regarding throughput, resolution, adhesion, damage, and post-processing.

  11. Carbon Condensation during High Explosive Detonation with Time Resolved Small Angle X-ray Scattering

    Science.gov (United States)

    Hammons, Joshua; Bagge-Hansen, Michael; Nielsen, Michael; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; May, Chadd; Sinclair, Nicholas; Jensen, Brian; Gustavsen, Rick; Dattelbaum, Dana; Watkins, Erik; Firestone, Millicent; Ilavsky, Jan; van Buuren, Tony; Willey, Trevor; Lawrence Livermore National Lab Collaboration; Los Alamos National Laboratory Collaboration; Washington State University/Advanced Photon Source Team

    Carbon condensation during high-energy detonations occurs under extreme conditions and on very short time scales. Understanding and manipulating soot formation, particularly detonation nanodiamond, has attracted the attention of military, academic and industrial research. An in-situ characterization of these nanoscale phases, during detonation, is highly sought after and presents a formidable challenge even with today's instruments. Using the high flux available with synchrotron X-rays, pink beam small angle X-ray scattering is able to observe the carbon phases during detonation. This experimental approach, though powerful, requires careful consideration and support from other techniques, such as post-mortem TEM, EELS and USAXS. We present a comparative survey of carbon condensation from different CHNO high explosives. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  12. More accurate X-ray scattering data of deeply supercooled bulk liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Neuefeind, Joerg C [ORNL; Benmore, Chris J [Argonne National Laboratory (ANL); Weber, Richard [Argonne National Laboratory (ANL); Paschek, Dietmar [Rostock University, Rostock, Germany

    2011-01-01

    Deeply supercooled water droplets held container-less in an acoustic levitator are investigated with high energy X-ray scattering. The temperature dependence X-ray structure function is found to be non-linear. Comparison with two popular computer models reveals that structural changes are predicted too abrupt by the TIP5P model, while the rate of change predicted by TIP4P is in much better agreement with experiment. The abrupt structural changes predicted by the TIP5P model to occur in the temperature range between 260-240K as water approaches the homogeneous nucleation limit are unrealistic. Both models underestimate the distance between neighbouring oxygen atoms and overestimate the sharpness of the OO distance distribution, indicating that the strength of the H-bond is overestimated in these models.

  13. Structural dissection of human metapneumovirus phosphoprotein using small angle x-ray scattering.

    Science.gov (United States)

    Renner, Max; Paesen, Guido C; Grison, Claire M; Granier, Sébastien; Grimes, Jonathan M; Leyrat, Cédric

    2017-11-01

    The phosphoprotein (P) is the main and essential cofactor of the RNA polymerase (L) of non-segmented, negative-strand RNA viruses. P positions the viral polymerase onto its nucleoprotein-RNA template and acts as a chaperone of the nucleoprotein (N), thereby preventing nonspecific encapsidation of cellular RNAs. The phosphoprotein of human metapneumovirus (HMPV) forms homotetramers composed of a stable oligomerization domain (P core ) flanked by large intrinsically disordered regions (IDRs). Here we combined x-ray crystallography of P core with small angle x-ray scattering (SAXS)-based ensemble modeling of the full-length P protein and several of its fragments to provide a structural description of P that captures its dynamic character, and highlights the presence of varyingly stable structural elements within the IDRs. We discuss the implications of the structural properties of HMPV P for the assembly and functioning of the viral transcription/replication machinery.

  14. LabVIEW-based X-ray detection system for laser compton scattering experiment

    International Nuclear Information System (INIS)

    Luo Wen; Xu Wang; Pan Qiangyan

    2010-01-01

    A LabVIEW-based X-ray detection system has been developed for laser-Compton scattering (LCS) experiment at the 100 MeV Linac of the Shanghai Institute of Applied Physics (SINAP). It mainly consists of a Si (Li) detector, readout electronics and a LabVIEW-based Data Acquisition (DAQ), and possesses the functions of signal spectrum displaying, acquisition control and simple online data analysis and so on. The performance test shows that energy and time resolutions of the system are 184 eV at 5.9 keV and ≤ 1% respectively and system instability is found to be 0.3‰ within a week. As a result, this X-ray detection system has low-cost and high-performance features and can meet the requirements of LCS experiment. (authors)

  15. Detectors for X-ray diffraction and scattering: current technology and future challenges

    International Nuclear Information System (INIS)

    Bahr, D.; Brugemann, L.; Gerndt, E.

    2003-01-01

    Full text: Detectors are crucial devices determining the quality, the reliability and the throughput of x-ray diffraction (XRD) and scattering investigations. This is of utmost importance in an industrial environment where in many cases untrained personnel or even without human intervention the experiments and data evaluations are running. The currently used technology of 0-dimensional to 2-dim XRD detectors is presented using selected examples. The application specific requirements on e.g. energy range and resolution, count rate limit, background and dynamic range, and size versus price are discussed. Due to the fact that x-ray diffraction investigations are becoming increasingly attractive in science, research and industry the advance in detector technology is pushed beyond existing limits. The discussion of the resultant market opportunities versus the cost of ownership and market entrance barrier is the final section of the presentation

  16. Characterization of Sphinx1 ASIC X-ray detector using photon counting and charge integration

    Science.gov (United States)

    Habib, A.; Arques, M.; Moro, J.-L.; Accensi, M.; Stanchina, S.; Dupont, B.; Rohr, P.; Sicard, G.; Tchagaspanian, M.; Verger, L.

    2018-01-01

    Sphinx1 is a novel pixel architecture adapted for X-ray imaging, it detects radiation by photon counting and charge integration. In photon counting mode, each photon is compensated by one or more counter-charges typically consisting of 100 electrons (e-) each. The number of counter-charges required gives a measure of the incoming photon energy, thus allowing spectrometric detection. Pixels can also detect radiation by integrating the charges deposited by all incoming photons during one image frame and converting this analog value into a digital response with a 100 electrons least significant bit (LSB), based on the counter-charge concept. A proof of concept test chip measuring 5 mm × 5 mm, with 200 μm × 200 μm pixels has been produced and characterized. This paper provides details on the architecture and the counter-charge design; it also describes the two modes of operation: photon counting and charge integration. The first performance measurements for this test chip are presented. Noise was found to be ~80 e-rms in photon counting mode with a power consumption of only 0.9 μW/pixel for the static analog part and 0.3 μW/pixel for the static digital part.

  17. Soft X-ray synchrotron radiation investigations of actinide materials systems utilizing X-ray emission spectroscopy and resonant inelastic X-ray scattering

    International Nuclear Information System (INIS)

    Shuh, D.K.; Butorin, S.M.; Guo, J.-H.; Nordgren, J.

    2004-01-01

    Synchrotron radiation (SR) methods have been utilized with increasing frequency over the past several years to study topics in actinide science, ranging from those of a fundamental nature to those that address a specifically-targeted technical need. In particular, the emergence of microspectroscopic and fluorescence-based techniques have permitted investigations of actinide materials at sources of soft x-ray SR. Spectroscopic techniques with fluorescence-based detection are useful for actinide investigations since they are sensitive to small amounts of material and the information sampling depth may be varied. These characteristics also serve to simplify both sample preparation and safety considerations. Examples of investigations using these fluorescence techniques will be described along with their results, as well as the prospects for future investigations utilizing these methodologies

  18. pnCCD for photon detection from near-infrared to X-rays

    International Nuclear Information System (INIS)

    Meidinger, Norbert; Andritschke, Robert; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Strueder, Lothar

    2006-01-01

    A pnCCD is a special type of charge-coupled device developed for spectroscopy and imaging of X-rays with high time resolution and quantum efficiency. Its most famous application is the operation on the XMM-Newton satellite, an X-ray astronomy mission that was launched by the European space agency in 1999. The excellent performance of the focal plane camera has been maintained for more than 6 years in orbit. The energy resolution in particular has shown hardly any degradation since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. This 'frame-store pnCCD' shows an enhanced performance compared to the XMM-Newton type of pnCCD. Now, more options in device design and operation are available to tailor the detector to its respective application. Part of this concept is a programmable analog signal processor, which has been developed for the readout of the CCD signals. The electronic noise of the new detector has a value of only 2 electrons equivalent noise charge (ENC), which is less than half of the figure achieved for the XMM-Newton-type pnCCD. The energy resolution for the Mn-K α line at 5.9 keV is approximately 130 eV FWHM. We have close to 100% quantum efficiency for both low- and high-energy photon detection (e.g. the C-K line at 277 eV, and the Ge-K α line at 10 keV, respectively). Very high frame rates of 1000 images/s have been achieved due to the ultra-fast readout accomplished by the parallel architecture of the pnCCD and the analog signal processor. Excellent spectroscopic performance is shown even at the relatively high operating temperature of -25 deg. C that can be achieved by a Peltier cooler. The applications of the low-noise and fast pnCCD detector are not limited to the detection of X-rays. With an anti-reflective coating deposited on the photon entrance window, we achieve high quantum efficiency also for near-infrared and optical

  19. Arsenic speciation by X-ray spectroscopy using resonant Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, H.J.; Leani, J.J. [Universidad Nacional de Cordoba, Cba (Argentina); Perez, C.A. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: The toxicity of arsenic species is widely known. A realistic evaluation of the risk posed by As depends on accurate determination of As speciation, because its toxicity and mobility varies with oxidation state and chemical environment. The most toxic species are inorganic As (III) and As (V) called respectively arsenite or trivalent arsenic, and arsenate or pentavalent arsenic. Recently, x-ray Resonant Raman Scattering spectroscopy has been successfully employed to determine the oxidation state of metals. In this work we use RRS spectroscopy to perform arsenic speciation. The measurements were carried out in XRF station of the D09B-XRF beamline at the Brazilian synchrotron facility (LNLS, Campinas). Mineral samples of As in different oxidation states (As(III) and AS(V)), and two biological forms of arsenic (monomethylarsonic acid (MMA(V) and dimethylarsinic acid DMA(V)) were analysed. The samples were diluted, deposited on silicon wafers and allowed to dry. The amount of liquid deposited on the reflector before evaporation was 20 microliters for all the specimens. These samples were irradiated with monochromatic photons of 11816 eV, i.e., below the K-edge of arsenic in order to inspect the Raman emissions. The measuring lifetime was 3600 sec for each sample. Spectra were analysed with specific programs for spectrum analysis using non-conventional functions for data fitting, i.e., modified Voight functions (for Compton peaks), Gaussian functions for fluorescent and for low intensity peaks (such as escape peaks and other contributions), and polynomial functions for the background. Raman peaks were fitted using specific functions. In this work we have shown that resonant Raman scattering spectroscopy can be used to analyse arsenic species. The method is very simple and reliable. The most important feature of this method relies in the possibility of using the same spectrometer of XRF analysis or TXRF analysis. In this way, practically in the same experiment

  20. Alamethicin in lipid bilayers: combined use of X-ray scattering and MD simulations.

    Science.gov (United States)

    Pan, Jianjun; Tieleman, D Peter; Nagle, John F; Kucerka, Norbert; Tristram-Nagle, Stephanie

    2009-06-01

    We study fully hydrated bilayers of two di-monounsaturated phospholipids diC18:1PC (DOPC) and diC22:1PC with varying amounts of alamethicin (Alm). We combine the use of X-ray diffuse scattering and molecular dynamics simulations to determine the orientation of alamethicin in model lipids. Comparison of the experimental and simulated form factors shows that Alm helices are inserted transmembrane at high humidity and high concentrations, in agreement with earlier results. The X-ray scattering data and the MD simulations agree that membrane thickness changes very little up to 1/10 Alm/DOPC. In contrast, the X-ray data indicate that the thicker diC22:1PC membrane thins with added Alm, a total decrease in thickness of 4 A at 1/10 Alm/diC22:1PC. The different effect of Alm on the thickness changes of the two bilayers is consistent with Alm having a hydrophobic thickness close to the hydrophobic thickness of 27 A for DOPC; Alm is then mismatched with the 7 A thicker diC22:1PC bilayer. The X-ray data indicate that Alm decreases the bending modulus (K(C)) by a factor of approximately 2 in DOPC and a factor of approximately 10 in diC22:1PC membranes (P/L approximately 1/10). The van der Waals and fluctuational interactions between bilayers are also evaluated through determination of the anisotropic B compressibility modulus.

  1. A quasi-realtime x-ray microtomography system at the Advanced Photon Source

    International Nuclear Information System (INIS)

    DeCarlo, F.; Foster, I.; Insley, J.; Kesselman, C.; Lane, P.; Mancini, D.; McNulty, I.; Su, M.; Tieman, B.; Wang, Y.; Laszewski, G. von

    1999-01-01

    The combination of high-brilliance x-ray sources, fast detector systems, wide-bandwidth networks, and parallel computers can substantially reduce the time required to acquire, reconstruct, and visualize high-resolution three-dimensional tomographic datasets. A quasi-realtime computed x-ray microtomography system has been implemented at the 2-BM beamline at the Advanced Photon Source at Argonne National Laboratory. With this system, a complete tomographic data set can be collected in about 15 minutes. Immediately after each projection is obtained, it is rapidly transferred to the Mathematics and Computing Sciences Division where preprocessing and reconstruction calculations are performed concurrently with the data acquisition by a SGI parallel computer. The reconstruction results, once completed, are transferred to a visualization computer that performs the volume rendering calculations. Rendered images of the reconstructed data are available for viewing back at the beamline experiment station minutes after the data acquisition was complete. The fully pipelined data acquisition and reconstruction system also gives us the option to acquire the tomographic data set in several cycles, initially with coarse then with fine angular steps. At present the projections are acquired with a straight-ray projection imaging scheme using 5-20 keV hard x rays in either phase or amplitude contrast mode at a 1-10 pm resolution. In the future, we expect to increase the resolution of the projections to below 100 nm by using a focused x-ray beam at the 2-ID-B beamline and to reduce the combined acquisition and computation time to the 1 min scale with improvements in the detectors, network links, software pipeline, and computation algorithms

  2. Experimental time resolved measurement of fluence and energy spectra of photons emitted by a pulsed X-ray generator in the range 5-300 keV

    International Nuclear Information System (INIS)

    Vie, M.; Baboulet, J.P.

    1989-01-01

    We have developed: - A sensor to measure locally X ray fluence rate amplitude and variation versus time during X ray pulses, - A spectrometer based on ROSS method to measure absolute X ray spectrum versus time during X ray pulses. This metrology is used to characterise single shot X ray pulsed sources emitting photons in the range of 5 to 300 keV. Fluence domain is between 10 -9 and 5 10 -4 J. cm -2 with a few nanoseconds time resolution [fr

  3. A software-based x-ray scatter correction method for breast tomosynthesis

    International Nuclear Information System (INIS)

    Jia Feng, Steve Si; Sechopoulos, Ioannis

    2011-01-01

    Purpose: To develop a software-based scatter correction method for digital breast tomosynthesis (DBT) imaging and investigate its impact on the image quality of tomosynthesis reconstructions of both phantoms and patients. Methods: A Monte Carlo (MC) simulation of x-ray scatter, with geometry matching that of the cranio-caudal (CC) view of a DBT clinical prototype, was developed using the Geant4 toolkit and used to generate maps of the scatter-to-primary ratio (SPR) of a number of homogeneous standard-shaped breasts of varying sizes. Dimension-matched SPR maps were then deformed and registered to DBT acquisition projections, allowing for the estimation of the primary x-ray signal acquired by the imaging system. Noise filtering of the estimated projections was then performed to reduce the impact of the quantum noise of the x-ray scatter. Three dimensional (3D) reconstruction was then performed using the maximum likelihood-expectation maximization (MLEM) method. This process was tested on acquisitions of a heterogeneous 50/50 adipose/glandular tomosynthesis phantom with embedded masses, fibers, and microcalcifications and on acquisitions of patients. The image quality of the reconstructions of the scatter-corrected and uncorrected projections was analyzed by studying the signal-difference-to-noise ratio (SDNR), the integral of the signal in each mass lesion (integrated mass signal, IMS), and the modulation transfer function (MTF). Results: The reconstructions of the scatter-corrected projections demonstrated superior image quality. The SDNR of masses embedded in a 5 cm thick tomosynthesis phantom improved 60%-66%, while the SDNR of the smallest mass in an 8 cm thick phantom improved by 59% (p < 0.01). The IMS of the masses in the 5 cm thick phantom also improved by 15%-29%, while the IMS of the masses in the 8 cm thick phantom improved by 26%-62% (p < 0.01). Some embedded microcalcifications in the tomosynthesis phantoms were visible only in the scatter

  4. Neutron and synchrotorn x-ray small angle scattering instruments for applications in biology at the Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Schoenborn, B.P.; Wise, D.S.; Schneider, D.K.

    1983-01-01

    Facilities for small angle x-ray and neutron scattering are described, with emphasis on the characterization of the primary beam of the neutron instrument and the spectrometer control logic of the synchrotron instrument

  5. Effects of phosphonium-based ionic liquids on phospholipid membranes studied by small-angle X-ray scattering

    Czech Academy of Sciences Publication Activity Database

    Kontro, I.; Svedström, K.; Duša, Filip; Ahvenainen, P.; Ruokonen, S. K.; Witos, J.; Wiedmer, S. K.

    2016-01-01

    Roč. 201, DEC (2016), s. 59-66 ISSN 0009-3084 Institutional support: RVO:68081715 Keywords : phospholipids * x-ray scattering Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.361, year: 2016

  6. Small-angle x-ray scattering investigation of the solution structure of troponin C

    International Nuclear Information System (INIS)

    Hubbard, S.R.; Hodgson, K.O.; Doniach, S.

    1988-01-01

    X-ray crystallographic studies of troponin C have revealed a novel protein structure consisting of two globular domains, each containing two Ca 2+ -binding sites, connected via a nine-turn alpha-helix, three turns of which are fully exposed to solvent. Since the crystals were grown at pH approximately 5, it is of interest to determine whether this structure is applicable to the protein in solution under physiological conditions. We have used small-angle x-ray scattering to examine the solution structure of troponin C at pH 6.8 and the effect of Ca 2+ on the structure. The scattering data are consistent with an elongated structure in solution with a radius of gyration of approximately 23.0 A, which is quite comparable to that computed for the crystal structure. The experimental scattering profile and the scattering profile computed from the crystal structure coordinates do, however, exhibit differences at the 40-A level. A weak Ca 2+ -facilitated dimerization of troponin C was observed. The data rule out large Ca 2+ -induced structural changes, indicating rather that the molecule with Ca 2+ bound is only slightly more compact than the Ca 2+ -free molecule

  7. Effect of Cobalt Fillers on Polyurethane Segmentations Investigated by Synchrotron Small Angle X-Ray Scattering

    Directory of Open Access Journals (Sweden)

    Krit Koyvanich

    2013-01-01

    Full Text Available The segmentation between rigid and rubbery chains in polyurethanes (PUs influences polymeric properties and implementations. Several models have successfully been proposed to visualize the configuration between the hard segment (HS and soft segment (SS. For particulate PU composites, the arrangement of HS and SS is more complicated because the fillers tend to disrupt the chain formation and segmentation. In this work, the effect of ferromagnetic cobalt (Co powders (average diameter 2 μm on PU synthesized from a reaction between polyether polyol (soft segment and diphenylmethane-4,4′-diisocyanate (hard segment was studied with varying loadings (0, 20, 40, and 60 wt.%. The 300 μm thick PU/Co samples were tape-casted and then received heat treatment at 80°C for 180 min. From synchrotron small angle X-ray scattering (SAXS, the plot of the X-ray scattering intensity (I against the scattering vector (q exhibited a typical single peak of PU whose intensity was reduced by the increase in the Co loading. Characteristic SAXS peaks in the case of 0-20 wt.% Co agreed well with the scattering by globular hard segment domains according to Zernike-Prins and Percus-Yevick models. The higher Co loadings led to larger deviations from all theoretical models.

  8. Compton scattering artifacts in electron excited X-ray spectra measured with a silicon drift detector.

    Science.gov (United States)

    Ritchie, Nicholas W M; Newbury, Dale E; Lindstrom, Abigail P

    2011-12-01

    Artifacts are the nemesis of trace element analysis in electron-excited energy dispersive X-ray spectrometry. Peaks that result from nonideal behavior in the detector or sample can fool even an experienced microanalyst into believing that they have trace amounts of an element that is not present. Many artifacts, such as the Si escape peak, absorption edges, and coincidence peaks, can be traced to the detector. Others, such as secondary fluorescence peaks and scatter peaks, can be traced to the sample. We have identified a new sample-dependent artifact that we attribute to Compton scattering of energetic X-rays generated in a small feature and subsequently scattered from a low atomic number matrix. It seems likely that this artifact has not previously been reported because it only occurs under specific conditions and represents a relatively small signal. However, with the advent of silicon drift detectors and their utility for trace element analysis, we anticipate that more people will observe it and possibly misidentify it. Though small, the artifact is not inconsequential. Under some conditions, it is possible to mistakenly identify the Compton scatter artifact as approximately 1% of an element that is not present.

  9. Generation of Attosecond X-Ray Pulse through Coherent Relativistic Nonlinear Thomson Scattering

    CERN Document Server

    Lee, K; Jeong, Y U; Lee, B C; Park, S H

    2005-01-01

    In contrast to some recent experimental results, which state that the Nonlinear Thomson Scattered (NTS) radiation is incoherent, a coherent condition under which the scattered radiation of an incident laser pulse by a bunch of electrons can be coherently superposed has been investigated. The Coherent Relativistic Nonlinear Thomson Scattered (C-RNTS) radiation makes it possible utilizing the ultra-short pulse nature of NTS radiation with a bunch of electrons, such as plasma or electron beams. A numerical simulation shows that a 25 attosecond X-ray pulse can be generated by irradiating an ultra-intense laser pulse of 4x10(19) W/cm2 on an ultra-thin solid target of 50 nm thickness, which is commercially available. The coherent condition can be easily extended to an electron beam from accelerators. Different from the solid target, much narrower electron beam is required for the generation of an attosecond pulse. Instead, this condition could be applied for the generation of intense Compton scattered X-rays with a...

  10. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...

  11. Moments of the Bethe surface and total inelastic x-ray scattering cross sections for H2

    International Nuclear Information System (INIS)

    Sharma, B.S.; Thakkar, A.J.

    1987-01-01

    Moments, S(j,K), of the generalized oscillator strength distribution are global properties of the Bethe surface. Apart from S(-1,K) which is related to the Waller-Hartree incoherent scattering factor, little is known about these moments for nonzero K. This paper describes high-accuracy calculations of S(1,K) and S(2,K) for molecular hydrogen. Comparison with experiment is made, and the utility of simple asymptotic approximations is confirmed. The moments are used to calculate differential cross sections for the inelastic scattering of x rays using the constant-momentum-transfer and constant-angle theories of Bonham. These cross sections differ from the Waller-Hartree cross sections at large angles thus demonstrating the importance of making corrections to the Waller-Hartree theory if the incoherent scattering factor S(K) is to be extracted from experimental inelastic cross sections. Total cross sections for scattering of 6- and 7-keV photons from H 2 are compared with synchrotron radiation scattering experiments. The calculations suggest that the Bonham constant-angle cross sections agree best with experiment. However, further experimental and theoretical work is needed to obtain firm conclusions about the limitations of Waller-Hartree theory

  12. Modeling the frequency-dependent detective quantum efficiency of photon-counting x-ray detectors.

    Science.gov (United States)

    Stierstorfer, Karl

    2018-01-01

    To find a simple model for the frequency-dependent detective quantum efficiency (DQE) of photon-counting detectors in the low flux limit. Formula for the spatial cross-talk, the noise power spectrum and the DQE of a photon-counting detector working at a given threshold are derived. Parameters are probabilities for types of events like single counts in the central pixel, double counts in the central pixel and a neighboring pixel or single count in a neighboring pixel only. These probabilities can be derived in a simple model by extensive use of Monte Carlo techniques: The Monte Carlo x-ray propagation program MOCASSIM is used to simulate the energy deposition from the x-rays in the detector material. A simple charge cloud model using Gaussian clouds of fixed width is used for the propagation of the electric charge generated by the primary interactions. Both stages are combined in a Monte Carlo simulation randomizing the location of impact which finally produces the required probabilities. The parameters of the charge cloud model are fitted to the spectral response to a polychromatic spectrum measured with our prototype detector. Based on the Monte Carlo model, the DQE of photon-counting detectors as a function of spatial frequency is calculated for various pixel sizes, photon energies, and thresholds. The frequency-dependent DQE of a photon-counting detector in the low flux limit can be described with an equation containing only a small set of probabilities as input. Estimates for the probabilities can be derived from a simple model of the detector physics. © 2017 American Association of Physicists in Medicine.

  13. Development study of the X-ray scattering properties of a group of optically polished flat samples

    Science.gov (United States)

    Froechtenigt, J. F.

    1973-01-01

    A group of twelve optically polished flat samples were used to study the scattering of X-rays. The X-ray beam reflected from the twelve optical flat samples was analyzed by means of a long vacuum system of special design for these tests. The scattering measurements were made at 8.34A and 0.92 deg angle of incidence. The results for ten of the samples are comparable, the two exceptions being the fire polished samples.

  14. Energy Calibration of a Silicon-Strip Detector for Photon-Counting Spectral CT by Direct Usage of the X-ray Tube Spectrum

    Science.gov (United States)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-02-01

    The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.

  15. The difference in backscatter factors of diagnostic X-rays by the difference in the scattering medium and in the objective dose

    International Nuclear Information System (INIS)

    Kato, Hideki; Sakai, Keita; Uchiyama, Mizuki; Suzuki, Kentaro

    2016-01-01

    The diagnostic reference levels (DRLs) of the general X-ray radiography are defined by the absorbed dose of air at the entrance surface with backscattered radiation from a scattering medium. Generally, the entrance surface dose of the general X-ray radiography is calculated from measured air kerma of primary X-ray multiplied by a backscatter factor (BSF). However, the BSF data employed at present used water for scattering medium, and was calculated based on the water-absorbed dose by incident primary photons and backscattered photons from the scattering medium. In the calculation of air dose at the entrance surface defined in DRLs, there are no theoretical consistencies for using BSF based on water dose, and this may be a cause of calculation error. In this paper, we verified the difference in BSF by the difference in the scattering medium and by the difference in the objective dose by means of the Monte Carlo simulation. In this calculation, the scattering medium was set as water and the soft-tissue, and the objective dose was set as air dose, water dose, soft-tissue dose, and skin dose. The difference in BSF calculated by the respective combination was at most about 1.3% and was less than 1% in most cases. In conclusion, even if the entrance surface dose defined by DRLs of general X-ray radiography is calculated using BSF, which set both the scattering medium and the object substance of the absorbed dose as water, a so big error doesn't show. (author)

  16. Correlation of photon beam motion with vacuum chamber cooling on the NSLS x-ray ring

    International Nuclear Information System (INIS)

    Johnson, E.D.; Fauchet, A.M.; Zhang, Xiaohao.

    1991-01-01

    The NSLS X-ray ring exhibits a direct correlation between photon beam motion, and distortion of the ring vacuum chamber induced by fluctuations in the cooling system. We have made long term measurements of photon beam vertical position, accelerator vacuum chamber motion, process water temperatures, and angular motions of the magnets around one superperiod of the NSLS x-ray ring. Short term transients in water temperature cause deflection of the ring vacuum chamber which have in turn been shown to induce very small angular rotations of the magnets, on the order of 10 micro-radians. A larger and more difficult to correct effect is the drift in beam position over the course of a fill. This problem has been shown to be related to the thermal gradients that develop across the vacuum chamber which, as a consequence of the configuration of the chamber cooling, depend upon stored current. Orbit simulations based upon the measured rotations are in agreement with the observed beam motions, and reveal that certain patterns of correlated motions of the magnets can produce much larger errors than random motion or concerted motion of all the magnets. During the course of these measurements global orbit feedback was installed, and found to significantly reduce the orbit errors which could not be corrected at their source

  17. Progresses in the measurement and evaluation of small-angle x-ray scattering data

    International Nuclear Information System (INIS)

    Bergmann, A.

    2000-08-01

    Scattering methods are a widely used technique for determining size and shape of particles in the mesoscopic size range. This work deals on the one hand with the development of instruments in the field of Small Angle x-ray Scattering (SAXS) and on the other hand with methodical contributions concerning the interpretation of small angle scattering data. After a short introduction about Small Angle Scattering (SAS) and its application in chapter one, follows in chapter two a derivation of the theory of Small Angle x-ray scattering. Thereafter indirect transformations (Generalized Indirect Fourier Transformation [GIFT], Indirect Fourier Transformation [IFT]) are discussed and in this connection the optimization of multidimensional hyper surfaces is described. There are different possibilities for optimizing such multidimensional surfaces. The pros and contras of the different optimization methods with respect to the evaluation of small angle scattering data from interacting systems are discussed in detail. Global optimization methods are mainly used, if the hypersurface, which has to be optimized, shows many local minima. The goal of the optimization is it to find the global minimum. It is essential, that the parameters of the hyper surface are independent of each other, as it is the case in the GIFT. If someone deals with problems in only few dimensions or with many boundary conditions, mostly local optimization routines are sufficient. Therefore a number of starting parameters for the optimization is chosen, which can be obtained systematically or randomly. The best solution obtained represents the result of the optimization procedure. Chapter 3 deals with the description of instruments used in the field of Small Angle x-ray Scattering. After a description of the components (x-ray sources, monochromators, detectors) of these instruments, the different beam geometries are discussed. In chapter 4 improvements of SAXS measurements on Kratky slit systems by Goebel

  18. Identification of resonant x-ray Raman scattering using SR- and conventional TXRF

    International Nuclear Information System (INIS)

    Zhu, Q.; Burrow, B.; Baur, K.; Brennan, S.; Pianetta, P.

    2000-01-01

    Analyzing and control the surface contamination are important steps in the processing of integrated circuits. The need for using non-destructive analysis techniques either as laboratory or in-line inspection tools has increased dramatically in the past. Total reflection x-ray fluorescence (TXRF) spectroscopy is one of the best choices to fill such needs. Earlier works have established the phenomenon of resonant x-ray Raman scattering with excitation energy very close to the Si-K absorption edge (1.74 keV). In this work, similar phenomena are identified in W-silicide and GaAs substrate with the excitation of W-Lβ 9.67 keV) line, a choice of x-ray source for almost all the conventional TXRF systems nowadays. The observation of the resonant Raman peak is clearly the result of close proximity of W-L and As-K absorption edges to the excitation energy. Synchrotron TXRF measurements are performed by tuning the excitation energy. The resonant Raman peak shifts accordingly with the excitation energy, along with the drastic change of its intensity below and above the absorption edge of W-L or As-K in the respective samples. The current analysis provides new perspective for analyzing W- and As-containing samples, which suggests Raman background correction in conventional TXRF with W-Lβ excitation. (author)

  19. The accurate assessment of small-angle X-ray scattering data.

    Science.gov (United States)

    Grant, Thomas D; Luft, Joseph R; Carter, Lester G; Matsui, Tsutomu; Weiss, Thomas M; Martel, Anne; Snell, Edward H

    2015-01-01

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  20. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    International Nuclear Information System (INIS)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Padmore, H. A.

    2016-01-01

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs via numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4"t"h or 5"t"h order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.

  1. Asymptotic form of the reciprocity theorem with applications in x-ray scattering

    International Nuclear Information System (INIS)

    Caticha, Ariel

    2000-01-01

    The emission of electromagnetic waves from a source within or near a nontrivial medium (with or without boundaries, crystalline or amorphous, with inhomogeneities, absorption, and so on) is sometimes studied using the reciprocity principle which is a variation of the method of Green's functions. If one is only interested in the asymptotic radiation fields the generality of these methods may actually be a shortcoming: obtaining expressions valid for the uninteresting near fields is not just a wasted effort but may be prohibitively difficult. In this work we obtain a modified form of the reciprocity principle which gives the asymptotic radiation field directly. The method may also be used to study scattering problems. We give a few pedagogical examples and then, as more challenging applications, we calculate the specular reflection of x rays by a rough surface and by a smoothly graded surface taking polarization effects into account. In conventional treatments of reflection, x rays are treated as scalar waves; polarization effects are neglected. This is a good approximation at grazing incidence but becomes increasingly questionable for soft x rays and UV at higher incidence angles

  2. Optimization of a coherent soft x-ray beamline for coherent scattering experiments at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro D.; Chubar, O.; Kaznatcheev, K.; Reininger, R.; Sanchez-Hanke, C.; Wang, S.

    2011-08-21

    The coherent soft x-ray and full polarization control (CSX) beamline at the National Synchrotron Light Source - II (NSLS-II) will deliver 1013 coherent photons per second in the energy range of 0.2-2 keV with a resolving power of 2000. The source, a dual elliptically polarizing undulator (EPU), and beamline optics should be optimized to deliver the highest possible coherent flux in a 10-30 {micro}m spot for use in coherent scattering experiments. Using the computer code Synchrotron Radiation Workshop (SRW), we simulate the photon source and focusing optics in order to investigate the conditions which provide the highest usable coherent intensity on the sample. In particular, we find that an intermediate phasing magnet is needed to correct for the relative phase between the two EPUs and that the optimum phase setting produces a spectrum in which the desired wavelength is slightly red-shifted thus requiring a larger aperture than originally anticipated. This setting is distinct from that which produces an on-axis spectrum similar to a single long undulator. Furthermore, partial coherence calculations, utilizing a multiple electron approach, indicate that a high degree of spatial coherence is still obtained at the sample location when such an aperture is used. The aperture size which maximizes the signal-to-noise ratio of a double-slit experiment is explored. This combination of high coherence and intensity is ideally suited for x-ray ptychography experiments which reconstruct the scattering density from micro-diffraction patterns. This technique is briefly reviewed and the effects on the image quality of proximity to the beamline focus are explored.

  3. Statistical x-ray computed tomography imaging from photon-starved measurements

    Science.gov (United States)

    Chang, Zhiqian; Zhang, Ruoqiao; Thibault, Jean-Baptiste; Sauer, Ken; Bouman, Charles

    2013-03-01

    Dose reduction in clinical X-ray computed tomography (CT) causes low signal-to-noise ratio (SNR) in photonsparse situations. Statistical iterative reconstruction algorithms have the advantage of retaining image quality while reducing input dosage, but they meet their limits of practicality when significant portions of the sinogram near photon starvation. The corruption of electronic noise leads to measured photon counts taking on negative values, posing a problem for the log() operation in preprocessing of data. In this paper, we propose two categories of projection correction methods: an adaptive denoising filter and Bayesian inference. The denoising filter is easy to implement and preserves local statistics, but it introduces correlation between channels and may affect image resolution. Bayesian inference is a point-wise estimation based on measurements and prior information. Both approaches help improve diagnostic image quality at dramatically reduced dosage.

  4. Quantitative X-ray mapping, scatter diagrams and the generation of correction maps to obtain more information about your material

    Science.gov (United States)

    Wuhrer, R.; Moran, K.

    2014-03-01

    Quantitative X-ray mapping with silicon drift detectors and multi-EDS detector systems have become an invaluable analysis technique and one of the most useful methods of X-ray microanalysis today. The time to perform an X-ray map has reduced considerably with the ability to map minor and trace elements very accurately due to the larger detector area and higher count rate detectors. Live X-ray imaging can now be performed with a significant amount of data collected in a matter of minutes. A great deal of information can be obtained from X-ray maps. This includes; elemental relationship or scatter diagram creation, elemental ratio mapping, chemical phase mapping (CPM) and quantitative X-ray maps. In obtaining quantitative x-ray maps, we are able to easily generate atomic number (Z), absorption (A), fluorescence (F), theoretical back scatter coefficient (η), and quantitative total maps from each pixel in the image. This allows us to generate an image corresponding to each factor (for each element present). These images allow the user to predict and verify where they are likely to have problems in our images, and are especially helpful to look at possible interface artefacts. The post-processing techniques to improve the quantitation of X-ray map data and the development of post processing techniques for improved characterisation are covered in this paper.

  5. Quantitative X-ray mapping, scatter diagrams and the generation of correction maps to obtain more information about your material

    International Nuclear Information System (INIS)

    Wuhrer, R; Moran, K

    2014-01-01

    Quantitative X-ray mapping with silicon drift detectors and multi-EDS detector systems have become an invaluable analysis technique and one of the most useful methods of X-ray microanalysis today. The time to perform an X-ray map has reduced considerably with the ability to map minor and trace elements very accurately due to the larger detector area and higher count rate detectors. Live X-ray imaging can now be performed with a significant amount of data collected in a matter of minutes. A great deal of information can be obtained from X-ray maps. This includes; elemental relationship or scatter diagram creation, elemental ratio mapping, chemical phase mapping (CPM) and quantitative X-ray maps. In obtaining quantitative x-ray maps, we are able to easily generate atomic number (Z), absorption (A), fluorescence (F), theoretical back scatter coefficient (η), and quantitative total maps from each pixel in the image. This allows us to generate an image corresponding to each factor (for each element present). These images allow the user to predict and verify where they are likely to have problems in our images, and are especially helpful to look at possible interface artefacts. The post-processing techniques to improve the quantitation of X-ray map data and the development of post processing techniques for improved characterisation are covered in this paper

  6. Small angle neutron and x-ray scattering studies of self-assembled nano structured materials

    International Nuclear Information System (INIS)

    Choi, Sung Min

    2009-01-01

    Full text: Small angle neutron and x-ray scattering are very powerful techniques to investigate nano structured materials. In this presentation, examples of nano structured materials investigated by neutron and x-ray scattering will be presented. Part I: The unique anisotropic physical properties of columnar discotic liquid crystals (DLCs) have attracted considerable interest for their potential applications as electronic devices. For many practical applications, however, it is crucial to obtain uniaxially oriented and highly ordered columnar superstructures of DLC molecules covering macroscopic area. Here, we present a simple and straight-forward approach to fabricate uniaxially oriented and highly ordered columnar superstructures of cobalt octa(n-decylthio) porphyrazine (CoS 1 0), a discotic supra-molecule, in bulk and on substrates [1] over a macroscopic length scale, utilizing an applied magnetic field and the interaction of CoS 1 0 with an OTS-functionalized substrate. The details of the oriented and ordered columnar nano-structures are investigated by SANS and GISAXS. Part II: Self-assembly of one-dimensional (1D) nanoparticles with metallic or semiconducting properties into highly ordered superstructures using various interactions has been of great interest as a route towards materials with new functionalities. Here, we report a new phase diagram of negatively charged 1D nanoparticle (cROD) and cationic liposome (CL) complexes in water which exhibit three different highly ordered phases [2]. Small angle neutron and x-ray scattering measurements show that the cROD-CL complexes exhibit three different highly ordered phases, intercalated lamellar, doubly intercalated lamellar and centered rectangular phases, depending on particle curvature and electrostatic interactions. The new phase diagram can be used to understand and design new highly ordered self-assemblies of 1D nanoparticles in soft matter which provide new functionalities. (author)

  7. Evaluation of mixed-signal noise effects in photon-counting X-ray image sensor readout circuits

    International Nuclear Information System (INIS)

    Lundgren, Jan; Abdalla, Suliman; O'Nils, Mattias; Oelmann, Bengt

    2006-01-01

    In readout electronics for photon-counting pixel detectors, the tight integration between analog and digital blocks causes the readout electronics to be sensitive to on-chip noise coupling. This noise coupling can result in faulty luminance values in grayscale X-ray images, or as color distortions in a color X-ray imaging system. An exploration of simulating noise coupling in readout circuits is presented which enables the discovery of sensitive blocks at as early a stage as possible, in order to avoid costly design iterations. The photon-counting readout system has been simulated for noise coupling in order to highlight the existing problems of noise coupling in X-ray imaging systems. The simulation results suggest that on-chip noise coupling should be considered and simulated in future readout electronics systems for X-ray detectors

  8. Analysis of borophosphosilicate glass layers on silicon wafers by X-ray emission from photon and electron excitation

    International Nuclear Information System (INIS)

    Elgersma, O.; Borstrok, J.J.M.

    1989-01-01

    Phosphorus and oxygen concentrations in the homogeneous layer of borosilicate glass (BPSG) deposited on Si-integrated circuits are determined by X-ray fluorescence from photon excitation. The X-ray emission from electron excitation in an open X-ray tube instrument yields a sufficiently precise determination of the boron content. The thickness of the layer can be derived from silicon Kα-fluorescence. A calibration model is proposed for photon as well as for electron excitation. The experimentally determined parameters in this model well agree with those derived from fundamental parameters for X-ray absorption and emission. The chemical surrounding of silicon affects strongly the peak profile of the silicon Kβ-emission. This enables to distinguish emission from the silicon atoms in the wafer and from the silicon atoms in the silicon oxide complexes of the BPSG-layer. (author)

  9. Structure factor of dimyristoylphosphatidylcholine unilamellar vesicles: small-angle x-ray scattering study

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Aksenov, V.L.; Lombardo, D.; Kisselev, A.M.; Lesieur, P.

    2003-01-01

    Small-angle X-ray scattering (SAXS) experiments have been performed on dimyristoylphosphatidylcholine (DMPC) unilamellar vesicles in 40% aqueous sucrose solution. Model of separated form factors was applied for the evaluation of SAXS curves from large unilamellar vesicles. For the first time vesicle structure factor, polydispersity, average radius and membrane thickness were calculated simultaneously from the SAXS curves at T=30 deg C for DMPC concentrations in the range from 15 to 75 mM (1-5% w/w). Structure factor correction to the scattering curve was shown to be negligibly small for the lipid concentration of 15 mM (1% w/w). It was proved to be necessary to introduce structure factor correction to the scattering curves for lipid concentrations ≥ 30 mM (2% w/w)

  10. Proteins on surfaces investigated by microbeam grazing incidence small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, Ronald; Riekel, Christian; Burghammer, Manfred [European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble Cedex (France); Vendrely, Charlotte [Universite de Cergy-Pontoise, ERRMECE, F-95000, Cergy-Pontoise (France); Mueller-Buschbaum, Peter [TU Muenchen, Physik Department E13, Muenchen (Germany)

    2009-07-01

    Grazing incidence small angle scattering with a 1 micron x-ray beam ({mu}GISAXS) is applied to study structural ordering of casein micelles and fibroin in solution cast films. {mu}GISAXS scans provide the possibility to locate highly ordered areas and to investigate variation in the molecular packing. In the case of the casein micelles, ordered film structures have been generated by decreasing their natural size dispersion. While dynamic light scattering was used to characterize the different size fractions in solution, {mu}GISAXS and roughness are measured on the resulting casein films. GISAXS-Patterns are analyzed by simulations providing the dimension and nearest neighbor distances of casein micelles. In the case of fibroin, ordering of nano-fibers formed during the drying process is investigated. The experimental data are analyzed by simulations and compared to SEM, AFM and Raman scattering experiments.

  11. Anomalous small-angle x-ray scattering of a femtosecond irradiated germano silicate fibre preform.

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, F.; Fertein, E.; Seifert, S.; Przygodski, C.S.; Bocquet, R.; Douay, M.; Bychkov, E.; Experimental Facilities Division (APS); LPCA, CNRS; PhLAM; Univ. des Sciences et Tech. de Lille

    2005-01-01

    RADIATION is shown to induce significant mesoscopic structure. The scattering intensity for irradiated glasses is close to two orders of magnitude greater than that of unexposed material. Anomalous small-angle X-ray scattering (ASAXS) around the germanium K-edge for the silica and germanium doped silica regions of a fiber preform is used to demonstrate that identical structures are induced in both glass materials, with germanium displaying a capacity to isomorphically replace silicon in the case of the germanium doped silica. Analysis of measured scattering indicates that photo-inscribed features are produced at two distinct scales with typical radii of R {approx} 20 Angstroms and R{sub min} {approx} 200 Angstroms.

  12. Structure Factor of Dimyristoylphosphatidylcholine Unilamellar Vesicles Small-Angle X-Ray Scattering Study

    CERN Document Server

    Kiselev, M A; Kisselev, A M; Lesieur, P; Aksenov, V L

    2003-01-01

    Small-angle X-ray scattering (SAXS) experiments have been performed on dimyristoylphosphatidylcholine (DMPC) unilamellar vesicles in 40 % aqueous sucrose solution. Model of separated form factors was applied for the evaluation of SAXS curves from large unilamellar vesicles. For the first time vesicle structure factor, polydispersity, average radius and membrane thickness were calculated simultaneously from the SAXS curves at T=306{\\circ}C for DMPC concentrations in the range from 15 to 75 mM (1-5 % w/w). Structure factor correction to the scattering curve was shown to be negligibly small for the lipid concentration of 15 mM (1 % w/w). It was proved to be necessary to introduce structure factor correction to the scattering curves for lipid concentrations {\\ge}30 mM (2 % w/w).

  13. X-ray scattering evaluation of ultrastructural changes in human dental tissues with thermal treatment.

    Science.gov (United States)

    Sandholzer, Michael A; Sui, Tan; Korsunsky, Alexander M; Walmsley, Anthony Damien; Lumley, Philip J; Landini, Gabriel

    2014-05-01

    Micro- and ultrastructural analysis of burned skeletal remains is crucial for obtaining a reliable estimation of cremation temperature. Earlier studies mainly focused on heat-induced changes in bone tissue, while this study extends this research to human dental tissues using a novel quantitative analytical approach. Twelve tooth sections were burned at 400-900°C (30-min exposure, increments of 100°C). Subsequent combined small- and wide-angle X-ray scattering (SAXS/WAXS) experiments were performed at the Diamond Light Source synchrotron facility, where 28 scattering patterns were collected within each tooth section. In comparison with the control sample, an increase in mean crystal thickness was found in burned dentine (2.8-fold) and enamel (1.4-fold), however at a smaller rate than reported earlier for bone tissue (5-10.7-fold). The results provide a structural reference for traditional X-ray scattering methods and emphasize the need to investigate bone and dental tissues separately to obtain a reliable estimation of cremation temperature. © 2014 American Academy of Forensic Sciences.

  14. On the possibility of using X-ray Compton scattering to study magnetoelectrical properties of crystals

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S. P., E-mail: steve.collins@diamond.ac.uk; Laundy, D.; Connolley, T.; Laan, G. van der; Fabrizi, F. [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom); Janssen, O. [Department of Physics, New York University, New York, NY 10003 (United States); Cooper, M. J. [Department of Physics, University of Warwick, CV4 7AL (United Kingdom); Ebert, H.; Mankovsky, S. [Universität München, Department Chemie, Haus E2.033, Butenandtstrasse 5-13, D-81377 München (Germany)

    2016-02-16

    The possibility of using X-ray Compton scattering to reveal antisymmetric components of the electron momentum density, as a fingerprint of magnetoelectric sample properties, is investigated experimentally and theoretically by studying the polar ferromagnet GaFeO{sub 3}. This paper discusses the possibility of using Compton scattering – an inelastic X-ray scattering process that yields a projection of the electron momentum density – to probe magnetoelectrical properties. It is shown that an antisymmetric component of the momentum density is a unique fingerprint of such time- and parity-odd physics. It is argued that polar ferromagnets are ideal candidates to demonstrate this phenomenon and the first experimental results are shown, on a single-domain crystal of GaFeO{sub 3}. The measured antisymmetric Compton profile is very small (≃ 10{sup −5} of the symmetric part) and of the same order of magnitude as the statistical errors. Relativistic first-principles simulations of the antisymmetric Compton profile are presented and it is shown that, while the effect is indeed predicted by theory, and scales with the size of the valence spin–orbit interaction, its magnitude is significantly overestimated. The paper outlines some important constraints on the properties of the antisymmetric Compton profile arising from the underlying crystallographic symmetry of the sample.

  15. Recent developments in X-ray and neutron small-angle scattering instrumentation and data analysis

    International Nuclear Information System (INIS)

    Schelten, J.

    1978-01-01

    The developments in instrumentation and data analysis that have occurred in the field of small-angle X-ray and neutron scattering since 1973 are reviewed. For X-rays, the cone camera collimation was invented, synchrotrons and storage rings were demonstrated to be intense sources of X-radiation, and one- and two-dimensional position-sensitive detectors were interfaced to cameras with both point and line collimation. For neutrons, the collimators and detectors on the Juelich and Grenoble machines were improved, new D11-type instruments were built or are under construction at several sites, double-crystal instruments were set up, and various new machines have been proposed. Significant progress in data analysis and evaluation has been made through application of mathematical techniques such as the use of spline functions, error minimization with constraints, and linear programming. Several special experiments, unusual in respect to the anisotropy of the scattering pattern, gravitational effects, moving scatterers, and dynamic fast time slicing, are discussed. (Auth.)

  16. Determination of coal ash content by the combined x-ray fluorescence and scattering spectrum

    Science.gov (United States)

    Mikhailov, I. F.; Baturin, A. A.; Mikhailov, A. I.; Borisova, S. S.; Fomina, L. P.

    2018-02-01

    An alternative method is proposed for the determination of the inorganic constituent mass fraction (ash) in solid fuel by the ratio of Compton and Rayleigh X-ray scattering peaks IC/IR subject to the iron fluorescence intensity. An original X-ray optical scheme with a Ti/Mo (or Sc/Cu) double-layer secondary radiator allows registration of the combined fluorescence-and-scattering spectrum at the specified scattering angle. An algorithm for linear calibration of the Compton-to-Rayleigh IC/IR ratio is proposed which uses standard samples with two certified characteristics: mass fractions of ash (Ad) and iron oxide (WFe2O3). Ash mass fractions have been determined for coals of different deposits in the wide range of Ad from 9.4% to 52.7% mass and WFe2O3 from 0.3% to 4.95% mass. Due to the high penetrability of the probing radiation with energy E > 17 keV, the sample preparation procedure is rather simplified in comparison with the traditional method of Ad determination by the sum of fluorescence intensities of all constituent elements.

  17. Theoretical model of x-ray scattering as a dense matter probe.

    Science.gov (United States)

    Gregori, G; Glenzer, S H; Rozmus, W; Lee, R W; Landen, O L

    2003-02-01

    We present analytical expressions for the dynamic structure factor, or form factor S(k,omega), which is the quantity describing the x-ray cross section from a dense plasma or a simple liquid. Our results, based on the random phase approximation for the treatment on the charged particle coupling, can be applied to describe scattering from either weakly coupled classical plasmas or degenerate electron liquids. Our form factor correctly reproduces the Compton energy down-shift and the known Fermi-Dirac electron velocity distribution for S(k,omega) in the case of a cold degenerate plasma. The usual concept of scattering parameter is also reinterpreted for the degenerate case in order to include the effect of the Thomas-Fermi screening. The results shown in this work can be applied to interpreting x-ray scattering in warm dense plasmas occurring in inertial confinement fusion experiments or for the modeling of solid density matter found in the interior of planets.

  18. High-temperature cuprate superconductors studied by x-ray Compton scattering and positron annihilation spectroscopies

    International Nuclear Information System (INIS)

    Barbiellini, Bernardo

    2013-01-01

    The bulk Fermi surface in an overdoped (x = 0.3) single crystal of La 2−x Sr x CuO 4 has been observed by using x-ray Compton scattering. This momentum density technique also provides a powerful tool for directly seeing what the dopant Sr atoms are doing to the electronic structure of La 2 CuO 4 . Because of wave function effects, positron annihilation spectroscopy does not yield a strong signature of the Fermi surface in extended momentum space, but it can be used to explore the role of oxygen defects in the reservoir layers for promoting high temperature superconductivity.

  19. High-temperature cuprate superconductors studied by x-ray Compton scattering and positron annihilation spectroscopies

    Science.gov (United States)

    Barbiellini, Bernardo

    2013-06-01

    The bulk Fermi surface in an overdoped (x = 0.3) single crystal of La2-xSrxCuO4 has been observed by using x-ray Compton scattering. This momentum density technique also provides a powerful tool for directly seeing what the dopant Sr atoms are doing to the electronic structure of La2CuO4. Because of wave function effects, positron annihilation spectroscopy does not yield a strong signature of the Fermi surface in extended momentum space, but it can be used to explore the role of oxygen defects in the reservoir layers for promoting high temperature superconductivity.

  20. Detection of impaired diastolic relaxation during myocardial ischemia using x-ray scatter fields

    International Nuclear Information System (INIS)

    McInerney, J.J.; Morris, L.; Herr, M.D.; Copenhaver, G.L.

    1986-01-01

    Precise three-dimensional epicardial displacements and velocities are measured nonivasively (no cutdowns or injections) with low-energy x-rays scattered from the closed chest surface of the heart. Surface reconstructions provide direct visualization of p-wave motion of the atrial wall, isovolumic sphericalization of the heart, global thrust of the ventricle during ejection, swelling of the base during refill, and relaxation during diastole. This new imaging technique was applied to canines before and after closed chest coronary embolization. Displacement and velocity displays of ischemic hearts clearly show reduced ejection displacement amplitudes, asynchronous motion patterns during systole, and impaired relaxation patterns during diastole

  1. Nano-crystal growth in cordierite glass ceramics studied with X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bras, Wim; Clark, Simon M.; Greaves, G. N.; Kunz, Martin; van Beek, W.; Radmilovic, V.

    2009-01-16

    The development of monodisperse crystalline particles in cordierite glass doped with Cr3+ after a two-step heat treatment is elucidated by a combination of time-resolved small and wide angle x-ray scattering (SAXS/WAXS) experiments with electron microscopy. The effects of bulk and surface crystallization can clearly be distinguished, and the crystallization kinetics of the bulk phase is characterized. The internal pressure due to structural differences between the crystalline and amorphous phase is measured but the physical cause of this pressure can not unambiguously be attributed. The combined measurements comprise a nearly full characterization of the crystallization processes and the resulting sample morphology.

  2. Malnutrition and myelin structure: an X-ray scattering study of rat sciatic and optic nerves

    International Nuclear Information System (INIS)

    Vargas, V.; Vargas, R.; Marquez, G.; Vonasek, E.; Mateu, L.; Luzzati, V.; Borges, J.

    2000-01-01

    Taking advantage of the fast and accurate X-ray scattering techniques recently developed in our laboratory, we tackled the study of the structural alterations induced in myelin by malnutrition. Our work was performed on sciatic and optic nerves dissected from rats fed with either a normal or a low-protein caloric diet, as a function of age (from birth to 60 days). By way of electrophysiological controls we also measured (on the sciatic nerves) the height and velocity of the compound action potential. Malnutrition was found to decrease the amount of myelin and to impair the packing order of the membranes in the sheaths. (orig.)

  3. Theoretical and experimental study of resonant inelastic X-ray scattering for NiO

    International Nuclear Information System (INIS)

    Kotani, A.; Matsubara, M.; Uozumi, T.; Ghiringhelli, G.; Fracassi, F.; Dallera, C.; Tagliaferri, A.; Brookes, N.B.; Braicovich, L.

    2006-01-01

    Resonant inelastic X-ray scattering (RIXS) spectra for Ni 2p to 3d excitation and 3d to 2p de-excitation of NiO are studied both theoretically and experimentally. Theoretical calculations with a single impurity Anderson model (SIAM) describe the charge transfer (CT) and d-d excitations in RIXS, and detailed study is made for the CT energy. High resolution RIXS measurements reveal the precise d-d excitation structure and its polarization dependence, and they are well reproduced by the SIAM calculation

  4. Effects of crystal defects on the diffuse scattering of X-rays

    International Nuclear Information System (INIS)

    Kremser, R.

    1974-01-01

    This thesis concerns with the influence of crystal defects in germanium-drifted silicium and in α=quartz on the intensity of the diffuse X-ray scattering. The experiments were performed at low and high temperatures to show the effect of the atomic thermal motion on the intensity of the diffuse maxima. The comparison of the results for pure silicium and for the germanium-drifted crystal gives information about the relation between the frequency-spectra and the defects of the drifted silicium. For α-quarts it was not possible to relate unequivocally the observed changes in the intensity to individual defects. (C.R.)

  5. X-ray atomic scattering factors of low-Z ions with a core hole

    International Nuclear Information System (INIS)

    Hau-Riege, Stefan P.

    2007-01-01

    Short and intense x-ray pulses may be used for atomic-resolution diffraction imaging of single biological molecules. One of the dominant damage mechanisms is atomic ionization, resulting in a large fraction of atoms with core holes. We calculated the atomic scattering factor of atoms with atomic charge numbers between 3 and 10 in different ionization states with and without a core hole. Our results show that orbital occupation and the change of the orbitals upon core ionization (core relaxation) have a significant impact on the diffraction pattern

  6. Heavy particle dynamics in liquid Se. Inelastic x-ray scattering

    International Nuclear Information System (INIS)

    Inui, Masanori; Hosokawa, Shinya; Matsuda, Kazuhiro; Tsutsui, Satoshi; Baron, A. Q. R.

    2007-01-01

    The dynamic structure factor of liquid Se was measured at 523 K using high-resolution inelastic X-ray scattering. Anomalous narrowing of the spectrum was observed at 15 nm -1 , where the static structure factor S(Q) exhibits a weak shoulder, but the elastic part of the dynamic structure factor S(Q, E=0) exhibited a strong maximum. The second frequency moment, which is estimated from only the quasielastic peak, is consistent with the motion of rigid six-atom clusters, while a formal agreement with the first-moment sum rule is preserved by the appearance of a weak intramolecular mode at 30 meV. (author)

  7. Wide-angle X-ray scattering study of heat-treated PEEK and PEEK composite

    Science.gov (United States)

    Cebe, Peggy; Lowry, Lynn; Chung, Shirley Y.; Yavrouian, Andre; Gupta, Amitava

    1987-01-01

    Samples of poly(etheretherketone) (PEEK) neat resin and APC-2 carbon fiber composite were subjected to various heat treatments, and the effect of quenching and annealing treatments was studied by wide-angle X-ray scattering. It is found that high-temperature treatments may introduce disorder into neat resin and composite PEEK when followed by rapid cooling. The disorder is metastable and can revert to ordered state when the material is heated above its glass transition temperature and then cooled slowly. The disorder may result from residual thermal stresses.

  8. Ion track annealing in quartz investigated by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schauries, D.; Afra, B.; Rodriguez, M.D. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601 (Australia); Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64287 Darmstadt (Germany); Hawley, A. [Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168 (Australia); Kluth, P. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601 (Australia)

    2015-12-15

    We report on the reduction of cross-section and length of amorphous ion tracks embedded within crystalline quartz during thermal annealing. The ion tracks were created via Au ion irradiation with an energy of 2.2 GeV. The use of synchrotron-based small angle X-ray scattering (SAXS) allowed characterization of the latent tracks, without the need for chemical etching. Temperatures between 900 and 1000 °C were required to see a notable change in track size. The shrinkage in cross-section and length was found to be comparable for tracks aligned perpendicular and parallel to the c-axis.

  9. Integrative structural modeling with small angle X-ray scattering profiles

    Directory of Open Access Journals (Sweden)

    Schneidman-Duhovny Dina

    2012-07-01

    Full Text Available Abstract Recent technological advances enabled high-throughput collection of Small Angle X-ray Scattering (SAXS profiles of biological macromolecules. Thus, computational methods for integrating SAXS profiles into structural modeling are needed more than ever. Here, we review specifically the use of SAXS profiles for the structural modeling of proteins, nucleic acids, and their complexes. First, the approaches for computing theoretical SAXS profiles from structures are presented. Second, computational methods for predicting protein structures, dynamics of proteins in solution, and assembly structures are covered. Third, we discuss the use of SAXS profiles in integrative structure modeling approaches that depend simultaneously on several data types.

  10. X-ray and neutron scattering investigations of YCo sub 3 -H

    Energy Technology Data Exchange (ETDEWEB)

    Benham, M J; Bennington, S M; Ross, D K [Birmingham Univ. (UK). School of Physics and Space Research; Noreus, D [Stockholm Univ. (Sweden). Dept. of Structural Chemistry; Yamaguchi, M [Yokohoma National Univ. (Japan). Dept. of Electrical and Computer Engineering

    1989-01-01

    Various structural studies of YCo{sub 3}H(D){sub x} in the {beta}-phase (0X-ray diffraction measurements determined that the expansion of the lattice is localised to components of the structure which are related to the Laves phase, YCo{sub 2}. Neutron diffraction and inelastic neutron scattering were also used in tandem, and hydrogen occupation of a single (36i) tetrahedral site was inferred for the entire concentration range. (orig.).

  11. Food structure and dynamics - what are the opportunities for x-ray and neutron scattering?

    International Nuclear Information System (INIS)

    Gilbert, Elliot Paul

    2010-01-01

    In the latter part of the 20th century, it became evident that major advances in understanding could be achieved by gathering together scientists from unique, diverse but nonetheless complementary disciplines. To what extent can this be achieved in materials science, food science, food technology and nutrition? In Australia, we have developed a programme of research in which we seek to investigate fundamental and industrial problems of national significance in food science. This presentation will illustrate some of the opportunities now available through strategic alliances with materials scientists in the application of methods such as X-ray and neutron scattering to gain a critical understanding of food microstructure, nanostructure and dynamics

  12. Study of pore growth in glassy carbon using small angle x-ray scattering

    International Nuclear Information System (INIS)

    Hoyt, J.

    1982-07-01

    Small-angle x-ray scattering was used to study the average pore size in glass-like carbon as a function of both heat-treatment time and heat-treatment temperature. A pore-growth model based on graphitization processes is presented. The simple mechanism shows that the change in the average radius of gyration with time is related to the total number of pores as a function of time, which in turn depends on the irreversible thermal-expansion phenomenon. The results of this study are inconsistent with a vacancy-migration pore-growth mechanism proposed earlier

  13. Fast estimation of first-order scattering in a medical x-ray computed tomography scanner using a ray-tracing technique.

    Science.gov (United States)

    Liu, Xin

    2014-01-01

    This study describes a deterministic method for simulating the first-order scattering in a medical computed tomography scanner. The method was developed based on a physics model of x-ray photon interactions with matter and a ray tracing technique. The results from simulated scattering were compared to the ones from an actual scattering measurement. Two phantoms with homogeneous and heterogeneous material distributions were used in the scattering simulation and measurement. It was found that the simulated scatter profile was in agreement with the measurement result, with an average difference of 25% or less. Finally, tomographic images with artifacts caused by scatter were corrected based on the simulated scatter profiles. The image quality improved significantly.

  14. Design and manufacture of multi-electrode ion chamber for absolute photon-flux measurements of soft x-rays

    International Nuclear Information System (INIS)

    Yoshigoe, Akitaka; Teraoka, Yuden

    2001-03-01

    In order to measure the absolute photon-flux of soft x-rays at the photon energy region from 500 eV to 1500 eV, a sealed gas ion chamber with multi-electrodes was designed and manufactured. Actually we succeeded in measuring the photon-flux at the soft x-ray beamline, BL23SU, in the SPring-8. This report concretely describes the design and the adjustment of the sealed gas ion chamber with multi-electrodes. (author)

  15. Energy dependence of photon-induced L-shell x-ray intensity ratios in some high-Z elements

    Energy Technology Data Exchange (ETDEWEB)

    Shatendra, K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1983-12-14

    The L-shell x-ray intensity ratios in Au, Pb, Th and U at various photon energies have been measured and their energy dependence is studied. A comparison of the experimental values is made with those calculated using the x-ray emission rates and subshell photoelectric cross sections, subshell fluorescence yields and Coster-Kronig transition probabilities and fairly good agreement is observed.

  16. X-RAYING THE DARK SIDE OF VENUS—SCATTER FROM VENUS’ MAGNETOTAIL?

    International Nuclear Information System (INIS)

    Afshari, M.; Peres, G.; Petralia, A.; Reale, F.; Jibben, P. R.; Weber, M.

    2016-01-01

    We analyze significant X-ray, EUV, and UV emission coming from the dark side of Venus observed with Hinode /XRT and Solar Dynamics Observatory /Atmospheric Imaging Assembly ( SDO /AIA) during a transit across the solar disk that occurred in 2012. As a check we have analyzed an analogous Mercury transit that occurred in 2006. We have used the latest version of the Hinode /XRT point spread function to deconvolve Venus and Mercury X-ray images, to remove instrumental scattering. After deconvolution, the flux from Venus’ shadow remains significant while that of Mercury becomes negligible. Since stray light contamination affects the XRT Ti-poly filter data we use, we performed the same analysis with XRT Al-mesh filter data, not affected by the light leak. Even the latter data show residual flux. We have also found significant EUV (304 Å, 193 Å, 335 Å) and UV (1700 Å) flux in Venus’ shadow, measured with SDO /AIA. The EUV emission from Venus’ dark side is reduced, but still significant, when deconvolution is applied. The light curves of the average flux of the shadow in the X-ray, EUV, and UV bands appear different as Venus crosses the solar disk, but in any of them the flux is, at any time, approximately proportional to the average flux in a ring surrounding Venus, and therefore proportional to that of the solar regions around Venus’ obscuring disk line of sight. The proportionality factor depends on the band. This phenomenon has no clear origin; we suggest that it may be due to scatter occurring in the very long magnetotail of Venus.

  17.  X-RAYING THE DARK SIDE OF VENUS—SCATTER FROM VENUS’ MAGNETOTAIL?

    Energy Technology Data Exchange (ETDEWEB)

    Afshari, M.; Peres, G.; Petralia, A.; Reale, F. [Dipartimento di Fisica e Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 (Italy); Jibben, P. R.; Weber, M., E-mail: peres@astropa.unipa.it [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-10-01

    We analyze significant X-ray, EUV, and UV emission coming from the dark side of Venus observed with Hinode /XRT and Solar Dynamics Observatory /Atmospheric Imaging Assembly ( SDO /AIA) during a transit across the solar disk that occurred in 2012. As a check we have analyzed an analogous Mercury transit that occurred in 2006. We have used the latest version of the Hinode /XRT point spread function to deconvolve Venus and Mercury X-ray images, to remove instrumental scattering. After deconvolution, the flux from Venus’ shadow remains significant while that of Mercury becomes negligible. Since stray light contamination affects the XRT Ti-poly filter data we use, we performed the same analysis with XRT Al-mesh filter data, not affected by the light leak. Even the latter data show residual flux. We have also found significant EUV (304 Å, 193 Å, 335 Å) and UV (1700 Å) flux in Venus’ shadow, measured with SDO /AIA. The EUV emission from Venus’ dark side is reduced, but still significant, when deconvolution is applied. The light curves of the average flux of the shadow in the X-ray, EUV, and UV bands appear different as Venus crosses the solar disk, but in any of them the flux is, at any time, approximately proportional to the average flux in a ring surrounding Venus, and therefore proportional to that of the solar regions around Venus’ obscuring disk line of sight. The proportionality factor depends on the band. This phenomenon has no clear origin; we suggest that it may be due to scatter occurring in the very long magnetotail of Venus.

  18. Angular dependence of resonant inelastic x-ray scattering : A spherical tensor expansion

    NARCIS (Netherlands)

    Juhin, Amelie; Brouder, Christian; de Groot, Frank

    A spherical tensor expansion is carried out to express the resonant inelastic scattering cross-section as a sum of products of fundamental spectra with tensors involving wavevectors and polarization vectors of incident and scattered photons. The expression presented in this paper differs from that

  19. Commissioning of the soft x-ray undulator beamline at the Siam Photon Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Hideki, E-mail: hideki@slri.or.th; Chaichuay, Sarunyu; Sudmuang, Porntip; Rattanasuporn, Surachet; Jenpiyapong, Watcharapon; Supruangnet, Ratchadaporn; Chanlek, Narong [Synchrotron Light Research Institute, Muang, Nakhon Ratchasima 30000 (Thailand); Songsiriritthigul, Prayoon [School of Physics, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-07-27

    The synchrotron radiation from the first undulator at the Siam Photon Laboratory was characterized with the photon beam position monitors (BPMs) and grating monochromator. The soft x-ray undulator beamline employs a varied line-spacing plane grating monochromator with three interchangeable gratings. Since 2010, the beamline has delivered photons with energy of 40-160 and 220-1040 eV at the resolving power of 10,000 for user services at the two end- stations that utilize the photoemission electron spectroscopy and microscopy techniques. The undulator power-density distributions measured by the 0.05-mm wire-scan BPM were in good agreement with those in simulation. The flux-density distributions were evaluated in the red-shift measurements, which identify the central cone of radiation and its distribution. Since 2014, the operation of the other insertion devices in the storage ring has started, and consequently bought about the increases in the emittance from 41 to 61 nm·rad and the coupling constant from 4 to 11%. The local electron-orbit correction greatly improved the alignment of the electron beam in the undulator section resulting in the improvements of the photon flux and harmonics peaks of the undulator radiation.

  20. Atomic dynamics in fluids studied by inelastic x-ray scattering

    International Nuclear Information System (INIS)

    Inui, Masanori; Kajihara, Yukio; Matsuda, Kazuhiro; Ishikawa, Daisuke; Tsutsui, Satoshi; Baron, Alfred Q.

    2010-01-01

    Studies on atomic dynamics in supercritical fluids at high temperature and high pressure have remarkably been advanced by using an inelastic x-ray scattering technique that achieved a meV-energy resolution in the middle of 1990's. In this article, we describe a brief review of the theoretical background on liquid dynamics, our own high-temperature high-pressure technique and recent results of atomic dynamics in supercritical fluids. In particular, we report the results of inelastic x-ray scattering measurements for expanding fluid Hg at high temperature and high pressure, which were conduced at BL35XU/SPring-8. We found that in the metal-nonmetal transition in fluid Hg, the excitation energy of the acoustic mode disperses three times faster than the adiabatic sound velocity obtained by ultrasonic measurements. This phenomenon must be crucial to understand how a metallic state is formed during atomic condensation accurately. Finally we put a future development of this field in perspective. (author)

  1. Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

    KAUST Repository

    Spannuth, Melissa; Mochrie, S. G. J.; Peppin, S. S. L.; Wettlaufer, J. S.

    2011-01-01

    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has concentrated mostly on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small-angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high-density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard interparticle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes. © 2011 American Physical Society.

  2. Dichroism and resonant diffraction in x-ray scattering by complex materials

    International Nuclear Information System (INIS)

    Collins, S P; Lovesey, S W; Balcar, E

    2007-01-01

    We survey universal concepts that influence dichroism and resonant Bragg diffraction, aiming to reach across the range of scientific disciplines that benefit from x-ray techniques, namely, chemistry, physics, life-sciences, and the science of materials. To this end, we adopt a top down discussion of the aspects of symmetry and concomitant selection rules. Starting from selection rules that can be deduced from the global condition that an observable quantity is unchanged on reversing the directions of both space and time separately, to selection rules that flow from bulk symmetry properties of electrons imposed by elements of a point group or crystal class to, finally, atomic selection rules that emerge from the details of the electronic structure. As a motivation for the latter we discuss, with a new calculation of the x-ray scattering length, E 1-M 1 absorption and scattering events that particularly interest scientists studying the chirality of life. In the main text there is modest use of mathematics, with appropriate details relegated to a few appendices. (topical review)

  3. Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

    KAUST Repository

    Spannuth, Melissa

    2011-02-01

    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has concentrated mostly on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small-angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high-density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard interparticle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes. © 2011 American Physical Society.

  4. Resonant x-ray scattering study of the antiferroelectric and ferrielectric phases in liquid crystal devices

    International Nuclear Information System (INIS)

    Matkin, L. S.; Watson, S. J.; Gleeson, H. F.; Pindak, R.; Pitney, J.; Johnson, P. M.; Huang, C. C.; Barois, P.; Levelut, A.-M.; Srajer, G.

    2001-01-01

    Resonant x-ray scattering has been used to investigate the interlayer ordering of the antiferroelectric and ferrielectric smectic C * subphases in a device geometry. The liquid crystalline materials studied contain a selenium atom and the experiments were carried out at the selenium K edge allowing x-ray transmission through glass. The resonant scattering peaks associated with the antiferroelectric phase were observed in two devices containing different materials. It was observed that the electric-field-induced antiferroelectric to ferroelectric transition coincides with the chevron to bookshelf transition in one of the devices. Observation of the splitting of the antiferroelectric resonant peaks as a function of applied field also confirmed that no helical unwinding occurs at fields lower than the chevron to bookshelf threshold. Resonant features associated with the four-layer ferrielectric liquid crystal phase were observed in a device geometry. Monitoring the electric field dependence of these ferrielectric resonant peaks showed that the chevron to bookshelf transition occurs at a lower applied field than the ferrielectric to ferroelectric switching transition

  5. Effects of electron scattering on the oscillations of an X-ray source

    International Nuclear Information System (INIS)

    Kylafis, N.D.; Klimis, G.S.

    1987-01-01

    The time variability observed at infinity due to a variable point source at the center of a spherical cloud of radius R and optical depth to electron scattering tau is analytically determined. The emissin pattern of the source and its time variability are assumed to be of the following three forms: (1) isotropic emission with intensity varying sinusoidally in time with angular frequency Omega(L), (2) emission in the form of a delta-function beam rotating with angular frequency Omega(R) about a fixed axis and with intensity constant in time, and (3) emission in the form of a delta-function beam rotating with angular frequency Omega(R) about a fixed axis and with intensity varying sinusoidally in time with angular frequency Omega(L). More complicated source emissions and variabilities are studied by superposing the above forms. The results of our calculations reveal the conditions under which quasi-periodic oscillations can be observed from X-ray sources, while periodic oscillations are completely smeared out. Furthermore, these results can be used to study the X-ray oscillations of such sources as Her X-1, Cyg X-3, and the Vela pulsar, which are believed to be embedded in scattering clouds. 35 references

  6. Quantitative spectromicroscopy from inelastically scattered photoelectrons in the hard X-ray range

    Energy Technology Data Exchange (ETDEWEB)

    Renault, O., E-mail: olivier.renault@cea.fr; Zborowski, C.; Risterucci, P. [Univ. Grenoble Alpes, F-38000 Grenoble, France and CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Wiemann, C.; Schneider, C. M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Grenet, G. [Institut des Nanotechnologies de Lyon, Ecole Centrale, 69134 Ecully Cedex (France); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2016-07-04

    We demonstrate quantitative, highly bulk-sensitive x-ray photoelectron emission microscopy by analysis of inelastically scattered photoelectrons in the hard X-ray range, enabling elemental depth distribution analysis in deeply buried layers. We show results on patterned structures used in electrical testing of high electron mobility power transistor devices with an epitaxial Al{sub 0.25}Ga{sub 0.75}N channel and a Ti/Al metal contact. From the image series taken over an energy range of up to 120 eV in the Ti 1s loss feature region and over a typical 100 μm field of view, one can accurately retrieve, using background analysis together with an optimized scattering cross-section, the Ti depth distribution from 14 nm up to 25 nm below the surface. The method paves the way to multi-elemental, bulk-sensitive 3D imaging and investigation of phenomena at deeply buried interfaces and microscopic scales by photoemission.

  7. Quantitative characterization of fatty liver disease using x-ray scattering

    Science.gov (United States)

    Elsharkawy, Wafaa B.; Elshemey, Wael M.

    2013-11-01

    Nonalcoholic fatty liver disease (NAFLD) is a dynamic condition in which fat abnormally accumulates within the hepatocytes. It is believed to be a marker of risk of later chronic liver diseases, such as liver cirrhosis and carcinoma. The fat content in liver biopsies determines its validity for liver transplantation. Transplantation of livers with severe NAFLD is associated with a high risk of primary non-function. Moreover, NAFLD is recognized as a clinically important feature that influences patient morbidity and mortality after hepatic resection. Unfortunately, there is a lack in a precise, reliable and reproducible method for quantification of NAFLD. This work suggests a method for the quantification of NAFLD. The method is based on the fact that fatty liver tissue would have a characteristic x-ray scattering profile with a relatively intense fat peak at a momentum transfer value of 1.1 nm-1 compared to a soft tissue peak at 1.6 nm-1. The fat content in normal and fatty liver is plotted against three profile characterization parameters (ratio of peak intensities, ratio of area under peaks and ratio of area under fat peak to total profile area) for measured and Monte Carlo simulated x-ray scattering profiles. Results show a high linear dependence (R2>0.9) of the characterization parameters on the liver fat content with a reported high correlation coefficient (>0.9) between measured and simulated data. These results indicate that the current method probably offers reliable quantification of fatty liver disease.

  8. The current status of small-angle x-ray scattering beamline at Diamond Light Source

    International Nuclear Information System (INIS)

    Inoue, Katsuaki; Doutch, James; Terrill, Nick

    2013-01-01

    The small-angle X-ray scattering (SAXS) covers the major disciplines of biology, chemistry and physics delivering structural and dynamic information in nanoscience, mesoscopic architectures, supramolecular structures, and nucleation/growth of crystals. SAXS is also proving to be important in archaeological, environmental, and conservation sciences, and has further indicated its ability to span wide-ranging scientific disciplines. Thus, strong needs for SAXS studies are increasing significantly in a broad range of scientific fields year by year. Based on such a background, the demand for high throughput SAXS experiments is increasing. At the synchrotron facility, Diamond Light Source, one SAXS beamline, Non-crystalline diffraction I22 is now operational and highly automated throughput small-angle X-ray scattering (HATSAXS) beamline B21 is now under construction. I22 is the Undulator beamline and wide varieties of experiments, including time-resolved experiments are attempted. Based on the concept of HATSAXS, the key feature of B21 will focuses on the automation of end-station equipment. A automated sample changer has been purchased for solution SAXS measurements on biomolecules. A robotic-arm-type automated sample changer that is capable of handling several kinds of samples in material science is also being constructed. B21 is expected to successfully provide all users highly automated throughput measurements with the highest possible reliability and accuracy. Construction of this beamline will end in the second half of 2012, and will be open for users in the early summer of 2013 after commissioning. (author)

  9. X-ray small-angle scattering of polytetrahydrofuran solution, 3

    International Nuclear Information System (INIS)

    Izumi, Yoshinobu; Fuji, Masayuki; Shinbo, Kazuyuki; Miyake, Yasuhiro

    1975-01-01

    In a previous report, the conformation of polytetrahydrofuran (PTHF) in isopropyl alcohol as a theta solvent and in n-butyl alcohol as an intermediate solvent was examined by the small angle scattering of X-ray. As the result, the experimental scattering curve at theta temperature was explained well with the calculated curve obtained by superposing, while it was impossible to apply the similar method to the analysis of the scattering curve in the intermediate solvent. Recently, as the results of the calculation by Koyama on the angular distribution of light intensity scattered by stiff chain polymers and of the studies by Edwards and de Gennes on the asymptotic behavior of scattering curves in good solvents, the direct comparison of experimental and calculated scattering curves became possible. In this report, the comparison of the scattering curves of PTHF-alcohol systems is described. The systems employed were PTHF-n-propyl alcohol, PTHF-isobutyl alcohol, PTHF-sec-butyl alcohol, and PTHF-tert-butyl alcohol in addition to the previous two systems. The Guinier plots of the cross section factors of the PTHF-alcohol systems showed that the Guinier approximation on cross sections was not satisfied in cases of PTHF-isobutyl alcohol and PTHF-sec-butyl alcohol. The light scattering data at 44.6 0 C, the theta temperature of PTHF-isopropyl alcohol, are given. From the figures comparing experimental and calculated scattering curves, it was shown that there was appreciable solvent effect on the scattering curves of PTHF-alcohol systems. The relation predicted by Edwards and de Gennes was satisfied well in case of the systems in good solvents. (Kako, I.)

  10. Smart x-ray beam position monitor system for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Kuzay, T.

    1996-01-01

    In third-generation synchrotron radiation sources, such as the Advanced Photon Source (APS), the sensitivity and reliability requirements for the x-ray beam position monitors (XBPMs) are much higher than for earlier systems. Noise and contamination signals caused by radiation emitted from the bending magnet become a major problem. The regular XBPM calibration process can only provide signal correction for one set of conditions for the insertion devices (ID). During normal operation, parameters affecting the ID-emitted beam, such as the gap of the ID magnets and the beam current, are the variables. A new smart x-ray beam position monitor system (SBPM) has been conceived and designed for the APS. It has a built in self-learning structure with EEPROM memory that is large enough to open-quote open-quote remember close-quote close-quote a complete set of calibration data covering all the possible operating conditions. During the self-learning mode, the monitor system initializes a series of automatic scan motions with information for different ID setups and records them into the database array. During normal operation, the SBPM corrects the normalized output according to the ID setup information and the calibration database. So that, with this novel system, the SBPM is always calibrating itself with the changing ID set up conditions. copyright 1996 American Institute of Physics

  11. Radiation dose response of N channel MOSFET submitted to filtered X-ray photon beam

    Science.gov (United States)

    Gonçalves Filho, Luiz C.; Monte, David S.; Barros, Fabio R.; Santos, Luiz A. P.

    2018-01-01

    MOSFET can operate as a radiation detector mainly in high-energy photon beams, which are normally used in cancer treatments. In general, such an electronic device can work as a dosimeter from threshold voltage shift measurements. The purpose of this article is to show a new way for measuring the dose-response of MOSFETs when they are under X-ray beams generated from 100kV potential range, which is normally used in diagnostic radiology. Basically, the method consists of measuring the MOSFET drain current as a function of the radiation dose. For this the type of device, it has to be biased with a high value resistor aiming to see a substantial change in the drain current after it has been irradiated with an amount of radiation dose. Two types of N channel device were used in the experiment: a signal transistor and a power transistor. The delivered dose to the device was varied and the electrical curves were plotted. Also, a sensitivity analysis of the power MOSFET response was made, by varying the tube potential of about 20%. The results show that both types of devices have responses very similar, the shift in the electrical curve is proportional to the radiation dose. Unlike the power MOSFET, the signal transistor does not provide a linear function between the dose rate and its drain current. We also have observed that the variation in the tube potential of the X-ray equipment produces a very similar dose-response.

  12. Comparison of dual photon and dual energy X-ray bone densitometers in a clinic setting

    International Nuclear Information System (INIS)

    Nelson, D.A.; Shaffer, S.; Brown, E.B.; Flynn, M.J.; Cody, D.D.

    1991-01-01

    Two separate studies were conducted. We evaluated the relationships between results of lumbar spine measurements using two dual photon absorptiometry (DPA1 and DPA2) instruments and one dual energy X-ray (DXA) instrument with the same subject (49 volunteers), and also in 65 patients who were measured on the DPA1 and DXA machines. Second, we measured the lumbar spine and the proximal femur in three groups of 12 female volunteers three times on one instrument within 1 week. We purposely simulated a busy clinic setting with different technologists, older radioactive sources, and a heterogeneous patient group. The comparison study indicated a significant difference between the mean bone density values reported by the machines, but the results were highly correlated (R 2 = 0.89-0.96). This study emphasizes the differences between instruments, the potential for greater error in busy clinic environments, and the apparent superiority of dual energy X-ray absorptiometry under these less than ideal conditions. (orig./GDG)

  13. Novel opportunities for sub-meV inelastic X-ray scattering at high-repetition rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY (United States). National Synchrotron Light Source II; Geloni, Gianluca; Madsen, Anders [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Shvyd' ko, Yuri [Argonne National Laboratory, IL (United States). Advanced Photon Source; Sutter, John [Diamond Light Source Ltd., Didcot (United Kingdom)

    2015-08-15

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup -1} spectral and momentum transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup -1} are required to close the gap in energy-momentum space between high and low frequency probes. We show that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a hundred-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than possible with storage-ring based radiation sources. Wave-optics propagation shows that about 7 x 10{sup 12} ph/s in a 90-μeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  14. Novel opportunities for sub-meV inelastic X-ray scattering at high-repetition rate self-seeded X-ray free-electron lasers

    International Nuclear Information System (INIS)

    Chubar, Oleg; Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar; Shvyd'ko, Yuri

    2015-08-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm -1 spectral and momentum transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm -1 are required to close the gap in energy-momentum space between high and low frequency probes. We show that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a hundred-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than possible with storage-ring based radiation sources. Wave-optics propagation shows that about 7 x 10 12 ph/s in a 90-μeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  15. Direct Observation of Insulin Association Dynamics with Time-Resolved X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rimmerman, Dolev [Department; Leshchev, Denis [Department; Hsu, Darren J. [Department; Hong, Jiyun [Department; Kosheleva, Irina [Center; Chen, Lin X. [Department; Chemical

    2017-09-05

    Biological functions frequently require protein-protein interactions that involve secondary and tertiary structural perturbation. Here we study protein-protein dissociation and reassociation dynamics in insulin, a model system for protein oligomerization. Insulin dimer dissociation into monomers was induced by a nanosecond temperature-jump (T-jump) of ~8 °C in aqueous solution, and the resulting protein and solvent dynamics were tracked by time-resolved X-ray solution scattering (TRXSS) on time scales of 10 ns to 100 ms. The protein scattering signals revealed the formation of five distinguishable transient species during the association process that deviate from simple two state kinetics. Our results show that the combination of T-jump pump coupled to TRXSS probe allows for direct tracking of structural dynamics in nonphotoactive proteins.

  16. Anomalous X-ray scattering studies on semiconducting and metallic glasses

    International Nuclear Information System (INIS)

    Hosokawa, S.; Pilgrim, W.C.; Berar, J.F.; Kohara, S.

    2012-01-01

    In order to explore local- and intermediate-range atomic structures of several semiconducting and metallic glasses, anomalous X-ray scattering (AXS) experiments were performed using an improved detecting system suitable for third-generation synchrotron radiation facilities, and the obtained data were analyzed using reverse Monte Carlo (RMC) modelling to obtain partial structure factors and to construct three-dimensional atomic configurations of these glasses. Examples of GeSe 2 semiconducting and Pd 40 Ni 40 P 20 metallic glasses are demonstrated to exhibit the feasibility of the combination of AXS and RMC techniques. Importance of an additional combination with neutron scattering is also described for alloys containing light elements. (authors)

  17. Small angle x-ray scattering as a potential tool for cancer diagnosis

    International Nuclear Information System (INIS)

    Kitchen, M.; Siu, K.K.W.; Lewis, R.A.

    2003-01-01

    Full text: The diagnostic potential of Small Angle X-ray Scattering (SAXS) patterns has recently been investigated for malignant breast tissues. The demonstrated systematic differences in the scattering signatures of malignant, benign and normal breast tissue specimens are believed to arise from the changes in the fibrous proteins making up the extracellular matrix (ECM) with the disease progression. The technique may also have the potential to aid in the diagnosis of gliomas, a highly aggressive type of brain tumour. Although complex and difficult to interpret, SAXS data from malignant tissues may prove to be a more effective classification tool than conventional histology techniques. Here we present the methodology of the technique, as applied to breast cancer and brain tumour specimens to date, and some directions for future investigations. We also present a novel analysis method, which employs wavelet decomposition and a naive Bayesian classifier, as a potential semi-automated classification tool

  18. Scatter correction method for x-ray CT using primary modulation: Phantom studies

    International Nuclear Information System (INIS)

    Gao Hewei; Fahrig, Rebecca; Bennett, N. Robert; Sun Mingshan; Star-Lack, Josh; Zhu Lei

    2010-01-01

    Purpose: Scatter correction is a major challenge in x-ray imaging using large area detectors. Recently, the authors proposed a promising scatter correction method for x-ray computed tomography (CT) using primary modulation. Proof of concept was previously illustrated by Monte Carlo simulations and physical experiments on a small phantom with a simple geometry. In this work, the authors provide a quantitative evaluation of the primary modulation technique and demonstrate its performance in applications where scatter correction is more challenging. Methods: The authors first analyze the potential errors of the estimated scatter in the primary modulation method. On two tabletop CT systems, the method is investigated using three phantoms: A Catphan(c)600 phantom, an anthropomorphic chest phantom, and the Catphan(c)600 phantom with two annuli. Two different primary modulators are also designed to show the impact of the modulator parameters on the scatter correction efficiency. The first is an aluminum modulator with a weak modulation and a low modulation frequency, and the second is a copper modulator with a strong modulation and a high modulation frequency. Results: On the Catphan(c)600 phantom in the first study, the method reduces the error of the CT number in the selected regions of interest (ROIs) from 371.4 to 21.9 Hounsfield units (HU); the contrast to noise ratio also increases from 10.9 to 19.2. On the anthropomorphic chest phantom in the second study, which represents a more difficult case due to the high scatter signals and object heterogeneity, the method reduces the error of the CT number from 327 to 19 HU in the selected ROIs and from 31.4% to 5.7% on the overall average. The third study is to investigate the impact of object size on the efficiency of our method. The scatter-to-primary ratio estimation error on the Catphan(c)600 phantom without any annulus (20 cm in diameter) is at the level of 0.04, it rises to 0.07 and 0.1 on the phantom with an

  19. Guest–Host Interactions Investigated by Time-Resolved X-ray Spectroscopies and Scattering at MHz Rates

    DEFF Research Database (Denmark)

    Haldrup, Martin Kristoffer; Vanko, G.; Gawelda, W.

    2012-01-01

    We have studied the photoinduced low spin (LS) to high spin (HS) conversion of [Fe(bipy)3]2+ in aqueous solution. In a laser pump/X-ray probe synchrotron setup permitting simultaneous, time-resolved X-ray diffuse scattering (XDS) and X-ray spectroscopic measurements at a 3.26 MHz repetition rate...... lifetime, allowing the detection of an ultrafast change in bulk solvent density. An analysis approach directly utilizing the spectroscopic data in the XDS analysis effectively reduces the number of free parameters, and both combined permit extraction of information about the ultrafast structural dynamics...

  20. Resonant inelastic scattering in dilute magnetic semiconductors by x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lawniczak-Jablonska, K. [Lawrence Berkeley National Lab., CA (United States)]|[Institute of Physics, Warsaw (Poland); Jia, J.J.; Underwood, J.H. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    As modern, technologically important materials have become more complex, element specific techniques have become invaluable in studying the electronic structure of individual components from the system. Soft x-ray fluorescence (SXF) and absorption (SXA) spectroscopies provide a unique means of measuring element and angular momentum density of electron states, respectively, for the valence and conducting bands in complex materials. X-ray absorption and the decay through x-ray emission are generally assumed to be two independent one-photon processes. Recent studies, however have demonstrated that SXF excited near the absorption threshold generate an array of spectral features that depend on nature of materials, particularly on the localization of excited states in s and d-band solids and that these two processes can no be longer treated as independent. Resonant SXF offers thus the new way to study the dynamics of the distribution of electronic valence states in the presence of a hole which is bound to the electron low lying in the conduction band. This process can simulate the interaction between hole-electron pair in wide gap semiconductors. Therefore such studies can help in understanding of transport and optics phenomena in the wide gap semiconductors. The authors report the result of Mn and S L-resonant emission in Zn{sub 1{minus}x}Mn{sub x}S (with x=0.2 and 0.3) and MnS as the energy of exciting radiation is tuned across the Mn and S L{sub 3,2} absorption edge, along with the resonant excited spectra from elemental Mn as a reference.